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ABSTRACT

Intensive longitudinal data (ILD) collection methods like experience sampling methodology
can place significant burdens on participants, potentially resulting in careless responding,
such as random responding. Such behavior can undermine the validity of any inferences
drawn from the data if not properly identified and addressed. Recently, a confirmatory mix-
ture model (here referred to as fully constrained latent Markov factor analysis, LMFA) has
been introduced as a promising solution to detect careless responding in ILD. However, this
method relies on the key assumption of measurement invariance of the attentive responses,
which is easily violated due to shifts in how participants interpret items. If the assumption is
violated, the ability of the fully constrained LMFA to accurately identify careless responding
is compromised. In this study, we evaluated two more flexible variants of LMFA—fully
exploratory LMFA and partially constrained LMFA—to distinguish between careless and
attentive responding in the presence of non-invariant attentive responses. Simulation results
indicated that the fully exploratory LMFA model is an effective tool for reliably detecting
and interpreting different types of careless responding while accounting for violations of
measurement invariance. Conversely, the partially constrained model struggled to accurately
detect careless responses. We end by discussing potential reasons for this.

Introduction 2024) at one or more occasions. Such careless and

Experience sampling methodology (ESM) or related insufficient effort responding (C/IER, in the following

methods like ecological momentary assessment
(Scollon et al., 2003) are the go-to designs to gather
intensive longitudinal data (ILD) for investigating

also shortened to “careless” or “inattentive” respond-
ing) may manifest as random responses or selections
based on a preference for certain response categories

(between-person variation in) within-person dynamics
in psychological constructs. However, requiring indi-
viduals to complete self-report questionnaires multiple
times a day over several days or weeks, ESM sampling
schemes can be perceived as burdensome. This can
diminish individuals’ willingness or ability to respond
attentively to the questionnaire items, leading them to
complete the questionnaires without careful consider-
ation of the content (Hasselhorn et al., 2023; Huang
et al.,, 2015; Jaso et al., 2022; Ulitzsch, Nestler, et al.,

or scale locations (e.g., choosing the middle or lower
end of the scale). Detecting and addressing careless
responding is crucial for ensuring accurate inferences
about the
Failure to identify careless responding can lead to

dynamics of psychological constructs.
biases in psychometric properties, such as factor struc-
ture and reliabilities, as well as distortions in correla-
tions of interest (McGrath et al., 2010).

The most promising methods for detecting careless
responding in ILD (and also cross-sectional data)" are
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latent mixture modeling approaches, where latent
classes (i.e., unobserved groups), also referred to as
mixture components, are predefined as attentive or
careless, drawing from theoretical expectations regard-
ing the assumed data-generating processes associated
with these response patterns. More precisely, attentive
responses are modeled to gauge the construct(s) of
interest using latent trait models such as confirmatory
factor analysis models (Arias et al., 2020; Kam &
Cheung, 2024) or item response theory (IRT) models
(Ulitzsch, Pohl, et al., 2022; Ulitzsch, Pohl, et al,
2023; van Laar and Braeken, 2022), whereas careless
responses are conceptualized as independent of item
content and the underlying construct(s) of interest.
Instead, they are assumed and modeled to be influ-
enced solely by scale preferences and/or random selec-
tion (Kam & Cheung, 2024). Note that, to enhance
classification accuracy, external information (e.g.,
response times or item characteristics such as position
or readability) can be incorporated (Meade & Craig,
2012; Ulitzsch, Pohl, et al., 2022; Ulitzsch, Yildirim-
Erbasli, et al, 2022; Zhang et al., 2024). Mixture
models employ probabilistic assignments (e.g., an
observation can have 97% certainty of being careless).
This (un)certainty can be taken into account in subse-
quent analyses, for instance, by weighting observa-
tions; for a discussion, see Ulitzsch, Domingue, et al.
(2023; Ulitzsch, Shin, et al., 2024).

Mixture models for detecting careless responding
in ILD have gained popularity only recently. The
most promising one is an approach that leverages
respondents’ responses to items measuring latent con-
structs (Vogelsmeier, Uglanova, et al,, 2024) because
no external information like screen times is required.
However, it comes with the assumption of measure-
ment invariance, which is easily violated in ILD. In
this study, we address this issue and evaluate two
model adjustments to account for non-invariance. In
the following sections, we begin by reviewing the
existing  mixture model designed for ILD.
Subsequently, we explain its assumption of measure-
ment invariance and why this is problematic. Finally,
we detail the objectives of this study.

C/IER detection in ESM data

Existing mixture modeling approach and its
assumption of invariance

Compared to cross-sectional data, ILD pose specific
challenges for mixture modeling approaches for
detecting careless responding because individuals can
change between attentive and careless responding over
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time because of, for example, momentary changes in
fatigue or (lack of) motivation (Eisele et al., 2023).
Consequently, to accurately capture these fluctuations
over time, classification should be conducted at a per-
son-by-occasion level. Considering the demands of
ILD, Vogelsmeier, Uglanova, et al. (2024) introduced
a mixture model for constructs assessed with mul-
tiple-indicator scales, which are well-established in
ESM studies (Vogelsmeier, Jongerling, et al., 2024).
The proposed model allows for unveiling the
moments when individuals switch between careless
and attentive responding and can identify correlates
of transition patterns with individual and situational
characteristics. The model offers the distinct advan-
tage that it classifies observations based on response
behavior, eliminating the need for relying on add-
itional information such as screen times.”

The approach classifies observations into an atten-
tive or careless mixture component based on a mix-
ture IRT model, and individuals are allowed to
transition between these mixture components over
time, which is modeled using a latent Markov chain.
Note that the confirmatory mixture IRT model was
tailored to the use of ordinal data from Likert scales,
but a conceptually similar confirmatory mixture factor
analysis model (Kam & Cheung, 2024) can be used
for continuous data from a visual analog scale (VAS).
The approach extends the method latent Markov fac-
tor analysis (LMFA), which was previously proposed
to detect changes in measurement models, such as
shifts in item interpretation (Vogelsmeier, Vermunt,
van Roekel, et al., 2019). While the original LMFA
was a completely exploratory method (using explora-
tory factor analysis or IRT to obtain the measurement
models), the extension relies on theory-based con-
firmatory specification of these models with con-
straints tailored to capture attentive versus careless
responding. Because of the confirmatory nature, in
the following, the extension is referred to as fully con-
strained LMFA.

One limitation of this fully constrained LMFA,
however, is the assumption of measurement invari-
ance across respondents and time for the attentive
and C/IER components of the mixture model, respect-
ively. Specifically, it is assumed that all attentive
observations have the same underlying model, as do
all inattentive observations. Non-invariance of the
attentive model was shown to become problematic if
it extends beyond purely gradual changes in how well

2In the Discussion Section, we provide a reference to a mixture modeling
approach that relies on screen times and detail advantages and
disadvantages.
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indicators measure the wunderlying constructs.
Specifically, if qualitatively different attentive struc-
tures underlie the data (i.e., configural invariance is
violated), attentive responses can be incorrectly
flagged as careless (Vogelsmeier, Uglanova, et al,
2024). This is concerning because changes in the
structure of attentive models are likely to occur in real
ILD (Adolf et al, 2014; McNeish et al, 2021;
Vogelsmeier, Vermunt, Biilow, et al, 2023). For
example, Schmitt et al. (2024) showed that individuals
switched between multiple structurally different meas-
urement models that reflected distinct granularity pat-
terns between specific emotions during participation.
Invariance violations of the inattentive observations
have yet to be studied in detail. However, initial
results showed that at least a mix of random respond-
ing and scale preferences is well captured in one C/
IER state (Vogelsmeier, Uglanova, et al, 2024;
Uglanova et al., 2025). It is therefore possible that
other mixed types are also captured well in one state.
Nevertheless, the two extensions that we propose in
this article have the potential to account for invari-
ance violations in both attentive and careless
responding.

Two possible ways to account for non-invariance

Employing a fully exploratory LMFA

The first possible approach is the traditional, fully
exploratory LMFA (Vogelsmeier, Vermunt, van
Roekel, et al., 2019), in which neither the number of
measurement models (i.e., the number of mixture
model components) nor the number of constructs and
the presence or absence of item-construct relation-
ships within these class-specific measurement models
is known. Instead of confirmatory factor analysis or
IRT modeling, the approach uses exploratory versions
of each framework and relies on model selection pro-
cedures (e.g., the Bayesian information criterion, BIC,
Schwarz, 1978) to identify how many mixture compo-
nents and factors within these components underlie
the data. Therefore, the method detects changes in all
response patterns that manifest as differences in meas-
urement models. Since careless responding affects
relationships between items and constructs (e.g., ran-
dom responding weakens the relationships between all
items), it should also constitute a change in the meas-
urement model (e.g., loadings should become lower).
Therefore, fully exploratory LMFA should be able to
detect careless responding in addition to different
types of attentive responding. However, the fully
exploratory LMFA has never been evaluated for its

performance in detecting careless responding. It has
only been assessed for detecting changes in the atten-
tive model, such as changes in the interpretation of
items (Vogelsmeier, 2022; Vogelsmeier, Vermunt,
Boing-Messing, et al, 2019; Vogelsmeier, Vermunt,
van Roekel, et al., 2019; Vogelsmeier et al., 2023). The
results cannot simply be generalized to studying care-
less responding. On the one hand, the response pat-

terns qualitatively differ with regard to their
distributions. While attentive responses entail
(approximately) multivariate normally distributed

data, careless responses can have various distributions.
For example, random responding manifests in a uni-
form distribution, while a lower-scale preference
entails rather skewed data. On the other hand, LMFA
was previously shown to work particularly well in dis-
tinguishing different mixture components when the
measurement models are strong; that is, with high
loadings and low wunique variances (Vogelsmeier,
Vermunt, Boing-Messing, et al., 2019; Vogelsmeier,
Vermunt, van Roekel, et al., 2019), which is not given
for all types of careless responding, like random
responding. The strong differences between attentive
and careless responses may compensate for that, how-
ever, because strong measurement model differences
were shown to be detected more easily than small
differences.

One limitation of the fully exploratory approach
may be that the careless responding patterns can be
manifold, each potentially resulting in a different
component.” For instance, scale preferences may result
in very high factor loadings, while random responding
may entail factor loadings of essentially zero.
Generally, careless responses do not exhibit as clear
patterns as those for attentive responses, making them
harder to recognize. When all patterns are subsumed
into a single mixture component by the fully explora-
tory LMFA, model parameters may be reflective of the
composite of behavioral patterns (e.g., loadings may
be neither extremely high nor extremely low), such
that the careless class may not be recognizable in
model interpretation. When each type of behavior is
captured by a different mixture component, interpret-
ation is likely to be easier. However, whether the
model selection procedures suggest one or multiple
mixture components for careless responses of different
types remains to be investigated.

3Note that the fully constrained LMFA does not distinguish between
different C/IER types but aims to classify all types into one mixture
component.



Employing a partially constrained LMFA

Given the possible complexity of the post-hoc inter-
pretation of careless mixture components in the fully
exploratory LMFA, a partially constrained approach
may be considered. In such a partially constrained
LMFA, a confirmatory approach would be used for
the careless responding model, applying constraints
like those in the fully constrained LMFA, while leav-
ing changes in the number and nature of the attentive
model(s) to exploration. This way, the careless mix-
ture component incorporates researchers’ theoretical
considerations on the likely presence of careless
response behavior and, if the specified component
model is indeed capable of absorbing the careless
responding patterns present in the data, may exhibit
higher power in wunveiling instances of careless
responding than a fully exploratory approach. Further,
this approach does not require post-hoc interpretation
of the careless class(es). Instead of specifying only one
careless component, one could also specify more and
let model selection decide if one or more careless
components are required for mixed types of careless
responding. The performance of model selection and
the degree to which the partially constrained LMFA
distinguishes between attentive and careless responses
remains to be investigated.

The present study

In this study, we compare fully exploratory and par-
tially confirmatory LMFA as two competing
approaches to distinguish between attentive and care-
less responding while acknowledging that both atten-
tive and careless responding behavior may change
over time. Here, we specifically focus on continuous
data and therefore employ mixture factor analyses in
both variants. Both LMFA variants are promising can-
didate approaches, but it remains unclear which is
(more) recommendable. Therefore, we examine the
performances in a simulation study with regard to (1)
model selection, (2) classification accuracy, and, only
for the fully exploratory LMFA, (3) interpretability.
First, model selection pertains to how well two previ-
ously evaluated model selection criteria perform in
selecting the correct number of mixture components
and factors within the components, which is crucial
for any exploratory modeling approach. Furthermore,
it will be explored whether 1 or more careless compo-
nents are selected for mixed types. Second, classifica-
tion accuracy pertains to the sensitivity and specificity
of identifying observations as careless, which can be
poor even if the correct model complexity is
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identified. Finally, interpretability pertains to how well
the careless responding component(s) can be identi-
fied as such, which is important when the careless
component is not explicitly defined as such through
model constraints.

In the following sections, we begin by describing
the data structure. Subsequently, we introduce LMFA
and detail its three variants: fully exploratory, fully
confirmatory, and partially confirmatory. Afterward,
we present the simulation study to investigate how
well the exploratory and partially confirmatory LMFA
detect careless responding while accounting for viola-
tions of measurement invariances in attentive
responses. Finally, we conclude with recommenda-
tions, discuss limitations, and propose avenues for
future research.

Method
Data structure

We consider ILD with multiple indicators that are
assumed to measure one or more underlying psycho-
logical constructs on a continuous scale. The observa-
tions are nested within subjects and denoted by y;;
with i € {1,...,N} referring to subjects, j € {1,...,]}
referring to items, and t € {1,...,T;} to timepoints.
These y;; are collected in the J x 1 vectors y;, =
(Vire: Yiots - yi]t)', which themselves are collected in the
T; x ] data matrix Y; = (y};, Y} ... Vi)' for subject i.
The data matrices are concatenated in the dataset Y =
(Y, ... Y})" with SN T; rows. As the notation indi-
cates, the number of timepoints may differ across sub-
jects. However, for simplicity, we omit the index i in
T; in the following.

Latent Markov factor analysis

The LMFA model can be conceptually divided into
the measurement part and the transition part. The
transition part is the same regardless of the LMFA
variant. However, the measurement part is different
for the fully constrained, completely exploratory, and
partially constrained approaches. In the following, we
first describe the measurement part and how it differs
across the LMFA types. Subsequently, we explain the
transition part.

Measurement part

The measurement part determines how many mixture
components (also referred to as latent states instead of
latent classes, as will be explained in the next section)
underlie the data, where the mixture components
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Attentive 1

—_—

Attentive 2

4

C/IER

Figure 1. Graphical illustration of an LMFA model with three components: two attentive components, differing in the number and
nature of the latent factors, and one C/IER state where items measure a preference factor rather than a content factor. The three
components and thus measurement models are depicted inside the three big circles. The straight and curved arrows around these
circles indicate the possibility of transitioning between the components at two subsequent measurement occasions and the possi-
bility of staying in a component, respectively. In each circle, the observed items are indicated as squared boxes and the latent fac-
tors as circles. The presence of the arrows in between the items and factors indicates that items measure the latent factors. The
first five items y; — ys are positive affect (PA) items (of which the first three are considered low-arousal (LA) emotions) and the
last four items ys — yo are negative affect (NA) items (of which the first one is considered a high-arousal (HA) emotion). Individuals
in the “Attentive 1" measurement model distinguish only between the valence of the emotions. Individuals in “Attentive 2" meas-
urement model distinguish between the valence of the low-arousal emotions and between low and high-arousal emotions.

differ, broadly speaking, in which items measure
which factors and how well. Figure 1 depicts an artifi-
cial model with three components: two attentive
ones—where nine items measure two and three con-
structs of interest, respectively (positive affect [PA]
and negative affect [NA] in component 1 and low
arousal [LA] PA, LA NA, and high arousal [HA] in
component 2)—and one careless one—which differs
entirely from the attentive models because it measures
scale preference rather than the constructs of interest.
The factor models are component-specific and defined
as (Lawley & Maxwell, 1962):

[Yit|5itk = 1] = vk + Afir + €t (1)

with k € {1,...,K} referring to the component. The
component memberships are indicated via the binary
indicators s;x. These are equal to 1 for component k

and equal to zero for the other components.
Specifically, s;; = 1 denotes that individual i belongs
to component 1 at time point t. In turn, [y, |six = 1]
implies that the responses y, depend on the state-
membership at time-point t. Moreover, v, and Ay
denote the state-specific J x 1 intercept vector and the
J x Fi loading matrix, respectively. The subject-spe-
cific Fx x 1 vector f; ~ MVN(0, W) stores individual
i’s factor scores at timepoint t (where Fy is the state-
specific number of factors and Wy the state-specific
factor (co-)variances), and ey ~ MVN(0,Dy) is the
subject-specific J x 1 vector of residuals at timepoint
t, where Dy contains the unique variances di; on the
diagonal and zeros on the off-diagonal. The mixture
components can thus differ regarding their loadings
Ay, intercepts vy, unique variances Dy, and factor
covariances W;. The three LMFA variants differ in



how these parameters are constrained (including the
number of components and factors) and, in turn,
whether exploratory or confirmatory factor analysis is
used within the mixture components. Below, we first
introduce the fully exploratory and constrained
LMFAs before explaining the partially constrained
LMFA. A summary of the three versions is provided
in Table 1.

Fully exploratory LMFA

The fully exploratory LMFA employs exploratory fac-
tor analysis within each mixture component. All
parameters in Equation 1 are freely estimated. Only
the factor variances in Wy are restricted to one to set
a scale of the latent factors. Rotational freedom is
dealt with using criteria to optimize the simple struc-
ture of the factor loadings (e.g., oblimin, Clarkson &
Jennrich, 1988). Model selection should determine the
number of components and factors within these com-
ponents that best fit the data. This entails that
researchers define and estimate various plausible mod-
els and choose the best one based on model selection
criteria and interpretability (details will be provided in
the model selection paragraph in the Measurement
Part Section). For example, considering the model in
Figure 1, the exploratory analysis would indicate that
there are three mixture components and thus meas-
urement models that differ in the number of the fac-
tors. Component 1 has two factors with the first five
items having considerable loadings on factor 1 and
the last four having considerable loadings on the
second factor. If the researcher knows that the items
1-5 are positive emotions and items 6-9 negative
ones, they could give the labels PA and NA. Likewise,
researchers would draw on their subject-matter
expertise to interpret components 2 and 3. Note that
whether one or more components refer to careless
responding also has to be determined using post-hoc
interpretation. The ease of this will be explored as
part of the simulation study.

Fully constrained LMFA

For the fully constrained LMFA, the number of com-
ponents and the number of factors per component are
defined by the researcher in advance, based on theory,
and the measurement models are obtained using con-
firmatory factor analysis. In the following, we consider
the typical case with a single attentive and a single
careless model. However, as explained in the introduc-
tion, it is possible to specify more attentive and/or C/
IER components to account for known dynamics in
item interpretation and/or for more nuances of
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careless responding. The attentive component requires
the specification of a design matrix, indicating which
items measure which constructs. There is no more
rotational freedom in confirmatory factor analysis.
However, the scale still has to be set, for example by
fixing the factor variances in W equal to one.

In the C/IER component, it is assumed that
observed scores are not reflective of the to-be-meas-
ured substantive constructs for careless individuals.
Instead, it is assumed that item scores are driven by
mere scale preferences that are equal regardless of the
item. This translates into a confirmatory factor model
with a single preference factor where the loadings are
all restricted to 1, even if some items are negatively
worded as individuals are assumed to pay no attention
to the content. Additionally, intercepts and unique
variances are constrained. There are multiple sugges-
tions on how to constrain them, ranging from more
restrictive to more flexible ones. Restricting the inter-
cepts and variances to equality across items, respect-
ively, correspond most closely to the constraints in
the conceptually similar IRT model proposed and
evaluated by Uglanova et al. (2025) for cross-sectional
data in general and by Vogelsmeier, Uglanova, et al.
(2024) for ESM data within LMFA in particular.
Although specifically tailored to scale preferences,
these constraints were shown to be flexible enough to
distinguish between attentive and careless responding
when some individuals have scale preferences and
others exhibit random responding; that is, when the
C/IER component is misspecified. For other, (mostly)
more restrictive constraints, see Kam and Cheung
(2024).

Partially constrained LMFA

In the partially constrained LMFA, the researcher dis-
tinguishes in advance between attentive and C/IER
components. The parameters of the attentive compo-
nent(s) are still determined using exploratory factor
analysis. This means that only the factor variances in
W are fixed to one and rotation criteria are applied,
as in all components of the fully exploratory LMFA.
For the C/IER component(s), however, confirmatory
factor analysis is performed with constraints identical
to those of the C/IER component(s) in the fully con-
strained LMFA. It should be noted that model selec-
tion is still required to choose the best model, as it is
not known in advance how many attentive and C/IER
components underlie the data. As already mentioned
before, it is also interesting to see if model selection
would choose more than one C/IER component for
mixed C/IER types and wether using one or more
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The K x 1 vectors s;; = (si1, ..., i) contain the binary
indicators s;; and the U x 1 vectors z;; = (z1, ..., Zity)|
comprise the covariate values zj,, where u=1,..,U
denotes the subject- and timepoint-specific covariates.
The latter can influence the initial or transition probabil-
ities as described below. The state-specific response proba-
bilities f(y,|si = 1) indicate the probabilities for the
response patterns at timepoint ¢ given the state member-
ship at that timepoint, s;x = 1. These probabilities
depend on the K state-specific models.

The initial state probabilities indicate the probabil-
ities of starting in state k at timepoint ¢+ =1 and can
depend on covariate values at the first timepoint, z;;.
The probabilities 7y = p(six = 1]z;) with Zl,le T =
1 are collected in a K x 1 vector . The initial state
probabilities are typically modeled via a logit model to
prevent parameter range restrictions:

log GM> = Box + Bizit—1- (3)

(sm = 1|za)
Here, f5,, are the initial state intercepts and the vec-
tors B = (Br.z, - Brz,,) are the initial state slopes

that quantify the effect of the covariates on the initial
state memberships for k > 1 because k = 1 is the ref-
erence category.

The transition probabilities indicate the probabil-
ities of being in state k at timepoint ¢ > 1 conditional
on state [ € {1,...,K} at t — 1, and, thus, the probabil-
ities of transitioning between states (or staying in the
same one). There are two types of LMMs: The regular
so-called discrete-time (DT-)LMM assumes the inter-
vals between measurements, dy, to be equal, while
these intervals are allowed to differ across timepoints
and individuals in the so-called continuous-time (CT-)
LMM (Bockenholt, 2005; Jackson & Sharples, 2002;
Vogelsmeier, Vermunt, Boing-Messing, et al., 2019).
In this article, only the CT-LMM is used and
described because differences in intervals are more
realistic in ESM. Also note that the CT-LMM general-
izes to the DT-LMM if intervals are equal (for a
detailed description of the DT-LMM, we refer to
Vogelsmeier, Vermunt, van Roekel, et al. (2019).

The transition probabilities in the CT-LMM,
Do,k = Po, (Sitk = 1|si—1,1 = 1,2;), are collected in the
K x K matrix P;, with row sums Zle Ps, i = 1. The
transition probabilities P, depend on the interval Jy
and the “transition intensity matrix” Q. The transition
intensities (or rates) gy define the transitions from the
origin state / to the destination state k per a very small
time unit and are collected in the K x K matrix Q.
The intensities for the off-diagonal elements in the
matrix Q (i.e., k # ) are
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- (P(sik = Usi—s,1 = 1, 2)

qi = glir(l) ( 5 > (4)
The diagonal elements are equal to =3, qi (Cox &
Miller, 1965). Taking the matrix exponential of Q X
0 generates the transition probabilities Pgs,. This
implies that the probability of transitioning to another
state instead of staying in a state on two consecutive
measurement occasions (i.e., k # [) increases for lon-
ger intervals. As can be seen from Equation (4), the
transition intensities (and, hence, the transition proba-
bilities) can depend on covariates z;. Typically, a log-
linear model for the transition intensities is employed

(again for k # I):
log gi = Yoi + VikZir- (5)

Here, 7o) are the transition intercepts and Vi =

Vi Zuy> ik Zay) the transition slopes that quantify
the covariate effects on transitioning compared to
staying.

It is important to note that each individual- and
timepoint-specific observation is assigned to the states
with probabilities that sum to 1 across all states.
These probabilistic assignments reflect the certainty of
an observation belonging to a particular state, such as
a C/IER state. These posterior state-membership prob-
abilities can be utilized in subsequent analyses to
reduce the influence of careless responses on the
results and thus conclusions. For instance, observa-
tions with low probabilities of belonging to an atten-
tive state can be given less weight (see Ulitzsch,
Domingue, et al., 2023; Ulitzsch, Shin, et al., 2024).

Observations can also be assigned to the state with
the highest posterior state-membership probability
(called modal assignment). This allows researchers to
further explore (individual) dynamics in state mem-
berships. Consider, for instance, the illustration in
Figure 2 (again, using the example with two attentive
and one C/IER state from before). The figure depicts
how modal state assignments change over time (in
terms of overall state proportions) and how individu-
als change between the three states. In this example, it
can be seen that the probability of staying in any of
the states is rather large. Additionally, looking at the
C/IER state memberships, it is apparent that careless
responding is less prominent at the beginning of par-
ticipation but becomes more pronounced toward the
end. The covariate participation length could be inter-
esting to include here. Note that one may also look at
individual transition plots for more nuanced insights
into transitions of specific participants (for examples,
see Vogelsmeier, Vermunt, & De Roover, 2023).
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Figure 2. Example of transitions between states for 100 individuals and 100 timepoints. The left part depicts how state member-
ships change over the first four occasions and the right part depicts how state memberships change over the last four occasions.
The membership distributions for the 8 visible time points are indicated by proportions. The slightly transparent colors between
the time points show how the membership proportions shift from one timepoint to the next. For example, of 30% in the C/IER
state at timepoint 1, half the individuals (i.e.15 of the total sample) stay in that state.

Note that the LMM can be easily extended by
allowing for person-specific initial and transition
probabilities (Vogelsmeier, Vermunt, van Roekel,
et al, 2019), or by allowing for heterogeneity across
groups of individuals. In the latter, the probabilities
would depend on unobserved group memberships
estimated using a mixture LMM (Crayen et al., 2017;
Vogelsmeier, Vermunt, Biilow, et al., 2023). This
extension would be interesting to detect between-
person differences in transition patterns. Some indi-
viduals may be in an attentive state most of the
time, others may often switch between the attentive
and C/IER states, and others may start in an atten-
tive state and, once they have moved toward a C/
IER state, stay there until the end of their participa-
tion (this would make the C/IER state an
“absorbing” state because individuals do not leave
this state anymore). However, although such exten-
sions are substantively interesting and possibly
necessary for real data, they are not relevant for
showing whether the fully exploratory and partially
constrained LMFA versions can correctly disentangle
attentive from C/IER responses because C/IER only

affect the measurement part and not the transition
part. For simplicity, in this study, we therefore focus
on the regular LMM to capture transitions.

Estimation

Estimation can be performed using a one-step full
information =~ maximum  likelihood  estimation
(Vogelsmeier, Vermunt, Boing-Messing, et al., 2019;
Vogelsmeier, Vermunt, van Roekel, et al.,, 2019) or a
step-wise approach that splits the estimation into the
measurement and transition part. The step-wise
approach is more efficient when including covariates
in the transition model (for details and a comparison
between the two approaches, see Vogelsmeier et al.,
2023). Both estimations can be performed using
Latent GOLD syntax (Vermunt, 2008). The three-step
approach is also available in R (see package Imfa
Vogelsmeier and De Roover, 2021), but estimation is
considerably slower than in Latent GOLD. Both
Latent GOLD and the R package use a multi-start
procedure to reduce the chance of finding local
optima (for details, see Vogelsmeier, Vermunt, van



Roekel, et al, 2019; Vogelsmeier, Vermunt, & De
Roover, 2023). For the simulation study, we use the
one-step estimation as covariates are not part of this
study and we use Latent GOLD for computational
efficiency. A technical description of the specific algo-
rithm (an Expectation Maximization algorithm com-
bined with a forward-backward algorithm), including
information about the starting procedure and conver-
gence criteria, can be found in the Appendix of
Vogelsmeier, Vermunt, Boing-Messing, et al. (2019).

Simulation study

We conducted a simulation study to investigate how
reliably the fully exploratory and the partially con-
strained LMFA capture careless responding in the
presence of non-invariance of the attentive model.
Throughout the simulation, we employed a data-gen-
erating model with two attentive states that differed in
their loading pattern and one C/IER state (see Design
and Procedure Section).

The simulation study had two aims in particular.
The first aim was to evaluate how well LMFA, with
and without constraints, can detect the true model
among many candidate models using two previously
proposed model selection criteria. More specifically,
we investigated how often the BIC and the CHull
method chose the true model without constraints
among a set of candidate models without constraints
(when using fully exploratory LMFA) and how often
the two criteria chose the true model with con-
straints among a set of candidate models with con-
straints (when using partially constrained LMFA).*
The second aim was to inspect the sensitivity (i.e.,
the proportion of correctly identifying C/IER obser-
vations) and specificity (i.e., the proportion of cor-
rectly identifying attentive observations), given the
modal assignment from the correctly specified
models.’

We integrated both aims into one simulation study,
in which we manipulated three factors (in a full fac-
torial design) that possibly influence the model selec-
tion as well as sensitivity and specificity: (1) noise in

“Note that we looked at the models with and without constraints
separately, because investigating model selection on all models combined
would only make sense if model selection works well for both fully
exploratory and partially constrained LMFA separately, which was not the
case, as will be described in the result section.

*Note that we do not examine parameter recovery of the attentive
models, as prior studies have shown that it is very good if the
observations are correctly classified (Vogelsmeier, Vermunt, Boing-
Messing, et al., 2019; Vogelsmeier, Vermunt, van Roekel, et al., 2019;
Vogelsmeier et al., 2023). Repeating this investigation would add length
and distract from our novel focus on distinguishing attentive from
careless observations.
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the attentive responses (with the two levels low and
high), (2) type of C/IER (with the four levels: middle
scale preference, lower-end scale preference, random,
and mixed), and (3) frequency of C/IER (with the two
levels low and high). To keep the computation time of
the simulation study feasible, we omitted the manipu-
lation of factors that have been studied in previous
articles (e.g., sample size, different complexities of the
attentive models, and differences across attentive
states). Next to the two primary purposes of the simu-
lation study, we also explored the interpretability of
the C/IER states for the four different types of simu-
lated C/IER.

Design and procedure

Data were generated according to the LMFA model
(see Equation 2). Concerning the sampling protocol,
the number of individuals was 45, and the number of
measurement occasions 84 (mimicking 14 participa-
tion days with six occasions per day), which is a typ-
ical ESM setup according to a recent meta-analysis
(Wrzus & Neubauer, 2023), resulting in a total of
3,780 observations.® To generate data with realistic
intervals between measurement occasions, a participa-
tion day went from 9 am to 9pm, with the night
interval thus being 12h and the day interval (i.e., the
interval between two measurement occasions within a
day) being 2.4 h.

Next, concerning the state-specific measurement
models in the LMFA model, we generated data from
two attentive states and one C/IER state. The num-
ber of items was equal to 20, and the scores on
these items had a continuous range that fell between
the score 1 and 10 (with small differences in the
range, depending on different types of
response patterns generated), representing continu-
ous responses on a VAS. The two attentive states
contained two latent factors, respectively. In both of
these states, ten items had loadings on the first fac-
tor and ten on the second. Thus, both attentive
states contained factor models with binary simple
structures, which were also employed in previous
LMFA simulation studies (Vogelsmeier, Vermunt,
Boing-Messing, et al., 2019; Vogelsmeier, Vermunt,
van Roekel, et al., 2019; Vogelsmeier et al., 2023)

exact

5To retain feasibility of the simulation study design, we did not vary the
sample size because it has been studied extensively for LMFA before
(Vogelsmeier, Vermunt, van Roekel, et al., 2019), and it was shown that
sample size affects classification performance only up to a certain degree,
for example, for a model with three states, performance would not
further improve when increasing sample size beyond 1200 observations,
which is lower than typically observed in ESM data.
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Figure 3. The four types of C/IER employed in the simulation study.

because they are very common in psychological
research, for example, when studying positive and/
or negative affect. The value of all nonzero loadings
and all unique variances depended on the noise con-
dition. For the low noise condition, the loadings
were equal to 0.89, and the unique variances were
equal to 0.2. For the high noise condition, these
values were equal to 0.77 and 0.4, respectively. As a
result, all item variances were equal to 1 in both
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conditions. We used the same conditions as

employed in previous LMFA simulation studies
(Vogelsmeier, Vermunt, Boing-Messing, et al., 2019;
Vogelsmeier, Vermunt, van Roekel, et al., 2019;

| =)

| K=

Vogelsmeier et al., 2023) because the difference in
these studies was big enough to show for how much
noise LMFA breaks down in correctly recovering
state memberships. The two attentive states differed
regarding four items: Two of the items with loadings
on factor 1 in the first state loaded on factor 2 in
the second state and vice versa. The resulting load-
ing matrices for the two attentive states were thus:

with “B” indicating loadings of 0.89 (for the low
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noise condition) and 0.77 (for the high noise condi-
tion) and the grey color highlighting the loadings that
differ across the two attentive states. For both atten-
tive states and all items, the intercepts were equal to



5, which is the middle value of the score range.
Furthermore, the factor means for both attentive
states were zero, and the factor variances per attentive
state were 1. The observations in the C/IER state
were not drawn from factor models but from three
distributions that mimic different C/IER behaviors on
a continuous VAS. The C/IER types are illustrated in
Figure 3. In the “random” condition, individuals ran-
domly select a score between 1 and 10. The observa-
tions were drawn from a uniform distribution ranging
from 1 to 10. For a “middle scale preference,” individ-
uals tend to select the middle score with some vari-
ation around it. The observations were drawn from a
normal distribution with a mean of 5 and a standard
deviation of 1. In the “lower-end scale preference,”
individuals tend to select a score on the lower end
with some variation around it. The observations were
drawn from an inverse Gaussian distribution with a
mean of 3 and a shape parameter of 20. For the
mixed condition, all three types of C/IER were equally
often applied: The observations for respectively one-
third of the 45 individuals were drawn from each of
the three distributions described above.®

The transitions between the three latent states were
manipulated via the LMM, which also determined the
frequency of the two attentive and the C/IER states. In
the “high frequency” conditions, the latent Markov
chain was drawn from transition probabilities and initial
state probabilities that lead to an equal amount of the
three states. In the “low frequency” conditions, the latent
Markov chain was drawn from probabilities that resulted
in 10% C/IER states and, respectively, 45% of the two
attentive states. Equal state sizes were chosen as a

"To retain feasibility of the simulation study design, regarding the
attentive models, only the noise in the data was varied because this likely
affects how well some types of careless responding are distinguished
from attentive responding. The number of states, factor
overdetermination (manipulated by changing the number of factors for a
fixed number of items), and between-state differences of the attentive
models (manipulated by employing different degrees of non-invariance)
were previously studied: Only the between-state difference affected
classification performance, but even the most challenging one, where
only loadings differ across states (which is also used for the current
study), still showed good classification performance (Vogelsmeier,
Vermunt, Boing-Messing, et al.,, 2019; Vogelsmeier, Vermunt, van Roekel,
et al., 2019). Note that the number of items is kept constant for the
following reason: When holding the number of factors and the number of
items that differ across states constant, changing the number of items
would simultaneously affect factor overdetermination and between-state
differences, which is undesirable. Specifically, by increasing the number of
items, factor determination would improve because more items provide a
stronger measurement of the factor, while between-state differences
would decrease as the proportion of items that differ between groups
becomes smaller.

8Note that both LMFA versions cluster at the occasion level. Therefore, for
the state composition, it is not relevant whether one-third of the
individuals have mixed types or whether all individuals switch types after
one-third of their participation. Both are possible ways to achieve the
mixed C/IER type.
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baseline, but unequal sizes are more realistic, as in the
few studies that have investigated C/IER, only 5 to 10%
of the observations were flagged as C/IER (e.g., Ulitzsch,
Viechtbauer, et al., 2024; Vogelsmeier, Uglanova, et al.,
2024)° Specifically, the probabilities for a 2.4-h interval
(i.e., the interval between two measurement occasions
within a day) were equal to

0.80 0.10 0.10

Phighfrequency = | 0.10 0.80 0.10 |and
0.10 0.10 0.80
0.79 0.17 0.04

Piowtrequency = | 0.17  0.79  0.04

0.17 0.17 0.66

The initial state probabilities were equal to
Thighfrequency — (033 0.33 033) and Tlowfrequency —
(0.45 0.45 0.10) for all individuals. To check how
the manipulation played out, we examined the distri-
bution of states across all generated datasets. The
numbers precisely matched the intended proportions.
Note that we disregard between-person differences for
both initial and transition probabilities because mak-
ing the transition model more complex unnecessarily
complicates the model for the purpose of this simula-
tion study (i.e., investigating different ways of estimat-
ing the measurement model), as explained before in
the Transition Part Section.

For each condition, we sampled 100 datasets in the
open-source program R (R Core Team, 2021) using all
specifications and parameter values explained above.
First, per person, we sampled the initial state member-
ship using the initial-state probabilities that differed
across the two frequency conditions (i.e., low vs. high).
Subsequently, for each person, we sampled a random
sequence of states using the transition probabilities that
also depended on the frequency condition. Based on the
resulting state memberships in the latent Markov chains,
for the two attentive states, we drew observations from
factor models with a fixed number of factors, fixed pat-
terns of nonzero loadings, intercepts, factor means, and
factor variances, but with the values for nonzero load-
ings and unique variances being different for the two
noise conditions (i.e., low vs. high). For the C/IER state,
we drew observations based on the four condition-spe-
cific C/IER distributions (i.e., uniform, normal, inverse
Gaussian, or mixed distributions for random, middle-
scale preference, lower-scale preference, and mixed types,

The state proportions can be calculated from the transition matrices by
raising the matrices to large powers (e.g., 50 or 100) until an equilibrium
is reached, meaning that further matrix multiplication by itself no longer
changes the probabilities.
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respectively). In total, the simulation study encompassed
2 (noise) x 4 (C/IER types) x 2 (frequency) x 100
(replications) = 1600 datasets.

The analyses were conducted in Latent GOLD
(Vermunt & Magidson, 2021). All datasets were ana-
lyzed using the two true models. A subset was also
analyzed using both true and competing models to
evaluate model selection, which is further explained
below. The first true model (i.e., the fully exploratory
LMFA model) had three states,'® with two factors in
the two attentive states and a single factor in the C/
IER state, respectively. In the following, the model is
referred to as “[221],” where the number of elements
refers to the number of states and the value of each
element to the number of factors for that state). Note
that the states were not labeled beforehand; the only
restriction in this model is the number of states and
the number of factors per state. The second true
model (i.e., the partially constrained LMFA model)
had the same specification as the first one but with
constraints in the C/IER state, as described above. In
the following, this model is referred to as “[22C]”
(where the “C” in state 3 indicates “constrained”). The
sensitivity and specificity of the observations’ classifi-
cation were determined based on all 800 analyses.

Of the 1600 datasets, 240 (i.e., 15 of the 100 replica-
tions for each condition) were furthermore used to
evaluate the performance of the model selection.''
Specifically, we investigated whether in the case of single
types of C/IER, the [221] and [22C] models were selected
among various candidate models of differing complex-
ities and whether in the case of mixed C/IER types, either
model [221] or [22111] and [22C] or [22CCC] were
selected among various candidate models. The latter is
important because, strictly speaking, there are three dis-
tinct C/IER distributions underlying the observations in
the mixed C/IER type condition rather than just one.
Consequently, it is crucial to ascertain whether the model
selection identifies one or three C/IER states for these
conditions (together with the two attentive states result-
ing in a total of three or five states). The candidate mod-
els were chosen as follows: The true models comprised
three states, each accommodating a maximum of two
factors. Previous model selection studies suggest that
both the BIC and CHull criteria tend to select the true
model or favor simpler models in terms of factors and
states (Bulteel et al., 2013; Vogelsmeier, Vermunt, van

'Note that this may not hold for the mixed C/IER type conditions, as will
be explained in the next paragraph.

""Note that using more datasets per condition was computationally not
feasible because the model selection part took half a day per dataset on
a supercomputer with 32 cores.

Roekel, et al.,, 2019). Therefore, models with one fewer
state and factor than the true models were included in
our investigation. Furthermore, the model complexity
was extended up to five states, as the model selection has
previously only been investigated for differences in atten-
tive models and not between attentive models and differ-
ent types of C/IER. Thus, we intended to ensure a
sufficiently large range of models. Furthermore, five
states may be necessary for the mixed C/IER conditions.
For the fully exploratory LMFA without constraints, this

resulted in 18 candidate models:'* [21], [221], [2221],
[22], [11], [222], [211], [111], [2222], [2211], [2111],
[1111], [22222], [22221], [22211], [22111], [21111],

[11111]. For the partially constrained LMFA, the candi-
date models also permitted one to three constrained
states, which resulted in 28 candidate models: [2C],

22C], [222C), [1C], [21C], [11C], [221C], [211C],
111C], [2222C), [2221C], [2211C], [2111C], [1111C],
[1CC], [22CC], [21CC], [11CC], [222CC],

221CC], [211CC], [111CC], [2CCC], [1CCC], [22CCC],
21CCC], [11CCC]. Note that the imposed constraints
were the same across the different C/IER states (i.e.,
equal to the constraints explained in the Method
Section). They did thus not reflect the different types of
C/IER in particular. Consequently, observations with dif-
ferent underlying C/IER types are distinguished only
through differences in the intercepts and unique varian-
ces that were free to vary across the different C/IER
states. This was decided for two reasons. Firstly, as previ-
ously explained, the constraints are tailored to scale pref-
erences, but they were shown to also capture random
responding (Kam & Cheung, 2024; Vogelsmeier,
Uglanova, et al.,, 2024). Secondly, employing varying con-
straints for different C/IER states (i.e., different con-
straints for random responding and scale preferences)
would introduce additional complexity to the already
intricate model selection. For example, all models with a
single C/IER state (i.e., models [2C], [22C], [222C], [1C],
etc.) would have two versions, one with constraints for
random responding and one for scale preferences. If con-
straints tailored to the C/IER type was needed in the par-
tially constrained LMFA, it would raise the question of
whether this LMFA variant is a practical one.

[
[
[2CCl,
[
[

Results

In the following, we first report the results for the
model selection and then for sensitivity and
specificity.

?Note that the permutation of states is arbitrary. Thus, for example,
model [21] is the same as model [12] and thus listed only once.
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Table 2. Proportions of identifying the true models among their respective sets of candidate models using the BIC and the CHull

method.
BIC CHull BIC CHull
Frequency Type low noise high noise low noise high noise low noise high noise low noise high noise
[221] [22€]

low middle-scale preference 1 1 1 0.80 0.93 1 0.87 1
lower-scale preference 1 1 1 0.53 0.13 0.33 0.20 0.40
random 1 0.93 1 0.8 0 0.07 0 0.07
mixed type 0 0 0 0 0 0 0 0

high middle-scale preference 1 1 0.87 0.87 1 1 0.80 0.80
lower-scale preference 0 0 0 0 0 0 0 0
random 0.80 0.47 0.80 0.13 0 0.07 0.07 0.07
mixed type 0 0 0 0 0 0 0 0

[22111] [22CCq]

low mix 0.9 0.8 0 0 0.2 0 0 0

high mix 0.7 0.6 0 0 0 0.07 0 0

Table 3. Sensitivity and specificity of classifying true C/IER state-membership observations into the C/IER states.

Sensitivity Specificity Sensitivity Specificity
Frequency Type low noise high noise low noise high noise low noise high noise low noise high noise
[221] [22€]

low middle-scale preference 0.99 0.90 1 0.99 0.99 0.90 1 0.99
lower-scale preference 1 1 1 1 1 1 1 1
random 1 0.97 1 1 0.03 0.04 0.79 0.85
mixed type 0.96 0.65 1 1 0.67 0.55 1 1

high middle-scale preference 0.99 0.95 1 0.98 0.99 0.95 1 0.98
lower-scale preference 0.99 1 1 1 1 1 1 1
random 0.70 0.63 0.96 0.95 0.02 0.01 0.79 0.84
mixed type 0.46 0.39 1 1 0.66 0.57 1 1

[22111] [22CCC]
low mixed type 1 0.95 1 1 0.79 0.64 0.86 0.85
High mixed type 0.99 0.94 0.99 0.99 0.68 0.65 0.80 0.85

Note: To determine sensitivity and specificity, attentive state memberships were combined in the three-state models and, in the five-state models, atten-

tive and C/IER state memberships were combined, respectively.

Model selection

The upper part of Table 2 presents the proportions
of times the models [221] and [22C] were selected
from their respective sets of candidate models using
both the BIC and CHull method. The lower part of
Table 2 displays the proportions of times the models
[22111] and [22CCC] were selected for the mixed C/
IER type.

Fully exploratory LMFA

When noise and frequency of C/IER were realistically
low, the BIC and the CHull selected the model [221]
with a proportion of 1 for all C/IER types except the
mixed type. For the mixed type, the model with five
states was chosen with a proportion of 0.9 by the BIC
but not at all by the CHull. The overall performance
decreased a bit for high noise and a lot for the com-
bination of high noise and high C/IER frequency,
especially for the non-normally distributed response
styles. The most challenging was the lower-scale pref-
erence style, where neither the BIC nor the CHull

correctly identified the model [221] in any of the
analyses.

Partially constrained LMFA

Regardless of the noise and frequency conditions, the
BIC and the CHull method identified model [22C]
only for a middle-scale preference with proportions of
0.8 or higher. For all other C/IER types, the model
selection proportion was zero or at least lower than
4. Our exploration showed that mainly models with
too many states were chosen. Additionally, neither the
BIC nor the CHull adequately detected the model
[22CCC] for the mixed C/IER type.

Sensitivity and specificity

The results for sensitivity and specificity are shown in
Table 3. Based on the model selection results for the
mixed-type conditions, we also show sensitivity and
specificity using the five-state models [22111] and
[22CCC].
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Fully exploratory LMFA

When the noise level and frequency of C/IER were
realistically low, sensitivity and specificity were nearly
1 for all types except the mixed type, which had a spe-
cificity of 0.96. Sensitivity remained only slightly lower
under conditions of low frequency and high noise.
For specificity, noise had no considerable effect.

At high frequencies of C/IER, specificity remained
similarly high, even with high noise in the data.
However, sensitivity was considerably lower for the
random and mixed types, even under low noise condi-
tions, with values of 0.7 and 0.46, respectively. This
indicates that not all observations expected to be clas-
sified as C/IER were correctly identified. Under high
noise, sensitivity values for these types dropped even
further.

Examining the sensitivity and specificity for the
mixed C/IER type using the [22111] model (and thus
the model preferred by the model selection) reveals
that both sensitivity and specificity are high for low
noise and for both low and high C/IER frequencies,
with values ranging from 0.99 to 1. For high noise,
specificity remained stable, but sensitivity declined
slightly to around 0.95.

Partially constrained LMFA

With a realistically low level of noise in the data and
a low frequency of C/IER, specificity was nearly 1 for
the middle- and lower-scale preferences, as well as for
the mixed type. However, for random responding,
specificity dropped to 0.79. Sensitivity was similarly
high (nearly 1) for the middle- and lower-scale prefer-
ence types. In contrast, sensitivity was only 0.03 for
random responding and 0.67 for the mixed type, indi-
cating that a considerable portion of C/IER observa-
tions remained unidentified.

When the noise level was high and the frequency
of C/IER low, sensitivity and specificity showed minor
changes without a clear trend. For high C/IER fre-
quency, regardless of the noise level, sensitivity and
specificity were only slightly affected, differing only by
the second decimal place compared to the results for
low C/IER frequency.

Examining the sensitivity and specificity for the
mixed C/IER type using the [22CCC] model revealed
consistently low performance across all noise levels
and C/IER frequencies. The highest sensitivity and
specificity values were 0.79 and 0.86, respectively,
under conditions of low noise and low C/IER
frequency.

Interpretability fully exploratory LMFA

Figure 4 shows the loadings in proportion to the
unique variances as well as the intercepts for example
data of each of the three C/IER type conditions. It
can be seen that all parameter estimates are very com-
parable in size across the 20 items within one C/IER
type. For all three types, the loadings fall around zero.
For the middle and lower-scale preference types,
unique variances are small compared to the random
type. This occurs because individuals predominantly
respond within a narrow range on the scale rather
than utilizing its full range with scale preferences. The
intercepts are approximately 5 for both middle-scale
preference and random types. However, for the lower-
scale preference type, the intercepts are lower due to
most ratings being concentrated toward the lower end
of the scale.

In attentive states, where items clearly measure the
underlying construct(s), loadings would be consider-
ably higher than zero and unique variances would be
relatively small. The most obvious differences in the
parameters of careless responses are, therefore, the
small loadings across all three types and the high
unique variances in the random type.

Conclusions and recommendations

For the fully exploratory LMFA, both model selection
and classification of observations can be reliably per-
formed for low and thus realistic amounts of noise
and C/IER frequency. However, it should be noted
that the CHull method is unreliable for mixed-type C/
IER, indicating that the CHull method should comple-
ment rather than replace the BIC. For high C/IER
amounts and high noise, model selection performance
varies depending on the C/IER type, and if the correct
model is chosen, for random C/IER, not all observa-
tions that should be flagged as C/IER are caught as
such. However, this is not too concerning, since the
high amount of noise and the high C/IER frequency
employed in this study are unrealistic in practice.

For the partially constrained LMFA, neither model
selection nor classification can be reliably performed,
even when noise and C/IER frequency are realistically
low. Thus, even though partially constrained models
may seem appealing from a theoretical point of view,
we advise avoiding them. It is important to note that
this advice pertains specifically to the scenario
explored in this paper, where accommodating poten-
tial non-invariance in attentive models involves per-
mitting multiple attentive states that are obtained
using exploratory factor analyses. In cases where a
fully confirmatory model is employed, featuring one
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Figure 4. Distribution of loadings and unique variances (upper row) and intercepts (lower row) for three example datasets with
generated middle-scale preference, lower-scale preference, and random responding, respectively. The results for the mixed C/IER
type were omitted because the BIC would select one state per type and not just one in which all types are collapsed. Note that
the bar charts were indistinguishable for the low and high frequency conditions and for the low and high noise conditions.
Therefore, only the values for low frequency and low noise conditions are depicted.

attentive and one C/IER state, model selection is
unnecessary, and studies demonstrated robust per-
formance of the constraints in terms of sensitivity and
specificity (Kam & Cheung, 2024; Vogelsmeier,
Uglanova, et al., 2024).

Regarding interpretability, the C/IER states in the
fully exploratory LMFA are clearly distinguishable due
to their low loadings under the types of C/IER consid-
ered in the simulation study. Additionally, the random
style is characterized by high unique variances. For
real data, the patterns might be less obvious than in
this simulation study. Therefore, in addition to visual
inspection, we recommend including external varia-
bles, such as inattentiveness checks or response time,
to further validate these states (for a detailed discus-
sion on this, see Vogelsmeier, 2022).

Discussion

Intensive longitudinal data collection can be burden-
some for the participants, potentially resulting in

careless responding such as random responding.
Besides changes in attentiveness, changes in how
items are interpreted can occur over time, leading to
violations of measurement invariance. Recently, a
promising mixture model (fully confirmatory latent
Markov factor analysis, Vogelsmeier, Uglanova, et al.,
2024) was presented to identify careless responding in
ILD. However, measurement invariance is a key
assumption for this new method. If this assumption is
violated, its effectiveness in identifying careless
responding is compromised. In this study, we eval-
uated two variants of the mixture modeling approach
LMFA for distinguishing between careless and atten-
tive responding in the presence of non-invariance of
the attentive responses.

The first variant is a fully exploratory LMFA model
(Vogelsmeier, Vermunt, van Roekel, et al, 2019),
which was originally developed to detect any changes
in measurement models and evaluated for detecting
changes in item interpretation. Our simulation study
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indicated that the model is also a reliable tool for
detecting changes in different types of careless
responding in addition to changes in attentive
responding. Identifying whether components capture
attentive or careless responding can be easily done
using visual inspection of the detected mixture
components.

The second variant differs from the fully explora-
tory LMFA model in that only the attentive mixture
components are evaluated in an exploratory fashion,
while the careless components are determined in
advance using model constraints. These constraints
are conceptually similar to those in the fully confirma-
tory LMFA model (Vogelsmeier, Uglanova, et al,
2024). Theoretically, the constraints in this partially
confirmatory LMFA should aid in identifying careless
components without the need for visual inspection.
However, the model proved ineffective. It failed to
correctly identify the complexities regarding the num-
ber of mixture components and factors, and it did not
accurately classify observations even when the correct
model was used. In the following, we outline a pos-
sible reason that may have contributed to the poor
performance.

Interestingly, when using visual inspection to inves-
tigate the different types of careless responding after
applying the fully exploratory LMFA, it was observed
that the loadings for all types of careless responding
employed in the study (random responding and scale
preferences) had values around zero. In contrast,
based on previous research (Arias et al., 2020; Kam &
Cheung, 2024; Vogelsmeier, Uglanova, et al, 2024),
the constraints for the same parameters were set to 1
in the partially confirmatory LMFA model. The use of
Is as constraints was motivated by the idea that scale
preferences, if present, apply equally to all items and
can be captured using a single latent preference factor.
However, the discrepancy between the loadings in the
fully exploratory LMFA and the constraints applied in
the partially constrained LMFA raises the question of
whether the constraints used are the most appropriate.
One reason for this discrepancy is likely that the fac-
tor model constraints were tested for Likert-type data
(which were assumed to be continuous but are strictly
ordinal) rather than for continuous data as measured
with a VAS, as employed in this study. With a Likert
scale (e.g., 1-7), it is reasonable to assume that an
individual rates all items with 5 if this is the category
preference. With a VAS scale, it is practically very
unlikely to always give the same rating (unless partici-
pants intentionally put effort into sliding the scale
handle to the exact same position, which contradicts

the definition of C/IER). It is more likely that individ-
uals will score, for example, somewhere “around” 75:
89 on the first item, 69 on the second, and 90 on the
third. This explains why the loadings are closer to
zero rather than one in our continuous data compared
to what might be observed with Likert-type data.
Therefore, in future research, other constraints should
be investigated for continuous data and clear guide-
lines on model constraints for both Likert type data
and continuous data should formulated. Nevertheless,
also note that the scale preference condition in our
simulation study may not have been as skewed as one
would expect with strong scale preferences. Choosing
a slightly more extreme distribution might have led to
better performance results, at least for this type of
careless responding.

It is also plausible that employing varying con-
straints for different latent C/IER states tailored to dif-
ferent response styles could optimize performance in
the partially constrained LMFA. Nevertheless, this
introduces added complexity to the already intricate
model selection and raises the question of whether
this method would still be a viable alternative to the
simpler and well-performing fully exploratory LMFA.

A related limitation of this study is that the C/IER
types (i.e., scale preferences and random responding)
were informed by prior studies for cross-sectional
data (Meade & Craig, 2012; Roman et al, 2024;
Schroeders et al., 2020; van Laar & Braeken, 2022).
However, there remains uncertainty regarding the spe-
cific behaviors of participants who respond carelessly
in ESM studies. To address this gap, further qualita-
tive research or mixed-methods approaches are neces-
sary to gain a deeper understanding of the nature of
careless responses in ESM studies in the context of
both Likert-type scales and continuous slider scales.

Another limitation is that none of the LMFA ver-
sions is applicable if the ESM data contain only sin-
gle-indicator measures. For these data, researchers
could use the approach by Ulitzsch, Nestler, et al.
(2024), which leverages times spent on screens of elec-
tronically administered ESM studies and is based on
theoretical assumptions about how much time
respondents spend on items if they pay attention and
how this evolves over time. For attentive screen times,
the model assumes an exponential decay process that
accounts for a potential decrease in screen times stem-
ming from individuals who have become accustomed
to the ESM assessment procedure and the items. In
contrast, inattentive screen times are assumed to fluc-
tuate randomly and typically exhibit shorter durations
on average compared to the screen times of attentive



respondents. The model permits individuals to switch
between attentive and careless responding over time.
The model can be enhanced by incorporating covari-
ates at both the individual and occasion levels.
Because the model solely relies on screen time infor-
mation, it is well-suited for single-indicator scales.
Note, however, that the model formulation is based
on strict requirements for ESM data collection. For
example, the approach cannot be used if the question-
naires in the morning and evening are longer than the
other questionnaires of the day. Likewise, it is not yet
clear how to handle commonly employed branching
designs (Ulitzsch, Viechtbauer, et al., 2024). In add-
ition, the approach relied on strong (yet not validated)
assumptions and requirements concerning screen time
distributions, violations of which are likely to cause
estimation issues (Ulitzsch, Nestler, et al., 2024;
Ulitzsch, Viechtbauer, et al., 2024).

Furthermore, all LMFA versions studied assume C/
IER to be stable at a given measurement occasion,
allowing for respondents to transition between differ-
ent response behaviors only across
Especially for lengthy questionnaires, this assumption
may not hold, and one can easily imagine a respond-
ent starting attentively when responding to the first
couple of questions while being inattentive on those
administered at the end of the questionnaire. While
mixture IRT and factor models exist that accommo-
date such behavior (Roman et al., 2024; Ulitzsch,
Yildirim-Erbasli, et al., 2022), their integration with
any of the LMFA approaches is not straightforward
and would result in a highly complex model compris-
ing mixtures of mixtures.

In addition to the limitations discussed, an impor-
tant contribution of this study is the demonstration of
the flexibility of the original exploratory LMFA. This
study illustrates that LMFA is well suited to detect
changes in measurement models, even in complex sce-
narios with response behavior that manifests in non-
normal distributions inherent to some types of careless
responding. Although assumptions about the (multi-
variate) normal distribution are made in LMFA, their
violations have not been investigated. The results of this
study suggest that such violations at least do not ser-
iously affect the classification performance of LMFA,
although this should be further investigated in future
studies tailored to distribution violations of the atten-
tive models.

As a final note, we would like to highlight that if
researchers have strong assumptions about the type of
measurement models between which individuals
change, researchers can of course also specify two or

occasions.
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more distinct confirmatory models in line with these
assumptions instead of applying the fully exploratory
LMFA. For instance, the item “being concerned” is
known to measure negative as well as positive inter-
personal emotions depending on the context
(Vogelsmeier, Vermunt, Biilow, et al., 2023), which
can be translated into two measurement models with
the item having different item-construct relationships
(i.e., loadings in a factor analysis or IRT model).
Specifically, “being concerned” may load either on a
positive interpersonal emotions factor or on a negative
interpersonal emotions factor. However, it is often not
known in advance what the attentive measurement
model(s) look like and how many there are because
the scales in ILD have not received the same degree
of research attention as in cross-sectional research yet
(Vogelsmeier, Jongerling, et al., 2024), and because
the measurement of constructs over time is inherently
more variable than the measurement used for collect-
ing cross-sectional data. A fully confirmatory
approach is, therefore, usually not feasible and was
therefore not further considered in this paper.
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