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ABSTRACT
Wages and wage dynamics directly affect individuals’ and families’ daily lives. In this article,
we show how major theoretical branches of research on wages and inequality—that is,
cumulative advantage (CA), human capital theory, and the lifespan perspective—can be inte-
grated into a coherent statistical framework and analyzed with multilevel dynamic structural
equation modeling (DSEM). This opens up a new way to empirically investigate the mecha-
nisms that drive growing inequality over time. We demonstrate the new approach by making
use of longitudinal, representative U.S. data (NLSY-79). Analyses revealed fundamental
between-person differences in both initial wages and autoregressive wage growth rates
across the lifespan. Only 0.5% of the sample experienced a “strict” CA and unbounded wage
growth, whereas most individuals revealed logarithmic wage growth over time. Adolescent
intelligence and adult educational levels explained substantial heterogeneity in both parame-
ters. We discuss how DSEM may help researchers study CA processes and related develop-
mental dynamics, and we highlight the extensions and limitations of the DSEM framework.
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The overarching goal of the present article is to show
how dynamic structural equation models can be used
to study the nature, causes, and development of
inequality in personal income and wages. Wages are a
cornerstone of economic organizations and constitute
an important dimension of individuals’ and families’
daily lives. Higher wages grant people access to educa-
tion and healthcare services and ensure long-term
socioeconomic opportunities, well-being (Diener et al.,
2010), and personal autonomy (Di Domenico &
Fournier, 2014). Thus, inequality in wages affects indi-
viduals and society as a whole. Particularly in highly
developed economies, high rates of wage inequality
(i.e., wider gaps between the rich and the poor) have
been found to be associated with lower long-term
development and productivity (Cingano, 2014).

To this day, researchers have not had a clear way
to “translate” key theoretical ideas about wage dynam-
ics (e.g., cumulative advantage; DiPrete & Eirich,
2006) into empirically testable models, despite the
importance of doing so. The major objective of the

present article is therefore to bridge the gap between
theoretical assumptions on the one side and empirical
research on wage dynamics and the mechanisms
underlying wage inequality on the other. To this end,
we propose the use of dynamic structural equation
models as a versatile statistical framework. Dynamic
structural equation modeling (DSEM) is a general
structural equation modeling approach that can be
applied to analyze change in the sense of a differential
or difference equation (e.g., McArdle, 1988, 2007,
2009). The approach is not new to the literature, but
recent advances in software development offer new
opportunities to exploit the full potential of these
models for applied research. There are already several
tutorials and illustrations on DSEM in the literature
(e.g., Multilevel AR(1) modeling using R or WinBugs:
Jongerling et al., 2015; Liu, 2017; DSEM in discrete-
time via Mplus; Hamaker et al., 2018; McNeish &
Hamaker, 2020). What has been missing so far, how-
ever, is information about and recommendations on
how to take advantage of dynamic structural equation
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models to conduct applied research on wage dynam-
ics. Specifically, one important advancement of DSEM
we present throughout this article involves the use of
conditional models in which interindividual differen-
ces in parameters that characterize wage dynamics are
“conditional” on one or more explanatory (i.e., pre-
dictor) variable(s), such as IQ or level of education.

The article is structured as follows. First, we
address theoretical perspectives on wage dynamics.
Second, we discuss how these theoretical assumptions
can be translated into statistical parameters of
dynamic structural equation models that allow these
theoretical ideas to be empirically tested. Here, we
place special emphasis on conditional models, namely,
random effects models with covariates. Third, in the
Method section, we elaborate on the DSEM estimation
procedure, decisions that must be made by the
researcher, and how to evaluate the fitted models. To
this end, we provide an empirical example using data
from the U.S. National Longitudinal Survey of Youth
1979 (NLSY-79). Finally, in the Discussion section, we
elaborate on substantive knowledge gained by using
DSEM to study wage dynamics for the NLSY-79
cohort as well as extended applications and limitations
of DSEM for this field of research in general.

Theoretical perspectives on wage dynamics

Early theories on wage inequality focused on the ques-
tion of how the distribution of wages is related to the
distribution of individual abilities. Individual abilities,
measured with the intelligence quotient (IQ), have
been found to follow a normal distribution in the
population. However, in the light of empirical data,
the hypothesis of normally distributed wages has been
refuted going back at least as far as Pareto (1896).
Given the belief that wages should (at least to some
extent) reflect abilities, how can this paradox possibly
be reconciled?

One proposed solution, and until today one of the
most widely used approaches in research on wages in
general, is the well-known “Mincer Equation.” Mincer
(1958) was among the first scholars to assume that
interindividual differences in formal schooling affect
wages and that individuals’ wages change as a func-
tion of time (i.e., work experience). Drawing on U.S.
data from the National Longitudinal Survey of Youth
1979 (NLSY-79), Figure 1 illustrates this idea by
depicting the empirically observed wages of a cohort
of individuals across a period of 38 years. In line with
Mincer’s assumption, we see that mean and median
wages rose with growing labor market experience.

However, Figure 1 also shows that wage inequality
between individuals increased over time (i.e., the
population variance increased) despite the fact that
the years of labor market experience were the same
for all people at a given time point.

What are the factors that can explain the growing
variance in wages in a population? One answer to the
question of heterogeneity in wages was formulated by
Becker and Chiswick (1966). These scholars refined
Mincer’s theory when they developed their Human
Capital Theory, which is still prominent in contemporary
economics (e.g., Heckman et al., 2008; Heckman &
Carneiro, 2003). Individuals’ human capital involves their
educational achievement, cognitive and socioemotional
skills, and work experience, among other things. Because
individuals demonstrate considerable between-person
heterogeneity in their human capital, and because the
market yields positive returns on human capital, this the-
ory predicts that individuals will differ in their entry lev-
els wages and wage growth over time. Indeed, years of
education (OECD, 2019), IQ, high school grade point
averages (GPA), and socioemotional skills (e.g., conscien-
tiousness) have repeatedly been shown to positively affect
(initial) wage levels and long-term wage growth (Hasl
et al., 2019; Heckman et al., 2008; Spengler et al., 2018).
Importantly, this is also true for parental socioeconomic
status (pSES), yielding advantages both via children’s
early skill development and individuals’ networks and
nepotism (Duncan et al., 2017; Spengler et al., 2015).

More recent empirical studies have adopted a life-
span perspective to study wage dynamics and inequal-
ity (e.g., Cheng, 2014; OECD, 2017). These studies
drew on the idea that wage trajectories are shaped by
mechanisms that link their outcomes at earlier life
stages to those at later life stages. Thereby, trajectories
may display large heterogeneity in growth patterns
across the lifespan. Figure 2 illustrates such wage
dynamics by showing several possible wage trajecto-
ries, including exponential, linear, and logarithmic
growth. In examining patterns in these intracohort
wage trajectories, studies recurrently observed a so-
called fan-spread effect, indicating that between-per-
son differences tended to grow over time (as in Figure
1 and in Panels A.1, A.2, B.2, and C.2 in Figure 2),
that is, intracohort inequality in wages rose.

To explain such growth phenomena in the context
of scientific productivity, Merton (1968) introduced
the notion of cumulative advantage (CA), which states
that the advantage of one individual or group over
another grows (i.e., accumulates), thereby magnifying
small initial differences and leading to patterns of
growing inequality over time. From there, the concept
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of CA found its way into numerous other disciplines,
such as the social sciences, psychology, sociology, and
economics. In their extensive review, DiPrete and
Eirich (2006) elaborated on the concept and addressed
the question of how macrolevel patterns of wage
inequality are linked to individual microlevel proc-
esses. CA provided them with a theoretical framework

that could explain how the convergence or divergence
of individual trajectories on the microlevel translates
into the macrolevel distribution of wage inequality
within a given cohort on the population level (Cheng,
2014). In its original so-called “strict” form, CA fol-
lows a Yule process of exponential (“explosive”)
growth, analogous to the process of wealth

Figure 1. Changes in hourly pay rates across 38 years.
Note. The upper panel represents empirical wage trajectories of a random sample of N¼ 300 individuals across a period of 38
years. The dashed line represents the populations’ mean trajectory. The lower panel depicts the mean, median, and the 5th and
95th quantiles of gross hourly pay rates of all N ¼ 3,720 individuals across a period of 38 years. All values represent 2019U.S. $.
Mean and median hourly wages as well as variability between persons grew over time, the latter indicating growing population
level inequality. See Figure A1 in the Online Supplemental Material for additional 1st, 99th, and 99.95th quantiles of gross hourly
pay rates. The data stemmed from the U.S. National Longitudinal Survey of Youth 1979 (NLSY-79).
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accumulation through the mechanism of compound
interest. In its simplest form, it can be formalized as

Yit ¼ 1þ cið Þ Yi, t�1, (1)

where the current levels of individuals’ wages Yit are
predicted by previous levels of wages Yi, t�1: Thereby,
Yit evolves over time as a function of an individual’s
previous wage and the fraction of the increment
depicted by ci: Importantly, the strict CA parameter c
may differ across individuals. In Figure 2, strict CA
processes are shown in Panel A.2 where ci > 0:

Notably, empirical studies that have examined indi-
vidual differences in wage dynamics and mechanisms
of intracohort wage inequality are scarce. The studies
that come closest are those by Cheng (2014), who
depicted CA from different group characteristics, such
as gender and ethnicity; Bagger et al. (2014), who

investigated cumulative wage-experience profiles; and
Crystal et al. (2017), who cross-sectionally compared
income inequality across age groups in different
cohorts. Likewise, Tomaskovic-Devey et al. (2005)
conceptualized wage development across individuals’
working lives as a result of the accumulation of
human capital that is embedded in the interactions
between individual workers, colleagues, employers,
and the workplace environment; they used this con-
ceptualization to explain growing inequality between
ethnic groups. However, none of the statistical frame-
works of these studies could test for strict CA proc-
esses. Hence, although theoretically plausible, there is
a dearth of empirical knowledge about the prevalence
of CA processes. DiPrete and Eirich (2006, p. 272)
concluded: “Ironically, despite the obvious theoretical
and policy importance of CA models, and despite

Figure 2. Examples of between-person heterogeneity in wage dynamics showing exponential, linear, and logarithmic growth.
Note. The dashed and solid lines represent two exemplary individuals in each panel. The upper panels (A.1, B.1, C.1) represent
between-person differences in initial wages combined with equal growth rates for both people over time. The lower panels (A.2,
B.2, C.2) represent the joint effect of between-person differences in initial wages and between-person differences in wage growth
rates, where higher initial wages are associated with higher long-term wage growth rates. In Panels A.1, A.2, B.2, and C.2, initial
differences between the two individuals became magnified over time, indicating CA processes. Strict CA processes are present in
Panel A.2.
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widespread references to their existence in the litera-
ture, the sustained development and testing of CA
models has been more the exception than the rule.”
(p. 272). One explanation for this paradox is that
researchers need versatile statistical models that allow
them to capture CA processes.

Translating theoretical perspectives on wage
dynamics into empirical models

Ideally, statistical models integrate key theoretical per-
spectives on wage dynamics and equality by incorpo-
rating (a) human capital theory, (b) the lifespan
perspective, and (c) (strict) CA processes into one
coherent statistical framework. To this end, it is help-
ful to differentiate between two broad classes of mod-
els that can be used to investigate longitudinal data:
static models and dynamic models. Static models
account for the state of a system of variables, with
this state often being expressed as a function of time.
Dynamic models, on the other hand, account for
within-person changes in a system of variables over
time as a function of the past (Voelkle et al., 2018). A
common example of a static model that has been used
to investigate wage trajectories and that was also
applied by Cheng (2014) and Bagger et al. (2014), is
the linear or polynomial latent growth curve model
(LGCM). In its simplest form, the LGCM can be
denoted by

Yit ¼ g0i þ g1it þ fit: (2)

Current levels of individuals’ wages Yit are a func-
tion of the initial wage level g0i of individual i, a per-
son-specific linear slope g1i over time (t), and a
person-specific error term at time point t. The LGCM
allows researchers to describe interindividual differen-
ces in wage development on the basis of the time that
has passed, or how between-person characteristics,
such as group membership (e.g., gender, ethnicity),
are related to growth rates. However, the LGCM is
inherently limited because it cannot depict CA in its
“strict” form given in Equation 1. As apparent from
the term g1it in Equation 2, time itself serves as an
exogenous predictor of wages. However, assuming an
“effect of time” for the development of wages can be
misleading. The temporal ordering of cause and effect
variables is part of the definition of causality (i.e., the
cause must happen before the effect), but time itself
cannot be a causal factor (Baltes et al., 1988; Zyphur
et al., 2020). Thus, a causal interpretation of such
models is not possible (Voelkle et al., 2018). When
researchers not only want to describe individual dif-
ferences in wage trajectories in a population but also

to understand the mechanisms (e.g., CA) that bring
about these differences, dynamic models are needed.

In the present article, we therefore discuss how
DSEM can be used to capture wage dynamics and
processes that may result in wage inequality. To this
end, we show how major theoretical branches in
research on wages and inequality (i.e., human capital
theory, the lifespan perspective, and CA mechanisms)
can be integrated into DSEM. Specifically, in the pre-
sent article, we applied DSEM to account for these
ideas by decomposing the data into a within-person
(Equation 3) and a between-person part (Equations 4
and 5; see Hamaker et al., 2018):

Yit ¼ ai þ /iYi, t�1 þ fit (3)

ai ¼ b00 þ e0i (4)

/i ¼ b10 þ e1i (5)

VarðaiÞ ¼ r2a (6)

Varð/iÞ ¼ r2/ (7)

VarðfitÞ ¼ r2f (8)

Equation 3 represents the within-person level
model, which is similar to statistical models used in
time series analyses. This model part can be used to
account for individuals’ wage dynamics, that is, indi-
viduals’ autoregressive relations between wages at time
t and time t� 1, across many points in time (see
Equation 1). Specifically, Equation 3 depicts a first-
order autoregressive AR(1) model that specifies the
wage Y for person i at time point t as a function of
the person’s wage at the preceding time point, t� 1.
Thus, current levels of wages are modeled as a func-
tion of previous levels of wages, and, in contrast to
static models, time is not considered as an explanatory
factor in itself but rather as a dimension within which
causal processes unfold. In Equation 3, /i is the
lagged parameter that links wages from one time
point to the next. In our context, we interpret this
coefficient as the individual’s mean wage growth rate
from one time point to the next, depicting the func-
tional form of an autoregressive trajectory that links
current wages to previous ones. Specifically, if /i < 1,
wage dynamics follow a logarithmic growth process1

(see Panel C in Figure 2); if /i ¼ 1, wage growth is

1Importantly, the notion expressed by /i < 1 in a logarithmic trajectory
holds only when the individual has not yet reached their equilibrium
wage at t0. If wage dynamics had reached the equilibrium point, that is,
if the wage at time t0 for participant i was equal to ai /(1- /i), we would
expect a flat line with a constant wage for the wage dynamics (indicating
that the wage of individual i remains the same across the person’s entire
working life). We thank the anonymous reviewer who kindly alerted us to
this issue during the peer-review process.
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linear (see Panel B in Figure 2). If strict CA processes
are present as discussed by DiPrete and Eirich (2006),
individual /i parameters are greater than 1 (/i > 1),
indicating that a person’s wage grows exponentially
over time (see Panel A in Figure 2). Importantly,
because we were interested in CA and “explosive”
wage growth (/i > 1), we cannot make the “standard”
assumption of stationarity. A stationary process has
the property that its mean, variance, and autocorrel-
ation structure do not change over time. However,
(strict) CA processes are inherently nonstationary
because they result in growing inequality between
individuals over time (see Figure 1 in the text and
Figure A1 in the Online Supplemental Material).
Further, the intercept parameter ai in Equation 3 rep-
resents an individual’s initial wage at t0 (i.e., labor
market entry). Finally, fit represents the residual of
person i at time point t, depicting a random shock to
an individual’s wage dynamics. Examples of such
shocks could be events (e.g., a financial crisis or a glo-
bal pandemic) that lead to job losses or unexpected
changes in employment structures and payments. As
fit may vary across individuals (variance denoted by
r2f), these shocks may differ between people.

Equations 4 and 5 represent the between-person-
level model, which is similar to a multilevel model.
DSEM extends the application of time series analyses
(as represented by Equation 3) to the modeling of the
longitudinal data of many individuals simultaneously
but allowing for (random) wage-dynamic parameters
that are specific to each person. Hence, the framework
depicts between-person variance in the entry level
wage ai as well as growth rates /i with variances
denoted as r2a and r2/: Thus, if so-called “within-
cohort CA” (Cheng, 2014) (contrary to only strict
CA) is present, ai and /i should be positively corre-
lated (i.e., wage growth will depend on the initial
wage level). If this assumption holds, it indicates that
even if /i < 1, the microlevel trajectories will result in
growing macrolevel inequality over time (although at
a significantly lower rate than in the exponential case)
because individuals with higher initial wages also tend
to have larger wage growth rates. An outcome like
this would express a logarithmic growth pattern over
time as depicted in Panels C.1 and C.2 of Figure 1.
Notably, the fit are assumed to follow a multivariate
normal distribution with a mean of zero within and
between individuals. Interindividual differences in fit
are captured by the variance r2f , which is typically
assumed to be constant across time. In our specific
case, the fit are not allowed to correlate over time to
ensure that possible nonstationarity in the wage time

series (i.e., strict CA processes) is captured in the
growth parameter /i rather than a residual autoregres-
sive process. Further, ai and /i are also assumed to
follow a multivariate normal distribution with a mean
vector of zero, and ai and /i are also allowed to
covary (Cov(ai, /i); see Hamaker et al., p. 827).
However, no covariation is assumed between ai and
fit or /i and fit (i.e., Cov(ai, fit) and Cov(/i, fit) are
fixed to zero).

Another important feature of DSEM (akin to multi-
level models) is that the between-person variance in
entry level wages ai as well as growth rates /i may
be explained by additional variables. Hence, DSEM
allows researchers to study the relations between key
individual characteristics proposed in human capital
theory (e.g., IQ, educational attainment) to explain
between-person differences in parameters that charac-
terize individuals’ wage dynamics. Specifically, incor-
porating the human capital approach, Equations 9 and
10 depict the prediction of between-person heterogen-
eity in wages and growth rates, respectively, by indi-
vidual differences in adolescent IQ (represented by the
parameters b01 and b11), GPA (b02 and b12), pSES (b03
and b13), and the highest level of education in adult-
hood (Edu; b04 and b14).

ai ¼ b00 þ b01IQi þ b02GPAi þ b03pSESi þ b04Edui

þ e0i

(9)

/i ¼ b10 þ b11IQi þ b12GPAi þ b13pSESi þ b14Edui

þ e1i

(10)

Equations 9 and 10 highlight the idea that even if
individuals (on average) do not experience strict CA
processes, a pattern of growing inequality can arise
from individual differences in these between-person
variables. If these characteristics yield positive effects
on both initial wages and subsequent wage growth
rates, their effects can be assumed to persist across the
lifespan and contribute to growing macrolevel
inequality. This can be considered a generalization of
Cheng’s (2014) concept of “between-group CA.”

Research objectives

The major objective of the present article is to bridge
the gap between theoretical assumptions and empirical
investigations in research on wage dynamics and the
mechanisms underlying wage inequality. We aim to
show how DSEM can provide a versatile statistical
framework that can be applied to map theoretical
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assumptions of strict cumulative advantages, lifespan
development, and human capital theory onto statis-
tical parameters, thus putting these assumptions to an
empirical test. To this end, we capitalized on repre-
sentative U.S. data from NLSY-79. Doing so made it
possible to demonstrate how DSEM is suited for
empirically modeling (a) individuals’ autoregressive
wage dynamics and (b) the between-person heterogen-
eity in these dynamics. Another key strength of
dynamic structural equation models is that we could
use them to specify conditional models that allowed
us to model (c) how between-person heterogeneity in
these dynamics could be predicted by individual dif-
ferences in key characteristics related to human cap-
ital, namely, IQ, GPA, pSES, and level of education.

Method

Sample

The data for the empirical example stemmed from a
representative U.S. birth cohort, the National
Longitudinal Survey of Youth 1979 (NLSY-79; Frankel
et al., 1983). NLSY-79 began with an initial sample of
12,686 young men and women who were between 14
and 22 years old at the time of their first interview in
1979. All participants have been surveyed at least
biennially since then, yielding data for a period of up
to 38 years and a maximum of 27 measurement occa-
sions per participant. Because we focused on adoles-
cent characteristics as predictors, we excluded 3,792
individuals who were younger than 13 or older than
19 in 1979. We further excluded 5,060 individuals
who had missing data on their initial wages because
they entered the labor market before 1979.2 Finally,
we excluded 274 participants from the analyses
because they had missing values on all the variables
used in the statistical analyses. We included all eligible
participants’ wage data, even extreme outliers. Doing
so yielded a final sample size of N¼ 3,720 (53% young

women; 50% White, 32% Black, 18% Hispanic). Of
these individuals, two thirds (2483/3720¼ 66.75%)
began working in the years 1979 and 1980. By 1983,
92% of all individuals in the sample had entered the
labor market (3,426/3,720¼ 92.10%). The smallest
number of observed data points for the wages of indi-
viduals included in the analysis was three, and the
average number of observed data points for wages per
individual was 16. The initial age distribution (in
1979) of the final sample used in the analyses as well
as the distribution of how many individuals entered
the labor market for the first time in a given historical
year can be found in Figure A2 (Online
Supplemental Material).

Measures

Wages
We followed Cheng (2014) and used participants’
gross hourly pay rates at the time of the interview. If
a participant had held more than one job during the
year, we used the pay rate from the most recent job.
These hourly pay rates were first adjusted for inflation
to January 2019 in U.S. dollars. We then log-trans-
formed the inflation-adjusted hourly pay rates to
account for the skewed nature of the wage distribu-
tion (see Mincer, 1958). These log-transformed hourly
pay rates were used to study individuals’ wage
trajectories.

Intelligence
NLSY participants were tested with the Armed Service
Vocational Aptitude Battery (ASVAB) at the first
measurement point in 1979. It measures four cogni-
tive skills (mathematical knowledge, arithmetic rea-
soning, word knowledge, and paragraph
comprehension), which were combined into a global
IQ score. We used IQ percentile scores ranging from
zero to 100 as provided in the NLSY data set.

Grade point average
To derive adolescents’ grade point average (GPA), we
used data from the NLSY high school transcripts that
were taken from official high school records. We cal-
culated a Carnegie-credit-weighted GPA for each indi-
vidual (13-year-olds: seventh grade; 14-year-olds:
eighth grade; 15-year-olds: ninth grade; 16-year-olds:
10th grade; 17-year-olds: 11th grade; 18- and 19-year-
olds: 12th grade) based on up to 64 courses
(Appendix 11, codebook Supplement NLSY-97). GPA
ranged from 0 to 4 points (A¼ 4 points, E/F¼ 0

2Please note that the year when each individual entered the labor market
for the very first time was given by a filter variable (Variable A). On the
basis of this information, we excluded participants who received their first
wage prior to the initial sampling round of NLSY-79 in 1979. Hence, each
t0 of a time series represents the individual’s actual first wage rather than
the first observation given in the wage variable (Variable B) itself. This
procedure allowed us to rule out any left-truncation in individuals’ time
series. However, it left us with the potential to have missing values on
wages at the first measurement occasion, namely, if a person actually
received their first wage in Year x (based on Variable A) but did not
report the value of the wage (given in Variable B) in that year. Because
the estimation procedure does not allow data to be missing on the first
occasion of a time series, we imputed missing values for t0 prior to the
analysis. The corresponding code can be found in the Open Code file at
the Open Science Framework, where we also refer to Variables A and B
from this footnote.
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points) in each course. Higher values represent bet-
ter grades.

Parental SES
Participants reported information on two standard
indicators of SES (APA Task Force on Socioeconomic
Status, 2007). Students reported years of education for
their mothers and fathers, and participants’ parents
reported the yearly family income. Years of education
ranged from 1 (first grade) to 20 (8 years of college or
more). We used the highest level of education in a
family for our analyses. We adjusted family income
for inflation, representing January 2019U.S. dollars
and log-transformed the inflation-adjusted values.
Both SES indicators (i.e., highest level of education in
the family and log-transformed, inflation-adjusted
income) were then entered into a Principal
Component Analysis. The component score for the
first component served as an index representing par-
ental SES in our study (Vyas & Kumaranayake, 2006).

Education
Education was measured as the highest level of educa-
tion a person achieved, irrespective of whether it hap-
pened before or after the labor market was entered for
the first time. The level of education was measured as
the years of education a person completed success-
fully, ranging from 1 (first grade) to 20 (8 years of col-
lege or more).

Please consult Table A1 (Online Supplemental
Material) for descriptive statistics and intercorrelations
of all described measures.

Analytic strategy

Dynamic structural equation modeling (DSEM)
We estimated DSEM as implemented in Mplus 8
(Muth�en & Muth�en, 1998) via R 4.0.3 (using the
package MplusAutomation; Hallquist et al., 2018).
Time points (i.e., interview waves in the NLSY) were
considered to be nested within individuals, yielding a
two-level structure of analysis. We treated time as
relative to the individual (Driver et al., 2017).
Specifically, the entry level wage was defined as the
wage at time point t0 when individuals entered the
labor market and received wages for the first time,
irrespective of their chronological age. All time-inde-
pendent variables (IQ, GPA, SES, and years of educa-
tion) were grand-mean centered on 0 to allow
meaningful interpretations of individuals’ inter-
cept terms.

Model hierarchy for operationalizing CA processes
Notably, we understand the variance of wages at t,
that is, Var(Yit), as the indicator of total wage inequal-
ity for individuals with t years of labor market experi-
ence. This is also in line with common practice in the
literature (Altonji et al., 2013; Cheng, 2014; OECD,
2017). If rising wage inequality is a function of (strict)
cumulative advantage processes on the individual-
level, individuals need to differ in their wages and
growth rates. To examine whether this assumption of
between-person heterogeneity in wage dynamics was
met, we first specified a series of three models that
built on Equations 3 to 5 to examine the notion of
between-person heterogeneity in wage dynamics in
terms of initial wages (as depicted by ai) and autore-
gressive wage growth rates (as depicted by /i). Model
1 allows no differences between individuals in initial
wages and growth rates, that is, the between-person
variance of ai and /i are both fixed to zero. This is
most likely an unrealistic assumption, implying that
all people earn the same wage when they enter the
labor market and grow equally over time.
Nevertheless, it is a useful benchmark model that can
be used to learn whether models that relax these
restrictions provide a substantively better fit to the
empirical data. Model 2 assumes that initial wages
vary between persons (i.e., ai is a random parameter)
but growth rates are equal (i.e., /i is specified to be
constant for all persons, as was the case in Model 1).
In this scenario, individuals would differ in their ini-
tial wage levels but would experience the same growth
in their wages. If this fixed growth parameter was lin-
ear or logarithmic in nature, within-cohort inequality
would stay the same over time (see Panels B.1 and
C.1 in Figure 2). Rising within-cohort inequality can
evolve only if CA processes in their strict form are
present, that is, if the fixed growth coefficient is
greater than 1 (which, given different initial wage lev-
els, leads to growing between-person differences over
time, even if the rate itself does not differ across indi-
viduals; see Panel A.1 in Figure 2). In a third model,
Model 3, ai and /i are both specified as random
parameters, allowing initial wage levels and growth
rates to vary between persons (see Equation 3). If peo-
ple differ in both their wage levels and growth rates,
CA can manifest in different forms, as previously set
out. Of course, combinations are also plausible.

Finally, a fourth model, Model 4, expands on
Model 3 by adding the human capital variables of IQ,
GPA, SES, and years of education (Edu) as predictors
of individual differences in wage dynamics, that is,
initial wage levels and growth rates. Model 4
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represents the conditional model in which individual
differences in wage dynamics are conditional on
human capital variables. It is also the most complex
model, with its complete setup depicted by Equations
3, 9, and 10.

Model estimation and model evaluation
Estimation procedure. Mplus uses Bayesian estima-
tion for DSEM. This allows for the estimation of a
large number of random effects, which is often not
feasible in a frequentist framework (Hamaker et al.,
2018). More specifically, an iterative Markov chain
Monte Carlo (MCMC) procedure using the Markov
Gibbs sampler is applied.

Number of iterations and convergence
When applying an MCMC procedure, it is important
to choose the number of iterations that will be used
for estimation. Commonly, the maximum number of
iterations is specified in advance or the potential scale
reduction criterion (PSR) is used to determine model
convergence and thus the number of iterations. The
PSR criterion is computed for each model parameter
separately by dividing the total variability across the
selected number of MCMC chains by the variance
within a chain (Gelman et al., 2014; Hamaker et al.,
2018). A PSR value close to 1 implies that the
between-chain variance approximates zero, meaning
that the total variance across the chains becomes iden-
tical to the within-chain variance. This indicates that
the associated chains are likely to have converged into
one target distribution (i.e., the final parameter esti-
mates are approximately the same in all chains).3 The
number of iterations required to reach convergence
and to have sufficient accuracy in estimation depends
on the complexity of the data and model. On the basis
of Schultzberg and Muth�en (2018), we considered
10,000 to 50,000 iterations a large number given our
data and models. Furthermore, it is highly recom-
mended to check trace plots and autocorrelation plots
of the parameters to evaluate possible irregularities in
model convergence.

Starting values. For each chain, estimation starting
values have to be chosen. Usually, available software

solutions (e.g., Mplus) automatically generate starting
values for the iterative estimation process. This start-
ing parameter value is then perturbed from the ori-
ginal (“unperturbed”) values by adding uniform noise
(Asparouhov & Muthen, 2003; Merkle & Rosseel,
2018). The longer each MCMC chain, the less the
starting values affect the final results (Gelman
et al., 2014).

Priors. In Bayesian estimation, all unknown parame-
ters need to be given a prior distribution. In using
informative prior distributions, it is possible to
include prior knowledge or subjective expectations in
a model. Noninformative prior distributions, on the
other hand, “let the data speak for themselves”
(Gelman et al., 2014, p. 51) and do not allow the
results (i.e., the posterior distributions of the
unknown parameters) to be affected by information
external to the data. Using informative priors can help
regularize the estimates; that is, by making the fitted
models less sensitive to certain details in the data,
they can stabilize estimates and predictions. We rec-
ommend that readers consult Gelman et al. (2014) for
in-depth information on this topic. In our example,
we made use of diffuse (i.e., noninformative) priors.
In Mplus, they are reported as part of the TECH1
output. The default prior for means and intercepts is
a univariate normal distribution with a mean of zero
and infinite variance approximated by 1010. For
covariance matrices, an inverse Wishart with a zero
matrix for scaling and degrees of freedom equal to the
number of variables minus 1 is used. The prior for
the variance parameter is an inverse-gamma distribu-
tion (Asparouhov & Muthen, 2010; Hamaker et al.,
2018). Please find a detailed list of priors used for
each parameter in the present study in Table A2
(Online Supplemental Material).

Application to the NLSY data. In the present study,
we followed Gelman et al. (2014) to set high standards
for estimation. Specifically, we used four chains with
10,000 iterations per chain (i.e., a total of 40,000 itera-
tions) and a thinning factor of 10 (i.e., only 1 in 10
iterations was saved and used to estimate the parame-
ters’ posterior distribution). The first half of the itera-
tions within each chain was discarded as a warm-up.
Hence, the parameters for Models 1 to 4 are based on
2,000 iterations each. Convergence was judged to be
successful when the PSR value was less than 1.05
(McNeish, 2019). We let Mplus generate perturbed
starting values (i.e., the default option; Asparouhov &
Muthen, 2003) that could be derived as part of the

3Computation time may vary considerably by model complexity, available
computational capacities, and the chosen convergence stopping criteria.
Please consult Table A3 in the Online Supplemental Material to obtain
computational time comparisons that were based on the complexity of
the presented models (Models 1 to 4), different computational capacities
(standard laptop with i7-8650U processor/ 4 cores vs. computer with i9-
9900k processor/ 8 cores), and stopping criteria (Mplus default PSR vs.
MCMC chains with 10,000 iterations).

512 A. HASL ET AL.



TECH1 output. The chains in the trace plots revealed
good mixing (i.e., each chain quickly reached a steady
state solution from where the estimated parameter
posterior distributions no longer changed much) and,
as shown in the autocorrelation plots, the autocorrela-
tions (i.e., the serial correlation with the previous
estimate in the chain) between the iterations decreased
over time. Hence, convergence could be assumed
(see Figures A3 and A4, Online Supplemental
Material). All plots and results are reproducible via
the open code provided on the Open
Science Framework.

Missing values. Importantly, researchers might face
challenges in estimation when data are missing.
Especially wage data are prone to selective reporting,
oftentimes leading to high proportions of missing
data. Further, we chose time as relative to the indi-
vidual, but we defined the time of labor market
entry t0 for each individual by using a second vari-
able (see also Footnote 1) that denoted the year in
which an individual reported becoming employed
and receiving a wage for the first time. Thus, miss-
ing values for wages could also occur at t0.
However, the DSEM estimation procedure in Mplus
needs a predetermined starting point (i.e., wage
value at t0) for each person. If we assumed station-
ary processes, it would be possible to derive prede-
termined starting points (i.e., initial wages) of an
individual time series from the rest of the time ser-
ies. However, because we were interested in the
existence of nonstationary processes (AR > 1), this
was mathematically impossible. The solution we
chose was therefore to impute missing data for the
first measurement occasion (t0) of hourly wages per
person via the EM algorithm.

Missing values on all other measurement occasions
and variables were treated in the same way as random
effects and model parameters as is characteristic for
Bayesian analyses. We used the corresponding default
option in Mplus 8. Thus, at each iteration of the
MCMC algorithm, missing data were sampled from
their conditional posterior distribution. A related con-
cern involved unequally spaced measurement occa-
sions in the data (Hamaker et al., 2018; Voelkle et al.,
2012). These can result from missing observations
(e.g., if participants did not fill out the NLSY ques-
tionnaire in a particular year). Unequal time intervals
are of concern for researchers who are interested in
lagged relationships because the strength of a lagged
effect depends on the length of the time interval
between measurements. If not accounted for, these

can result in severely biased parameter estimates
(Driver et al., 2017). Mplus allows users to specify the
length of time intervals between observations and
adds missing values between observations that are far-
ther apart in time. In doing so, a data set with
approximately equidistant time intervals is created. In
our empirical example, measurement intervals
between two consecutive observations were set to rep-
resent 1 year.

Model comparison. To compare the models with each
other, Mplus provides the deviance information criter-
ion (DIC). The DIC is a hierarchical modeling gener-
alization of the Akaike information criterion (AIC) in
Bayesian modeling. It captures the predictive accuracy
of the models, and lower DICs indicate a better
model. Notably, the DIC can be used for model com-
parison only when the models to be compared have
the same latent variables (McNeish & Hamaker, 2020,
p.614). This was the case for Models 1 to 4. More spe-
cifically, in Models 1 to 4, we specified latent variables
to depict individuals’ initial wages a, their growth
rates /, and the random shocks that may affect their
wage trajectories f. The models differed in how the
fixed and random effects were specified for these
latent variables. For example, the variances of a, /,
and f across individuals were restricted to zero in
Model 1, partly restricted to zero in Model 2, and
freely estimated in Models 3 and 4. Of note, even
when the models that are being compared are based
on the same set of latent variables, the DIC can pro-
vide nonsensical results when posterior distributions
are not well summarized by their means (Gelman
et al., 2014). McNeish and Hamaker (2020) further
pointed out the DIC’s tendency to be unstable, which
can result in different conclusions for different seed
values for the MC chains. In our examples, all poster-
ior distributions were unimodal with the majority of
data distributed around the mean values (see Figure
3), a finding that supports the application of the DIC
for model comparisons. Although our models met the
prerequisites for the application of the DIC, we advise
the reader to interpret the model comparisons
with caution.

Model evaluation. In accordance with Schultzberg
and Muth�en (2018) and McNeish’s (2019) recommen-
dations, we assessed five evaluation measures that
were based on 500 replications (i.e., 500 simulated
data sets) for each parameter of the fully hierarchical
model (i.e., Model 3; see below): the relative bias,
mean squared error (MSE), SE/SD ration, 95%
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coverage, and non-null detection rate (power).4 A
detailed description of each criterion can be found in
the Online Supplemental Material.

Results

To facilitate the interpretation of the results, we
employed an exponential transformation by applying
Feng et al. (2013, p. 2) bias correction5 to all param-
eter estimates associated with log-transformed hourly
wages (Feng et al., 2013). Thus, the results presented
in the text correspond to units of $ instead of log($).
The original results for log($) can be found in the
Online Supplemental Material (Table A4).

First, we assessed the notion of between-person
heterogeneity in wage dynamics in terms of initial
wages (as depicted by ai) and autoregressive wage
growth rates (i.e., as depicted by /i) in Models 1 to 3
(Table 1). Relative to Models 1 and 2, Model 3 pro-
vided the best fit (as indicated by the DIC). In add-
ition, the point estimates as well as the 95% CIs of a
and / (as obtained for Model 3) demonstrated hetero-
geneity in people’s (a) initial wages ai and (b) growth
rates /i. Finally, we used the model parameters
obtained from Model 3 as population values in a
simulation study to assess the estimation performance
of the applied Bayesian model. The model was excel-
lent in recovering point estimates of fixed and ran-
dom effects of all parameters, as well as the
covariance between ai and /i (relative bias near 1,
MSE near 0, high non-null detection rate; details in
the OSM). Estimates for the 95% credibility intervals

Figure 3. Bayesian posterior probability distributions of fixed and random effects of initial wage levels (ai) and autoregressive
wage growth rates (/i).
Note. Bayesian posterior probability distributions of mean levels (i.e., fixed effects) and variances (i.e., random effects) of initial
wage level ai in U.S. $ (upper panels) and autoregressive wage growth rate /i (lower panels). The peaks of the distributions corres-
pond to the posterior means of Model 3 in Table 1. The peak variance estimate of ai corresponds to a standard deviation of
$14.61, the peak variance estimate of /i corresponds to a standard deviation of 0.214. The dashed lines show the 2.5th and
97.5th quantiles of the posterior distributions to approximate the 95% credibility intervals.

4Please note that the simulations were requested during the peer-review
process and were not preregistered as part of the original study.
5E(Y) ¼ exp(l þ r2/2), Var(Y) ¼ exp(2l þ r2) (exp(r2)-1)
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for the fixed effect of ai, fixed and random effects of
/i, and the covariance between ai and /i were also
recovered well (values for 95% coverage between 0.92
and .98); estimates for the 95% credibility intervals for
the random effects of ai, however, fell outside of the
acceptable range of 0.92 to 0.98 (ai: 0.86). This is
most likely due to underestimated standard errors
(i.e., deviance of SE/SD more than 15%; details in the
OSM), which resulted in 95% credibility intervals that
were too narrow to capture the true value with 95%
probability. Taken together, the simulations revealed
that the DSEM procedure provided reliable estimates,
but that the interval estimate (i.e., the precision of the
point estimate) for the random effects estimate of ai
was less trustworthy. Thus, in the following, the width
of the 95% CI for the empirical random effects of ai
needs to be interpreted with caution.

Bayesian posterior probability distributions of ini-
tial wage levels ai and wage growth rates /i are
depicted in Figure 3. Based on the parameter esti-
mates in Model 3, Figure 4 depicts the substantial het-
erogeneity between persons in initial wage levels ai
and autoregressive wage growth rates /i.

In accordance with the results presented in Table 1,
the point estimate for the mean initial wage level was
b00¼ $17.42. The mean autoregressive growth param-
eter of wages was b10 ¼ .622. For example, a person
starting with an average wage of $17.42 when entering
the labor market would be expected to earn $17.42 þ
0.622 � $17.42 ¼ $28.26 after 1 year, $17.42 þ 0.622
� ($17.42 þ 0.622 � $17.39) ¼ $34.98 after 2 years,
and so on. In other words, after 1 year, a person
receives an additional 62 cents for every dollar of their

initial hourly wage (Y0). After 2 years, in addition to
their initial wage Y0 and the additional 62 cents for
every dollar of Y0 (¼Y1), the person also receives an
additional 0.62� 0.62¼ 0.38¼ 38 cents for every dol-
lar of Y0; likewise, after 3 years, the person receives an
additional 0.62� 0.62� 0.62¼ 0.24¼ 24 cents for
every dollar of Y0. Hence, the person’s wage grows
over time, although the gain from one measurement
occasion to the next declines. In this way, the loga-
rithmic growth pattern of steeper increases in wage
levels at the beginning than at the end of a career
emerges for /i < 1.

Strict CA processes of /i > 1 were present in only
a tiny fraction (i.e., 0.5% of individuals) of the sample
(Figure 4). The covariation between initial wages and
autoregressive wage growth was slightly negative
(Cov(ai, /i) ¼ �0.011), yielding a correlation between
ai and /i of r¼�.072 (Table 1). Thus, we found little
evidence that wage growth depends on the initial level
of wages in terms of “within-cohort CA” (Cheng,
2014). Taken together, most people in the present
sample demonstrated a logarithmic (i.e., diminishing)
wage growth over time (as shown in Figure 1, Panels
C.1 and C.2) rather than exponential growth corre-
sponding to strict CA.

Model 4 expands on Model 3 by adding the human
capital variables (i.e., IQ, GPA, SES, and Edu) as pre-
dictors of individual differences in wage dynamics. As
proposed by human capital theory, adolescent IQ and
the highest level of education a person obtained posi-
tively predicted initial wage levels, as well as wage
growth rates (Table 1). Interestingly, adolescent GPA
and pSES did not yield substantial effects on later

Figure 4. Distribution of initial hourly wage levels (ai) and autoregressive wage growth rates (/i).
Note. Values based on Model 3. Initial hourly wage levels ai are given in US $. The vertical dashed line indicates the mean of the
distribution in both panels. The majority of individuals experienced logarithmic wage growth over time (/i < 1). Those individuals
with /i > 1 experienced strict CA processes, reflected by exponential growth in their wages across a period of 38 years (0.5% of
individuals). Maximum initial hourly wages were $1,333 (not plotted in the panel).
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wage trajectories. However, additional analyses
revealed substantial effects of adolescent GPA and
pSES if the highest levels of education in adulthood
were not included in the models.6 This suggests that
grades and parental resources may serve as the
“gatekeepers” of access to higher levels of education
(correlation between GPA and education: r ¼ .48; cor-
relation between pSES and education: r ¼ .37;
Table A1).

To obtain more thorough insights into what the
coefficients actually mean, we translated the unstan-
dardized coefficients presented in Table 1 into natural
metric effect size estimates in Table 2. Table 2 shows
that for an average initial wage of $17.17 per hour
(ai, Table 1), an increase of one standard deviation
(SD) in IQ/GPA/SES/years of education was associ-
ated with about $1.45/$0.14/$0.31/$1.61 of additional
hourly wages and about 0.97%/0.18%/0.19%/0.74% of
additional wage growth per working hour per year
(e.g., as for IQ: 0.97% � $17.17 ¼ $0.17/hr/year). At
first glance, these numbers may appear small.
However, they translate into substantial cumulative
individual differences in lifetime wages. We exemplify

this with two time series for two hypothetical Persons
A and B in Table 2. Specifically, Person A demon-
strated average values of IQ, GPA, pSES, and educa-
tion (corresponding to the average hourly wage of
$17.17), whereas Person B had values of IQ, GPA,
pSES, and education 2 SDs higher than average (cor-
responding to an hourly wage of $24.17, composed of
the average wage of $17.17 plus $7.00 due to higher
human capital). Person B gained up to an hourly
wage of $12.31 more than the “average” Person A
after the first year (t1), or $25.35 after 10 years (t10;
DYAYB). After 10 years (t10), for a 40-hr work week,
this would correspond to Person A earning a yearly
gross income of $85,440, and Person B earning
$134,112, thus earning $48,672 per year more than
Person A. Accumulated across 38 years (t37, R
DYAYB), this would result in a total of a $1,762,535
difference in earnings in favor of Person B.

Discussion

Drawing on U.S. data from the NLSY-79, the major
objective of the present article was to close the gap
between theoretical assumptions and empirical investi-
gation in research on wage dynamics and mechanisms
underlying wage inequality. To this end, we showed
how dynamic structural equation models can provide

Table 2. Natural metric effect size estimates and example time series for the long-term influence of IQ, GPA, SES, and education
for initial wage levels and growth rates.
Part 1. Individual characteristics

Initial hourly wages (ai) Wage growth rates (/i)

þ1SD�IQ $1.45 0.97%
þ1SD�GPA $0.14 0.18%
þ1SD�SES $0.31 0.19%
þ1SD�EDU $1.61 0.74%
R $3.51 2.08%

Part 2. Example time series

Time Person A (;)
ai ¼ $17.17

and /i ¼ 0.62

Person B (þ2SD)
ai ¼ $24.17
/i ¼ 0.66

D YAYB R D YAYB (Full-Time)

t0 $17.17 $24.17 $7.00 $13,444
t1 $27.75 $40.06 $12.31 $37,084
t2 $34.27 $50.51 $16.24 $68,272
t5 $42.28 $64.86 $22.58 $188,879
t10 $44.50 $69.85 $25.35 $425,324
t15 $44.70 $70.47 $25.77 $671,660
t25 $44.72 $70.55 $25.83 $1,167,376
t35 $44.72 $70.55 $25.83 $1,663,341
t37 $44.72 $70.55 $25.83 $1,762,535

Note. All transformations into natural metrics are based on the results of Model 4 in Table 1. The units of IQ, GPA, SES, and years of education in Part 1
of this table refer to 1 SD (see Table A1, Online Supplemental Material). Thus, the effect size entries refer to an estimate of the extent to which an
increase of 1 SD in IQ (i.e., 28.1 percentile points)/1 SD in GPA (i.e., 0.74 grade points)/1 SD in pSES (i.e., 0.99 SES points)/1 SD in years of education
(i.e., 2.53 years) were associated with x additional US$ of initial hourly wages (ai) and x additional percent of wage growth across the lifespan (/i). The
differences were computed at an average initial hourly wage of ai ¼ $17.17 by applying b x SD. Part 2 contains two example time series using the
model parameters obtained for Model 4. Person A represents an individual with average IQ, GPA, SES, and years of education. Person B represents an
individual who is two standard deviation above average in IQ, GPA, SES, and years of education. DYAYB denotes the differences in hourly wages
between Persons A and B at a given time point. R D YAYB denotes cumulative wage differences on the basis of a full-time job (160 hr/month,
12months; e.g., t0: $7.00 x 160 x 12 ¼ $13,444) over time. Over a period of 38 years (t37), Person B earned a total $1,762,535 more than Person A.

6Results for IQ, GPA, and pSES (without years of education) and
interaction effects between pSES and the other characteristics (IQ, GPA,
years of education) are presented in the Online Supplemental Material of
this paper in Table A6.
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a versatile statistical framework that can be applied to
integrate three major theoretical branches in wage
research, namely, human capital theory, the lifespan
perspective, and the CA approach. In mapping these
theoretical ideals onto statistical terms within the
DSEM framework, they become empirically testable
and open for further development.

Untangling different sources of within-
cohort inequality

After individuals enter the labor market, they follow
different wage trajectories across their working lives.
Over time, these heterogeneous microlevel processes
may translate into the aggregate macrolevel pattern of
wage inequality within a given cohort at the popula-
tion level. Crucially, empirical studies that have exam-
ined interindividual differences in wage dynamics and
mechanisms of intracohort wage inequality are scarce,
most likely because researchers have lacked the statis-
tical models that would allow them to depict the vari-
ous theoretical approaches on wage dynamics and
mechanisms underlying wage inequality. In this art-
icle, we showed how DSEM can be applied to this
end. Specifically, translating theoretical perspectives
into testable assumptions via DSEM, we adopted a
lifespan perspective on wage dynamics and inequality
(e.g., Cheng, 2014) where wage trajectories are shaped
by mechanisms that link their outcomes in earlier life
stages to those in later life stages. Simultaneously,
DSEM allowed us to address the theoretical perspec-
tive of CA where the strength of this mechanism may
vary between persons, yielding, for example, an expo-
nential (“explosive”) growth in wages (i.e., strict CA)
for some individuals. Finally, we were able to integrate
and to study key propositions of human capital the-
ory, by which individual differences in human capital
(e.g., IQ, GPA, pSES, years of education) predict ini-
tial wage levels at labor market entry and growth pat-
terns across the lifespan via the use of
conditional models.

Our analyses revealed fundamental differences
between people in initial levels of wages and wage
growth rates over time. On average, people experi-
enced logarithmic wage patterns across the lifespan.
Steeper wage growth in the beginning of a career was
followed by increasing wage levels across the lifespan
but at a lower rate over time (see also Altonji et al.,
2013). Only a few people (0.5%) experienced strict CA
processes, that is, unbounded wage growth. Further,
on average, we observed a small negative association
between initial wages and later wage growth rates, a

finding that provides little empirical support for the
idea of “within-cohort CA” (Cheng, 2014). Hence, in
line with recent literature, most growing inequality
over time seems to be a result of between-person dif-
ferences in human capital variables (“between-group
CA”). Adolescent IQ and adult education substantially
contributed to the levels and shapes of wage dynam-
ics. Individuals who were more intelligent and
obtained higher levels of education earned more, and
the wages of more intelligent and educated people
also grew more rapidly over time. GPA and pSES
yielded positive associations with wage dynamics
when education was not included in the models, sug-
gesting a potential “gatekeeping” function of high
school grades and parental resources for accessing
higher education. Previous studies on this topic
(although they used statistical models other than
DSEM) have also yielded similar effects for the associ-
ation between initial wages and growth rates (Cheng,
2014); the positive associations between adolescent IQ,
years of education, and wage levels (Hasl et al., 2019;
Heckman et al., 2008; Spengler et al., 2018); and wage
growth rates (Bagger et al., 2014; Bask & Bask, 2015;
Lagakos et al., 2018).

Importantly, however, future research might benefit
from being cautious about interpreting the small (or
negligible) negative correlation between initial wages
and growth rates as being representative of everyone
in the sample. A small percentage of individuals in
our sample experienced strict CA processes and explo-
sive wage growth over time. Tentatively assuming that
this percentage corresponds to the top-earners or
“super-rich” in the 0.05th to 0.01st wage quantiles, the
pattern would match one core characteristic of recent
rising economic inequality in the US: The divergence
in the earnings of the top-earning minority from the
wages of the majority of workers (International
Monetary Fund, 2015; Saez & Zucman, 2016). This
pattern is likely driven by the top income earners’
cumulative advantage in obtaining higher earnings
(Cheng, 2014). Thus, especially for top incomes, the
association between initial wages and wage growth
might follow a positive association.

Dynamic structural equation models as a versatile
empirical framework for studying wage dynamics

Human capital theory, the lifespan perspective, and
the theory of CA are major branches in research on
wages and wage dynamics. Yet, they are by far not
exhaustive in addressing questions of wage develop-
ment, and they represent only a small part of the
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world of literature in wage research. In the following,
we provide a brief overview of how other features that
typically inform research on wages and inequality can
be formalized and subsequently tested in the
DSEM framework.

The coupling of wages and other time-vary-
ing covariates
In the present article, we studied IQ, GPA, and paren-
tal SES as time-invariant predictors because our arch-
ival data did not provide further measures of these
characteristics. Of course, these characteristics are
likely to change to some extent over time. Particularly
interesting for many research questions is thus the
possibility that both time-varying and time-invariant
covariates can be captured on the within- and the
between-person levels using DSEM. Especially in
investigations of Mincer’s wage equation, the criticism
has been put forth that researchers have failed to con-
sider that formal education and training are inherently
endogenous variables (Heckman, Lochner, & Todd,
2005) and may change across a person’s working life.
Further, changes in educational attainment and
changes in wages may be coupled over the life course.
In our empirical application of DSEM, we followed
the approach by Cheng (2014) and did not account
for this coupling. However, future research may apply
the DSEM framework to account for individuals’ lev-
els of education as a second time-varying variable on
the within-person level (i.e., Eduit) and the coupling
of wages and educational attainment within persons
as a random variable (e.g., defining the cross-lagged
effects /EduWage,i and /WageEdu,i). In doing so,
researchers can also choose to explain between-person
heterogeneity in the strength of coupling, for example,
as a function of human capital or other individual
characteristics on the between-person level.

Time-varying wage growth rates
At times, CA processes in wage dynamics or other
developmental processes may occur only over a spe-
cific period or a specific set of stages in the process.
Thus, wage growth rates might vary not only between
individuals but also from one time period to the next.
Formally, we would indicate this assumption by add-
ing an index t to the growth coefficient, that is, /it.
First, these variations could be due to interactions
with other individual characteristics, which may
reduce the impact of the CA process over time
(DiPrete & Eirich, 2006). In the case of the Mincer
equation, where individuals’ wages change as a func-
tion of formal education and time, an aging individual

might decide to stop investing in his or her human
capital because the expected returns from the remain-
ing years as an active workforce participant would not
balance out the costs. Thus, the CA process might
end. Second, external structural factors may cause a
shutdown of a (strict) CA mechanism in wages. In an
organizational context, an example might be a per-
son’s position on a career ladder. Because career lad-
ders have a finite length, a position on the ladder
provides an independent advantage for wages or other
benefits only in the early or middle stages of a pro-
cess. A position’s value usually declines at a certain
point in the hierarchy because the higher a person
climbs the ladder, the lower the number of available
positions at the next level (DiPrete & Eirich, 2006;
Stewman & Konda, 1983). Hence, even if strict CA
and “explosive” growth were present in the early or
middle stages of the process, these factors could fade
out later on. Researchers can address questions of this
kind by investigating CA processes in a “piecewise”
manner in discrete-time estimation (e.g., from one
time interval or stage—comprising several time inter-
vals—to the next) or by deriving the underlying con-
tinuous time function of the process. Especially in
applications of this kind, continuous time applications
yield huge benefits, which we will get back to later on.

Incorporating “exposure processes” in the investiga-
tion of wage dynamics
Some theoretical approaches to inequality, such as the
Blau-Duncan approach to stratification (Blau &
Duncan, 1967) or its extension in the Wisconsin
model (Sewell et al., 1969), frame inequality between
individuals or groups as a result of cumulative
“exposure” processes. In contrast to strict CA proc-
esses, Blau and Duncan (1967) emphasized differences
between groups over inequality within a group,
cohort, or population. Instead, they proposed that CA
is the result of the persistent direct and interaction
effects of a status variable. Thereby, the interaction
effects of a status variable imply group differences in
the returns from a socioeconomic, human capital, or
other resource (DiPrete & Eirich, 2006). Examples
would be ethnicity or gender, where a certain status
(e.g., being black, being a woman) first has a continu-
ing direct effect on wage levels and wage growth rates
over time. For example, in their work on the gender
pay gap, Gould et al. (2016) found that being a
woman had a direct effect on hourly wages. Relative
to men, typical women are paid 83 cents on the
“male” dollar. Second, the status variable of gender
yielded an indirect effect via the interaction, indicating
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that female workers, even when they were as educated
as male workers, received lower wages. This was true at
every level of education, and the gap tended to increase
with level of education (Gould et al., 2016). In line
with the Wisconsin model, which emphasizes not only
the importance of status variables but also cumulated
effects of social and psychological variables such as
childhood mental ability, academic achievement, and
socioeconomic status, the same logic applies to the
between-person variables of adolescent IQ, GPA, and
pSES and the adult levels of education we used in our
study. Thus, studies that are interested in group or pos-
ition effects can easily add status variables with group-
ing (e.g., Black/Hispanic/White; high/low SES;
statistically: nominal or dummy variables) or continu-
ous stratification variables (e.g., IQ, GPA, Edu; statistic-
ally: continuous variables) on the between-level in the
multilevel formalization of the DSEM framework.

Experimental and quasi-experimental designs
In the last paragraph, we showed how DSEM can
incorporate time-invariant “exposure” processes.
Similarly, the framework can be extended to assess
experimental or quasi-experimental designs. For
example, wage earners might face time-varying expos-
ure to treatments. A firm might apply an incentive
pay plan as part of their pay structure. Thereby, work-
ers could receive bonuses over and above their hourly
wages if they meet certain pre-set requirements or cri-
teria. This “intervention” could be introduced for all
employees at the same time (time-invariant onset; e.g.,
change in incentive structures for the whole company
beginning with April 2020) or only when a person
attained a certain position (time-variant onset; e.g.,
after a person got promoted to a management pos-
ition). Likewise, researchers might be interested in the
influence of different payment structures such as per-
formance-based pay versus fixed wages for the wage
development or productivity of one or more individu-
als. Inspired by studies that assess the effectiveness of
interventions based on single-case designs (Shadish,
2014; Shadish et al., 2013; Shadish & Sullivan, 2011),
they could observe the wage levels or productivity of
Individuals A and B during the “treatment” phase of
incentive pay and during the baseline or maintenance
phase of fixed pay. Baseline and treatment measure-
ments are then compared to assess whether a func-
tional relationship exists between the intervention
(i.e., incentive pay) and the outcome variable (i.e.,
wage levels or productivity). Thereby, it is possible to
investigate whether wages or productivity change in
either level or growth when incentive pay is present

but do not when incentive pay is absent. DSEM can
incorporate these thoughts by introducing variables
denoting the individually time-varying on- and offset
of an intervention. For example, a dummy variable
“Intervention (Intit)” can be created. Such a variable
can be both subject-specific (individual i) and time-
specific (time point t). This way, the onset of the
intervention (e.g., Int¼ 1) as well as the offset of the
intervention (e.g., Int¼ 0) can be clearly defined and
modeled accordingly. If the interest is just to statistic-
ally control for the onset of a treatment (e.g., a change
in incentive structures for everyone working at a com-
pany at a specific point in time), the subscript i can of
course be omitted.

Residual correlation in wage dynamics
Especially when dealing with time series data, (auto-
)correlations among residuals are a common concern.
Usually, the goal is to have random error terms, that is,
the model residuals should not reveal any relationship
or trend outside the defined model equation. Previous
studies that modeled wage dynamics oftentimes indir-
ectly included the notion of CA processes via autocor-
relation processes in residuals. Altonji et al. (2013), for
example, defined their Mincer-based model equations
with the extension of an autoregressive residual process,
arguing that “The dependence [of the stochastic error
component] on its past reflects persistence in the mar-
ket value of the general skills of [individual] i and/or
the fact that employers base wage offers on past wages”
(p. 1401). Similarly, Bagger et al. (2014) modeled wage
dynamics on the basis of human capital accumulation,
employer heterogeneity, and individual-level shocks and
captured within-job wage growth in an auxiliary AR
process. These approaches can be beneficial if trends or
cycles (e.g., economic recessions) are expected to bias
the results of a substantial research question. If, how-
ever, (strict) CA processes are the mechanisms of inter-
est, they should also be modeled as such. Deliberately
depicting CAs in a dynamic modeling framework and
including the autoregressive term of current and past
wages on the within-person level (instead of capturing
them solely in the residual process) allows for the
untangling of the multifold reasons for growing popula-
tion inequality. It further allows researchers to uncover
interindividual differences in CA processes over time
and to model them on the between-person level. Of
course, if the influence of a distinct event on wage
development (e.g., mass layoffs due to a worldwide
pandemic or the long-term effects of transitioning to
parenthood) is of interest, the dynamic SEM framework
can be extended accordingly.
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Methodological requirements for DSEMs
In order to properly estimate dynamic structural equa-
tion models, it is important to think about general
methodological requirements. Although Mplus can esti-
mate nonstationary DSEM and AR coefficients > 1 (L.
Muth�en, personal communication, February 17, 2021),
a systematic analysis of requirements for nonstationary
DSEM is, at least to our knowledge, still lacking and
should inspire future research. For example, our simu-
lation results suggested that the DSEM framework pro-
vided unbiased point estimates of fixed and random
effects as well as reliable credibility intervals for the
fixed effects of ai, and fixed and random effects of /i.
However, the standard errors for the random effects of
ai were somewhat underestimated (about 23%). This
likely implies that the corresponding empirical 95% CI
of the parameter was too narrow and therefore needs
to be interpreted with caution. In the future, it might
be a worthy endeavor to explore better interval esti-
mates in more detail. Moreover, the simulation study
by Schultzberg and Muth�en (2018) revealed that in the
estimation of two-level DSEMs, a large number of indi-
viduals (N) can compensate for a smaller number of
measurement occasions (T). Whereas studies that work
in the N¼ 1 framework usually need a minimum of 50
to 100 time points to derive valid results without
strong priors, two-level DSEM can work with well
under 50 time points if the sample size is large enough
(> 200 individuals). For example, dynamic panel mod-
els (which also operate in a DSEM framework) can
already work well with five time points (Bai, 2013). To
conclude, the DSEM modeling framework is an inter-
esting and feasible statistical framework with which to
study other international panel data sets on wage or
educational data yielding the same or a similar struc-
ture as the NLSY data. Yet, future simulation studies
on nonstationary dynamic structural equation models
are needed to determine the conditions (e.g., distribu-
tional assumptions of independent and dependent vari-
ables, number of individuals [N] and measurement
occasions [T]) which ensure reliable estimates of non-
stationary AR processes, their standard errors, and
credibility intervals.

Limitations and future directions

The challenge of measurement equivalence in wage
time series
When working with repeated measurements over
time, establishing measurement equivalence poses sev-
eral challenges, especially with wage time series in a
lifespan context. In 1 cross-sectional year, individuals’

wages may be based on different types of work: for
example, NLSY participants are simply asked whether
they have done any work for pay, which also includes
study programs and government-sponsored programs
or jobs (U.S. Bureau of Labor Statistics, 2021). Despite
the fact that freelance jobs (e.g., lawn mowing or
babysitting) are not included, wages can still be
earned from holiday jobs or internships. Further, in
the first round of interviews in 1979, participants
were of different ages, which might be associated with
cohort effects.

Although we might not be able to erase the related
risk of all possible biases that can result from these
challenges, we took several steps to minimize such
biases. First, the original NLSY sample was quite het-
erogeneous with respect to an age span that ranged
from 12 to 21. We deliberately made the analytic sam-
ple more homogenous with respect to age by focusing
on the population of adolescents (aged 14 to 19).
Second, although t0 often represented a different his-
torical year for participants, the age range of 14 to 19
in 1979 was not too broad. Two thirds of participants
started working in the years 1979 and 1980. By 1983,
more than 90% had entered the labor market. Thus,
even in an “extreme” case in which a 14-year-old who
started working in 1979 was compared with a 19-
year-old (1979) who did not enter the labor market
until 1983 at 24 years of age, the lag was not more
than 5 historical years. Even though 8% of the sample
entered the labor market later than 1983, this fraction
of the sample would not be likely to distort the overall
results, even if cohort effects were to apply to them.
Third, we ensured comparability of the values in
adjusting all wage observations for inflation to repre-
sent 2019US $. Fourth, because individuals’ wages
were stated in gross instead of net terms, historical
effects (e.g., effects of changes in government policies
on wage taxation) should not bias the wage measures.
Finally, we followed Cheng (2014) and eliminated a
factor that we would consider one of the biggest dis-
tortions in cross-sectional wage measures, namely, the
differentiation between full-time and part-time jobs.
To avoid this problem, we used hourly pay rates
(instead of monthly wages). Hourly pay measures the
economic return that an individual receives for 1 hr of
labor and is thus not affected by the total number of
hours the individual worked.

Shrinkage phenomena in estimating AR(1)
coefficients
When working in a multilevel context, the shrinkage
phenomenon (i.e., when effect size estimates trend
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toward the population average) has to be considered.
Especially when individual data are sparse (e.g., an
individual does not have many observed wage meas-
urements) and offer only a little information about an
individual parameter value, the variance of the condi-
tional distribution may be large due to the uncertainty
of the individual estimate (Lavielle & Ribba, 2016).
The mode of the conditional distribution then
“shrinks” to the mode of the population distribution.
If this is the case for most individuals, the majority of
individual parameters will be concentrated around the
population average and will not correctly represent
the actual interindividual variability (Lavielle & Ribba,
2016). Longitudinal wage data typically display high
proportions of missingness, and the NLSY data are no
exception. Thus, in the present example, the model-
implied proportion of individuals experiencing strict
CA processes (/i > 1) may be a lower
bound estimate.

Missing data at the first measurement occasion (t0)
In NLSY (as in any other large-scale survey), partici-
pants could have missing values on their hourly wages
at the first measurement occasion. Because of our sub-
stantive interest in possible nonstationary processes
(AR > 1), we could not derive predetermined starting
points in individuals’ time series from the rest of the
time series. However, these are needed in the DSEM
estimation procedure. Thus, we decided to impute the
first measurement occasion using the EM algorithm.
Notably, Enders (2003, 2010) showed that the EM
algorithm on individual-level data reproduces values
quite accurately (even when the missing values are
not completely at random). Further, all other missing
values, that is, 37 measurement occasions and covari-
ates, were modeled via Bayesian estimation in DSEM.
Nevertheless, our approach has its drawbacks because,
with a single imputed value for hourly wages at the
first measurement occasion, we likely underestimated
the uncertainty related to the imputation of this vari-
able. Thus, the standard errors of coefficients in our
study should be interpreted with caution and as lower
bound estimates.

Estimation in continuous time
Notably, models formalized in the DSEM framework
can be estimated in discrete or continuous time. With
panel data, and especially wage data, unequally spaced
measurement occasions within and between persons
are the norm rather than the exception. These may
result from missing observations (e.g., if participants
did not fill out the NLSY questionnaire in a particular

year). Unequal time intervals are of concern when
researchers are interested in lagged relationships of
wages because the strength of a lagged effect depends
on the length of the time interval between measure-
ments (McNeish & Hamaker, 2020; Ryan et al., 2018
). Of course, researchers have to weigh the costs and
benefits of estimation procedures, and discrete-time
estimation can be a pragmatic approach (de Haan-
Rietdijk et al., 2017). We have to keep in mind, how-
ever, that discrete-time models, even when the meas-
urement occasions are spaced equally, are inherently
bound to the time intervals used in a given study
(Voelkle et al., 2012). Our empirical example captured
how CA processes arise for yearly measurements.
Being interested in wage or panel data, this can be
considered a reasonable resolution of time.
Nevertheless, the present results tell us little about
wage dynamics and how these processes unfold on a
monthly, weekly, or even daily basis. Given that con-
tinuous time analyses contain exactly the same infor-
mation as a discrete-time model and beyond, future
research on wage (and other developmental) dynamics
may profit considerably from also using continuous
time estimation (Driver & Voelkle, 2018; Voelkle
et al., 2012).

Summary

The present study’s aim was to show how DSEM can
serve as a versatile statistical framework for modeling
wage dynamics and wage inequality across the life-
span. Specifically, we translated major theoretical
branches of research on wage dynamics and wage
inequality—the human capital approach, the life
course perspective, and, most importantly, the theory
of CA—into statistical parameters. In doing so, we
translated the assumptions proposed in these theor-
etical approaches into their statistical equivalents,
which opens the window for future refinements of
these theories. One of the main advantages of
dynamic models is their ability not only to describe
individual differences in wage trajectories in a popu-
lation but to incorporate the underlying mechanisms
(e.g., CA) that bring about these differences. Hence,
whenever CA processes are expected to occur (e.g.,
in skill acquisition, management careers, scientific
careers, educational achievement, or health), DSEM
may provide a powerful modeling framework from
which to tackle the developmental dynamics of these
vital real-life outcomes and domains. (Word
Count: 11,662)
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