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ABSTRACT

The accessibility to electronic devices and the novel statistical methodologies available have
allowed researchers to comprehend psychological processes at the individual level. However,
there are still great challenges to overcome as, in many cases, collected data are more complex
than the available models are able to handle. For example, most methods assume that the var-
iables in the time series are measured on an interval scale, which is not the case when Likert-
scale items were used. Ignoring the scale of the variables can be problematic and bias the
results. Additionally, most methods also assume that the time series are stationary, which is
rarely the case. To tackle these disadvantages, we propose a model that combines the partial
credit model (PCM) of the item response theory framework and the time-varying autoregres-
sive model (TV-AR), which is a popular model used to study psychological dynamics. The pro-
posed model is referred to as the time-varying dynamic partial credit model (TV-DPCM), which
allows to appropriately analyze multivariate polytomous data and nonstationary time series.
We test the performance and accuracy of the TV-DPCM in a simulation study. Lastly, by means

of an example, we show how to fit the model to empirical data and interpret the results.

Intensive longitudinal methods such as experience sam-
pling or ecological momentary assessment have allowed
researchers to study and unravel the psychological
dynamics of individuals (Hamaker et al., 2015; Hamaker
& Wichers, 2017). These methods consist of assessing
individuals repeatedly during short periods of time. In
particular, popular intensive longitudinal designs require
participants to fill in short questionnaires of about 10
times a day for 5-7days (Vachon et al, 2019). As a
result, psychological time series commonly have between
50 and 100 time points. However, analyzing this kind of
data has proven to be a challenging task.

Intensive longitudinal data are complex data with
strong dependencies between the measurements due
to their closeness in time. Because of this, researchers
have applied extensions of the autoregressive model to
analyze this kind of data (e.g., Asparouhov et al,
2018; Chatfield, 2003; Hamilton, 1994; Kuppens et al.,
2010; Shumway & Stoffer, 2017; Song & Zhang, 2014;

Walls & Schafer, 2006). The simplest autoregressive
model used to analyze intensive longitudinal data is
the autoregressive model of order 1 (AR(1); Chatfield,
2003; Hamilton, 1994), which regresses the dependent
variable on a lagged version of itself to represent the
relation between two consecutive observations of the
dependent variable. This model has been extended,
for example, to multilevel and multivariate settings
(Bringmann et al., 2013), to account for measurement
error (Schuurman & Hamaker, 2019; Schuurman
et al, 2015; Song & Zhang, 2014), and to model
unequally spaced measurements (i.e., continuous-time
modeling, Crayen et al., 2017; Voelkle & Oud, 2013;
Voelkle et al, 2012). Furthermore, a comprehensive
framework to analyze intensive longitudinal data,
known as dynamic structural equation modeling, was
recently proposed by Asparouhov et al. (2018).
However, one of the shortcomings of these current
methods is that most of these approaches require the
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data to be continuous, which is not always the case.
In particular, to study psychological dynamics,
researchers tend to either use visual analogue scales or
Likert scales (Vachon et al., 2019). While the former
are continuous variables, which are suitable for the
mentioned methods, the latter, strictly speaking, are
ordinal categorical variables. This is a limitation, espe-
cially if there are not many response categories and if
the distributions of the item responses are heavily
skewed (Vogelsmeier et al, 2021). Furthermore, des-
pite some few exceptions, most of the available statis-
tical methods used to analyze intensive longitudinal
data do not account for measurement error, which is
likely to be present when measuring psychological
constructs (Schuurman et al., 2015). On top of that,
in many intensive longitudinal studies, multiple items
are used to measure a unique construct such as posi-
tive or negative affect (e.g., Hamaker et al, 2018;
Krieke et al., 2016) and composite scores are com-
puted before fitting the model. However, ignoring the
nature of the variables and the factor structure of the
data might lead to biased estimates (Dolan, 1994;
McNeish & Wolf, 2020). Hence, measurement models
for categorical intensive longitudinal data are needed.

A useful statistical theory that can help to over-
come these drawbacks is the item response theory
framework (IRT; Embretson & Reise, 2013). In gen-
eral, IRT models are latent variable measurement
models that relate the categorical responses of a set of
items to one or multiple latent continuous variables
that represent unobservable psychological traits or
ability levels (Hambleton & Swaminathan, 1985; Rijn
et al., 2010) such as positive affect. Well-known IRT
models are, for example, the Rasch model (von
Davier, 2016) and the 2-parameter logistic model (van
der Linden, 2016) for dichotomous responses, and the
partial credit model (Masters, 2016) and the graded
response model (Samejima, 1997) for ordered categor-
ical responses. Additionally, IRT as a psychometric
theory also allows taking an in-depth look at the qual-
ity of the psychological tests and measures. Within
IRT, the standard error of measurement differs across
scores depending on the characteristics of the items
and the latent ability level of the participant
(Embretson & Reise, 2013) and measurement preci-
sion can be determined conditional on the latent con-
struct. This means that the quality of the
measurements might vary across individuals, given
their level on the latent construct.

Although IRT models have been largely developed
within educational cross-sectional settings, dynamic
IRT models for intensive longitudinal data have also
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been proposed in the recent years (e.g., Hecht et al,,
2019; Kropko, 2013; Rijn et al, 2010; Wang et al,
2013). On the one hand, Rijn et al. (2010) proposed a
Rasch model and partial credit model for intensive
longitudinal data within the state space modeling
framework, which is estimated by means of a Kalman
Filter. On the other hand, the approaches by Kropko
(2013, item response theory models for time series),
Wang et al. (2013, dynamic Rasch model for educa-
tional data), and Hecht et al. (2019, continuous time
Rasch model) are implemented within the Bayesian
framework. The models proposed by Rijn et al. (2010)
and Kropko (2013) are of special interest for us as
they were developed to analyze psychological time ser-
ies of one individual. However, these approaches are
still limited as they (a) are not suitable for non-sta-
tionary time series, (b) have not been systematically
tested in simulation studies, (c) lack user-friendly
tutorials to be used by practitioners, and (d) do not
use the core features of IRT modeling (e.g., item char-
acteristic curves and item information functions) that
allow assessing the quality of the scales.

In this article, we, therefore, propose the time-vary-
ing dynamic partial credit model (TV-DPCM), which
is an item response theory (IRT) model suitable to ana-
lyze multivariate time series data of polytomous
responses. With this new method, we aim to offer a
flexible tool that allows modeling non-linear trends and
studying the psychometric properties of the scales used
in intensive longitudinal data studies. Also, to facilitate
its use by practitioners, we share all the code needed to
fit the model in the following git repository: https://
github.com/secastroal/DIRT. In particular, the TV-
DPCM is useful to analyze intensive longitudinal data
of one individual, when a set of Likert scale items that
measure the same construct are repeatedly used to
measure one participant. The TV-DPCM extends the
partial credit model (PCM; Masters, 2016) by assuming
that the latent variable follows a time-varying autore-
gressive model (TV-AR; Bringmann et al., 2017).

The article is organized in the following sections.
Firstly, we introduce the TV-DPCM in detail. This
section also covers a brief introduction of the general-
ized additive model framework. Secondly, we con-
ducted a “proof of concept” simulation to test the
performance of the model under diverse conditions,
while varying, for example, the number of time points
and the size of the true autoregressive effect. Thirdly,
we present an empirical application of the model to
experience sampling data of self-esteem, which aims
to exemplify how to use and interpret the results
obtained by means of fitting the TV-DPCM. Lastly,
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we discuss our findings and how the TV-DPCM can
contribute to a better understanding of measurement
in intensive longitudinal research. Moreover, we pro-
vide some ideas for future methodological research for
intensive longitudinal data based on IRT.

The time-varying dynamic partial credit model

As mentioned before, the TV-DPCM integrates the
partial credit model (PCM; Masters, 2016) and the
time-varying  autoregressive = model (TV-AR;
Bringmann et al., 2017). Briefly, the PCM is an IRT
model for polytomous data, which can be seen as an
extension of the Rasch model (Embretson & Reise,
2013; Masters, 2016; Ostini & Nering, 2006). This
means that the PCM holds most of the assumptions
and properties of the Rasch model such as the
assumption of unidimensionality, local independence,
and the separability of the person and the item
parameters. On the other hand, the TV-AR is a
dynamic model for non-stationary time series that
models the parameters of the standard autoregressive
model based on the generalized additive model
(Bringmann et al, 2017; Wood, 2017). Within the
TV-AR, both the intercept and the autoregressive
effect are allowed to smoothly vary over time. In our
implementation, we only allowed the intercept to
smoothly vary over time. By combining these two
approaches, we get the TV-DPCM, in which the
measurement model is given by the PCM and the
dynamic latent process is described by a TV-AR
model.

The basis: the partial credit model

To start, we first introduce the PCM (Masters, 2016),
which is an IRT model for polytomous items. The
motivation to develop this model was to allow

analyzing test items that required multiple sequential
steps to find the correct answer, where partial credit is
given for completing each of the steps (Embretson &
Reise, 2013). Evidently, this model was proposed
within an educational assessment context, however, it
is also appropriate, and it has been widely used to
analyze items with ordered response options as found
in attitudes and personality tests (Embretson & Reise,
2013).

The PCM is commonly described as a “divide-by-
total” (Thissen & Steinberg, 1986) or “direct”
(Embretson & Reise, 2013) model because the prob-
ability to endorse a certain response option is directly
defined as the ratio of the probability of that response
option to the sum of the probabilities of all possible
response options. Consider that we have a test with I
Likert-scale items that is used to measure, for
example, positive affect. The items are scored from 0
to m;, with i = 1,...,I; which means that item i has
K; = m; + 1 response categories (items might differ in
the number of response options). Then, the probabil-
ity to select response option x of the i-th item given
the latent trait of the j-th person, 0;, can be written
as:

exp[> (0 — u)]
> exp [k (05— o)

where 0y is the step parameter, also known as thresh-
old parameter, of the k-th category of the i-th item.
These threshold parameters J;; represent the level on
the latent continuum at which the probabilities of
selecting the response options k and k—1 are equal.
An example of an item with five response options is
presented in Figure 1. This shows how the probability
of endorsing each response option depends on the
level of the latent ability of the participant. Therefore,
persons with lower levels of the latent trait are more
likely to select the response option 0 of this item
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Figure 1. Item characteristic curves based on the PCM of an item with five response options and threshold parameters —1.42,
—0.88, —0.09, and 0.51. The location of the threshold parameters is shown with the vertical dotted gray lines, which also corres-
pond with the intersection between the curves of adjacent response options.



(when 0 is lower than —1.42). Notice that for nota-
tional convenience, when x=0, the summation in the
numerator is defined as 0 so that the exponential eval-
uates to 1. Thus, when there are only two response
options (correct or incorrect), the PCM simplifies into
the Rasch model.

Moreover, it is important to highlight some of the
assumptions and properties of the PCM. First, regard-
ing the assumptions, in a similar way as the most
widespread IRT models, the PCM assumes that unidi-
mensionality and local independence hold (Embretson
& Reise, 2013). Unidimensionality means that the
model assumes that all the items in the test measure a
unique latent construct (e.g., positive affect or neuroti-
cism). On the other hand, the assumption of local
independence implies that the responses to any pair
of items are independent after controlling for the
latent variable. Secondly, the PCM also keeps two
important properties that are shared, in particular,
with the Rasch model: The separability of the person
and the item parameters and sufficient statistics. The
former property means that each type of parameters
can be conditioned out from the estimation of the
other. The latter property means that the raw scores
are sufficient statistics for the person parameters, so
all persons with the same sum score are assumed to
display the same value on the latent trait under study.

A straightforward extension: modeling a dynamic
latent process

Now, in the context of studying psychological time
series, a straightforward extension of the PCM model
is to add an autoregressive structure at the latent level.
This has been suggested by Rijn et al. (2010) within
the state-space modeling framework and by Kropko
(2013) within the Bayesian framework. However, to
the best of our knowledge, in none of these studies
nor in any other studies, the models have been sys-
tematically tested in a simulation study. In this article,
we further extend this model (see following subsec-
tion) and assess its performance in a simulation study.
Thus, the model changes as follows:

exp[3 ko (0 — du)]
2o e (Yo (0 — ow)]

P(X; = x|0;) = @)

Notice, that the latent variable 6 now has a sub-
script t, which indicates time. In this case, when there
are repeated measurements from one individual, the
latent variable does not represent the latent trait of a
person but the latent state dispositions of the individ-
ual at each measurement occasion. In other words,
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the latent state disposition represents the attitude or
emotion of the person in the situation where the
measurement took place. Moreover, we assume that
these latent state dispositions follow an autoregressive
process of lag-order 1, which is:

Or = a+ @0y + &, (3)

where o is the intercept of the process and ¢ is the
autoregressive effect of lag-order 1 between consecu-
tive measurement occasions. In particular, the lag-
order indicates how many measurements in the past
predict the current measurement. With a lag-order 1,
only the immediately previous measurement is used
to predict the current one. Moreover, the autoregres-
sive effect represents the dependency between con-
secutive states. This effect is also known as the
“inertia” parameter (Kuppens et al., 2010) because the
larger this parameter is, the longer it takes the system
to return to its equilibrium (i.e, its mean). Lastly, & is
the random innovation at time t. The innovations are
the part of the current latent state that cannot be
explained by the model. Yet, they still influence and
are passed along to future states (Schuurman et al,
2015). The innovations are assumed to be normally
distributed with mean 0 and variance V.

By extending the PCM in this way, additional
assumptions are made about the latent process.
Firstly, this extension proposes a discrete-time model
for the latent process. This means that the repeated
measurements are assumed to be observed in equally
spaced time intervals. If this condition is not satisfied,
the autoregressive effect might be overestimated and
lead to the wrong conclusions (Haan-Rietdijk et al.,
2017). Secondly, the latent process is assumed to be
stationary, which means that its means and its varian-
ces-covariances do not change over time (Chatfield,
2003). A necessary but not sufficient condition for sta-
tionarity in the autoregressive process in Equation 3 is
that |¢@| < 1. Lastly, it is assumed that item parame-
ters (0;) are also time invariant. In other words, in is
assumed that longitudinal measurement invariance
(Meredith, 1993; Meredith & Teresi, 2006) holds.

Dealing with change: the TV-DPCM

However, assuming stationarity might not be realistic
in clinical practice. For example, consider a person
that is under psychological treatment and fills in a
daily diary questionnaire with Likert-scale items dur-
ing the whole intervention. If the purpose is to moni-
tor relevant psychological constructs for the
intervention such as positive or negative affect, and if
the intervention is effective, then, we would expect to
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observe durable changes on the person’s behavior and
feelings (e.g., reduction of symptoms or increase in
well-being). To allow for such change, we further
extended the PCM to allow the latent dynamic process
to be non-stationary. We called this extension the
TV-DPCM, which aims to model the non-linear
change of the latent variable while accounting for the
measurement error of the psychological construct.

As with the previous extension, the TV-DPCM is
described in two equations: The measurement equa-
tion and the structural equation. The measurement
equation is the same as Equation 2. This equation
models the relation between the observed responses
and the latent construct based on the PCM. Then, the
structural equation, which describes the latent
dynamic process, is an extension of Equation 3 based
on the TV-AR model (Bringmann et al., 2017). In this
case, only the intercept o is allowed to vary over
time'. To put it differently, with a time-varying inter-
cept, the TV-DPCM is able to model latent processes
that are trend-stationary (i.e., the time series is sta-
tionary after detrending). Now, the structural equation
is defined like this:

0 = o+ @01 + &, (4)

where o has a subscript ¢, which indicates that the
intercept changes over time. This change is assumed
to be described by a smooth function (see the follow-
ing section).

Moreover, based on the time-varying intercept and
the autoregressive effect, it is possible to derive the
model-implied mean and variance of the dynamic
process in Equation 4 (Bringmann et al, 2017;
Chatfield, 2003; Giraitis et al., 2014). Firstly, in a TV-
AR, the intercept does not have a clear interpretation
and what describes the trend of the time series is, in
fact, the mean of the dynamic process. Because the
intercept varies over time, the mean of the dynamic
process also varies over time. Therefore, the mean of
the dynamic process at time ¢ can be defined as (see
Bringmann et al., 2017):

ot
e = 11— (5)

Notice that the approximation in Equation 5

applies as long as the change of the intercept is

"Ideally, both the intercept and the autoregressive effect should be
allowed to vary over time, as proposed in the TV-AR model (Bringmann
et al,, 2017). By doing this, the model can handle different types of non-
stationarity, where the means, the variances, and the autocorrelations
change. However, we did not succeed on writing a working TV-DPCM
model in Stan that also allowed the autoregressive effect to vary over
time. Because of this, we settled with the simpler version in which only
the intercept is allowed to vary over time.

constrained to be gradual2 (i.e., smooth). The time-
varying mean is also known as the attractor (Giraitis
et al., 2014). Furthermore, we can also derive the vari-
ance of the dynamic process. Because the autoregres-
sive effect is time-invariant, then, the variance of the
dynamic process is also assumed to be time-invariant,
and it is shown to be as follows:

. ©6)

To summarize, herewith, we propose the TV-
DPCM, which is a measurement model useful to ana-
lyze psychological time series of one individual. The
model keeps most of the assumptions of the PCM and
the TV-AR such as (a) unidimensionality, (b) local
independence, (c) trend-stationarity of the latent pro-
cess, and (d) equally spaced observations over time. In
contrast, the separability of item and person parame-
ters and the sufficient statistics property, which are
properties of the PCM, do not hold for the TV-
DPCM. Furthermore, it is important to highlight that
the TV-DPCM also has some similarities with time-
varying effects models (TVEM; Dziak et al., 2014; Tan
et al., 2012). More specifically, the TV-DPCM can be
seen as an ordinal TVEM for one individual.

Estimation: generalized additive models and
Bayesian inference

As with other dynamic IRT models (Hecht et al,
2019; Kropko, 2013; Wang et al, 2013), we imple-
mented the TV-DPCM within the Bayesian frame-
work. This allows estimating all the parameters
simultaneously and prior information can be incorpo-
rated. Additionally, to estimate the time-varying inter-
cept, we make use of the generalized additive model
(Wood, 2017). In what follows, we first do a brief
introduction of the generalized additive model (GAM)
framework and then we mention the suggested priors
required to estimate the model.

Generalized additive models are flexible semipara-
metric models that define the relation between the
dependent variable and the covariates based on
“smooth functions” (Wood, 2017). They are specially
useful to model nonlinear relationships while keeping
a reasonable predictive power. A general representa-
tion of a GAM model, given one dependent variable
and one covariate is:

’The change of the intercept is required to be gradual because an
assumption used to derive Equation 5 is that u, must be approximately
equal to y,_;. This is also why, in Equation 5, the approximation sign is
used instead of the equal sign.
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Figure 2. Predicted B-splines with different number of basis functions. The gray dots represent the observed data and the black
line represents the predicted non-linear function. At the bottom of each plot, the basis B-splines functions are represented with
dashed lines. The number of basis functions are 5 (A), 10 (B), and 30 (C).

yi = f(xi) + € (7)

where y; is the dependent variable, x; is a covariate,
f() is a smooth function, and ¢; are the independent
and normally distributed random errors.

The smooth function is usually the weighted sum
of some predefined “basis functions” and is repre-
sented as a linear model, as follows:

fx) = 2;ﬂjbj<x>, ®)

where bj(), with j=1,...,s, is the j-th basis function,
and f; is the unknown weight for each function.
Given this, in the TV-DPCM, the time-varying inter-
cept o, is modeled as a smooth function of time:

0= () = 3 Bby(e). ©)
=1

However, when using the GAM, one must decide
on the type of smoother that is going to be used and
how smooth the resulting fit has to be. In our imple-
mentation, we opted to wuse cubic B-splines
(Kharratzadeh, 2017; Wood, 2017).> Without going
into too much detail, the basis splines or B-splines are
a popular smoother in the GAM literature for univari-
ate analysis. B-splines have a polynomial degree p
(order of the B-splines is p+1) and a set of q knots

3We also wrote an alternative version of the model in JAGS (Depaoli
et al., 2016), which can use other kind of smoothers such as thin plate or
penalized P-splines based on the mgcv (Wood, 2017) package.

that are typically defined based on the percentiles of
the predictor variable. Then, these knots are used to
define g+ p—1 basis functions for the B-splines.
Each basis function consists of p 41 pieces of polyno-
mials (except for the ones close to the borders), that
are joined continuously at p interior knots and are
differentiable p — 1 times. For the remaining range of
the covariate, the basis functions are 0. Most com-
monly, B-splines of order 4 (i.e., degree p=3), which
are cubic B-splines, are used. To illustrate this, we
simulated data based on cubic B-splines with 10 basis
functions as shown in the middle panel of Figure 2.
The 10 basis functions are depicted at the bottom of
the graph. When these functions are weighted by the
B; coefficients and summed together, they result in
the nonlinear trend (solid black line) that describes
the data.

Figure 2 also shows what can happen when too lit-
tle or too many basis functions are used. Panel A
presents the results from a cubic B-splines with 5
basis functions and panel C presents the results from
a cubic B-splines with 30 basis functions. While using
too little basis functions can result in underfitting,
using too many can result in overfitting the data.
Because of this, when using GAM, researchers usually
use a larger number of basis functions than they
would think are needed but impose a penalization on
the selected smoother (Bringmann et al., 2017; Wood,
2017). For our implementation, to penalized the cubic
B-splines, we used a random-walk prior for the f;
coefficients (Kharratzadeh, 2017). This means:
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ﬂl NN(Oal)a TNN(O,1>,

(10)

where 7 is the smoothness hyperparameter. The rea-
soning of Kharratzadeh (2017) to use this prior is
based on the fact that the sum of the basis functions
(bj(t)) is equal to 1. If all the f; coefficients are equal,
then, the resulting B-spline is a constant function of
value ;. Therefore, the closer the fi; coefficients are to
each other, the smoother the spline function is.

Lastly, to estimate the TV-DPCM within the
Bayesian framework, we used relatively informative
prior distributions for the different parameters. The
following priors were used in both the simulation
study and the empirical application. Starting with the
threshold parameters J;, we used, as it is common in
the IRT literature, a standard normal prior (Fox,
2010). For the random innovations ¢, we first
sampled a starting value from the standard normal,
which was later scaled in the computation of 0, given
Equation 4. Then, the prior for the scaling factor of
the innovations (i.e., the standard deviation ¢) was a
normal distribution with mean 1 and standard devi-
ation 1, which was truncated to be positive. Finally,
for the autoregressive effect ¢, we used an uniform
distribution between —1 and 1 as prior.

ﬂ] ~ N(ﬂjfl’ T)’

Simulation study

In this section, we present the design and results of
the simulation study that we conducted with the TV-
DPCM. The purpose of this simulation was to assess
the performance, in terms of convergence and recov-
ery of the population parameters, of the TV-DPCM
under common settings seen in the literature.

Data simulation and design

Data were simulated based on the TV-DPCM model
assuming that the time varying intercepts o, followed a
sinusoidal trend. An example of the simulated latent
dynamic process and its trend is presented in Figure 3.
The same trend was used for all the conditions but it
was adjusted to the length of the time series. Moreover,
we also kept the variance of the innovations fixed (at
1) and the number of response categories per item (5)
equal across all conditions. Regarding the threshold
parameters, these were randomly generated in such a
way that they were ordered within an item. For
example, the threshold parameters for an item with 5
response options in the simulation could be: —1.42,
—0.88, —0.09, and 0.51 (recall Figure 1 and that the
threshold parameters represent where in the latent

2 -
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0_\/_\
-1 -

—2 -

O

Time

Figure 3. True latent dynamic process (in gray) and its trend
(in black) of simulated data.

continuum the item characteristic curves of adjacent
response options intersect). Lastly, the latent state dis-
position of the first measurement occasion was ran-
domly generated for each replication and each
condition from a normal distribution with mean
o1/(1 — @) and standard deviation /¥/(1 — ¢?). For
details on the generation of these parameters, see the
code shared on the GitHub repository of this
manuscript.

Next, for the simulation design, we manipulated
four factors. Firstly, the number of time points were
varied between 100, 200, 300, and 500. These number
of time points were chosen based on previous simula-
tions with N=1 time series (Bringmann et al., 2017;
Schuurman et al., 2015). In fact, based on preliminary
simulations with the TV-DPCM, we do not expect the
model to perform well with under 200 time points.
Secondly, the number of items was either 3 or 6
items. The reason for this is that scales used in ESM
studies tend to be short in order to reduce partici-
pants’ burden. Next, the size of the autoregressive
effect was varied between 0, 0.25, and 0.5, which is
similar to the values used in simulations with the
VAR model with measurement error (Schuurman &
Hamaker, 2019; Schuurman et al., 2015). Lastly, the
proportion of missing observations was either 0% or
30%. To recreate the missing data patterns that are
commonly seen in ESM data, where participants
either fill in the complete questionnaire or do not fill
it in at all, we randomly sampled 30% of the time
points and removed all the observations in those time
points. Basically, the simulated missing data mechan-
ism was missing completely at random with the con-
straint that the observation of the first time point was
never removed. The conditions with missing data
aimed to test the model under realistic circumstances,
as the percentage of missing measurements usually
ranges between 20% and 40% (Vachon et al., 2019).
To summarize, the simulation had a 4 x2 x 3 x2
fully crossed design, in which we ran 200 replications
per condition (i.e., a total of 9,600 analyses).



The models were estimated within a Bayesian
framework through the Hamiltonian Monte Carlo
algorithm as implemented in Stan (Carpenter et al.,
2017). We ran three chains per analysis, each with
2,000 iterations, 500 of which were used for warm-
up®. To run the analyses, we also adjusted other
parameters of the Hamiltonian Monte Carlo algorithm
such as the delta and the maximum treedepth (Stan
Development Team, 2022). We increased parameter
delta from 0.8 (default) to 0.99 and the maximum
treedepth from 10 (default) to 15, as this was required
to facilitate model convergence.

The simulation of the data, the estimation of the
model, and the analysis of the results were performed
in R (R Core Team, 2022) with the R packages: rstan
(Stan Development Team, 2020) and bayesplot (Gabry
& Mabhr, 2021). Analyses were run on a high perform-
ance computing cluster with Intel Xeon E5 2680v3
CPU (2.5GHz). The maximum RAM usage for an
analysis was approximately 500MB.

Output variables

To assess the performance of the TV-DPCM, we
focused on the convergence of the model and the
quality of the estimates. In relation to model conver-
gence, we relied on the convergence checks provided
in Stan for the Hamiltonian Monte Carlo algorithm.
According to these checks, an analysis diverged if the
Gelman-Rubin statistic (R; Gelman & Rubin, 1992)
for any of the parameters was larger than 1.05, if there
was any divergent transition after warm-up (Stan
Development Team, 2022), or
Fraction of Missing Information (BFMI; Betancourt,
2017) was too low. Stan also provides other diagnostic
checks about the efficiency of the algorithm that indi-
cate if the maximum tree depth was exceeded or if
the effective sample sizes (ESS) were too low”. While
the latter checks were tracked, no action was taken if,
for example, the ESS of an analysis was too low, as
these problems do not jeopardize the quality of the
estimates and they are usually solved by increasing the
number of iterations.

if any Bayesian

*We conducted preliminary simulations analyses with the model to
ascertain that this number of total and warm-up iterations was enough to
obtain reliable samples from the posterior distributions.

®As suggested by an anonymous reviewer, we rerun a small part of the
simulation to save the typical bulk and tail effective sample sizes
estimated for fitting the TV-DPCM with the MCMC setup used for the
simulation and empirical example of this study. Plots that summarize the
computed bulk and tail effective sample sizes are presented on Figures
S7 through S9 of the supplementary material.
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To assess the quality of the estimates, we looked at
different accuracy statistics such as bias, absolute bias
(abbias), relative bias (rbias), and root mean squared
error (RMSE). Suppose that we focus on the set of
parameters ® (e.g., the thresholds, the latent states, or
the autoregressive effect) and we run a simulation
with M replications per condition. Given a condition
¢ where there are N, parameters ®, with n=
1,..,N;, and their estimates for the m-th replication
are é)nm, with m = 1, ..., M, then, these accuracy sta-
tistics are defined as follows:

bias:ifj lii(énm ~0,)|, (1)
Mmzl Ne n=1

. 1 M 1 Ne

a iﬂS:Mmz::l lE;|®nm_®n| > (12)

, 11 &40, -0,
rbzas = MZ [EZT‘|, (13)

IR ) L 2

For parameters such as the item thresholds, the
latent state dispositions, and the attractor, we did not
compute the relative bias because some of the true
values of these parameters were 0 or very close to 0.
As a result, the computed relative bias reached infinity
or was extremely large, which made the measure
unusable. Hence, for these parameters we computed
the correlation between the true and the estimated
parameters as well as the RMSE. In contrast, with
parameters such as the autoregressive effect and the
innovation variance, it was possible to compute the
relative bias in most of the conditions. Additionally,
we also inspected the coverage proportion of the cred-
ibility intervals as well as their average width for all
the parameters.

Results

In total, 148 analyses of the 9,600 diverged. All the
divergent analyses were due to the presence of diver-
gent transitions after warm-up (as indicated by the
convergence checks in Stan). Figure 4 presents the
percentage of convergent replications per condition.
This shows that most of the divergences occurred in
the conditions with 100 time points and when the
true autoregressive effect was the largest. These results
indicate that, in general, at least 200 time points seem
to be required to fit the TV-DPCM.
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Figure 4. Percentage of analyses that converged per condition.

Next, to assess the quality of the estimates of the
relevant parameters such as the thresholds, the latent
state dispositions, and the autoregressive effect, we
looked at the different accuracy statistics per each set
of parameters. Hereby, we present in detail the results
from the threshold parameters and the autoregressive
effect. For the other parameters, we summarize the
main findings and add supporting Figures in the sup-
plementary materials. Figure 5 shows the average
coverage proportions, the average width of the cred-
ibility intervals, the average correlation, and the aver-
age bias across conditions for the threshold
parameters. The intervals around these averages indi-
cate the interquartile range of the measure over the
200 replications per condition. Starting with the width
of the credibility intervals across conditions, panel B
of Figure 5 shows the credibility intervals shrank
when there were more time points. This was expected,
as usually with IRT models, the estimation of the item
parameters improves when the number of participants
(time points in the TV-DPCM) increases and vice
versa. Secondly, regarding the coverage proportion,
the panel A shows that on average 80% of the cred-
ibility intervals included the true parameter. It seemed
that the average coverage was slightly lower and
spread more when there were more time points. This
can be explained by the fact that for some analyses,
there were large biases and all the threshold parame-
ters were completely over- or underestimated. This in
combination with narrow credibility intervals resulted
in lower coverage rates. Thirdly, the correlation
between the true and the estimated thresholds (panel
C) was on average above 0.9 across all conditions and
it approached 1 when the number of time points
increased. The presence of missing data worsened the

correlation between the true and the estimated thresh-
olds in relation to the conditions without missing val-
ues. However, these differences became smaller as the
number of time points increased. Lastly, the average
bias of the threshold parameters was close to 0 across
all conditions (panel D). Similar figures for the abso-
lute bias and RMSE of the threshold parameters are
included in the supplementary material, which show
that these measures became smaller as the number of
time points increased. Overall, the accuracy of the
estimates of the threshold parameters improves, as
evidenced with the average correlation and average
width of the credibility intervals, when the number of
time points is larger than 200.

Regarding the autoregressive effect, Figure 6
presents the average coverage proportion, credibility
interval width, absolute bias, and relative bias of this
parameter. On average, the coverage proportion of the
autoregressive effect was close to 100% across all con-
ditions (panel A). In contrast, the width of the cred-
ibility interval clearly depended on the number of
time points and the percentage of missing values as
shown in panel B. Furthermore, we present the abso-
lute bias instead of the correlation, as computing the
correlation was not adequate or informative. Panel C
shows that the average absolute bias range between
0.15 and 0.05 across conditions, decreasing when the
number of time points increased or when there were
no missing values. Regarding the relative bias (panel
D), the average is only presented for the conditions
when the true autoregressive effect was different from
0. In general, the relative bias of the autoregressive
effect was on average 0 across all conditions.
However, when there were 100 time points, 3 items,
no missing values, and an autoregressive effect of
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Figure 5. Parameter recovery and accuracy statistics of the threshold parameters. The black lines represent the conditions where
there were no missing data and the gray lines represent the conditions with 30% missing values. The vertical dotted lines around
the dots represent the interquartile range per condition. (A) Coverage proportion, (B) average width of the credibility interval, (C)
average correlation between the true and the estimated thresholds, and (D) average bias per condition.
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Table 1. Summary of the recovery of the other parameters of the TV-DPCM.

Parameter

Results summary

Latent state dispositions

Attractor

Variance of the innovations and variance of the dynamic process

The width of the credibility intervals shrank when the number of items
increased. Also, the average correlation increased when the number of
items increased, when the size of the autoregressive effect was larger,
and when there were no missing values.

Similarly as with the threshold parameters, increasing the number of time
points resulted in a slight decrease of the coverage rate, a shrinkage of
the credibility intervals, and a raise of the average correlation.

Just as with the autoregressive effect, the width of the credibility intervals
and the average absolute bias decreased when the number of time
points increased. However, these parameters tend to be
underestimated as their estimates were between 20% (conditions with
100 time points) to 10% (conditions with 500 time points) lower than
the true parameter according to the relative bias.

0.25, the TV-DPCM tended to overestimate the autor-
egressive effect about 20% above its true value.

In relation to the other parameters of interest, such
as the latent states, the attractor, the variance of the
innovations, and the total variance of the dynamic
process, we briefly summarize the findings about the
recovery of these parameters in Table 1. (Figures for
these parameters are included in the supplementary
material.) In general, the average coverage rate per
condition of these parameters was between 80% and
90%, and the coverage percentage did not seem to be
influenced by the manipulated factors. Moreover, the
recovery of the attractor showed similar results as the
ones seen for the threshold parameters. Similarly, the
results of the variance of the innovations and the vari-
ance of the dynamic process in relation to the width
of the credibility intervals and the mean absolute bias
were similar to the results observed for the autoregres-
sive effect.

Summary

To conclude, this simulation study showed that the
TV-DPCM performs well at recovering its parameters
across most of the conditions. In general, the accuracy
of the estimates of the TV-DPCM improves when the
number of time points increases. The results suggest
that at least 200 time points are required for the
model to converge and to accurately estimate the
parameters. However, given the width of the credibil-
ity intervals of some parameters, we actually suggest
300 time points as a minimum to estimate the TV-
DPCM. Still, in some cases, the model might over- or
underestimate some of the parameters of interest.
While in such cases the estimates are biased and the
coverage of the credibility intervals is poor, the overall
pattern is still well recovered as indicated by the high
correlations. Regarding the number of items, it seems
the TV-DPCM can be estimated with as little as 3

items, with the caveat that the credibility intervals can
be very wide, specially in combination with the pres-
ence of missing data.

Empirical example: using the TV-DPCM to
analyze self-esteem

To exemplify how to use and interpret the results of
the TV-DPCM, in this section, we analyzed mood
data from one participant. These data, collected
between August 2012 and April 2013, were retrieved
from Kossakowski et al. (2017) and were previously
analyzed by, among others, Wichers and Groot
(2016). The data come from a 57 year-old male (at the
time of the study) who had been diagnosed with
major depressive disorder. The participant completed
up to 10 semi-random assessments per day for
239 days. During this period, the participant also fol-
lowed a blind gradual reduction of their anti-depres-
sant medication dosage. In what follows, the items of
interest and the data collection procedure are
described in detail. Then, the data pre-processing pro-
cedures are presented. Finally, the TV-DPCM is
adjusted to the data in order to study the psycho-
logical dynamics of self-esteem and the performances
of the items of the ESM questionnaire.

Data collection and procedure

As mentioned before, the participant filled in an ESM
questionnaire up to 10 times a day for 239 days. The
questionnaire was programmed at random moments
within 90-minute intervals that were set between
07:30 AM and 10:30 PM. After the beep signal, the
participant had a 10-minute window to complete the
questionnaire, which consisted of 50 momentary
assessment items that measured different emotions
(e.g., feeling enthusiastic or feeling lonely), self-
esteem, and descriptions of the situation such as
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whether the participant was alone or doing something.
Furthermore, additional items were used at certain
beep signals to measure, for example, sleep quality
and depressive symptoms. These items were filled up
on a daily or weekly basis. All the momentary assess-
ment items were measured on a 7-point Likert scale
from “not feeling the state” to “feeling the state very
much”. The participant completed a total of 1473
assessments (i.e., on average 6.2 assessments per day).
Moreover, the study was divided in 5 phases
(Kossakowski et al., 2017): (1) A baseline period of
four weeks, (2) a double-blind period without dosage
reduction of two weeks, (3) a double blind period
with gradual dosage reduction of eight weeks, (4) a
post-assessment period of 8 wk, and (5) a follow-up
period of twelve weeks. For this empirical example,
we fitted the TV-DPCM to the items of self-esteem®
during phases 1 and 2 (286 complete beeps).

Data pre-processing

The items of self-esteem were I like myself (Self-like),
I am ashamed of myself (Ashamed), and I doubt
myself (Self-Doubtful)’. The items Ashamed and Self-
Doubtful were reverse-coded to have high scores on
the scale represent high levels of self-esteem. Also,
given that not all the response categories were selected
and that some were selected too few times, several
response categories were collapsed. For the item Self-
like, the response categories lower than 3 and the
response categories larger than 5 were collapsed and
recoded into response categories 1 and 3, respectively.
Also, response category 4 was recoded as 2. For the
items Ashamed and Self-Doubtful, response categories
lower than 5 (after reversed coding) were collapsed
into response category 1 and response categories 6
and 7 were recoded to 2 and 3, respectively.
Therefore, the responses were changed from a 7-point
Likert scale to a 3-point Likert scale.

Moreover, it is important to note that the TV-
DPCM is a discrete time model. This means that the

SWe also fitted the TV-DPCM to the items of positive affect, negative
affect, and mental unrest, which were other psychological constructs of
interest in Wichers and Groot (2016). In the end, we deemed that the
analysis of the items of self-esteem was more appropriate to illustrate the
model because with this set of items the model fitted best. To assess the
model fit, we used posterior predictive model checking methods (PPMC)
for the TV-DPCM that we were developing simultaneously. This showed
that the best fitting model was when analyzing the items of self-esteem
during phases 1 and 2. Results of the fitting model to the items of self-
esteem across all phases are reported in the supplementary material.

’A fourth item of self-esteem was I can handle anything. However, this
item was excluded because the scale did not seem to be measuring an
unidimensional construct when this item was included according to the
preliminary version of the PPMC methods.
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Figure 7. Observed mean scores of the self-esteem items.

model requires that the time interval between con-
secutive observations is the same for the whole dur-
ation of the data collection. This was clearly not the
case with the data at hand due to the random beeps,
the missing data, and the overnight time between
days. One way to address this issue within the
Bayesian framework is to include missing values in
order to make the time intervals between observations
approximately the same (Asparouhov et al, 2018).
This approach has been shown to be useful to deal
with unequal time intervals and the results from these
kind of analyses are comparable with results from
continuous time models (Haan-Rietdijk et al., 2017).
Given this, we also implemented this approach in the
TV-DPCM analysis of the self-esteem items. For this,
we divided the days in 90-minute time windows. As a
result, there is a total of 16 time windows per day, 6
of which were always missing because they happened
during the night. Observations within any of these
time windows were considered as a representation of
the state of self-esteem of the participant for that time
point. When no observations were available, “missing
values” were included in the date set. By doing this,
we added 380 rows of missing values, for a total num-
ber of 666 time windows. The time series of the
observed mean scores, after recoding and after includ-
ing rows of missing values, is presented in Figure 7.
The mean scores ranged between 1 and 3.

Fitting the TV-DPCM

To fit the TV-DPCM to the data, we used the same
setup for the Hamiltonian Monte Carlo algorithm as
we did in the simulation study. This means that we
ran three chains in parallel, each with 2000 iterations,
500 of which were discarded as warm-up, and we
kept the same values for the adapt_delta (0.99) and
max_treedepth (15) parameters. To check convergence
of the model, we examined the diagnostics provided
in Stan for the HMC algorithm. According to these
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Figure 8. Estimated latent state dispositions for each beep
(observed and missing) are represented with the gray line. The
trend of the dynamic process or attractor is represented with
the black line alongside with its 95% credibility interval band
in light gray.

diagnostics, we found no evidence of divergence.
Graphical diagnostics for some selected parameters
are presented in the supplementary materials.

Table 2 shows the estimated values (i.e., the median
of the posterior distribution), the standard deviation
of the posterior distribution, the credibility interval,
and the effective sample size of the threshold parame-
ters, the autoregressive effect, the variance of the
innovations, and the total variance of the dynamic
process. Note that the threshold parameters are
ordered within items 1 and 3 but not for item 2. This
means that there is a “reversal” for item 2. Hence, the
probability to select response category 2 is always
lower than the probability to select either response
category 1 or 3 across the latent continuum (see
Figure 9). Next, the estimated autoregressive effect
was 0.47, which implies that there is a medium-strong
dependency between consecutive states of self-esteem.
Thus, when the person experienced a high level of
self-esteem at a certain time point, it was likely that
they would keep experiencing high levels of self-
esteem for the next measurement. Lastly, the variance
of the innovations and the variance of the dynamic
process were 1.9 and 2.48, respectively. The first one
indicates the variability of the state of self-esteem that
cannot be explained by the previous state of self-
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esteem. The latter represents the total variance of the
states of self-esteem across the time series.

The estimates of the latent state dispositions and
the time-varying attractor are presented in Figure 8.
To facilitate the interpretation, these estimates were
previously divided by the standard deviation of the
dynamic process (i.e., ). By doing this, a latent state
disposition of 1 means that the latent state of the indi-
vidual at a certain time point is one standard devi-
ation above the expected mean score on the test.
Thus, Figure 8 shows that the latent state dispositions
varied between —0.91 and 2.91. The time varying
mean or attractor with its credibility interval band
shows a slight increasing trend over time®. This
implies that, on average, at the beginning of the study
the mean of the latent states of self-esteem was about
one standard deviation above the expected mean score
of the questionnaire. Moreover, the mean of the latent
states of self-esteem increased in such a way that by
the end of the second phase, the mean of the latent
states was close to two standard deviations above the
expected mean score of the questionnaire.

Importantly, one of the key features of IRT model-
ing is that IRT models allow studying the properties
of the items and the test. In this context, IRT provides
the item characteristic functions (ICFs), the item
information functions (IIFs), and the test information
function (TIF). For the TV-DPCM, we can compute
and plot these functions because the model assumes
that the item parameters do not change over time
(longitudinal =~ measurement  invariance  holds).
Therefore, these functions are defined given the latent
state disposition (0,) at a certain time point f, namely
the states of self-esteem of the individual. Figures 9-
11 present the ICFs, the IIFs, and the TIF for the
three items of self-esteem, respectively. Just as before,
to facilitate the interpretation, the estimated latent
state dispositions and the estimated thresholds were
divided by the standard deviation of the dynamic pro-
cess 0. Regarding the ICFs, for the items Self-like and
Self-Doubtful, the curves for each response category
are nicely ordered and each of the response options
gets to have the highest response probability at some
point in the latent continuum. On the other hand, for
the item Ashamed there is a reversal (i.e., the thresh-
old parameters are not ordered for this item). As a
consequence, there is no point on the latent con-
tinuum where the response category 2 has the highest
response probability. Additionally, when inspecting

8This trend must be interpreted with caution given the width of the
credibility intervals of the attractor parameter, which can also suggest
that the real trend is stable.
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Figure 9. Item characteristic functions for the items of self-esteem.
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Figure 10. Item information functions of the items of self-
esteem.

the IIFs, we can see at what levels of the latent con-
tinuum the items are more or less informative. Thus,
the item Ashamed seems to be more useful at measur-
ing lower states of self-esteem and the item Self-
Doubtful seems to be more useful at measuring higher
states of self-esteem. In contrast, the item Self-Like is
less informative than the other two items.
Nonetheless, it seems it is useful to distinguish
between very high and very low states of self-esteem
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Figure 11. Test information function. The solid black line rep-
resents the test information function, which is the sum of the
item information functions. The dashed line represents the
standard measurement error of the scale given the level of the
self-esteem.

but it is not informative in the middle levels of self-
esteem. Lastly, the TIF shows that, overall, these three
items are the most informative when measuring lower
levels of self-esteem (solid line). However, during the
study the participant mostly experienced medium and
high levels of self-esteem, which means that their self-
esteem was measured with high levels of standard
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Figure 13. Comparison between the expected mean scores
and the observed mean scores for the last 50 observations of
phase 2. The observed mean scores are represented with the
solid light gray line and the expected mean scores given the
model are represented with the dashed gray line.

measurement error (dashed line). This indicates that
more items would be needed to accurately measure
the whole spectrum of the participant’s self-esteem.
Finally, we also computed the expected mean
scores given the model, which can be interpreted as
estimates of the true scores (Embretson & Reise,
2013), to compare them with the observed mean
scores. This is shown in Figures 12 and 13. Figure 12
shows the nonlinear relation between the estimated
latent state dispositions and the observed mean scores.
It also displays the expected mean scores given the
model (black line) for the observed range of the latent
state dispositions. This plot evidences that the
observed mean scores are not sufficient statistics for
the latent state dispositions. Moreover, Figure 13
shows the observed mean scores against the expected
mean scores for the last 50 observed beeps. The trajec-
tory of the observed mean scores is closely followed
by the trajectory of the expected mean scores. This
shows the high predictive value of the TV-DPCM.

Discussion

In this article, we presented an extension of the PCM
to analyze psychological time series, namely, the TV-
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DPCM. This proposed model integrates the PCM
(Masters, 2016) and the TV-AR (Bringmann et al,
2017) to allow studying the quality of the measures of
psychological constructs when measured intensively
on one participant. We tested the performance of the
model in a simulation study while controlling for the
number of time points, the number of items, the size
of the autoregressive effect, and the presence of miss-
ing data. We also illustrated, by means of an empirical
example, how to estimate the model and interpret its
results. Overall, the TV-DPCM seems to be a promis-
ing tool to further understand how psychological
measurement works on intensive longitudinal settings.

In general, the simulation study indicated that the
model requires a large number of time points (more
than 200) to converge and to deliver accurate esti-
mates. This is in line with other results from simula-
tion studies with autoregressive models for one
individual (Bringmann et al., 2017; Schuurman et al,
2015). In fact, the TV-DPCM might also require more
time points due to the increased complexity of the
model. Given that the credibility intervals of the esti-
mates tend to be wide even with 200 time points, we
actually suggest 300 observed time points as a min-
imum to have less uncertainty about the results and
we discourage researchers to use the model with less
than 200 time points. Nonetheless, the TV-DPCM
seems to be able to accurately recover its parameters
across most of the tested conditions.

In relation to the empirical example, we showed
how the TV-DPCM allows making a rich interpret-
ation of the scales used in intensive longitudinal set-
tings. By using all the features provided by the IRT
framework while accounting for the time dependen-
cies of the data, we were able to take a closer look at
the properties of the items and the scale of self-esteem
from the empirical data. The information provided by
the ICCs, the IIFs, and the TIF allows assessing the
quality of the items and the scale, which can give
researchers the opportunity to make adjustments for
future applications of their experience sampling ques-
tionnaires. In this particular example, we noticed that
probably more items that measure medium and high
levels of self-esteem were needed to reliably measure
this individual’s self-esteem. However, these results
should be interpreted carefully as the proportion of
missing values in the empirical data was considerably
higher than the proportion studied in the simulation
study. As shown in the simulation study, the presence
of missing values have an effect on the width of the
credibility intervals and the absolute bias of some
parameters.
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Even though the TV-DPCM can be a useful tool to
gather relevant information about the measures in inten-
sive longitudinal data, which can help to improve the
scales used, the model still has its limitations. First, as
shown in the empirical example, the model requires sev-
eral steps of data manipulation such as reverse coding
and collapsing response options. These steps are required
to facilitate the interpretation of the latent variable and
to be sure that thresholds are interpretable. Just as in the
PCM, all responses options need to be observed to be
able to estimate the parameters of the items in the TV-
DPCM. If this is not the case, collapsing and recoding
some response options becomes necessary, which
reduces the variability of the observed data. While this
might be a limitation of the model, it also represents a
general challenge for researchers that are interested in
studying psychological dynamics. This suggest that more
research is needed in relation with the wording and the
number of response options of the Likert-scale items
used in intensive longitudinal settings. In other words,
research focused on testing and improving the question-
naires used in intensive longitudinal settings are lacking.

Secondly, while the TV-DPCM is flexible enough
to handle (non-linear) trend-stationary time series,
which is a specific kind of non-stationarity, the model
cannot handle other types of non-stationarity.
Initially, a more flexible extension would be to allow
the autoregressive effect to also smoothly vary over
time (Bringmann et al, 2017). By doing this, the
model would be able to handle time series with time
varying variances and autocorrelations. While such an
extension is the most reasonable step forward, its
implementation is not necessarily straightforward. In
spite of our efforts, we did not succeed in writing a
working model with a time-varying autoregressive
effect. One of the challenges that we faced when we
tried was that we were not able to bound the B-spline
of the autoregressive effect within —1 and 1. Similarly,
the TV-DPCM assumes that longitudinal measure-
ment invariance (Meredith, 1993; Meredith & Teresi,
2006) holds. This assumption implies that the items
have the same meaning and the same relation with
the latent variable for the whole duration of the study.
However, if measurement invariance does not hold,
the parameters of the items might change, namely
item parameter drift (Donoghue & Isham, 1998), and
then the latent state dispositions from different meas-
urement occasion would not be comparable. Given
this, it would be necessary to extend the model to
handle item parameter drift or at least develop statis-
tics to test whether there is item parameter drift on
some items. Currently, one way to study measurement

non-invariance on intensive longitudinal data from
multiple  participants has been proposed by
Vogelsmeier et al. (2021) with the latent Markov
latent trait analysis. Yet, given the complexity of this
model, its use by practitioners might be limited and
more research is needed to set guidelines in terms of
minimum sample size, number of measurement occa-
sions, or number of response options, are lacking.
Thirdly, the simulation study showed that the TV-
DPCM requires more than 200 time points to perform
well. This is considerably above the typical length of
the time series observed in intensive longitudinal
research of psychological dynamics (Vachon et al,
2019). To overcome this, future research can try to
extend the model to multilevel settings. Moreover, the
simulation also showed that the credibility intervals of
most parameters tend to be very wide even with large
samples, meaning that there is high uncertainty around
the point estimates. This can be a drawback in practical
settings as it can undermine efforts of doing statistical
inference with the TV-DPCM. The most straightfor-
ward approach for practitioners to address this issue
would be to increase the number of items. This would
reduce the uncertainty around the point estimates,
especially for the parameters concerning the latent
dynamic process. Yet, increasing the number of items
that measure the same construct is not an easy task to
achieve in most intensive longitudinal data settings.
Lastly, in the empirical example, we showed that
the TV-DPCM has a reasonable predictive value when
comparing the expected mean scores and the observed
mean scores. However, this is no guarantee that the
model fits the empirical data well. For this, goodness
of fit statistics should be developed for the TV-DPCM
model and in general for the methods used to analyze
intensive longitudinal data. Within the Bayesian
framework, a method to assess the goodness of fit of a
model is based on posterior predictive model checking
methods (Gelman et al., 1996). These methods have
also been developed for Bayesian IRT models (Li
et al., 2017; Sinharay et al., 2006) but they need to be
extended for the TV-DPCM to account for the time
dependencies present in intensive longitudinal data. In
fact, this is ongoing research that we expect to be also
useful for the TV-DPCM and other IRT models for
intensive longitudinal data. Furthermore, another
challenge of Bayesian analyses is the specification of
priors. Prior misspecification can not only affect the
quality of the estimates but also the effectiveness of
Bayesian fit statistics, such a posterior predictive
model checking methods (Ames, 2018). In this study,
we used typical priors used for IRT models. However,



further research is required to study prior sensitivity
analysis of the TV-DPCM.

To conclude, bringing IRT with all its features to
intensive longitudinal research is a great opportunity
for the field. It is not only a tool that can help assess-
ing the quality of the scales used in intensive longitu-
dinal data but it can also provide insight in how to
improve these scales. As a result, researchers might be
able to make better inferences and comprehend better
the psychological dynamics of the individuals.
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