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ABSTRACT

Spatial analytic approaches are classic models in econometric literature, but relatively new
in social sciences. Spatial analysis models are synonymous with social network auto-regres-
sive models which are also gaining popularity in the behavioral sciences. These models
have two major benefits. First, dependent data, either socially or spatially, must be
accounted for to acquire unbiased results. Second, analysis of the dependence provides rich
additional information such as spillover effects. Structural Equation Models (SEM) are widely
used in psychological research for measuring and testing multi-faceted constructs. So far,
SEM that allow for spatial or social dependency are limited with regard to their flexibility,
for example, when estimating nonlinear effects. Here, we provide a cohesive framework
which can simultaneously estimate latent interaction/polynomial effects and account for
spatial effects with both exogenous and endogenous latent variables, the Bayesian Spatial
Auto-Regressive Structural Equation Model (BARDSEM). First, we briefly outline classic auto-
regressive models. Next, we present the BARDSEM and introduce simulation results to
exemplify its performance. Finally, we provide an empirical example using the spatially
dependent extended US southern homicide data to show the rich interpretations that are
possible using the BARDSEM. Finally, we discuss implications, limitations, and future research.
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Behavioral research involving spatially dependent data
has recently received increasing attention. Spatial
dependence occurs when cases have reciprocal affects
on one another leading to unaccounted for correlations
in space (Dehling & Philipp, 2002). In contrast to tem-
poral dependence in which a case’s scores exhibit auto-
correlation and thus earlier measurements affect later
measurements, spatial dependence can exhibit recipro-
cal effects. This reciprocal impact refers to a scenario
where cases measurement affects nearby cases, who
then affect the original case. For example, crime rates
in neighboring counties are spatially dependent because
crime spills over between nearer counties and less to
further counties (Andresen, 2006; Willis, 1983).
Similarly a university’s tuition both affects and is
affected by the tuition of neighbor universities
(McMillen, Singell, & Waddell, 2007).

These scenarios are different from unidirectional
spatial effect which can be accounted for with more
traditional approaches like random effects. For
example, a nearby airport can negatively affect hous-
ing prices, but the housing prices will not affect the

airport. This effect can be represented by a simple
vector of distances each house has to the airport.
However, spatial effects between cases are not as sim-
ple and require a more complicated approach, which
we will discuss further.

In behavioral situations, dependence can occur as a
function of social groups and interactions between peo-
ple. For example, in a study on contraceptive opinions
(Valente et al., 1997) participants were socially engaged
with one another thus they directly impact each others
opinions of contraceptive use. In another example
Barnett et al. (2014) investigated peer network influ-
ence of substance abuse and physical exercise in a resi-
dence hall setting. Mercken, Snijders, Steglich, and de
Vries (2009) measured the magnitude of peer influence
on smoking behaviors in a network of adolescents.
This form of dependence is commonly referred to as
social dependence, or social network dependence.

In order to arrive at valid interpretations in each of
these examples, whether spatial or social, a statistical
model needs to take this dependency into account.
Models that ignore the spatial or social dependence

© 2021 The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-
nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed,

or built upon in any way.



violate underlying assumptions of
resulting in inaccurate predictions.

independence

Application of spatial auto-regressive models in
behavioral sciences

Spatial models have the potential to play a strong role
in the behavioral sciences. They allow for methodo-
logical designs which would not be advised under
traditional statistical approaches. Further they grant
the ability to hypothesize unique research questions
related to different forms of spatial/social dependence.

The behavioral sciences frequently aim to explain
the role of cognition and behavior on relevant per-
sonal and societal outcomes. To accomplish this
behavioral researchers are constrained to randomly
sample cases from a population. This is done to
accommodate the strict assumption of independence
which is present in traditional statistical models. In
short, independence is achieved if cases do not impact
one each other’s measurements, or, share unmeasured
relationships with one another.

In some scenarios the independence assumption
makes study of the phenomena impossible. For example,
in longitudinal research cases scores across time are not
independent. For example, my weight today will influ-
ence my weight at future measurements. Ignoring this
temporal dependence will yield biased statistical esti-
mates. Longitudinal approaches are utilized to take this
auto-correlation into account resulting in conditional
independence. This has two major benefits, first, due to
the conditional independence, unbiased estimates are
achieved. Second, additional information is gained from
the model regarding the magnitude and direction of
dependence. This is a major benefit as it provides
researchers the ability to establish unique hypothesis
regarding the dependence in time.

In economics researchers are frequently unable to
randomly sample cases. Researchers commonly use
existing geographic units as cases. In this scenario
independence can never be achieved. For example
consider an investigation of the cost of living where
all European countries are cases. It is reasonable to
assume that nearer countries will have factors which
influence their neighbors costs of living. For example,
trade, culture and policy are likely more similar in
nearer countries. This form of dependence is unique
in that country A has an impact on country B and
vice versa. To account for these factors, econometri-
cians utilize spatial regression approaches to account
for the dependence present in spatially oriented cases.
An added benefit is the addition of estimates of the
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dependence within space. Similar to longitudinal mod-
els, this provides econometricians the ability to estab-
lish hypothesis related to the spatial dependence itself.

Dependence can manifest itself in different forms
depending on the phenomena, spatial models have
been developed to account for these varying forms. A
common situation occurs when the dependent vari-
able is spatially dependent, in this scenario the Spatial
Auto-Regressive (SAR) model is appropriate (We dis-
cuss this model in detail in the next section). It could
also be the case that dependence is only measurable
after accounting for the effect of predictor variables,
in this case a Spatial Error Model is appropriate
(SEM, not to be confused with Structural Equation
Modeling [SEM]). It could be the case that both are
present simultaneously in which case the Spatial
Autoregressive Combined (SAC) model would be
appropriate. For more details on the different spatial
specifications see LeSage (2008), we will focus on the
SAR specification moving forward.

Spatial modeling has great potential for application
in the behavioral sciences. First, the study of societal
level effects such as culture can be explored in a spa-
tial context. Hypothesis can be established regarding
the magnitude of the impact geographic units have on
each other. The second benefit, which may have
greater application in behavioral sciences substitutes
physical distance for other forms, such as social dis-
tances. Consider the earlier mentioned example which
investigated social influence on contraceptive opinions
(Mercken et al, 2009). In opinion formation it is a
reasonable process to anticipate person A will impact
the opinion of person B, and vice versa. Scaling this
up to a larger network of people, the influence of per-
son A to B, my indirectly impact person C through B.
In this work, physical distance is substituted for social
influence. This allows researchers to hypothesize about
the reciprocal influences across the network of related
persons. Finding a high level of dependence would
suggest that the phenomena is susceptible to social
influence, whereas a low level would indicate the phe-
nomena is largely independent of social influence, and
thus personal factors influence the opinion more.

Spatial regression approaches

In the econometric and behavioral sciences, two very
similar approaches were developed to accommodate
dependency. In econometric literature, the Spatial
Auto-Regressive (SAR) model (LeSage & Pace, 2009)
is a classic approach. In the behavioral sciences the
Social Network Auto-Regressive (SNAR) model
(Kincaid, 2000) has received increased attention.



92 (&) Z.J. ROMAN AND H. BRANDT

While these approaches have different names, they
both incorporate the same statistical principals. Both
models account for the dependence using an Nx N
weight matrix W that contains information about the
distances (either physical or social) between the i=
1...N cases. The closer case A is to B the larger the
respective element of W. This provides the magnitude
of dependence between cases. The standard SAR
model is given by

y=pWy+ pX +e¢ (1)

where y is a dependent variable, X is a design matrix
for the predictors summarized by a vector of regres-
sion coefficients f, € is the assumed normally distrib-
uted residual, and the parameter p is a spatial
coefficient that provides information about the
strength of the dependence present in y after account-
ing for the effects of the predictors (LeSage, 1999;
LeSage & Pace, 2009).

The difference between SAR and SNAR is how the
dependence between cases is operationalized. In spatial
settings, dependence is measured by physical space; in
social network models, measures for the social influ-
ence between persons is frequently used. In social set-
tings, many options exist depending on the phenomena
of interest. For example, frequency of interaction, trust,
or a composite of influence measurements can be used
(for a detailed discussion of production of W in net-
work settings, see Leenders, 2002).

Additional specifications of similar spatial models
were developed, such as error lag and predictor lag
models. These are useful extensions of the SAR model
for specific circumstances. For example, the predictor
lag model exchanges the lag of the dependent variable
for (for more details see LeSage, 2014; LeSage & Pace,
2009; Pace & LeSage, 2008).

A few limitations of spatial regression models
regard the approaches reliance on observed variables.
First, measurement error, of the predictors is not
taken into account. In behavioral sciences, this is
often problematic because tests or questionnaires
might have a low reliability. As a consequence regres-
sion coefficients could then be underestimated.
Further, models applied to psychological measure-
ments, constructs are often complex and need a meas-
urement model that accounts for this complexity (e.g.,
by modeling situation or method effects) (McDonald
& Mulaik, 1979).

Spatial latent variable approaches

Latent variable approaches such as Structural
Equation Model(s) (SEM) are commonly used in the

social sciences when measurement error needs to be
addressed or constructs are more complex (Bollen,
1989). SEM allows for a cohesive and flexible frame-
work for behavioral scientists to operationalize latent
factors, account for measurement error, and make
predictions with latent constructs. Further, SEM have
provided a means of incorporating nonlinear effects
like polynomial effects (e.g., Wall & Amemiya, 2000),
latent interaction effects (e.g., Lee, Song, & Tang,
2007; Kelava & Brandt, 2014; Klein & Moosbrugger,
2000), or nonparametric splines (e.g., Guo, Zhu,
Chow, & Ibrahim, 2012; Song, Lu, Cai, & Ip, 2013),
all of which increase the utility of SEM in modeling
complex behavioral phenomena.

However, limitations of the framework remain. In
particular, the traditional framework assumes inde-
pendent data and cannot directly accommodate
dependent data scenarios. While the analysis of spatial
data has received a lot of attention in observed vari-
able models, only few developments were introduced
for SEM. and Wang (2003) developed an extension of
exploratory factor analysis (EFA) to control for spatial
dependence effects. They provide a method of esti-
mating factor covariance matrices in the presence of
spatial dependence measured via distance. However,
this approach does not allow predictions to be made
regarding endogenous latent variables (structural
equations), such as SEM provides.

Stakhovych, Bijmolt, and Wedel (2012) developed a
confirmatory factor analysis (CFA) approach to mod-
eling dependent data with factor They
extracted factor scores to estimate a secondary model
to measure spatial auto-correlation across higher order
groups (e.g. country level data with auto-correlation
estimates within each country).

Oud and Folmer (2008) developed a class of SEM
which includes latent spatial effects. They provide a
frequentist implementation and derive a modified
likelihood function. This class of models is limited as
it includes latent endogenous variables but not latent
exogenous variables, only observed endogenous indi-
cators. Further, due to the frequentist estimation, the
spatial lag is an additional latent variable estimated
from lagged observed indicators which is less parsi-
monious than a directly lagged latent variable.

None of these spatial SEM implementations are
able to estimate a complete SEM including latent
exogenous and endogenous variables. In addition,
none of the methods account for more complex mod-
els that include, for example, latent interaction or
polynomial effects. The derivation of such models
with factor score methods or maximum likelihood

Scores.



based approaches is not straightforward and needs
special attention (see such approaches for nonlinear,
non-spatial SEM; e.g., Klein & Moosbrugger, 2000;
Wall & Amemiya, 2000). Bayesian methods have
become a very powerful statistical approach to a wide
range of complex methods, including multilevel mod-
eling (Asparouhov & Muthén, 2016), longitudinal data
analyses (Asparouhov, Hamaker, & Muthén, 2017;
Schultzberg & Muthén, 2018), and latent variable
modeling in general (e.g., Arminger & Muthén, 1998;
Fox, 2010; Fujimoto & Neugebauer, 2020; Lee, 2007).
Bayesian SEM have been introduced some time ago,
and their application has recently become more feas-
ible with new user-friendly statistical packages (e.g.,
Asparouhov & Muthén, 2010; Merkle & Rosseel,
2018). They have become a standard tool for complex
models, because they produce computationally feasible
alternatives to frequentist methods. Bayesian latent
variable methods that can account, for example, non-
linear effects have not been extended to spatially
dependent data with latent effects (e.g., Brandt,
Cambria, & Kelava, 2018; Kelava & Nagengast, 2012).
In addition Bayesian methods provide a more parsi-
monious approach to that of Oud and Folmer (2008),
in that the latent factor can be directly lagged as fac-
tor scores are directly sampled.

Scope and outline

Behavioral and econometric approaches to spatial
modeling can benefit from a combined approach of
spatial effects and SEM. Current methods are unable
to accommodate both simultaneously. The aim of this
paper is to present a Bayesian Auto-Regressive
Dependence Structural Equation Model (BARDSEM)
which can accommodate spatial and network depend-
ence. The new framework combines the advantages of
SAR models and nonlinear latent variable models. It
extends the possibilities to model spatially or socially
dependent data in complex data situation with
latent variables.

In the next section, we will present the BARDSEM.
We will discuss its underlying assumptions and inter-
pretation. We will provide details on its implementa-
tion in the Bayesian framework. Then we investigate
its performance in a Monte-Carlo study. We will illus-
trate the framework with an empirical analysis of the
popular US southern homicide data (Land et al., 1990;
Messner et al., 1999). Finally, we will provide guide-
lines and recommendations for its application as well
as discuss limitations and future research.
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Bayesian auto-regressive dependence
structural equation model

We now present the BARDSEM, a novel framework
for fitting Bayesian auto-regressive dependent SEM.
The model expands the framework by Stakhovych
et al. (2012) and Oud and Folmer (2008) to include a
latent variable equation which can include exogenous
latent predictors in the presence of spatial or social
dependence effects. In addition, it allows researchers
to include flexible auto-regressive dependence effects
in the structural level with a lag of either observed or
latent endogenous variables.

Model specification

The BARDSEM  accommodates auto-regressive
dependence effects with an observed weight matrix W
and latent exogenous and endogenous variables. The
auto-regressive effect is specified as a lag of the
endogenous variable in the structural level equation.
We will focus on a single latent endogenous variable
n to keep model presentation simple. The extension to
more than a single endogenous latent variable is
straightforward and follows that of traditional SEM.
The measurement model for j=1,...J indicators for
the endogenous variable # and k= 1...K indicators
for the m =1..P exogenous latent variables &=
(&, ...,ép)/ is given by

& ~ N(0,02)
ok ~ N(0,03)

Vi = Ty + ;L)/jn + €j>

2
X = Tk + A& + Ops @

where 7,; and 7, are intercepts for the j-th and k-th
indicator, respectively, 4,; is a factor loading for indi-
cator y; and Ay is a P-dimensional vector of factor
loadings of x; on the P exogenous variables. ¢; and d;
are normally distributed residuals with finite variances
o2 and o3, respectively. Standard identification rules
for the measurement model apply.

The BARDSEM latent variable model with inter-
action and quadratic effects for one endogenous latent

variable n and P latent exogenous variables is specified

by

n=o+pWn+yE+EQE+{ (~N(0,6}) (3)

where « is an intercept and { is a normally distributed
residual with variance o‘%. € is a P x 1 matrix of
exogenous latent variables and y is the 1 X P matrix
of regression coefficients summarizing the effects of &
on 1.  is a P x P upper triangle coefficient matrix
summarizing the specified product terms relationships
with # (Klein & Moosbrugger, 2000). For example,

y, is the effect of the product term of &, and &, @y,
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is the effect of the term & that represents a quadratic
relationship between ¢; and 5. A latent endogenous
spatial lag is introduced by the term pWu. p is a sca-
lar summary which indicates the strength of the auto-
regressive dependence present in 5. W is the Nx N
exogenous  weight  matrix  of  dependence
between cases.

Bayesian estimation

The BARDSEM was designed to be estimated with
Bayesian Markov Chain Monte-Carlo (MCMC) tech-
niques. The exogenous latent variables & are assumed
to be multivariate normal distributed with

& ~ MVN(p, %) @)

where u: is the mean vector and X represents a
covariance matrix.

Prior distributions are specified in line with recom-
mendations by Gelman et al. (2013) for SEM parame-
ters and Lee et al. (2007) for p. Priors are given by

Yy ~ N(,u},m,af,m), for m=1...P

Ot~ N(Uoomm> Oy )» fOr m = 1...P,
m=1.Pm<m

p~ Ul-1,1]

o~ N(urx’ai)

O~ IKi(p,)

Ay~ N(y,03,), forj=1.]
Jexkp ~ (,uMkp,o')xkp) for k=1..K,p=1..P
Tyj ~ N(pyy07,), forj=1.J
Tyk ~ N(,urxk, o2,), for k=1.K
oy~ C(0.B; Bi,) ., for p=1..P
or~  C(0.f; )+

O ~ Cc(0,p )+, for j=1..]

ok ~  C(0, ﬁ&k) , for k=1.K

©)
where LKJ is a prior for correlation matrices
(Lewandowski, Kurowicka, & Joe, 2009) and C(0,a)"
is the half-Cauchy distribution. The covariance matrix
X is calculated based on the correlation matrix ® and
the standard deviations o¢,. The following define the
hyperparameters for the selected prior distributions:
po is the LKJ shape parameter, fi” are the half-Cauchy
scale parameters, p. and ¢? are normal distribution
means and standard  deviations respectively.
Depending on the actual model specification some of
the parameters are fixed to 0 or 1 (e.g., factor loadings
in order to identify the latent variables). For the auto-
regressive parameter p a uniform distributions bound
between —1 and 1 (p ~ U[—1,1]) is used in conjunc-
tion with row normalized W (Stakhovych et al., 2012).

A common approach to improve interpretation of the
p parameter is to row normalize W (divide each value
by the row sum) which in turn bounds p estimates
between —1 and 1 (LeSage & Pace, 2009). Researchers
who have strong prior information suggesting the spa-
tial effect is positive may choose to specify a lower
bound of 0 in the prior specification of p. In addition,
a convenient Bayesian alternative to normalization of
W is to wuse a prior distribution of p~
U[l/min(Aw),1/max(Aw)], where max(iw) is the
maximum and min(Aw) is the minimum eigenvalues
of W (LeSage & Pace, 2009).

Specification of W

The matrix W is an N by N weight matrix which
defines the dependent relationships between cases.
Element W;; is a numerical value which represents the
dependence between case i and j. Higher values of W;;
represent more dependence. In a spatial setting, a
higher value indicates cases are closer. In behavioral
settings, higher values in W represent stronger
observed social influence, as is the case in the earlier
example by Valente et al. (1997).

Two general approaches to W are common, con-
tiguity (W.) and inverse distance (W,). The contiguity
representation is dichotomous, two cases are neigh-
bors if they share a border and thus have a non zero
value W. Depending on the phenomena and theory,
W, representations may also specify higher order
neighbors (i.e., neighbors of neighbors) (LeSage &
Pace, 2009). In the inverse distance representation of
W, physical distance is used between the center point
of each case to each other case, then inverted to rep-
resent higher values for nearer cases. In social network
applications W will typically resemble an inverse dis-
tance representation because cases will have some
continuous amount of influence over other cases.

Model assumptions

Assumptions of the BARDSEM include those typically
associated with linear models and SEM, as well as
additional auto-regressive assumptions.

As with traditional SEM modeling, model identifi-
cation needs to be achieved. This can be accomplished
by the use of simple structure for factor loadings as
well as choosing an adequate scaling variable for the
latent factors (Bollen, 1989). Measurement invariance
is also assumed as is standard with latent variable
models (Milfont & Fischer, 2010).



Conditionally  independent  observations are
assumed, as is the case in spatial regression (LeSage,
1999). Cases are assumed independent after account-
ing for their spatial dependence. In traditional linear
modeling, conditional independence can be violated
in situations of low internal validity. For example, the
relationship between testosterone and body compos-
ition could be obscured by omitting or failing to
accurately measure relevant variables like gender or
age. Similarly, in spatial models this assumption could
be violated by poorly representing the spatial units,
such as utilizing states in the United States, as
opposed to smaller sub regions. The spatial effect does
not represent the actual spatial process, thus condi-
tional independence is not met. Residuals are assumed
homoscedastic and normally distributed with finite
variances. The independence of some of the error
terms € and 0 between indicator variables can be
relaxed by  specifying respective  covariances
among them.

Two additional standard assumptions concerning
spatial modeling are the No Island and the Isotropy
assumptions. The No Island assumption states that
there is no row in the weight matrix W that sums to
zero. In other words, no cases are considered outside
of the geographic region (island) or not connected to
the social network (e.g., Alaska in a network of US
states would be considered an island). The Isotropy
assumption states that the summary of the auto-
regressive effect given by p is expressed as an average
across the cases. This means that p summarizes the
auto-regressive effect for the entire set of cases as an
average process. If a researcher has evidence to sug-
gest that the auto-regressive effect is strong in a subset
of cases or branch of a network but weaker in the
rest, the resulting spatial estimate will not capture
this, but will reflect the average spatial process (e.g., if
a spatial process only occurs on the west coast of the
US, an auto-regressive effect for all US states would
be invalid).

Interpretation and spillover effects

Interpretation of the BARDSEM parameters is differ-
ent than traditional SEM. The presence of the
endogenous dependence lag introduces complexity to
parameter interpretation. In traditional SEM each
element of the cross partial derivatives matrices
(CPDM) are identical, this implies that all cases are
expected to have the same relationship with the
exogenous variables related to the outcome. The add-
ition of an endogenous dependence lag implies the
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predicted values of cases vary as a function of their
relationships with other cases. To interpret structural
parameter estimates in the BARDSEM in the presence
of an interaction term we must summarize the N by
N CPDM associated with g selected marginal values
(i.e., simple slopes; Karaca-Mandic, Norton, & Dowd,
2012; LeSage & Pace, 2009). The CPDM formula for
models with a single interaction effect between two
predictor variables is given by

8,/87 = (Iy — pW) 'In(9y + ®12S,)  (6)

where 0,/ 8? is the CPDM associated with the g mar-
ginal slope values (commonly used values are —2,-
1,0,1,2 xSD(&)) of S,." as they reflect a diverse range
of scores of the moderating standardized variable. For
a more in depth conversation on simple slopes and
interaction effects see Karaca-Mandic et al. (2012). },,
(m=1, 2) is estimate of the main effect of interest
and @, is the estimated interaction effect. This pro-
vides CPDM of the effect of interest at marginal val-
ues of the moderator variable. Extrapolation to
multiple interaction effects is straightforward, there
will be g-R CPDM associated with the R product
terms. When no interaction terms are specified S, =
0, and thus there will be P total CPDM.

In the case of no interaction terms the CPDM
summarizes the spillover effect in which a change in a
predictor value for case A affects the endogenous vari-
able value for case B, then the endogenous variable
change in case B impacts its neighbors endogenous
variable value, including case A through a feedback
loop. The effect of the endogenous dependence lag
can be expressed as a near infinite process Iy +
PW + p*W? + p°W? 4 .. through higher order rela-
tionships. W? is the second order relationship between
cases, and W? is the third order. W>! has non-zero
diagonals and thus a feedback loop is present (LeSage
& Pace, 2014b). This means a case will impact a
nearby case which in turn effects the original case. In
social network analysis this is akin to affecting a peers
opinion directly which in turn reinforces the original
cases opinion. In the presence of an interaction effect
the CPDM provides the anticipated impact of cases at
the selected marginal values S, of the moderator.?

Researchers commonly summarize the matrices by
computing three summaries of spillover effects: indirect

' Due to the continuous latent variables, marginal slope values are used
as a means to explain the effect of a latent variable of interest
dependent on different levels of the moderating latent variable. One term
for this process is” probing interaction effects”. We suggest -2, -1, 0, 1,
and 2 xSD(¢&)

2See Appendix B.1 for more details about CPDM.
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spillover; direct spillover; and total spillover (i.e.,”
impacts”) (LeSage & Pace, 2006). Indirect spillover is
computed using the mean of the off-diagonal of the
CPDM and represents the expected mean change of
case i for a one unit increase in predictor p at the
selected marginal value S, in all other cases. The direct
spillover of variable p is the mean of the diagonal ele-
ments and is the expected mean change in the outcome
across all cases # i for a one unit increase in predictor
p at the selected marginal value S, of case i. Finally, the
total spillover is the sum of the direct and indirect
spillover of predictor m. The total spillover is the
expected change in the outcome of case i for a one unit
increase in predictor m at the selected marginal value
S, in all cases (Golgher & Voss, 2016). The magnitude
of spillover is controlled by the overall estimate of the
spatial effect p, the mth slope, the interaction term
@13, and selected marginal value S,

Researchers may desire to directly interpret the
CPDM associated with cases of interest. For example,
in a regional economic study using countries it may
be interesting to examine the effect of an increase in
economic strength for country i on the cost of living
in country j. In the presence of an interaction effect
this requires a modified CPDM formula from that
presented in Eq. 6. The modified formula is given by

Oy /0. = (Iy — PW) N (P, + (Z)IZEim) (7)

where &, is the estimated factor scores of the moder-
ator variable for country i. In the case of a single
interaction this will result in one cross product deriva-
tives matrix. Using the above example, we would now
inspect the ij-th element of the CPDM. This element
tells us the anticipated change in the endogenous vari-
able for country j for a 1 unit increase in the exogen-
ous factor of interest in country i.

The consequence for ignoring endogenous dependence
is biased prediction and inference. Prior research in
regression contexts show that ignoring endogenous spatial
dependence results in biased predictions, however, slope
estimates remain unbiased (LeSage & Pace, 2009; Pace &
LeSage, 2008). The bias is induced in the interpretation
process provided by computation of the CPDM. This is a
reflection of the assumption of independence in trad-
itional regression models meaning p =0 is assumed;
thus, the CPDM values are assumed constant.

Monte-Carlo study

In this section, we describe the methods and results of
a Monte-Carlo study which aimed to measure the

BARDSEM model performance under empirically
relevant conditions.

Research questions

Some characteristics must be explored to understand
the boundaries of BARDSEM performance. We must
understand the ability of the BARDSEM to accurately
recover parameter estimates under different magni-
tudes of auto-regressive dependence and specifications
of W.

Prior work has shown the need for higher sample
sizes under distance representations of W (LeSage &
Pace, 2014a). Therefore, it is important to understand
how the BARDSEM performs under each specification
of W. Further, spatial settings utilizing neighborhood
representations may utilize higher order neighbor
specifications, which include additional connections
between cases. Prior work has shown that higher con-
nectedness in W was found to induce bias at lower
sample sizes (Anselin & Florax, 1995). Therefore, we
explore the impact that distance specifications and
higher order neighborhood specifications have on
BARDSEM model performance.

To investigate these empirically relevant boundaries
of performance two research questions were devised:

1. Does the BARDSEM estimate parameters accur-
ately under different magnitudes of auto-regres-
sive dependence and sample sizes?

2. Does the BARDSEM accurately recover parameter
estimates under different degrees of connectivity
in W.? Does it accurately estimate parameters
with a W representation?

In the next subsection, we describe the study then
provide the methods and results of the Monte-Carlo
investigation.

Data generation

The general latent variable model for data generation
was specified as

n=pIy—pW) (03-& +03-&+0.15-& - &
+{)+03-&+03-54015-& &+ ¢
(8)
with multivariate normal distributed uncorrelated
latent factors &, &, (i.e., with means 0 and variances
1). The intercept o was set to 0. The linear effects

Y1,7, were set to 0.3 for both exogenous factors, the
interaction effect w;, was set to 0.15. These values



were chosen in line with typical effect sizes in psych-
ology and past literature which establishes these values
as realistic linear and interaction effects (Chaplin,
1991; Kelava & Nagengast, 2012).

The measurement model for the data generation
was given by

N 1 €1
| = Ll n+|e )
)/3 1 €3
and

X1 1 0 01

X 1 0 02

X3 o 1 0 51 53

X4 o 0 1 < éz ) + 54 (10)

X5 0 1 55

X6 0 1 56

Without loss of generality, all intercepts were set to
zero. The residuals ¢; and 0, were mutually uncorre-
lated and normally distributed with mean 0 and vari-
ance 0.25. This implied reliability of 0.80 for all
observed items. This reliability coincides with com-
monly utilized values in SEM Monte-Carlo work and
typically observed behavioral science reliabilities
(Brandt, Umbach, Kelava, & Bollen, 2019; Kelava &
Nagengast, 2012).

Data generating conditions

Population level p was varied at levels 0.0, 0.3 and 0.6
to reflect with no, small, and medium spatial effects
commonly observed in econometric literature
(Golgher & Voss, 2016).

Specifications of W were generated by producing
evenly dispersed center points on a inate
grid. Euclidean distance d,, = /> 1, (¢ —pi)° is
calculated between each case (g and p) and then
inverted ﬁé) to produce W};. A cutoff threshold was
used to produce W, from W,;. W, was included for
typical econometric applications, and W}, to represent
typical social network applications. Three specifica-
tions of W, were designated, WX with the fewest
connections, W with more connections, and W
with the most connections. Table 1 provides the aver-
age number of connections under each specification
of W, and Figure 1 provides a visual representation
of the space in which each simulated case was gener-
ated. Triangles represent the neighbors to case A in
the low condition W, diamonds were added as
neighbors in the medium condition W4, and all
black shapes were neighbors to A in the high
condition WH" W reflects a two dimensional space
and the size of W is directly linked to sample size.
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Table 1. Average number of connections by sample size and
connection conditions.

Sample Size
Connection Condition 196 400
wi{w 3.71 3.80
wﬂ_"f 7.16 7.41
High 10.59 11.01
wy'! 37.91 55.71

1The W}, condition does not have neighbors. Every case is specified as a
distance to every other case. Instead the mean row sum is displayed.

Two sample size conditions were utilized: n =196
and n=400. Sample sizes were chosen as squared
values to coincide with a consistent square spatial
representation. A square representation was used to
control for potentially confounding effects of irregu-
larly shaped geographic regions in spatial analysis
(Duczmal, Kulldorff, & Huang, 2006) and to avoid
the near infinite number of network scenarios. All
W conditions were row normalized prior to data
generation to constrain p estimates between —1
and 1.

All simulation conditions were fully crossed. Under
each simulation condition 500 data sets were gener-
ated (Muthén & Asparouhov, 2012). R version 3.5.4
(R Core Team, 2019) was used for the implementation
of the study. The R package mvtnorm version 1.0-11
(Genz et al, 2019) was used for all multivariate
data generation.

Analysis models for all studies

The general BARDSEM to analyze the data was speci-
fied as follows. The latent variable model was given

by
n=pWn+ 98+ 9,8 +0éé + (11)

and the measurement model by

1 1 €1
» | = p |+ | e (12)
Y3 }~y3 €3
and

X1 1 0 51

X2 /lxl 0 52

x| /2 0 & 03

|~ [ o 1 (f) s, (13)

X5 0 Ax3 55

X6 0 /1x4 56

where the first factor loading on each factor is set to
one for identification. Prior specifications for the ana-
lysis models were given by
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Figure 1. Visual representation of connection conditions of W matrix representing the neighbors to case A. Note that this is a
reduced size matrix for easier visualization, only 49 cases are shown here. The low condition is comprised of black circles; medium
condition is comprised of black circles and triangles; high condition is comprised of black circles, triangles, and diamonds.

E~  MVN(0,®)

Ym~ N(0,1), for m=1..2
Wiy ~ N(O, 1)

p~  U-L1]

a~  N(0,1)

®~ LKJ(2)

Jy~ N(O,1), forj=1.2 (14)
Jak ~ N(0,1), for k=1..4
o~ C(0.25)7, for p=1..2
or~ C(025)"

o~ C€(0.25)", forj=1.3
Osk ~ C(0,2.5)+, for k=1...6

which follows the recommendations of LeSage and
Parent (2007), Gelman et al. (2013), and Lee et al. (2007).
R version 3.5.4 (R Core Team, 2019), Stan version
2.18.0 (Stan Development Team, 2018), and Rstan
version 2.19.2 (Stan Development Team, 2019) were
used to conduct all analysis. All analysis models were
designated to have four independent chains and 4,000
iterations, half of which was designated burn-in.

Outcomes

Performance of the analysis models was operational-
ized through convergence rates, parameter bias, and

coverage. Convergence was considered acceptable

when the R estimate of a parameter was less than 1.05
(Gelman et al., 2013) and ESS > 400 (Vehtari et al,,
2020)°. Bias was computed as the percent deviation of
the population value from the mean posterior estimate

as in

Mean Posterior Estimate—Population Value
100 Ponulati .
opulation Value
Population parameters that were 0 cannot be expressed as
percent deviations; instead, they were computed as abso-
lute bias: Mean Posterior Estimate — Population Value.
Coverage was calculated as the proportion of parameter
values that fell within their respective 95% cred-

ible interval.

Results

The unabridged results for all parameters are provided
in Appendix A. Figure 2 provides a graphical repre-
sentation of the bias of the parameters of interest.

Model convergence rates were acceptable. Across
simulation conditions and parameters convergence was
consistently acceptable, the lowest observed convergence
rate was observed in the Wy, p =0, N=400, conditions
with 99.3% achieving R > 1.05 and ESS ;, 400.

3R was computed using the metric described by Vehtari, Gelman,
Simpson, Carpenter, and Blirkner (2020)
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Figure 2. Bias plot of parameters of interest.

Non-spatial parameters were consistently unbiased
across all W conditions. Regarding p estimates, bias
slightly increased as the number of connections in W
increased. The most biased results were obtained in the
fully saturated W, condition in which estimates were
consistently highly biased. In the W, condition esti-
mates of p were nearly always approximately 0, hence
the negative direction of bias in the p = 0.3 and 0.6
conditions. Regarding W’ conditions, W% exhibited
the most biased estimates of p, under N=196, p=0
observed absolute bias is 6.76%, under population p =
0.3 observed bias is 4.33%, under population p = 0.6
observed bias is —5.09%. In the WM condition
observed bias is less. Under N=196, p=0 observed
bias is 3.82%, under population p = 0.3 observed bias is
0.91%, under population p = 0.6 observed bias is
—2.32%. Bias of p is lowest in the WX condition.
Under p =0 and sample size 196 the absolute bias of
o = 2.11%, under p = 0.3 observed bias is 2.09%, and
under p = 0.3 observed bias is —1.63%. Bias decreased
with sample size in all conditions.

Coverage rates were nearly identical across the W, con-
ditions. Coverage was consistently high for non-spatial
parameters. Coverage of p was within the acceptable range
under all conditions but lowest in the population p=0
condition. Under WX", N=196, and a population par-
ameter of p = 0, the coverage of p was 93%, rising to 95%
when p = 0.6. Under Wﬁﬁgh, N=196, and a population
parameter p = 0, coverage rates lay at p is 92.2%, rising to
96.6% under p = 0.6. Coverage rates of p was higher in
the N =400 condition compared to N=196.
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Empirical example

The following example explores crime rate data obtained
from the southern region of the United States (US) to
demonstrate an applied use of the BARDSEM.

The US southern homicide data provides rates of
crime for 1,412 counties in the southern US region in
the year 1990. Aggregated by Land et al. (1990), the
southern US homicide data has been frequently used as
a typifying example in econometric and behavioral sci-
ence literature (e.g. Kubrin & Weitzer, 2003; Morenoff,
Sampson, & Raudenbush, 2001; Goodchild, Anselin,
Appelbaum, & Harthorn, 2000). In the original data set,
the variables of interest are homicide rate, Gini coeffi-
cient, and poverty rate. Additional variables were
obtained by the Universal Crime Reporting (UCR)
agency data tool website (Federal Bureau of
Investigation, 2020). These variables are rates of aggra-
vated assault, officer assault, burglary, theft (non vehicu-
lar), vehicle theft, and robbery. All rates are expressed as
occurrences per 1,000 people within each county.*

Predicting violent crime

Identifying risk factors for violent crime rates at the
societal level provides valuable information for behav-
ioral scientists and policy makers. Research has estab-
lished a link between financial inaccessibility and
violent crime. As financial inaccessibility rises, violent
crime rates increase (Deller & Deller, 2010).

“Due to some incongruities in the county cataloguing system (FIPS
codes), 2 counties were omitted from the analysis resulting in a total N
of 1,410.
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Figure 3. Choropleth plots of the observed endogenous variables. Darker shaded counties indicate higher values and lighter
shaded counties have lower values relative to the mean of the sample.

Research has also noted a distinction in types of
criminal acts. For example, violent crime and property
crime are distinct constructs (Schreck, McGloin, &
Kirk, 2009). A unified analysis which accounts for the
latent multidimensional nature between these variables
and the inherent spatial dependence is not available yet.

Research questions

Regions which have higher income inequality experi-
ence greater property and violent crime rates
(Patterson, 1991). As a result, we find it reasonable to
hypothesize an interaction effect between property
crime and financial inaccessibility in the prediction of
violent crime. Specifically, we anticipate that financial
inaccessibility will moderate the relationship between
property crime in its prediction of violent crime.

Prior research suggests nearer regions have more
similar violent crime rates compared to further
regions (Bernasco & Elffers, 2010). Thus, it is also rea-
sonable to hypothesize the endogenous latent variable
violent crime is spatially dependent. To illustrate this
we present choropleth plots of the observed endogen-
ous violent crime variables in Figure 3. If a variable is
spatially dependent, the choropleth plot will yield
observable patterns. In this example we see pockets of
similar scores. Therefore, we hypothesize estimates of
the spatial effect will be positive.

Methods

Definitions and descriptive statistics

The variable homicide is the rate of murder and non-
negligible manslaughter. Officer assault rate is the rate
of aggravated assaults recorded against police. Assault
is defined as violent physical assault with or without a
weapon. Robbery rate is defined as the rate of nonvio-
lent theft without the use of physical force or threats
of force. Burglary is defined as illegal entry and theft.
Theft is defined as nonviolent theft of personal prop-
erty excluding motor vehicles. Motor vehicle theft rate
is defined as theft or attempted theft of a vehicle.
Unemployment rate is expressed as the percent of res-
idents in a county who are unemployed despite look-
ing for work. Poverty is the percent of families which
are below the poverty threshold. The Gini coefficient
is a measure of income inequality, where 0 indicates
perfect income equality, and 1 represents perfect
inequality (Dorfman, 1979).

Schreck et a. (2009) provide evidence suggesting
violent and property crime are distinct factors.
Evidence also suggests income inequality is a distinct
factor (Deller & Deller, 2010; Rosenfeld, Baumer, &
Messner, 2001). Therefore, we assume three distinct
latent factors within the observed variables of interest:
violent crime (VC); property crime (PC); and financial



Table 2. Extended US southern homicide data descriptive sta-
tistics for all counties.

Factor Observed Variable X o Min.  Max.
Violent Crime
Homicide 0.09 0.07 0.00 0.64
Officers Assault 0.21 031 0.00 3.52
Assault 7.61 639 0.00 4217
Robbery 0.59 1.03 0.00 1290
Property Crime
Burglary 9.32 569 0.00 53.88
Theft 1897 13.64 0.00 92.69
Vehicle Theft 2.00 211 0.00 2443
Financial Inequality
Unemployment 7.23 3.07 028 2549
Poverty 16.12 755 0.3 56.49
Gini 0.39 0.03 0.26 0.53

X is the sample mean. ¢ is the sample standard deviation. Min. is the
sample minimum. Max. is the sample maximum. All rates are expressed
in occurrences by 1,000 people within each county.

inaccessibility (FI). VC is comprised of homicide, offi-
cers assaulted, assault, and robbery rates. PC is com-
prised of burglary, theft, and vehicle theft rates. FI is
comprised of unemployment rate, poverty rate, and
Gini coefficient.”

Table 2 provides the sample means (x), standard
deviations (¢), minimum (Min.), and maximum
(Max.) observed values for each variable.

Model and prior specification

The measurement model was specified using a simple
structure for the items as described in Egs. (12) and
(13). The latent variable model equation is given by:

vC :m+pVCWVC+’VPCPC+’yFIFI

(15)
+ Wpc.Fr - PC - FI + C

We specified an endogenous spatial lag on the
latent level, as the observed variable plots and prior
research (Bernasco & Elffers, 2010) suggest spatial
dependency in the observed items which transfers to
the latent level. Prior choices follow the specifications
from the Monte-Carlo study and are provided in Eq.
14 (weakly informative priors).

We used a contiguity W. Cases were considered
neighbors if they shared a common border. This was
done to align with the concept that crime was more
likely to spillover to neighboring counties with shared
borders. Figure 4 provides a visual representation of
the connections representing the W' utilized.

The analysis was conducted using R version 3.5.4
(R Core Team, 2019), Stan version 2.18.0 (Stan
Development Team, 2018), and Rstan version 2.19.2

Note that these (statistical) factors can be seen as composites. For the
sake of simplicity and due to the illustrative character of this example,
standard reflective measurement models were used and not formative
factor models (additionally see the discussion and recommendation to
use reflective measurement models in Howell, Breivik, & Wilcox, 2007).
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(Stan Development Team, 2019). Four independent
chains were specified. Chains ran for 4,000 iterations
each, half of which were designated burn-in. All varia-
bles were standardized prior to analysis.

Results

Results for the BARDSEM are given in Table 3. All
parameters of interest met the convergence criteria of
R < 1.01 and ESS ; 400. All results are presented as
95% credible intervals. Factor loadings were all high
and positive. The spatial effect p fell in a credible
interval of (0.68, 0.98). The latent structural coeffi-
cients were non-zero with g within (0.05, 0.09), 9 p¢
within (0.39,0.51), and the latent interaction effect
Wwrrpc in (0.00,0.05). The covariance between the
latent factors was within (—0.11, —0.04), and reflected
a small negative correlation.

Model interpretation

To interpret the structural effects, marginal direct,
indirect, and total spillover were calculated using in
Eq. 6. A convenient means of calculating these effects
in the Bayesian framework is the ability to include
spillover calculations in the model and thus provide
posterior distributions for inference. Table 4 provides
the means and 95% credible intervals for the marginal
direct, indirect, and total spillover of PC at marginal
values of FI = (-2, — 1,0,1,2).

The spillover effects provide us with a means of
interpreting the spatial estimate py. (0.68, 0.98) in
the context of the variables in space.

Direct spillover

The mean posterior estimate of the direct spillover of
PC given low FI = — 2 was 0.28. This means that
when county i sees an increase of one SD on PC and
given FI = — 2, all #i counties see an average
increase of 0.28 SD in VC. If FI was high (FI = +2),
the spillover effect for PC was 0.32. This means the
model expected a greater spatial spillover of VC from
increases in PC when the original county has more FI.

Indirect spillover

The mean posterior estimate of the indirect spillover
of PC given FI = — 2 was 1.25. This means a one SD
increase in all counties # i and given FI = — 2 would
result in an expected 1.25 standard deviation increase
in VC on average in county i. Again, we see that if FI
was higher (FI = +2), the indirect spillover was
higher with an estimate of 1.59.
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Figure 4. Connection visualization of W representation. Cases with lines connecting their center-points were considered neighbors.

Table 3. Results table for the BARDSEM analysis of the US
southern homicide data set.

0 2.5% 97.5% ESS R
pvc 0.87 0.68 098 4585 1.00
o 0.00 —0.05 0.05 1623 1.00
VA 0.07 0.05 0.09 2026 1.00
7 pc 0.45 039 051 812 1.01
Wpe 0.02 0.00 0.05 2563 1.00
JRobbery 207 1.83 235 686 1.01
Aofficers Assaulted 121 1.02 143 963 1.01
Jassault 203 179 232 731 1.01
Agini 124 117 130 2768 1.00
poverty 1.28 122 135 3017 1.00
Mheft 1.06 1.01 111 5112 1.00
Abotor Vehicle Theft 0.95 0.90 1.01 4301 1.00
brcr ~0.07 —0.11 —0.04 668 1.01
bc 0.72 0.65 0.80 1523 1.00
o 0.56 0.50 0.63 964 1.00

0 are the means, and 2.5% and 95.5% are the respective percentiles of
the posterior distribution. ESS is the effective sample size. R the coeffi-
cients estimated R value for assessing convergence,values of 1.01 are
rounded and at 3 decimal places are < 1.01. Fin.Accessibility -
Prop.Crime provides the interaction term of Property Crime and
Financial Accessibility.

Total spillover

The mean posterior estimate of the total spillover of
PC given FI = — 2 was 1.38. This means the model
expects a 1.38 SD increase in VC on average in all
counties when all counties see a one SD increase in
PC and given FI = — 2. The spillover increased to
191 when the marginal value of FI was
high (FI = +2).

Table 4. Marginal direct, indirect, and total spillover effects
and their 95% credible intervals (in brackets) for ypc condi-
tional on different values for Fl.

Fl Direct Indirect Total

-2 0.28 (0.25, 0.32) 1.25 (1.11, 1.43) 1.38 (1.31, 1.52)
-1 0.30 (0.24, 0.33) 1.30 (1.15, 1.51) 1.58 (1.41, 1.81)
0 0.28 (0.26, 0.34) 142 (1.18, 1.52) 1.69 (1.51, 1.76)
+1 0.31 (0.23, 0.36) 1.51 (1.27, 1.63) 1.80 (1.57, 2.03)
+2 0.32 (0.22, 0.37) 1.59 (1.31, 1.69) 1.91 (1.63, 2.18)

Interpretation of region of interest

To provide an example of interpretations for specific
regions of interest, we picked an arbitrary county:
Mills County, Texas. We computed the CPDM (see
Eq. 7) using the estimated main and interaction effects
(Ppe> wpc.rr) as well as the estimate for Mills County’s
factor score FI. By taking the oft-diagonal element
associated with Mills County from the CPDM we see
that when all counties included in the analysis except
Mills see an increase in the PC factor of one SD, Mills
County itself is expected to see a 0.31 SD increase in
VC. Mills County has six first order neighbors:
Comanche, Brown, Hamilton, San Saba, and
Lampasas County. Looking at the associated elements
of the CPDM we see that a one SD increase in PC in
Mills County is associated with expected increases of
0.098 SD for Comanche, 0.076 SD for Brown, 0.075
SD for San Saba, 0.085 SD for Lampasas, and 0.089
SD for Hamilton. Figure 5 provides a visualization of
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Figure 5. Visualization of spillover for an increase in PC of 1 SD in Mills County Texas, denoted as a triangle. Expected increases

less than 0.005 are suppressed.

this  spillover to order of
Mills County.

Visual inspection of the spillover plot shows how
the impact of Mills County diminishes in space. The
average expected increase in first order neighbors to
Mills County is 0.1 SD, at the second order neighbor
level the average expected increase is reduced to 0.033
SD. By the third order neighbors the spatial spillover
approaches zero, with an average expected increase in

VC of 0.01 SD.

higher neighbors

Summary
In the example we showed that VC is spatially
dependent, this implies changes in PC and FI in

nearby counties spills over to one another. The non-
zero latent interaction effect between PC and FI sug-
gested a a nonlinear relationship with VC.
Investigating the effects together revealed that counties
with higher FI were expected to have more spatial
spillover of VC if PC increases.

Discussion

The BARDSEM provides a framework for estimating
SEM with spatially or socially dependent data. These
models allow researchers to estimate latent variables
from sets of observed indicators while simultaneously
providing a means to estimate spatial or social
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dependence effects. In spatial settings (as shown with
the violent crime example), the addition of latent vari-
ables provides an extension to account for multi-
dimensional societal constructs. In social network
contexts, the BARDSEM can model the complex intri-
cacies of networks of agents and lends itself well to
the psychological tradition of measuring person level
constructs as latent variables. Instead of making pre-
dictions on and with wunivariate variables, the
BARDSEM framework allows network scientists to
predict complex unobserved features. This is a major
advantage over potential dimension reduction alterna-
tives like sum-scores (Bollen, 1989; DiStefano, Zhu, &
Mindrila, 2009).

Monte Carlo study

The goal of the Monte-Carlo study was to assess the
BARDSEM performance under different spatial effect
magnitudes, sample sizes, and W specifications. The
primary finding is that the BARDSEM accurately esti-
mates both spatial and non-spatial parameters under
non-fully saturated W specifications. This supports
existing research in regression contexts that high con-
nectivity W specifications negatively bias spatial effects
(Smith, 2009) and may require higher sample sizes to
maintain accuracy (Stakhovych & Bijmolt, 2009).

Empirical example

The empirical example was intended to provide an
example of the rich interpretations of coefficients pro-
vided by the BARDSEM. The combination of the
measurement model, latent interaction, and spatial
effect, provide a unique understanding of violent
crime. We showed that the anticipated spatial spillover
in violent crime due to an increase in property crime
was higher in counties with higher financial inaccess-
ibility. In addition the results suggest a strong spatial
effect of violent crime. This effect was explored by
using spillover estimates to depict the interaction of
space and the exogenous latent predictors. Recall that
our indirect spillover estimates provide us with evi-
dence that increases in property crime in neighboring
counties is associated with increases in violent crime
in the original county. This increase is stronger when
financial inequality is higher. Further information is
obtained when we extrapolate impact calculations to a
region of interest, as we did with Mills County. Recall
that an increase of 1 SD in property crime in Mills
County coincided with an expected 0.31 SD increase
in violent crime in Mills County. This was because

the model suggests Mills County’s increase in property
crime led to an expected increased violent crime in its
neighbors, which in turn spilled back to Mills County.

Practical recommendations

The BARDSEM exhibits unbiased estimation proper-
ties in the sample sizes tested when parsimonious rep-
resentations of W were used. Here we provide brief
recommendations for its application.

Sample size requirements appear similar to general
recommendations in latent variable modeling
(Westland, 2010) but is connected to W choice.
Following the advice of Stakhovych and Bijmolt
(2009) in situations with lower than optimal sample
size, select a parsimonious weight matrix specification.
In spatial settings this may mean simply opting to
determine cutoff rules for determining neighbors (e.g.
shared borders, but not shared corners). In network
settings a cutoff threshold can be specified to trim
weak connections between cases. This advice reinfor-
ces that of Griffith (1996) in regression settings.

Regarding priors, if researchers aim to directly
interpret or compare p, estimates we recommend a
row normalized W in conjunction with p, ~
Uniform(-1,1). In studies with high sample sizes and
strong evidence suggesting a positive spatial relation-
ship, setting a lower bound of 0 can substantially save
computation time.

Limitations

The Monte-Carlo BARDSEM we investigated had a
limited amount of complexity. Additional complexity
can be induced by including more spatial effects,
more latent variables, or more complex model specifi-
cations. For simplicity we used parallel items during
Monte-Carlo data generation (uniform reliabilities)
which is not achievable for many psychological con-
structs®. Theoretically, different priors could have
been investigated. Here we used weakly informative
priors. With the given sample sizes 196 and 400, the
actual choice of priors should not have much of an
impact, but might be more crucial for smaller
effect sizes.

Regarding the empirical example, only one W spe-
cification was implemented. To align with the concept
that crime is likely to spillover to neighboring

SWe conducted a small scale Monte-Carlo study to test if non-parallel
items impacted model performance. Our results suggest there is not a
systematic relationship between item reliabilities and the bias, or
coverage of the BARDSEM parameter estimates.



counties and not directly to distant ones a contiguity
W was used. The choice to not explore other potential
specifications of W assumes the spatial process follows
this logic. Further, we show a parsimonious represen-
tation to be the most accurate at recovering the spatial
parameter and was thus chosen for the example.

Regarding the BARDSEM itself, the use of fully
saturated W specifications is problematic. Theory may
suggest that each case directly impacts all other cases
and indirectly impacts all other cases through spill-
over. To accommodate this in theoretically a distance
W could be used. A fully saturated W7, reflected this
in the Monte-Carlo study. This representation was
biased under the sample sizes tested in the and thus
should not be used.

Regarding the BARDSEM assumptions, most not-
ably conditional independence is worth mentioning.
The BARDSEM can be broadly applied, thus, in some
situations this assumption is more plausible than
others. It may be the case that un-modelded spatial
dependence may remain and bias results. The granu-
larity of the spatial information may not fully account
for the dependence. For example, measurement of cul-
tural variables using countries in Europe as spatial
units (as compared to finer spatial sub-regions) will
likely not capture the finer details of the spatial rela-
tionship. This situation is akin to a poor measurement
tool in that the spatial units do not accurately capture
the spatial process, thus masking the effect of interest.
An alternative way of thinking about this problem is
with repeated measures situations. If a researcher aims
to measure the trajectories of human weight fluctua-
tions and seasonality, measuring twice per year will
not provide granular enough measurements to detect
the intended effect.

Next, in the models explored we assumed that W is
observable and known, which may not always be true.
Folmer and Oud (2008) discussed a method for pre-
dicting W which can theoretically provide an alterna-
tive to exogenous specifications of W.

Finally, spatial or other forms of dependence may
exhibit themselves not only in the endogenous variable
but also in the predictors or error terms of models. In
econometric literature with observed variables this is
addressed in different ways. Instrumental variables or
additional spatial lags provide solutions to these issues.
The BARDSEM can accommodate instrumental varia-
bles approach, but not additional spatial lags.

Future research

The BARDSEM shows promising performance and
should be explored further. Specifically, The
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BARDSEM should be generalized to more situations
than described in this paper. First, to address the
issues with the fully saturated W7, it is possible that
a vastly higher sample size is necessary to determine if
p can be accurately estimated. The boundaries of this
scenario should be explored further.

Next, in some situations it may be unrealistic to
assume that a single scalar summary accurately meas-
ures the population level spatial process. The
BARDSEM could be extended to include a random
effect of p, at the structural level (Rabe-Hesketh,
Skrondal, & Zheng, 2007), which allows variation in
the magnitude of the effect of p, across different clus-
ters of spatial units (e.g., counties in states).
Alternatively, multi-group latent variable models (like
the MIMIC model (Joreskog, 1971)) could be applied
to account for variations in p by a known group-
ing factor.

Next, it could be reasonable to assume that spatial
dependence varies across several known or unknown
groups (e.g., rural vs metropolitan areas). Latent class
analysis provides a means to extend the BARDSEM to
account for such heterogeneity in spatial dependency.

Finally, modern data collection methods (e.g.,such
as mobile phone apps) allow researchers to collect
dynamic psychologically relevant data (e.g., attitudes,
feelings, and cognitive performances) in field experi-
ments with high external validity. Further, dynamic
spatial information can be collected where the partici-
pants respond to the questions or tasks. Extensions of
the BARDSEM to account for dynamic changes in
spatial or social dependency are necessary to model
such data (e.g., using dynamic latent class structural
equation models as in: Asparouhov et al, 2017;
Asparouhov, Hamaker, & Muthén, 2018; Kelava &
Brandt, 2019).

Conclusion

The BARDSEM is a promising addition to the set of
methods for analyzing multivariate spatial or network
dependent data. As network science grows, interest in
dependent methodology has increased. Current
approaches restrict the types of data that can be ana-
lyzed as methods are typically constrained to observed
variables. The BARDSEM provides a solution to this
problem. Researchers in the social sciences frequently
investigate complex relationships between three or
more variables. The ability to simultaneously accom-
modate latent interaction effects with dependent spill-
effects provides a means to match
methodological approaches and rich interpretations to
complex theory.

over
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Appendix A

Results from the simulation study

Table A1. Results table for Monte-Carlo study.

p=0 p=03 p=0.6

w* N 0 0 Bias(0)% Coverage 0 Bias(0)% Coverage 0 Bias(0)% Coverage

Wi

196
p 0.00 0.02 2.1 93.00 0.31 2.09 95.20 0.59 —1.63 95.00
o 0.00 0.00 —0.28 95.60 0.00 —0.07 94.80 0.01 1.02 94.80
bR 0.30 0.30 —0.78 96.00 0.30 0.48 96.20 0.29 —-1.76 93.80
V2 0.30 0.30 1.55 95.20 0.30 —-0.23 95.20 0.30 0.89 96.00
12 0.15 0.16 4.97 96.00 0.16 4.42 94.60 0.15 —1.49 94.40
o1 0.50 0.50 0.57 94.20 0.50 0.94 94.80 0.50 0.06 96.40
052 0.50 0.50 0.00 94.60 0.50 0.16 95.40 0.50 0.48 94.00
053 0.50 0.50 0.43 95.20 0.50 0.39 94.80 0.50 0.20 94.40
Osa 0.50 0.50 0.38 93.80 0.50 0.73 93.40 0.50 0.39 94.60
Oss 0.50 0.50 0.80 95.00 0.50 0.07 95.40 0.50 0.87 94.00
056 0.50 0.50 0.84 94.60 0.50 0.81 94.60 0.50 0.61 94.20
[ 0.50 0.50 0.59 94.60 0.50 0.98 94.40 0.50 0.02 96.80
%) 0.50 0.50 0.23 96.80 0.50 0.00 95.60 0.50 0.22 94.60
03 0.50 0.50 0.28 95.20 0.50 0.08 94.80 0.50 0.93 95.00
o¢ 1.00 1.01 173 82.80 1.01 —0.89 78.80 1.00 —6.23 66.40
11 1.00 1.00 —0.34 94.20 1.00 0.43 94.80 1.00 0.02 93.60
(o2 1.00 1.00 0.08 94.20 1.00 0.30 94.00 1.00 0.30 94.20
Ty, 0.00 0.00 —0.12 96.00 0.00 —0.22 94.40 0.00 —0.40 96.40
Tx, 0.00 0.00 0.15 95.80 0.00 —0.48 95.20 0.00 0.07 96.60
Ty, 0.00 0.00 —0.04 96.00 0.00 —-0.15 94.80 0.00 —0.01 96.00
Tx, 0.00 0.00 —-0.19 95.40 0.00 —0.23 94.40 0.00 0.02 92.80
Ty 0.00 0.00 —0.31 96.20 0.00 —0.04 96.00 0.00 0.28 93.80
Txs 0.00 —0.01 —0.54 96.00 0.00 —0.01 96.20 0.00 0.17 94.20
Ty, 0.00 0.00 0.03 94.80 0.00 0.21 96.40 0.00 —0.05 95.40
Ty, 0.00 0.00 0.08 94.80 0.00 —0.09 96.80 0.00 0.04 95.60
. 1.00 1.01 1.04 95.20 1.01 0.73 94.00 1.00 0.35 94.20
T 1.00 1.01 0.98 95.00 1.01 0.70 94.40 1.01 0.94 94.00
Ay 1.00 1.00 0.45 94.00 1.00 0.40 94.60 1.01 0.75 94.40
s 1.00 1.00 0.34 94.80 1.00 0.41 94.60 1.01 0.75 95.80
Ay, 1.00 1.00 —0.15 96.40 1.00 —0.42 94.80 1.00 —0.31 95.00
Ay, 1.00 1.00 —-0.17 95.60 1.00 —0.24 95.80 1.00 —0.18 97.00

400
p 0.00 0.02 2.08 95.60 0.30 0.47 94.40 0.60 —0.67 95.00
o 0.00 0.00 —0.10 95.00 0.00 —0.35 94.60 0.00 0.04 95.20
bR 0.30 0.30 1.06 96.60 0.30 1.08 95.60 0.30 —0.29 95.40
V2 0.30 0.30 0.31 94.80 0.30 0.94 95.20 0.30 0.04 96.60
12 0.15 0.15 —0.26 95.60 0.16 4.72 94.60 0.15 0.43 94.80
O 0.50 0.50 0.35 95.80 0.50 0.19 95.20 0.50 0.10 95.80
052 0.50 0.50 0.32 94.40 0.50 0.79 96.20 0.50 0.48 95.20
053 0.50 0.50 0.30 96.60 0.50 0.12 95.80 0.50 0.43 94.40
Osa 0.50 0.50 0.83 93.80 0.50 0.34 95.80 0.50 0.17 96.20
055 0.50 0.50 0.13 96.00 0.50 0.10 94.00 0.50 0.18 92.60
056 0.50 0.50 0.02 93.80 0.50 0.03 93.80 0.50 0.43 94.60
Ol 0.50 0.50 0.20 95.60 0.50 —0.06 94.20 0.50 0.09 93.80
00 0.50 0.50 0.45 94.60 0.50 0.53 94.00 0.50 0.38 94.20
03 0.50 0.50 —0.15 94.80 0.50 0.15 95.20 0.50 0.69 95.60
o¢ 1.00 1.01 0.09 81.20 1.00 —1.93 80.60 1.00 —7.69 51.80
11 1.00 1.01 0.64 96.00 1.00 0.30 95.20 1.00 0.35 94.60
[P 1.00 1.00 0.26 95.00 1.00 0.02 95.40 1.00 —0.22 93.80
Ty, 0.00 0.00 0.21 95.40 0.00 —0.16 94.40 0.00 0.14 95.60
Tx, 0.00 0.00 0.11 95.00 0.00 —0.27 94.80 0.00 —0.04 95.40
Ty, 0.00 0.00 0.23 94.60 0.00 —-0.19 94.60 0.00 0.26 95.80
Ty, 0.00 0.00 —0.01 96.60 0.00 0.43 94.20 0.00 —0.27 95.00
Ty 0.00 0.00 —0.09 95.20 0.00 0.31 93.40 0.00 —0.26 96.60
Txs 0.00 0.00 0.00 94.00 0.00 0.24 95.20 0.00 —0.28 95.60
Ty, 0.00 0.00 —-0.23 94.80 0.00 0.27 96.00 0.00 —0.26 96.00
Tys 0.00 0.00 —0.08 96.20 0.00 0.40 93.80 0.00 —0.13 94.60
. 1.00 1.00 0.11 96.00 1.00 0.10 95.60 1.00 0.36 96.20
Js 1.00 1.00 0.12 95.20 1.00 0.23 96.60 1.00 —0.07 95.80
Ay 1.00 1.00 0.07 96.40 1.00 0.25 94.40 1.00 0.34 92.60
s 1.00 1.00 0.31 95.00 1.00 0.29 94.20 1.00 —0.10 95.20

(Continued)
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Table A1. Continued.

p=0 p=03 p=06

w* N 0 0 Bias(0)% Coverage 0 Bias(0)% Coverage 0 Bias(0)% Coverage

Ay, 1.00 1.00 —0.43 93.40 1.00 —0.17 95.20 1.00 —0.16 96.40
) ys 1.00 1.00 —0.20 95.20 1.00 —0.29 94.40 1.00 —0.35 95.00

Wzmd

196
p 0.00 0.04 3.82 92.60 0.30 091 95.00 0.59 —2.32 97.00
o 0.00 0.00 0.20 96.20 0.00 0.13 94.00 0.00 0.35 95.40
bR 0.30 0.30 0.89 95.00 0.30 1.52 96.60 0.29 —1.82 95.00
Y2 0.30 0.30 037 95.40 0.30 —045 96.00 0.30 —0.78 94.80
12 0.15 0.16 3.64 96.20 0.15 2.47 95.20 0.15 0.10 95.20
o5 0.50 0.50 0.53 95.20 0.50 0.78 94.80 0.50 —0.08 94.00
052 0.50 0.50 0.74 94.20 0.50 0.70 93.60 0.51 1.07 94.60
053 0.50 0.50 0.42 95.60 0.50 0.20 95.40 0.50 0.46 94.80
Os4 0.50 0.50 0.27 94.20 0.50 0.06 94.60 0.50 0.10 93.40
055 0.50 0.50 0.24 95.00 0.50 0.1 96.00 0.50 —0.10 94.60
056 0.50 0.50 —0.10 95.60 0.50 0.58 94.80 0.50 0.79 95.20
Oe 0.50 0.50 0.23 94.80 0.50 0.00 94.80 0.50 0.28 95.40
[P 0.50 0.51 173 95.20 0.50 0.66 94.20 0.50 0.02 94.80
03 0.50 0.50 0.81 93.20 0.50 0.70 95.40 0.50 0.88 95.20
oy 1.00 1.01 1.62 82.40 1.01 0.70 83.00 1.00 =271 78.60
1.1 1.00 0.99 —0.52 95.80 1.00 0.15 93.60 1.00 0.43 94.60
3, 1.00 1.00 0.40 93.80 1.01 1.02 95.20 1.00 0.39 93.80
Ty, 0.00 0.00 —0.10 92.20 0.00 -0.11 94.80 0.00 —0.13 95.00
Ty, 0.00 0.00 0.14 94.80 0.00 0.03 96.00 0.00 —0.47 96.00
Ty 0.00 —0.01 —0.58 93.40 0.00 0.10 96.60 0.00 0.12 95.40
Tx, 0.00 0.00 —0.16 94.80 0.00 —0.26 96.20 0.01 0.69 95.40
Tys 0.00 0.00 —0.33 96.20 0.00 -0.17 93.80 0.01 0.70 95.20
Txg 0.00 0.00 —0.30 94.00 0.00 —0.20 95.20 0.01 0.68 93.40
Ty, 0.00 0.00 0.27 95.20 0.00 —0.01 96.40 0.00 —0.03 96.20
Ty, 0.00 0.00 0.07 96.00 0.00 0.12 95.40 0.00 —0.01 94.60
Iy 1.00 1.01 0.59 94.80 1.01 0.81 95.40 1.01 0.68 93.80
s 1.00 1.00 0.49 95.00 1.01 1.21 95.60 1.01 0.54 95.60
g 1.00 1.00 0.44 95.60 1.00 0.30 95.60 1.00 0.1 94.60
Jxs 1.00 1.01 0.52 96.40 1.00 0.21 93.80 1.00 —0.11 96.00
Ly, 1.00 0.99 —0.54 93.80 0.99 —0.74 94.80 1.00 0.28 95.80
Ay, 1.00 0.99 —0.60 95.80 0.99 —0.68 92.80 1.00 —0.33 94.60

400
p 0.00 0.03 2.61 94.60 0.31 3.45 94.00 0.60 0.60 95.00
o 0.00 0.00 -0.11 92.60 0.00 0.30 94.20 0.00 —0.02 94.60
bR 0.30 0.30 —0.98 95.20 0.30 —-0.73 97.80 0.30 0.76 95.20
Y2 0.30 0.30 0.12 96.40 0.30 0.72 95.00 0.30 0.05 96.20
12 0.15 0.15 —0.16 94.20 0.15 0.56 92.80 0.14 —5.55 95.00
051 0.50 0.50 0.09 96.00 0.50 0.1 95.20 0.50 0.40 93.20
052 0.50 0.50 0.11 92.80 0.50 0.45 95.40 0.50 0.01 94.80
053 0.50 0.50 0.46 95.00 0.50 —0.06 95.00 0.50 0.20 93.60
Os4 0.50 0.50 0.10 95.40 0.50 0.20 94.20 0.50 0.75 94.00
055 0.50 0.50 0.1 96.80 0.50 —0.34 94.40 0.50 0.12 95.00
056 0.50 0.50 0.25 94.80 0.50 0.48 94.00 0.50 -0.10 94.00
Oe 0.50 0.50 —0.08 95.20 0.50 —0.24 94.80 0.50 —0.14 94.20
0a 0.50 0.50 0.35 94.80 0.50 0.07 94.00 0.50 0.37 95.40
03 0.50 0.50 0.21 93.40 0.50 0.43 95.60 0.50 0.32 93.20
oy 1.00 1.00 0.71 78.60 1.00 —0.40 79.80 1.01 —4.17 71.60
1.1 1.00 1.00 —0.06 93.80 1.00 0.17 95.00 1.00 —0.12 95.60
3, 1.00 1.00 0.13 95.60 1.00 0.11 94.40 1.00 0.28 93.80
Ty, 0.00 0.00 033 94.20 0.00 —0.05 95.20 0.00 —0.09 95.60
Tx, 0.00 0.00 0.25 93.40 0.00 —0.10 94.40 0.00 —-0.14 93.20
Ty 0.00 0.00 0.22 94.80 0.00 0.26 95.40 0.00 —0.17 94.60
Ty, 0.00 0.00 —0.20 94.00 0.00 —0.08 95.00 0.00 0.00 95.80
Ty 0.00 0.00 —0.48 94.20 0.00 —0.12 96.00 0.00 0.02 96.40
Txg 0.00 —0.01 —0.63 92.60 0.00 0.03 95.40 0.00 0.13 95.20
Ty, 0.00 0.00 —0.01 94.80 0.00 0.06 96.00 0.00 0.00 95.00
Ty, 0.00 0.00 0.12 95.40 0.00 —0.01 94.40 0.00 —0.35 94.60
Iy 1.00 1.00 0.24 94.80 1.00 0.15 94.20 1.00 0.49 97.00
s 1.00 1.00 0.24 95.20 1.00 0.13 95.60 1.00 0.44 96.20
™ 1.00 1.00 0.04 93.80 1.00 0.02 95.40 1.00 0.39 93.80
Jxs 1.00 1.00 0.08 94.00 1.00 —0.06 97.00 1.00 0.47 93.40
Ly, 1.00 1.00 —0.05 95.60 1.00 —0.21 97.80 1.00 —0.38 95.00

) Ay, 1.00 1.00 0.09 96.20 1.00 —-0.12 95.60 1.00 —-0.32 94.40
high

W

196
p 0.00 0.07 6.76 92.20 0.31 433 94.40 0.57 —5.09 96.60

(Continued)
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p=0 p=03 p=06

w* 0 0 Bias(0)% Coverage 0 Bias(0)% Coverage 0 Bias(0)% Coverage
o 0.00 0.01 0.62 95.00 0.00 —0.26 96.20 0.01 0.65 94.80
2 0.30 0.30 0.81 95.00 0.30 0.48 96.00 0.30 0.55 95.00
V2 0.30 0.31 2.35 95.60 0.30 1.25 95.20 0.30 —0.30 94.40
[O2P) 0.15 0.15 0.19 93.80 0.15 2.47 94.60 0.15 1.96 95.40
051 0.50 0.50 0.34 94.80 0.50 —0.03 94.80 0.50 0.72 94.60
052 0.50 0.50 0.32 92.80 0.50 0.04 95.20 0.50 0.29 95.80
053 0.50 0.50 0.54 93.80 0.51 113 94.60 0.50 0.58 95.80
Osa 0.50 0.50 0.42 95.20 0.50 0.45 96.00 0.50 0.23 95.60
055 0.50 0.50 —-0.19 95.20 0.50 0.67 95.60 0.50 0.76 95.40
056 0.50 0.50 0.21 92.60 0.50 0.31 94.80 0.50 0.44 94.20
[ 0.50 0.51 1.42 94.60 0.50 —-0.10 96.80 0.50 0.42 94.40
) 0.50 0.50 0.38 95.40 0.50 0.39 95.80 0.50 0.42 94.60
[} 0.50 0.50 0.13 94.00 0.50 0.99 96.40 0.50 0.36 93.60
or 1.00 1.02 1.08 85.00 1.00 0.84 84.00 1.01 —1.34 78.40
11 1.00 1.00 0.05 95.40 1.00 0.18 94.20 1.00 0.20 96.20
22 1.00 1.00 —0.49 95.40 1.00 0.16 94.80 1.00 0.42 95.40
Ty, 0.00 0.00 0.48 94.80 0.00 0.10 95.60 0.00 0.24 95.40
Ty, 0.00 0.00 0.17 94.80 0.00 0.12 95.00 0.00 —0.05 94.20
Ty, 0.00 0.00 0.44 95.20 0.00 0.29 94.60 0.00 —0.09 95.80
Ty, 0.00 0.00 —0.03 96.60 0.00 —0.02 94.60 —0.01 —0.64 93.60
Txs 0.00 0.00 0.33 94.60 0.00 —0.13 95.00 —0.01 —0.51 95.20
Ty 0.00 0.00 037 95.80 0.00 —0.02 93.80 —0.01 —0.61 95.00
Ty, 0.00 0.00 0.18 94.60 0.00 0.18 94.80 0.00 —0.12 95.20
Ty, 0.00 0.00 0.1 95.60 0.00 —0.08 96.20 0.00 —0.22 95.80
Jy 1.00 1.01 0.85 94.40 1.01 0.56 95.80 1.01 0.75 95.40
s 1.00 1.01 0.62 95.00 1.00 0.37 96.20 1.01 0.53 94.00
Jxg 1.00 1.01 0.88 94.80 1.01 0.80 95.60 1.00 0.39 96.40
xs 1.00 1.01 0.78 96.00 1.00 0.46 94.40 1.00 0.29 95.60
Ay, 1.00 1.00 —0.43 95.40 1.00 —0.41 95.80 1.00 —0.41 95.60
Ly 1.00 0.99 —0.70 94.60 1.00 —0.45 95.40 1.00 —0.36 95.20

400
p 0.00 0.04 4.05 93.80 0.30 —1.05 95.20 0.59 —-1.90 96.00
o 0.00 0.00 0.05 95.80 0.00 —0.06 96.00 —0.01 —0.75 94.20
b2 0.30 0.30 0.03 93.00 0.30 0.94 94.40 0.30 —1.04 96.00
V2 0.30 0.30 0.10 94.00 0.30 —0.81 94.60 0.30 0.30 95.60
[O2P) 0.15 0.15 —-1.12 94.80 0.16 3.66 95.00 0.15 0.12 95.40
051 0.50 0.50 0.11 95.40 0.50 0.64 96.40 0.50 —0.07 96.00
052 0.50 0.50 —0.09 95.40 0.50 —0.12 94.60 0.50 —0.10 94.60
053 0.50 0.50 0.67 93.60 0.50 —-0.10 96.00 0.50 0.45 95.20
Osa 0.50 0.50 0.49 94.20 0.50 0.46 92.80 0.50 0.38 95.80
055 0.50 0.50 0.16 94.80 0.50 —0.25 94.60 0.50 0.00 95.60
056 0.50 0.50 —0.09 95.20 0.50 0.43 93.60 0.50 0.05 94.60
[ 0.50 0.50 —0.29 95.40 0.50 —0.58 95.80 0.50 0.33 95.20
[ 0.50 0.50 0.38 93.60 0.50 0.45 94.20 0.50 —0.41 93.40
[} 0.50 0.50 0.60 94.80 0.50 0.46 95.20 0.50 0.65 94.20
o; 1.00 1.01 0.97 80.00 1.01 0.10 81.40 1.00 —2.03 76.80
11 1.00 1.00 0.04 96.00 1.00 0.32 94.80 1.00 —0.03 94.60
22 1.00 1.00 0.08 94.20 1.00 —0.15 94.80 1.00 0.29 94.80
Ty, 0.00 0.00 0.48 94.60 0.00 0.19 95.40 0.00 —0.13 96.80
Ty, 0.00 0.00 0.42 96.60 0.00 0.06 95.20 0.00 —0.47 95.20
Ty, 0.00 0.01 0.51 95.40 0.00 0.19 95.40 0.00 —0.09 95.40
Ty, 0.00 0.00 0.10 94.60 0.00 —043 94.00 0.00 0.03 97.00
Txs 0.00 0.00 —0.06 94.00 0.00 —0.15 94.60 0.00 0.27 95.40
Ty 0.00 0.00 0.06 95.00 0.00 —0.33 94.80 0.00 0.05 96.60
Ty, 0.00 0.00 —0.01 95.80 0.00 —-0.15 94.80 0.00 0.23 96.40
Ty, 0.00 0.00 —0.15 95.20 0.00 —0.08 95.60 0.00 0.06 94.80
Jy 1.00 1.00 0.24 95.00 1.00 0.47 95.00 1.00 0.17 94.60
s 1.00 1.00 0.01 94.40 1.01 0.72 94.20 1.00 0.27 96.40
Jxg 1.00 1.00 0.17 94.00 1.01 0.51 94.40 1.00 0.30 94.80
s 1.00 1.00 0.38 93.20 1.00 0.39 95.20 1.00 0.50 94.80
Ay, 1.00 1.00 —0.22 95.80 1.00 —0.33 94.40 1.00 0.00 95.00
s 1.00 1.00 —0.37 95.80 1.00 —0.45 96.00 1.00 —0.23 93.60

W;

196
p 0.00 0.09 8.89 93.93 0.15 —49.49 100.00 0.22 —62.62 99.87
o 0.00 0.00 -0.11 9733 0.00 —0.33 94.60 0.00 —0.21 90.80
M1 0.30 0.30 0.26 94.00 0.30 1.39 95.27 0.30 —0.33 96.13
72 0.30 0.30 -1.01 95.00 0.30 0.63 95.07 0.30 0.89 95.07
w13 0.15 0.15 2.05 94.60 0.15 2.19 95.20 0.15 270 94.53
051 0.50 0.50 0.25 95.53 0.50 0.78 95.60 0.50 0.39 94.07

(Continued)
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Table A1. Continued.

p=0 p=03 p=06

w* N 0 0 Bias(0)% Coverage 0 Bias(0)% Coverage 0 Bias(0)% Coverage
052 0.50 0.50 0.54 95.80 0.50 0.22 95.53 0.50 0.20 94.40
053 0.50 0.50 0.38 94.87 0.50 0.31 95.40 0.50 0.47 94.00
054 0.50 0.50 0.39 96.00 0.50 0.95 94.87 0.50 0.58 94.80
055 0.50 0.50 0.38 94.53 0.50 0.28 94.53 0.50 0.29 95.40
056 0.50 0.50 0.39 94.80 0.50 0.24 93.93 0.50 0.68 95.27
G 0.50 0.50 0.30 95.07 0.50 0.02 95.20 0.50 0.05 94.20
[ 0.50 0.50 0.40 94.00 0.50 0.68 94.33 0.50 0.09 95.80
a3 0.50 0.50 0.70 95.67 0.50 0.63 93.87 0.50 0.70 93.60
oy 1.00 1.00 1.59 82.40 1.01 1.03 82.27 1.00 1.22 81.47
11 1.00 1.00 0.45 95.53 1.00 032 96.00 1.00 0.36 94.80
2,2 1.00 1.00 0.13 95.33 1.00 0.26 93.93 1.00 0.39 94.53
T, 0.00 0.00 —0.20 94.73 0.00 0.11 95.00 0.00 0.00 95.27
Ty, 0.00 0.00 —0.30 94.47 0.00 0.06 94.87 0.00 —0.15 95.33
Ty, 0.00 0.00 —0.26 94.47 0.00 0.04 94.93 0.00 —0.05 96.13
Tx, 0.00 0.00 0.16 95.07 0.00 —0.22 95.47 —0.01 —0.55 95.87
Ty 0.00 0.00 0.26 95.40 0.00 —0.25 96.67 0.00 —0.36 95.00
Txg 0.00 0.00 0.22 95.93 0.00 —0.02 95.60 0.00 —0.47 94.33
T, 0.00 0.00 0.08 95.27 0.00 0.09 95.67 0.00 —0.06 94.20
Ty, 0.00 0.00 0.17 94.47 0.00 0.02 95.33 0.00 0.11 95.33
Iy 1.00 1.00 0.43 95.87 1.01 0.63 95.33 1.01 0.53 95.00
Js 1.00 1.00 0.49 94.60 1.00 0.34 95.40 1.00 0.40 95.33
g 1.00 1.00 0.48 95.40 1.01 0.53 94.93 1.00 0.36 94.07
s 1.00 1.00 0.38 95.07 1.01 0.62 94.27 1.00 0.43 95.20
Ay, 1.00 1.00 —0.39 95.73 1.00 —0.48 94.47 1.00 —0.04 94.60
Ay, 1.00 1.00 —0.44 95.40 1.00 —0.42 95.20 1.00 —0.30 95.00

400
p 0.00 0.08 8.46 95.60 0.16 —45.28 99.93 0.27 —54.87 99.20
o 0.00 0.00 0.03 96.87 0.00 0.13 94.00 0.00 —0.45 92.20
M1 0.30 0.30 —0.07 94.47 0.30 —0.14 94.60 0.30 0.87 95.27
V2 0.30 0.30 —0.75 95.60 0.30 0.37 95.33 0.30 0.84 95.00
12 0.15 0.15 2.20 95.20 0.15 —0.60 95.20 0.15 1.25 94.73
051 0.50 0.50 —0.01 95.07 0.50 0.29 94.40 0.50 0.27 95.33
052 0.50 0.50 0.38 94.67 0.50 0.08 94.53 0.50 0.31 94.13
053 0.50 0.50 0.28 94.60 0.50 0.37 95.60 0.50 0.26 95.33
054 0.50 0.50 0.37 94.27 0.50 0.32 95.40 0.50 0.22 95.13
ass 0.50 0.50 0.16 94.60 0.50 0.16 95.07 0.50 0.20 95.67
056 0.50 0.50 —0.03 94.80 0.50 0.30 95.60 0.50 0.16 95.67
G 0.50 0.50 0.17 94.20 0.50 0.00 94.13 0.50 0.05 95.80
[ 0.50 0.50 0.23 93.60 0.50 0.21 95.07 0.50 0.46 95.80
a3 0.50 0.50 0.29 94.40 0.50 035 93.87 0.50 0.10 94.60
oy 1.00 1.00 0.55 81.67 1.00 0.63 81.27 1.00 0.43 79.93
11 1.00 1.00 0.12 95.07 1.00 0.21 95.33 1.00 0.18 95.13
3,2 1.00 1.00 0.04 95.27 1.00 0.19 94.47 1.00 0.10 94.27
T, 0.00 0.00 —0.07 95.20 0.00 0.11 95.33 0.00 0.06 95.20
Ty, 0.00 0.00 0.04 94.40 0.00 0.06 95.40 0.00 —0.05 95.60
Ty, 0.00 0.00 0.06 94.67 0.00 0.06 95.80 0.00 0.00 96.20
Tx, 0.00 0.00 —0.07 93.93 0.00 0.27 94.87 0.00 0.05 94.60
Ty 0.00 0.00 —0.15 95.00 0.00 0.08 96.07 0.00 0.08 95.67
Txg 0.00 0.00 —0.08 94.87 0.00 0.19 94.73 0.00 0.03 94.27
T, 0.00 0.00 —0.07 95.87 0.00 0.02 94.80 0.00 0.02 94.40
Ty, 0.00 0.00 0.07 95.93 0.00 0.09 95.13 0.00 0.00 94.87
Iy 1.00 1.00 0.18 96.20 1.00 0.19 95.60 1.00 0.14 94.47
Js 1.00 1.00 0.19 94.53 1.00 0.29 95.73 1.00 0.21 95.00
g 1.00 1.00 0.31 93.80 1.00 0.17 95.00 1.00 0.25 96.40
s 1.00 1.00 0.23 94.80 1.00 0.18 94.80 1.00 0.36 96.07
Ay, 1.00 1.00 0.04 95.73 1.00 —0.10 95.60 1.00 —0.36 94.33
Ay, 1.00 1.00 0.04 95.07 1.00 —0.24 94.87 1.00 —0.24 94.87

W* is the population W condition. N is the simulated sample size. 0 is the simulated population value of each parameter. p = ... is the simulated spatial

autocorrelation of the endogenous lag. 6 is the obtained average posterior mean across simulated replications. Bias(6)% is the average percent bias
across simulation replications (Note that when 0 =0 absolute bias is presented instead). Coverage for each parameter is the proportion of simulation
iterations in which the population value falls within the central 95% density of the posterior estimate.



Appendix B

Additional details for CPDM formula

CPDM details

8,/0, = (Iy — pW) 'Inf,

The CPDM Eq. 16 provides the equation as described in
(LeSage & Pace, 2014b) for an observed spatial regression
model y = pWy + f,.x + e. Where dependent variable y lag
and single predictor variable x and error term e. Where p is
the estimated spatial auto-regressive estimate, W is the N by N
matrix defining the spatial relationships between cases, Iy is
an N by N identity matrix, and f, is the slope of x. The out-
come 9,/d% provides the anticipated effect each case have on
one another for a 1 unit increase in the predictor x.

Expanding this to the BARDSEM model with a single
latent variable ¢ and single endogenous latent variable #,
Eq. 17 provides the CPDM equation

8,/0% = (Iy — pW) 'Iny

where } provides the slope of ¢ on 7. When an interaction
is present in the model, this CPDM formula needs to be
expanded to account for the moderator. A method of
accomplishing this is to include marginal slope values in
the CPDM formula. In this case starting at Eq. 17 to arrive
at the CPDM formula presented in the main text (Eq. 6),
we replace § with ($,, + ®12S;). Where 7, is the predictor
of interest, @1, is the slope of the interaction effect, and S,
is the selected g marginal slope values. We now have g
CPDMS to summarize. Each reflects the anticipated effect
the cases have on one another for a one-unit increase in the
¢ of interest at the marginal levels of the moderator.

(16)

17)

Appendix C

Homicide example standardized factor loadings

Factor Observed Variable Standardized Loading

Violent Crime
%
/:Homicide 0.75
AOfficers Assaulted 0.92
)NAssault 0.94
;\Robbery 0.95
Property Crime
/:‘Burglary 0.84
ATheft 0.88
Zvehicle Theft 0.82
Financial Inequality
/}TJnemponment 0.39
APoverty 0.83
ZGini 0.46

*Scaling variables in the non-standardized solution.

Appendix D

Stan code for example

data {
int lower 0 N; // number of cases
int lower 0 Kx; // number of ob-
served exogenous predictors

MULTIVARIATE BEHAVIORAL RESEARCH @ 113

int lower 0 Ky; // number of ob-
served endogenous predictors

matrix [N, Kx] x; // observed exo-
genous variables
matrix [N, Kyl y; // observed en-

dogenous variables

matrix lower 0, upper 1 [N, N] W; //
weight matrix

matrix lower 0, upper 1 [N, N] I; //
Identity matrix

vector[5] Sg; // vector of marginal
slopes for impacts (-2,-1,0,1,2 in
the example)

int lower 0 KSqg; // number of ele-
ments of Sg} parameters {

vector [4] bl; // structural slopes
vector lower 0 [Kx] sigmax; // re-
sidual variances

vector lower 0 [Ky] sigmay;

real lower 0O sigmaeta;

vector lower 0 [2] sigmaxi;
cholesky factor_corr[2] L1;
vector [N] etaz;

matrix[N, 2] zi;

vector [Kx] tx; // exogenous item

intercepts
vector[Ky-1] ty; // endogenous item
intercepts
vector lower 0 [Kx-2] 1x; // exo-

genous item Loadings
vector lower 0 [Ky-1] ly;
genous item loadings
real lower -1, upper
spatial effect} model {
matrix [N, Kx] mux; // E [X
matrix [N, Ky] muy; // E [|y

// endo-
1 rho; //

x1]
eta]l
vector [N] eta; // E [eta | xi]
matrix [N,2] xi; // Xi
xi zi * diag_pre_multiply (sigmaxi,
Ll)’
// structural model
etabl[1l]
bl[2] Xi[ 1]
b1[3] Xl[ 2]

1[4]1*%(x [,2]-*Xi[,l])
etaz rho* (W*etaz) ;
// measurement model

mux [,1] tx[1] xi[,1]1; // marker
variable for xi[, 1]

mux [,2] tx[2] 1x[11*xi[,1]1;

mux [,3] tx[3] 1x[2]1*xi[,1];

mux [,4] tx[4] xil[,2]; // marker
variable for xi[, 2]

mux [,5] tx[5] 1x[31*xil[,2];

mux [,6] tx[6] 1x[4]1*xi[,2];

muy [,1] eta; // marker variable for
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eta

for(i in 2:Ky) {muy /[, i]
[i-1]%eta;}

// priors
for(zinl:Kx){x[,z] ~normal (mux[,
z], sigmax [z]);}
for(zinl:Ky){yl[,z] ~normal (muy/[,
z], sigmay [z]);}

etaz ~normal (0, sigmaeta) ;
to_vector(zi) ~ normal(0,1); //
Cholesky

bl ~normal (0,1);
sigmax~cauchy(0,2.5);

sigmay ~cauchy (0,2.5);

sigmaxi ~cauchy (0,2.5);
sigmaeta~cauchy(0,2.5);

L1 ~ 1lkj_corr_cholesky (2);
tx~normal (0,1);
ty~normal (0,1);
lx~normal (0,1);
ly~normal (0,1);
rho~uniform(0,1);
sampling

// rho~uniform(-1,1) // considers
negative spatial effect, slower
sampling}

generated quantities {

matrix[2,2] phi; // covariance ma-

ty[i-1]1 1y

// speeds up

trix

matrix[N,N] CPDM[KSq]l; // array of
CPDMs

vector [KSqg] direct;

vector [KSg] indirect;

vector [KSg] total;

// covariance matrix of latent exo-
genous variables

phi diag_pre_multiply(sigmaxi,
L1l)*diag_pre_multiply(sigmaxi,
L1)’;

// spatial spillover (impact) cal-
culations

// bl[3] is effect of xi[,2] and is
the effect of interest

// xi[,1] is the moderator

// bl4] is the interaction effect of
xi[,1] and xi[, 2]

for (i in 1:KSqg){\\ Sqgli]*sigmaxi
[2] to standardize

CPDM[i] inverse(I - rho*w) * I *(bl
[3] bl[4] *Sglil*sigmaxil[2]);
direct[1] mean (diagonal (CPDM
[1i]1)); // mean diagonal of CPDM
indirect[i] sum (add_diag (CPDM
[11,0)) /(N * (N - 1)); // mean off-
diagonal of CPDM

total[i] indirect[i] direct[i];}}
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