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ABSTRACT 
Psychological researchers and practitioners collect increasingly complex time series data 
aimed at identifying differences between the developments of participants or patients. Past 
research has proposed a number of dynamic measures that describe meaningful develop
mental patterns for psychological data (e.g., instability, inertia, linear trend). Yet, commonly 
used clustering approaches are often not able to include these meaningful measures (e.g., 
due to model assumptions). We propose feature-based time series clustering as a flexible, 
transparent, and well-grounded approach that clusters participants based on the dynamic 
measures directly using common clustering algorithms. We introduce the approach and 
illustrate the utility of the method with real-world empirical data that highlight common 
ESM challenges of multivariate conceptualizations, structural missingness, and non-stationary 
trends. We use the data to showcase the main steps of input selection, feature extraction, 
feature reduction, feature clustering, and cluster evaluation. We also provide practical algo
rithm overviews and readily available code for data preparation, analysis, and interpretation.
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Recent years have seen a striking increase in the num
ber and variety of research studies that follow partici
pants’ everyday experiences and collect real-world 
psychological time series (e.g., Hamaker & Wichers, 
2017). These intensive longitudinal datasets come with 
different sources of heterogeneity, where researchers 
have to consider differences across large numbers of 
participants, time points, and variables (e.g., Cattell, 
1966; Wardenaar & de Jonge, 2013). However, despite 
its complexity, researchers are often interested in pre
cisely this complexity and wish to understand how peo
ple differ in their developments across several variables 
(e.g., Ernst et al., 2021). Researchers and practitioners 
are, for example, asking: “Do the symptoms of different 
patients develop in contrasting ways?” (Monden et al., 
2015) or “How do migrants differ in the development 
of their self-reported needs as they arrive in a new 
country?” (Kreienkamp et al., 2024). There is, thus, a 
clear need for analysis techniques that identify 

between-subject differences in developmental patterns 
for psychological data.

Recently, one promising way of identifying 
between-subject developmental patterns has been time 
series clustering—the idea of inductively grouping par
ticipants based on similarities of their time series (e.g., 
Ariens et al., 2020; also see den Teuling et al., 2021
for a review). This type of analysis essentially seeks to 
capture comparable within-person developments— 
such as whether a variable remains stable over time, 
consistently increases, or exhibits cyclical patterns— 
and then groups the persons based on these patterns 
(Liao, 2005). Time series clustering, thus, crucially 
depends on identifying meaningful summaries of the 
time series developments, which can be used to com
pare participants (Aghabozorgi et al., 2015).

Fortunately, past conceptual and empirical works 
in the experience sampling (ESM) literature have 
collected a number of meaningful aspects of 
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psychological time series.1 Such aspects can be indica
tive of adaptive and maladaptive developments within 
the individual, can identify crucial transitions, or 
more generally are helpful in understanding a psycho
logical time series. Important aspects might include 
concerns about whether a symptom consistently stays 
at a certain level without much variability or whether 
some emotions develop together. For the most impor
tant developmental aspects, researchers have 
assembled measures that capture these patterns. These 
summary statistics are often called “dynamic meas
ures,” “principles of change,” or “dynamic features” of 
the psychological time series (Dejonckheere et al., 
2019; Krone et al., 2018; Kuppens & Verduyn, 2017). 
Most research groups working on these time series 
features have proposed an overlapping number any
where between four and twelve key features relevant 
to psychologists (Dejonckheere et al., 2019; Wang 
et al., 2006). Each of these time series features not 
only captures a distinct aspect of psychological time 
series but also holds conceptual value—inertia, for 
example, describes a resistance to change that can be 
indicative of psychological maladjustment (Kuppens 
et al., 2010) or a higher within-person variability can 
signal an erratic state (Myin-Germeys et al., 2018).

In this manuscript, we introduce feature-based time 
series clustering—a general clustering approach and 
framework where users utilize the dynamic features 
directly and can build upon readily accessible algo
rithms. The approach has been a common procedure 
in digital phenotyping (Loftus et al., 2022) and the 
broader machine learning literature (Maharaj et al., 
2019). As such, the analysis has been applied to a var
iety of data, including analyses of astronomical, 
meteorological, and aviation pathways, biological and 
medical developments, as well as energy and finance 
patterns (Aghabozorgi et al., 2015). We argue that for 
psychological time series data, feature-based clustering 
offers a direct and flexible approach to use dynamic 
features, fewer strict assumptions than commonly 
used clustering approaches, beginner-friendly analysis 
methods, as well as a focus on meaningful psycho
logical interpretability.

In the sections below, we aim to provide a practical 
introduction to the method. To do so, we illustrate 

the utility of the method with real-world ESM data. 
We use this data to discuss which psychological time 
series features are well-suited for a clustering 
approach, introduce the individual analysis steps, and 
provide practical guidance on common algorithms 
and analysis code. As such, we seek to reach readers 
who are familiar with ESM data but are relatively new 
to the realm of time series clustering. This article aims 
to introduce the important research decisions and 
focuses on approachable and accessible methods. As a 
result, the features and methods we choose to high
light might deviate from the state-of-the-art most 
advanced methods. For readers who would like to 
explore more specialized algorithms, we have prepared 
Supplemental Material C to embed the approach in 
the broader time series clustering literature and dis
cuss alternative algorithms.

Why feature-based clustering for ESM

Let us briefly consider why you might consider fea
ture-based time series clustering for your ESM data. 
We want to mention three key contributions that this 
introduction to the method seeks to highlight. The 
first contribution is that the feature-based approach 
aligns well with the growing literature on “dynamic 
features” of psychological ESM data (Dejonckheere 
et al., 2019; Krone et al., 2018; Kuppens & Verduyn, 
2017). This match offers two main benefits, flexibility 
and interpretability. By relying directly on the time 
series features that are already well established for dif
ferent psychological processes, users can mix and 
match the features that match their empirical assump
tions and research questions. At the same time, the 
flexibility does not reduce the interpretability of the 
results because everything that goes into the clustering 
process has a clear conceptual meaning (for more 
details on this see the ‘Feature Extraction’ step below).

The second contribution is that the direct use of 
time series features avoids many of the challenges that 
psychological time series data face today. Researchers 
frequently seek to address important questions about 
multidimensional, erratic, and context-specific phe
nomena (Hamaker & Wichers, 2017; Helmich et al., 
2020; Kivel€a et al., 2022). These types of data often 
include issues of non-equidistant, structurally missing, 
or non-stationary data (also see Appendix A for an 
expanded discussion of the current challenges within 
ESM data). Time series features, however, commonly 
do not require complete and equidistant time series, 
and the approach actively encourages the inclusion of 

1In psychology, intensive longitudinal data collection methods are often 
referred to as experience sampling method (ESM), ecological momentary 
assessment (EMA), or ambulatory assessment (AA) studies. Although the 
terms come from different conceptual backgrounds, they share a focus on 
collecting data over an extended period of time to capture people’s 
behaviors and experiences as they vary over time and in response to 
different situations and events. In this article, we will use the experience 
sampling (ESM) term as it has the strongest footing within the clustering 
literature.
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non-stationary and non-linear trends (e.g., 
Aghabozorgi et al., 2015).

As such, the feature-based approach extends the 
ESM clustering approach most commonly used today. 
Most ESM research today clusters participants based 
on person-specific model parameters—notably inter
cepts and slopes from vector autoregression models 
(VAR; e.g., Ariens et al., 2020; Bulteel et al., 2016; 
Stefanovic et al., 2022). The utility of these model 
parameters is notably high because they often fit well 
within a research process where model parameters are 
already estimated for theory testing. However, the 
model parameters crucially depend on the features 
included in the model and the assumptions of the 
model.2 Feature-based time series clustering considers 
model parameters to be one type of time series feature 
but also allows users to include other time series 
features without needing to develop or fit another 
(non)parametric model. Users might thus use VAR 
parameters alongside piecewise polynomials, the Mean 
of the Squared Successive Differences (MSSD), or 
simply the participants’ variance estimates (see the 
Feature Reduction section below).

The third major contribution is that the feature- 
based time series approach offers a generalized struc
ture for clustering ESM data. The generalized decision 
structure of feature-based clustering provides a meth
odological framework that also applies to most cluster
ing approaches already used within the ESM literature, 
with the added benefit of having practical embedded
ness from other disciplines (Liao, 2005). As part of the 
illustration, we separate the analysis process into fea
ture extraction, feature reduction, feature clustering, 
and cluster evaluation (R€as€anen & Kolehmainen, 2009; 
Wang et al., 2006). This approach crucially gives (nov
ice) users guidance on where researcher decisions need 
to be made, and we aim to provide information on 
how to approach these decisions. Importantly, the gen
eralized structure can also capture the existing model 
parameter-based analyses (e.g., Ernst et al., 2021) as 
well as other approaches that rely on features more dir
ectly (e.g., van Genugten et al., 2022).

Data used for illustration

To illustrate the functioning and utility of feature- 
based time series clustering with psychological ESM 

data, we introduce the clustering process using a 
recent set of studies that collected data on migration 
experiences. We chose this particular set of data 
because they exemplify the key contributions and 
challenges that we seek to address with the feature- 
based approach. In particular, the use of ESM for 
migrants in interactions with the majority society has 
a long-standing tradition of dynamic theorizing (e.g., 
Berry, 1986) with multivariate conceptualizations (e.g., 
Kreienkamp et al., 2024), a focus on non-stationary 
trajectories (Kim, 2017), distinguishing adaptive from 
maladaptive clusters (Choi et al., 2009), and event- 
based missingness (e.g., Keil et al., 2020; Wardenaar & 
de Jonge, 2013).

Matching these requirements, the data set we use 
consists of three studies that followed migrants who 
had recently arrived in the Netherlands in their daily 
interactions with members of the Dutch majority 
group (for the data set see Kreienkamp et al., 2022). 
After a general migration-focused pre-questionnaire, 
participants were invited twice per day to report on 
their (potential) interactions with majority group 
members for at least 30 days. The short ESM surveys 
were sent out at around lunch (12 pm) and dinner 
time (7 pm). After the 30-day study period, partici
pants filled in a post-questionnaire that mirrored the 
pre-questionnaire. Participants received either monet
ary compensation or partial course credits based on 
the number of surveys they completed.

The original studies included 207 participants 
(NS1 ¼ 23, NS2 ¼ 113, NS3 ¼ 71) with a total of 10,297 
ESM measurements. Each of the studies focused on 
newly arrived first-generation migrants, and each study 
included a number of idiosyncratic variables relevant 
for the broader research collective. For our empirical 
example, we focus on the variables that were collected 
during ESM surveys and were available in all three 
studies. Variable selection and preparation are 
described as part of the illustration below, but for add
itional methodological details about the study setup, see 
Kreienkamp et al. (2022). Each study was approved by 
the ethics board of the university of origin and all par
ticipants gave their informed consent.

Analysis steps and application

To introduce and illustrate the feature-based cluster
ing analysis, we will follow the conceptual steps of the 
procedure in sequential order and discuss key issues 
for each step. To do so, we use a framework that 
structures feature-based clustering into four main 
steps (R€as€anen & Kolehmainen, 2009; Wang et al., 

2Importantly, recent efforts to address the shortcomings of model 
parameters for time series clustering have made notable progress by 
either relaxing specific assumptions (e.g., Chow et al., 2011; den Teuling 
et al., 2021; Molenaar et al., 2009; Ou et al., 2023; Voelkle & Oud, 2013) 
or include additional time series features (e.g., see Gates et al., 2017; 
Krone et al., 2018).
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2006). (1) The selection and preparation of the input 
variables, (2) the extraction of the time series features 
that describe the time series, (3) an optional feature 
reduction step if there are too many data points for 
the clustering algorithms, and (4) the actual clustering 
of the time series features, as well as the evaluation 
and interpretation of the clusters. While this is a use
ful conceptual separation of procedural elements, it is 
important to note that these steps are a general out
line and the specific details of the analysis will depend 
on the nature of the data and the research question 
being addressed. We, thus, mainly wish to highlight 
the conceptual nature of these steps to introduce the 
major elements of the analysis. We also provide a 
conceptual overview that can be used in conjunction 
with this section in Figure 1.

Input variables

Time series clustering starts with the selection and 
preparation of the variables of interest. While the 
selection will necessarily be field- and concept-specific, 
there are a few conceptual and methodological issues 
that should be considered. Conceptually, the included 
variables should adequately capture the concept of 
interest and should be meaningful to the 

understanding of the time series. One of the advan
tages of feature-based clustering is that it is inherently 
adept at accommodating multivariate concepts, a com
mon aim in ESM research. For example, there are 
calls that emotion dynamics should be assessed with a 
repertoire of positive and negative emotions (e.g., 
Dejonckheere et al., 2019), many health developments 
are captured within biopsychosocial domains (e.g., 
Suls & Rothman, 2004), and migration experiences are 
thought to encapsulate affect, behavior, cognition, and 
desire measurements (e.g., Kreienkamp et al., 2024). 
At the same time, however, the added number of vari
ables can become a methodological concern. Not only 
can redundant and irrelevant variables diminish the 
quality of the analyses, but with intensive longitudinal 
data the number of data points compounds across 
participants, measurement occasions, and variables so 
that additional variables can make many of the follow
ing steps substantially more difficult (also see the 
‘Data Structure’ in Figure 1).

For our illustration, we include 12 variables that 
were measured as part of the ESM surveys in all three 
studies and captured information about the partici
pant’s interactions, as well as the cognitive-, emotional-, 
and motivational self in relationship with the majority 
group (see Table 1 for an overview). We chose these 

Figure 1. Flowchart feature-based time series clustering in psychology.
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aspects in particular because (1) the interaction-spe
cific information exemplified the structural missing
ness issue of modern ESM data (see Appendix A for 
more detail) and (2) the motivational, emotional, 
and cognitive experience offered a diverse conceptu
alization of migration experience (beyond behavioral 
measurements) that is becoming more common in 
the literature (Kreienkamp et al., 2024). The breadth 
of the included variables also showcases the utility of 
the method for a growing body of literature that 
considers heterogeneous and complex concepts. As a 
result, the number of included variables is also on 
the higher end for psychological concepts and add
itionally allows us to showcase the efficiency benefits 
of the method and offers a reasonable use case for 
the feature reduction step.

Once the important variables have been selected, 
the data needs to be prepared for the analysis steps. 
Importantly, this not only means validating and clean
ing the data (e.g., re-coding, combining scale items) 
but also making the time series comparable. Making 
time frames and response scales comparable between 
participants, for example, includes choosing a time 
frame that is common to most participants (‘data 
preparation’ and ‘data cleaning’ in Figure 1; also see 
Liao, 2005).

In our illustration data set, the studies differed sub
stantially in the maximum length of participation 
(maxðtS1Þ ¼ 63, maxðtS2Þ ¼ 69, maxðtS3Þ ¼ 155). This 
was likely due to the option to continue participating 
without compensation in the latter study. To make the 
three studies comparable in participation and time 
frames, we iteratively removed all measurement occa
sions and participants that had more than 45% missing
ness (which was in line with the general 
recommendation for data that might still need to rely 
on imputations for later model testing; see Madley- 
Dowd et al., 2019).3 This procedure led to a final sample 
of 157 participants, who jointly produced 8,132 survey 
responses. Importantly, both the participant response 
patterns and the time frame were now substantially 
more comparable (number of measurement occasions 
per person: tS1 : min ¼ 40, max ¼ 61, mean ¼ 57.33, sd 
¼ 4.69; tS2 : min ¼ 33, max ¼ 60, mean ¼ 49.05, sd ¼
6.73; tS3 : min ¼ 36, max ¼ 65, mean ¼ 54.20, sd ¼
7.04). It is important to consider that some time series 
features may be less reliable when the number of meas
urement occasions per person is low (e.g., below 30 
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validation analyses in Appendix B we compare the model presented here 
with varying levels ofmissing data allowed.
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measurements per person), and this should be taken 
into account when conducting similar analyses. Full 
methodological details are available in Online 
Supplemental Material A, but basic item information, 
descriptives, and correlations of items are also available 
in Table 2.

Feature extraction

Armed with a relevant selection of key variables, 
the main aim of the feature extraction is to 
describe the most important and meaningful aspects 
of a time series. In its most general approach, fea
ture extraction can include any numeric summary 
of the time series (e.g., Maharaj et al., 2019). Given 
this flexibility, a staggering variety of time series 
features have been proposed across different disci
plines. For example, Wang et al. (2006) proposed 9 
time series features (also see Fulcher et al., 2013), 
Adya et al. (2001) collected 28 features relevant for 
forecasting, and a commonly used software package 
for feature extraction ‘tsfresh’ allows users to extract 
a total of 794 features of a time series (Christ 
et al., 2018).

However, not all time series features might be rele
vant to psychological time series or any particular 
research question. For example, a psychologist inter
ested in well-being might not necessarily be interested 
in the exact time point after which 50% of the 
summed well-being values lie (i.e., relative mass quan
tile index) or how much different sine wave patterns 
within the well-being data correlate with one another 
(i.e., cross power spectral density). Instead, we advo
cate that we look at time series features that have a 
strong backing within the ESM literature and offer 
meaningful interpretability.

Fortunately, past conceptual and empirical efforts 
offer valuable discussions of common time series fea
tures in psychological research. To understand emo
tion dynamics, Kuppens and Verduyn (2017) 
originally proposed four dynamic features: (1) within- 
person variability, (2) co-variance or intraclass coeffi
cient (ICC), (3) inertia or autocorrelation, and (4) 
cross-lagged correlations. These features were then 
extended by Krone et al. (2018), adding (5) innovation 
variance, and (6) mean intensity. Krone et al. (2018) 
even built a parametric model to tentatively cluster 
study participants. From a slightly different perspec
tive Dejonckheere et al. (2019) later added three add
itional features for psychological time series: (7) 
instability (8) interdependence (i.e., network density), Ta
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and (9) diversity (i.e., Gini coefficient; also see Wendt 
et al., 2020).4

Some of the time series features found in the psy
chological literature are not necessarily well-suited to 
summarize time series for feature-based clustering and 
some key conceptual features are not well represented 
in the dynamic measures literature. In particular, 
covariances and cross-lagged correlations often pro
duce a large number of parameters and can lead to 
overfitting (e.g., Bulteel et al., 2018; Ernst et al., 2021; 
Lafit et al., 2022), also see our discussion of multivari
ate features). Other dynamic features, such as network 
density parameters, used to summarize variable inter
dependence, may not always be meaningful for psy
chological data (Bringmann et al., 2019). At the same 
time, the dynamic features commonly proposed for 
psychological time series often do not capture linear 
and nonlinear trends, as they are frequently developed 
for stationary Vector Autoregressive models (e.g., 
Krone et al., 2018).

Thus, while the final selection of time series fea
tures should always be driven by the research ques
tions and field-specific conventions, for our 
illustration we chose six time series features that relate 
to common psychological research questions and 
recent works within the field: (1) central tendency, (2) 
variability, (3) instability, (4) temporal dependence, 
(5) linear trend, and (6) nonlinearity. An exemplary 
overview of available time series features, their sub
stantive interpretations, and mathematical operational
izations is available in Table 3, including the features 
we chose here. For each of the six time series features, 
we selected a mathematical representation that was 
appropriate for our type of data. We provide a brief 
introduction to each feature below. Beyond the opera
tionalizations we chose for our case study, we col
lected the R functions we created for the analyses as 
an R package that automatically extracts and prepares 
a large selection of the time series feature operational
izations presented in Table 3. All functions are avail
able as part of the package GitHub repository (see the 
featureExtractor() function; Kreienkamp et al., 2023d) 
and are annotated as part of our tutorial-style illustra
tion (see Supplemental Material A).

Central tendency. The central tendency refers to the 
statistical measures that represent the “typical” or                                                     
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4It should be noted that also within the psychological literature, 
alternative summaries have been proposed that, for example, include 
measurement distribution, nonlinear developments, or categorical states. 
As an example, Kiwuwa-Muyingo et al. (2011) proposed to extract 
clinicallymeaningful states for medical adherence data and suggests these 
states as meaningful time series features.
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“average” of a set of data. The most common meas
ures of central tendency are the mean, median, and 
mode (Weisberg, 1992). As a familiar statistic from 
probability theory, the central tendency sits at the 
heart of many fundamental questions about psycho
logical time series. Researchers might, for example, be 
interested in whether “Over a one-month period, are 
some people happier than others?”

For the central tendency feature of our illustration, 
we chose the median (M), which effectively addresses 
potential complications arising from non-normally 
distributed responses or outliers within time series 
datasets (Weisberg, 1992). To compute the median, it 
is imperative to differentiate between two types of 
time series representation for a given variable j related 
to participant i: the chronological series and the 
ordered series. The chronological time series, denoted 
by Xij, encapsulates the sequence of observations 
fxij1, xij2, :::, xijTg for variable j concerning participant 
i, organized by their temporal occurrence. Here, xijt 
signifies a specific observation at time t within this 
sequence. In contrast, the ordered time series, repre
sented as Xij, is derived from Xij by sorting the obser
vations in ascending order of magnitude. This ordered 
set is expressed as fxij1, xij2, :::, xijng, with each xijk 
corresponding to the k-th element in the reordered 
series Xij:

The median MðXijÞ is then the value located pre
cisely at the center of the ordered time series Xij:

Depending on whether the total number of observa
tions (T) is odd or even, the median is either the mid
dle k-th element if T is odd, or the average of the two 
middle values if T is even:

MðXijÞ ¼

x
ij

T þ 1
2

� � if T is odd

x
ij T

2

� � þ x
ij T

2 þ 1
� �

2
if T is even

8
>>>><

>>>>:

(1) 

This approach ensures that the median is a reliable 
indicator of central tendency in time series analysis, 
unaffected by data distribution asymmetries or the 
presence of outliers.

Variability. Variability captures the degree to which a 
set of data differs from the central tendency and is 
sometimes also referred to as the dispersion or spread 
of the data (Weisberg, 1992). Common measurements 
of variability are the variance or standard deviation as 
well as their robust counterparts. In time series analy
ses, variability is conceptually important because 
information about the distribution and diversity of 
data has been found to be indicative of worse 

psychological states (Helmich et al., 2021; Myin- 
Germeys et al., 2018). Person-level differences in ESM 
measurements have, for example, been associated with 
higher levels of psychopathological recurrences among 
patients with depression (Timm et al., 2017). As such, 
psychological researchers and practitioners are often 
empirically interested in between-person differences in 
variability. Researchers on polarization and radicaliza
tion might, for example, ask: “Are people settled in 
their attitudes toward migrants or do they vary across 
the measurement period?”

For our illustration data, we chose the Median 
Absolute Deviation (MAD) to gauge the variability 
within our time series data. This choice is motivated 
by the robustness of MAD, particularly its resilience 
to the effects of non-normal distributions and outliers, 
which can significantly skew traditional variability 
measures such as the standard deviation (Weisberg, 
1992). For a given variable j and participant i, the 
MAD is calculated by first determining the median 
(M) of the ordered time series Xij as described in 
Equation (1). We then compute the absolute devia
tions of each observation in the time series Xij from 
this median value. Specifically, for each time point t, 
we calculate the absolute difference between xijt and 
the median of the series MðXijÞ: The MAD is then the 
median of these absolute deviations:

MADðXijÞ ¼ Mð xijt − MðXijÞ
�
�

�
�Þ (2a) 

¼ Mðfjxij1 − MðXijÞj, jxij2 − MðXijÞj, :::, jxijn − MðXijÞjgÞ

(2b) 

The calculation of MAD focuses on the magnitudes 
of deviations, ensuring that it provides a robust meas
ure of dispersion that reflects the inherent variability 
in the time series data.

Instability. Instability captures the average change 
between two consecutive measurements (Ebner- 
Priemer et al., 2009; Jahng et al., 2008). While instability 
is conceptually related to the variability feature, vari
ability does not take into account temporal dependency, 
whereas instability looks at the ‘jumpy-ness’ of the data 
over time. In other words, variability reflects the range 
or diversity of values in the un-ordered time series data, 
while instability reflects the fluctuation or inconsistency 
in a time series data over time (Houben et al., 2015; 
Koval et al., 2013; Trull et al., 2008). For example, if a 
person has rapid and extreme mood changes, their 
mood is highly unstable, while if a person’s mood 
responses span a wide range over the entire study 
period, their mood is highly variable (note that this 
does not need to be rapidly changing or instable, e.g., 
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when there is linear increase over time; also see Jahng 
et al., 2008). Within psychological time series, instabil
ity measurements have especially been important in the 
research of borderline personality disorder (Trull et al., 
2008) and suicidality (Kivel€a et al., 2022), but also in 
understanding early warning signals more generally 
(Wichers et al., 2019). Conceptually, the instability fea
ture, thus, relates to a broad range of research ques
tions, including: “What is the nature of the 
identification changes in those who start working in a 
new country?” or “Do strong daily fluctuations in self- 
esteem reflect the process of identity formation in 
adolescents?”

For our data we chose the mean absolute change 
(MAC; e.g., Ebner-Priemer et al., 2009; Barandas 
et al., 2020), which looks at the average absolute dif
ference of two consecutive measurements x at time 
points t and t − 1, for each time series X of partici
pant i and variable j.

MACðXijÞ ¼
1

n − 1

X

t¼2, :::, t
xt − xt−1j j (3) 

Another common measurement of instability is the 
Mean of the Squared Successive Differences (MSSD), 
which is often preferred where differences in magnitude 
are more important than the frequency of those changes, 
for example, when big shifts in time series are considered 
more impactful or when outliers are meaningful and 
need to be taken into account (Bos et al., 2019; Chatfield, 
2003). For psychological ESM data, some research sug
gests that amplitude and frequency could predict differ
ent health outcomes and can be investigated jointly 
(Jahng et al., 2008; Wang & Grimm, 2012).

Temporal dependence. Univariate temporal depend
ence in time series data refers to the degree to which a 
time series is influenced by its past values, exhibiting pat
terns of behavior that may be regular over different time 
scales (D’Mello & Gruber, 2021). In the context of psy
chological time series, an important aspect of temporal 
dependence is inertia—how much a measurement carries 
over to its next measurement (Kuppens et al., 2010; Suls 
et al., 1998). If inertia is high, a development tends to 
stay in a certain state. Because high inertia is resistant to 
change, in emotion dynamics, high inertia of negative 
affect has been found to be indicative of under-reactive 
systems and to be characteristic of psychological mal
adjustment (Kuppens et al., 2010). In a similar vein, high 
inertia in negative affect at baseline was predictive of the 
initial onset of depression (Kuppens et al., 2012). 
Conceptually, inertia is more broadly connected to 
research questions such as: “Do patients stay in a 

negative mood for several measurements?” or “Do 
migrants stay with their language practice for several 
days at a time?” Note that we described univariate 
temporal dependence here, where the focus is on the 
relationship of a variable with its own past values. Cross- 
lagged effects extend this concept by examining how past 
values of one variable influence another.

For our illustration case, we chose the commonly 
used (univariate) autocorrelation or autoregression 
with a lag-1 to capture the inertia. High autocorrel
ation values can indicate high levels of inertia, while 
low autocorrelation values may indicate a more 
unpredictable or volatile time series (Dejonckheere 
et al., 2019). The lag–1 autocorrelation rij, 1 looks at 
the average correlation between a measurement x and 
the preceding measurement xt−1 for the time series X 
of participant i and variable j with n measurements.

rij, 1 ¼

Pn
t¼2ðxijt − �xijÞðxij, t−1 − �xijÞ
Pn

t¼1ðxijt − �xijÞ
2 (4) 

Where �xij is the mean of the time series xij, calcu
lated as:

�xij ¼
1
n

Xn

t¼1
xijt (5) 

While inertia captures the simplest case of temporal 
dynamics, lag-1, we acknowledge that temporal 
dependence in psychological time series may also 
exhibit more complex relationships, including higher 
lagged auto correlations or cyclical relationships (fou
rier coefficients, or continuous wavelet transforms are 
often used to capture such relationships).

Linear trend. In non-stationary time series, a linear 
trend can be observed when there is a consistent 
increase or decrease in the data over time (Nyblom, 
1986). For psychological time series, researchers have, 
for example, pointed out the importance of linear 
trends in interpersonal communication (Vasileiadou & 
Vliegenthart, 2014), and emotion dynamics (Oravecz 
et al., 2016). Theoretically, linear trends are often con
sidered the simplest way to assess whether a psycho
logical theory of change is appropriate (Gottman 
et al., 1969). In empirical practice, linear trends are, 
thus, commonly exemplified by research questions 
such as “Do patient symptoms improve consistently?” 
or “Does worker productivity decline continuously?”

For the variables in our illustration data set, we 
chose an overall linear regression slope to capture the 
linear trend. The regression slope bij provides the 
average change from one time point t to the next 
across all measurements x of a time series X of 
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participant i and variable j. The specific form of the 
OLS slope formula we provide below calculates bij as 
the sum across all time points of the product of the 
deviation of time t from its mean �t and the deviation 
of xij from its mean �xij at each time point, divided by 
the sum across all time points of the square of the 
deviation of time from its mean (

P
ðt − �tÞ2). 

Intuitively, the formula captures the rate of change of 
variable xij with respect to time. This slope will indi
cate how the variable xij changes over time, control
ling for its mean value and the mean of time. If the 
slope is positive, xij increases over time; if it is nega
tive, xij decreases over time.

bij ¼

P
ðt − �tÞðxijt − �xijÞ
P
ðt − �tÞ2

(6) 

Nonlinearity. Changes in psychology are not always 
linear; instead, nonlinearity is a common feature of 
psychological time series (Hayes et al., 2007). As an 
example, episodic disorders, such as depression, are 
often best described as non-linear systems (Hosenfeld 
et al., 2015). Similarly, patients recovering from 
depression showed sudden changes in the improve
ment of depression (Helmich et al., 2020). But also 
substance abuse (Boker & Graham, 1998) or attitude 
changes rarely develop linearly (van der Maas et al., 
2003). Conceptually, researchers might have research 
questions about the type of the development: “Is the 
development of well-being a nonlinear process?” as 
well as the shape and structure of the development: 
“How many spikes in well-being did a migrant 
experience?”

We summarized the nonlinear trend with the esti
mated degrees of freedom of an empty GAM spline 
model. The edf summarizes the wiggliness of a spline 
trend line (Bringmann et al., 2017; Wood, 2017). The 
degrees of freedom of a spline model are determined 
primarily by the number of knots and the order of 
the spline. For instance, a cubic spline with k knots 
has kþ 3 degrees of freedom (Castro-Alvarez et al., 
2024; Faraway, 2016; Haslbeck et al., 2021). However, 
in a penalized spline framework, which is commonly 
used for GAMs, the effective degrees of freedom can 
be less than kþ 3. This is because the model employs 
a smoothing parameter to control the tradeoff 
between the complexity (flexibility) of the model and 
its fit to the data, thereby penalizing overly complex 
models and potentially reducing the effective degrees 
of freedom (Marx & Eilers, 1998). Intuitively, then an 
edf of 1 would be equivalent to a linear relationship 
(i.e., one linear slope parameter), whereas a higher edf 

(particularly an edf > 2) is indicative of a non-linear 
trend. The estimated degrees of freedom are commonly 
based on a concept called ‘effective degrees of freedom’ 
and can be represented as the trace tr( ), (i.e., the sum 
of the diagonal elements) of the smoother matrix S, a 
symmetric matrix that maps from the raw data to the 
smooth estimates (Wood, 2017).

edf ¼ trðSÞ (7) 

Additional considerations. Beyond our main features 
of interest, we also extracted the participant’s number 
of completed ESM measurements to ensure that the 
clusters are comparable in that regard (i.e., to exclude 
spurious explanations for the cluster assignments). 
After the extraction of the features, we found that 
about 1.40% of the extracted features are missing 
across the 72 features per participant. This could hap
pen, for example, if participants do not have two sub
sequent measurements with outgroup interactions, so 
that an autocorrelation with lag-1 cannot be calculated 
for the contact-specific variables. The small number of 
missing values indicates that the feature-based 
approach indeed largely avoids the structural missing
ness issue. However, even the few missing values can 
be an issue for some feature reduction or feature clus
tering algorithms. We, thus, impute missing feature 
values via predictive mean matching (PMM) with the 
MICE package in R, employing a single imputation 
and specifying a maximum of 50 iterations and a fixed 
seed for convergence and reproducibility (Buuren & 
Groothuis-Oudshoorn, 2011). We chose PMM for its 
ability to preserve the original data distribution with
out assuming normality and robustly handling mul
tiple data types (Van Buuren et al., 2006). Note again 
that with this procedure we only need to impute an 
extremely small number of missing values, as most 
feature calculations can use the available data instead.

It is important to reiterate that the six selected time 
series features are in no way exhaustive or imperative. 
Both using a more data-driven approach to the selec
tion of time series features or selecting entirely differ
ent aspects to summarize the time series are legitimate 
options (also see our discussion of multivariate time 
series features in the discussion section and see 
Heylen et al., 2016). Our choice seeks to offer a prac
tical toolbox of time-series features that are common 
and meaningful to psychological research questions 
and practice but are also easy to extract and interpret 
a broad range of developments without asserting strict 
assumptions.
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It also bears repeating, that while our approach 
allows users to include VAR parameters as one of the 
possible time series features, it is important to recog
nize that many contemporary clustering methods 
focus exclusively on VAR parameters. For instance, 
packages like clusterVAR (Ernst et al., 2021) and 
gimme (Gates et al., 2017) rely on these parameters to 
discern groupings within time series data. Similarly, 
graphicalVAR (Park et al., 2024) applies VAR-based 
techniques for clustering in psychological networks. 
Our feature-based approach subsumes these methods 
by allowing users to integrate VAR parameters along
side other dynamic features, offering a more compre
hensive and flexible framework for clustering.

Feature reduction

Once a meaningful set of time series features has been 
extracted for each variable and participant, the total 
number of data points sometimes remains too large for 
the desired clustering algorithm. As an example, a rela
tively common scenario would include 10 variables of 
interest, where eight time series features are extracted, 
resulting in 80 features per participant (with a common 
sample size of 100 participants, which would result in a 
total of 8,000 data points in this hypothetical example). 
We offer an illustration of the compounding of the 
numbers of data points in Figure 1. The difficulty of 
finding stable clusters for data with a large number of 
dimensions is sometimes termed the ‘dimensionality 
curse’ (e.g., Altman & Krzywinski, 2018).

To deal with this dimensionality issue, two main 
approaches have been proposed—feature selection and 
feature projection (e.g., Erdogmus et al., 2008). While 
feature selection refers to the process of identifying and 
selecting a subset of relevant features from the original 
feature set (Alelyani et al., 2014), feature projection 
refers to the process of transforming the original fea
ture set into a new feature set of lower dimensionality 
(Carreira-Perpi~n�an, 1997). In general, feature selection 
procedures have the benefit that they retain the inter
pretable feature labels directly and immediately indicate 
which features were most informative in the sample. 
Feature projection methods, on the other hand, have 
been popular because they are efficient, widely avail
able, and applicable to a wide range of data types. We 
provide an overview of common approaches, an intui
tive introduction to common methods, and exemplar 
algorithms in Supplemental Material C.

It is important to note that the necessity and utility 
of feature reduction depend heavily on the specific 
clustering algorithm used. Algorithms like k-means, 

which rely on calculating distances between data 
points, often struggle with high-dimensional data due 
to the ”curse of dimensionality.” In high dimensions, 
distance measures become less effective, making it dif
ficult for k-means to identify meaningful clusters 
(Altman & Krzywinski, 2018). Conversely, algorithms 
like Walktrap, which operate on similarity measures 
derived from correlation matrices, can actually benefit 
from higher-dimensional data because more features 
lead to more robust and accurate similarity estimates 
between participants (e.g., Gates et al., 2016; Golino & 
Epskamp, 2017). This abundance of features enhances 
the algorithm’s ability to detect meaningful clusters, 
improving the reliability of the clustering results. 
Thus, the decision to reduce features should align 
with the chosen clustering algorithm and its capacity 
to handle or leverage high-dimensional data.

For our own illustration data, we chose a feature 
projection method to reduce the dimensionality of our 
extracted features. We particularly chose the feature 
projection method for its broad applicability. We, spe
cifically, selected the commonly used principal compo
nent analysis (PCA). Some of the more tailor-made 
feature selection algorithms can be more accurate in 
reducing the feature dimensionality and might retain 
feature importance information more directly, depend
ing on the specific data structure. However, PCAs have 
the distinct benefit that they are well-established within 
the psychometric literature (Jolliffe, 2011) and can be 
broadly applied to a wide variety of studies in an 
automatized manner (Abdi & Williams, 2010). As our 
aim is to present a general illustration that can also be 
adopted across use cases, we present the workflow 
using a PCA here, but we encourage users to consider 
more specialized methods as well (we provide an 
example decision guide in Supplemental Material C).

To use the PCA with our extracted time series fea
tures, we first standardize all features across partici
pants to ensure that all features are weighted equally 
(Horne et al., 2020). We then enter all 72 features 
into the analysis. The PCA uses linear transformations 
in such a way that the first component captures the 
most possible variance of the original data (e.g., by 
finding a vector that maximizes the sum of squared 
distances Abdi & Williams, 2010; Jolliffe, 2002). The 
following components will then use the same method 
to iteratively explain the most of the remaining vari
ance while also ensuring that the components are lin
early uncorrelated (Shlens, 2014). In practice, this 
meant that the PCA decomposed the 72 features into 
72 principal components but now (because of the 
uncorrelated linear transformations) the first few 
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principal components will capture a majority of the 
variance. We can then decide how much information 
(i.e., variance) we are willing to sacrifice for a reduced 
dimensionality. A common rule of thumb is to use 
the principal components that jointly explain 70–90% 
of the original variance (i.e., cumulative percentage 
explained variance; e.g., Jackson, 2003). For our illus
tration, we select the first 27 principal components 
that explain 80% of the variance in the original 72 fea
tures (reducing the dimensionality by 62.50%). For 
the extracted principal components we save the 27 
principal component scores for each participant (i.e., 
the participants’ coordinates in the reduced dimen
sional space; PC-scores).

We would like to comment on two practical mat
ters when using principal components—the amount of 
dimensionality reduction and the interpretation of the 
principal components. Regarding the expected dimen
sionality reduction, given its methodology, PCAs tend 
to ‘work better’ at reducing dimensions with (highly) 
correlated variables (e.g., Jolliffe, 2002). Thus, with a 
set of very homogeneous variables and features, users 
will need fewer principal components to explain a 
large amount of variance, while a more diverse set of 
variables and features will tend to require more prin
cipal components to capture the same amount of vari
ance (e.g., Abdi & Williams, 2010). Our 27 principal 
components are still a relatively high number of varia
bles, but this is not surprising as we chose a diverse 
conceptualization and a diverse set of time series fea
tures. In terms of interpretability, PCA allows users to 
extract information on the meaning of the principal 
components. In particular, because the principal com
ponents are linear combinations of the original fea
tures, users can extract the relative importance of each 
feature for the extracted principal components (i.e., 
the eigenvectors). While this can be useful in under
standing the variance in the original data or help with 
manual feature selection, we use the PCA here purely 
to reduce the dimensionality for the clustering step. 
Instead of relying on the principal components, we 
used the original features of interest to interpret the 
later extracted clusters. We particularly advocate for 
such an approach if all original features are consid
ered meaningful in understanding the time series and 
users would like to retain the features for interpret
ation (irrespective of the features’ importance).

Feature clustering

For the actual clustering of the time-series features, 
the main aim is to organize participants into groups 

so that the features of participants within a group are 
as similar as possible, while the features of people in 
different groups are as different as possible (Liao, 
2005). The crux of clustering is, thus, to have clearly 
defined and effective measurements of (dis)similarity. 
Most of the clustering algorithms used today use 
some form of distance measurement to optimize 
group assignment (or similarity measurement for 
qualitative features; see Aghabozorgi et al., 2015). 
While others have produced excellent overviews of the 
many clustering approaches available (e.g., Xu & Tian, 
2015), the more readily available approaches suitable 
for most time series feature data can, broadly speak
ing, be categorized as based on (1) centroids, (2) dis
tributions, (3) density, (4) hierarchies, or (5) a 
combination thereof (see Supplemental Material C for 
an overview; also see Jain et al., 1999, for a broader 
review).

There is, unfortunately, no one-size-fits-all solution 
to clustering, and users will usually have to make an 
informed decision based on the structure of their data 
as well as an appropriate weighing of accuracy and 
efficiency. We provide a short intuitive explanation 
for common approaches, together with some of 
their characteristics and example algorithms in 
Supplemental Material C. For our own illustration, we 
have chosen centroid-based k-means clustering. 
Although k-means sacrifices some level of accuracy, it 
offers certain advantages. We specifically chose k- 
means because it is an extremely efficient method that 
works well with large participant- and feature num
bers without making too many restrictive assumptions 
about the shape of the clusters (Jain, 2010). K-means 
is also well established within the research community 
and has been readily implemented in many statistical 
software packages (Hand & Krzanowski, 2005). 
Additionally, many of the feature selection methods 
have been specifically designed for the well-established 
k-means algorithm (e.g., Boutsidis et al., 2010). As 
such, the k-means offers a good starting point for 
many psychological researchers, and the method 
should be generalizable across a relatively wide variety 
of projects.

During the k-means clustering itself, the analysis 
seeks to minimize the total within-cluster variation. 
The analysis is designed to optimize the clustering of 
the feature data into k groups, where k is a pre- 
defined number of clusters. We used the Hartigan and 
Wong algorithm, which is a widely used algorithm in 
k-means clustering (Hartigan & Wong, 1979). The 
algorithm starts by randomly separating the data 
points into k clusters and then iteratively updates the 
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assignment of each point to the nearest cluster center 
until convergence. To do so, the Hartigan and Wong 
algorithm specifically calculates the within-cluster 
variation (W) of cluster Ci as the summed squared 
Euclidean distances of the feature x to the nearest 
cluster centroid li :

WðCiÞ ¼
X

x2Ci

ðx2liÞ
2 (8) 

By summing the within-cluster sum of squares 
from all k clusters, we can then derive the total 
within-cluster sum of square WCSS:

WCSS ¼
Xk

i¼1
WðCiÞ ¼

Xk

i¼1

X

x2Ci

ðx2liÞ
2 (9) 

It is this WCSS that becomes the objective function 
to be minimized by iteratively moving features from 
one cluster to another (Hartigan & Wong, 1979). In 
particular, the algorithm (1) calculates the cluster 
centroids of the initial partitioning, (2) checks whether 
any feature has a centroid that is closer than that of 
the currently assigned cluster (3) updates the centroids 
based on any reassigned features, and then iterates 
between steps two and three until WCSS is minimized 
(i.e., locally optimal convergence) or a maximum 
number of iterations is reached (Jain, 2010). Given the 
iterative nature of the algorithm, initial partitioning is 
often important because the algorithm can arrive at a 
suboptimal clustering where the WCSS cannot be fur
ther reduced by moving any feature to another cluster, 
despite a better solution existing (i.e., a local min
imum; Timmerman et al., 2013). It is, therefore, often 
recommended to run the k-means clustering with sev
eral different starting positions.

In our case, we entered the participants’ PC-scores 
from the feature reduction step into the k-means algo
rithm. Because we did not know the underlying num
ber of clusters within our sample, we calculated the 
cluster solutions for k ¼ f2, :::, 10g: To avoid local 
minima, we used 100 random initial centroid posi
tions for each run. Each of the 9 cluster solutions con
verged within the iteration limit. In the next step, we 
will then evaluate which of the extracted cluster solu
tions offers the best fit with the data.

Cluster evaluation

Now that the participants have been assigned to their 
respective clusters based on the similarity of their 
time series features, the final evaluation step includes 
two main elements, (1) evaluating the performance 
of the clustering analyses to choose an optimal 

solution and (2) interpreting the extracted clusters 
conceptually.

Performance
Performance evaluation often means assessing the 
accuracy, stability, and separation or purity of the 
clustering (Keogh & Kasetty, 2003). Importantly, any 
evaluation of the results depends on the research 
questions, the data, and the methods used. However, 
broadly speaking, evaluation methods can be catego
rized based on whether the true cluster labels are 
known or not (Saxena et al., 2017). If true class labels 
are known, cluster assignments can be compared to 
true class labels—using measures such as the F-meas
ure, adjusted Rand index, mutual information and 
normalized mutual information (i.e., external evalu
ation; e.g., Liao, 2005). However, if the true cluster 
assignments are unknown, as with our psychological 
time series, the quality of the clusters is assessed based 
on the characteristics of the data itself, such as separ
ation and homogeneity of the clusters, or goodness of 
fit indices (i.e., internal evaluation; e.g., Aghabozorgi 
et al., 2015).

In our own illustration example, we used the clus
ter.stats() function from the fpc R package, which cal
culates a wide variety of internal cluster validity 
statistics for each of the extracted clustering solutions. 
With real-world data, it is not likely that any one 
evaluation measure will be perfect. Different measures 
can produce varying results depending on the charac
teristics of the data and the research question at hand 
(Kittler et al., 1998). It is, therefore, important to con
sider a variety of evaluation measures and to carefully 
interpret the results in the context of a specific ana
lysis (Vinh et al., 2009). We found that across most 
indices, the analysis with k ¼ 2 clusters performed the 
best. Three commonly reported indices we would like 
to highlight are the comparison of within-clusters sum 
of squares, the average silhouette score, and the 
Calinski-Harabasz index. The first statistic we looked 
at was the total within-cluster sum of square WCSS 
[see also Equation (9)]. While the within-cluster vari
ation will naturally decrease with (more) smaller clus
ters, we observed that the decrease in WCSS was 
highest until k ¼ 2, after which the decrease was 
much smaller. This method is also sometimes referred 
to as the ‘elbow method’ (Syakur et al., 2018). We 
then looked at a second, commonly used measure, the 
average silhouette score. This statistic measures the 
degree to which each time feature data point is similar 
to other points within the same cluster, compared to 
points in other clusters (Rousseeuw, 1987). In our 
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case, the k ¼ 2 solution maximized the silhouette 
coefficient (s2 ¼ 0.09). Finally, the Calinski-Harabasz 
index assesses the compactness and separation of the 
clusters by assessing the ratio of the sum of between- 
cluster dispersion and of intra-cluster dispersion for 
all clusters. Thus, a higher score indicates better per
formance (Calinski & Harabasz, 1974). In our case, 
the k ¼ 2 solution also showed the highest Calinski- 
Harabasz index (CH2 ¼ 16.38; a full table of all 
extracted validity statistics is available in Supplemental 
Material A).5 In the final k ¼ 2 solution the k-means 
analysis also assigned a relatively even number of par
ticipants to cluster 1 (nC1 ¼ 76) and cluster 2 
(nC1 ¼ 80).

To ensure that clustering is necessary in the first 
place, we also compare the performance to a single- 
cluster solution (i.e., a single centroid). The comparison 
with this k ¼ 1 solution is slightly different because 
metrics such as the between-cluster separation are not 
available. Nonetheless, comparing the within-cluster 
sums of squares (SS) and the explained variance, we 
find that two clusters indeed outperform a single clus
ter solution. Specifically, the total within-cluster SS 
decreased from 8940.21 for one cluster to 8080.67 for 
two clusters. Additionally, the variance explained 
increased from < 0.001 to 0.096 when the cluster 
count increased to two (e.g., Beijers et al., 2022, ; also 
see Supplemental Material A for full results).

Interpretation
The interpretation of feature-based time series cluster
ing in psychology involves understanding the meaning 
and implications of the obtained clusters. In order to 
make sense of the clustering results, we here focus on 
three general aspects of the results (Kaufman & 
Rousseeuw, 1990). (1) Assessing differences between 
the clusters in the original time series features, (2) 
comparing the clusters based on prototype develop
ments, (3) comparing the clusters based on between- 
person differences that were not included in the initial 
clustering.

In short, we find that the feature-based clustering 
discerned two meaningfully different groups of partic
ipants. We find an adaptive group (cluster 1) that 
reports higher well-being (median: difference¼−0.52, 

t(153.87) ¼ −3.34, p¼ 0.001, 95%CI [-0.82, −0.21]; 
also see Figure 3A) and more positive outgroup inter
actions (median: difference¼−1.38, t(152.31) ¼
−11.94, p< 0.001, 95%CI [-1.61, −1.15]), which are 
also stable over time (MAC: difference¼ 0.54, 
t(153.98) ¼ 3.49, p< 0.001, 95%CI [0.23, 0.84]) and 
tend to increase more over the 30 day test period (lin
ear trend: difference¼−0.55, t(149.90) ¼ −3.55, 
p< 0.001, 95%CI [-0.85, −0.24]; also see Figure 3C). 
This group also reported consistently more meaning
ful (median: difference¼−1.00, t(136.40) ¼ −7.16, 
p< 0.001, 95%CI [-1.28, −0.73]), need-fulfilling 
(median: difference¼−0.99, t(135.30) ¼ −7.17, 
p< 0.001, 95%CI [-1.26, −0.72]), and cooperative out
group interactions (median: difference¼−1.33, 
t(120.36) ¼ −11.28, p< 0.001, 95%CI [-1.56, −1.10]). 
This group with overwhelmingly positive experiences 
stands in contrast to a more detrimental group (clus
ter 2). On average, this group reported much less 
positive, less meaningful, and less fulfilling interac
tions and interaction patterns (median). This group 
also reported less positive outgroup attitudes, lower 
well-being and more discrimination experiences 
(median). At the same time, for members of this det
rimental cluster (cluster 2) conditions seemed to 
deteriorate over time (linear trend), and there was 
generally less consistency in the experiences they were 
able to have (MAC, MAD, edf; also see Figure 3; for a 
full and interactive comparison of all features see 
Supplemental Material A).

To identify these patterns, we first inspect the clus
ters based on the average values of meaningful fea
tures (see Figure 2A; Kennedy et al., 2021). We see 
that for some variables the features are generally 
stronger in separating the clusters. We, for example, 
see that the item on ‘how cooperative the interaction 
was’ distinguishes the two clusters across almost all 
seven features (except for the auto-correlation, see 
Figure 2A). Compare this to the ‘outgroup attitudes’ 
item where the differences between the clusters are 
much smaller for almost all features. We then inspect 
the clusters with a focus on the features (see Figure 
2B). Although these are the same data as for the vari
able focus, we can see more clearly that some features 
are better at distinguishing the clusters across varia
bles. For example, MAD and median distinguish the 
two clusters on almost all variables (except for the 
item of whether the interaction was representative of 
the outgroup). These two features stand in stark con
trast to other features, such as the lag-1 auto correla
tions or the GAM edf, which showed much smaller 
differences between the two clusters (see Figures 2B

5It is important to note that another commonly assessed aspect of the 
evaluation is determining the stability and robustness of the clusters 
(Berkhin, 2006). This can be assessed by evaluating the sensitivity of the 
clusters to different feature sets or clustering algorithms, or by using 
techniques such as bootstrapping to assess the uncertainty of the clusters 
(Vinh et al., 2009). Especially when comparing different clustering 
algorithms, a common index is the Bayesian information criterion (BIC), 
where a lower BIC indicates that a model is more representative of the 
data (van de Schoot et al., 2017).
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and 3; please note that we offer readers an interactive 
tool to assess the cluster differences for all features in 
Supplemental Material A). This offers some informa
tion on which features were most important in differ
entiating the two extracted groups, but also shows 
that with real-world data, not all features will have 

enough range to distinguish people on all variables 
(e.g., see the nonlinearity patterns in Figure 3; for a 
more direct illustration of GAM edf differences, see 
Bringmann et al., 2017).

Taking these two perspectives together, we can also 
focus on individual features or variables, in particular. 

Figure 2. Cluster group comparisons based on features and variables. 
Note: “Int.” ¼ outgroup interaction, “mad” ¼ median absolute deviation, “mac” ¼ mean absolute change, “lin” ¼ linear slope, 
“edf” ¼ estimated degrees of freedom of an empty GAM spline model, “ar01” ¼ lag-1 autocorrelation, “OCC”/“occ” ¼ out-of-clus
ter comparison 
Within the “(B) Feature Focus” subplot, the ‘n (within ooc)’ is an out-of-cluster comparison of the within-person available measure
ments for each variable; the ‘between ooc (mean)’ are also out-of-cluster comparisons but on a between-person level. 
‘Measurements removed’ is the person-specific count of measurement occasions removed during the missingness handling and 
‘Discrimination’ is the scale mean of daily discimination experiences (measured during the final survey).
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We, for example, see a strong difference in average 
well-being, where participants in cluster 2 showed a 
much lower median well-being over the time series 
(difference¼−0.52, t(153.87) ¼ −3.34, p¼ 0.001, 
95%CI [-0.82, −0.21]). At the same time, in terms of 
well-being stability, both groups have virtually 
identical average MAC statistics for well-being 

(difference¼−0.01, t(153.96) ¼ −0.04, p¼ 0.968, 
95%CI [-0.32, 0.31]; also see Figure 2A). There are, 
thus, variables and features that distinguish the clusters 
better than others, and a combination of variables and 
features lets us explore meaningful group differences in 
more detail. In our case, we see that the central ten
dency, variability, and linear trend are best at 

Figure 3. Comparison cluster differences by features and variables. 
Note: The figure shows the differences between the clusters in the standardized features that were entered into the dimensionality 
reduction (for each input variable). We display the median (panel A), the median absolute deviation (MAD, panel B), the univariate 
linear slope (panel C), as well as the estimated degrees of freedom of the generalized additive model splines (GAM edf, panel D). 
Please also note that as part of Supplemental Material A, we provide readers with an interactive selection tool to compare cluster 
differences on all variables and features.
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distinguishing a group with mainly positive experiences 
(cluster 1) from a group with a more negative experi
ence (cluster 2). We also see that our clusters line up 
with the past literature on the importance of focusing 
on simpler and more meaningful statistics (Bringmann 
& Eronen, 2018; Dejonckheere et al., 2019; Eronen & 
Bringmann, 2021).

In the second step, we look at the prototypical tra
jectories of the clusters. For k-means clustering it is 
often recommended to use the average over time of 

the responses within the cluster (see Figure 4; 
Niennattrakul & Ratanamahatana, 2007).6

Immediately striking are the mean differences, where 
participants in cluster 1 had more meaningful and ful
filling outgroup interactions and also consistently 
reported more voluntary and cooperative interactions, 

Figure 4. Cluster group comparisons over time. 
Note: Subplot (A) displays the variable cluster means at every measurement occasion. The thinner lines represent all individual 
time series. Subplot (B) shows the GAM spline for each cluster across the measurement occasions. The thinner lines present all 
individual GAM Splines.

6It is important to note, however, that direct comparability can be a 
concern, and often times some subset selection or nonlinear alignment is 
necessary (e.g., Gupta et al., 1996).
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but fewer accidental and involuntary interactions. The 
same cluster (cluster 1) also reported an increase in 
need-fulfilling interactions over the 30-day period and 
an increase in interactions that were representative of 
the outgroup. Whereas the other cluster (cluster 2) 
showed a decrease in voluntary, cooperative, and posi
tive interactions over the 30 days. This ‘deterioration’ 
cluster (cluster 2) also saw a decrease in general need 
fulfillment but did not experience well-being over 
30 days (see Figure 3C). We also see that while 
interaction representativeness, outgroup attitudes and 
well-being are relatively stable for both clusters, the 
deteriorating cluster (cluster 2) also showed substan
tially higher variability and instability on most of the 
other variables (although these effects are much 
smaller; see Figure 4A).

Finally, we can also assess the clusters across other 
individual difference variables (e.g., Monden et al., 
2022). This out-of-feature comparison allows us to 
check for data artifacts, as well as to check whether 
the developmental clusters are associated with impor
tant social markers and individual differences. To 
illustrate artifact checks, we added the number of 
ESM measurements into the comparison and find that 
participants in the deterioration cluster (cluster 2) on 
average completed slightly more ESM surveys in gen
eral and reported on more intergroup interactions in 
particular (see n in Figure 2B). In our data exclusion 
procedures, we ensured that the general time frame 
and completion rates are similar for all participants, 
and indeed the numbers in ESM measurements gener
ally are largely similar (e.g., see n for well-being and 
outgroup attitudes). However, the difference in the 
reported number of interactions might indicate either 
a clustering artifact or a meaningful difference. The 
higher average number of interactions in cluster 2 
could, for example, indicate a clustering artifact if the 
variances are substantially larger due to the larger 
samples (e.g., restriction of range in the smaller sam
ple Kogan et al., 2006). In our case, this seems less 
likely because one out of four variables did not differ 
in terms of the MAD (i.e., our selected measurement 
of the time series variance; see Figure 3 for an illustra
tion). At the same time, however, the difference in the 
number of experienced interactions might also indi
cate a meaningful difference, where the deteriorating 
cluster (cluster 2) on average reported more outgroup 
interactions (difference¼ 1.03, t(150.83) ¼ 7.50, 
p< 0.001, 95%CI [0.76, 1.30]), but these interactions 
were less voluntary (difference¼−1.04, t(108.89) ¼
−7.71, p< 0.001, 95%CI [-1.31, −0.77]), less meaning
ful (difference¼−1.00, t(136.40) ¼ −7.16, p< 0.001, 

95%CI [-1.28, −0.73]), and less positive (differ
ence¼−1.38, t(152.31) ¼ −11.94, p< 0.001, 95%CI 
[-1.61, −1.15]). Thus, while more research is needed 
for a conclusive test, our data seem to suggest that the 
differences in reported interactions are a meaningful 
difference between the clusters. Such a finding would 
also be in line with past research highlighting the role 
of negative intergroup interactions in explaining inter
group relations (e.g., Barlow et al., 2012; Graf et al., 
2014; Prati et al., 2021). A related validity check was 
the inclusion of missingness handling, where we com
pared the two clusters on the average number of 
measurements removed as part of the missingness 
handling. We find that the clusters did not differ sig
nificantly in this metric, suggesting that missingness 
handling did not affect the cluster separation (also see 
Appendix B and Supplemental Material A).

To further illustrate the utility of assessing out-of- 
feature individual differences, we also compared the 
two samples in terms of the participants’ self-reported 
discrimination experiences in the Netherlands (meas
ured during the post-measurement). When looking at 
the group comparison, we find that participants in the 
deteriorating cluster (cluster 2) reported substantially 
higher levels of everyday discrimination (differ
ence¼ 0.40, t(151.71) ¼ 2.56, p¼ 0.011, 95%CI [0.09, 
0.71]; Figure 2B). Thus, both intensive longitudinal 
(e.g., the sum of specific ESM measurements) and 
cross-sectional variables (e.g., general discrimination 
differences) that were not included in the original 
clustering step can be used to explore and understand 
the cluster differences in more detail.

The cluster separation then has a number of empir
ical and practical applications. First, the clusters are 
descriptive. With tens of variables, hundreds of partic
ipants and thousands of measurements, singular 
descriptive statistics are often not able to capture the 
complex patterns that describe the data set. The fea
ture-based clustering offers some direct insight into 
the complexity within the data set. In our empirical 
example, we, for example, see that participants are 
meaningfully distinguished by a combination of high 
(vs. low) central tendency, variability, and linear 
trend. Second, the clusters identify important groups. 
The adaptive and deteriorating groups offer starting 
points for empirical exploration as well as practical 
interventions. Researchers can start to explore what 
exactly distinguishes the two groups further and gen
erate new bottom-up hypotheses. Practitioners in the 
field of resettlement can use group separation to iden
tify people in need of assistance and can explore con
textual factors that could contribute to the difficulties 
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that some might face. In our illustration, we, for 
example, found that participants in the deteriorating 
cluster (cluster 2) reported less need fulfilling interac
tions over time. Third, the feature-based approach is 
flexible and meaningful. We were able to use a wide 
range of time series features that have been central in 
the ESM literature and were able to use them directly 
to identify meaningful groups. For our empirical illus
tration, we, among others, for example, chose to focus 
on whether participants differed in their average well- 
being (i.e., median), how much their well-being would 
vary over time (i.e, MAD), and whether their well- 
being would, on average, increase or decrease over 
time (i.e., linear trend). Alternatively, for others cyc
lical patterns might be more important—for example, 
whether well-being was higher on weekends. 
Importantly, in any case, we did not need to translate 
these dynamic features into probabilistic inference 
models (e.g., VAR models) to cluster the participants.

To confirm the reliability and thoroughness of our 
cluster analysis, we undertook several supplementary 
analyses. These include evaluating the effects of how 
we managed missing data, examining a reduced model 
that excludes dynamic characteristics, and providing 
an enhanced user interface for the investigation of dif
ferent algorithms. Comprehensive information on 
these analyses is documented in Appendix B (and full 
results are available as part of Supplemental Material 
A). In short, we find that the methods we used are 
largely robust to different missingness handling deci
sions, share a reasonable similarity to a more simpli
fied model, and perform consistently well with 
different parameter options (see Appendix B).

Discussion

The purpose of this article was to introduce feature- 
based time series clustering as an amenable and trans
parent approach to understanding between-person 
differences in developmental patterns of psychological 
time series data. Rather than relying on person-spe
cific model parameters, which can be restrictive and 
assumption-bound, we argue for the more flexible and 
theoretically grounded approach of directly clustering 
on relevant features of the time-series data. By lever
aging the rich array of dynamic measures, the 
approach offers the advantages of flexibility, few strict 
assumptions, and high interpretability, thus potentially 
enriching our understanding of heterogeneous psycho
logical processes in intensive longitudinal studies.

To illustrate the practical utility of the approach, 
we applied the method to empirical data from the real 

world that highlight common ESM issues of multivari
ate conceptualizations, structural missingness, and 
nonlinear trends (e.g., Ariens et al., 2020). With the 
real-world data, we followed a stepwise approach to 
discuss key issues during input selection, feature 
extraction, feature reduction, feature clustering, and 
cluster evaluation. Within this stepwise approach, our 
article shows that feature-based clustering offers a 
meaningful fit for psychological research, as both the 
time-series features and the analysis steps are well 
established within the field, and statistical packages 
are readily available. Time series features (such as 
means or linear trends) are not only easy to extract, 
but also hold conceptual meaning for psychological 
data and can be chosen to address specific research 
questions (also see Table 3).

Importantly, we show that feature-based clustering 
is not only approachable but provides interpretable and 
transparent insights about the grouped patterns. For 
our example of migration experiences, the method was 
useful to discern adaptive from more stressful experien
ces and helped to contextualize divergent experiences. 
We found that some variables, such as perceptions of 
the quality of the interaction or the fulfillment of the 
needs, were particularly important in distinguishing 
the groups (see Figure 2A). Similarly, we found that 
the central tendency (median), variability (MAD), and 
linear trend (slope) were the most impactful dynamic 
features in discerning the trajectory clusters (this is fur
ther emphasized by a simpler model using only median 
and MAD performing similarly well, see Appendix B. 
Also see Figure 2B). Jointly, these two approaches 
allowed us to identify a cluster that had generally posi
tive and improving experiences, while the other cluster 
had more negative and deteriorating experiences. We 
were even able to further contextualize the results with 
out-of-feature comparisons, where we found that the 
group with the more difficult experiences also reported 
substantially more discrimination experiences during 
the post-test (see, e.g., Figure 2B). In summary, the fea
ture-based approach enables us to identify directly 
interpretable and meaningful groups, providing trans
parency regarding the data input on which the clusters 
are based.

Before we turn to the formal limitations of the fea
ture-based clustering approach, we would like to 
briefly address the role of multivariate time series fea
tures. Multivariate features are those that capture con
temporaneous or dynamic relationships between the 
different time series within a person Kuppens and 
Verduyn (2017). These features can include average 
correlations and co-variances or the cross-lagged 
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correlation equivalents, as well as parameters that are 
based on these (lagged) multivariate relationships 
(e.g., VAR parameters). Recently, cross-lagged effects 
have also been extracted from dynamic network mod
els (e.g., see Wendt et al., 2020). We have chosen not 
to include multivariate features within this illustration. 
We have done so mainly because these features often 
add a much larger computational load to the model. 
As an example, for our example set of 12 variables, 
even a simple lag-1 VAR model would add 156 add
itional features (12 variables � (12 lagged parameters 
þ 1 intercept)). That are more than twice as many 
features per person than the six univariate features we 
selected combined (6� 12 ¼ 72). While the feature- 
based approach can technically handle the parameters 
and the dimensionality reduction can deal with the 
added number of dimensions, we seek to introduce 
the method with approachable dimensionality reduc
tion and clustering models, which are not ideal for 
such a large number of input features (e.g., assessing 
over 150 additional parameter differences during the 
cluster interpretation). Alternative dimensionality 
reduction approaches would make the interpretation 
more straightforward, but their use is often much 
more specialized and bound to specific cluster models 
(e.g., methods that select the most influential features 
instead of projecting to a lower-dimensional space, see 
Supplemental Material C).7

It is important to note here though that the method 
can directly accommodate multivariate features and 
that such features are commonly of interest within the 
literature. Particularly when theory testing models are 
developed as part of the research process, already add
ing the parameters as time series features often fits nat
urally within the research cycle. However, given the 
cautionary remarks here, we recommend a careful use 
of model parameters in combination with other time 
series features (i.e., either a more selective model-build
ing process where not all variables are included or a 
filter process). It should also be noted that the feature- 
based clustering approach is inherently a multivariate 
process in that the model takes into account the fea
tures of variables and considers them jointly.

Limitations

While feature-based time-series clustering offers a 
promising approach to understanding psychological 

time-series data, it is not without limitations. In par
ticular, feature-based clustering has both usability- 
and robustness limitations across its multiple steps.

In terms of convenience, each of the steps requires 
users to make an informed decision about the choice 
of method and algorithm. These additional steps of 
decision-making and transparency increase the initial 
barrier to entry. We hope that our empirical illustra
tion, the sample code, and the custom functions, offer 
a relatively generalizable procedure that showcases the 
ease of use, but clustering, unfortunately, does not 
offer a universal one-size-fits-all solution.

In terms of methodological robustness, the variety 
of methods in each of the steps also brings with it the 
potential inconsistent results between methods (e.g., 
Bastiaansen et al., 2019). A different set of variables, 
time series features, or a different clustering algorithm 
might have resulted in substantially different cluster 
assignments. While the variety and diversity of meth
ods are helpful in finding options even for more com
plex types of data, different algorithms often offer 
different results (e.g., Keogh & Lin, 2005). And even 
when patterns produce robust clustering solutions 
across algorithms, individual methods might still have 
their idiosyncratic shortcomings (Xu & Tian, 2015).

As an illustration, the choice of time-series features 
to extract from the time-series data is a critical step 
that can significantly influence the results of the clus
tering process. In the current example, we chose to 
extract time series features such as medians, autocor
relations, and linear trends, which are psychologically 
and conceptually meaningful in interpreting our time 
series clusters. However, this selection is not exhaust
ive and may not capture all relevant aspects of the 
time series data. For example, we did not consider 
attributes like periodicity or spectral density, which 
could shed light on the cyclical patterns of the data. 
The choice of time-series features largely hinges on 
the researcher’s specific research question and 
assumptions about the data, thereby injecting a level 
of subjectivity into the process. Similar challenges 
arise with the choice of the clustering algorithm or 
the cluster illustration. These challenges are not 
unique to feature-based clustering, rather they are 
common to all clustering approaches (Horne et al., 
2020; Liao, 2005). However, it is important to remem
ber that multi-step data-driven approaches are par
ticularly vulnerable to the impact of the researchers’ 
degrees of freedom (Beijers et al., 2022). Additionally, 
during our additional analyses (see Appendix B), 
when we evaluated the simplified model (only includ
ing central tendency and variability), the cluster 

7Please note that this issue would be less prevalent with more global 
measurements such as interdependence measures (e.g., network density) 
or diversity measurements (e.g., Gini coefficient). Thesemeasures are 
however also not without criticism (Bringmann et al., 2019).
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results were very similar to those of the main analysis. 
While there were some nuances to this finding, the 
results highlight that the use of complex dynamic 
parameters should be directly linked to the research 
question and should only be added if the dynamic 
patterns are to be expected within a given data set.

One potential remedy to many of the limitations of 
feature-based clustering lies in transparent and repro
ducible reporting of the user’s decisions for each of 
the analysis steps. In our own description of the 
method, we have provided a range of options and 
have motivated our own choices to facilitate the trans
parency of the individual steps and decision moments. 
We have additionally created Supplemental Material C 
to illustrate the decision process of different methods 
and offer Supplemental Material B to explore different 
options. Beyond the structures and resources provided 
here, van de Schoot et al. (2017) have proposed an 
extensive checklist for latent trajectory studies. Most 
of their recommendations and reporting guidelines 
also apply to feature-based clustering and might even 
offer a template for researchers who want to pre-regis
ter their analysis procedures (also see Kirtley et al., 
2021).

Adding to the discussion on methodological limita
tions, it is also crucial to consider the impact of data 
granularity on the classification accuracy of feature- 
based time series clustering. The effectiveness of clus
tering algorithms is not only contingent on the choice 
of variables and algorithms, but also significantly 
influenced by the number and quality of data points 
per individual. Research indicates that longer time ser
ies can enhance the clustering outcome by providing a 
more detailed view of the underlying patterns (Liao, 
2005; Montero & Vilar, 2014). However, the min
imum number of data points required for accurate 
classification remains a subject of ongoing investiga
tion, and existing studies suggest that this threshold 
may vary depending on the complexity of the data 
and the features used in the analysis (Aghabozorgi 
et al., 2015). This aspect underscores the necessity for 
a careful and nuanced approach to feature selection 
and algorithm application and the continued need for 
research to optimize the balance between data com
plexity and clustering accuracy.

Implications

Notwithstanding the limitations, we believe that fea
ture-based clustering offers new potential for research
ers and practitioners to assess psychological time 
series.

For researchers, the feature-based time series clus
tering approach offers a number of compelling impli
cations. The flexibility and interpretability mean that 
feature-based time series clustering can be applied to 
a wide range of data types and research questions. 
The method can be used to contextualize preexisting 
groups by extracting their time series features and 
comparing a data-driven approach with existing group 
labels. Furthermore, the feature-based approach can 
also be used as an exploratory, descriptive, or predict
ive approach to intensive longitudinal data. By reduc
ing the complexities of ESM data to important and 
meaningful patterns, a bottom-up approach can aid in 
the creation of more embedded theories and interven
tions, or simply in describing the often complex and 
heterogeneous data researchers collect during ESM 
studies.

Beyond the direct academic use, the feature-based 
time series clustering approach also addresses practical 
and applied uses. For practitioners with appropriate 
training, the approach offers a practical and grounded 
method for dealing with the challenges of complex 
and messy data from multiple patients, customers, or 
users. The approach not only directly deals with 
dimensionality, missingness, and time scales in the 
time series, but the interpretability and transparency 
aspects offer particular utility in applied settings. 
Additionally, the approach is also more readily access
ible to practitioners who may not have extensive 
training in complex data analysis techniques. We pro
vide practical algorithm overviews and readily avail
able code for data preparation, analysis, and 
interpretation. The ability to identify and interpret 
meaningful patterns in time series data can have sig
nificant implications for practice, particularly in fields 
such as clinical, organizational, or social psychology, 
where understanding individual differences and devel
opmental patterns can inform interventions and deci
sion processes.

In conclusion, we show that feature-based time ser
ies clustering can effectively reduce the complexities 
of psychological time series data to important and 
meaningful patterns. It does so with more flexibility, 
versatility, and less strict assumptions than many of 
the commonly used approaches to date. As such, the 
feature-based time series clustering approach 
addresses key challenges in the field and aids research
ers and practitioners in describing and exploring pat
terns across participants. We hope that the method 
adds to the methodological toolkit of ESM researchers 
and promotes the creation of more embedded meth
ods, theories, and interventions.
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Appendix A. ESM data challenges and 
promises

A1. Promises

Time series clustering has a number of conceptual use 
cases with psychological data. Prime among them is the 
ability to reduce the time, variable, and person complexity 
by extracting and organizing participant-level structures. 
These reduction and structuring qualities can be essential 
in detecting phenomena and extracting more abstract func
tional principles (Eronen & Bringmann, 2021). These phe
nomena and principles can be meaningful differences that 
distinguish participants in different clusters, as well as 
important patterns, trends, and relationships that partici
pants share within a cluster (e.g., Schrodt & Gerner, 2000). 
Once distinct groups and patterns have been identified, 
researchers can examine the extent to which these within- 
group and between-group structures are associated with 
other variables of interest, such as personality traits, demo
graphic characteristics, or other psychological constructs 

(e.g., Monden et al., 2022). By detecting meaningful and 
robust structures and patterns, time series clustering can, 
thus, be used to inform the development of robust theories 
as well as targeted interventions and therapies for 
individuals, for example, with mood disorders and other 
psychological conditions (e.g., Borsboom et al., 2021; 
Eronen, 2020).

However, while clustering can be incredibly useful, arriv
ing at these clusters critically depends on two core chal
lenges. First, time series need to be made comparable in 
order to identify key (dis)similarities and second, compar
able (dis)similarities need to be accurately distinguishing 
into different groups (e.g., Aghabozorgi et al., 2015). In 
practice, most psychological time series cannot be compared 
based on the raw data itself. This is the case because in 
most cases the raw time series include too many data 
points—sometimes referred to as the dimensionality curse 
(e.g., Altman & Krzywinski, 2018)—and, more importantly, 
individual time points are oftentimes not directly compar
able between participants in psychological data and would 
lead to misspecifications (e.g., Faloutsos et al., 1994). While 
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such issues can be avoided with transformations for highly 
regular, controlled, and comparable time series such as EEG 
data (e.g., Huang & Jansen, 1985), most ESM researchers 
are usually not interested in directly comparing individual 
timepoints between participants but are interested in devel
opmental patterns and relationships.

As a result, most psychological time series are summar
ized via a numerical representation and these numerical 
summaries are then comparable and used to cluster partici
pants (e.g., Timmerman et al., 2013; see Supplemental 
Material C). Ideally, the representations that summarize the 
original time series data should (1) capture the original data 
accurately without loosing too much information, and (2) 
should be conceptually meaningful (van der Maaten et al., 
2009). Extracting accurate and meaningful representations 
of the time series can be essential for understanding what 
goes into the clustering algorithm (i.e., assists with explain
ability) and can be crucial in making sense of the final clus
ter output (i.e., assists with interpretability; e.g., Kennedy 
et al., 2021).

A2. Challenges

We will briefly consider which challenges modern ESM data 
introduce and what qualities are called for in an extension 
of the clustering repertoire. We particularly highlight issues 
of dimensionality, non-equidistant or missing measure
ments, an interest in non-stationary trends, as well as 
inconsistent/diverse time scales.

Concerning dimensionality issues, especially more 
abstract psychological experiences often need a wider var
iety of measurements to be captured adequately. Today, few 
clinical conditions are captured with a single symptom 
measure (e.g., Cramer et al., 2016), emotions are rarely 
assessed in isolation (e.g., Reitsema et al., 2023), and socio- 
cultural experiences are now widely considered to be multi
modal (e.g., Kreienkamp et al., 2024). This also means that 
modern analysis techniques increasingly need be able to 
accommodate an increased focus on multivariate develop
ments. At the same time, however, an increase in the num
ber of considered variables tends to come at the expense of 
computational load for model estimations, and clustering 
models may not converge (the aforementioned dimensional
ity curse; Altman & Krzywinski, 2018). A modern time ser
ies clustering technique should consequently be able to 
summarize and structure multivariate phenomena without 
running into computational load issues.

Another common type of data are measurement 
regiments that collect data in irregular time intervals (i.e., 
non-equidistant measurements). Common are, for example, 
procedures where participants are asked to respond at ran
dom times throughout the day (i.e., signal-contingent) or 
following specific natural events of interest (i.e., event-con
tingent; see Myin-Germeys et al., 2018; Shiffman et al., 
2008). Under such conditions data tends to violate the equi
distance assumption that is expected by many time series 
models (Hamaker & Wichers, 2017). Smaller issues of non- 
equidistant data can be avoided with transformations (e.g., 
dynamic time warping, Berndt & Clifford, 1994) or newer 
modeling procedures (e.g., continuous-time models; de 
Haan-Rietdijk et al., 2017) but for many analyses, including 

some cluster approaches, non-equidistant measurements 
remain a prevalent issue.

Structural missingness remains an even more strenuous 
challenge. Structural missingness occurs when data is miss
ing because it logically cannot be collected (as opposed to 
probabilistically missing data; Little & Rubin, 2020; McLean 
et al., 2017). Often, however, researchers might want to 
include variables in their models that are not available 
under all conditions. Follow-up and event-contingent ques
tions are a common example in ESM studies. Researchers, 
for example, ask about the frequency, intensity, or duration 
of symptoms—but only if a symptom was present (Kivel€a 
et al., 2022). Such approaches become specifically critical in 
cases of sensitive questions such as questions about suicidal 
ideation or other potentially trauma-inducing questions 
(e.g., Glenn et al., 2022). The most common practice for 
structurally missing data is to either exclude the variable or 
any measurement that has no structurally missing data (e.g., 
Lavori et al., 2008)8—neither option suits a research ques
tion that wishes to include variables with common struc
tural missingness, such as event-specific or follow-up 
questions. In short, new clustering approaches should be 
able to deal with structurally missing data in order to 
address modern ESM data.

When it comes to studying developmental trajectories, 
psychological researchers are often also interested in nonsta
tionary processes because they are more representative of 
the complex, dynamic patterns of the human mind. In 
psychology, nonstationary processes are typically used to 
study phenomena such as cognitive development (Quartz & 
Sejnowski, 1997), decision-making (Ratcliff et al., 2016), and 
emotion dynamics (Bringmann et al., 2018). These processes 
are often characterized by changes in the underlying statis
tical properties of the data over time, such as changes in 
the mean or variance (Molenaar et al., 2009). Especially 
when considering changes in mean levels, researchers are 
often interested in nonlinear changes because they describe 
human functioning better. For example, in decision making 
people might switch between choices (Ratcliff et al., 2016), 
or patients reducing medication might experience mood 
swings (Helmich et al., 2020). Similarly, psychologists are 
often also interested in how variances change over time. 
This is especially the case because several changes in an 
individual’s variance have been found to be indicative of 
critical changes, including depression relapses and symptom 
shifts more generally (e.g., Schreuder et al., 2020; Wichers 
et al., 2020). There is, thus, also a need for time series clus
tering algorithms that capture nonstationary processes, 
including nonlinear trends.

Psychological time series often exhibit complex patterns 
and relationships that can change over different time scales. 
For example, a time series of daily mood ratings may show a 
weekly pattern, with higher ratings on the weekends and 
lower ratings during the week. At the same time, the series 
may also exhibit a longer-term trend, with overall mood lev
els increasing or decreasing over the course of several months 
or years (e.g., Ram et al., 2014). These different time scales 
can be studied separately or in combination, using different 

8This is the case because the most commonly used models require 
complete data (Schafer & Graham, 2002) and structurally missing data 
cannot be imputed as it logically does not exist (e.g., Lavori et al., 2008).

390 J. KREIENKAMP ET AL.



statistical techniques and modeling approaches (Bertenthal, 
2007; Jeronimus, 2019). Different time scales can become an 
even more difficult issue when different variables in a model 
develop on different time scales (Bringmann et al., 2022). 
Different time scales are thus also a concern clustering 
approaches should be able to address.

It is this background of the common challenges of cur
rent ESM data, upon which we propose to consider feature- 
based clustering. The flexibility of using a wide variety of 
time series features that represent the important develop
mental patterns allows users to circumvent many of the 
issues with multi-dimensionality, non-equidistant or missing 
measurements, non-stationary trends, as well as diverse 
time scales.

Appendix B. Validation analyses

To ensure the validity and robustness of our cluster ana
lysis, we conducted a number of additional analyses. In par
ticular, (1) we assessed the impact of our missingness 
handling, (2) we test a simplified model without dynamic 
features, and (3) we offer an extended user interface to 
explore alternative algorithms. The details of these analyses 
are reported in full detail as part of Supplemental 
Material A.

B1. Missingness handling

During the variable preparation step, we sought to make 
the time series comparable and iteratively removed all 
measurement occasions and participants that had more 
than 45% missingness. Although this procedure works well 
for users who wish to use clustering in combination with 
other parametric models, the 45% threshold might be too 
conservative if the analysis stands on its own. To test 
whether this is indeed the case and whether our analysis 
approach is robust to variations in the missingness hand
ling, we re-ran the main analyses with several more liberal 
completeness thresholds. We particularly used 0%, 5%, 10%, 
15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, as well as the 
original 55%; i.e., allowing up to 100% missingness). To 
compare the results from the different missingness thresh
olds, we look at the optimal number of clusters k as well as 
the similarity of the extracted cluster solutions. We find 
that with almost all missingness thresholds, the optimal 
number of clusters is 2. The only exceptions are at the 
thresholds of 0% ¼ 3, 10% ¼ 5, and 25% ¼ 3.

We then compare the clustering results obtained at dif
ferent thresholds using the Adjusted Rand Index (ARI), 
which quantifies the similarity between two data clustering 
assignments. By calculating the ARI for every pair of 
threshold-based clusterings, we can assess how consistent 
the cluster assignments are across varying thresholds, even 
when the number of clusters or their composition changes. 
This comparison helps us understand the stability of our 
clustering solution and identify which thresholds yield simi
lar or distinct grouping patterns, providing valuable insight 
into the robustness of our clustering approach against par
ameter variations. The ARI is normalized so that −1 indi
cates perfect disagreement, 0 indicates random (or chance) 
clustering, and 1 indicates perfect agreement. We find that, 

except when the optimal solution is larger than two, the 
cluster similarity is very high (the mean ARI is 0.743 and 
the mean ARI for all k ¼ 2 is 0.892). In short, the number 
of clusters seems to be a much bigger decision than the 
cluster assignment itself. Additionally, the high ARI seems 
to suggest that the PCA and k-means approach for our data 
is extremely robust to changes in the missingness handling 
of the raw time series (as long as the number of clusters is 
the same).

B2. Simplified model

To ensure that the more complex and potentially unreliable 
dynamic features (e.g., Dejonckheere et al., 2019; Neubauer 
& Schmiedek, 2020; Wang & Grimm, 2012; Wenzel & 
Brose, 2023) are necessary to begin with, we additionally 
check whether a much simpler model with only the central 
tendency (median) and variance (MAD) would perform 
similarly well and would result in a similar separation of 
the clusters. To compare the model with the main illustra
tion, we assess the performance and similarity of the mod
els. In general, we find that both models perform well 
across several performance metrics. Additionally, we find a 
relatively high adjusted Rand index (ARI ¼ 0.758)—indicat
ing that the simplified model separates the two clusters in a 
similar manner. This similarity is not necessarily surprising 
given the strong weight of median and MAD in distinguish
ing the original clusters. Thus, indeed, it is in line with the 
literature that more complexity is not always necessary (also 
see Bos et al., 2019).

However, there are two caveats to this preliminary ana
lysis. First, for clinical datasets that look at symptom 
improvements, a non-stationary trend might be crucial to 
consider as part of the research question and would prob
ably be present in the data (the same would be true for sud
den break-points for episodic conditions). Including more 
complex dynamic features might thus be crucial for some 
research questions and will likely depend on the type of 
ESM data. Second, when we look at the differences in more 
detail, we see that the original cluster did take the add
itional features into account in discerning the groups. As an 
example, the main analysis additionally separates the groups 
by the linear trend (contrasting an improvement to a deteri
oration group)—this is less the case for the simpler cluster 
approach. Arguably, the impact is not as strong for all fea
tures and for all variables, but the inclusion of dynamic 
parameters offers nuanced insights into the temporal pat
terns and variability not captured by mean levels alone.

B3. Alternative models

Two key decisions during the feature-based clustering 
approach involve choosing a dimensionality reduction and 
clustering approach for a given set of data. While a full intro
duction and evaluation of the many available algorithms is 
beyond the scope of this paper, we would like to provide 
some additional insight into the variety of different 
approaches. To this end, we created an additional resource 
for readers to interact with the illustration data. As part of 
this interactive web application, we offer users the option to 
explore several of the most commonly used dimensionality 
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and clustering approaches. We have selected four dimension
ality reduction algorithms (i.e., PCA, t-SNE, Autoencoders, 
and UMAP) and three clustering algorithms (i.e., k-means, 
DBSCAN, and Hierarchical agglomerative clustering). For 
each of the methods, we have developed an interface that lets 
users explore the key parameter settings of the algorithms. 
To provide an introduction to the diversity of possible com
binations, we have pre-calculated the performance of the 
algorithm combinations for common parameter values 
(showing users a comparison of up to 18,557 model combi
nations). In the second panel, readers then have the oppor
tunity to explore the cluster results based on their own 
interaction with the different parameters.

Additionally, we offer users the option to use an unstan
dardized feature set or the full feature set in cluster analy
ses. Both of these options are generally not recommended, 
and the web application aims to give users a more direct 
understanding of the impact of these decisions. As part of 

the performance comparison, the application also showcases 
the sensitivity of different algorithms to highly dimensional 
data. The DBSCAN algorithm, for example, fails to con
verge for highly dimensional data (or assigns all points as 
noise; i.e., the dimensionality curse) and overfits in some 
parameter ranges. Similarly, hierarchical clustering under
performs with the single linkage method, but only for 
t-SNE and UMAP dimensionality reduction. The web appli
cation thus offers a supplementary resource for readers who 
wish to explore different analysis approaches within a 
guided and curated environment. The web application is 
available as part of our Supplemental Material B or directly 
at www.tsFeatureClustR.shinyapps.io/webapp/. The full code 
of the web application is openly available through our 
GitHub repository (Kreienkamp et al., 2024). Additionally, 
we offer a further contextualization of the methods and 
some example guidance on deciding between them in 
Supplemental Material C.

392 J. KREIENKAMP ET AL.


	A Gentle Introduction and Application of Feature-Based Clustering with Psychological Time Series
	Abstract
	Why feature-based clustering for ESM
	Data used for illustration
	Analysis steps and application
	Input variables
	Feature extraction
	mkchaps3HMBR_S0004-S2002-S3001_sec
	Central tendency
	Variability
	Instability
	Temporal dependence
	Linear trend
	Nonlinearity
	Additional considerations


	Feature reduction
	Feature clustering
	Cluster evaluation
	Performance
	Interpretation


	Discussion
	Limitations
	Implications

	Article information
	Orcid
	Data availability statement
	References
	A1. Promises
	A2. Challenges
	mkchaps1HMBR_S0011_sec
	B1. Missingness handling
	B2. Simplified model
	B3. Alternative models


