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ABSTRACT

Time series of individual subjects have become a common data type in psychological
research. These data allow one to estimate models of within-subject dynamics, and thereby
avoid the notorious problem of making within-subjects inferences from between-subjects
data, and naturally address heterogeneity between subjects. A popular model for these data
is the Vector Autoregressive (VAR) model, in which each variable is predicted by a linear
function of all variables at previous time points. A key assumption of this model is that its
parameters are constant (or stationary) across time. However, in many areas of psychological
research time-varying parameters are plausible or even the subject of study. In this tutorial
paper, we introduce methods to estimate time-varying VAR models based on splines and
kernel-smoothing with/without regularization. We use simulations to evaluate the relative
performance of all methods in scenarios typical in applied research, and discuss their
strengths and weaknesses. Finally, we provide a step-by-step tutorial showing how to apply
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the discussed methods to an openly available time series of mood-related measurements.

1. Introduction

The ubiquity of mobile devices has led to a surge in
time series (or intensive longitudinal) data sets from
single individuals (e.g., Bak et al, 2016; Bringmann
et al., 2013; Fisher et al, 2017; Groen et al., 2019;
Hartmann et al., 2015; Kramer et al., 2014; Kroeze
et al.,, 2016; Snippe et al., 2017; van der Krieke et al,
2017). This is an exciting development because these
data allow one to model within-subject dynamics,
which avoids the notorious problem of making
within-subjects inferences from between-subjects data,
and naturally addresses heterogeneity between subjects
(Fisher et al, 2018; Molenaar, 2004). The ability to
analyze within-subjects data therefore promises to be
a major leap forward both for psychological research
and applications in (clinical) practice.

A key assumption of all standard time series mod-
els is that all parameters of the data generating model
are constant (or stationary) across the measured time
period. This is called the assumption of stationarity.!
While one often assumes constant parameters,
changes of parameters over time are often plausible

in psychological phenomena. As an example, take the
repeated measurements of the variables Depressed
Mood, Anxiety and Worrying, modeled by a time-
varying first-order Vector Autoregressive (VAR)
model shown in Figure 1. In week 1, there are no
cross-lagged effects between any of the three variables.
However, in week 2 we observe a cross-lagged effect
from Worrying on Mood. A possible explanation could
be a physical illness in week 2 that moderates the two
cross-lagged effects. In week 3, we observe a cross-
lagged effect from Anxiety on Mood. Again, this could
be due to an unobserved moderator like a stressful
period at work. The fourth visualization shows the
average of the previous three models, which is the model
one would obtain by estimating a stationary VAR model
on the entire time series. In this situation, the stationary
model is clearly inappropriate because it is different to the
true model across all intervals of the time series.
Time-varying models are of central interest when
studying psychological phenomena from a within-
person perspective. For example, in the network
approach to psychopathology, it is suggested that mental
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Figure 1. Upper panel: hypothetical repeated measurements of Depressed Mood, Anxiety and Worrying, generated from a time-
varying lag 1 VAR model. Lower panel: the time-varying VAR-model generating the data shown in the upper panel. It consists of
three models, one for each week. The fourth model (left to right) indicates the average of the three models, which is what one
obtains when estimating a stationary VAR model on the entire time series.

disorders arise from causal interactions among symp-
toms (see also Borsboom & Cramer, 2013; Robinaugh
et al., 2019; Schmittmann et al., 2013). This means that
the interactions between symptoms are different for
healthy and unhealthy individuals (Pe et al., 2015; van
Borkulo et al., 2015) and that the interactions result in
an individual change when she or he transitions from a
healthy to an unhealthy state (or vice versa). Time-vary-
ing models are able to capture this change. Next to
detecting these changes, they may also shed light on why
those changes occurred. For example, one could correl-
ate time-varying parameters with contextual factors such
as elevated stress levels, social setting or major life events
and thereby possibly uncover conditions and events that
predict the onset of mental disorders. Time-varying
models can also be used to study how parameters
change in response to interventions. For example, in
Section 4 we will fit a time-varying VAR model on ESM
measurements during a double-blind medication reduc-
tion study (Wichers et al., 2016).

Time-varying models are also central to the idea of
Early Warning Signals (EWS; Scheffer et al., 2009). For
example, Wichers et al. (2016) suggested to anticipate
phase-transitions between healthy and unhealthy states
with EWS such as time-varying autocorrelation and vari-
ance (see also van de Leemput et al., 2014). Time-varying
VAR models are an extension of these EWS to multivari-
ate time-series. Anticipating the sensitive periods around

phase transitions is interesting, because during those
periods treatment may be more efficient (Olthof et al.,
2019). This means that time-varying models could be
used as a tool to monitor patients and determine periods
during which treatment is most promising.

In this tutorial paper we provide an introduction to
how to estimate a time-varying version of the Vector
Autoregressive (VAR) model, which is arguably the
simplest multivariate time series model for temporal
dependencies in continuous data, and is used in many
of the papers cited above. We will focus on two sets
of methods recently proposed by the authors to
estimate such time-varying VAR models: Bringmann
et al. (2018) presented a method based on splines
using the Generalized Additive Modeling (GAM)
framework, which estimates time-varying parameters
by modeling them as a spline function of time; and
Haslbeck and Waldorp (2018b) suggested a method
based on penalized kernel-smoothing (KS), which
estimates time-varying parameters by combining the
estimates of several local models spanning the entire
time series. While both methods are available to
applied researchers, it is unclear how well they and
their variants (with/without regularization or signifi-
cance testing) perform in situations that are typical in
applied research. We aim to improve this situation by
making the following contributions:
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1. We report the performance of GAM based meth-
ods with and without significance testing, and the
performance of KS based methods with and with-
out regularization in situations that are typical for
Experience Sampling Method (ESM) studies.

2. We discuss the strengths and weaknesses of all
methods and provide practical recommendations
for applied researchers.

3. We compare time-varying methods to their corre-
sponding stationary counterparts to address the
question of how many observations are necessary
to identify the time-varying nature of parameters.

4. We provide tutorials on how to estimate time-
varying VAR models using both methods on an
openly available intensive longitudinal dataset
using the R-packages mgm and tvvarGAM.

The paper is structured as follows. In Section 2.1 we
define time-varying VAR models, which are the focus
of this paper. We next present two sets of methods to
estimate such models: one method based on splines
with and without significance testing (Section 2.2), and
one method based on kernel estimation with and with-
out regularization (Section 2.3). In Sections 3.1 and 3.2
we report two simulation studies that investigate the
performance of these two models and their stationary
counterparts. In Section 4 we provide a fully reprodu-
cible tutorial on how to estimate a time-varying VAR
model from an openly available time series data set col-
lected in ESM studies using the kernel smoothing
method using the R-package mgm (we repeat the same
tutorial with the GAM method in the appendix).
Finally, in Section 5 we discuss possible future direc-
tions for research on time-varying VAR models.

2. Estimating time-varying VAR models

We first introduce the notation for the stationary
first-order VAR model and its time-varying extension
(Section 2.1) and then present the two methods for
estimating time-varying VAR models: the GAM-based
method (Section 2.2) and the penalized kernel-
smoothing-based method (Section 2.3). We discuss
implementations of related methods in Section 2.4.

2.1. Vector autoregressive (VAR) model

In the first-order Vector Autoregressive (VAR(1))
model, each variable at time point ¢ is predicted by all
variables (including itself) at time point t — 1. Next to
a set of intercept parameters, the VAR(1) model is
comprised by autoregressive effects, which indicate

how much a variable is predicted by itself at the pre-
vious time point, and cross-lagged effects, which indi-
cate how much a variable is predicted by all other
variables at the previous time point.

Formally, the variables X; € R’ at time point ¢ € Z
are modeled as a linear combination of the same vari-
ables at t— 1

Xi,1
X; =Py +BXi +e= :
o (1)
ﬁ0,1 ﬁl,l ﬁl,p Xt—1,1 €1
N
Bo,p Bo.1 Bo.p | LXt=1,p €p

where B, is the intercept of variable 1, f3; ; is the
autoregressive effect of X; 1,1 on X, and f8,; is the
cross-lagged effect of X; 1, on X;,, and we assume
that &= {e;,...,ep} are independent (across time
points) samples drawn from a multivariate Gaussian dis-
tribution with variance-covariance matrix 2. In this
paper we do not model X, however, it can be obtained
from the residuals of the model and used to estimate
the inverse covariance matrix (see e.g, Epskamp
et al., 2018).

Throughout the paper we deal with first-order VAR
models in which all variables at time point ¢ are a lin-
ear function of all variables at time point t— 1. In the
interest of brevity we will therefore refer to this first-
order VAR model (or VAR(1) model) as a VAR model.
More lags can be included by adding further parameter
matrices and lagged variable vectors X; j (for a lag of
k) to the model in Equation (1). Note that while we
focus on VAR(1) models in the this paper, the pre-
sented methods can be used to estimate time-varying
VAR models with any set of lags. For a detailed
description of VAR models we refer the reader to
Hamilton (1994).

In both the GAM and the KS method we estimate
the model in (1) by predicting each of the variables
Xy for i € {1,...,p} separately. Specifically, we model

Xei = Poi + BiXi-1 + i
thl,l
=PBoi+ [Bir - PBip] : +e,
Xt-1,p

(2)

for all i € {1,...,p}, where B; is the 1 x p vector con-
taining the lagged effects on X, ;. After estimating the
parameters in each equation, we combine all estimates
to the VAR model in (1).

In order to turn the stationary VAR model in (1)
into a time-varying VAR model, we introduce a time



index for the parameter matrices
X; = Bo¢ + B X1 + & (3)

This allows a different parameterization of the
VAR model at each time point and thereby allows the
model to vary across time. Throughout this paper we
assume that the time-varying parameters are smooth
deterministic functions of time. We define a smooth
function as a function for which the first derivative
exists everywhere. In the following two subsections we
introduce two different ways to estimate such a time-
varying VAR model.

The VAR model has often been discussed and
visualized as a network model (Epskamp et al,
2018), and also here we will use both statistical and
network/graph terminology. To avoid confusion
between the two terminologies, we explicitly state
how the terms in the two terminologies correspond
to each other. From the statistical perspective
there are two types of lagged effects between pairs
of variables: autocorrelations (e.g., X;—; — X;) and
cross-lagged effects (e.g., X;—1 — Y;). In the network
terminology variables are nodes, and lagged effects
are represented by directed edges. An edge from
a given node on itself is also called a self-loop,
and represents autocorrelation effects. The value of
lagged effects is represented in sign and the absolute
value of the edge-weights of the directed edges. If
an edge-weight between variables X; and Y,_; is
nonzero, we say that the edge from X; and Y, ; is
present. Sparsity refers to how strongly connected a
network is: if many edges are present, sparsity is
low; if only few edges are present, sparsity is high.
On a node-level, sparsity is captured by the indegree
(how many edges point toward a node) and outde-
gree (how many edges point away from a node).
In statistical terminology indegree is the number
of incoming lagged effects on variable X, and
outdegree the number outgoing lagged effects from
variable X.

2.2. The GAM method

In this section we explain how to estimate a time-
varying VAR model using the Generalized Additive
Model (GAM) framework, which allows for non-linear
relationships between variables (see also Bringmann
et al., 2018, 2017). We leverage the GAM framework
for the estimation for time-varying models by using
it to define each parameter as a function of time.
Because GAMs are able to represent non-linear
functions, this allows us to recover non-linear time-
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varying parameters. In what follows we illustrate how
this approach works for the simplest possible example,
a model consisting only of a time-varying intercept
parameter, y = f3, { + .

Panel (a) of Figure 2 shows that the values of y are
varying over time, so the intercept will have to be
time-varying as well, if the intercept-only model
is supposed to fit the data well. This is achieved by
summing the following five basis functions

Bo.r = 2R (1) + 2Ry (1) + B3R5 (1) + 84R4 (1)
+ 85Rs(t), (4)

which are displayed in panels (b)-(f) in Figure 2.
Panel (g) overlays all used basis functions, and panel
(h) displays the estimate of the final smooth function
[Afo,t, which is obtained by adding up the weighted
basis functions (&) (see panel (g) and (h) of Figure 2).
The optimal regression weights are estimated
using standard linear regression techniques. The same
rationale is applied to every time-varying parameter in
the model.

There are several different spline bases such as
cubic, P-splines, B-splines, and thin plate splines. The
advantage of thin plate splines, which is the basis used
here, is that one does not have to specify knot loca-
tions, resulting therefore in fewer subjective decisions
that need to be made by the researcher (Wood, 2006).
The basis functions in Figure 2 exemplify the thin
plate spline basis. In the figure, panels (b)-(f) show
that each additional basis function (R) increases the
nonlinearity of the final smooth function. This is
reflected in the fact that every extra basis function is
more “wiggly” than the previous basis functions. For
example, the last basis function in panel (f) is
“wigglier” than the first basis function in panel (b).
The spline functions used here are smooth up to the
second derivative. Thus, a key assumption of the
GAM method is that all true time-varying parameter
functions are smooth as well. This assumption is also
called the assumption of local stationarity, because
smoothness implies that the parameter values that are
close in time are very similar, and therefore locally
stationary. This would be violated by, for example, a
step function, where the GAM method would provide
incorrect estimates around a “jump” (but would still
provide good estimates for the two constant parts).

As the number of basis functions determines the
nonlinearity of the smooth function (e.g., ﬁo,t), a key
problem is how to choose the optimal number of
basis functions. The final curve should be flexible
enough to be able to recover the true model, but not
too flexible as this may lead to overfitting (Andersen,
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Figure 2. An example of the basis function for a time-varying parameter Bo,r In panel (a) the data are shown. In panel (b)—(f)
the estimated 5 basis functions are given and panel (g) shows the weighted basis functions. In the last panel (h) the final smooth
function is illustrated with credible intervals around the smooth function.

2009; Keele, 2008). The method used here to find the
optimal number of basis functions is penalized likeli-
hood estimation (Wood, 2006). Instead of trying to
select the optimal number of basis functions directly,
one can simply start by including more basis
functions than would be normally expected, and
then adjust for too much wiggliness with a wiggliness
penalty (Wood, 2006).

Thus, the problem of selecting the right number
of basis functions is reduced to selecting the right
wiggliness penalty. This is achieved using generalized
cross-validation (Golub et al., 1979), where the penalty
parameter with the lowest Generalized Cross-
Validation (GCV) value is expected to provide a good
bias-variance trade-off. Specifically, the penalization
decreases the influence of the basis functions (R) by
reducing the values of their regression coefficients (a).
Therefore, smoothness is imposed on the curve
both through the choice of the number of basis
functions and the final level of penalization on these
basis functions.

To estimate time-varying VAR models with the
GAM method, we use the tvvarGAM package in R
(Bringmann, Haslbeck, & Tendeiro, 2020), which is a
wrapper around the mgcv package (Wood, 2006). As
the wiggliness penalty is automatically determined, the
user only needs to specify a large enough number of
basis functions. The default settings are the thin plate
regression spline basis and 10 basis functions, which
although an arbitrary number, is often sufficient

(see the simulation results in Bringmann et al., 2017).
The minimum number is in most models three basis
functions. In general, it is recommended to increase
the number of basis functions if it is close to the
effective degrees of freedom (edf) selected by the
model. The effective degrees of freedom is a measure
of nonlinearity. A linear function has an edf of one,
and higher edf wvalues indicate wigglier smooth
functions (Shadish et al., 2014).

The GAM function in the mgcv package outputs
the final smooth function, the GCV value and the edf.
Furthermore, the uncertainty about the smooth func-
tion is estimated with 95% Bayesian credible intervals
(Wood, 2006). In the remainder of this manuscript we
refer to this method as the GAM method. We refer to
a variant of the GAM method, in which we set those
parameters to zero whose 95% Bayesian credible inter-
val overlaps with zero, with GAM(st), for “significance
thresholded.” With GLM we refer to the standard
unregularized VAR estimator.

After the model is estimated, it is informative to
check if the smooth functions were significantly differ-
ent from zero (at some point over the whole time
range), and if each smooth function had enough basis
functions. Significance can be examined using the
p-values of each specific smooth function, which
indicates whether the smooth function is significantly
different from zero. To see whether there are enough
basis functions, the edf of each smooth function can
be examined. The edf value should be well below the



Time Xt.l thlA,l Xt,p Wt =3
1 0.03 —0.97 —0.08 0.61
2 1.15  —-1.07 —0.56  0.88
3 0.11 0.63 1.09 1.00
4 —-1.08 0.13 1.88 0.88
5 —-0.93 1.00 —-0.29 0.61
6 —-1.08 0.17 —1.36  0.32
7 0.27  —1.72 —-1.13  0.14
8 0.03 —1.26 —-0.97 0.04
9 -1.29 —-1.05 —0.10  0.01
10 -0.07 -0.04 1.05 —-0.12 0.00

MULTIVARIATE BEHAVIORAL RESEARCH 125

o
i

0.0 ~

Time points

Figure 3. lllustration of the weights defined to estimate the model at time point t, = 3. Left panel: a kernel function defines a
weight for each time point in the time series. Right panel: the weights shown together with the VAR design matrix constructed to

predict X; 1.

maximum possible edf or the number of basis func-
tions for the smooth function (or term) of interest (in
our case 10, see Wood, 2006). When the edf turns out
to be too high, the model should be refitted with a
larger (e.g., double) number of basis functions.

2.3. The kernel-smoothing method

In the kernel-smoothing method one obtains time-
varying parameters by estimating and combining a
sequence of local models at different time points
across the time series. A local model is estimated by
weighting all observations depending on how close
they are to the time point at which the local model is
estimated. In Figure 3 we show an example in which
a single local model is estimated at time point f, = 3.
We do this by giving the time points close to ¢, a
high weight and time points far away from ¢, a very
small or zero weight. If we estimate models like this
on a sequence of equally spaced estimation points
across the whole time series and take all estimates
together, we obtain a time-varying model.

To define the weight at each time point we use a
Gaussian kernel function A (u = te, 0* = b?) to define
a weight for each time point in the time series

1 j—to)’

e o e G
where j € {1,2,..,n}, which is the local constant or
Nadaraya-Watson estimator (Fan & Gijbels, 1996).

For the example shown in Figure 3 this means that
the time point f, = 3 gets the highest weight, and if
the distance to t, increases, the weight becomes expo-
nentially smaller. The same idea is represented in the
data matrix in the right panel of Figure 3: each time

point in the multivariate time series is associated with
a weight defined by the kernel function. The smaller we
choose the bandwidth b of the kernel function, the lower
the number of observations we combine in order to esti-
mate the model at t,; when using a kernel with band-
width b=0.2 (red curve), we combine more observations
than when using the kernel with b= 0.05 (blue curve).
The smaller the bandwidth the larger the sensitivity to
detect changes in parameters over time. However, a small
bandwidth means that less data is used and therefore the
estimates are less reliable (e.g., only three time points
when b=0.05; see right panel of Figure 3).

Since we combine observations close in time to be
able to estimate a local model, we have to assume that
the models close in time are also similar. This is
equivalent to assuming that the true time-varying par-
ameter functions are smooth, or locally stationary.
Thus, the key assumption of the kernel-smoothing
approach is the same as in the spline approach. For
the kernel-smoothing method, we need the additional
assumption that the chosen bandwidth is small
enough to capture the time-varying nature of the true
model. For example, if the parameters of the true
model vary widely over time, but the bandwidth is so
large that at any estimation point almost the entire
time series is used for estimation, it is impossible to
recover the true time-varying function.

The weights w;;, defined in (5) enter the loss func-
tion of the ¢;-regularized regression problem we use
to estimate each of the p time-varying versions of the
model in (2)

. (1 &
Bi= argp,e,poy,zmm{nzwj,te (Xi,j = Bot, — ﬁterfl)z + ZilIBil Iy }'
=

(6)
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where X;; is the jh time point of the i variable in
the design matrix, |||, => ", ﬁte is the
¢1-norm of B,, and /; is a parameter controlling the
strength of the penalty. Note that the indices i and ¢,
are fixed in (6) because we estimate the time-varying
VAR model equation by equation, separately for each
estimation point ¢,.

For each of the p regressions, we select the A; that
minimizes the out-of-sample deviance in 10-fold cross
validation (Friedman et al., 2010). In order to select an
appropriate bandwidth b, we choose the b that mini-
mizes the out of sample deviance across the p regres-
sions in a time stratified cross validation scheme (for
details see Section 3.1.2). We choose a constant band-
width for all regressions so we have a constant band-
width for estimating the whole VAR model. Otherwise
the sensitivity to detect time-varying parameters and the
trade-off between false positives and false negatives dif-
fers between parameters, which is undesirable.

In /,-penalized (LASSO) regression the squared
loss is minimized together with the ¢;-norm of the
parameter vector. This leads to a trade-off between
fitting the data (minimizing squared loss) and keeping
the size of the fitted parameters small (minimizing
¢y-norm). Minimizing both together leads to small
estimates being set to exactly zero, which is
convenient for interpretation. When using ¢;-penal-
ized regression, we assume that the true model is
sparse, which means that only a small number of
parameters in the true model are nonzero. If this
assumption is violated, the largest true parameters will
still be present, but small true parameters will be
incorrectly set to zero. However, if we keep the num-
ber of parameters constant and let n — oo, ¢;-regular-
ized regression also recovers the true model if the true
model is not sparse. For an excellent treatment on
¢y-regularized regression see Hastie et al. (2015).

As noted above, the larger the bandwidth b, the
more data is used to estimate the model around
a particular estimation point. Indeed, the data used
for estimation is proportional to the area under the
kernel function or the sum of the weights Ny =
Z?:l W; t,. Notice that Ny is smaller at the beginning
and end of the time series than in the center, because
the kernel function is truncated. This necessarily
leads to a smaller sensitivity to detect effects at the
beginning and the end of the time series. For a
more detailed description of the kernel smoothing
approach see Haslbeck and Waldorp (2018b). In the
remainder of this manuscript we refer to this method
as KS(L1). With GLM(L1) we refer to the stationary
¢,-penalized estimator.

2.4. Related methods

Several implementations of related models are
available as free software packages. The R-package
earlywarnings (Dakos & Lahti, 2013) implements the
estimation of a time-varying AR model using a
moving window approach. The R-package MARSS
(Holmes et al., 2012; 2013) implements the estimation
of (time-varying) state-space models, of which the
time-varying VAR model is a special case. While the
state-space model framework is very powerful due to
its generality, it requires the user to specify the way
parameters are allowed to vary over time, for which
often no prior theory exists in practice (Belsley &
Kuti, 1973; Tarvainen et al., 2004). In parallel efforts
Casas and Fernandez-Casal (2018) developed the
R-package tvReg, which estimates time-varying AR and
VAR models, as well as IRF, LM and SURE models,
using kernel smoothing similar to the kernel smoothing
approach described in the present paper, however does
not offer ¢;-regularization. Furthermore, the R-package
bvarsy (Krueger, 2015) allows one to estimate time-
varying VAR models in a Bayesian framework.

The R-package dynr (Ou et al, 2019) provides
an implementation for estimating regime switching
discrete time VAR models, and the R-package tsDyn
(Fabio Di Narzo et al., 2009) allows to estimate the
regime switching Threshold VAR model (Hamaker
et al,, 2010; Tong & Lim, 1980). These two methods
estimate time-varying models that switch between
piece-wise constant regimes, which is different to the
methods presented in this paper, which assume that
parameters change smoothly over time.

Another interesting way to modeling time-varying
parameters is by using the fused lasso (Hastie et al,
2015). However, to our best knowledge this method is
currently only implemented for the estimation of
Gaussian Graphical Models: Monti (2014) provide a
Python implementation of the SINGLE algorithm
(Monti et al, 2014), and (Gibbert, 2017) provides a
Python implementation of the (group) fused-lasso based
method as presented in Gibberd and Nelson (2017).

3. Evaluating performance via simulation

In this section we use two simulation studies to evalu-
ate the performance of the above introduced methods
in scenarios that are typical in applied research. In the
first simulation (Section 3.1) we generate time-varying
VAR models based on a random graph with fixed
sparsity, which is a natural choice in the absence
of any knowledge about the structure of VAR models
in a given application. This simulation allows us to
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Figure 4. The eight types of time-varying parameters used in the simulation study: (a) constant nonzero, (b) linear increase,
(c) linear decrease, (d) sigmoid increase, (e) sigmoid decrease, (f) step function up, (g) step function down and (h) constant zero.

get a rough overview of the performance of all meth-
ods and their strengths and weaknesses. In the second
simulation (Section 3.2), we generate time-varying
VAR models in which we vary the level of sparsity.
This simulation allows us to discuss the strengths and
weaknesses of all methods in more detail, specifically,
we can discuss in which situations methods with/with-
out regularization or thresholding perform better.
Finally, in Section 3.3 we discuss the combined results
of both simulations, and provide recommendations
for applied researchers.

3.1. Simulation A: random graph

In this simulation we evaluate the performance of all
methods in estimating time-varying VAR models that
are generated based on a random graph. We first
describe how we generate these time-varying VAR
models (Section 3.1.1), discuss details about the esti-
mation methods (Section 3.1.2), report the results
(Section 3.1.3), and provide a preliminary discussion
(Section 3.1.4).

3.1.1. Data generation

We generated time-varying VAR models by first
selecting the structure of a stationary VAR model
and then turning this stationary VAR model into a
time-varying one. Specifically, we used the following
procedure to specify whether a parameter in the
time-varying VAR(1) model is nonzero: we choose
all our VAR models to have p=10 variables, which
is roughly the number of variables measured in typ-
ical ESM studies. We start out with an empty p x p
VAR parameter matrix. In this matrix we set all p

autocorrelations to be nonzero, since autocorrela-
tions are expected to be present for most phenom-
ena and are observed in essentially any application
(e.g, aan het Rot, Hogenelst, & Schoevers, 2012;
Snippe et al., 2017; Wigman et al,, 2015). Next, we
randomly set 26 of the p x p —p =90 off-diagonal
elements (the cross-lagged effects) to be present.
This corresponds to an edge probability of
P(edge) =~ 0.29.> This approach returns an initial
p X p matrix with ones in the diagonal and zeros
and ones in the off-diagonal.

In a second step we use the structure of this VAR
model to generate a time-varying VAR model.
Specifically, we randomly assign to each of the nonzero
parameters one of the sequences (a)-(g) in Figure 4. If
an edge is absent in the initial matrix, all entries of the
parameter sequence are set to zero (panel (h) in Figure
4). Note that only the time-varying parameter functions
(a—e) and (h) in Figure 4 are smooth functions of time.
Therefore, the two methods presented in this paper are
only consistent estimators for those types of time-vary-
ing parameters. They cannot be consistent estimators for
the step-functions (f) and (g), however, we included
them to investigate how closely the methods studied in
this paper can approximate the step function.

The maximum parameter size of time-varying
parameters is set to 0 = 0.35 (see Figure 4). The noise
is drawn from a multivariate Gaussian with variances

>We set a fixed number of elements to nonzero instead of using draws
with P(edge) = 0.2, because we resample the VAR matrix until it
represents a stable VAR model (the absolute value of all eigenvalues is
smaller than 1). By fixing the number of nonzero elements we avoid
biasing P(edge) through this resampling process. Thus, none of the VAR
matrices in any iteration and at any time point has an eigenvalue with
absolute value greater than 1.
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6> =+/0.10 and all covariances being equal to zero.
Hence the signal/noise ratio used in our setup is
S/N =03 =350. All intercepts are set to zero and
the covariances between the noise processes assigned
to each variable are zero.

Using these time-varying VAR model, we generate
12 independent time series with lengths n = {20,
30, 36,69,103, 155,234, 352,530,798,1201,1808}. We
chose these values because they cover the large
majority of scenarios applied researchers typically
encounter. Each of these time-varying models covers
the full time period [0,1] and is parameterized by
a p X p xn parameter array B;j,. For example, the
By,2,310 indicates the cross-lagged effect from variable
2 on variable 1 at the 310th measurement point,
which occurs at time point 310/530 =2 0.59, if there
are in total 530 measurements. Importantly, in this
setting increasing n does not mean that the time
period between the first and the last measurement of
the time series becomes larger. Instead, we mean by a
larger n that more evenly spaced measurements are
available in the same time period. This means that the
larger n, the smaller the time interval between two
adjacent measurements. That is, the data density in
the measured time period increases with n, which
is required to consistently estimate time-varying parame-
ters (Robinson, 1989). This makes sense intuitively: if
the goal is to estimate the time-varying parameters of an
individual in January, then one needs sufficient measure-
ments in January, and it does not help to add additional
measurements from February.

We run 100 iterations of this design and report
the mean absolute error over iterations. These mean
errors serve as an approximation of the expected
population level errors.

3.1.2. Estimation

To estimate time-varying VAR models via the GAM
method we use the implementation in the R-package
tvwvarGAM (Bringmann et al, 2017) version 0.1.0,
which is a wrapper around the mgcv package (version
1.8-22). The tuning parameter of the spline method is
the number of basis functions used in the GAM.
Previous simulations have shown that 10 basis func-
tions give good estimates of time-varying parameters
(Bringmann et al., 2018). To ensure that the model is
identified, for a given number of basis functions k
and variables p, we require at least nyin, > k(p+ 1)
observations. In our simulation, we used this con-
straint to select the maximum number of basis func-
tions possible given n and p, but we do not use less
than 3 or more than 10 basis functions. That is, the

selected number of basis functions k, is defined as

ks = max{3,min{max{k; k > L}, 10}}. (7)
p+1

If k, satisfies the above constraint, the time-varying
VAR model can be estimated with the spline-based
method. With this constraint the model cannot be
estimated for n = {20,30}. We therefore do not
report results for GAM and GAM(st) for these sam-
ple sizes.

In principle it would be possible to combine
{,-regularization with the GAM-method, similarly as
in the KS-method. However, an implementation of
such a method is currently not available and we there-
fore cannot include it in our simulation.

We estimated the time-varying VAR model via the KS
and KS(L1) methods using the R-package mgm (Haslbeck
& Waldorp, 2018b) version 1.2-2. As discussed in Section
2.3, these methods require the specification of a band-
width parameter. Therefore, the first step of applying these
methods is to select an appropriate bandwidth parameter
by searching the candidate sequence b = {0.01,0.045,
0.08, 0.115, 0.185, 0.22, 0.225, 0.29,0.325,0.430, 0.465,
0.5}. For n < 69 we omit the first 5 values in b, and for
n > 69 we omit the last 5 values. We did this to save com-
putational cost because for small #n, small b are never
selected, and analogously for large n, large b values are
never selected. To select an appropriate bandwidth param-
eter we use a cross-validation-like scheme, which repeat-
edly divides the time series in a training and a test set, and
in each repetition fits time-varying VAR models using the
bandwidths in b, and evaluates the prediction error on the
test set for each bandwidth. More concretely, we define a
test set Siest by selecting |Siest| = [(0.2n)2/ 31 time points
stratified equally across the whole time series. Next, we
estimate a time-varying VAR model for each variable p at
each time point in Siq and predict the p values at that
time point. After that we compute for each b
the |Sest| X p absolute prediction errors and take the
arithmetic mean. Next, we select the bandwidth b
that minimizes this mean prediction error. Finally, we
estimate the model on the full data using b and  at 20
equally spaced time points, where we select an appropriate
penalty parameter 7; with 10-fold cross-validation for each
of the p variables (for more details see Haslbeck &
Waldorp, 2018b).

We also investigate the performance of the
kernel-smoothing method without ¢;-regularization.
We refer to this method as KS. In order to compare
the ¢;-regularized time-varying VAR estimator to
a stationary /¢;-regularized VAR estimator, we also



estimate the latter using the mgm package. We call
this estimator GLM(L1).

Both time-varying estimation methods are consist-
ent if the following assumptions are met; (a) the data
is generated by a time-varying VAR model as speci-
fied in Equation (2), (b) all parameters are smooth
functions of time, (c) with the eigenvalues of the VAR
matrix being within the unit circle at all time points,
(d) and the error covariance matrix is diagonal. We
also fit a standard stationary VAR model using linear
regression to get the unbiased stationary counter-part
of the GAM methods. Specifically for the KS-method,
it is additionally required that we consider small
enough candidate bandwidth values. We do this by
using the sequence b specified above.

3.1.3. Results

We first report the performance of the GLM,
GLM(L1), KS, KS(L1), GAM and GAM(st) methods
in estimating different time-varying parameters by
evaluating the estimation error averaged across time.
Next, we zoom in on the performance across time,
for the constant and the linear increasing parameter
function, and finally examine the performance in
structure recovery of all methods.

3.1.3.1. Absolute error averaged over time. Figure 5
displays the absolute estimation error, averaged over
time points, iterations, and time-varying parameter
functions of the same type, as a function of sample
size n. Since the linear increase/decrease, sigmoid
increase/decrease, and step function increase/decrease
are symmetric, we collapsed them into single
categories to report estimation error. The absolute
error on the y-axis can be interpreted as follows: let’s
say we are in the scenario with n= 155 observations
and estimate the constant function in Figure 5 (a)
with the stationary ¢ -regularized regression GLM(L1).
Then the expected average (across the time series)
error of the constant function is +0.09.

Figure 5 (a) shows that, for all methods, the absolute
error in estimating the constant nonzero function is
large for small n and seems to converge to zero as n
increases. The GLM method has a lower estimation
error than its /;-regularized counterpart, GLM(L1).
Similarly, the KS method outperforms the KS(L1)
method. The stationary GLM method also outperforms
all time-varying methods, which makes sense because
the true parameter function is not time-varying.

For the linearly increasing/decreasing time-varying
parameter in Figure 5 (b), the picture is more com-
plex. For very small n from 20 to 46 the regularized
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methods GLM(L1) and KS(L1) perform best. This
makes sense because, for such small », the estimates
of all other methods suffer from huge variance. For
sample sizes from 46 to 155 the unregularized meth-
ods perform better: now the bias of the regularized
methods outweighs the reduction in variance. From
sample sizes between 155 and 352 the time-varying
methods start to outperform the two stationary methods.
Interestingly, until around »n =530 the KS methods out-
performs all other time-varying methods. For n > 530 all
time-varying methods perform roughly equally. Overall,
the error of all time-varying methods seem to converge
to zero, as we would expect from a consistent estimator.
The error of the stationary methods converges to
~0.088 which is the error resulting from approximating
the time-varying function with the optimal constant
function y(f)=%%2. Since the sigmoid increase/decrease
functions in panel (c) are very similar to the linear
increase/decrease functions, we obtain qualitatively the
same results as in the linear case.

In the case of the step function we again see a similar
qualitative picture, however here the time-varying meth-
ods outperform the stationary methods already at a sam-
ple size of around n= 69. The reason is that the step
function is more time-varying in the sense that here the
best constant function is a worse approximation than in
the linear and the sigmoid case. Another difference is
that the GAM(st) method seems to outperform all other
methods by a small margin if the sample size is large.

Finally, the absolute error for estimating the
constant zero function is lowest for the regularized
methods and the thresholded GAM method. This is
what one expect since these methods bias estimates
toward zero, and the true parameter function is zero
across the whole time period.

In Figure 5 we reported the mean population errors
of the six compared methods in various scenarios.
These mean errors allow one to judge whether the
expected error of one method will be larger than the
one of another method. However, it is also interesting
to inspect the population sampling variance around
these mean errors. This allows one to gauge with
which probability one method will be better than
another for a given sample. We show a version of
Figure 5 that includes the 25% and 95% quantiles of
the absolute error in Appendix A.

3.1.3.2. Absolute error over time for constant and
linear increasing function. To investigate the behav-
ior of the different methods in estimating parameters
across the time interval, Figure 6 displays the mean
absolute error for each estimation point (spanning the
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Figure 5. The five panels show the mean absolute estimation error averaged over the same type, time points, and iterations
as a function of the number of observations n on a log scale. We report the error of six estimation methods: stationary
unregularized regression (blue), stationary ¢;-regularized regression (light blue), time-varying regression via kernel-smoothing
(green), time-varying ¢;-regularized regression via kernel-smoothing (light green), time-varying regression via GAM (pink), and
time-varying regression via GAM with thresholding at 95% Cl (red). Some data points are missing because the respective models

are not identified in that situation (see Section 3.1.2).

full period of the time series) for the constant nonzero
function and the linear increasing function for n =
{103,530, 1803}. Note that these results were already
shown in aggregate form in Figure 5: for instance, the

average (across time) of estimates of the stationary
¢y-regularized method in Figure 6 (a) corresponds
to the single data point in Figure 5 (a) of the same
method at n=103.
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methods: stationary ¢;-regularized regression (red), unregularized regression (blue), time-varying ¢;-regularized regression via kernel-
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Panel (a) of Figure 6 shows the average parameter
estimates of each method for the constant function
with n= 103 observations. In line with the aggregate
results in Figure 5, the stationary methods outperform
the time-varying methods, and the unregularized
methods outperform the regularized methods. We also

see that the KS(L1) and the GAM(st) methods are
biased downwards at the beginning and the end of
the time series. The reason is that less data is available
at these points, which results in stronger bias toward
zero (KS(L1)) and more estimates being thresholded
to zero. When increasing n, all methods become
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(see Section 3.1.2).

better at approximating the constant nonzero
function. This is what we would expect from the
results in Figure 5, which suggested that the absolute
error of all methods converges to zero as n grows.

In the case of the linear increase with n =103 (d),
we see that the time-varying methods follow the form
of the true time-varying parameter, however, some
deviations exists. With larger n, the time-varying
methods recover the linearly increasing time-varying
parameter with increasing accuracy. In contrast,
the stationary methods converge to the best-fitting
constant function. We also see that the average
estimates of the regularized methods are closer to zero
than the estimates of the unregularized methods.
However, note that, similar to panel (e) in Figure 5,
the regularized methods would perform better in
recovering the constant zero function.

Here we only presented the mean estimates of
each method, which displays the bias of the different
methods as a function of sample size. However, it is
equally important to consider the variance around
estimates. We display this variance in Figure 12 in
Appendix B. This figure shows that — as expected —
the variance is very large for small n, but approaches
0 when n becomes large.

3.1.3.3. Performance in structure recovery. In some
situations the main interest may be to recover the
structure of the VAR model, that is, we would like to
know which parameters in the VAR parameter matrix
are nonzero. We use two measures to quantify
the performance of structure recovery. Sensitivity, the

probability that a parameter that is nonzero in the
true model is estimated to be nonzero; and precision,
the probability that a nonzero estimate is nonzero
in the true model. While higher values are better for
both sensitivity and precision, different estimation
algorithms typically offer different trade-offs between
the two. Figure 7 shows this trade-off for the five
estimation methods:

The unregularized stationary GLM method, the
unregularized KS method, and the unthresholded
time-varying GAM method have a sensitivity of 1 and
a precision of 0 for all n. This is trivially the case
because these methods return nonzero estimates
with probability 1, which leads to a sensitivity of 1
and a precision of 0. Consequently, these methods are
unsuitable for structure estimation. For all remaining
methods, sensitivity seems to approach 1 when increasing
n, while GLM(L1) has the highest sensitivity followed by
KS(L1) and GAM(st). As expected, the precision of these
methods is stacked up in reverse.

3.1.4. Discussion

The first simulation showed how the different methods
perform in recovering a VAR model with p =10 variables
based on a random graph, with linear, sigmoid, step and
constant parameter functions, with sample sizes that cover
most applications in psychology. The compared methods
differ in the dimensions stationary vs. time-varying meth-
ods, unregularized vs. regularized methods, and GAM- vs.
KS-based methods. Since all these dimensions interact
with each other and with the type of time-varying



parameter function they aim to recover, we discuss these
interactions separately for each parameter function.

3.1.4.1. Constant nonzero function. In the case of the
constant nonzero function the stationary and unregu-
larized GLM performed best, followed by the unregu-
larized time-varying KS method. It makes sense
that GLM performs best, because the true parameter
function in this case is nonzero and constant across
time. The KS method performs similarly especially for
small n, because the bandwidth selection will select
a very high bandwidth, which leads to a weighting
that is almost equal for all time points, which leads to
estimates that are very similar to the ones of the GLM
method. The next best method is the stationary
regularized GLM(L1) method. This is because the
regularization decreases performance if the true
parameter function is nonzero, however, it uses the
correct assumption that the true parameter function is
constant across time. Since the ability to estimate
time-varying parameters is no advantage when
estimating the constant nonzero function, the KS(L1)
method performs worse than the GLM(L1) method.
Interestingly, the unregularized GAM function per-
forms much worse than the unregularized KS method.
The significance-thresholded GAM(st) method per-
forms worse than the GAM method, because if the
true parameter function is nonzero, thresholding it to
zero can only increase estimation error.

3.1.4.2. Linear and sigmoid functions. The results for
the linear increasing/decreasing function are similar to
the constant nonzero function, except that all time-
varying methods have a lower absolute error than the
stationary methods from #n > 234. The KS method is
already better from n>46. A difference to the con-
stant nonzero function is that the two regularized
methods GLM(L1) and KS(L1) perform best if the
sample size is very small (n<46). A possible explan-
ation for this difference is that the bias toward zero of
the regularization is less disadvantageous for the linear
increasing/decreasing functions, because its parameter
values are on average only half as large as for the con-
stant nonzero function. Within time-varying func-
tions, the KS method performs better than the KS(L1)
methods, which makes sense because the true param-
eter function is nonzero. For the same reason, the
GLM method outperforms the GAM(st) method. The
KS methods perform better than the GAM methods
for sample sizes up to n=530. The reason is that the
estimates of the GAM methods have a larger sampling
variance (see Figure 11 in Appendix A). The errors in
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estimating the sigmoid function are very similar to
the linear increasing/decreasing functions, since their
functional forms are very similar.

3.1.4.3. Step function. The errors in estimating the
step function are again similar to the linear and
the sigmoid case, except for two differences: first,
the time-varying methods become better than the
stationary methods already between n =46 and n=69.
And second, the regularized KS(L1) performs better
than KS, and the thresholded GAM(st) method per-
forms better than the GAM method. The reason is
that in half of the time series the parameter value is
zero, which can be recovered exactly with the KS(L1)
and the GAM(st) methods. This advantage seems to
outweigh the bias these methods have in the other
half of the time series in which the parameter
function is nonzero.

3.1.4.4. Constant zero function. In the case of the
constant zero function the errors are roughly stacked
up the reverse order as in the constant nonzero
function. The regularized GLM(L1) and KS(L1) do
best, followed by the thresholded GAM(st) method.
Among the unregularized methods the GLM and KS
methods perform quite similarly, with the GLM
method being slightly better, because the true
parameter function is constant. Interestingly, the
GAM method performs far worse, which is again due
to its high variance (see Figure 11 in Appendix A).

3.1.4.5. Summary. We saw that stationary methods
outperform time-varying methods when the true
parameter function is a constant, and time-varying
methods out-perform stationary methods if the true
parameter function is time-varying, and if the sample
size is large enough. The sample size at which the
time-varying methods become better depends on how
time-varying the true parameter is: the more time-
varying it is, the smaller the sample size n at which
time-varying methods become better than stationary
ones. Within time-varying methods, the KS methods
outperformed the GAM methods for smaller sample
sizes, while the GAM based methods became better
with very large sample sizes (n > 530).

Finally, we saw that regularized methods perform
better if the true parameter function is zero, while
unregularized methods perform better if the true par-
ameter function is nonzero, as expected. In order to
choose between regularized and unregularized
methods, one therefore needs to judge how many of
the parameters in the true time-varying VAR model
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Figure 8. Left: the upper-diagonal pattern of nonzero parameters used in the time-varying VAR model in the second simulation,
here shown for six variables. The row sums are equal to the indegree of the respective nodes, which results in a frequency of one
for each indegree value. Right: visualization of the upper-diagonal pattern as a directed graph. The graph used in the simulation

has the same structure but is comprised of 20 nodes.

are nonzero. Given the expected sparsity of the true
VAR model, one could compute a weighted average
of the errors shown in this section in order to
determine which method has the lowest overall error.
However, to evaluate the performance of the different
methods for different levels of sparsity more directly,
we performed a second simulation study in which we
vary the sparsity of the VAR model.

3.2. Simulation B: varying sparsity

In this simulation we evaluate the absolute estimation
error of all methods for the different parameter
functions and for the combined time-varying VAR
model, as a function of sparsity. Specifically, we evalu-
ate the estimation error of recovering the time-varying
predictors of a given variable in the VAR model,
depending on how many predictors are nonzero.
From a network perspective the number of predictors
on a given node is equal to its indegree. We will vary
the indegree from 1 to 20. The average indegree in
Simulation A was 149 x P(edge) = 2.61.

3.2.1. Data generation

We vary sparsity by specifying the structure of the
initial VAR matrix to be upper-triangular. We show
the structure of such a matrix, and the corresponding
directed network in Figure 8.

In such a model, the first variable has one predictor
(itself at t — 1), the second variables has two predictors
(itself and wvariable 1 at t—1), the third variable
has three predictors, etc. and the last variable has p
predictors. As defined in Section 2, the number
of nonzero predictor variables (or the indegree from
a network perspective) is a local (i.e. for some variable
X) measure of sparsity. In the simulation we use the
same initial VAR matrix, except that we use a VAR

model with p =20 variables. All additional steps of the
data generation (Section 3.1.1), and the specification
of the estimation methods (Section 3.1.2) are the same
as in Simulation A.

3.2.2. Results

Figure 9 displays the mean absolute error separately
for the five different time-varying parameter functions
and for indegrees 1, 10, 20. Similarly to Simulation A,
we collapsed symmetric increasing and decreasing
functions into single categories and report their
average performance. The first row of Figure 9 shows
the performance averaged over time points and types
of time-varying parameters for indegree 1, 10 and 20.
The most obvious result is that all methods become
worse when increasing the indegree. This is what one
would expect since more parameters are nonzero and
more predictors are correlated. In addition, there are
several interactions between indegree and estimation
methods. First, the regularized methods perform best
when indegree is low, and worst when indegree
is high. This makes sense: the bias toward zero of the
regularization is more beneficial if almost all param-
eter functions are zero. However, if most parameter
functions are nonzero, a bias toward zero leads to
high estimation error. Second, we see that the drop in
performance is lower for the GAM based methods
compared to the KS based methods. The combined
results in the first row are the weighted average
of the remaining rows. The estimation errors for
the time-varying functions show a similar pattern
as in Figure 5 of Simulation A, except that the GAM
methods perform better for indegree values 10 and 20.

3.2.3. Discussion
The results of Simulation B depicted the relative per-
formance of all methods as a function of sparsity, which
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Figure 9. The mean average error for estimates of the upper-triangular model for all five estimation methods for the same
sequence of numbers of time points n as in the first simulation. The results are conditioned on three different indegrees (1, 10,

20) and shown averaged across (a—c) and separately for the time-varying parameter types (d—q).
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we analyzed locally as indegree. As expected, regular-
ized methods perform better when indegree is low and
worse if indegree is high. Interestingly, among the time-
varying methods, the GAM based methods perform bet-
ter than the KS based methods when indegree is high.

3.3. Overall discussion of simulation results

Here we discuss the overall strengths and weaknesses of
all considered methods in light of the results of both
simulations.

3.3.1. Stationary vs. time-varying methods. We saw
that stationary methods outperform time-varying meth-
ods if the true parameter function is constant, as one
would expect. If the parameter function is time-varying,
then the stationary methods are better for very small sam-
ple sizes, but for larger sample sizes, the time-varying
methods become better. The exact sample size # at which
time-varying methods start to perform better depends on
how strongly the true parameters vary with time: the
stronger the variation, the smaller the ». For the choice of
true parameter functions in our simulations, we found
that the best time-varying method outperformed the sta-
tionary methods at already n > 46.

3.3.2. Unregularized vs. regularized methods. The
results in both simulations showed that if most true par-
ameter functions are zero (high sparsity), regularized
methods and the thresholded GAM(st) method per-
formed better compared to their unregularized/unthre-
sholded counterparts. On the other hand, if most true
parameter functions are nonzero (low sparsity), the
unregularized/unthresholded functions perform better. In
Simulation B we specifically mapped out the performance
of methods as a function of sparsity and found that
unregularized methods are better at an indegree of 10
or larger.

3.3.3. Kernel-smoothing vs. GAM methods. If sparsity
is high, that is, if most parameter functions are zero, the
KS based methods outperformed the GAM based meth-
ods for most sample size regimes. Only if the sample
size is very large the GAM based methods showed a
performance that is equal or slightly better than the KS
based methods. However, if sparsity is low, the GAM
based methods outperformed the KS based methods.
Accordingly, applied researchers should choose the
KS based methods when they expect the time-varying
VAR model to be relatively sparse and if they only have
a moderate sample size (n <200-300). If one expects that
only few parameter functions are nonzero, the KS based

method should be combined with regularization. If one
expects the parameter functions of the time-varying
VAR model to be largely nonzero, and if one has a large
sample size, the GAM based methods are likely to per-
form better.

3.3.4. Limitations. Several limitations of the simulation
studies require discussion. First, the signal to noise ratio
S/N = g = 3.5 in parameter values could be larger or
smaller in a given application and the performance
results would accordingly be better or worse. Similarly,
the signal to noise ratio would be smaller if we increased
the number of variables p, because more parameters
have to be estimated. However, note that S/N is also a
function of n. Hence if we assume a lower S/N this sim-
ply means that we need more observations to obtain the
same performance, while all qualitative relationships
between time-varying parameters, structure in the VAR
model and estimators remain the same.

Second, the time-varying parameters could be more
time-varying. For example, we could have chosen func-
tions that increase and decrease multiple times instead of
being monotone increasing/decreasing. However, for esti-
mation purposes, the extent to which a function is time-
varying is determined by how much it varies over a speci-
fied time period relative to how many observation are
available in the time period. Thus the n-variations can also
be seen as a variation of the extent to which parameters are
varying over time: From this perspective, the time-varying
parameter functions with n= 20 are very much varying
over time, while the parameter functions with n = 1808 are
hardly varying over time. Since we chose n-variations
stretching from unacceptable performance (1= 20) to very
high performance (1 = 1808), we simultaneously varied the
extent to which parameters are time-varying.

Third, we only investigated time-varying VAR models
with p= 10 variables and a single lag. In terms of the
performance in estimating (time-varying) VAR parame-
ters, adding more variables or lags boils down to
increasing the indegree of a VAR model with a single
lag and fixed p. In general, the larger the indegree and
the higher the correlations between the predictors, the
harder it is to estimate the parameters associated with a
variable. Part of the motivation for Simulation B in
Section 3.2 was to address this limitation.

Finally, we would like to stress that all statements
with respect to sample size refer to the effective sam-
ple size available to estimate the VAR model. We
mention this because the effective sample size that is
used to estimate a VAR model is often considerably
lower than the number of measurement points in an
ESM study. This is both because of planned (e.g., at the



day/night shift) and unplanned missing values. For
example, if an ESM study has five measurements a day
with a measurement interval of 3h and the fourth meas-
urement is missing, then the effective sample size is only
three, because only for three time points (2, 3, and 4) a
measurement 3 h before is available.

4. Estimating time-varying VAR model on
mood time series

In this section we provide a step-by-step tutorial
on how to estimate a time-varying VAR model on
a mood time series using the KS(L1) method. In add-
ition, we show how to compute time-varying predic-
tion errors for all nodes, how to assess the reliability
of all estimates, and how to visualize some aspects of
the estimated time-varying VAR model. Finally, we
briefly discuss how to select between stationary and
time-varying models. All analyses are performed using
the R-package mgm (version 1.2-8) (Haslbeck &
Waldorp, 2018b) and R-version 3.6.0, and the code
below can also be found as an R-file on Github:
https://github.com/jmbh/tvvar_paper. In Appendix D
we show how to fit the same model with the GAM(st)
method using the R-package tvvarGAM.

4.1. Data

We illustrate how to fit a time-varying VAR model
on a symptom time series with 12 variables related to
mood measured on 1476 time points during 238
consecutive days from an individual diagnosed with
major depression (Wichers et al., 2016). The measure-
ments were taken at 10 pseudo-randomized time
intervals with average length of 90 minutes between
07:30 and 22:30. During the measured time period,
a double-blind medication dose reduction was carried
out, consisting of a baseline period, the dose reduc-
tion, and two post assessment periods (See Figure 10,
the points on the time line correspond to the two
dose reductions). For a detailed description of this
data set see Kossakowski et al. (2017).

4.2. Load R-packages and dataset

The above described symptom dataset automatically
available when loading the R-package mgm. After
loading the package, we subset the 12 mood variables
contained in this dataset:

library (mgm) # Version 1.2-8

mood_data <-as.matrix (symptom data$data [, 1:12])# Subset variables

mood_labels <- symptom_dataScolnames[1:12] # Subset variable labels
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colnames (mood_data) <- mood_labels
time_data <- symptom_dataSdata_time

The object mood_data is a 1476 x 12 matrix with
measurements of 12 mood variables:

> dim(mood_data)
[1] 1476 12

> head (mood_datal,1:7])

Relaxed Down Irritated Satisfied Lonely Anxious Enthusiastic

[1,1 5 -1 1 5 -1 -1 4
[2,1 4 0 3 3 0 0 3
[3,1 4 0 2 3 0 0 4
[4,] 4 0 1 4 0 0 4
[5,1 4 0 2 4 0 0 4
[6,1 5 0 1 4 0 0 3

The matrix time_data contains information about the
time stamps of each measurement. This information is
needed for the data preprocessing in the next section.

> head (time_data)

date dayno beepno beeptime resptime_s resptime_e time_norm
113/08/12 226 108:58 08:58:5609:00:150.000000000
214/08/12 227 514:3214:32:09 14:33:250.005164874
314/08/12227 616:17 16:17:13 16:23:16 0.005470574
414/08/12 227 818:04 18:04:1018:06:29 0.005782097
514/08/12 227 920:5720:58:23 21:00:18 0.006285774
614/08/12227 1021:5421:54:1521:56:050.006451726

For a sizable number of measurement points
the individual did not provide a response. The mgm
package takes care of this automatically, by only
using those time points to estimate a VAR(1) model
for which a measurement at the previous time point
is available.

Some of the variables in this data set are highly
skewed, which can lead to unreliable parameter
estimates. Here we deal with this issue by computing
bootstrapped confidence intervals (KS method) and
credible intervals (GAM method), to judge how
reliable the estimates are. Since the focus in this
tutorial is on estimating time-varying VAR models,
we do not investigate the skewness of variables in
detail. However, in practice the marginal distributions
should always be inspected before fitting a (time-
varying) VAR model. A possible remedy for skewed
variables is to transform them, typically by taking
a root, the log, or transformations such as the
nonparanormal transform (Liu et al., 2009). A
disadvantage of this approach is that the parameters
are more difficult to interpret. For example, if applying
the log-transform to X, then the cross-lagged effect fy y
of Y on X is interpreted as “When increasing Y at t—1
by 1 unit, the log of X at ¢ increases by fy y, when keeping
all other variables at t — 1 constant”.
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4.3. Estimating time-varying VAR model

Here we describe how to use the function tvmvar () of
the mgm package to estimate a time-varying VAR model.
A more detailed description of this function can be found
in the help file ?tvmvar. After providing the data via the
data argument, we specify the type and levels of each
variable. The latter is necessary because mgm allows one
to estimate models including different types of variables.
In the present case we only have continuous variables
modeled as conditional Gaussian distributions, and we
therefore specify type=rep("g", 12). By convention the
number of levels for continuous variables is specified as
one level =rep(1l, 12).

Via the argument estpoints we specify that we
would like to have 20 estimation points that are

equally spaced across the time series (for details see
?tvmvar). The number of estimation points can be

chosen arbitrarily large, however at some point adding
more estimation points becomes useless because
adjacent estimation points become indistinguishable.
Via the argument timepoints we provide a vector
containing the time point of each measurement. The
time points are used to distribute the estimation

points correctly on the time interval. If no time-
points argument is provided, the function assumes

that all measurement points are equidistant. See
Section 2.5 in Haslbeck and Waldorp (2018b) for a
more detailed explanation how the time points are used in
mgm and an illustration of the problems following from
incorrectly assuming equidistant measurement points.

Next, we specify the bandwidth parameter b, which
determines how many observations close to an estima-
tion point are used to estimate the model at that
point. Here we select b= 0.34, which we obtained by
searching a candidate sequence of bandwidth
parameters, and selected the value that minimized
the out-of-bag cross-validation error. The latter is
implemented in the function bwselect () (for details
on this time-stratified cross-validation scheme see
Section 3.1.2). Since bwSelect() repeatedly fits
time-varying VAR models with different bandwidth
parameters, the specification of bwSelect() and
the estimation function tvmvar are very similar.
We therefore refer the reader for the code to specify
bwSelect () to Appendix C.

After that, we provide the number of the notification
on a given day and the number of the day itself via the
arguments beepvar and dayvar, respectively. This infor-
mation is used to exclude cases from the analysis which
do not have sufficient previous measurements to fit the
specified VAR model. This can be both due to randomly
missing data, or because of missingness by design. In the

present dataset we have both: within a given day the indi-
vidual did not always answer at all 10 times. And by
design, there is a break between day and night. When not
considering the correct successiveness, the estimated
parameters do not only reflect effects from #,_; on t but
also effects over (possibly) many other time-lags (for
instance 10 h over night instead of the intended 1h30).
Via the argument lags = 1 we specify to fit a first

order VAR model and specify with the argument
lambdasel ="cv” to select the penalty parameters 1

with cross-validation. Finally, with the argument scale=
TRUE we specify that all variables should be scaled to

mean zero and standard deviation 1 before the model is
fit. This is recommended when using ¢;-regularization,
because otherwise the strength of the penalization of a
parameter depends on the variance of the predictor vari-
able (see Hastie et al., 2015, p.9). Since the cross-valid-
ation scheme uses random draws to define the folds, we
set a seed to ensure reproducibility.

set.seed (1)

tvvar_obj <- tvmvar (data=mood_data,
type=rep("g", 12),
level=rep(1l, 12),
lambdaSel = "cV",
timepoints=time_
data$time_norm,
estpoints=
seq(0, 1, length =20),
bandwidth = 0.34,
lags =1,
beepvar =time_dataSbeepno,
dayvar =time_data$dayno,
scale=TRUE)

Before looking at the results we check how many
of the 1476 time points were used for estimation,
which is shown in the summary that is printed when
calling the output object in the console:

> tvvar_obj
mgm fit-object

Model class: Time-varying mixed Vector Autore-
gressive (tv-mVAR) model

Lags: 1

Rows included in VAR design matrix: 876/1475
(59.39%)

Nodes: 12

Estimation points: 20

This means that the VAR design matrix that is
used for estimation has 876 rows. One of the removed
time points is the first time point, since it does not
have a previous time point. Other time points were
excluded because of (a) missing measurements during
the day or (b) the day-night break. As an example,
from the six rows of the time stamps shown above,



we could use three time points, since a measurement
at the previous time point is available.

The absolute values of the estimated VAR
coefficients are stored in the object tvvar_obj$wadj,
which is an array of dimensions p x p x lags x
estpoints, lags is the number of lags, and estpoints is
the number of estimation points. For example, the
array entry tvvar_obj$wadj[l, 3, 1, 9] returns
the cross-lagged effect of variable 3 on variable 1 with
the first specified lag size (here 1) at estimation point
9. Due to the large number of estimated parameters,
we do not show this object here but instead visualize
some aspect of it in Figure 10. The signs of all param-
eters are stored separately in tvvar_objs$signs,
because signs may not be defined in the presence
of categorical variables (which is not the case here).
The intercepts are stored in tvvar_obj$intercepts.

4.4. Assessing reliability of parameter estimates

To judge the reliability of parameter estimates,
we approximate the sampling distribution of all param-
eters using the nonparametric block bootstrap. The
function implements this bootstrap
scheme and returns the sampling distribution and
a selection of its quantiles of each parameter. First

resample ()

we provide the model object object = tvvar_obj and
the data data= mood_data. resample() then fits the
model specified as in tvvar_obj on 50 (nB = 50) dif-
ferent block bootstrap samples, where we specify the
number of blocks via blocks. The argument seeds pro-

vides a random seed for each bootstrap sample and
quantiles specifies the quantiles shown in the output.

res_obj <- resample (object=tvvar_obj,
data=mood_data,
nB =50,
blocks =10,
seeds = 1:50,

quantiles=c(.05, .95))

The p x p x lags x estpoints x nB array res_obj
$bootParameters contains the sampling distribution

of each parameter. For instance, the array entry
res_obj$bootParameters[1l, 3, 1, 9,] contains

the sampling distribution of the cross-lagged effect
of variable 3 on variable 1 with the first specified lag
size (here 1) at time point 9. Due to its size, we do
not show this object here but show the 5% and 95%
quantiles of the empirical sampling distribution of
three time-varying parameters in Figure 10. Also note
that the resampling procedure is computationally
expensive. With 50 bootstrap samples as specified
above, the resample () runs approximately 10 minutes.
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It is important to keep in mind that the quantiles
of these bootstrapped sampling distributions are not
confidence intervals around the true parameter. The
reason is that the ¢;-penalty biases all estimates and
hence the whole sampling distribution toward zero
which implies that the latter is not centered on the
true parameter value.

4.5. Computing time-varying prediction error

Here we show how to compute time-varying nodewise
prediction errors. Nodewise prediction errors indicate
how well the model fits the data on an absolute
scale and is therefore useful to judge the practical
relevance of (parts of) a VAR model. See Haslbeck
and Waldorp (2018a) for a detailed description of
nodewise prediction error (or predictability) in the
context of network models and Haslbeck and Fried
(2017) for an analysis of predictability in 18 datasets
in the field of psychopathology.

The function predict () computes predictions and
prediction errors from a given mgm model object.
We first provide the model object object = tvvar_obj
and the data data=mood_data. We then specify the
desired types of predictions, here r2 for the proportion
of explained variance and RMSE for the Root Mean
Squared Error. tvMethod = "weighted” specifies how
to combine all time-varying models to arrive at a single
prediction for each variable across the whole time series

(for details see ?predict). Finally, we provide con-
sec= time_data$beepno for the same reasons

as above.

pred_obj <- predict (object=tvvar_obj,
data=mood_data,
errorCon=c ("R2", "RMSE") ,
tvMethod = "weighted",
consec=time_dataSbeepno)

The predictions are stored in pred objs$pre-
dicted and the error of the predictions of all time-

varying models combined are in pred_obj$errors:

> pred_objS$errors
Variable Error.RMSE Error.R2

1 Relaxed 0.939 0.155
2 Down 0.825 0.297
3 Irritated 0.942 0.119
4 Satisfied 0.879 0.201
5 Lonely 0.921 0.182
6 Anxious 0.950 0.086
7 Enthusiastic 0.922 0.169
8 Suspicious 0.818 0.247
9 Cheerful 0.889 0.200
10 Guilty 0.928 0.175
11 Doubt 0.871 0.268
12 Strong 0.896 0.195



140 @ J. M. B. HASLBECK ET AL.

=
@

&

SN N
Relaxed Relaxed

e

S

g &

\

)

N

\

Baseline (4w) Double-blind period (14w)
0.50 -
—— Relaxed;_; — Relaxed, - -
e
©
-§ 0.25
7]
)
8
[9)
1S
o
< 0.00 5
o
-0.25 —

Satisfied,_; — Strong;

Postassessment (4w) Additional Postassessment (12w)

G Uiltyt_«] d Sa“sﬂedt

-
- -
- -
-

I I 1
10 15 20

Estimation points

Figure 10. Top row: visualization of VAR(1) models at estimation points 2, 10 and 18. Blue solid arrows indicate positive
relationships, red dashed arrows indicate negative relationships, and the width of the arrows is proportional to the absolute
value of the corresponding parameter. The self-loops indicate autocorrelations. The colored parts of the ring around each node
represents the respective within sample proportion of explained variance (R%). Bottom row: three parameters plotted as a function
of time; the points are the point estimate obtained from the full dataset, the shaded areas indicate the 5% and 95% quantiles
of the bootstrapped sampling distribution at each estimation point.

The prediction errors of each time-varying model
separately are
Note that here we weight the errors using the same
weight vector as used for estimation (see Section 2.3).
For details see ?predict.mgm. In the following
time-varying nodewise
estimation error for a subset of estimation points.

stored in pred_obj$tverrors.

section we visualize the

4.6. Visualizing time-varying VAR model

Figure 10 visualizes a part of the time-varying VAR
parameters estimated above. The top row shows visu-
alizations of the VAR parameters for the estimation
points 2, 10 and 18. Blue solid arrows indicate

positive relationships, red dashed arrows indicate
negative relationships. The width of the arrows is pro-
portional to the absolute value of the corresponding
parameter. The gray part of the ring around each
node indicates the proportion of explained variance of
each variables by all other variables in the model.
Comparing the VAR estimates across the three shown
estimation points reveals that some parameters are
strongly time-varying. For example, there is an auto-
correlation effect of Relaxed at estimation point 2,
which becomes smaller at estimation point 10 and van-
ishes at estimation point 18. On the other hand, the
cross lagged effects Satisfied,_; — Strong, and
Guilty, , — Satisfied, are equal to zero at estimation
point 2 and become larger in estimation point 10 and



18. To better evaluate the time-varying nature of those
three parameters we plot them as a line graph in the
lower panel of Figure 10. Relating time-varying param-
eter functions with additional information available
about an individual may allow one to explain the
changes in parameters. For example, we see that the
three time-varying parameters in the lower panel show
their largest change after the second reduction of the
antidepressant medication. This suggests that the medi-
cation reduction could be part of the explanation for this
change in parameters. Next to individual interaction
parameters, possible analyses can also focus on
the changes in intercepts or aggregates of several param-
eters. For example, one could investigate how the density
of the entire or parts of the VAR model changes across
time. The code to fully reproduce Figure 10 is not shown
here due to its length, but can be obtained from Github
(https://github.com/jmbh/tvvar_paper).

4.7. Selecting between stationary and time-
varying models

While model selection between stationary and
time-varying models is not the topic of this paper and
requires a separate treatment to be addressed
adequately, we briefly comment on this issue in
relation to the methods presented here. One possible
way to select between a stationary and a time-varying
(VAR) model is to divide the time series into a train-
ing and test set. Then one can fit each model on the
training set and evaluate on the test set which model
has the lower prediction error. In fact, this is the

procedure that is implemented in the function
bwSelect () which we used in Appendix C to select

an appropriate bandwidth parameter, and which we
described in detail in Section 3.1.2. Thus, if one
includes large bandwidths (b>1) that are essentially
leading to the same estimates as a stationary model,
this bandwidth selection procedure includes a model
selection procedure between stationary and time-vary-
ing models. However, selecting a (roughly) stationary
model with this procedure does not necessarily imply
that the data generating process is stationary. The
reason is that the procedure strikes a balance between
stability of estimates and sensitivity to estimate
time-varying parameters. If the sample size is low, the
procedure will therefore select a stationary model
even if the data generating process is time-varying.
Another possibility is to rely on information crite-
ria such as the AIC (see e.g., Bringmann et al., 2018).
Finally, one could construct a hypothesis test with the
null hypothesis that the data generating process is sta-
tionary VAR model. This could be done by estimating
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a stationary VAR model on the data set at hand, and
then generating B time series of the same length as
the original time series from this model. Then one fits
a time-varying VAR model to each of those data sets
and records a mean (over variables) prediction error.
This way we obtain the sampling distribution of the
prediction error under the null hypothesis, and we
can perform a hypothesis test using the prediction
error of the time-varying VAR model on the actual
data as the test-statistic. We could for instance set o =
0.05, which would mean that we would accept the
time-varying model if its error is smaller than the 5%
quantile of the sampling distribution. For the data in
this tutorial this leads to the rejection of the null-
hypothesis, which means that the data generating
mechanism is not a stationary VAR model and it is
therefore more appropriate to fit a time-varying VAR
model. We provide the code to reproduce this test on
in the supplementary materials and Github https://
github.com/jmbh/tvvar_paper.

5. Discussion

We compared the performance of GAM and kernel-
smoothing (KS) based methods in combination with
and without regularization in estimating time-varying
VAR models in situations that are typical for psycho-
logical applications. Our simulation results allow
researchers to select the best method amongst the
ones we considered here based on sample size and
their assumptions about the sparsity of the true VAR
model. In addition, we provided step-by-step tutorials
for the KS based method using the R-package mgm
(Section 4) and for the GAM based method using the
R-package tvvarGAM (Appendix D).

Next to assessing the relative performance of differ-
ent methods, our paper also provides the first over-
view of how many observations are roughly necessary
to estimate time-varying VAR models. For the time-
varying functions studied in our paper, already for
n>46 the best time-varying method outperformed
stationary methods, suggesting that time-varying
methods can be applied to typical ESM data.
However, it is important to keep in mind that if the
sample size is low, the time-varying methods return
very similar estimates as their stationary counterparts.
Thus, if the true parameter function is heavily
depending on time, and the sample size is small,
time-varying methods will not be able to recover most
of this dependency on time.

There are several interesting avenues for future
research on time-varying VAR models. First, in the
present paper we focused on frequentist methods.
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However, time-varying VAR models can also be esti-
mated in a Bayesian framework (Krueger, 2015). It
would be interesting to compare the performance of
these methods to the methods presented in this paper.
Second, the methods presented here could be
extended to beyond the standard VAR models.
Examples are mixed VAR models, which allow to
jointly model variables defined on different domains
(Haslbeck & Waldorp, 2018b), unified Structural
Equation Models (SEM) that allow an extension of
SEM models to different domains (Kim et al., 2007),
or the graphical VAR model (Abegaz & Wit, 2013),
which estimates both the VAR parameters and the
residual structure X (see Section 2.1). In this model,
identifying time-varying parameters is especially
important, because spurious relations in the residual
structure can be induced by time-varying parameters.
Third, all methods discussed in this paper are based
on the assumption that the true parameters are
smooth functions of time. However, in some situa-
tions it might be more appropriate to assume different
kinds of local stationarity, for example piece-wise con-
stant functions (e.g., Bringmann & Albers, 2019;
Gibberd & Nelson, 2017). It would be useful to make
those alternative estimation methods available to
applied researchers, and possibly combine them with
the methods presented here. Fourth, the Gaussian ker-
nel in the KS method could be replaced by kernels
with finite domains such as the box car function, in
order to improve the computational efficiency of the
algorithm. Finally, in this paper we focused on the
population performance of the two presented methods
in a variety of settings. However, we did not discuss
in detail how to select between models (for example
stationary vs. time-varying) in a practical application.
We believe that a conclusive discussion of different
model selection strategies in a variety of realistic situa-
tions would be an important avenue for future work.
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Appendix

A. Sampling variation around aggregated
absolute errors

In Figure 5 we reported the mean absolute error, averaged
over time points and iterations. These population level
mean errors indicate which method has the lowest expected
error in a given scenario. However, it is also interesting to
evaluate how large the population sampling variance is
around the mean errors. We therefore display a version of
Figure 5 that includes the 25% and 75% quantiles of the
population sampling distribution:

How can we interpret these quantiles? Let’s take the per-
formance of GAM and KS for n= 103 in panel (b) as an
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Figure 11. The five panels show the mean absolute estimation error (solid lines) averaged over the same type, time points,
and iterations as a function of the number of observations n on a log scale. We report the error of six estimation methods:
stationary unregularized regression (blue), stationary ¢;-regularized regression (red), time-varying regression via kernel-
smoothing (yellow), time-varying ¢;-regularized regression via kernel-smoothing (green), time-varying regression via GAM
(pink), and time-varying regression via GAM with thresholding at 95% Cl (orange). Some data points are missing because
the respective models are not identified in that situation (see Section 3.1.2). The dashed lines indicate the 25% and 75%
quantiles, averaged over time points.

example. The population mean error is larger for GAM  is necessary to judge its significance. However, we see that
than for KS in this scenario. Note that this difference in  the sampling distributions of the two errors are largely
mean errors is on the population level and therefore no test overlapping. This implies that also the difference of the two
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Figure 12. Mean (tick line) and standard deviations (thin line) of estimates for the constant parameter (left column), and the linear
increasing parameter (right column), for n= 103 (top row), n=530 (second row) and n= 1803 (bottom row) averaged over itera-
tions, separately for the five estimation methods: stationary ¢;-regularized regression (red), unregularized regression (blue), time-
varying ¢;-regularized regression via kernel-smoothing (green), time-varying regression via GAM (pink), and time-varying regression
via GAM with thresholding at 95% Cl (orange).

errors has a large variance, which means that if n=103, it is increasing n. For the /¢;-regularized methods, the quantiles
difficult to predict for a specific sample whether GAM or  are first small, then increase, and then decrease again
KS has a larger error. as a function of n. The reason is that for small #, these

We see that for unregularized methods the confidence  methods set all most estimates to zero, and therefore the
interval is large for small n and becomes smaller when upper and lower quantiles have the same value. An extreme



case is the true zero constant function in Figure 11
panel (e). Here both quantiles are zero for all n, while
the mean absolute error is larger than 0 and approaches 0
with increasing .

B. Sampling variation around absolute errors
over time

Figure 12 displays the mean estimates also shown
in Figure 6 in Section 3.1.3, but in addition displays
the 10% and 90% quantiles of the estimates. The sampling
variance is small for n= 103, but approaches zero as
n becomes large.

C. Code to select appropriate bandwidth in
KS(L1) method

The function bwSelect () fits time-varying VAR models
with different bandwidth parameters to a set of training sets
and computes the out-of-sample prediction error in the
hold-out sets. We then select the bandwidth that minimizes
this prediction error across variables and hold-out sets. For
details about how these training/test sets are chosen exactly
see ?bwSelect or Haslbeck and Waldorp (2018b).

Since we fit the time-varying VAR model of our choice
repeatedly, we provide all parameters we specified to the
estimation function tvmvar () as described in Section 4.3.
In addition, we specify via bwFolds, the number of train-
ing set/test set splits, via bwFoldsize the size of the test
sets, and via bwSeq the sequence of candidate bandwidth-
values. Here, we chose ten equally spaced values in [0.01, 1].

bwSeqg <- seq(0.01, 1, length =10)

set.seed (1)
bw_object <- bwSelect (data=mood_data,

type=rep("g", 12),
level=rep(l, 12),
bwSeg=bwSeq,
bwFolds =1,
bwFoldsize = 20,
modeltype = "mvar",
lags =1,
scale=TRUE,
timepoints=time_data$time_norm,
beepvar = time_data$beepno,
dayvar =time_data$dayno,
pbar =TRUE)
bandwidth <- bwSeg[which.min (bw_object$meanError) ]

[1] 0.34

The output object bw_object contains all fitted models
and unaggregated prediction errors. We see that the band-
width 0.34 minimized the average out-of-sample prediction
error. The full bandwidth path is shown in Figure 13.

The bandwidth value of 0.01 is clearly too small, indicated
by a large prediction error. The error then tends to become
smaller as a function of b until its minimum at 0.34 and
then increases again. Note that if the smallest/largest
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Prediction error for entire bandwidth path
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Bandwidth

Figure 13. Average out-of-sample prediction error for
different bandwidth values obtained from the function.
The bandwidth value 0.34 returns the smallest error, indicated
by the dashed line.

considered bandwidth value minimizes the error, another
search should be conducted with smaller/larger band-
width values.

D. Estimating time-varying VAR model
via GAM(st)

Here we show how to estimate a time-varying VAR model
via the GAM(st) method. All analyses are performed using
the R-package tvwarGAM (Bringmann, Haslbeck, &
Tendeiro, 2020) and the shown code is fully reproducible,
which means that the reader can execute the code while
reading. The code below can also be found in an R-file on
Github: https://github.com/jmbh/tvvar_paper.

D.1. Load R-packages and dataset

Similar to Section 4.2 we load the dataset from the mgm
package, and subset the 12 mood related variables. In
addition, we load the tvvarGAM package (version 0.1.1).

library (mgm) # Version 1.2-8

mood_data <- as.matrix(symptom_dataSdatal, 1:12]) # Subset variables
mood_labels <- symptom_data$colnames[1:12] # Subset variable labels
colnames (mood_data) <- mood_labels

time_data <- symptom_dataSdata_time

# Install from Github:

library (devtools)

install_github ("LauraBringmann/tvvarGAM”)
library (tvvarGAM)

D.2. Estimating time-varying VAR model

We use the function tvvarGAM() to estimate the
time-varying VAR model. We provide the data via the
data argument and provide an integer vector of length n
indicating the successiveness of measurements by specify-
ing the number of the recorded notification and the day
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number via the arguments beepvar and dayvar. The
latter is used similarly as in the mgm package to compute
the VAR design matrix. Via the argument nb we specify
the number of desired basis functions (see Section 2.2).
First, we estimated the model with 10 basis functions.
However, because some of the edf of the smooth
terms were close to 10, we doubled the number of basis
functions (see discussion in Section 2.2).

tvvargam_obj <- tvvarGAM (data=mood_data,
beepvar =time_dataSbeepno,
dayvar =time_data$dayno,
nb = 20,
scale = TRUE)

The output object consists of a list with three entries:

tvvargam_objResultsGAMEstimate isa (p+ 1) X p x
timepoints array that contains the parameter estimate
at each time point. The first row contains the estimated
intercepts. The two other list entries have the same

\

\

dimensions and contain the 5% and 95% confidence
intervals for the estimates in

tvvargam_objResultsGAMEstimate. Thus, in case
of the tvwvarGAM package no separate resampling scheme
is necessary in order to get a measure for the reliability

of parameters.

D.3. Visualize time-varying VAR model

Figure 14 visualizes the part of the time-varying VAR like
Figure 10 above, however, now with the estimates from
the tvwarGAM package. Notice that for visualization pur-
poses we used the tresholded version of the time-varying
VAR, thus showing only the arrows that are significant
(p-value < 0.05).

Similarly to the analysis performed with the KS(LI)
method we visualize the VAR parameters at estimation
points 2, 10 and 18 (top row Figure 14. We see that less

J‘

\

Baseline (4w) Double-blind period (14w)

0.50
—— Relaxed;_; — Relaxed;, - -

0.25

0.00 —

Parameter estimate

-0.25

Satisfied;_; — Strong,

Postassessment (4w) Additional Postassessment (12w)

Guilty,_; — Satisfied,

T T 1
10 15 20

Estimation points

Figure 14. Top row: visualization of thresholded VAR models at estimation points 2, 10 and 18, estimated with the spline-based
method. Blue arrows indicate positive relationships, red arrows indicate negative relationships, and the width of the arrows
is proportional to the absolute value of the corresponding parameter. The self-loops indicate autocorrelations. Bottom row:
three parameters plotted as a function of time; the points are unthresholded point estimates, the shading indicates the 5% and

95% credible intervals at each estimation point.



edges are present than in the results of the KS(L1) method,
which indicates that the GAM(ks) method is more
conservative. The bottom row of Figure 14 shows a line
plot of the same three parameters as in the analysis with
the KS(L1) method. We see that the effect of Relaxed
on itself tends to decrease over the measured time interval,
which is consistent with the results of the KS(L1) method.
However, results of the cross-lagged effects of Satisfied
on Strong, and of Guilty on Satisfied are only consistent
with the results of the KS(1) method in the middle of the
time series. The largest difference between the two methods
is the increase of the effect of Guilty on Satisfied is note-
worthy, while the KS(L1) method estimates a decrease.
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It seems that the GAM(st) estimates in the second half
of the time series are incorrect, because because if one splits
the time series in half and estimates two unregularized
stationary VAR models, then the effect of Guilty on
Satisfied is clearly negative in the second half of the time
series. In general, the large changes and the much larger
credible intervals at the beginning and the end of the time
series indicate that the estimates are very unstable in those
regions. This is consistent with the high standard deviation
of estimates of the GAM and GAM(st) method shown
in Figure 12. The code to fully reproduce Figure 14 is not
shown here due to its length, but can be obtained from
Github https://github.com/jmbh/tvvar_paper.
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