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ABSTRACT

Many person-fit statistics have been proposed to detect aberrant response behaviors (e.g., cheating,
guessing). Among them, /, is one of the most widely used indices. The computation of /, assumes
the item and person parameters are known. In reality, they often have to be estimated from data.
The better the estimation, the better I, will perform. When aberrant behaviors occur, the person and
item parameter estimations are inaccurate, which in turn degrade the performance of L. In this
study, an iterative procedure was developed to attain more accurate person parameter estimates
for improved performance of /,. A series of simulations were conducted to evaluate the iterative pro-
cedure under two conditions of item parameters, known and unknown, and three aberrant
response styles of difficulty-sharing cheating, random-sharing cheating, and random guessing. The
results demonstrated the superiority of the iterative procedure over the non-iterative one in main-
taining control of Type-I error rates and improving the power of detecting aberrant responses. The
proposed procedure was applied to a high-stake intelligence test.
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In high-stakes tests, aberrant response behaviors on items
often (if not always) occur, and several types have been
identified (Meijer & Sijtsma, 2001). Typical examples
include (a) cheating behavior where an examinee of low
ability has a high probability of correctly answering diffi-
cult items; (b) difficulty-compromise behavior where an
examinee performs unexpectedly better than his or her
true ability level to compromised items and; and (c)
guessing behavior where an examinee randomly guesses
in multiple-choice items which consequently results in
an ability estimation often lower than his or her level.
Failing to identify aberrant responses may have serious
consequences: the resulting person parameter estimates
will not accurately describe the examinee’s true latent
trait levels. As a result, decisions based on these scores,
such as which an individual may be admitted to college
will be unfair or misleading.

A number of person-fit statistics (PFS) have been
developed in the literature (Karabatsos, 2003; Meijer &
Sijtsma, 2001; Rupp, 2013; Sinharay, 2017; Walker et al.,
2016) to identify aberrant responses. These statistics
measure the degree of agreement between an examinee’s

observed response pattern and their expected response
pattern based on item response theory (IRT) models. In
addition to the development of PFS, robust estimators
have also been introduced to counteract the adverse
effects of aberrant responses. Examples of robust ability
estimators include the biweight estimator (Mislevy &
Bock, 1982) and the Huber estimator (Schuster & Yuan,
2011), while robust item estimators include the robust
maximum marginal likelihood (RMML) estimator
developed by Hong and Cheng (2019). Recently,
researchers have shown great interest in incorporating
robust estimators with PFS, as this approach provides a
powerful method for detecting aberrant responses. For
instance, Sinharay (2016) examined the use of biweight
and Huber estimators in conjunction with the [ index
(Snijders, 2001), which is one of the most commonly
used PFS, to identify difficulty-sharing cheating or
unmotivated guessing responses. Hong and Cheng
(2019) developed the RMML item estimator to identify
careless responses.

This study aims to propose an iterative scale purifi-
cation procedure on PFS to detect aberrant responses.
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It was motivated by the fact that the accuracy of PFS
computation relies on accurate item and person esti-
mates. If these estimates are distorted due to aberrant
responses, the performance of PFS in detecting such
responses can significantly decline. The method is
inspired by similar procedures in differential item
functioning (DIF) studies, which aim to obtain more
accurate ability estimates for improved performance
of standard DIF methods (Wang, 2008; W.-C. Wang
et al., 2012). Such purification procedures have been
found to substantially improve DIF assessment
(French & Maller, 2007; Hidalgo-Montesinos &
Go6mez-Benito, 2003; Lautenschlager et al., 1994).
While the purification procedure is well-established in
DIF studies, its application for detecting aberrant
responses is novel. To the best of our knowledge, only
one study (Patton et al., 2019) employed an iterative
procedure to obtain more accurate item parameter
estimates to improve the detection of careless
responses. Although the present work and that of
Patton et al. (2019) are similar in the sense that both
methods develop an iterative procedure, they differ in
several significant ways. Patton et al. (2019) focused
on obtaining more accurate item parameter estimates
for one particular aberrant response style (i.e., care-
lessness), while this work aimed to obtain more accur-
ate person estimates for three common aberrant
response styles (i.e., difficulty-sharing cheating, ran-
dom-sharing cheating, and random guessing). More
importantly, in Patton et al. (2019), an examinee’s
responses were deemed aberrant as a whole and
screened from the calibration if the [ value for the
person exceeded a critical value of a significance level
(e.g., —1.645). In contrast, in this study, an examinee’s
responses were examined item by item, and only the
responses that exceed the critical value were screened.

The current study utilizes an ability estimate
derived from a purification procedure that involves
iteratively removing extreme values. This estimation
method can be considered a trimmed-mean estimator,
which is also a type of robust estimator. Thus, the
approach taken in this study shares similarities with
previous PFS studies that used robust estimators (e.g.,
Sinharay, 2016). Note that the ability estimate is used
in conjunction with the likelihood-based person-fit I,
statistic (Drasgow et al., 1985) in this study because
the I, has some appealing features (Li & Olejnik,
1997). Nevertheless, the proposed method is not con-
fined to the specific statistic but can be conveniently
generalized to other PFS.

The organization of this paper is as follows: First,
the definition of the [, is introduced. Second, the
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statistical distribution of the I, and how it can be
affected by the aberrant responses that lead to signifi-
cantly declined performances, are elaborated. Third,
the iterative purification procedure is introduced.
Fourth, the performance of the proposed method is
evaluated through a series of simulations, and the
results are summarized. Fifth, the proposed method
was applied to an empirical example. Finally, conclu-
sions are drawn and future research direction are
suggested.

A standardized likelihood-based index I,

The I, index is developed based on the [, index, which
represents the fit of a particular response pattern
given an ability level. It is defined as (Levine & Rubin,
1979):

I, = log T Pi(6)" (1 — Pi(0))) "~ (1)
i=1

where 0; is the ability of examinee j u; is the
response to item i (i=1, ..., L) for examinee j; if the
response is correct, u; = 1, otherwise, u; = 0.
P;(0;) = P(u;; = 1|0;) is the probability of scoring 1
on item i for examinee j, and it is assumed to follow
a particular IRT model, for example, the three-param-
eter logistic model (3PL; Birnbaum, 1968):

P,(QJ) = Pi(u,-j = 1|0])

exp (OC,'(HJ' — 5,))

T+ eop@,—0)

=+ (1-q)

where o;, J;, c; are the discrimination, difficulty, and
lower asymptote parameters of item i, respectively. To
simplify the notation, let ®; = {o;, d;,¢;} be the set of
item parameters. [,, being the log-likelihood of the
response pattern for an examinee, is large when the
response pattern follows the model’s expectation and
is small otherwise. Thus, it can be used to detect aber-
rant responses. It has been found that the more aber-
rant responses for an examinee, the better [, will
perform in detecting aberrant responses (Levine &
Rubin, 1979).

As shown in Equation (1), the performance of [, is
not only affected by the percentage of aberrant
responses but also by 0 levels, as the computation of
I, relies on 0. Therefore, the conditional distribution
of I, changes as a function of 0, and interpreting the
magnitude of [, without considering 0 levels is not
appropriate. For example, Drasgow et al. (1985) com-
puted I, using the 3PL model and the maximum like-
lihood (ML) estimate of ability for the responses of
approximate 75,000 examinees. They found that the
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mean of [, increased as 0 levels increased, and the
variances of [, varied across different 0 levels. To
reduce the impact of 0 levels on [,, Drasgow et al.
(1985) developed a standardized likelihood-based
index [, as:

L, —E(L,)

l, =—F—=,
Var(l,) ©)

E(l) = ) (Pi(6)) x log (Pi(6)))

((1=Pi(0;) x log (1 = Pi(6))))),  (4)
Pi<9j) )2
1-Pi(0;)"
(5)

The I, index becomes popular because it is a likeli-
hood-based function and is relatively easy to compute.
More importantly, I, is a standardized statistic and has
an approximately normal sampling distribution, mak-
ing hypothesis testing to determine whether a
response pattern is aberrant feasible. When the nor-
mal level is set at 0.05 one-tailed, an [, value smaller
than —1.645 indicates the rejection of the null hypoth-
esis, and the response pattern is deemed aberrant.
Previous studies have demonstrated that I, performs
satisfactorily when no aberrant response is involved
(good control of Type-I error rates) and when there
are aberrant responses (high detection power)
(Hendrawan et al., 2005; Karabatsos, 2003; Lee et al.,
2014; Li & Olejnik, 1997; Reise & Due, 1991; Seo &
Weiss, 2013; St-Onge et al, 2011). The power of I,
increases as the percentage of aberrant item responses
increases up but decreases afterward when the per-
centage becomes higher. Furthermore, I, and other
PES are more sensitive to cheating behavior (low abil-
ity examinees answer difficult items correctly) than
unlucky-guessing behavior.

+
Var(l,) = ZPi(Hj) x (1 =Pi(0;)) x (log

The statistical distribution of [,

According to studies that have focused on the distri-
bution of I, (e.g., de la Torre & Deng, 2008; Noonan
et al., 1992; van Krimpen-Stoop & Meijer, 1999), in
theory, when all the item and person parameters are
known and the test length is infinite, /, should follow
a standard normal distribution. However, in reality,
the item and person parameters are seldom known
and the test length is finite. As such, [, cannot follow
exactly the standard normal distribution, making it
problematic to use [, to detect aberrant responses.

Even when the item and person parameters are
known and the test length is long (e.g., more than 50
items), the distribution of I, is still not symmetric but
negatively skewed with positive kurtosis (Meijer &
Sijtsma, 2001; Molenaar & Hoijtink, 1990; Nering,
1995; van Krimpen-Stoop & Meijer, 1999). Using I, to
detect aberrant responses becomes even more mislead-
ing when the item or person parameters are not
known or not accurately estimated, especially when
tests are not very long (van Krimpen-Stoop & Meijer,
1999).

As shown in Equations (1)-(5), the computation of
I, relies on the true value of 0 and ®;, which in real-
ity have to be replaced with 0 and O, respectively.
Researchers (Nering, 1995; Reise, 1995; Snijders, 2001)
compared the [, distributions when the true 0 and the
estimated 0 are used, assuming all item parameters
are known. When 0 is used, the mean and variance of
the [, distribution under the null condition (no aber-
rant response) are very close to the expected value of
0 and 1, respectively. In contrast, when 0 is used, the
mean is consistently larger than 0 and the variance is
smaller than 1. As a results, the empirical Type-I error
rates of using [, to detect aberrant responses are lower
than nominal levels.

Researchers have adopted different methods to
tackle the problem that the distribution of I, does not
exactly follow the standard normal distribution when
0 (instead of 0) is used. These methods can be gener-
ally classified into two approaches: (1) methods to
obtain more accurate 0, and (2) methods to correct
the empirical distribution of I, Theoretically, if  can
be estimated more accurately, the empirical distribu-
tion will become closer to standard normal
distribution.

For the first approach, researchers typically utilize
various methods to mitigate or reduce the impact of
aberrant responses on ability estimation. For example,
some studies (Glas & Dagohoy, 2007; X. Wang et al,,
2017) have incorporated a correction to 0 to account
for such effects. In this study, the same approach is
adopted, but with the iterative purification of 0. For
the second approach, researchers usually use statistical
or nonstatistical methods to make the empirical distri-
bution of I, approximate the standard normal distri-
bution. One representative of this approach is the I}
index (Snijders, 2001), which yields the asymptotical
standardization of /, with estimated ability parameter.
The Type-I error rates of using I; were found to be
closer to nominal levels than those of using I, and
other PFS (de la Torre & Deng, 2008; Magis et al,
2012; Snijders, 2001). On the other hand, de la Torre



and Deng (2008) proposed to derive the empirical dis-
tribution of I, based on 0 through a resampling
method. It was found that the resampling-based [, has
Type-I error rates close to the nominal value for most
ability levels.

The iterative scale purification procedure for I,

In this study, we propose an iterative scale purifica-
tion procedure to obtain an accurate 0 for improved
performance of I,. As such, 0 is closer to 0, the calcu-
lation of the I, will be more accurate. Assume exam-
inee j has responded to a test with L (dichotomous)
items. The person will receive an ability estimate (éj)
according to a particular IRT model, based on ML
estimation or Bayesian methods (BM). For each item i
and each examinee j, we can calculate:

(wj — E(uy))?

Var(u;) ©)

Zizj =
where  E(u;) = P(0)),  Var(uz) = (1 — P(0))) +
(1 —uij)zP(Hj), and others are defined as those in
Equation (1). As described in Embretson and Reise
(2000), Zizj approximately follows the y* distribution
with one degree of freedom. To identify aberrant
responses, different cutoff (C) can be used for screen-
ing, depending on the criteria levels. For example, C
are 1.64, 2.71, and 3.84 for criteria levels of 0.80, 0.90,
and 0.95, respectively. To simplify notations, they are
denoted as Cgg, Cop, and Cos, respectively. A response
with Z,.Zj larger than a predefined C would be deemed
aberrant.

Because the estimation of person and item parame-
ters relies on each other, the iterative purification pro-
cedure is wused. As illustrated in Figure 1, the
procedure proceeds as follows:

1. Obtain ability and item parameter estimates based
on an examinee’s responses to all items using a
certain program for IRT analysis (e.g., mirt R
package [Chalmers, 2012]), denoted as 90 and
0, respectively;

2. Use Equation (6) to judge every item response for
aberrancy using a predefined cutoft C. If no item
response was identified as aberrant, the 0o and
®, obtained from Step 1 will be treated as the
final 91 and (:)i;

3. Remove those item responses judged as aberrant
in Step 2 from the test, and update éj based on
the responses to the remaining items;

4. Repeat Steps 2 and 3 until the same set of item
responses is judged as aberrant at two consecutive
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iterations or a maximum number of iterations
(say, 10) is reached;

5. Estimate (:)i Awith the final 9j;

6. Use 0; and O; to calculate [, across all items;

7. Compare the I, to the critical value (e.g., —1.645
at the .05 nominal level, one-tailed) to determine
whether the response pattern is aberrant.
Alternatively, the distribution of [, can be
obtained through a resampling method: simulate
a large number of response patterns (e.g., 1,000)
based on the final @j and ©; according to an IRT
model of interest, and compute the I, value for
each simulated response pattern. If the empirical
I, is smaller than the 95th percentile of the simu-
lated I, values (when the nominal level is set at
.05, one-tailed), the response pattern is deemed
aberrant.

To implement the iterative scale purification proced-
ure, we developed a computer program in the R envir-
onment, which embeds different IRT models (Rasch,
1960, 2PL, 3PL), ability methods (“ML”, “BM”), cutoff
values, number of iterations, normal distribution or
resampling distribution, and so on. The program is
available upon request from the first author.

Simulations

A series of simulations were conducted to evaluate the
iterative procedure. Two conditions were intentionally
designed: item parameters known and item parame-
ters unknown. In the first condition, the true (gener-
ating) item parameters are used assuming they are
known. This condition mimics previous studies (e.g.,
Nering, 1995; Reise, 1995; Snijders, 2001) and repre-
sents the ideal condition where items parameters do
not contain measurement errors. The purpose of this
condition was to evaluate the performances of the
iterative procedure in improving the accuracy of dif-
ferent levels of 0. In the second condition, item
parameters are treated as unknown. This condition
represents the condition in reality where item and
person parameters are simultaneously estimated and
inevitably contain some measurement errors. The pur-
pose was to evaluate the performances of the iterative
procedure in the detection of aberrant patterns, com-
pared to the traditional [,. The critical values of I,
were derived using the resampling method in both
conditions where 1,000 samples were simulated and
the nominal level is set at 0.05 (one-tailed).
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Figure 1. An illustrative diagram of iterative scale purification procedure.

Condition I: Item parameters known

Four independent variables were manipulated in the
study: (a) methods: traditional I, (Equation (3)) and I,
with the iterative purification procedure using cutoff
Cso, Cop» and Cys; (b) proportions of items with aber-
rant responses (PIAR): 0, 0.1, 0.2, 0.3, and 0.4, where
PIAR = 0 suggested no aberrant response and serves

as the null condition and PIAR = 0.1 indicated the
examinee had aberrant responses to 10% of the items,
and so on; (¢) IRT model: Rasch model and 3PL
model; (d) aberrance style: difficulty-sharing cheating,
random-sharing cheating, and random guessing. A
total of 40 dichotomous items were generated. In the
difficulty-sharing cheating scenario, only the most



difficult items were compromised. For example, when
PIAR = 0.1, the four most difficult items were com-
promised (i.e., a correct answer was guaranteed). In
the random-sharing cheating scenario, the top 50% of
the hardest items in the test had the same probability
of being compromised, and the compromised items
were randomly selected. A correct answer was guaran-
teed to the selected items. In the random guessing
scenario, the top 50% of the hardest items in the test
had the same probability of being guessed, and the
randomly selected items to be guessed had a success
probability of .20. For each of the selected items, the
response was randomly generated from the Bernoulli
distribution with p =0.20.

The 0 values were set as —3, —2, —1, 0, 1, 2, and
3, each with 1,000 replications (examinees). The item
difficulty parameters were randomly drawn from the
standard normal distribution. The EAP estimates
were computed for person measures, with a prior
distribution N (0, 1). The item parameters were
treated as known in obtaining the EAP estimates.
Therefore, Step 5 in the iterative scale purification
procedure is skipped in this condition. The nominal
level 0.05 was used for [, in Step 7 in the iterative
procedure.

For the null condition, the outcome variable was
the Type-I error rate which was computed as the per-
centage of examinees among the 1,000 examinees that
were mistakenly detected as having aberrant
responses. Otherwise, the outcome variable was the
detection accuracy (power) rate, defined as the per-
centage of examinees that were correctly detected as
having aberrant responses. Only when the Type-I
error rate was well-controlled (e.g., at the 0.05 nom-
inal level) would the power rate be meaningful.

Condition II: Item parameters unknown

Under this condition, a total of 1,000 examinees were
generated from N (0, 1). In addition to the four inde-
pendent variables in Condition I, the percentages of
examinees with aberrant responses (PEAR) was also
manipulated. The PEAR levels for 3PL model (see
Table 3) were set lower than those for Rasch model
(see Table 2) because it was found in our pilot studies
that the estimation for 3PL model was very poor
when there was high PEAR. For example, the discrim-
ination parameter estimates became negative when
PEAR levels were higher than 0.3 for difficulty-sharing
cheating and random-sharing cheating scenarios.

All item and person parameters were simultan-
eously estimated using standard EM algorithm and
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person parameters were estimated using EAP estima-
tion. In the non-iterative procedure, item and person
measures were used directly to compute [,; whereas in
the iterative procedure, both item and the person
measures were updated iteratively (as shown in Figure
1) using the customized program. A total of 100 repli-
cations were run under each condition, and all 1,000
examinees were subject to aberrancy inspection. The
major outcome variable was the Type-I error rate and
power rate.

Additionally, it was interesting to know whether 0
could be more accurately estimated with the iterative
procedure than the non-iterative procedure. The mean
error (ME) and mean square error (MSE) for 0 were
computed to demonstrate the advantage of the itera-
tive procedure over the non-iterative one. When there
were aberrant responses, the ME and MSE for the
examinees without aberrant responses (normal exam-
inees) and those with aberrant responses (aberrant
examinees) were computed separately.

Expected results of the simulations

We had the following major expectations. First, under
the null condition, the Type-I error rate would be
near the expected nominal level. Second, the detection
accuracy (power) would be improved by the iterative
procedure given that the more accurate 0 was
obtained. Third, the smaller the cutoft C for Zé the
larger the PIAR, and the smaller the PEAR
(Condition II), the higher the detection accuracy
would be. Aberrant responses would be easier to be
screened by a smaller C because the smaller the C, the
smaller the Type-II error rate and the higher the
power. A larger PIAR indicated the examinee had a
higher percentage of aberrant responses to items and,
thus, was easier to be detected. When PEAR was
small, the item parameters would be accurately esti-
mated, which in turn would help the detection.

Fourth, in the difficulty-sharing and random-shar-
ing cheating scenarios, the lower the 0 level, the
higher the power. An examinee with a low 0 level but
answered difficult items correctly was considered
more aberrant than an examinee with a high 0 level,
making the detection of lower 0 levels easier. In the
random-guessing scenario, the higher the 0 level, the
easier the detection. An examinee with a high 0 level
but answered items correctly at a chance level (ran-
dom guessing) was considered more aberrant than an
examinee with a low 0 level.

Fifth, the power in the difficulty-sharing cheating
scenario would be the highest among the three
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scenarios, followed by that in the random-sharing
cheating scenario, and the power in the random
guessing scenario would be the lowest. In the diffi-
culty-sharing cheating scenario, the aberrancy was
mainly on answering very difficult items correctly,
resulting in a large misfit. In the random-sharing
cheating scenario, even easy items were compromised,
and answering easy items correctly would not result
in a large misfit. In the random guessing scenario, the
aberrancy was equally distributed across items and
examinees, resulting in a small misfit.

Results
Condition I: Item parameters known

Figure 2 shows the type-I error rates in the null con-
dition while Figures 3 and 4 show the power rates in
the difficulty-sharing cheating, the random-sharing
cheating, and the random-guessing for Rasch and 3PL
models, respectively.

The null condition

The Type-I error rates in the null condition, as shown
in Figure 2, were near the expected nominal level (i.e.,
0.05) across 0 levels for both Rasch and 3PL models.
Moreover, smaller values of C (e.g., Cgo) resulted in
higher Type-I error rates because a response is more
likely to be screened with a smaller cutoff value.
These results met our expectations.

The difficulty-sharing cheating scenario
The iterative procedure resulted in a significant
improvement in power rates compared to the non-
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iteration procedure using the standard I, index. Take
3PL model as an example. When PIAR = 0.1 (top
and left panel, Figure 4), the power rate for 0 = 0 was
0.914, 0.693, and 0.483, respectively, for Cgy, Cop, and
Cos. Compared to the traditional I, index (non-iter-
ation procedure) where the power rate was 0.305, the
power improvement ratio was 1.997, 1.271, and 0.585,
respectively, for Cgg, Cop, and Cos. However, the
improvement was less noticeable when PIAR = 0.4
(bottom and left panel, Figure 4) or when 0 < —1.
This was because when PIAR = 0.4 the amount of
aberrancy was too high for Z; to perform appropri-
ately; when 0 < —1, even the standard [, index would
yield a perfect power, leaving no room for improve-
ment with the iteration procedure.

The lines in the left panel of Figures 3 and 4 show
a general decreasing trend, indicating that the power
rates are higher for lower 0 level for both iterative
and non-iterative procedures in the difficulty-sharing
cheating scenario. For instance, for the condition of
PIAR = 0.1 under 3PL model, the power rates for
0 = -3 -2, -1,0, 1, 2, and 3 were 0.982, 0.998,
0.861, 0.915, 0.919, 0.833 and 0.173, respectively, for
Cso; they were 0.873, 0.678, 0.546, 0.305, 0.205, 0.208,
and 0.009, respectively, for I, The power rates of the
iterative procedure were uniformly higher than those
of the non-iterative procedure. Moreover, in Figures 3
and 4, the power rates for PIAR = 0.4 were higher
than those for PIAR = 0.1, indicating that a larger
PIAR resulted in a higher power rate.

A comparison of Figures 3 and 4 revealed that in
the difficulty-sharing cheating scenario, the general
patterns for Rasch model (left panel, Figure 3) are
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Figure 2. Type-l error rates in the null condition with Rasch (left panel) and 3PL (right panel) models in Condition I.
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PIAR = .1 Random-Sharing
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PIAR = .1 Random Guessing
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Figure 3. Power rates in the difficulty-sharing cheating (left panel), random-sharing cheating (middle panel) and random guessing
(right) scenarios with Rasch model in Condition I, and with PIAR =0.1 (top panel) and PIAR =0.4 (bottom panel). Note. PIAR:

Percentage of items with aberrant responses.

similar to those for 3PL model (left panel, Figure 4).
However, the improvement yielded by the iteration
procedure under Rasch model seems to be smaller
than that under 3PL model. Moreover, Rasch model
has higher power rates than 3PL model because the 0
are more accurately estimated for Rasch model.

The random-sharing cheating scenario

According to Figures 3 and 4, the major findings on
the power rates in the random-sharing cheating scen-
ario were very similar to those in the difficulty-shar-
ing cheating scenario. There were, however, two

major differences. First, the improvement made by
the iteration procedure was more significant in the
random-sharing cheating scenario, especially for 3PL
model. For example, when PIAR = 0.1 under 3PL
model (top and middle panel, Figure 4), the power
rates for 6 = 0 were 0.473, 0.281, and 0.168, respect-
ively, for Cgg, Cop, and Cys. The power improvement
ratio compared to the standard I, index (0.084) was
4.631, 2.345, and 1.000, respectively, which were sub-
stantially larger than those found in the difficulty-
sharing cheating scenario. Second, the power rates

were smaller in the random-sharing cheating
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Figure 4. Power rates in the difficulty-sharing cheating (left panel), random-sharing cheating (middle panel) and random guessing
(right) scenarios with 3PL model in Condition I, and with PIAR =0.1 (top panel) and PIAR =0.4 (bottom panel). Note. PIAR:

Percentage of items with aberrant responses.

scenario. For example, for PIAR = 0.1 under 3PL
model, the average power rate for 0 = 0 across dif-
ferent methods was about 0.277 (the mean of 0.473
[Csol, 0.281 [Copl, 0.168 [Cos], and 0.084 [L,]) in the
random-sharing cheating scenario. It was smaller
than that in the difficulty-sharing cheating scenario,
which was 0.599 (the mean of 0.914 [Cgy], 0.693

[Cool, 0.483 [Cys], and 0.305 [L,]).

The random guessing scenario
The right panels in Figures 3 and 4 reveal that the

patterns of power rates across 0 levels in the random

guessing scenario were opposite to those in the diffi-
culty-sharing and the random-sharing cheating scen-
arios. The increasing lines suggest that, in general, the
higher the 0 level, the higher the power. This is
because random guessing behavior is not aberrant in
the same sense as the difficulty-sharing or random-
sharing cheating behaviors. Guessing behavior is more
likely to be used as an answering strategy by low-
ability students who find the items too difficult.
Therefore, it caused more dramatic misfit for examin-
ees with high ability levels than for those with low

ability levels.



Moreover, the iteration procedure showed signifi-
cant improvements in power rates, particularly for
examinees with high 0 levels and for a larger PIAR.
For example, for PIAR = 0.1 under 3PL model (right
and top panel, Figure 4), the power rates for 0 = 3
were 0.677, 0.630, 0.624, and 0.347, respectively, for
Cso> Coo» Cos, and I,. Thus, the power improvement
ratios were 0.948, 0.814, and 0.796, respectively, for
Cso> Cog> and Cys. When PIAR = 0.4 (right and bot-
tom panel, Figure 4), the powers rates were 0.996,
0.991, 0.521, and 0.349, respectively, for Cgo, Cop,
Cos. Thus, the power improvement ratios increase to
1.852, 1.608, and 0.492, respectively, for Cgg, Coq,
and Cos.

A comparison of the right panels in Figures 3 and
4 shows an interesting phenomenon when using dif-
ferent IRT models. For Rasch model, the power rates
decrease between 0 = —3 and 0 = —2 but increase
afterward as 0 gets larger. In contrast, for 3PL model,
the power rates increase almost steadily as 0 increases.
To interpret this phenomenon, we computed the aver-
aged success probabilities across items using the gen-
erating item parameters for different ability levels. As
shown in Table 1, the success probability for 0 = —2
with Rasch model is 0.221, which is very close to the
probability of success in the random guessing scen-
ario that was set to be .20. As such, although we
simulate the random-guessing aberrancy for 0 = —2
with Rasch model, the responses were very approxi-
mate to the responses without aberrancy because
they have similar success probabilities. In other

Table 1. Averaged successful probability for different ability
levels (0) with Rasch and three-parameter logit (3PL) models
in Condition I.

0=-3 0=-2 0=-1 06=0 0=1 0=2 0=3
Rasch  .123 221 .340 470 .605 737 851
3PL .203 313 464 621 758 861 927
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words, the misfit was small for 0 = —2 under Rasch
model, leading to difficulty in detection. Therefore,
the lowest detection power rate was found for 0 =
—2 under Rasch model. Likewise, for 3PL model, the
success probability for 0 = —3 (0.203) is close to the
fixed successful probability in the random guessing
scenario. Therefore, the lowest detection power rate
was found for 0 = —3 under 3PL model.

Condition Il: Item parameters unknown

Type-I error rate

When none of the examinees exhibited aberrant
responses (PIAR = 0; PEAR = 0; whole data were
clean), the Type-I error rate was 4.8% for both Rasch
(Table 2) and 3PL (Table 3) models, when no iter-
ation was implemented (i.e., [,). These empirical rates
were very close to the expected value of 5%. When
the iterative procedure was implemented, the Type-I
error rate increased slightly. The Type-I error rates
were 5.6%, 5.3%, and 5.8% under Rasch model, and
6.3%, 6.4%, and 6.6% under 3PL model, respectively,
when Cys, Cog, and Cgy were used. Slight inflation sug-
gests that when no examinees exhibited aberrant
responses, using the iterative procedure, although
unnecessary, did little harm.

When some examinees had aberrant responses, in
general, the Type-I error rates remained at the 5%
nominal level when the PIAR and PEAR were small
for both noniterative and iterative procedures.
However, when the PIAR and PEAR increased, the
estimation for item parameters was adversely affected
by those examinees with aberrant responses, leading
to less well-controlled Type-I error rates.

Specifically, for the difficulty-sharing cheating and
random-sharing cheating scenarios, for the standard
I,, the Type-I error rates under Rasch model (Table 2)
become very conservative when the percentages of

Table 2. Type-l error rates (in %) in the difficulty-sharing (DS), random-sharing (RS) and random guessing (RG) scenarios with

Rasch model in Condition II.

0.1 0.2 0.3 0.4 0.5
PEAR O

Iteration  PIAR o 01 02 03 04 01 02 03 04 01 02 03 04 01 02 03 04 01 02 03 04

DS I, 48 19 04 02 03 14 03 00 01 21 06 00 00 25 10 05 00 44 26 24 02
Cos 56 26 10 07 06 23 08 04 01 26 07 00 00 25 12 08 00 56 38 22 00

Coo 53 28 13 13 10 33 15 06 01 27 11 00 01 25 13 08 00 62 40 24 00

Cgo 58 42 24 23 17 44 24 18 09 49 20 06 04 38 23 23 12 84 72 52 14

RS I, 48 31 23 19 19 18 19 08 08 21 01 06 03 12 07 02 00 02 02 02 00
Cos 56 44 36 29 30 28 23 20 14 29 04 07 06 18 10 03 02 06 04 02 00

Coo 53 47 40 33 32 36 28 20 15 37 06 09 07 18 12 05 05 06 04 02 00

(@9 58 59 51 48 41 45 39 29 24 49 14 13 14 27 13 10 07 14 08 04 02

RG I, 48 47 41 32 32 26 25 15 15 40 29 10 04 25 13 08 07 08 06 06 02
Cos 56 67 56 42 37 39 33 23 26 51 40 16 06 35 17 13 07 14 14 18 04

Coo 53 70 59 48 46 43 36 30 31 53 40 23 10 37 23 15 07 20 16 18 04

Cgo 58 81 71 52 62 59 44 44 38 67 53 40 13 42 32 20 07 28 20 20 06

Note. PIAR: Percentage of items with aberrant responses; PEAR: Percentage of examinees with aberrant responses.
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Table 3. Type-l error rates (in %) under the difficulty-sharing (DS), random-sharing (RS) and random guessing (RG) scenarios with

3PL model in Condition II.

0.05 0.1 0.15 0.2
PEAR 0
Iteration PIAR 0 01 015 02 025 03 01 015 02 025 03 01 015 02 025 03 01 015 02 025 03
DS I, 48 37 32 27 37 22 41 49 48 46 25 43 49 58 69 62 47 52 58 74 84
Cos 63 56 48 27 38 22 57 55 28 36 22 57 58 55 55 80 67 134 114 147 194
Coo 64 52 49 21 52 23 60 60 49 28 18 64 68 61 54 86 66 138 101 168 203
Cso 66 58 51 24 54 31 55 53 37 27 27 59 77 84 86 93 85 164 123 302 351
RS I, 48 42 37 34 32 28 45 41 41 35 33 47 51 55 50 45 40 43 38 46 59
Cos 63 59 55 51 43 42 66 53 48 39 34 76 87 88 87 89 88 106 93 96 135
Coo 64 59 54 50 45 41 69 56 54 44 44 84 91 89 91 94 97 108 99 109 199
Cso 66 88 57 61 58 49 69 60 55 50 45 85 97 97 95 97 105 121 104 121 206
RG I, 48 43 45 41 37 37 39 36 31 32 30 41 38 35 33 29 35 37 27 26 22
Cos 63 64 65 60 62 59 57 54 52 58 45 64 59 57 48 47 58 57 49 51 46
Coo 64 75 74 72 68 65 67 69 61 59 63 69 64 65 63 58 65 65 65 56 57
Cso 66 91 85 85 79 82 88 81 82 85 81 87 88 81 76 73 94 90 81 75 77

Note. PIAR: Percentage of items with aberrant responses; PEAR: Percentage of examinees with aberrant responses.

aberrancy increase but become inflated under 3PL
model (Table 3). For the iterative procedures, under
Rasch model (Table 2), the Type-I error rates were
also conservative, but with a smaller magnitude than
those of the standard I, (i.e., closer to the nominal
level); Under 3PL model (Table 3), except for PEAR =
2., the Type-I error rates inflated more than those of
the standard I,, but remained at an acceptable level.
Overall, it appeared that the iterative procedure
yielded better control of Type-I error rates than the
non-iterative procedure.

Power rate

The power rates for the three scenarios are presented
in Figures 5 and 6. Note that the power rates for
PEAR = 0.2 under 3PL model were not shown
because the power rates are meaningless when the
Type-I errors in this condition were inflated. The gen-
eral findings were very similar across scenarios and
matched our expectations: the iterative procedure
improved the power substantially; the smaller cutoff C,
the larger the PIAR, and the smaller the PEAR, the
higher the power would be. A comparison of the three
scenarios indicated that the difficulty-sharing cheating
scenario yielded the highest power, followed by the
random-sharing scenario, and the random guessing
scenario. This was consistent with that was found in
the previous condition of known item parameters.

Accuracy of ability estimation

It was found that when there was no aberrant
response, the ME and MSE of 0 for both the iterative
and non-iterative procedures were small and close,
suggesting that both procedures yielded accurate 0.
However, when there were aberrant responses, the
iterative procedure yielded more accurate 0 for aber-
rant examinees than the non-iterative procedure,

especially when there was high percentage of aberrant
responses.

For illustration, the ME and MSE of 0 from the
iterative procedure using Cg, and tradition I/, under
the condition of difficulty-sharing and Rasch model
are compared. When there was no aberrant response,
the ME and MSE were —0.037 and 0.190, respectively,
for the iterative procedure, and 0.003 and
0.139, respectively, for the traditional ,, indicating that
both the iterative and non-iterative procedures yielded
accurate 0. When there were aberrant responses and
the percentage of aberrant responses was low (e.g.,
PIAR = 0.1 and PEAR = 0.1), the ME and MSE for
normal examinees were —0.052 and 0.167, respectively,
in the iterative procedure, and —0.022 and 0.140,
respectively, in the traditional [,, suggesting the iterative
procedure did little harm to the person estimation of
normal examinees. In contrast, the ME and MSE for
aberrant examinees were 0.799 and 1.570, respectively,
in the iterative procedure, and 1.490 and 2.331, respect-
ively, in the traditional I,, indicating the iterative pro-
cedure was very effective in improving the person
estimation of aberrant examinees.

When the percentage of aberrant responses was
high (e.g., PIAR = 0.1, and PEAR = 0.3), the ME and
MSE for normal examinees were —0.209 and 0.719,
respectively, in the iterative procedure, and —0.293
and 0.747, respectively, in the traditional [,, suggesting
the iterative procedure did little harm. In contrast, the
statistics for aberrant examinees were 2.340 and 5.593,
respectively, in the iterative procedure, and 2.600 and
10.497, respectively, in the traditional [,, suggesting an
improvement in the person estimation of aberrant
examinees with the iterative procedure. In short,
although not perfect, the iterative procedure was
effective in person estimation and the detection of
aberrant responses.
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Figure 5. Power rates in the difficulty-sharing cheating (left panel), random-sharing cheating (middle panel) and random guessing
(right panel) scenario with Rasch model in Condition Il, and with PIAR =0.1 (top panel) and PIAR =0.4 (bottom panel). Note. PIAR:
Percentage of items with aberrant responses; PEAR: Percentage of examinees with aberrant responses.

An empirical example

The data was retrieved from the R package ‘PerFit’
(Tendeiro, 2021), which consists of dichotomous
responses of 1,000 examinees to a high-stake 26-item
intelligence test on number completion in Dutch. The
item and person parameters were simultaneously esti-
mated with the 3PL model. Four procedures were
implemented to examine person fit for each person:
traditional I, and I, with the iterative purification pro-
cedure using cutoff Cgp, Cyp, and Cos. Two nominal

levels, as in, 0.05 and 0.01, were used with [, in the
procedures.

The results showed that the item discrimination
estimates are in the range of 0.598 and 1.859
(M=1.111, SD=0.345), the item difficulty estimates
are between —2.120 and 3.130 (M =0.242,
SD =1.380), and the guessing parameter estimates are
between 0.000 and 0.779 (M =0.109, SD =0.212). Due
to space constraints, the detailed results are provided
in Table Al in the online supplement. The aberrancy
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rate for the four procedures were 0.055 (I,), 0.081
(Cgo), 0.076 (Cqp), and 0.061 (Css), respectively, when
the nominal level 0.05 was used, and were 0.020 (I,),
0.030 (Cgp), 0.026 (Cop), and 0.021 (Cys), respectively,
when the nominal level 0.01 was used. To evaluate the
agreement of aberrancy detection between the proce-
dures, Cohen’s Kappa coefficients were calculated and
are shown in Table 4, where the results from the
nominal level 0.05 are in the upper triangle and those
from the nominal level 0.01 in the lower triangle.

Particular results worth noting are: First, results
from both nominal levels indicate that the traditional
Iz has the largest agreement coefficient with iterative
Iz using Cos and the smallest agreement coefficient
with iterative Iz using Cgo in detecting aberrant exam-
inees, which meet our expectations. Second, the coeffi-
cients suggest the substantial or almost perfect
agreements between the four procedures for aberrancy
detection in this example, especially when the nominal
level 0.05 was used.



Table 4. Agreement between four procedures for aberrancy
detection in empirical example.

lz Cos Coo Ceo
Iz - 0.945 0.829 0.795
Cos 0.975 - 0.883 0.849
Coo 0.867 0.891 - 0.965
Cso 0.795 0.819 0.927 -

Note. The results with nominal level 0.05 are in the upper triangle and
those with nominal level 0.01 are in the lower triangle.

Table 5. Responses, ability estimates, detection results, and
possible aberrancies for selected examinees in empirical
example.

0 Detection results

ID No. Responses Iz Coo Iz Cos Coo Cgo

278 10100111111100011110101110 0.71  0.21
772 10011000001010010001000001 -1.25 -2.21
709 00000010000001000101000101 -1.04 -1.85
69 00100010011111011111000111 050 0.19
237 00000011100100001100100111 -0.60 -1.43
742 00000101000010101100100110 -0.81 -1.64 0 0 0

Note. Responses are sorted in descending order according to the item dif-
ficulty estimates which are shown in Table A1 in the online supplement.
For detection results, 1 indicates aberrant and 0 otherwise.
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To demonstrate the consistency and inconsistency
of aberrancy detection results when using the four
procedures, six examinees were selected and their
sorted responses with descending item difficulties,
ability estimates from the traditional Iz and iterative Iz
using Cgp, and detection results when the nominal
level 0.05 was used are shown in Table 5. Examinee
#278 answered many difficult items correctly but
failed many less difficult items, whereas examinee
#772 seemed to answer the items correctly in a ran-
dom pattern. These two examinees were detected as
aberrant by all of the four procedures. Likewise, exam-
inees #709, #69, and #237 seemed to have some
unusual responses, but none of them were detected by
the traditional lz. Furthermore, examinee #742 was
detected as aberrant only by the iterative procedure
with a smaller C. Note that a smaller C is more likely
to lead to higher Type-I error rates, as the simulation
study reveals. More evidence (e.g., classroom perform-
ances) should be taken into account when judging
whether the examinees are aberrant.

Conclusion and discussion

The computation of I, requires true values of item
(®) and person (f)) parameters. However, in reality,
these parameters are often (if not always) unknown
and must be estimated from data. When a person
provides a high percentage of aberrant responses, the
O; and 0 will deviate substantially from their true val-
ues, which in turn will reduce the accuracy of the I,
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calculation. To address this issue, this study proposed
an iterative purification procedure that reduces the
impact of aberrant responses on the ®; and 0, thus
improving the performance of I,. A series of simula-
tions study was conducted in this study to examine
the Type I error rate and power rate of the proposed
method, and the results showed that the method is
promising. Additionally, an empirical example of a
high-stake intelligence test was used to demonstrate
the practical implications and applications of the new
method. Furthermore, a computer program that
implements the proposed procedure and may be a
useful tool for applied researchers was provided.

The current work focused on developing the new
procedure based on a specific person-fit statistic,
namely, I,. Although initial findings are promising,
future research is necessary to explore the wider
applicability of the developed procedure. One poten-
tial avenue for future investigation is to incorporate
the procedure into other IRT-based PFS. For example,
though the distribution of I is closer to the standard
normal distribution than that of I,, the distribution
does not follow exactly the standard normal distribu-
tion, especially when tests are not very long (van
Krimpen-Stoop & Meijer, 1999). Hence, it is intrigu-
ing to incorporate the iterative procedure into the I}
and evaluate the performance.

Second, in the simulation study of the current
work, the proposed procedure was applied to I, which
was computed using the marginal maximum likeli-
hood (MML) estimate of item parameters and EAP
estimate of person parameters. In future studies, it
would be valuable to investigate how other item and
person estimates, particularly robust item estimates
(e.g., Hong & Cheng, 2019) and robust person esti-
mates (e.g., Mislevy & Bock, 1982; Schuster & Yuan,
2011; Sinharay, 2016), could be utilized in conjunction
with the proposed procedure. The use of robust esti-
mates can reduce the impact of aberrant responses
(e.g., Mislevy & Bock, 1982; Schuster & Yuan, 2011),
potentially leading to more accurate ©®; and 0.
Therefore, as in Sinharay (2016), the biweight estima-
tor (Mislevy & Bock, 1982) or the Huber estimator
(Schuster & Yuan, 2011) could be implemented with
the proposed procedure.

Third, in the simulation study, a 0.05 significance
level was used with I, to detect aberrant responses.
However, it is worth noting that a 0.01 significance
level is also widely used in the person fit literature
(e.g., Cizek & Wollack, 2017). Therefore, it would be
beneficial to evaluate the performance of the
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developed procedure using the 0.01 significance level
with the PFES in future studies.

Fourth, this study examined three aberrant behav-
iors (scenarios) and examinees under a certain scen-
ario were assumed to have the same type of response
aberrancy. To examine the performances of the itera-
tive procedure when data contains heterogeneous
aberrancy styles, we conducted an additional brief
simulation study. In this study, a total of 150 examin-
ees among 1,000 examinees were assumed to have
aberrant responses, with each type of aberrancy con-
taining 50 examinees. One hundred replications were
run. It was found that the Type-I error rates were
0.040, 0.047, 0.048, 0.058 for I, Cos, Cop, and Cgo,
respectively, and the power rates were 0.328, 0.415,
0.450, 0.491, for I,, Cos, Cop, and Cgy, respectively. The
results suggest that the iterative procedure maintains
Type-1 error rates well and yields higher power rates
for aberrancy detection when the aberrant behaviors
are heterogeneous. Further investigations should be
conducted for this scenario in the future.
Additionally, while the iterative procedure shows
promise, it should be examined for the detection of
other types of aberrant responses, such as lack of
motivation or speeding.

Finally, the iterative procedure proposed in this
study is straightforward and has potential for further
refinement. For example, one possible refinement is to
sort the Z statistics (Equation (6)) according to their
absolute value and select a certain percentage of item
responses (e.g., 80%) with the smallest absolute values
among the non-significant ones. These responses are
less likely to be aberrant and can be used for person
estimation. The iterative process can then be repeated
until the same set of item responses is identified as
aberrant.
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