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ABSTRACT

Psychological researchers and practitioners collect increasingly complex time series data
aimed at identifying differences between the developments of participants or patients. Past
research has proposed a number of dynamic measures that describe meaningful develop-
mental patterns for psychological data (e.g., instability, inertia, linear trend). Yet, commonly
used clustering approaches are often not able to include these meaningful measures (e.g.,
due to model assumptions). We propose feature-based time series clustering as a flexible,
transparent, and well-grounded approach that clusters participants based on the dynamic
measures directly using common clustering algorithms. We introduce the approach and
illustrate the utility of the method with real-world empirical data that highlight common
ESM challenges of multivariate conceptualizations, structural missingness, and non-stationary
trends. We use the data to showcase the main steps of input selection, feature extraction,
feature reduction, feature clustering, and cluster evaluation. We also provide practical algo-
rithm overviews and readily available code for data preparation, analysis, and interpretation.

Recent years have seen a striking increase in the num-
ber and variety of research studies that follow partici-
pants’ everyday experiences and collect real-world
psychological time series (e.g., Hamaker & Wichers,
2017). These intensive longitudinal datasets come with
different sources of heterogeneity, where researchers
have to consider differences across large numbers of
participants, time points, and variables (e.g., Cattell,
1966; Wardenaar & de Jonge, 2013). However, despite
its complexity, researchers are often interested in pre-
cisely this complexity and wish to understand how peo-
ple differ in their developments across several variables
(e.g., Ernst et al., 2021). Researchers and practitioners
are, for example, asking: “Do the symptoms of different
patients develop in contrasting ways?” (Monden et al.,
2015) or “How do migrants differ in the development
of their self-reported needs as they arrive in a new
country?” (Kreienkamp et al., 2024). There is, thus, a
clear need for analysis techniques that identify

between-subject differences in developmental patterns
for psychological data.

Recently, one promising way of identifying
between-subject developmental patterns has been time
series clustering—the idea of inductively grouping par-
ticipants based on similarities of their time series (e.g.,
Ariens et al., 2020; also see den Teuling et al., 2021
for a review). This type of analysis essentially seeks to
capture comparable within-person developments—
such as whether a variable remains stable over time,
consistently increases, or exhibits cyclical patterns—
and then groups the persons based on these patterns
(Liao, 2005). Time series clustering, thus, crucially
depends on identifying meaningful summaries of the
time series developments, which can be used to com-
pare participants (Aghabozorgi et al., 2015).

Fortunately, past conceptual and empirical works
in the experience sampling (ESM) literature have
collected a number of meaningful aspects of
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psychological time series." Such aspects can be indica-
tive of adaptive and maladaptive developments within
the individual, can identify crucial transitions, or
more generally are helpful in understanding a psycho-
logical time series. Important aspects might include
concerns about whether a symptom consistently stays
at a certain level without much variability or whether
some emotions develop together. For the most impor-
tant  developmental aspects, researchers have
assembled measures that capture these patterns. These
summary statistics are often called “dynamic meas-
ures,” “principles of change,” or “dynamic features” of
the psychological time series (Dejonckheere et al.,
2019; Krone et al., 2018; Kuppens & Verduyn, 2017).
Most research groups working on these time series
features have proposed an overlapping number any-
where between four and twelve key features relevant
to psychologists (Dejonckheere et al., 2019; Wang
et al., 2006). Each of these time series features not
only captures a distinct aspect of psychological time
series but also holds conceptual value—inertia, for
example, describes a resistance to change that can be
indicative of psychological maladjustment (Kuppens
et al., 2010) or a higher within-person variability can
signal an erratic state (Myin-Germeys et al., 2018).

In this manuscript, we introduce feature-based time
series clustering—a general clustering approach and
framework where users utilize the dynamic features
directly and can build upon readily accessible algo-
rithms. The approach has been a common procedure
in digital phenotyping (Loftus et al., 2022) and the
broader machine learning literature (Maharaj et al.,
2019). As such, the analysis has been applied to a var-
iety of data, including analyses of astronomical,
meteorological, and aviation pathways, biological and
medical developments, as well as energy and finance
patterns (Aghabozorgi et al., 2015). We argue that for
psychological time series data, feature-based clustering
offers a direct and flexible approach to use dynamic
features, fewer strict assumptions than commonly
used clustering approaches, beginner-friendly analysis
methods, as well as a focus on meaningful psycho-
logical interpretability.

In the sections below, we aim to provide a practical
introduction to the method. To do so, we illustrate

'In psychology, intensive longitudinal data collection methods are often
referred to as experience sampling method (ESM), ecological momentary
assessment (EMA), or ambulatory assessment (AA) studies. Although the
terms come from different conceptual backgrounds, they share a focus on
collecting data over an extended period of time to capture people’s
behaviors and experiences as they vary over time and in response to
different situations and events. In this article, we will use the experience
sampling (ESM) term as it has the strongest footing within the clustering
literature.
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the utility of the method with real-world ESM data.
We use this data to discuss which psychological time
features are well-suited for a clustering
approach, introduce the individual analysis steps, and
provide practical guidance on common algorithms
and analysis code. As such, we seek to reach readers
who are familiar with ESM data but are relatively new

series

to the realm of time series clustering. This article aims
to introduce the important research decisions and
focuses on approachable and accessible methods. As a
result, the features and methods we choose to high-
light might deviate from the state-of-the-art most
advanced methods. For readers who would like to
explore more specialized algorithms, we have prepared
Supplemental Material C to embed the approach in
the broader time series clustering literature and dis-
cuss alternative algorithms.

Why feature-based clustering for ESM

Let us briefly consider why you might consider fea-
ture-based time series clustering for your ESM data.
We want to mention three key contributions that this
introduction to the method seeks to highlight. The
first contribution is that the feature-based approach
aligns well with the growing literature on “dynamic
features” of psychological ESM data (Dejonckheere
et al,, 2019; Krone et al.,, 2018; Kuppens & Verduyn,
2017). This match offers two main benefits, flexibility
and interpretability. By relying directly on the time
series features that are already well established for dif-
ferent psychological processes, users can mix and
match the features that match their empirical assump-
tions and research questions. At the same time, the
flexibility does not reduce the interpretability of the
results because everything that goes into the clustering
process has a clear conceptual meaning (for more
details on this see the ‘Feature Extraction’ step below).

The second contribution is that the direct use of
time series features avoids many of the challenges that
psychological time series data face today. Researchers
frequently seek to address important questions about
multidimensional, erratic, and context-specific phe-
nomena (Hamaker & Wichers, 2017; Helmich et al.,
2020; Kiveld et al., 2022). These types of data often
include issues of non-equidistant, structurally missing,
or non-stationary data (also see Appendix A for an
expanded discussion of the current challenges within
ESM data). Time series features, however, commonly
do not require complete and equidistant time series,
and the approach actively encourages the inclusion of
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non-stationary and  non-linear  trends
Aghabozorgi et al., 2015).

As such, the feature-based approach extends the
ESM clustering approach most commonly used today.
Most ESM research today clusters participants based
on person-specific model parameters—notably inter-
cepts and slopes from vector autoregression models
(VAR; e.g., Ariens et al, 2020; Bulteel et al., 2016;
Stefanovic et al., 2022). The utility of these model
parameters is notably high because they often fit well
within a research process where model parameters are
already estimated for theory testing. However, the
model parameters crucially depend on the features
included in the model and the assumptions of the
model.> Feature-based time series clustering considers
model parameters to be one type of time series feature
but also allows users to include other time series
features without needing to develop or fit another
(non)parametric model. Users might thus use VAR
parameters alongside piecewise polynomials, the Mean
of the Squared Successive Differences (MSSD), or
simply the participants’ variance estimates (see the
Feature Reduction section below).

The third major contribution is that the feature-
based time series approach offers a generalized struc-
ture for clustering ESM data. The generalized decision
structure of feature-based clustering provides a meth-
odological framework that also applies to most cluster-
ing approaches already used within the ESM literature,
with the added benefit of having practical embedded-
ness from other disciplines (Liao, 2005). As part of the
illustration, we separate the analysis process into fea-
ture extraction, feature reduction, feature clustering,
and cluster evaluation (Rasanen & Kolehmainen, 2009;
Wang et al., 2006). This approach crucially gives (nov-
ice) users guidance on where researcher decisions need
to be made, and we aim to provide information on
how to approach these decisions. Importantly, the gen-
eralized structure can also capture the existing model
parameter-based analyses (e.g., Ernst et al, 2021) as
well as other approaches that rely on features more dir-
ectly (e.g., van Genugten et al., 2022).

(e.g.

Data used for illustration

To illustrate the functioning and utility of feature-
based time series clustering with psychological ESM

YImportantly, recent efforts to address the shortcomings of model
parameters for time series clustering have made notable progress by
either relaxing specific assumptions (e.g., Chow et al., 2011; den Teuling
et al., 2021; Molenaar et al., 2009; Ou et al., 2023; Voelkle & Oud, 2013)
or include additional time series features (e.g., see Gates et al., 2017;
Krone et al,, 2018).

data, we introduce the clustering process using a
recent set of studies that collected data on migration
experiences. We chose this particular set of data
because they exemplify the key contributions and
challenges that we seek to address with the feature-
based approach. In particular, the use of ESM for
migrants in interactions with the majority society has
a long-standing tradition of dynamic theorizing (e.g.,
Berry, 1986) with multivariate conceptualizations (e.g.,
Kreienkamp et al,, 2024), a focus on non-stationary
trajectories (Kim, 2017), distinguishing adaptive from
maladaptive clusters (Choi et al, 2009), and event-
based missingness (e.g., Keil et al., 2020; Wardenaar &
de Jonge, 2013).

Matching these requirements, the data set we use
consists of three studies that followed migrants who
had recently arrived in the Netherlands in their daily
interactions with members of the Dutch majority
group (for the data set see Kreienkamp et al., 2022).
After a general migration-focused pre-questionnaire,
participants were invited twice per day to report on
their (potential) interactions with majority group
members for at least 30 days. The short ESM surveys
were sent out at around lunch (12pm) and dinner
time (7pm). After the 30-day study period, partici-
pants filled in a post-questionnaire that mirrored the
pre-questionnaire. Participants received either monet-
ary compensation or partial course credits based on
the number of surveys they completed.

The original studies included 207 participants
(Ns; = 23, Ng, = 113, Ns3 = 71) with a total of 10,297
ESM measurements. Each of the studies focused on
newly arrived first-generation migrants, and each study
included a number of idiosyncratic variables relevant
for the broader research collective. For our empirical
example, we focus on the variables that were collected
during ESM surveys and were available in all three
studies. Variable selection and preparation are
described as part of the illustration below, but for add-
itional methodological details about the study setup, see
Kreienkamp et al. (2022). Each study was approved by
the ethics board of the university of origin and all par-
ticipants gave their informed consent.

Analysis steps and application

To introduce and illustrate the feature-based cluster-
ing analysis, we will follow the conceptual steps of the
procedure in sequential order and discuss key issues
for each step. To do so, we use a framework that
structures feature-based clustering into four main
steps (Rasanen & Kolehmainen, 2009; Wang et al,
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Figure 1. Flowchart feature-based time series clustering in psychology.

2006). (1) The selection and preparation of the input
variables, (2) the extraction of the time series features
that describe the time series, (3) an optional feature
reduction step if there are too many data points for
the clustering algorithms, and (4) the actual clustering
of the time series features, as well as the evaluation
and interpretation of the clusters. While this is a use-
ful conceptual separation of procedural elements, it is
important to note that these steps are a general out-
line and the specific details of the analysis will depend
on the nature of the data and the research question
being addressed. We, thus, mainly wish to highlight
the conceptual nature of these steps to introduce the
major elements of the analysis. We also provide a
conceptual overview that can be used in conjunction
with this section in Figure 1.

Input variables

Time series clustering starts with the selection and
preparation of the variables of interest. While the
selection will necessarily be field- and concept-specific,
there are a few conceptual and methodological issues
that should be considered. Conceptually, the included
variables should adequately capture the concept of
interest and should be meaningful to the

understanding of the time series. One of the advan-
tages of feature-based clustering is that it is inherently
adept at accommodating multivariate concepts, a com-
mon aim in ESM research. For example, there are
calls that emotion dynamics should be assessed with a
repertoire of positive and negative emotions (e.g.,
Dejonckheere et al.,, 2019), many health developments
are captured within biopsychosocial domains (e.g.,
Suls & Rothman, 2004), and migration experiences are
thought to encapsulate affect, behavior, cognition, and
desire measurements (e.g., Kreienkamp et al., 2024).
At the same time, however, the added number of vari-
ables can become a methodological concern. Not only
can redundant and irrelevant variables diminish the
quality of the analyses, but with intensive longitudinal
data the number of data points compounds across
participants, measurement occasions, and variables so
that additional variables can make many of the follow-
ing steps substantially more difficult (also see the
‘Data Structure’ in Figure 1).

For our illustration, we include 12 variables that
were measured as part of the ESM surveys in all three
studies and captured information about the partici-
pant’s interactions, as well as the cognitive-, emotional-,
and motivational self in relationship with the majority
group (see Table 1 for an overview). We chose these
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aspects in particular because (1) the interaction-spe-
cific information exemplified the structural missing-
ness issue of modern ESM data (see Appendix A for
more detail) and (2) the motivational, emotional,
and cognitive experience offered a diverse conceptu-
alization of migration experience (beyond behavioral
measurements) that is becoming more common in
the literature (Kreienkamp et al., 2024). The breadth
of the included variables also showcases the utility of
the method for a growing body of literature that
considers heterogeneous and complex concepts. As a
result, the number of included variables is also on
the higher end for psychological concepts and add-
itionally allows us to showcase the efficiency benefits
of the method and offers a reasonable use case for
the feature reduction step.

Once the important variables have been selected,
the data needs to be prepared for the analysis steps.
Importantly, this not only means validating and clean-
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Table 2. Correlation table and descriptive statistics.

Upper triangle: Between-person correlations.
Lower triangle: Within-person correlations.
**%p < 0.001, **p < 0.01, *p < 0.05.

Correlations
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measurements per person), and this should be taken
into account when conducting similar analyses. Full
methodological details are available in Online
Supplemental Material A, but basic item information,
descriptives, and correlations of items are also available
in Table 2.

Feature extraction

Armed with a relevant selection of key variables,
the main aim of the feature extraction is to
describe the most important and meaningful aspects
of a time series. In its most general approach, fea-
ture extraction can include any numeric summary
of the time series (e.g., Maharaj et al., 2019). Given
this flexibility, a staggering variety of time series
features have been proposed across different disci-
plines. For example, Wang et al. (2006) proposed 9
time series features (also see Fulcher et al., 2013),
Adya et al. (2001) collected 28 features relevant for
forecasting, and a commonly used software package
for feature extraction ‘tsfresh’ allows users to extract
a total of 794 features of a time series (Christ
et al., 2018).

However, not all time series features might be rele-
vant to psychological time series or any particular
research question. For example, a psychologist inter-
ested in well-being might not necessarily be interested
in the exact time point after which 50% of the
summed well-being values lie (i.e., relative mass quan-
tile index) or how much different sine wave patterns
within the well-being data correlate with one another
(i.e., cross power spectral density). Instead, we advo-
cate that we look at time series features that have a
strong backing within the ESM literature and offer
meaningful interpretability.

Fortunately, past conceptual and empirical efforts
offer valuable discussions of common time series fea-
tures in psychological research. To understand emo-
tion dynamics, Kuppens and Verduyn (2017)
originally proposed four dynamic features: (1) within-
person variability, (2) co-variance or intraclass coeffi-
cient (ICC), (3) inertia or autocorrelation, and (4)
cross-lagged correlations. These features were then
extended by Krone et al. (2018), adding (5) innovation
variance, and (6) mean intensity. Krone et al. (2018)
even built a parametric model to tentatively cluster
study participants. From a slightly different perspec-
tive Dejonckheere et al. (2019) later added three add-
itional features for psychological time series: (7)
instability (8) interdependence (i.e., network density),
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and (9) diversity (i.e., Gini coefficient; also see Wendt
et al., 2020).*

Some of the time series features found in the psy-
chological literature are not necessarily well-suited to
summarize time series for feature-based clustering and
some key conceptual features are not well represented
in the dynamic measures literature. In particular,
covariances and cross-lagged correlations often pro-
duce a large number of parameters and can lead to
overfitting (e.g., Bulteel et al., 2018; Ernst et al., 2021;
Lafit et al., 2022), also see our discussion of multivari-
ate features). Other dynamic features, such as network
density parameters, used to summarize variable inter-
dependence, may not always be meaningful for psy-
chological data (Bringmann et al., 2019). At the same
time, the dynamic features commonly proposed for
psychological time series often do not capture linear
and nonlinear trends, as they are frequently developed
for stationary Vector Autoregressive models (e.g.,
Krone et al., 2018).

Thus, while the final selection of time series fea-
tures should always be driven by the research ques-
tions and field-specific conventions, for our
illustration we chose six time series features that relate
to common psychological research questions and
recent works within the field: (1) central tendency, (2)
varijability, (3) instability, (4) temporal dependence,
(5) linear trend, and (6) nonlinearity. An exemplary
overview of available time series features, their sub-
stantive interpretations, and mathematical operational-
izations is available in Table 3, including the features
we chose here. For each of the six time series features,
we selected a mathematical representation that was
appropriate for our type of data. We provide a brief
introduction to each feature below. Beyond the opera-
tionalizations we chose for our case study, we col-
lected the R functions we created for the analyses as
an R package that automatically extracts and prepares
a large selection of the time series feature operational-
izations presented in Table 3. All functions are avail-
able as part of the package GitHub repository (see the
featureExtractor() function; Kreienkamp et al., 2023d)
and are annotated as part of our tutorial-style illustra-
tion (see Supplemental Material A).

Central tendency. The central tendency refers to the
statistical measures that represent the “typical” or

It should be noted that also within the psychological literature,
alternative summaries have been proposed that, for example, include
measurement distribution, nonlinear developments, or categorical states.
As an example, Kiwuwa-Muyingo et al. (2011) proposed to extract
clinicallymeaningful states for medical adherence data and suggests these
states as meaningful time series features.

Table 3. Examples of features for psychological time series.

Further reading
Bringmann and Eronen (2018) and Weisberg (1992)

Example operationalizations

Substantive interpretation

Mean

Average level of the experience across the entire measurement period.

Central tendency

Median
Mode

Helmich et al. (2020) and van de Leemput et al.

Standard deviation

Describes the average deviation from the central tendency across the entire

Variability

(2014)

Variation coefficient

measurement period.

Median absolute deviation

Kivela et al. (2022), Wichers et al. (2019), and

Mean squared successive differences

Mean absolute change
Ix instability index

Describes the average change between two consecutive measurements of the

(In)stability

Wang et al. (2012)

experience.

Kuppens et al. (2010) and Walls et al. (2006)

Autocorrelation (e.g., lag-1)
Fourier coefficients

Describes the extent to which current experiences or measurements are .

Temporal dependence

influenced by previous states or measurements. This includes resistance to

Continuous wavelet transform

change (i.e., carries over to the next measurement) and periodic or seasonal

returns (e.g., self-predictive on a daily or weekly basis).
Describes upwards or downwards linear trend of the experience reports.

Gottman et al. (1969) and Oravecz et al. (2016)

OLS regression slope

Linear trend

Avg. piecewise linear reg. slope

GAM spline edf

Caro-Martin et al. (2018) and Bringmann et al.

Describes the nonlinear structure of the time series. This includes measures that

Nonlinearity

(2017)

indicate the deviation from the a linear trend as well as nonlinear model e Bicoherence metrics

parameters.
Explores interactions and dependencies between multiple time series variables,

Langevin polinomial coefficient
Co-variance

Epskamp et al. (2018) and Lacasa et al. (2015)

Multivariate relations

(Graphical) VAR parameters

Network density

capturing the complex behavior of psychological constructs as they evolve

together over time (see discussion).

Note: The presented features and operationalizations are neither exhaustive nor necessary for feature-based clustering.



“average” of a set of data. The most common meas-
ures of central tendency are the mean, median, and
mode (Weisberg, 1992). As a familiar statistic from
probability theory, the central tendency sits at the
heart of many fundamental questions about psycho-
logical time series. Researchers might, for example, be
interested in whether “Over a one-month period, are
some people happier than others?”

For the central tendency feature of our illustration,
we chose the median (M), which effectively addresses
potential complications arising from non-normally
distributed responses or outliers within time series
datasets (Weisberg, 1992). To compute the median, it
is imperative to differentiate between two types of
time series representation for a given variable j related
to participant i: the chronological series and the
ordered series. The chronological time series, denoted
by Xj, encapsulates the sequence of observations
{xij1> Xij2> ... X;7} for variable j concerning participant
i, organized by their temporal occurrence. Here, x;j
signifies a specific observation at time t within this
sequence. In contrast, the ordered time series, repre-
sented as Xj;, is derived from Xj; by sorting the obser-
vations in ascending order of magnitude. This ordered
set is expressed as {Xi,Xip,....Xjn}, With each X
corresponding to the k-th element in the reordered
series Xj;.

The median M(Xj) is then the value located pre-
cisely at the center of the ordered time series Xj.
Depending on whether the total number of observa-
tions (T) is odd or even, the median is either the mid-
dle k-th element if T is odd, or the average of the two
middle values if T is even:

X /1 if T is odd

’< 2 )

%0 TNz 1)
2

M(X;) = (1)

if T is even

This approach ensures that the median is a reliable
indicator of central tendency in time series analysis,
unaffected by data distribution asymmetries or the
presence of outliers.

Variability. Variability captures the degree to which a
set of data differs from the central tendency and is
sometimes also referred to as the dispersion or spread
of the data (Weisberg, 1992). Common measurements
of variability are the variance or standard deviation as
well as their robust counterparts. In time series analy-
ses, variability is conceptually important because
information about the distribution and diversity of
data has been found to be indicative of worse
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psychological states (Helmich et al., 2021; Myin-
Germeys et al., 2018). Person-level differences in ESM
measurements have, for example, been associated with
higher levels of psychopathological recurrences among
patients with depression (Timm et al., 2017). As such,
psychological researchers and practitioners are often
empirically interested in between-person differences in
variability. Researchers on polarization and radicaliza-
tion might, for example, ask: “Are people settled in
their attitudes toward migrants or do they vary across
the measurement period?”

For our illustration data, we chose the Median
Absolute Deviation (MAD) to gauge the variability
within our time series data. This choice is motivated
by the robustness of MAD, particularly its resilience
to the effects of non-normal distributions and outliers,
which can significantly skew traditional variability
measures such as the standard deviation (Weisberg,
1992). For a given variable j and participant i, the
MAD is calculated by first determining the median
(M) of the ordered time series X;; as described in
Equation (1). We then compute the absolute devia-
tions of each observation in the time series Xj; from
this median value. Specifically, for each time point ¢,
we calculate the absolute difference between x;; and
the median of the series M(X;;). The MAD is then the
median of these absolute deviations:

MAD(X;) = M(|xj — M(Xy)]) (2a)
= M({|xj1 — M(Xy)], [xi2 = M(Xij)l .., x5 — M(X)[})
(2b)

The calculation of MAD focuses on the magnitudes
of deviations, ensuring that it provides a robust meas-
ure of dispersion that reflects the inherent variability
in the time series data.

Instability. Instability captures the average change
between two consecutive measurements (Ebner-
Priemer et al., 2009; Jahng et al., 2008). While instability
is conceptually related to the variability feature, vari-
ability does not take into account temporal dependency,
whereas instability looks at the jumpy-ness’ of the data
over time. In other words, variability reflects the range
or diversity of values in the un-ordered time series data,
while instability reflects the fluctuation or inconsistency
in a time series data over time (Houben et al., 2015;
Koval et al., 2013; Trull et al., 2008). For example, if a
person has rapid and extreme mood changes, their
mood is highly unstable, while if a person’s mood
responses span a wide range over the entire study
period, their mood is highly variable (note that this
does not need to be rapidly changing or instable, e.g.,
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when there is linear increase over time; also see Jahng
et al., 2008). Within psychological time series, instabil-
ity measurements have especially been important in the
research of borderline personality disorder (Trull et al.,
2008) and suicidality (Kivela et al., 2022), but also in
understanding early warning signals more generally
(Wichers et al., 2019). Conceptually, the instability fea-
ture, thus, relates to a broad range of research ques-
tions, including: “What is the nature of the
identification changes in those who start working in a
new country?” or “Do strong daily fluctuations in self-
esteem reflect the process of identity formation in
adolescents?”

For our data we chose the mean absolute change
(MAC; e.g., Ebner-Priemer et al., 2009; Barandas
et al., 2020), which looks at the average absolute dif-
ference of two consecutive measurements x at time
points ¢t and t — 1, for each time series X of partici-
pant i and variable j.

1
MAC(Xij) = m Z |xt - xt—1| (3)

=2, .t

Another common measurement of instability is the
Mean of the Squared Successive Differences (MSSD),
which is often preferred where differences in magnitude
are more important than the frequency of those changes,
for example, when big shifts in time series are considered
more impactful or when outliers are meaningful and
need to be taken into account (Bos et al., 2019; Chatfield,
2003). For psychological ESM data, some research sug-
gests that amplitude and frequency could predict differ-
ent health outcomes and can be investigated jointly
(Jahng et al., 2008; Wang & Grimm, 2012).

Temporal dependence. Univariate temporal depend-
ence in time series data refers to the degree to which a
time series is influenced by its past values, exhibiting pat-
terns of behavior that may be regular over different time
scales (D’Mello & Gruber, 2021). In the context of psy-
chological time series, an important aspect of temporal
dependence is inertia—how much a measurement carries
over to its next measurement (Kuppens et al., 2010; Suls
et al., 1998). If inertia is high, a development tends to
stay in a certain state. Because high inertia is resistant to
change, in emotion dynamics, high inertia of negative
affect has been found to be indicative of under-reactive
systems and to be characteristic of psychological mal-
adjustment (Kuppens et al., 2010). In a similar vein, high
inertia in negative affect at baseline was predictive of the
initial onset of depression (Kuppens et al, 2012).
Conceptually, inertia is more broadly connected to
research questions such as: “Do patients stay in a

negative mood for several measurements?” or “Do
migrants stay with their language practice for several
days at a time?” Note that we described univariate
temporal dependence here, where the focus is on the
relationship of a variable with its own past values. Cross-
lagged effects extend this concept by examining how past
values of one variable influence another.

For our illustration case, we chose the commonly
used (univariate) autocorrelation or autoregression
with a lag-1 to capture the inertia. High autocorrel-
ation values can indicate high levels of inertia, while
low autocorrelation values may indicate a more
unpredictable or volatile time series (Dejonckheere
et al, 2019). The lag-1 autocorrelation r;; looks at
the average correlation between a measurement x and
the preceding measurement x;_; for the time series X
of participant i and variable j with n measurements.

n - —
thz(xijf - xij)(xij,t—l - xij)
rij,l = P —
Zt:1(xijt - xij)
Where x;; is the mean of the time series x;;, calcu-
lated as:

(4)

_ 1
Xj == X (5)
hn t=1

While inertia captures the simplest case of temporal
dynamics, lag-1, we acknowledge that temporal
dependence in psychological time series may also
exhibit more complex relationships, including higher
lagged auto correlations or cyclical relationships (fou-
rier coefficients, or continuous wavelet transforms are
often used to capture such relationships).

Linear trend. In non-stationary time series, a linear
trend can be observed when there is a consistent
increase or decrease in the data over time (Nyblom,
1986). For psychological time series, researchers have,
for example, pointed out the importance of linear
trends in interpersonal communication (Vasileiadou &
Vliegenthart, 2014), and emotion dynamics (Oravecz
et al., 2016). Theoretically, linear trends are often con-
sidered the simplest way to assess whether a psycho-
logical theory of change is appropriate (Gottman
et al., 1969). In empirical practice, linear trends are,
thus, commonly exemplified by research questions
such as “Do patient symptoms improve consistently?”
or “Does worker productivity decline continuously?”
For the variables in our illustration data set, we
chose an overall linear regression slope to capture the
linear trend. The regression slope b; provides the
average change from one time point t to the next
across all measurements x of a time series X of



participant i and variable j. The specific form of the
OLS slope formula we provide below calculates b;; as
the sum across all time points of the product of the
deviation of time ¢ from its mean ¢ and the deviation
of x;; from its mean x;; at each time point, divided by
the sum across all time points of the square of the
deviation of time from its mean (3 (t—1)%).
Intuitively, the formula captures the rate of change of
variable x;; with respect to time. This slope will indi-
cate how the variable x; changes over time, control-
ling for its mean value and the mean of time. If the
slope is positive, x;; increases over time; if it is nega-
tive, x;; decreases over time.

2.(t = 1) (xije — ;)

S (1) ©

bij =

Nonlinearity. Changes in psychology are not always
linear; instead, nonlinearity is a common feature of
psychological time series (Hayes et al., 2007). As an
example, episodic disorders, such as depression, are
often best described as non-linear systems (Hosenfeld
et al, 2015). Similarly, patients recovering from
depression showed sudden changes in the improve-
ment of depression (Helmich et al, 2020). But also
substance abuse (Boker & Graham, 1998) or attitude
changes rarely develop linearly (van der Maas et al,
2003). Conceptually, researchers might have research
questions about the type of the development: “Is the
development of well-being a nonlinear process?” as
well as the shape and structure of the development:
“How many spikes in well-being did a migrant
experience?”

We summarized the nonlinear trend with the esti-
mated degrees of freedom of an empty GAM spline
model. The edf summarizes the wiggliness of a spline
trend line (Bringmann et al., 2017; Wood, 2017). The
degrees of freedom of a spline model are determined
primarily by the number of knots and the order of
the spline. For instance, a cubic spline with k knots
has k+3 degrees of freedom (Castro-Alvarez et al.,
2024; Faraway, 2016; Haslbeck et al., 2021). However,
in a penalized spline framework, which is commonly
used for GAMs, the effective degrees of freedom can
be less than k+ 3. This is because the model employs
a smoothing parameter to control the tradeoff
between the complexity (flexibility) of the model and
its fit to the data, thereby penalizing overly complex
models and potentially reducing the effective degrees
of freedom (Marx & Eilers, 1998). Intuitively, then an
edf of 1 would be equivalent to a linear relationship
(i.e., one linear slope parameter), whereas a higher edf
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(particularly an edf > 2) is indicative of a non-linear
trend. The estimated degrees of freedom are commonly
based on a concept called ‘effective degrees of freedom’
and can be represented as the trace tr( ), (i.e., the sum
of the diagonal elements) of the smoother matrix S, a
symmetric matrix that maps from the raw data to the
smooth estimates (Wood, 2017).

edf = tr(S) (7)

Additional considerations. Beyond our main features
of interest, we also extracted the participant’s number
of completed ESM measurements to ensure that the
clusters are comparable in that regard (i.e., to exclude
spurious explanations for the cluster assignments).
After the extraction of the features, we found that
about 1.40% of the extracted features are missing
across the 72 features per participant. This could hap-
pen, for example, if participants do not have two sub-
sequent measurements with outgroup interactions, so
that an autocorrelation with lag-1 cannot be calculated
for the contact-specific variables. The small number of
missing values indicates that the feature-based
approach indeed largely avoids the structural missing-
ness issue. However, even the few missing values can
be an issue for some feature reduction or feature clus-
tering algorithms. We, thus, impute missing feature
values via predictive mean matching (PMM) with the
MICE package in R, employing a single imputation
and specifying a maximum of 50 iterations and a fixed
seed for convergence and reproducibility (Buuren &
Groothuis-Oudshoorn, 2011). We chose PMM for its
ability to preserve the original data distribution with-
out assuming normality and robustly handling mul-
tiple data types (Van Buuren et al., 2006). Note again
that with this procedure we only need to impute an
extremely small number of missing values, as most
feature calculations can use the available data instead.
It is important to reiterate that the six selected time
series features are in no way exhaustive or imperative.
Both using a more data-driven approach to the selec-
tion of time series features or selecting entirely differ-
ent aspects to summarize the time series are legitimate
options (also see our discussion of multivariate time
in the discussion section and see
Heylen et al.,, 2016). Our choice seeks to offer a prac-

series features

tical toolbox of time-series features that are common
and meaningful to psychological research questions
and practice but are also easy to extract and interpret
a broad range of developments without asserting strict
assumptions.
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It also bears repeating, that while our approach
allows users to include VAR parameters as one of the
possible time series features, it is important to recog-
nize that many contemporary clustering methods
focus exclusively on VAR parameters. For instance,
packages like clusterVAR (Ernst et al, 2021) and
gimme (Gates et al., 2017) rely on these parameters to
discern groupings within time series data. Similarly,
graphical VAR (Park et al., 2024) applies VAR-based
techniques for clustering in psychological networks.
Our feature-based approach subsumes these methods
by allowing users to integrate VAR parameters along-
side other dynamic features, offering a more compre-
hensive and flexible framework for clustering.

Feature reduction

Once a meaningful set of time series features has been
extracted for each variable and participant, the total
number of data points sometimes remains too large for
the desired clustering algorithm. As an example, a rela-
tively common scenario would include 10 variables of
interest, where eight time series features are extracted,
resulting in 80 features per participant (with a common
sample size of 100 participants, which would result in a
total of 8,000 data points in this hypothetical example).
We offer an illustration of the compounding of the
numbers of data points in Figure 1. The difficulty of
finding stable clusters for data with a large number of
dimensions is sometimes termed the ‘dimensionality
curse’ (e.g., Altman & Krzywinski, 2018).

To deal with this dimensionality issue, two main
approaches have been proposed—feature selection and
feature projection (e.g., Erdogmus et al., 2008). While
feature selection refers to the process of identifying and
selecting a subset of relevant features from the original
feature set (Alelyani et al, 2014), feature projection
refers to the process of transforming the original fea-
ture set into a new feature set of lower dimensionality
(Carreira-Perpindn, 1997). In general, feature selection
procedures have the benefit that they retain the inter-
pretable feature labels directly and immediately indicate
which features were most informative in the sample.
Feature projection methods, on the other hand, have
been popular because they are efficient, widely avail-
able, and applicable to a wide range of data types. We
provide an overview of common approaches, an intui-
tive introduction to common methods, and exemplar
algorithms in Supplemental Material C.

It is important to note that the necessity and utility
of feature reduction depend heavily on the specific
clustering algorithm used. Algorithms like k-means,

which rely on calculating distances between data
points, often struggle with high-dimensional data due
to the “curse of dimensionality.” In high dimensions,
distance measures become less effective, making it dif-
ficult for k-means to identify meaningful clusters
(Altman & Krzywinski, 2018). Conversely, algorithms
like Walktrap, which operate on similarity measures
derived from correlation matrices, can actually benefit
from higher-dimensional data because more features
lead to more robust and accurate similarity estimates
between participants (e.g., Gates et al., 2016; Golino &
Epskamp, 2017). This abundance of features enhances
the algorithm’s ability to detect meaningful clusters,
improving the reliability of the clustering results.
Thus, the decision to reduce features should align
with the chosen clustering algorithm and its capacity
to handle or leverage high-dimensional data.

For our own illustration data, we chose a feature
projection method to reduce the dimensionality of our
extracted features. We particularly chose the feature
projection method for its broad applicability. We, spe-
cifically, selected the commonly used principal compo-
nent analysis (PCA). Some of the more tailor-made
feature selection algorithms can be more accurate in
reducing the feature dimensionality and might retain
feature importance information more directly, depend-
ing on the specific data structure. However, PCAs have
the distinct benefit that they are well-established within
the psychometric literature (Jolliffe, 2011) and can be
broadly applied to a wide variety of studies in an
automatized manner (Abdi & Williams, 2010). As our
aim is to present a general illustration that can also be
adopted across use cases, we present the workflow
using a PCA here, but we encourage users to consider
more specialized methods as well (we provide an
example decision guide in Supplemental Material C).

To use the PCA with our extracted time series fea-
tures, we first standardize all features across partici-
pants to ensure that all features are weighted equally
(Horne et al., 2020). We then enter all 72 features
into the analysis. The PCA uses linear transformations
in such a way that the first component captures the
most possible variance of the original data (e.g., by
finding a vector that maximizes the sum of squared
distances Abdi & Williams, 2010; Jolliffe, 2002). The
following components will then use the same method
to iteratively explain the most of the remaining vari-
ance while also ensuring that the components are lin-
early uncorrelated (Shlens, 2014). In practice, this
meant that the PCA decomposed the 72 features into
72 principal components but now (because of the
uncorrelated linear transformations) the first few



principal components will capture a majority of the
variance. We can then decide how much information
(i.e., variance) we are willing to sacrifice for a reduced
dimensionality. A common rule of thumb is to use
the principal components that jointly explain 70-90%
of the original variance (i.e., cumulative percentage
explained variance; e.g., Jackson, 2003). For our illus-
tration, we select the first 27 principal components
that explain 80% of the variance in the original 72 fea-
tures (reducing the dimensionality by 62.50%). For
the extracted principal components we save the 27
principal component scores for each participant (ie.,
the participants’ coordinates in the reduced dimen-
sional space; PC-scores).

We would like to comment on two practical mat-
ters when using principal components—the amount of
dimensionality reduction and the interpretation of the
principal components. Regarding the expected dimen-
sionality reduction, given its methodology, PCAs tend
to ‘work better’ at reducing dimensions with (highly)
correlated variables (e.g., Jolliffe, 2002). Thus, with a
set of very homogeneous variables and features, users
will need fewer principal components to explain a
large amount of variance, while a more diverse set of
variables and features will tend to require more prin-
cipal components to capture the same amount of vari-
ance (e.g., Abdi & Williams, 2010). Our 27 principal
components are still a relatively high number of varia-
bles, but this is not surprising as we chose a diverse
conceptualization and a diverse set of time series fea-
tures. In terms of interpretability, PCA allows users to
extract information on the meaning of the principal
components. In particular, because the principal com-
ponents are linear combinations of the original fea-
tures, users can extract the relative importance of each
feature for the extracted principal components (i.e.,
the eigenvectors). While this can be useful in under-
standing the variance in the original data or help with
manual feature selection, we use the PCA here purely
to reduce the dimensionality for the clustering step.
Instead of relying on the principal components, we
used the original features of interest to interpret the
later extracted clusters. We particularly advocate for
such an approach if all original features are consid-
ered meaningful in understanding the time series and
users would like to retain the features for interpret-
ation (irrespective of the features’ importance).

Feature clustering

For the actual clustering of the time-series features,
the main aim is to organize participants into groups

MULTIVARIATE BEHAVIORAL RESEARCH 373

so that the features of participants within a group are
as similar as possible, while the features of people in
different groups are as different as possible (Liao,
2005). The crux of clustering is, thus, to have clearly
defined and effective measurements of (dis)similarity.
Most of the clustering algorithms used today use
some form of distance measurement to optimize
group assignment (or similarity measurement for
qualitative features; see Aghabozorgi et al., 2015).
While others have produced excellent overviews of the
many clustering approaches available (e.g., Xu & Tian,
2015), the more readily available approaches suitable
for most time series feature data can, broadly speak-
ing, be categorized as based on (1) centroids, (2) dis-
tributions, (3) density, (4) hierarchies, or (5) a
combination thereof (see Supplemental Material C for
an overview; also see Jain et al., 1999, for a broader
review).

There is, unfortunately, no one-size-fits-all solution
to clustering, and users will usually have to make an
informed decision based on the structure of their data
as well as an appropriate weighing of accuracy and
efficiency. We provide a short intuitive explanation
for common approaches, together with some of
their characteristics and example algorithms in
Supplemental Material C. For our own illustration, we
have chosen centroid-based k-means clustering.
Although k-means sacrifices some level of accuracy, it
offers certain advantages. We specifically chose k-
means because it is an extremely efficient method that
works well with large participant- and feature num-
bers without making too many restrictive assumptions
about the shape of the clusters (Jain, 2010). K-means
is also well established within the research community
and has been readily implemented in many statistical
software packages (Hand & Krzanowski, 2005).
Additionally, many of the feature selection methods
have been specifically designed for the well-established
k-means algorithm (e.g., Boutsidis et al., 2010). As
such, the k-means offers a good starting point for
many psychological researchers, and the method
should be generalizable across a relatively wide variety
of projects.

During the k-means clustering itself, the analysis
seeks to minimize the total within-cluster variation.
The analysis is designed to optimize the clustering of
the feature data into k groups, where k is a pre-
defined number of clusters. We used the Hartigan and
Wong algorithm, which is a widely used algorithm in
k-means clustering (Hartigan & Wong, 1979). The
algorithm starts by randomly separating the data
points into k clusters and then iteratively updates the
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assignment of each point to the nearest cluster center
until convergence. To do so, the Hartigan and Wong
algorithm specifically calculates the within-cluster
variation (W) of cluster C; as the summed squared
Euclidean distances of the feature x to the nearest
cluster centroid y; :
W(C) =) (x—m)’ (8)
x€C;
By summing the within-cluster sum of squares
from all k clusters, we can then derive the total
within-cluster sum of square WCSS:

k k
WCSS=y W(C)=) > (x—m) ()
i=1 i=1 xeC;

It is this WCSS that becomes the objective function
to be minimized by iteratively moving features from
one cluster to another (Hartigan & Wong, 1979). In
particular, the algorithm (1) calculates the cluster
centroids of the initial partitioning, (2) checks whether
any feature has a centroid that is closer than that of
the currently assigned cluster (3) updates the centroids
based on any reassigned features, and then iterates
between steps two and three until WCSS is minimized
(i.e., locally optimal convergence) or a maximum
number of iterations is reached (Jain, 2010). Given the
iterative nature of the algorithm, initial partitioning is
often important because the algorithm can arrive at a
suboptimal clustering where the WCSS cannot be fur-
ther reduced by moving any feature to another cluster,
despite a better solution existing (i.e., a local min-
imum; Timmerman et al., 2013). It is, therefore, often
recommended to run the k-means clustering with sev-
eral different starting positions.

In our case, we entered the participants’ PC-scores
from the feature reduction step into the k-means algo-
rithm. Because we did not know the underlying num-
ber of clusters within our sample, we calculated the
cluster solutions for k= {2,...,10}. To avoid local
minima, we used 100 random initial centroid posi-
tions for each run. Each of the 9 cluster solutions con-
verged within the iteration limit. In the next step, we
will then evaluate which of the extracted cluster solu-
tions offers the best fit with the data.

Cluster evaluation

Now that the participants have been assigned to their
respective clusters based on the similarity of their
time series features, the final evaluation step includes
two main elements, (1) evaluating the performance
of the clustering analyses to choose an optimal

solution and (2) interpreting the extracted clusters
conceptually.

Performance

Performance evaluation often means assessing the
accuracy, stability, and separation or purity of the
clustering (Keogh & Kasetty, 2003). Importantly, any
evaluation of the results depends on the research
questions, the data, and the methods used. However,
broadly speaking, evaluation methods can be catego-
rized based on whether the true cluster labels are
known or not (Saxena et al., 2017). If true class labels
are known, cluster assignments can be compared to
true class labels—using measures such as the F-meas-
ure, adjusted Rand index, mutual information and
normalized mutual information (i.e., external evalu-
ation; e.g., Liao, 2005). However, if the true cluster
assignments are unknown, as with our psychological
time series, the quality of the clusters is assessed based
on the characteristics of the data itself, such as separ-
ation and homogeneity of the clusters, or goodness of
fit indices (i.e., internal evaluation; e.g., Aghabozorgi
et al.,, 2015).

In our own illustration example, we used the clus-
ter.stats() function from the fpc R package, which cal-
culates a wide variety of internal cluster validity
statistics for each of the extracted clustering solutions.
With real-world data, it is not likely that any one
evaluation measure will be perfect. Different measures
can produce varying results depending on the charac-
teristics of the data and the research question at hand
(Kittler et al., 1998). It is, therefore, important to con-
sider a variety of evaluation measures and to carefully
interpret the results in the context of a specific ana-
lysis (Vinh et al., 2009). We found that across most
indices, the analysis with k = 2 clusters performed the
best. Three commonly reported indices we would like
to highlight are the comparison of within-clusters sum
of squares, the average silhouette score, and the
Calinski-Harabasz index. The first statistic we looked
at was the total within-cluster sum of square WCSS
[see also Equation (9)]. While the within-cluster vari-
ation will naturally decrease with (more) smaller clus-
ters, we observed that the decrease in WCSS was
highest until k=2, after which the decrease was
much smaller. This method is also sometimes referred
to as the ‘elbow method’ (Syakur et al, 2018). We
then looked at a second, commonly used measure, the
average silhouette score. This statistic measures the
degree to which each time feature data point is similar
to other points within the same cluster, compared to
points in other clusters (Rousseeuw, 1987). In our



case, the k=2 solution maximized the silhouette
coefficient (s; = 0.09). Finally, the Calinski-Harabasz
index assesses the compactness and separation of the
clusters by assessing the ratio of the sum of between-
cluster dispersion and of intra-cluster dispersion for
all clusters. Thus, a higher score indicates better per-
formance (Calinski & Harabasz, 1974). In our case,
the k =2 solution also showed the highest Calinski-
Harabasz index (CH, = 16.38; a full table of all
extracted validity statistics is available in Supplemental
Material A).” In the final k = 2 solution the k-means
analysis also assigned a relatively even number of par-
ticipants to cluster 1 (nc, = 76) and cluster 2
(I’ZC1 = 80)

To ensure that clustering is necessary in the first
place, we also compare the performance to a single-
cluster solution (i.e., a single centroid). The comparison
with this k=1 solution is slightly different because
metrics such as the between-cluster separation are not
available. Nonetheless, comparing the within-cluster
sums of squares (SS) and the explained variance, we
find that two clusters indeed outperform a single clus-
ter solution. Specifically, the total within-cluster SS
decreased from 8940.21 for one cluster to 8080.67 for
two clusters. Additionally, the variance explained
increased from < 0.001 to 0.096 when the cluster
count increased to two (e.g., Beijers et al., 2022, ; also
see Supplemental Material A for full results).

Interpretation

The interpretation of feature-based time series cluster-
ing in psychology involves understanding the meaning
and implications of the obtained clusters. In order to
make sense of the clustering results, we here focus on
three general aspects of the results (Kaufman &
Rousseeuw, 1990). (1) Assessing differences between
the clusters in the original time series features, (2)
comparing the clusters based on prototype develop-
ments, (3) comparing the clusters based on between-
person differences that were not included in the initial
clustering.

In short, we find that the feature-based clustering
discerned two meaningfully different groups of partic-
ipants. We find an adaptive group (cluster 1) that
reports higher well-being (median: difference =—0.52,

%It is important to note that another commonly assessed aspect of the
evaluation is determining the stability and robustness of the clusters
(Berkhin, 2006). This can be assessed by evaluating the sensitivity of the
clusters to different feature sets or clustering algorithms, or by using
techniques such as bootstrapping to assess the uncertainty of the clusters
(Vinh et al, 2009). Especially when comparing different clustering
algorithms, a common index is the Bayesian information criterion (BIC),
where a lower BIC indicates that a model is more representative of the
data (van de Schoot et al., 2017).

MULTIVARIATE BEHAVIORAL RESEARCH 375

t(153.87) = —3.34, p=0.001, 95%CI [-0.82, —0.21];
also see Figure 3A) and more positive outgroup inter-
actions (median: difference=—-1.38, #(152.31) =
—11.94, p<0.001, 95%CI [-1.61, —1.15]), which are
also stable over time (MAC: difference=0.54,
£(153.98) = 3.49, p<0.001, 95%CI [0.23, 0.84]) and
tend to increase more over the 30 day test period (lin-
ear trend: difference=—0.55 1(149.90) = -—3.55,
p <0.001, 95%CI [-0.85, —0.24]; also see Figure 3C).
This group also reported consistently more meaning-

ful (median: difference=—1.00, #(136.40) = -7.16,
p<0.001, 95%CI [-1.28, —0.73]), need-fulfilling
(median:  difference=-0.99, t(135.30) = -7.17,

p <0.001, 95%CI [-1.26, —0.72]), and cooperative out-
group interactions (median:  difference=—1.33,
£(120.36) = —11.28, p < 0.001, 95%CI [-1.56, —1.10]).
This group with overwhelmingly positive experiences
stands in contrast to a more detrimental group (clus-
ter 2). On average, this group reported much less
positive, less meaningful, and less fulfilling interac-
tions and interaction patterns (median). This group
also reported less positive outgroup attitudes, lower
well-being and more discrimination experiences
(median). At the same time, for members of this det-
rimental cluster (cluster 2) conditions seemed to
deteriorate over time (linear trend), and there was
generally less consistency in the experiences they were
able to have (MAC, MAD, edf, also see Figure 3; for a
full and interactive comparison of all features see
Supplemental Material A).

To identify these patterns, we first inspect the clus-
ters based on the average values of meaningful fea-
tures (see Figure 2A; Kennedy et al, 2021). We see
that for some variables the features are generally
stronger in separating the clusters. We, for example,
see that the item on ‘how cooperative the interaction
was’ distinguishes the two clusters across almost all
seven features (except for the auto-correlation, see
Figure 2A). Compare this to the ‘outgroup attitudes
item where the differences between the clusters are
much smaller for almost all features. We then inspect
the clusters with a focus on the features (see Figure
2B). Although these are the same data as for the vari-
able focus, we can see more clearly that some features
are better at distinguishing the clusters across varia-
bles. For example, MAD and median distinguish the
two clusters on almost all variables (except for the
item of whether the interaction was representative of
the outgroup). These two features stand in stark con-
trast to other features, such as the lag-1 auto correla-
tions or the GAM edf, which showed much smaller
differences between the two clusters (see Figures 2B
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Figure 2. Cluster group comparisons based on features and variables.
Note: “Int.” = outgroup interaction, “mad” = median absolute deviation, “mac” = mean absolute change, “lin” = linear slope,
“edf” = estimated degrees of freedom of an empty GAM spline model, “ar01” = lag-1 autocorrelation, “OCC"/“occ” = out-of-clus-

ter comparison

Within the “(B) Feature Focus” subplot, the ‘n (within ooc)’ is an out-of-cluster comparison of the within-person available measure-
ments for each variable; the ‘between ooc (mean)’ are also out-of-cluster comparisons but on a between-person level.
‘Measurements removed’ is the person-specific count of measurement occasions removed during the missingness handling and
‘Discrimination’ is the scale mean of daily discimination experiences (measured during the final survey).

and 3; please note that we offer readers an interactive
tool to assess the cluster differences for all features in
Supplemental Material A). This offers some informa-
tion on which features were most important in differ-
entiating the two extracted groups, but also shows
that with real-world data, not all features will have

enough range to distinguish people on all variables
(e.g., see the nonlinearity patterns in Figure 3; for a
more direct illustration of GAM edf differences, see
Bringmann et al., 2017).

Taking these two perspectives together, we can also
focus on individual features or variables, in particular.
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Figure 3. Comparison cluster differences by features and variables.

Note: The figure shows the differences between the clusters in the standardized features that were entered into the dimensionality
reduction (for each input variable). We display the median (panel A), the median absolute deviation (MAD, panel B), the univariate
linear slope (panel C), as well as the estimated degrees of freedom of the generalized additive model splines (GAM edf, panel D).
Please also note that as part of Supplemental Material A, we provide readers with an interactive selection tool to compare cluster

differences on all variables and features.

We, for example, see a strong difference in average
well-being, where participants in cluster 2 showed a
much lower median well-being over the time series
(difference=—0.52, t(153.87) = —3.34, p=0.001,
95%CI [-0.82, —0.21]). At the same time, in terms of
well-being ~ stability, both groups have virtually
identical average MAC statistics for well-being

(difference=—0.01, 1#(153.96) = —0.04, p=0.968,
95%CI [-0.32, 0.31]; also see Figure 2A). There are,
thus, variables and features that distinguish the clusters
better than others, and a combination of variables and
features lets us explore meaningful group differences in
more detail. In our case, we see that the central ten-
dency, variability, and linear trend are best at
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Figure 4. Cluster group comparisons over time.

Note: Subplot (A) displays the variable cluster means at every measurement occasion. The thinner lines represent all individual
time series. Subplot (B) shows the GAM spline for each cluster across the measurement occasions. The thinner lines present all

individual GAM Splines.

distinguishing a group with mainly positive experiences
(cluster 1) from a group with a more negative experi-
ence (cluster 2). We also see that our clusters line up
with the past literature on the importance of focusing
on simpler and more meaningful statistics (Bringmann
& Eronen, 2018; Dejonckheere et al., 2019; Eronen &
Bringmann, 2021).

In the second step, we look at the prototypical tra-
jectories of the clusters. For k-means clustering it is
often recommended to use the average over time of

the responses within the cluster (see Figure 4;
Niennattrakul & Ratanamahatana, 2007).°
Immediately striking are the mean differences, where
participants in cluster 1 had more meaningful and ful-
filling outgroup interactions and also consistently
reported more voluntary and cooperative interactions,

oIt is important to note, however, that direct comparability can be a
concern, and often times some subset selection or nonlinear alignment is
necessary (e.g., Gupta et al., 1996).



but fewer accidental and involuntary interactions. The
same cluster (cluster 1) also reported an increase in
need-fulfilling interactions over the 30-day period and
an increase in interactions that were representative of
the outgroup. Whereas the other cluster (cluster 2)
showed a decrease in voluntary, cooperative, and posi-
tive interactions over the 30days. This ‘deterioration’
cluster (cluster 2) also saw a decrease in general need
fulfillment but did not experience well-being over
30days (see Figure 3C). We also see that while
interaction representativeness, outgroup attitudes and
well-being are relatively stable for both clusters, the
deteriorating cluster (cluster 2) also showed substan-
tially higher variability and instability on most of the
other variables (although these effects are much
smaller; see Figure 4A).

Finally, we can also assess the clusters across other
individual difference variables (e.g., Monden et al.,
2022). This out-of-feature comparison allows us to
check for data artifacts, as well as to check whether
the developmental clusters are associated with impor-
tant social markers and individual differences. To
illustrate artifact checks, we added the number of
ESM measurements into the comparison and find that
participants in the deterioration cluster (cluster 2) on
average completed slightly more ESM surveys in gen-
eral and reported on more intergroup interactions in
particular (see » in Figure 2B). In our data exclusion
procedures, we ensured that the general time frame
and completion rates are similar for all participants,
and indeed the numbers in ESM measurements gener-
ally are largely similar (e.g., see n for well-being and
outgroup attitudes). However, the difference in the
reported number of interactions might indicate either
a clustering artifact or a meaningful difference. The
higher average number of interactions in cluster 2
could, for example, indicate a clustering artifact if the
variances are substantially larger due to the larger
samples (e.g., restriction of range in the smaller sam-
ple Kogan et al, 2006). In our case, this seems less
likely because one out of four variables did not differ
in terms of the MAD (i.e., our selected measurement
of the time series variance; see Figure 3 for an illustra-
tion). At the same time, however, the difference in the
number of experienced interactions might also indi-
cate a meaningful difference, where the deteriorating
cluster (cluster 2) on average reported more outgroup
interactions  (difference=1.03, #(150.83) = 7.50,
p <0.001, 95%CI [0.76, 1.30]), but these interactions
were less voluntary (difference=—1.04, 1(108.89) =
—7.71, p <0.001, 95%CI [-1.31, —0.77]), less meaning-
tul (difference=—1.00, t(136.40) = —7.16, p <0.001,
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95%CI [-1.28, —0.73]), and less positive (differ-
ence=—1.38, #(152.31) = —11.94, p<0.001, 95%CI
[-1.61, —1.15]). Thus, while more research is needed
for a conclusive test, our data seem to suggest that the
differences in reported interactions are a meaningful
difference between the clusters. Such a finding would
also be in line with past research highlighting the role
of negative intergroup interactions in explaining inter-
group relations (e.g., Barlow et al, 2012; Graf et al,
2014; Prati et al.,, 2021). A related validity check was
the inclusion of missingness handling, where we com-
pared the two clusters on the average number of
measurements removed as part of the missingness
handling. We find that the clusters did not differ sig-
nificantly in this metric, suggesting that missingness
handling did not affect the cluster separation (also see
Appendix B and Supplemental Material A).

To further illustrate the utility of assessing out-of-
feature individual differences, we also compared the
two samples in terms of the participants’ self-reported
discrimination experiences in the Netherlands (meas-
ured during the post-measurement). When looking at
the group comparison, we find that participants in the
deteriorating cluster (cluster 2) reported substantially
higher levels of everyday discrimination (differ-
ence=0.40, #(151.71) = 2.56, p=10.011, 95%CI [0.09,
0.71]; Figure 2B). Thus, both intensive longitudinal
(e.g., the sum of specific ESM measurements) and
cross-sectional variables (e.g., general discrimination
differences) that were not included in the original
clustering step can be used to explore and understand
the cluster differences in more detail.

The cluster separation then has a number of empir-
ical and practical applications. First, the clusters are
descriptive. With tens of variables, hundreds of partic-
ipants and thousands of measurements, singular
descriptive statistics are often not able to capture the
complex patterns that describe the data set. The fea-
ture-based clustering offers some direct insight into
the complexity within the data set. In our empirical
example, we, for example, see that participants are
meaningfully distinguished by a combination of high
(vs. low) central tendency, variability, and linear
trend. Second, the clusters identify important groups.
The adaptive and deteriorating groups offer starting
points for empirical exploration as well as practical
interventions. Researchers can start to explore what
exactly distinguishes the two groups further and gen-
erate new bottom-up hypotheses. Practitioners in the
field of resettlement can use group separation to iden-
tify people in need of assistance and can explore con-
textual factors that could contribute to the difficulties
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that some might face. In our illustration, we, for
example, found that participants in the deteriorating
cluster (cluster 2) reported less need fulfilling interac-
tions over time. Third, the feature-based approach is
flexible and meaningful. We were able to use a wide
range of time series features that have been central in
the ESM literature and were able to use them directly
to identify meaningful groups. For our empirical illus-
tration, we, among others, for example, chose to focus
on whether participants differed in their average well-
being (i.e., median), how much their well-being would
vary over time (i.e, MAD), and whether their well-
being would, on average, increase or decrease over
time (i.e., linear trend). Alternatively, for others cyc-
lical patterns might be more important—for example,
whether  well-being was higher on weekends.
Importantly, in any case, we did not need to translate
these dynamic features into probabilistic inference
models (e.g., VAR models) to cluster the participants.
To confirm the reliability and thoroughness of our
cluster analysis, we undertook several supplementary
analyses. These include evaluating the effects of how
we managed missing data, examining a reduced model
that excludes dynamic characteristics, and providing
an enhanced user interface for the investigation of dif-
ferent algorithms. Comprehensive information on
these analyses is documented in Appendix B (and full
results are available as part of Supplemental Material
A). In short, we find that the methods we used are
largely robust to different missingness handling deci-
sions, share a reasonable similarity to a more simpli-
fied model, and perform consistently well with
different parameter options (see Appendix B).

Discussion

The purpose of this article was to introduce feature-
based time series clustering as an amenable and trans-
parent approach to understanding between-person
differences in developmental patterns of psychological
time series data. Rather than relying on person-spe-
cific model parameters, which can be restrictive and
assumption-bound, we argue for the more flexible and
theoretically grounded approach of directly clustering
on relevant features of the time-series data. By lever-
aging the rich array of dynamic measures, the
approach offers the advantages of flexibility, few strict
assumptions, and high interpretability, thus potentially
enriching our understanding of heterogeneous psycho-
logical processes in intensive longitudinal studies.

To illustrate the practical utility of the approach,
we applied the method to empirical data from the real

world that highlight common ESM issues of multivari-
ate conceptualizations, structural missingness, and
nonlinear trends (e.g., Ariens et al., 2020). With the
real-world data, we followed a stepwise approach to
discuss key issues during input selection, feature
extraction, feature reduction, feature clustering, and
cluster evaluation. Within this stepwise approach, our
article shows that feature-based clustering offers a
meaningful fit for psychological research, as both the
time-series features and the analysis steps are well
established within the field, and statistical packages
are readily available. Time series features (such as
means or linear trends) are not only easy to extract,
but also hold conceptual meaning for psychological
data and can be chosen to address specific research
questions (also see Table 3).

Importantly, we show that feature-based clustering
is not only approachable but provides interpretable and
transparent insights about the grouped patterns. For
our example of migration experiences, the method was
useful to discern adaptive from more stressful experien-
ces and helped to contextualize divergent experiences.
We found that some variables, such as perceptions of
the quality of the interaction or the fulfillment of the
needs, were particularly important in distinguishing
the groups (see Figure 2A). Similarly, we found that
the central tendency (median), variability (MAD), and
linear trend (slope) were the most impactful dynamic
features in discerning the trajectory clusters (this is fur-
ther emphasized by a simpler model using only median
and MAD performing similarly well, see Appendix B.
Also see Figure 2B). Jointly, these two approaches
allowed us to identify a cluster that had generally posi-
tive and improving experiences, while the other cluster
had more negative and deteriorating experiences. We
were even able to further contextualize the results with
out-of-feature comparisons, where we found that the
group with the more difficult experiences also reported
substantially more discrimination experiences during
the post-test (see, e.g., Figure 2B). In summary, the fea-
ture-based approach enables us to identify directly
interpretable and meaningful groups, providing trans-
parency regarding the data input on which the clusters
are based.

Before we turn to the formal limitations of the fea-
ture-based clustering approach, we would like to
briefly address the role of multivariate time series fea-
tures. Multivariate features are those that capture con-
temporaneous or dynamic relationships between the
different time series within a person Kuppens and
Verduyn (2017). These features can include average
correlations and co-variances or the cross-lagged



correlation equivalents, as well as parameters that are
based on these (lagged) multivariate relationships
(e.g., VAR parameters). Recently, cross-lagged effects
have also been extracted from dynamic network mod-
els (e.g., see Wendt et al., 2020). We have chosen not
to include multivariate features within this illustration.
We have done so mainly because these features often
add a much larger computational load to the model.
As an example, for our example set of 12 variables,
even a simple lag-1 VAR model would add 156 add-
itional features (12 variables x (12 lagged parameters
+ 1 intercept)). That are more than twice as many
features per person than the six univariate features we
selected combined (6 x 12 = 72). While the feature-
based approach can technically handle the parameters
and the dimensionality reduction can deal with the
added number of dimensions, we seek to introduce
the method with approachable dimensionality reduc-
tion and clustering models, which are not ideal for
such a large number of input features (e.g., assessing
over 150 additional parameter differences during the
cluster interpretation). Alternative dimensionality
reduction approaches would make the interpretation
more straightforward, but their use is often much
more specialized and bound to specific cluster models
(e.g., methods that select the most influential features
instead of projecting to a lower-dimensional space, see
Supplemental Material C).”

It is important to note here though that the method
can directly accommodate multivariate features and
that such features are commonly of interest within the
literature. Particularly when theory testing models are
developed as part of the research process, already add-
ing the parameters as time series features often fits nat-
urally within the research cycle. However, given the
cautionary remarks here, we recommend a careful use
of model parameters in combination with other time
series features (i.e., either a more selective model-build-
ing process where not all variables are included or a
filter process). It should also be noted that the feature-
based clustering approach is inherently a multivariate
process in that the model takes into account the fea-
tures of variables and considers them jointly.

Limitations

While feature-based time-series clustering offers a
promising approach to understanding psychological

“Please note that this issue would be less prevalent with more global
measurements such as interdependence measures (e.g., network density)
or diversity measurements (e.g., Gini coefficient). Thesemeasures are
however also not without criticism (Bringmann et al., 2019).
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time-series data, it is not without limitations. In par-
ticular, feature-based clustering has both usability-
and robustness limitations across its multiple steps.

In terms of convenience, each of the steps requires
users to make an informed decision about the choice
of method and algorithm. These additional steps of
decision-making and transparency increase the initial
barrier to entry. We hope that our empirical illustra-
tion, the sample code, and the custom functions, offer
a relatively generalizable procedure that showcases the
ease of use, but clustering, unfortunately, does not
offer a universal one-size-fits-all solution.

In terms of methodological robustness, the variety
of methods in each of the steps also brings with it the
potential inconsistent results between methods (e.g.,
Bastiaansen et al., 2019). A different set of variables,
time series features, or a different clustering algorithm
might have resulted in substantially different cluster
assignments. While the variety and diversity of meth-
ods are helpful in finding options even for more com-
plex types of data, different algorithms often offer
different results (e.g., Keogh & Lin, 2005). And even
when patterns produce robust clustering solutions
across algorithms, individual methods might still have
their idiosyncratic shortcomings (Xu & Tian, 2015).

As an illustration, the choice of time-series features
to extract from the time-series data is a critical step
that can significantly influence the results of the clus-
tering process. In the current example, we chose to
extract time series features such as medians, autocor-
relations, and linear trends, which are psychologically
and conceptually meaningful in interpreting our time
series clusters. However, this selection is not exhaust-
ive and may not capture all relevant aspects of the
time series data. For example, we did not consider
attributes like periodicity or spectral density, which
could shed light on the cyclical patterns of the data.
The choice of time-series features largely hinges on
the researcher’s specific research question and
assumptions about the data, thereby injecting a level
of subjectivity into the process. Similar challenges
arise with the choice of the clustering algorithm or
the cluster illustration. These challenges are not
unique to feature-based clustering, rather they are
common to all clustering approaches (Horne et al,
2020; Liao, 2005). However, it is important to remem-
ber that multi-step data-driven approaches are par-
ticularly vulnerable to the impact of the researchers’
degrees of freedom (Beijers et al., 2022). Additionally,
during our additional analyses (see Appendix B),
when we evaluated the simplified model (only includ-
ing central tendency and variability), the cluster
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results were very similar to those of the main analysis.
While there were some nuances to this finding, the
results highlight that the use of complex dynamic
parameters should be directly linked to the research
question and should only be added if the dynamic
patterns are to be expected within a given data set.

One potential remedy to many of the limitations of
feature-based clustering lies in transparent and repro-
ducible reporting of the user’s decisions for each of
the analysis steps. In our own description of the
method, we have provided a range of options and
have motivated our own choices to facilitate the trans-
parency of the individual steps and decision moments.
We have additionally created Supplemental Material C
to illustrate the decision process of different methods
and offer Supplemental Material B to explore different
options. Beyond the structures and resources provided
here, van de Schoot et al. (2017) have proposed an
extensive checklist for latent trajectory studies. Most
of their recommendations and reporting guidelines
also apply to feature-based clustering and might even
offer a template for researchers who want to pre-regis-
ter their analysis procedures (also see Kirtley et al.,
2021).

Adding to the discussion on methodological limita-
tions, it is also crucial to consider the impact of data
granularity on the classification accuracy of feature-
based time series clustering. The effectiveness of clus-
tering algorithms is not only contingent on the choice
of variables and algorithms, but also significantly
influenced by the number and quality of data points
per individual. Research indicates that longer time ser-
ies can enhance the clustering outcome by providing a
more detailed view of the underlying patterns (Liao,
2005; Montero & Vilar, 2014). However, the min-
imum number of data points required for accurate
classification remains a subject of ongoing investiga-
tion, and existing studies suggest that this threshold
may vary depending on the complexity of the data
and the features used in the analysis (Aghabozorgi
et al., 2015). This aspect underscores the necessity for
a careful and nuanced approach to feature selection
and algorithm application and the continued need for
research to optimize the balance between data com-
plexity and clustering accuracy.

Implications

Notwithstanding the limitations, we believe that fea-
ture-based clustering offers new potential for research-
ers and practitioners to assess psychological time
series.

For researchers, the feature-based time series clus-
tering approach offers a number of compelling impli-
cations. The flexibility and interpretability mean that
feature-based time series clustering can be applied to
a wide range of data types and research questions.
The method can be used to contextualize preexisting
groups by extracting their time series features and
comparing a data-driven approach with existing group
labels. Furthermore, the feature-based approach can
also be used as an exploratory, descriptive, or predict-
ive approach to intensive longitudinal data. By reduc-
ing the complexities of ESM data to important and
meaningful patterns, a bottom-up approach can aid in
the creation of more embedded theories and interven-
tions, or simply in describing the often complex and
heterogeneous data researchers collect during ESM
studies.

Beyond the direct academic use, the feature-based
time series clustering approach also addresses practical
and applied uses. For practitioners with appropriate
training, the approach offers a practical and grounded
method for dealing with the challenges of complex
and messy data from multiple patients, customers, or
users. The approach not only directly deals with
dimensionality, missingness, and time scales in the
time series, but the interpretability and transparency
aspects offer particular utility in applied settings.
Additionally, the approach is also more readily access-
ible to practitioners who may not have extensive
training in complex data analysis techniques. We pro-
vide practical algorithm overviews and readily avail-
able code for data preparation, analysis, and
interpretation. The ability to identify and interpret
meaningful patterns in time series data can have sig-
nificant implications for practice, particularly in fields
such as clinical, organizational, or social psychology,
where understanding individual differences and devel-
opmental patterns can inform interventions and deci-
sion processes.

In conclusion, we show that feature-based time ser-
ies clustering can effectively reduce the complexities
of psychological time series data to important and
meaningful patterns. It does so with more flexibility,
versatility, and less strict assumptions than many of
the commonly used approaches to date. As such, the
feature-based  time series clustering approach
addresses key challenges in the field and aids research-
ers and practitioners in describing and exploring pat-
terns across participants. We hope that the method
adds to the methodological toolkit of ESM researchers
and promotes the creation of more embedded meth-
ods, theories, and interventions.
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Appendix A. ESM data challenges and
promises

A1. Promises

Time series clustering has a number of conceptual use
cases with psychological data. Prime among them is the
ability to reduce the time, variable, and person complexity
by extracting and organizing participant-level structures.
These reduction and structuring qualities can be essential
in detecting phenomena and extracting more abstract func-
tional principles (Eronen & Bringmann, 2021). These phe-
nomena and principles can be meaningful differences that
distinguish participants in different clusters, as well as
important patterns, trends, and relationships that partici-
pants share within a cluster (e.g., Schrodt & Gerner, 2000).
Once distinct groups and patterns have been identified,
researchers can examine the extent to which these within-
group and between-group structures are associated with
other variables of interest, such as personality traits, demo-
graphic characteristics, or other psychological constructs
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(e.g, Monden et al., 2022). By detecting meaningful and
robust structures and patterns, time series clustering can,
thus, be used to inform the development of robust theories
as well as targeted interventions and therapies for
individuals, for example, with mood disorders and other
psychological conditions (e.g.,, Borsboom et al, 2021;
Eronen, 2020).

However, while clustering can be incredibly useful, arriv-
ing at these clusters critically depends on two core chal-
lenges. First, time series need to be made comparable in
order to identify key (dis)similarities and second, compar-
able (dis)similarities need to be accurately distinguishing
into different groups (e.g., Aghabozorgi et al., 2015). In
practice, most psychological time series cannot be compared
based on the raw data itself. This is the case because in
most cases the raw time series include too many data
points—sometimes referred to as the dimensionality curse
(e.g., Altman & Krzywinski, 2018)—and, more importantly,
individual time points are oftentimes not directly compar-
able between participants in psychological data and would
lead to misspecifications (e.g., Faloutsos et al., 1994). While
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such issues can be avoided with transformations for highly
regular, controlled, and comparable time series such as EEG
data (e.g., Huang & Jansen, 1985), most ESM researchers
are usually not interested in directly comparing individual
timepoints between participants but are interested in devel-
opmental patterns and relationships.

As a result, most psychological time series are summar-
ized via a numerical representation and these numerical
summaries are then comparable and used to cluster partici-
pants (e.g., Timmerman et al, 2013; see Supplemental
Material C). Ideally, the representations that summarize the
original time series data should (1) capture the original data
accurately without loosing too much information, and (2)
should be conceptually meaningful (van der Maaten et al.,
2009). Extracting accurate and meaningful representations
of the time series can be essential for understanding what
goes into the clustering algorithm (i.e., assists with explain-
ability) and can be crucial in making sense of the final clus-
ter output (i.e., assists with interpretability; e.g., Kennedy
et al., 2021).

A2. Challenges

We will briefly consider which challenges modern ESM data
introduce and what qualities are called for in an extension
of the clustering repertoire. We particularly highlight issues
of dimensionality, non-equidistant or missing measure-
ments, an interest in non-stationary trends, as well as
inconsistent/diverse time scales.

Concerning dimensionality issues, especially more
abstract psychological experiences often need a wider var-
iety of measurements to be captured adequately. Today, few
clinical conditions are captured with a single symptom
measure (e.g., Cramer et al, 2016), emotions are rarely
assessed in isolation (e.g., Reitsema et al.,, 2023), and socio-
cultural experiences are now widely considered to be multi-
modal (e.g., Kreienkamp et al., 2024). This also means that
modern analysis techniques increasingly need be able to
accommodate an increased focus on multivariate develop-
ments. At the same time, however, an increase in the num-
ber of considered variables tends to come at the expense of
computational load for model estimations, and clustering
models may not converge (the aforementioned dimensional-
ity curse; Altman & Krzywinski, 2018). A modern time ser-
ies clustering technique should consequently be able to
summarize and structure multivariate phenomena without
running into computational load issues.

Another common type of data are measurement
regiments that collect data in irregular time intervals (i.e.,
non-equidistant measurements). Common are, for example,
procedures where participants are asked to respond at ran-
dom times throughout the day (i.e., signal-contingent) or
following specific natural events of interest (i.e., event-con-
tingent; see Myin-Germeys et al., 2018; Shiffman et al,
2008). Under such conditions data tends to violate the equi-
distance assumption that is expected by many time series
models (Hamaker & Wichers, 2017). Smaller issues of non-
equidistant data can be avoided with transformations (e.g.,
dynamic time warping, Berndt & Clifford, 1994) or newer
modeling procedures (e.g., continuous-time models; de
Haan-Rietdijk et al., 2017) but for many analyses, including

some cluster approaches, non-equidistant measurements
remain a prevalent issue.

Structural missingness remains an even more strenuous
challenge. Structural missingness occurs when data is miss-
ing because it logically cannot be collected (as opposed to
probabilistically missing data; Little & Rubin, 2020; McLean
et al., 2017). Often, however, researchers might want to
include variables in their models that are not available
under all conditions. Follow-up and event-contingent ques-
tions are a common example in ESM studies. Researchers,
for example, ask about the frequency, intensity, or duration
of symptoms—but only if a symptom was present (Kivela
et al.,, 2022). Such approaches become specifically critical in
cases of sensitive questions such as questions about suicidal
ideation or other potentially trauma-inducing questions
(e.g., Glenn et al., 2022). The most common practice for
structurally missing data is to either exclude the variable or
any measurement that has no structurally missing data (e.g.,
Lavori et al., 2008)°—neither option suits a research ques-
tion that wishes to include variables with common struc-
tural missingness, such as event-specific or follow-up
questions. In short, new clustering approaches should be
able to deal with structurally missing data in order to
address modern ESM data.

When it comes to studying developmental trajectories,
psychological researchers are often also interested in nonsta-
tionary processes because they are more representative of
the complex, dynamic patterns of the human mind. In
psychology, nonstationary processes are typically used to
study phenomena such as cognitive development (Quartz &
Sejnowski, 1997), decision-making (Ratcliff et al., 2016), and
emotion dynamics (Bringmann et al., 2018). These processes
are often characterized by changes in the underlying statis-
tical properties of the data over time, such as changes in
the mean or variance (Molenaar et al., 2009). Especially
when considering changes in mean levels, researchers are
often interested in nonlinear changes because they describe
human functioning better. For example, in decision making
people might switch between choices (Ratcliff et al., 2016),
or patients reducing medication might experience mood
swings (Helmich et al., 2020). Similarly, psychologists are
often also interested in how variances change over time.
This is especially the case because several changes in an
individual’s variance have been found to be indicative of
critical changes, including depression relapses and symptom
shifts more generally (e.g., Schreuder et al., 2020; Wichers
et al., 2020). There is, thus, also a need for time series clus-
tering algorithms that capture nonstationary processes,
including nonlinear trends.

Psychological time series often exhibit complex patterns
and relationships that can change over different time scales.
For example, a time series of daily mood ratings may show a
weekly pattern, with higher ratings on the weekends and
lower ratings during the week. At the same time, the series
may also exhibit a longer-term trend, with overall mood lev-
els increasing or decreasing over the course of several months
or years (e.g., Ram et al, 2014). These different time scales
can be studied separately or in combination, using different

8This is the case because the most commonly used models require
complete data (Schafer & Graham, 2002) and structurally missing data
cannot be imputed as it logically does not exist (e.g., Lavori et al., 2008).



statistical techniques and modeling approaches (Bertenthal,
2007; Jeronimus, 2019). Different time scales can become an
even more difficult issue when different variables in a model
develop on different time scales (Bringmann et al, 2022).
Different time scales are thus also a concern clustering
approaches should be able to address.

It is this background of the common challenges of cur-
rent ESM data, upon which we propose to consider feature-
based clustering. The flexibility of using a wide variety of
time series features that represent the important develop-
mental patterns allows users to circumvent many of the
issues with multi-dimensionality, non-equidistant or missing
measurements, non-stationary trends, as well as diverse
time scales.

Appendix B. Validation analyses

To ensure the validity and robustness of our cluster ana-
lysis, we conducted a number of additional analyses. In par-
ticular, (1) we assessed the impact of our missingness
handling, (2) we test a simplified model without dynamic
features, and (3) we offer an extended user interface to
explore alternative algorithms. The details of these analyses
are reported in full detail as part of Supplemental
Material A.

B1. Missingness handling

During the variable preparation step, we sought to make
the time series comparable and iteratively removed all
measurement occasions and participants that had more
than 45% missingness. Although this procedure works well
for users who wish to use clustering in combination with
other parametric models, the 45% threshold might be too
conservative if the analysis stands on its own. To test
whether this is indeed the case and whether our analysis
approach is robust to variations in the missingness hand-
ling, we re-ran the main analyses with several more liberal
completeness thresholds. We particularly used 0%, 5%, 10%,
15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, as well as the
original 55%; i.e., allowing up to 100% missingness). To
compare the results from the different missingness thresh-
olds, we look at the optimal number of clusters k as well as
the similarity of the extracted cluster solutions. We find
that with almost all missingness thresholds, the optimal
number of clusters is 2. The only exceptions are at the
thresholds of 0% = 3, 10% = 5, and 25% = 3.

We then compare the clustering results obtained at dif-
ferent thresholds using the Adjusted Rand Index (ARI),
which quantifies the similarity between two data clustering
assignments. By calculating the ARI for every pair of
threshold-based clusterings, we can assess how consistent
the cluster assignments are across varying thresholds, even
when the number of clusters or their composition changes.
This comparison helps us understand the stability of our
clustering solution and identify which thresholds yield simi-
lar or distinct grouping patterns, providing valuable insight
into the robustness of our clustering approach against par-
ameter variations. The ARI is normalized so that —1 indi-
cates perfect disagreement, 0 indicates random (or chance)
clustering, and 1 indicates perfect agreement. We find that,
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except when the optimal solution is larger than two, the
cluster similarity is very high (the mean ARI is 0.743 and
the mean ARI for all k =2 is 0.892). In short, the number
of clusters seems to be a much bigger decision than the
cluster assignment itself. Additionally, the high ARI seems
to suggest that the PCA and k-means approach for our data
is extremely robust to changes in the missingness handling
of the raw time series (as long as the number of clusters is
the same).

B2. Simplified model

To ensure that the more complex and potentially unreliable
dynamic features (e.g., Dejonckheere et al., 2019; Neubauer
& Schmiedek, 2020; Wang & Grimm, 2012; Wenzel &
Brose, 2023) are necessary to begin with, we additionally
check whether a much simpler model with only the central
tendency (median) and variance (MAD) would perform
similarly well and would result in a similar separation of
the clusters. To compare the model with the main illustra-
tion, we assess the performance and similarity of the mod-
els. In general, we find that both models perform well
across several performance metrics. Additionally, we find a
relatively high adjusted Rand index (ARI = 0.758)—indicat-
ing that the simplified model separates the two clusters in a
similar manner. This similarity is not necessarily surprising
given the strong weight of median and MAD in distinguish-
ing the original clusters. Thus, indeed, it is in line with the
literature that more complexity is not always necessary (also
see Bos et al., 2019).

However, there are two caveats to this preliminary ana-
lysis. First, for clinical datasets that look at symptom
improvements, a non-stationary trend might be crucial to
consider as part of the research question and would prob-
ably be present in the data (the same would be true for sud-
den break-points for episodic conditions). Including more
complex dynamic features might thus be crucial for some
research questions and will likely depend on the type of
ESM data. Second, when we look at the differences in more
detail, we see that the original cluster did take the add-
itional features into account in discerning the groups. As an
example, the main analysis additionally separates the groups
by the linear trend (contrasting an improvement to a deteri-
oration group)—this is less the case for the simpler cluster
approach. Arguably, the impact is not as strong for all fea-
tures and for all variables, but the inclusion of dynamic
parameters offers nuanced insights into the temporal pat-
terns and variability not captured by mean levels alone.

B3. Alternative models

Two key decisions during the feature-based clustering
approach involve choosing a dimensionality reduction and
clustering approach for a given set of data. While a full intro-
duction and evaluation of the many available algorithms is
beyond the scope of this paper, we would like to provide
some additional insight into the variety of different
approaches. To this end, we created an additional resource
for readers to interact with the illustration data. As part of
this interactive web application, we offer users the option to
explore several of the most commonly used dimensionality
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and clustering approaches. We have selected four dimension-
ality reduction algorithms (i.e., PCA, t-SNE, Autoencoders,
and UMAP) and three clustering algorithms (i.e., k-means,
DBSCAN, and Hierarchical agglomerative clustering). For
each of the methods, we have developed an interface that lets
users explore the key parameter settings of the algorithms.
To provide an introduction to the diversity of possible com-
binations, we have pre-calculated the performance of the
algorithm combinations for common parameter values
(showing users a comparison of up to 18,557 model combi-
nations). In the second panel, readers then have the oppor-
tunity to explore the cluster results based on their own
interaction with the different parameters.

Additionally, we offer users the option to use an unstan-
dardized feature set or the full feature set in cluster analy-
ses. Both of these options are generally not recommended,
and the web application aims to give users a more direct
understanding of the impact of these decisions. As part of

the performance comparison, the application also showcases
the sensitivity of different algorithms to highly dimensional
data. The DBSCAN algorithm, for example, fails to con-
verge for highly dimensional data (or assigns all points as
noise; i.e., the dimensionality curse) and overfits in some
parameter ranges. Similarly, hierarchical clustering under-
performs with the single linkage method, but only for
t-SNE and UMAP dimensionality reduction. The web appli-
cation thus offers a supplementary resource for readers who
wish to explore different analysis approaches within a
guided and curated environment. The web application is
available as part of our Supplemental Material B or directly
at www.tsFeatureClustR.shinyapps.io/webapp/. The full code
of the web application is openly available through our
GitHub repository (Kreienkamp et al., 2024). Additionally,
we offer a further contextualization of the methods and
some example guidance on deciding between them in
Supplemental Material C.
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