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ABSTRACT 
Intensive longitudinal data (ILD) collection methods like experience sampling methodology 
can place significant burdens on participants, potentially resulting in careless responding, 
such as random responding. Such behavior can undermine the validity of any inferences 
drawn from the data if not properly identified and addressed. Recently, a confirmatory mix
ture model (here referred to as fully constrained latent Markov factor analysis, LMFA) has 
been introduced as a promising solution to detect careless responding in ILD. However, this 
method relies on the key assumption of measurement invariance of the attentive responses, 
which is easily violated due to shifts in how participants interpret items. If the assumption is 
violated, the ability of the fully constrained LMFA to accurately identify careless responding 
is compromised. In this study, we evaluated two more flexible variants of LMFA—fully 
exploratory LMFA and partially constrained LMFA—to distinguish between careless and 
attentive responding in the presence of non-invariant attentive responses. Simulation results 
indicated that the fully exploratory LMFA model is an effective tool for reliably detecting 
and interpreting different types of careless responding while accounting for violations of 
measurement invariance. Conversely, the partially constrained model struggled to accurately 
detect careless responses. We end by discussing potential reasons for this.
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Introduction

Experience sampling methodology (ESM) or related 
methods like ecological momentary assessment 
(Scollon et al., 2003) are the go-to designs to gather 
intensive longitudinal data (ILD) for investigating 
(between-person variation in) within-person dynamics 
in psychological constructs. However, requiring indi
viduals to complete self-report questionnaires multiple 
times a day over several days or weeks, ESM sampling 
schemes can be perceived as burdensome. This can 
diminish individuals’ willingness or ability to respond 
attentively to the questionnaire items, leading them to 
complete the questionnaires without careful consider
ation of the content (Hasselhorn et al., 2023; Huang 
et al., 2015; Jaso et al., 2022; Ulitzsch, Nestler, et al., 

2024) at one or more occasions. Such careless and 
insufficient effort responding (C/IER, in the following 
also shortened to “careless” or “inattentive” respond
ing) may manifest as random responses or selections 
based on a preference for certain response categories 
or scale locations (e.g., choosing the middle or lower 
end of the scale). Detecting and addressing careless 
responding is crucial for ensuring accurate inferences 
about the dynamics of psychological constructs. 
Failure to identify careless responding can lead to 
biases in psychometric properties, such as factor struc
ture and reliabilities, as well as distortions in correla
tions of interest (McGrath et al., 2010).

The most promising methods for detecting careless 
responding in ILD (and also cross-sectional data)1 are 
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latent mixture modeling approaches, where latent 
classes (i.e., unobserved groups), also referred to as 
mixture components, are predefined as attentive or 
careless, drawing from theoretical expectations regard
ing the assumed data-generating processes associated 
with these response patterns. More precisely, attentive 
responses are modeled to gauge the construct(s) of 
interest using latent trait models such as confirmatory 
factor analysis models (Arias et al., 2020; Kam & 
Cheung, 2024) or item response theory (IRT) models 
(Ulitzsch, Pohl, et al., 2022; Ulitzsch, Pohl, et al., 
2023; van Laar and Braeken, 2022), whereas careless 
responses are conceptualized as independent of item 
content and the underlying construct(s) of interest. 
Instead, they are assumed and modeled to be influ
enced solely by scale preferences and/or random selec
tion (Kam & Cheung, 2024). Note that, to enhance 
classification accuracy, external information (e.g., 
response times or item characteristics such as position 
or readability) can be incorporated (Meade & Craig, 
2012; Ulitzsch, Pohl, et al., 2022; Ulitzsch, Yildirim- 
Erbasli, et al., 2022; Zhang et al., 2024). Mixture 
models employ probabilistic assignments (e.g., an 
observation can have 97% certainty of being careless). 
This (un)certainty can be taken into account in subse
quent analyses, for instance, by weighting observa
tions; for a discussion, see Ulitzsch, Domingue, et al. 
(2023; Ulitzsch, Shin, et al., 2024).

Mixture models for detecting careless responding 
in ILD have gained popularity only recently. The 
most promising one is an approach that leverages 
respondents’ responses to items measuring latent con
structs (Vogelsmeier, Uglanova, et al., 2024) because 
no external information like screen times is required. 
However, it comes with the assumption of measure
ment invariance, which is easily violated in ILD. In 
this study, we address this issue and evaluate two 
model adjustments to account for non-invariance. In 
the following sections, we begin by reviewing the 
existing mixture model designed for ILD. 
Subsequently, we explain its assumption of measure
ment invariance and why this is problematic. Finally, 
we detail the objectives of this study.

C/IER detection in ESM data

Existing mixture modeling approach and its 
assumption of invariance

Compared to cross-sectional data, ILD pose specific 
challenges for mixture modeling approaches for 
detecting careless responding because individuals can 
change between attentive and careless responding over 

time because of, for example, momentary changes in 
fatigue or (lack of) motivation (Eisele et al., 2023). 
Consequently, to accurately capture these fluctuations 
over time, classification should be conducted at a per
son-by-occasion level. Considering the demands of 
ILD, Vogelsmeier, Uglanova, et al. (2024) introduced 
a mixture model for constructs assessed with mul
tiple-indicator scales, which are well-established in 
ESM studies (Vogelsmeier, Jongerling, et al., 2024). 
The proposed model allows for unveiling the 
moments when individuals switch between careless 
and attentive responding and can identify correlates 
of transition patterns with individual and situational 
characteristics. The model offers the distinct advan
tage that it classifies observations based on response 
behavior, eliminating the need for relying on add
itional information such as screen times.2

The approach classifies observations into an atten
tive or careless mixture component based on a mix
ture IRT model, and individuals are allowed to 
transition between these mixture components over 
time, which is modeled using a latent Markov chain. 
Note that the confirmatory mixture IRT model was 
tailored to the use of ordinal data from Likert scales, 
but a conceptually similar confirmatory mixture factor 
analysis model (Kam & Cheung, 2024) can be used 
for continuous data from a visual analog scale (VAS). 
The approach extends the method latent Markov fac
tor analysis (LMFA), which was previously proposed 
to detect changes in measurement models, such as 
shifts in item interpretation (Vogelsmeier, Vermunt, 
van Roekel, et al., 2019). While the original LMFA 
was a completely exploratory method (using explora
tory factor analysis or IRT to obtain the measurement 
models), the extension relies on theory-based con
firmatory specification of these models with con
straints tailored to capture attentive versus careless 
responding. Because of the confirmatory nature, in 
the following, the extension is referred to as fully con
strained LMFA.

One limitation of this fully constrained LMFA, 
however, is the assumption of measurement invari
ance across respondents and time for the attentive 
and C/IER components of the mixture model, respect
ively. Specifically, it is assumed that all attentive 
observations have the same underlying model, as do 
all inattentive observations. Non-invariance of the 
attentive model was shown to become problematic if 
it extends beyond purely gradual changes in how well 

2In the Discussion Section, we provide a reference to a mixture modeling 
approach that relies on screen times and detail advantages and 
disadvantages.
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indicators measure the underlying constructs. 
Specifically, if qualitatively different attentive struc
tures underlie the data (i.e., configural invariance is 
violated), attentive responses can be incorrectly 
flagged as careless (Vogelsmeier, Uglanova, et al., 
2024). This is concerning because changes in the 
structure of attentive models are likely to occur in real 
ILD (Adolf et al., 2014; McNeish et al., 2021; 
Vogelsmeier, Vermunt, B€ulow, et al., 2023). For 
example, Schmitt et al. (2024) showed that individuals 
switched between multiple structurally different meas
urement models that reflected distinct granularity pat
terns between specific emotions during participation. 
Invariance violations of the inattentive observations 
have yet to be studied in detail. However, initial 
results showed that at least a mix of random respond
ing and scale preferences is well captured in one C/ 
IER state (Vogelsmeier, Uglanova, et al., 2024; 
Uglanova et al., 2025). It is therefore possible that 
other mixed types are also captured well in one state. 
Nevertheless, the two extensions that we propose in 
this article have the potential to account for invari
ance violations in both attentive and careless 
responding.

Two possible ways to account for non-invariance

Employing a fully exploratory LMFA
The first possible approach is the traditional, fully 
exploratory LMFA (Vogelsmeier, Vermunt, van 
Roekel, et al., 2019), in which neither the number of 
measurement models (i.e., the number of mixture 
model components) nor the number of constructs and 
the presence or absence of item-construct relation
ships within these class-specific measurement models 
is known. Instead of confirmatory factor analysis or 
IRT modeling, the approach uses exploratory versions 
of each framework and relies on model selection pro
cedures (e.g., the Bayesian information criterion, BIC, 
Schwarz, 1978) to identify how many mixture compo
nents and factors within these components underlie 
the data. Therefore, the method detects changes in all 
response patterns that manifest as differences in meas
urement models. Since careless responding affects 
relationships between items and constructs (e.g., ran
dom responding weakens the relationships between all 
items), it should also constitute a change in the meas
urement model (e.g., loadings should become lower). 
Therefore, fully exploratory LMFA should be able to 
detect careless responding in addition to different 
types of attentive responding. However, the fully 
exploratory LMFA has never been evaluated for its 

performance in detecting careless responding. It has 
only been assessed for detecting changes in the atten
tive model, such as changes in the interpretation of 
items (Vogelsmeier, 2022; Vogelsmeier, Vermunt, 
B€oing-Messing, et al., 2019; Vogelsmeier, Vermunt, 
van Roekel, et al., 2019; Vogelsmeier et al., 2023). The 
results cannot simply be generalized to studying care
less responding. On the one hand, the response pat
terns qualitatively differ with regard to their 
distributions. While attentive responses entail 
(approximately) multivariate normally distributed 
data, careless responses can have various distributions. 
For example, random responding manifests in a uni
form distribution, while a lower-scale preference 
entails rather skewed data. On the other hand, LMFA 
was previously shown to work particularly well in dis
tinguishing different mixture components when the 
measurement models are strong; that is, with high 
loadings and low unique variances (Vogelsmeier, 
Vermunt, B€oing-Messing, et al., 2019; Vogelsmeier, 
Vermunt, van Roekel, et al., 2019), which is not given 
for all types of careless responding, like random 
responding. The strong differences between attentive 
and careless responses may compensate for that, how
ever, because strong measurement model differences 
were shown to be detected more easily than small 
differences.

One limitation of the fully exploratory approach 
may be that the careless responding patterns can be 
manifold, each potentially resulting in a different 
component.3 For instance, scale preferences may result 
in very high factor loadings, while random responding 
may entail factor loadings of essentially zero. 
Generally, careless responses do not exhibit as clear 
patterns as those for attentive responses, making them 
harder to recognize. When all patterns are subsumed 
into a single mixture component by the fully explora
tory LMFA, model parameters may be reflective of the 
composite of behavioral patterns (e.g., loadings may 
be neither extremely high nor extremely low), such 
that the careless class may not be recognizable in 
model interpretation. When each type of behavior is 
captured by a different mixture component, interpret
ation is likely to be easier. However, whether the 
model selection procedures suggest one or multiple 
mixture components for careless responses of different 
types remains to be investigated.

3Note that the fully constrained LMFA does not distinguish between 
different C/IER types but aims to classify all types into one mixture 
component.
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Employing a partially constrained LMFA
Given the possible complexity of the post-hoc inter
pretation of careless mixture components in the fully 
exploratory LMFA, a partially constrained approach 
may be considered. In such a partially constrained 
LMFA, a confirmatory approach would be used for 
the careless responding model, applying constraints 
like those in the fully constrained LMFA, while leav
ing changes in the number and nature of the attentive 
model(s) to exploration. This way, the careless mix
ture component incorporates researchers’ theoretical 
considerations on the likely presence of careless 
response behavior and, if the specified component 
model is indeed capable of absorbing the careless 
responding patterns present in the data, may exhibit 
higher power in unveiling instances of careless 
responding than a fully exploratory approach. Further, 
this approach does not require post-hoc interpretation 
of the careless class(es). Instead of specifying only one 
careless component, one could also specify more and 
let model selection decide if one or more careless 
components are required for mixed types of careless 
responding. The performance of model selection and 
the degree to which the partially constrained LMFA 
distinguishes between attentive and careless responses 
remains to be investigated.

The present study

In this study, we compare fully exploratory and par
tially confirmatory LMFA as two competing 
approaches to distinguish between attentive and care
less responding while acknowledging that both atten
tive and careless responding behavior may change 
over time. Here, we specifically focus on continuous 
data and therefore employ mixture factor analyses in 
both variants. Both LMFA variants are promising can
didate approaches, but it remains unclear which is 
(more) recommendable. Therefore, we examine the 
performances in a simulation study with regard to (1) 
model selection, (2) classification accuracy, and, only 
for the fully exploratory LMFA, (3) interpretability. 
First, model selection pertains to how well two previ
ously evaluated model selection criteria perform in 
selecting the correct number of mixture components 
and factors within the components, which is crucial 
for any exploratory modeling approach. Furthermore, 
it will be explored whether 1 or more careless compo
nents are selected for mixed types. Second, classifica
tion accuracy pertains to the sensitivity and specificity 
of identifying observations as careless, which can be 
poor even if the correct model complexity is 

identified. Finally, interpretability pertains to how well 
the careless responding component(s) can be identi
fied as such, which is important when the careless 
component is not explicitly defined as such through 
model constraints.

In the following sections, we begin by describing 
the data structure. Subsequently, we introduce LMFA 
and detail its three variants: fully exploratory, fully 
confirmatory, and partially confirmatory. Afterward, 
we present the simulation study to investigate how 
well the exploratory and partially confirmatory LMFA 
detect careless responding while accounting for viola
tions of measurement invariances in attentive 
responses. Finally, we conclude with recommenda
tions, discuss limitations, and propose avenues for 
future research.

Method

Data structure

We consider ILD with multiple indicators that are 
assumed to measure one or more underlying psycho
logical constructs on a continuous scale. The observa
tions are nested within subjects and denoted by yijt 
with i 2 f1, :::, Ng referring to subjects, j 2 f1, :::, Jg
referring to items, and t 2 f1, :::, Tig to timepoints. 
These yijt are collected in the J � 1 vectors yit ¼

ðyi1t , yi2t , :::, yiJtÞ
0
; which themselves are collected in the 

Ti � J data matrix Yi ¼ ðy0i1, y0i2, :::, y0iTi
Þ
0 for subject i. 

The data matrices are concatenated in the dataset Y ¼
ðY01, :::, Y0NÞ

0 with 
PN

i¼1 Ti rows. As the notation indi
cates, the number of timepoints may differ across sub
jects. However, for simplicity, we omit the index i in 
Ti in the following.

Latent Markov factor analysis

The LMFA model can be conceptually divided into 
the measurement part and the transition part. The 
transition part is the same regardless of the LMFA 
variant. However, the measurement part is different 
for the fully constrained, completely exploratory, and 
partially constrained approaches. In the following, we 
first describe the measurement part and how it differs 
across the LMFA types. Subsequently, we explain the 
transition part.

Measurement part
The measurement part determines how many mixture 
components (also referred to as latent states instead of 
latent classes, as will be explained in the next section) 
underlie the data, where the mixture components 
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differ, broadly speaking, in which items measure 
which factors and how well. Figure 1 depicts an artifi
cial model with three components: two attentive 
ones—where nine items measure two and three con
structs of interest, respectively (positive affect [PA] 
and negative affect [NA] in component 1 and low 
arousal [LA] PA, LA NA, and high arousal [HA] in 
component 2)—and one careless one—which differs 
entirely from the attentive models because it measures 
scale preference rather than the constructs of interest. 
The factor models are component-specific and defined 
as (Lawley & Maxwell, 1962):

yitjsitk ¼ 1
� �

¼ mk þ Kkf itk þ eitk, (1) 

with k 2 f1, :::, Kg referring to the component. The 
component memberships are indicated via the binary 
indicators sitk: These are equal to 1 for component k 

and equal to zero for the other components. 
Specifically, sit1 ¼ 1 denotes that individual i belongs 
to component 1 at time point t. In turn, ½yitjsitk ¼ 1�
implies that the responses yit depend on the state- 
membership at time-point t. Moreover, mk and Kk 
denote the state-specific J � 1 intercept vector and the 
J � Fk loading matrix, respectively. The subject-spe
cific Fk � 1 vector f itk � MVNð0, WkÞ stores individual 
i’s factor scores at timepoint t (where Fk is the state- 
specific number of factors and Wk the state-specific 
factor (co-)variances), and eitk � MVNð0, DkÞ is the 
subject-specific J � 1 vector of residuals at timepoint 
t, where Dk contains the unique variances dkj on the 
diagonal and zeros on the off-diagonal. The mixture 
components can thus differ regarding their loadings 
Kk; intercepts mk; unique variances Dk; and factor 
covariances Wk: The three LMFA variants differ in 

Figure 1. Graphical illustration of an LMFA model with three components: two attentive components, differing in the number and 
nature of the latent factors, and one C/IER state where items measure a preference factor rather than a content factor. The three 
components and thus measurement models are depicted inside the three big circles. The straight and curved arrows around these 
circles indicate the possibility of transitioning between the components at two subsequent measurement occasions and the possi
bility of staying in a component, respectively. In each circle, the observed items are indicated as squared boxes and the latent fac
tors as circles. The presence of the arrows in between the items and factors indicates that items measure the latent factors. The 
first five items y1 − y5 are positive affect (PA) items (of which the first three are considered low-arousal (LA) emotions) and the 
last four items y6 − y9 are negative affect (NA) items (of which the first one is considered a high-arousal (HA) emotion). Individuals 
in the “Attentive 1” measurement model distinguish only between the valence of the emotions. Individuals in “Attentive 2” meas
urement model distinguish between the valence of the low-arousal emotions and between low and high-arousal emotions.
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how these parameters are constrained (including the 
number of components and factors) and, in turn, 
whether exploratory or confirmatory factor analysis is 
used within the mixture components. Below, we first 
introduce the fully exploratory and constrained 
LMFAs before explaining the partially constrained 
LMFA. A summary of the three versions is provided 
in Table 1.

Fully exploratory LMFA
The fully exploratory LMFA employs exploratory fac
tor analysis within each mixture component. All 
parameters in Equation 1 are freely estimated. Only 
the factor variances in Wk are restricted to one to set 
a scale of the latent factors. Rotational freedom is 
dealt with using criteria to optimize the simple struc
ture of the factor loadings (e.g., oblimin, Clarkson & 
Jennrich, 1988). Model selection should determine the 
number of components and factors within these com
ponents that best fit the data. This entails that 
researchers define and estimate various plausible mod
els and choose the best one based on model selection 
criteria and interpretability (details will be provided in 
the model selection paragraph in the Measurement 
Part Section). For example, considering the model in 
Figure 1, the exploratory analysis would indicate that 
there are three mixture components and thus meas
urement models that differ in the number of the fac
tors. Component 1 has two factors with the first five 
items having considerable loadings on factor 1 and 
the last four having considerable loadings on the 
second factor. If the researcher knows that the items 
1–5 are positive emotions and items 6–9 negative 
ones, they could give the labels PA and NA. Likewise, 
researchers would draw on their subject-matter 
expertise to interpret components 2 and 3. Note that 
whether one or more components refer to careless 
responding also has to be determined using post-hoc 
interpretation. The ease of this will be explored as 
part of the simulation study.

Fully constrained LMFA
For the fully constrained LMFA, the number of com
ponents and the number of factors per component are 
defined by the researcher in advance, based on theory, 
and the measurement models are obtained using con
firmatory factor analysis. In the following, we consider 
the typical case with a single attentive and a single 
careless model. However, as explained in the introduc
tion, it is possible to specify more attentive and/or C/ 
IER components to account for known dynamics in 
item interpretation and/or for more nuances of 

careless responding. The attentive component requires 
the specification of a design matrix, indicating which 
items measure which constructs. There is no more 
rotational freedom in confirmatory factor analysis. 
However, the scale still has to be set, for example by 
fixing the factor variances in Wk equal to one.

In the C/IER component, it is assumed that 
observed scores are not reflective of the to-be-meas
ured substantive constructs for careless individuals. 
Instead, it is assumed that item scores are driven by 
mere scale preferences that are equal regardless of the 
item. This translates into a confirmatory factor model 
with a single preference factor where the loadings are 
all restricted to 1, even if some items are negatively 
worded as individuals are assumed to pay no attention 
to the content. Additionally, intercepts and unique 
variances are constrained. There are multiple sugges
tions on how to constrain them, ranging from more 
restrictive to more flexible ones. Restricting the inter
cepts and variances to equality across items, respect
ively, correspond most closely to the constraints in 
the conceptually similar IRT model proposed and 
evaluated by Uglanova et al. (2025) for cross-sectional 
data in general and by Vogelsmeier, Uglanova, et al. 
(2024) for ESM data within LMFA in particular. 
Although specifically tailored to scale preferences, 
these constraints were shown to be flexible enough to 
distinguish between attentive and careless responding 
when some individuals have scale preferences and 
others exhibit random responding; that is, when the 
C/IER component is misspecified. For other, (mostly) 
more restrictive constraints, see Kam and Cheung 
(2024).

Partially constrained LMFA
In the partially constrained LMFA, the researcher dis
tinguishes in advance between attentive and C/IER 
components. The parameters of the attentive compo
nent(s) are still determined using exploratory factor 
analysis. This means that only the factor variances in 
Wk are fixed to one and rotation criteria are applied, 
as in all components of the fully exploratory LMFA. 
For the C/IER component(s), however, confirmatory 
factor analysis is performed with constraints identical 
to those of the C/IER component(s) in the fully con
strained LMFA. It should be noted that model selec
tion is still required to choose the best model, as it is 
not known in advance how many attentive and C/IER 
components underlie the data. As already mentioned 
before, it is also interesting to see if model selection 
would choose more than one C/IER component for 
mixed C/IER types and wether using one or more 
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components matters for how well the method distin
guishes between attentive and careless responding.

Model selection
Two selection criteria were proposed for mixture factor 
analysis in general (Bulteel et al., 2013) and LMFA in 
particular (Vogelsmeier, Vermunt, & De Roover, 2023; 
Vogelsmeier, Vermunt, van Roekel, et al., 2019): the 
BIC (Schwarz, 1978), which balances model fit and par
simony by penalizing models with more parameters, 
and the convex hull (CHull) criterion (Ceulemans & 
Kiers, 2006; Wilderjans et al., 2013), which is an auto
mated scree test in which models at the higher bound 
of the CHull in a “loglikelihood versus number of 
parameters” plot are identified. Subsequently, the best 
model is selected by pinpointing where the fit improve
ment levels off with increasing numbers of parameters. 
For more details, we refer to Vogelsmeier, Vermunt, 
and De Roover (2023). In this study, both criteria will 
be evaluated for the fully exploratory and the partially 
constrained LMFA. It is important to note that, for 
empirical data analyses, the final decision should always 
consider the interpretability of the model.

Transition part
The transition part determines the probabilities of tran
sitioning between different mixture components. The 
possibility to either transition to another state or stay in 
the same state are depicted using the black arrows in 
Figure 1. Because of the possibility of switching compo
nents, the components are called “states” in LMFA (and 
in Markov modeling in general). However, they are just 
latent classes through which individuals transition over 
time. It is important to note that not all individuals 
have to go through all states. Some may be in the first 
attentive state throughout participation, others may 
transition only between the attentive states, and others 
between the second attentive state and the careless one. 
Individual- and time-point-specific covariates can be 
incorporated into the transition model, allowing to 
investigate correlates of transition patterns.

The transition model is obtained via a latent 
Markov model (LMM, e.g., Bartolucci et al., 2014). 
Specifically, it provides the probabilities of starting in 
a state (i.e., the initial probabilities) and the probabil
ities of transitioning to (or staying in) a state. The 
transition model for subject i is:

pðYi, SijZiÞ ¼ pðyi1, :::, yiT , si1, :::, siT jzi1, :::, ziTÞ

¼ pðsi1jzi1Þ
zfflfflfflfflffl}|fflfflfflfflffl{

initial state probabilities
YT

t¼2
pjtiðsitjsit−1, zitÞ
zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{

transition probabilities
YT

t¼1
f ðyitjsitÞ
zfflfflfflffl}|fflfflfflffl{

response probabilities
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The K � 1 vectors sit ¼ ðsit1, :::, sitKÞ
0 contain the binary 

indicators sitk and the U � 1 vectors zit ¼ ðzit1, :::, zitUÞ
0

comprise the covariate values zitu; where u ¼ 1, :::, U 
denotes the subject- and timepoint-specific covariates. 
The latter can influence the initial or transition probabil
ities as described below. The state-specific response proba
bilities f ðyitjsitk ¼ 1Þ indicate the probabilities for the 
response patterns at timepoint t given the state member
ship at that timepoint, si1k ¼ 1: These probabilities 
depend on the K state-specific models.

The initial state probabilities indicate the probabil
ities of starting in state k at timepoint t ¼ 1 and can 
depend on covariate values at the first timepoint, zi1:

The probabilities pk ¼ pðsi1k ¼ 1jzi1Þ with 
PK

k¼1 pk ¼

1 are collected in a K � 1 vector p: The initial state 
probabilities are typically modeled via a logit model to 
prevent parameter range restrictions:

log
pðsi1k ¼ 1jzi1Þ

pðsi11 ¼ 1jzi1Þ

� �

¼ b0k þ b0kzit¼1: (3) 

Here, b0k are the initial state intercepts and the vec
tors b0k ¼ ðbk, Zi11

, :::, bk, Zi1U
Þ
0 are the initial state slopes 

that quantify the effect of the covariates on the initial 
state memberships for k > 1 because k ¼ 1 is the ref
erence category.

The transition probabilities indicate the probabil
ities of being in state k at timepoint t > 1 conditional 
on state l 2 f1, :::, Kg at t − 1; and, thus, the probabil
ities of transitioning between states (or staying in the 
same one). There are two types of LMMs: The regular 
so-called discrete-time (DT-)LMM assumes the inter
vals between measurements, dti; to be equal, while 
these intervals are allowed to differ across timepoints 
and individuals in the so-called continuous-time (CT-) 
LMM (B€ockenholt, 2005; Jackson & Sharples, 2002; 
Vogelsmeier, Vermunt, B€oing-Messing, et al., 2019). 
In this article, only the CT-LMM is used and 
described because differences in intervals are more 
realistic in ESM. Also note that the CT-LMM general
izes to the DT-LMM if intervals are equal (for a 
detailed description of the DT-LMM, we refer to 
Vogelsmeier, Vermunt, van Roekel, et al. (2019).

The transition probabilities in the CT-LMM, 
pdti, lk ¼ pdtiðsitk ¼ 1jsit−1, l ¼ 1, zitÞ; are collected in the 
K � K matrix Pdti with row sums 

PK
k¼1 pdti, lk ¼ 1: The 

transition probabilities Pdti depend on the interval dti 
and the “transition intensity matrix” Q. The transition 
intensities (or rates) qlk define the transitions from the 
origin state l to the destination state k per a very small 
time unit and are collected in the K � K matrix Q. 
The intensities for the off-diagonal elements in the 
matrix Q (i.e., k 6¼ l) are

qlk ¼ lim
d!0

pðsitk ¼ 1jsit−d, l ¼ 1, zitÞ

d

� �

: (4) 

The diagonal elements are equal to −
P

k6¼l qlk (Cox & 
Miller, 1965). Taking the matrix exponential of Q�
dti generates the transition probabilities Pdti : This 
implies that the probability of transitioning to another 
state instead of staying in a state on two consecutive 
measurement occasions (i.e., k 6¼ l) increases for lon
ger intervals. As can be seen from Equation (4), the 
transition intensities (and, hence, the transition proba
bilities) can depend on covariates zit: Typically, a log- 
linear model for the transition intensities is employed 
(again for k 6¼ l):

log qlk ¼ c0lk þ c0lkzit: (5) 

Here, c0lk are the transition intercepts and c0lk ¼

ðclk, Zi11
, :::, clk, Zi1U

Þ
0

the transition slopes that quantify 
the covariate effects on transitioning compared to 
staying.

It is important to note that each individual- and 
timepoint-specific observation is assigned to the states 
with probabilities that sum to 1 across all states. 
These probabilistic assignments reflect the certainty of 
an observation belonging to a particular state, such as 
a C/IER state. These posterior state-membership prob
abilities can be utilized in subsequent analyses to 
reduce the influence of careless responses on the 
results and thus conclusions. For instance, observa
tions with low probabilities of belonging to an atten
tive state can be given less weight (see Ulitzsch, 
Domingue, et al., 2023; Ulitzsch, Shin, et al., 2024).

Observations can also be assigned to the state with 
the highest posterior state-membership probability 
(called modal assignment). This allows researchers to 
further explore (individual) dynamics in state mem
berships. Consider, for instance, the illustration in 
Figure 2 (again, using the example with two attentive 
and one C/IER state from before). The figure depicts 
how modal state assignments change over time (in 
terms of overall state proportions) and how individu
als change between the three states. In this example, it 
can be seen that the probability of staying in any of 
the states is rather large. Additionally, looking at the 
C/IER state memberships, it is apparent that careless 
responding is less prominent at the beginning of par
ticipation but becomes more pronounced toward the 
end. The covariate participation length could be inter
esting to include here. Note that one may also look at 
individual transition plots for more nuanced insights 
into transitions of specific participants (for examples, 
see Vogelsmeier, Vermunt, & De Roover, 2023).
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Note that the LMM can be easily extended by 
allowing for person-specific initial and transition 
probabilities (Vogelsmeier, Vermunt, van Roekel, 
et al., 2019), or by allowing for heterogeneity across 
groups of individuals. In the latter, the probabilities 
would depend on unobserved group memberships 
estimated using a mixture LMM (Crayen et al., 2017; 
Vogelsmeier, Vermunt, B€ulow, et al., 2023). This 
extension would be interesting to detect between- 
person differences in transition patterns. Some indi
viduals may be in an attentive state most of the 
time, others may often switch between the attentive 
and C/IER states, and others may start in an atten
tive state and, once they have moved toward a C/ 
IER state, stay there until the end of their participa
tion (this would make the C/IER state an 
“absorbing” state because individuals do not leave 
this state anymore). However, although such exten
sions are substantively interesting and possibly 
necessary for real data, they are not relevant for 
showing whether the fully exploratory and partially 
constrained LMFA versions can correctly disentangle 
attentive from C/IER responses because C/IER only 

affect the measurement part and not the transition 
part. For simplicity, in this study, we therefore focus 
on the regular LMM to capture transitions.

Estimation

Estimation can be performed using a one-step full 
information maximum likelihood estimation 
(Vogelsmeier, Vermunt, B€oing-Messing, et al., 2019; 
Vogelsmeier, Vermunt, van Roekel, et al., 2019) or a 
step-wise approach that splits the estimation into the 
measurement and transition part. The step-wise 
approach is more efficient when including covariates 
in the transition model (for details and a comparison 
between the two approaches, see Vogelsmeier et al., 
2023). Both estimations can be performed using 
Latent GOLD syntax (Vermunt, 2008). The three-step 
approach is also available in R (see package lmfa 
Vogelsmeier and De Roover, 2021), but estimation is 
considerably slower than in Latent GOLD. Both 
Latent GOLD and the R package use a multi-start 
procedure to reduce the chance of finding local 
optima (for details, see Vogelsmeier, Vermunt, van 

Figure 2. Example of transitions between states for 100 individuals and 100 timepoints. The left part depicts how state member
ships change over the first four occasions and the right part depicts how state memberships change over the last four occasions. 
The membership distributions for the 8 visible time points are indicated by proportions. The slightly transparent colors between 
the time points show how the membership proportions shift from one timepoint to the next. For example, of 30% in the C/IER 
state at timepoint 1, half the individuals (i.e.15 of the total sample) stay in that state.
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Roekel, et al., 2019; Vogelsmeier, Vermunt, & De 
Roover, 2023). For the simulation study, we use the 
one-step estimation as covariates are not part of this 
study and we use Latent GOLD for computational 
efficiency. A technical description of the specific algo
rithm (an Expectation Maximization algorithm com
bined with a forward-backward algorithm), including 
information about the starting procedure and conver
gence criteria, can be found in the Appendix of 
Vogelsmeier, Vermunt, B€oing-Messing, et al. (2019).

Simulation study

We conducted a simulation study to investigate how 
reliably the fully exploratory and the partially con
strained LMFA capture careless responding in the 
presence of non-invariance of the attentive model. 
Throughout the simulation, we employed a data-gen
erating model with two attentive states that differed in 
their loading pattern and one C/IER state (see Design 
and Procedure Section).

The simulation study had two aims in particular. 
The first aim was to evaluate how well LMFA, with 
and without constraints, can detect the true model 
among many candidate models using two previously 
proposed model selection criteria. More specifically, 
we investigated how often the BIC and the CHull 
method chose the true model without constraints 
among a set of candidate models without constraints 
(when using fully exploratory LMFA) and how often 
the two criteria chose the true model with con
straints among a set of candidate models with con
straints (when using partially constrained LMFA).4

The second aim was to inspect the sensitivity (i.e., 
the proportion of correctly identifying C/IER obser
vations) and specificity (i.e., the proportion of cor
rectly identifying attentive observations), given the 
modal assignment from the correctly specified 
models.5

We integrated both aims into one simulation study, 
in which we manipulated three factors (in a full fac
torial design) that possibly influence the model selec
tion as well as sensitivity and specificity: (1) noise in 

the attentive responses (with the two levels low and 
high), (2) type of C/IER (with the four levels: middle 
scale preference, lower-end scale preference, random, 
and mixed), and (3) frequency of C/IER (with the two 
levels low and high). To keep the computation time of 
the simulation study feasible, we omitted the manipu
lation of factors that have been studied in previous 
articles (e.g., sample size, different complexities of the 
attentive models, and differences across attentive 
states). Next to the two primary purposes of the simu
lation study, we also explored the interpretability of 
the C/IER states for the four different types of simu
lated C/IER.

Design and procedure

Data were generated according to the LMFA model 
(see Equation 2). Concerning the sampling protocol, 
the number of individuals was 45, and the number of 
measurement occasions 84 (mimicking 14 participa
tion days with six occasions per day), which is a typ
ical ESM setup according to a recent meta-analysis 
(Wrzus & Neubauer, 2023), resulting in a total of 
3,780 observations.6 To generate data with realistic 
intervals between measurement occasions, a participa
tion day went from 9 am to 9 pm, with the night 
interval thus being 12 h and the day interval (i.e., the 
interval between two measurement occasions within a 
day) being 2.4 h.

Next, concerning the state-specific measurement 
models in the LMFA model, we generated data from 
two attentive states and one C/IER state. The num
ber of items was equal to 20, and the scores on 
these items had a continuous range that fell between 
the score 1 and 10 (with small differences in the 
exact range, depending on different types of 
response patterns generated), representing continu
ous responses on a VAS. The two attentive states 
contained two latent factors, respectively. In both of 
these states, ten items had loadings on the first fac
tor and ten on the second. Thus, both attentive 
states contained factor models with binary simple 
structures, which were also employed in previous 
LMFA simulation studies (Vogelsmeier, Vermunt, 
B€oing-Messing, et al., 2019; Vogelsmeier, Vermunt, 
van Roekel, et al., 2019; Vogelsmeier et al., 2023) 

4Note that we looked at the models with and without constraints 
separately, because investigating model selection on all models combined 
would only make sense if model selection works well for both fully 
exploratory and partially constrained LMFA separately, which was not the 
case, as will be described in the result section.
5Note that we do not examine parameter recovery of the attentive 
models, as prior studies have shown that it is very good if the 
observations are correctly classified (Vogelsmeier, Vermunt, B€oing- 
Messing, et al., 2019; Vogelsmeier, Vermunt, van Roekel, et al., 2019; 
Vogelsmeier et al., 2023). Repeating this investigation would add length 
and distract from our novel focus on distinguishing attentive from 
careless observations.

6To retain feasibility of the simulation study design, we did not vary the 
sample size because it has been studied extensively for LMFA before 
(Vogelsmeier, Vermunt, van Roekel, et al., 2019), and it was shown that 
sample size affects classification performance only up to a certain degree, 
for example, for a model with three states, performance would not 
further improve when increasing sample size beyond 1200 observations, 
which is lower than typically observed in ESM data.
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because they are very common in psychological 
research, for example, when studying positive and/ 
or negative affect. The value of all nonzero loadings 
and all unique variances depended on the noise con
dition. For the low noise condition, the loadings 
were equal to 0.89, and the unique variances were 
equal to 0.2. For the high noise condition, these 
values were equal to 0.77 and 0.4, respectively. As a 
result, all item variances were equal to 1 in both 

conditions. We used the same conditions as 
employed in previous LMFA simulation studies 
(Vogelsmeier, Vermunt, B€oing-Messing, et al., 2019; 
Vogelsmeier, Vermunt, van Roekel, et al., 2019; 

Vogelsmeier et al., 2023) because the difference in 
these studies was big enough to show for how much 
noise LMFA breaks down in correctly recovering 
state memberships. The two attentive states differed 
regarding four items: Two of the items with loadings 
on factor 1 in the first state loaded on factor 2 in 
the second state and vice versa. The resulting load
ing matrices for the two attentive states were thus:
with “�” indicating loadings of 0.89 (for the low 

noise condition) and 0.77 (for the high noise condi
tion) and the grey color highlighting the loadings that 
differ across the two attentive states. For both atten
tive states and all items, the intercepts were equal to 

Figure 3. The four types of C/IER employed in the simulation study.

K1 ¼
� 0 0 0 0 0 0 0 0 0 0 � � � � � � � � �

0 � � � � � � � � � � 0 0 0 0 0 0 0 0 0

� �0

K2 ¼
0 � 0 0 0 0 0 0 0 0 � 0 � � � � � � � �

� 0 � � � � � � � � 0 � 0 0 0 0 0 0 0 0

� �0

, 
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5, which is the middle value of the score range. 
Furthermore, the factor means for both attentive 
states were zero, and the factor variances per attentive 
state were 1.7 The observations in the C/IER state 
were not drawn from factor models but from three 
distributions that mimic different C/IER behaviors on 
a continuous VAS. The C/IER types are illustrated in 
Figure 3. In the “random” condition, individuals ran
domly select a score between 1 and 10. The observa
tions were drawn from a uniform distribution ranging 
from 1 to 10. For a “middle scale preference,” individ
uals tend to select the middle score with some vari
ation around it. The observations were drawn from a 
normal distribution with a mean of 5 and a standard 
deviation of 1. In the “lower-end scale preference,” 
individuals tend to select a score on the lower end 
with some variation around it. The observations were 
drawn from an inverse Gaussian distribution with a 
mean of 3 and a shape parameter of 20. For the 
mixed condition, all three types of C/IER were equally 
often applied: The observations for respectively one- 
third of the 45 individuals were drawn from each of 
the three distributions described above.8

The transitions between the three latent states were 
manipulated via the LMM, which also determined the 
frequency of the two attentive and the C/IER states. In 
the “high frequency” conditions, the latent Markov 
chain was drawn from transition probabilities and initial 
state probabilities that lead to an equal amount of the 
three states. In the “low frequency” conditions, the latent 
Markov chain was drawn from probabilities that resulted 
in 10% C/IER states and, respectively, 45% of the two 
attentive states. Equal state sizes were chosen as a 

baseline, but unequal sizes are more realistic, as in the 
few studies that have investigated C/IER, only 5 to 10% 
of the observations were flagged as C/IER (e.g., Ulitzsch, 
Viechtbauer, et al., 2024; Vogelsmeier, Uglanova, et al., 
2024)9 Specifically, the probabilities for a 2.4-h interval 
(i.e., the interval between two measurement occasions 
within a day) were equal to

Phighfrequency ¼

0:80 0:10 0:10
0:10 0:80 0:10
0:10 0:10 0:80

0

B
@

1

C
Aand

Plowfrequency ¼

0:79 0:17 0:04
0:17 0:79 0:04
0:17 0:17 0:66

0

B
@

1

C
A:

The initial state probabilities were equal to 
phighfrequency ¼ ð 0:33 0:33 0:33 Þ and plowfrequency ¼

ð 0:45 0:45 0:10 Þ for all individuals. To check how 
the manipulation played out, we examined the distri
bution of states across all generated datasets. The 
numbers precisely matched the intended proportions. 
Note that we disregard between-person differences for 
both initial and transition probabilities because mak
ing the transition model more complex unnecessarily 
complicates the model for the purpose of this simula
tion study (i.e., investigating different ways of estimat
ing the measurement model), as explained before in 
the Transition Part Section.

For each condition, we sampled 100 datasets in the 
open-source program R (R Core Team, 2021) using all 
specifications and parameter values explained above. 
First, per person, we sampled the initial state member
ship using the initial-state probabilities that differed 
across the two frequency conditions (i.e., low vs. high). 
Subsequently, for each person, we sampled a random 
sequence of states using the transition probabilities that 
also depended on the frequency condition. Based on the 
resulting state memberships in the latent Markov chains, 
for the two attentive states, we drew observations from 
factor models with a fixed number of factors, fixed pat
terns of nonzero loadings, intercepts, factor means, and 
factor variances, but with the values for nonzero load
ings and unique variances being different for the two 
noise conditions (i.e., low vs. high). For the C/IER state, 
we drew observations based on the four condition-spe
cific C/IER distributions (i.e., uniform, normal, inverse 
Gaussian, or mixed distributions for random, middle- 
scale preference, lower-scale preference, and mixed types, 

7To retain feasibility of the simulation study design, regarding the 
attentive models, only the noise in the data was varied because this likely 
affects how well some types of careless responding are distinguished 
from attentive responding. The number of states, factor 
overdetermination (manipulated by changing the number of factors for a 
fixed number of items), and between-state differences of the attentive 
models (manipulated by employing different degrees of non-invariance) 
were previously studied: Only the between-state difference affected 
classification performance, but even the most challenging one, where 
only loadings differ across states (which is also used for the current 
study), still showed good classification performance (Vogelsmeier, 
Vermunt, B€oing-Messing, et al., 2019; Vogelsmeier, Vermunt, van Roekel, 
et al., 2019). Note that the number of items is kept constant for the 
following reason: When holding the number of factors and the number of 
items that differ across states constant, changing the number of items 
would simultaneously affect factor overdetermination and between-state 
differences, which is undesirable. Specifically, by increasing the number of 
items, factor determination would improve because more items provide a 
stronger measurement of the factor, while between-state differences 
would decrease as the proportion of items that differ between groups 
becomes smaller.
8Note that both LMFA versions cluster at the occasion level. Therefore, for 
the state composition, it is not relevant whether one-third of the 
individuals have mixed types or whether all individuals switch types after 
one-third of their participation. Both are possible ways to achieve the 
mixed C/IER type.

9The state proportions can be calculated from the transition matrices by 
raising the matrices to large powers (e.g., 50 or 100) until an equilibrium 
is reached, meaning that further matrix multiplication by itself no longer 
changes the probabilities.
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respectively). In total, the simulation study encompassed 
2 (noise) � 4 (C/IER types) � 2 (frequency) � 100 
(replications) ¼ 1600 datasets.

The analyses were conducted in Latent GOLD 
(Vermunt & Magidson, 2021). All datasets were ana
lyzed using the two true models. A subset was also 
analyzed using both true and competing models to 
evaluate model selection, which is further explained 
below. The first true model (i.e., the fully exploratory 
LMFA model) had three states,10 with two factors in 
the two attentive states and a single factor in the C/ 
IER state, respectively. In the following, the model is 
referred to as “[221],” where the number of elements 
refers to the number of states and the value of each 
element to the number of factors for that state). Note 
that the states were not labeled beforehand; the only 
restriction in this model is the number of states and 
the number of factors per state. The second true 
model (i.e., the partially constrained LMFA model) 
had the same specification as the first one but with 
constraints in the C/IER state, as described above. In 
the following, this model is referred to as “[22C]” 
(where the “C” in state 3 indicates “constrained”). The 
sensitivity and specificity of the observations’ classifi
cation were determined based on all 800 analyses.

Of the 1600 datasets, 240 (i.e., 15 of the 100 replica
tions for each condition) were furthermore used to 
evaluate the performance of the model selection.11

Specifically, we investigated whether in the case of single 
types of C/IER, the [221] and [22C] models were selected 
among various candidate models of differing complex
ities and whether in the case of mixed C/IER types, either 
model [221] or [22111] and [22C] or [22CCC] were 
selected among various candidate models. The latter is 
important because, strictly speaking, there are three dis
tinct C/IER distributions underlying the observations in 
the mixed C/IER type condition rather than just one. 
Consequently, it is crucial to ascertain whether the model 
selection identifies one or three C/IER states for these 
conditions (together with the two attentive states result
ing in a total of three or five states). The candidate mod
els were chosen as follows: The true models comprised 
three states, each accommodating a maximum of two 
factors. Previous model selection studies suggest that 
both the BIC and CHull criteria tend to select the true 
model or favor simpler models in terms of factors and 
states (Bulteel et al., 2013; Vogelsmeier, Vermunt, van 

Roekel, et al., 2019). Therefore, models with one fewer 
state and factor than the true models were included in 
our investigation. Furthermore, the model complexity 
was extended up to five states, as the model selection has 
previously only been investigated for differences in atten
tive models and not between attentive models and differ
ent types of C/IER. Thus, we intended to ensure a 
sufficiently large range of models. Furthermore, five 
states may be necessary for the mixed C/IER conditions. 
For the fully exploratory LMFA without constraints, this 
resulted in 18 candidate models:12 [21], [221], [2221], 
[22], [11], [222], [211], [111], [2222], [2211], [2111], 
[1111], [22222], [22221], [22211], [22111], [21111], 
[11111]. For the partially constrained LMFA, the candi
date models also permitted one to three constrained 
states, which resulted in 28 candidate models: [2C], 
[22C], [222C], [1C], [21C], [11C], [221C], [211C], 
[111C], [2222C], [2221C], [2211C], [2111C], [1111C], 
[2CC], [1CC], [22CC], [21CC], [11CC], [222CC], 
[221CC], [211CC], [111CC], [2CCC], [1CCC], [22CCC], 
[21CCC], [11CCC]. Note that the imposed constraints 
were the same across the different C/IER states (i.e., 
equal to the constraints explained in the Method 
Section). They did thus not reflect the different types of 
C/IER in particular. Consequently, observations with dif
ferent underlying C/IER types are distinguished only 
through differences in the intercepts and unique varian
ces that were free to vary across the different C/IER 
states. This was decided for two reasons. Firstly, as previ
ously explained, the constraints are tailored to scale pref
erences, but they were shown to also capture random 
responding (Kam & Cheung, 2024; Vogelsmeier, 
Uglanova, et al., 2024). Secondly, employing varying con
straints for different C/IER states (i.e., different con
straints for random responding and scale preferences) 
would introduce additional complexity to the already 
intricate model selection. For example, all models with a 
single C/IER state (i.e., models [2C], [22C], [222C], [1C], 
etc.) would have two versions, one with constraints for 
random responding and one for scale preferences. If con
straints tailored to the C/IER type was needed in the par
tially constrained LMFA, it would raise the question of 
whether this LMFA variant is a practical one.

Results

In the following, we first report the results for the 
model selection and then for sensitivity and 
specificity.10Note that this may not hold for the mixed C/IER type conditions, as will 

be explained in the next paragraph.
11Note that using more datasets per condition was computationally not 
feasible because the model selection part took half a day per dataset on 
a supercomputer with 32 cores.

12Note that the permutation of states is arbitrary. Thus, for example, 
model [21] is the same as model [12] and thus listed only once.
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Model selection
The upper part of Table 2 presents the proportions 
of times the models [221] and [22C] were selected 
from their respective sets of candidate models using 
both the BIC and CHull method. The lower part of 
Table 2 displays the proportions of times the models 
[22111] and [22CCC] were selected for the mixed C/ 
IER type.

Fully exploratory LMFA
When noise and frequency of C/IER were realistically 
low, the BIC and the CHull selected the model [221] 
with a proportion of 1 for all C/IER types except the 
mixed type. For the mixed type, the model with five 
states was chosen with a proportion of 0.9 by the BIC 
but not at all by the CHull. The overall performance 
decreased a bit for high noise and a lot for the com
bination of high noise and high C/IER frequency, 
especially for the non-normally distributed response 
styles. The most challenging was the lower-scale pref
erence style, where neither the BIC nor the CHull 

correctly identified the model [221] in any of the 
analyses.

Partially constrained LMFA
Regardless of the noise and frequency conditions, the 
BIC and the CHull method identified model [22C] 
only for a middle-scale preference with proportions of 
0.8 or higher. For all other C/IER types, the model 
selection proportion was zero or at least lower than 
.4. Our exploration showed that mainly models with 
too many states were chosen. Additionally, neither the 
BIC nor the CHull adequately detected the model 
[22CCC] for the mixed C/IER type.

Sensitivity and specificity
The results for sensitivity and specificity are shown in 
Table 3. Based on the model selection results for the 
mixed-type conditions, we also show sensitivity and 
specificity using the five-state models [22111] and 
[22CCC].

Table 3. Sensitivity and specificity of classifying true C/IER state-membership observations into the C/IER states.
Sensitivity Specificity Sensitivity Specificity

Frequency Type low noise high noise low noise high noise low noise high noise low noise high noise

[221] [22C]

low middle-scale preference 0.99 0.90 1 0.99 0.99 0.90 1 0.99
lower-scale preference 1 1 1 1 1 1 1 1
random 1 0.97 1 1 0.03 0.04 0.79 0.85
mixed type 0.96 0.65 1 1 0.67 0.55 1 1

high middle-scale preference 0.99 0.95 1 0.98 0.99 0.95 1 0.98
lower-scale preference 0.99 1 1 1 1 1 1 1
random 0.70 0.63 0.96 0.95 0.02 0.01 0.79 0.84
mixed type 0.46 0.39 1 1 0.66 0.57 1 1

[22111] [22CCC]

low mixed type 1 0.95 1 1 0.79 0.64 0.86 0.85
High mixed type 0.99 0.94 0.99 0.99 0.68 0.65 0.80 0.85

Note: To determine sensitivity and specificity, attentive state memberships were combined in the three-state models and, in the five-state models, atten
tive and C/IER state memberships were combined, respectively.

Table 2. Proportions of identifying the true models among their respective sets of candidate models using the BIC and the CHull 
method.

BIC CHull BIC CHull

Frequency Type low noise high noise low noise high noise low noise high noise low noise high noise

[221] [22C]

low middle-scale preference 1 1 1 0.80 0.93 1 0.87 1
lower-scale preference 1 1 1 0.53 0.13 0.33 0.20 0.40
random 1 0.93 1 0.8 0 0.07 0 0.07
mixed type 0 0 0 0 0 0 0 0

high middle-scale preference 1 1 0.87 0.87 1 1 0.80 0.80
lower-scale preference 0 0 0 0 0 0 0 0
random 0.80 0.47 0.80 0.13 0 0.07 0.07 0.07
mixed type 0 0 0 0 0 0 0 0

[22111] [22CCC]

low mix 0.9 0.8 0 0 0.2 0 0 0
high mix 0.7 0.6 0 0 0 0.07 0 0
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Fully exploratory LMFA
When the noise level and frequency of C/IER were 
realistically low, sensitivity and specificity were nearly 
1 for all types except the mixed type, which had a spe
cificity of 0.96. Sensitivity remained only slightly lower 
under conditions of low frequency and high noise. 
For specificity, noise had no considerable effect.

At high frequencies of C/IER, specificity remained 
similarly high, even with high noise in the data. 
However, sensitivity was considerably lower for the 
random and mixed types, even under low noise condi
tions, with values of 0.7 and 0.46, respectively. This 
indicates that not all observations expected to be clas
sified as C/IER were correctly identified. Under high 
noise, sensitivity values for these types dropped even 
further.

Examining the sensitivity and specificity for the 
mixed C/IER type using the [22111] model (and thus 
the model preferred by the model selection) reveals 
that both sensitivity and specificity are high for low 
noise and for both low and high C/IER frequencies, 
with values ranging from 0.99 to 1. For high noise, 
specificity remained stable, but sensitivity declined 
slightly to around 0.95.

Partially constrained LMFA
With a realistically low level of noise in the data and 
a low frequency of C/IER, specificity was nearly 1 for 
the middle- and lower-scale preferences, as well as for 
the mixed type. However, for random responding, 
specificity dropped to 0.79. Sensitivity was similarly 
high (nearly 1) for the middle- and lower-scale prefer
ence types. In contrast, sensitivity was only 0.03 for 
random responding and 0.67 for the mixed type, indi
cating that a considerable portion of C/IER observa
tions remained unidentified.

When the noise level was high and the frequency 
of C/IER low, sensitivity and specificity showed minor 
changes without a clear trend. For high C/IER fre
quency, regardless of the noise level, sensitivity and 
specificity were only slightly affected, differing only by 
the second decimal place compared to the results for 
low C/IER frequency.

Examining the sensitivity and specificity for the 
mixed C/IER type using the [22CCC] model revealed 
consistently low performance across all noise levels 
and C/IER frequencies. The highest sensitivity and 
specificity values were 0.79 and 0.86, respectively, 
under conditions of low noise and low C/IER 
frequency.

Interpretability fully exploratory LMFA
Figure 4 shows the loadings in proportion to the 
unique variances as well as the intercepts for example 
data of each of the three C/IER type conditions. It 
can be seen that all parameter estimates are very com
parable in size across the 20 items within one C/IER 
type. For all three types, the loadings fall around zero. 
For the middle and lower-scale preference types, 
unique variances are small compared to the random 
type. This occurs because individuals predominantly 
respond within a narrow range on the scale rather 
than utilizing its full range with scale preferences. The 
intercepts are approximately 5 for both middle-scale 
preference and random types. However, for the lower- 
scale preference type, the intercepts are lower due to 
most ratings being concentrated toward the lower end 
of the scale.

In attentive states, where items clearly measure the 
underlying construct(s), loadings would be consider
ably higher than zero and unique variances would be 
relatively small. The most obvious differences in the 
parameters of careless responses are, therefore, the 
small loadings across all three types and the high 
unique variances in the random type.

Conclusions and recommendations
For the fully exploratory LMFA, both model selection 
and classification of observations can be reliably per
formed for low and thus realistic amounts of noise 
and C/IER frequency. However, it should be noted 
that the CHull method is unreliable for mixed-type C/ 
IER, indicating that the CHull method should comple
ment rather than replace the BIC. For high C/IER 
amounts and high noise, model selection performance 
varies depending on the C/IER type, and if the correct 
model is chosen, for random C/IER, not all observa
tions that should be flagged as C/IER are caught as 
such. However, this is not too concerning, since the 
high amount of noise and the high C/IER frequency 
employed in this study are unrealistic in practice.

For the partially constrained LMFA, neither model 
selection nor classification can be reliably performed, 
even when noise and C/IER frequency are realistically 
low. Thus, even though partially constrained models 
may seem appealing from a theoretical point of view, 
we advise avoiding them. It is important to note that 
this advice pertains specifically to the scenario 
explored in this paper, where accommodating poten
tial non-invariance in attentive models involves per
mitting multiple attentive states that are obtained 
using exploratory factor analyses. In cases where a 
fully confirmatory model is employed, featuring one 
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attentive and one C/IER state, model selection is 
unnecessary, and studies demonstrated robust per
formance of the constraints in terms of sensitivity and 
specificity (Kam & Cheung, 2024; Vogelsmeier, 
Uglanova, et al., 2024).

Regarding interpretability, the C/IER states in the 
fully exploratory LMFA are clearly distinguishable due 
to their low loadings under the types of C/IER consid
ered in the simulation study. Additionally, the random 
style is characterized by high unique variances. For 
real data, the patterns might be less obvious than in 
this simulation study. Therefore, in addition to visual 
inspection, we recommend including external varia
bles, such as inattentiveness checks or response time, 
to further validate these states (for a detailed discus
sion on this, see Vogelsmeier, 2022).

Discussion

Intensive longitudinal data collection can be burden
some for the participants, potentially resulting in 

careless responding such as random responding. 
Besides changes in attentiveness, changes in how 
items are interpreted can occur over time, leading to 
violations of measurement invariance. Recently, a 
promising mixture model (fully confirmatory latent 
Markov factor analysis, Vogelsmeier, Uglanova, et al., 
2024) was presented to identify careless responding in 
ILD. However, measurement invariance is a key 
assumption for this new method. If this assumption is 
violated, its effectiveness in identifying careless 
responding is compromised. In this study, we eval
uated two variants of the mixture modeling approach 
LMFA for distinguishing between careless and atten
tive responding in the presence of non-invariance of 
the attentive responses.

The first variant is a fully exploratory LMFA model 
(Vogelsmeier, Vermunt, van Roekel, et al., 2019), 
which was originally developed to detect any changes 
in measurement models and evaluated for detecting 
changes in item interpretation. Our simulation study 

Figure 4. Distribution of loadings and unique variances (upper row) and intercepts (lower row) for three example datasets with 
generated middle-scale preference, lower-scale preference, and random responding, respectively. The results for the mixed C/IER 
type were omitted because the BIC would select one state per type and not just one in which all types are collapsed. Note that 
the bar charts were indistinguishable for the low and high frequency conditions and for the low and high noise conditions. 
Therefore, only the values for low frequency and low noise conditions are depicted.
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indicated that the model is also a reliable tool for 
detecting changes in different types of careless 
responding in addition to changes in attentive 
responding. Identifying whether components capture 
attentive or careless responding can be easily done 
using visual inspection of the detected mixture 
components.

The second variant differs from the fully explora
tory LMFA model in that only the attentive mixture 
components are evaluated in an exploratory fashion, 
while the careless components are determined in 
advance using model constraints. These constraints 
are conceptually similar to those in the fully confirma
tory LMFA model (Vogelsmeier, Uglanova, et al., 
2024). Theoretically, the constraints in this partially 
confirmatory LMFA should aid in identifying careless 
components without the need for visual inspection. 
However, the model proved ineffective. It failed to 
correctly identify the complexities regarding the num
ber of mixture components and factors, and it did not 
accurately classify observations even when the correct 
model was used. In the following, we outline a pos
sible reason that may have contributed to the poor 
performance.

Interestingly, when using visual inspection to inves
tigate the different types of careless responding after 
applying the fully exploratory LMFA, it was observed 
that the loadings for all types of careless responding 
employed in the study (random responding and scale 
preferences) had values around zero. In contrast, 
based on previous research (Arias et al., 2020; Kam & 
Cheung, 2024; Vogelsmeier, Uglanova, et al., 2024), 
the constraints for the same parameters were set to 1 
in the partially confirmatory LMFA model. The use of 
1s as constraints was motivated by the idea that scale 
preferences, if present, apply equally to all items and 
can be captured using a single latent preference factor. 
However, the discrepancy between the loadings in the 
fully exploratory LMFA and the constraints applied in 
the partially constrained LMFA raises the question of 
whether the constraints used are the most appropriate. 
One reason for this discrepancy is likely that the fac
tor model constraints were tested for Likert-type data 
(which were assumed to be continuous but are strictly 
ordinal) rather than for continuous data as measured 
with a VAS, as employed in this study. With a Likert 
scale (e.g., 1–7), it is reasonable to assume that an 
individual rates all items with 5 if this is the category 
preference. With a VAS scale, it is practically very 
unlikely to always give the same rating (unless partici
pants intentionally put effort into sliding the scale 
handle to the exact same position, which contradicts 

the definition of C/IER). It is more likely that individ
uals will score, for example, somewhere “around” 75: 
89 on the first item, 69 on the second, and 90 on the 
third. This explains why the loadings are closer to 
zero rather than one in our continuous data compared 
to what might be observed with Likert-type data. 
Therefore, in future research, other constraints should 
be investigated for continuous data and clear guide
lines on model constraints for both Likert type data 
and continuous data should formulated. Nevertheless, 
also note that the scale preference condition in our 
simulation study may not have been as skewed as one 
would expect with strong scale preferences. Choosing 
a slightly more extreme distribution might have led to 
better performance results, at least for this type of 
careless responding.

It is also plausible that employing varying con
straints for different latent C/IER states tailored to dif
ferent response styles could optimize performance in 
the partially constrained LMFA. Nevertheless, this 
introduces added complexity to the already intricate 
model selection and raises the question of whether 
this method would still be a viable alternative to the 
simpler and well-performing fully exploratory LMFA.

A related limitation of this study is that the C/IER 
types (i.e., scale preferences and random responding) 
were informed by prior studies for cross-sectional 
data (Meade & Craig, 2012; Roman et al., 2024; 
Schroeders et al., 2020; van Laar & Braeken, 2022). 
However, there remains uncertainty regarding the spe
cific behaviors of participants who respond carelessly 
in ESM studies. To address this gap, further qualita
tive research or mixed-methods approaches are neces
sary to gain a deeper understanding of the nature of 
careless responses in ESM studies in the context of 
both Likert-type scales and continuous slider scales.

Another limitation is that none of the LMFA ver
sions is applicable if the ESM data contain only sin
gle-indicator measures. For these data, researchers 
could use the approach by Ulitzsch, Nestler, et al. 
(2024), which leverages times spent on screens of elec
tronically administered ESM studies and is based on 
theoretical assumptions about how much time 
respondents spend on items if they pay attention and 
how this evolves over time. For attentive screen times, 
the model assumes an exponential decay process that 
accounts for a potential decrease in screen times stem
ming from individuals who have become accustomed 
to the ESM assessment procedure and the items. In 
contrast, inattentive screen times are assumed to fluc
tuate randomly and typically exhibit shorter durations 
on average compared to the screen times of attentive 
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respondents. The model permits individuals to switch 
between attentive and careless responding over time. 
The model can be enhanced by incorporating covari
ates at both the individual and occasion levels. 
Because the model solely relies on screen time infor
mation, it is well-suited for single-indicator scales. 
Note, however, that the model formulation is based 
on strict requirements for ESM data collection. For 
example, the approach cannot be used if the question
naires in the morning and evening are longer than the 
other questionnaires of the day. Likewise, it is not yet 
clear how to handle commonly employed branching 
designs (Ulitzsch, Viechtbauer, et al., 2024). In add
ition, the approach relied on strong (yet not validated) 
assumptions and requirements concerning screen time 
distributions, violations of which are likely to cause 
estimation issues (Ulitzsch, Nestler, et al., 2024; 
Ulitzsch, Viechtbauer, et al., 2024).

Furthermore, all LMFA versions studied assume C/ 
IER to be stable at a given measurement occasion, 
allowing for respondents to transition between differ
ent response behaviors only across occasions. 
Especially for lengthy questionnaires, this assumption 
may not hold, and one can easily imagine a respond
ent starting attentively when responding to the first 
couple of questions while being inattentive on those 
administered at the end of the questionnaire. While 
mixture IRT and factor models exist that accommo
date such behavior (Roman et al., 2024; Ulitzsch, 
Yildirim-Erbasli, et al., 2022), their integration with 
any of the LMFA approaches is not straightforward 
and would result in a highly complex model compris
ing mixtures of mixtures.

In addition to the limitations discussed, an impor
tant contribution of this study is the demonstration of 
the flexibility of the original exploratory LMFA. This 
study illustrates that LMFA is well suited to detect 
changes in measurement models, even in complex sce
narios with response behavior that manifests in non- 
normal distributions inherent to some types of careless 
responding. Although assumptions about the (multi
variate) normal distribution are made in LMFA, their 
violations have not been investigated. The results of this 
study suggest that such violations at least do not ser
iously affect the classification performance of LMFA, 
although this should be further investigated in future 
studies tailored to distribution violations of the atten
tive models.

As a final note, we would like to highlight that if 
researchers have strong assumptions about the type of 
measurement models between which individuals 
change, researchers can of course also specify two or 

more distinct confirmatory models in line with these 
assumptions instead of applying the fully exploratory 
LMFA. For instance, the item “being concerned” is 
known to measure negative as well as positive inter
personal emotions depending on the context 
(Vogelsmeier, Vermunt, B€ulow, et al., 2023), which 
can be translated into two measurement models with 
the item having different item-construct relationships 
(i.e., loadings in a factor analysis or IRT model). 
Specifically, “being concerned” may load either on a 
positive interpersonal emotions factor or on a negative 
interpersonal emotions factor. However, it is often not 
known in advance what the attentive measurement 
model(s) look like and how many there are because 
the scales in ILD have not received the same degree 
of research attention as in cross-sectional research yet 
(Vogelsmeier, Jongerling, et al., 2024), and because 
the measurement of constructs over time is inherently 
more variable than the measurement used for collect
ing cross-sectional data. A fully confirmatory 
approach is, therefore, usually not feasible and was 
therefore not further considered in this paper.
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