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ABSTRACT

Longitudinal measurement invariance—the consistency of measurement in data collected
over time—is a prerequisite for any meaningful inferences of growth patterns. When one or
more items measuring the construct of interest show noninvariant measurement properties
over time, it leads to biased parameter estimates and inferences on the growth parameters.
In this paper, | extend the recently developed alignment-within-confirmatory factor analysis
(AwC) technique to adjust for measurement biases for growth models. The proposed AwC
method does not require a priori knowledge of noninvariant items and the iterative search-
ing of noninvariant items in typical longitudinal measurement invariance research. Results of
a Monte Carlo simulation study comparing AwC with the partial invariance modeling
method show that AwC largely reduces biases in growth parameter estimates and gives
good control of Type | error rates, especially when the sample size is at least 1,000. It also
outperforms the partial invariance method in conditions when all items are noninvariant.
However, all methods give biased growth parameter estimates when the proportion of non-
invariant parameters is over 25%. Based on the simulation results, | conclude that AO is a
viable alternative to the partial invariance method in growth modeling when it is not clear
whether longitudinal measurement invariance holds. The current paper also demonstrates
AwC in an example modeling neuroticism over three time points using a public data set,
which shows how researchers can compute effect size indices for noninvariance in AwC to
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assess to what degree invariance holds and whether AwC results are trustworthy.

Longitudinal data allow researchers to make infer-
ences on changes across time due to natural events,
developmental maturation, or carefully designed inter-
ventions. In social and behavioral sciences, researchers
have used growth modeling to examine changes across
multiple waves of data in alcohol misuse in adoles-
cence (Barnes et al., 2000), correlates of growth of
vocabulary production during toddlerhood (Pan et al.,
2005), and the role of age stereotypes on memory per-
formance over time in late adulthood (Levy et al.,
2012), to name just a few examples. However, for the
results of growth modeling to be valid, the operation-
alization of constructs should remain the same across
waves; otherwise, any observed differences across time
can be confounded by incompatible measurements
(e.g., Shadish et al., 2001).! Even when the same

instrument is being used across time, in the presence
of various developmental and cultural changes, the
measurement properties of an instrument may shift
over time, introducing bias to the analyses. Therefore,
longitudinal measurement invariance, the condition
that an instrument measures one or more constructs
in the same way across time, is required for growth
modeling results to be meaningful (Grimm et al,
2016; Horn & McArdle, 1992; Widaman et al., 2010).
Given that measurement in behavioral sciences is
usually imprecise, it is not uncommon to find viola-
tions of longitudinal measurement invariance for psy-
chological instruments. For example, Obradovi¢ et al.
(2007) found that an instrument measuring interper-
sonal callousness did not maintain its measurement
properties after four years in a 9-year longitudinal
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study with a group of boys considered “antisocial.”
Wu et al. (2009) found that two items in a scale meas-
uring life satisfaction did not satisfy longitudinal
invariance over six months in two samples of univer-
sity students in Taiwan. Blankson and McArdle
(2015) tested longitudinal invariance of six cognitive
tests in a representative longitudinal study of U.S. par-
ticipants in their 50s, and their results failed to sup-
port longitudinal invariance for the mental status
factor across a period of 18years. Finally, Lommen
et al. (2014) found that a posttraumatic stress scale
did not maintain the same measurement properties
before and after deployment in two groups of Dutch
soldiers, leading the authors to question whether the
same construct was measured before and after deploy-
ment using the same scale.

Violations of longitudinal measurement invariance,
which I also simply refer to as noninvariance, do not
mean that research questions on change cannot be
answered. At least when the degree of violation is mild
to moderate, one established strategy is to estimate the
degree of bias by identifying a partial invariance model,
and adjust that bias in a second-order growth model
that specifies the relations between observed indicators
and the latent construct at each wave (to be discussed
later in this paper; see Ferrer et al, 2008; Widaman
et al, 2010). However, the identification of a partial
invariance model usually requires many iterations of
model fitting and modifications, which potentially capi-
talizes on chance (MacCallum et al.,, 1992) and requires
substantially more efforts than the growth model itself.

On the other hand, an alternative approach is to use
the newly developed alignment optimization (AO) tech-
nique (Asparouhov & Muthén, 2014) in multiple-group
analysis to come up with an approximate invariance
model (to be discussed later), which requires fitting only
one measurement model. More recently, Marsh et al.
(2018) extended the alignment method to an approach
called alignment-within-confirmatory factor analysis
(AwC), which incorporates AO into a multiple-group
regression model to obtain estimations of latent regres-
sion parameters adjusted for violations of invariance.
However, to my knowledge, there has been no previous
research extending the AO procedure in the context of
longitudinal measurement invariance as it is not cur-
rently implemented in major structural equation model-
ing (SEM) software.

The purpose of the current paper is four-folded.
First, I propose a simple solution to extend AO to
longitudinal invariance. Second, I extend the AwC
approach to growth modeling to obtain adjusted infer-
ences on the growth parameters when there are
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violations of measurement invariance. Third, I report
the results of a Monte Carlo simulation study to
evaluate the proposed method across conditions of
sample size, degree of noninvariance, average growth
rates, and model specification. Finally, I illustrate with
an applied example how my proposed method can be
easily implemented in the R software.

Longitudinal factorial invariance

I first define the longitudinal factor model used for the
current discussion, which is based on the discussion of
Meredith and Horn (2001). Specifically, for a study with
T waves with one construct # measured by p indicators
Yy = [y1,....y,), there are pT manifest variables, and the
longitudinal factor model can be defined as

Y, = Ve + A, + & (1)

where t =1, ..., T indexes waves, 4 and v contains the
factor loadings (regression weights; also called pattern
coefficients) and measurement intercepts of the linear
prediction from #, and & contains both the stable, con-
struct-irrelevant specific factors and the random meas-
urement error; I denote &s as unique factors in the
current study following Grimm et al. (2016).

It is assumed that ¢ is independent to # as it does not
capture the construct of interest, and the components of &
are jointly normal with expected values of 0.” In addition,
researchers usually make the local independence assump-
tion so that Var(g,;) = ®, at a given wave f is a diagonal
matrix of uniqueness with elements 0, ..., 0. On the
other hand, because some determinants of unique factors
are stable across time for the same item, it is common to
allow unique factor covariances across waves such that
Cov(ej, &) # 0fort #t' andallj = 1,...,p.

Under the above factor model, the measurement
parameters linking y and # are 4s, vs, and @s.
Therefore, strict factorial invariance, meaning meas-
urement invariance under the factor model, requires
that 4, = A, v, =v, and O; = O for all ts (Meredith,
1993). In practice, however, such a condition rarely
holds, and so researchers commonly follow the popu-
lar approach by Widaman and Reise (1997) to test
four stages of factorial invariance:

1. Configural invariance (Horn et al.,, 1983; Horn &
McArdle, 1992), where A; contains the same zero

2Whereas it is reasonable to assume that the random measurement error
has an expected value of 0, the same assumption is less reasonable for
the specific factors as they may change across time in a developmental
process. However, the means of the specific factors can be absorbed into
the measurement intercepts so that the model can still hold. This is a
potential source of intercept noninvariance.
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elements across waves; this is automatically satis-
fied when dealing with a  unidimen-
sional construct;

2. Weak invariance (also metric/pattern invariance;
Millsap, 2011), where 4, = 4 for all ts;

3. Strong invariance (also scalar invariance), where
vi =v for all ts in addition to weak invari-
ance; and

4. Strict invariance, where ®; = O for all ts in add-
ition to strong invariance.

As shown in Ferrer et al. (2008), at least strong
invariance is required to assure that observed changes
in the means of the manifest variables, which is usu-
ally the focus in growth modeling, are not confounded
with changes in measurement properties of the instru-
ment (i.e., noninvariance). Otherwise, researchers may
wrongly conclude that there are meaningful changes
in the target construct over time, when indeed the
changes in observed scores are driven by noninvariant
loadings and/or intercepts of a few items. Therefore,
many scholars (e.g., Grimm et al, 2016; Horn &
McArdle, 1992; Widaman et al., 2010) have suggested
that researchers establish factorial invariance of their
measurement before performing growth modeling. As
previously discussed, however, strong invariance gen-
erally does not hold, at least not exactly, so methods
to adjust for noninvariance are needed.

Partial invariance—traditional method to adjust for
noninvariance

The traditional method to adjust for noninvariance
is to search for a partial strong invariance model
(e.g., Byrne et al, 1989; Yoon & Millsap, 2007),
where invariant parameters are constrained to be
equal across time while noninvariant parameters are
freely estimated. As previously demonstrated (e.g.,
Lai et al, in press), as long as the proportion of
actual noninvariant parameters is not large, this
approach would work reasonably well. Besides, it
provides valuable information regarding which items
on a scale showed large violations of invariance.
Such an approach, however, has several drawbacks.
First, there is a risk of capitalization on chance as it
requires iteratively testing parameter constraints,
which may lead to an unstable solution (e.g.,
MacCallum et al., 1992). Second, it requires a lot of
effort in locating noninvariant parameters. When the
number of time points, indicators, and/or constructs
is large, researchers may need to manually fit tens
or hundreds of models to arrive at a partial invari-
ance model. This may also lead to lots of researcher

degrees of freedom that make results potentially not
replicable (Chambers, 2019). Third, as demonstrated
in Marsh et al. (2018), this specification search
approach may lead to large bias and imprecision in
parameter estimates and inferences when the propor-
tion of noninvariant parameters is relatively large
(e.g., more than 1/3 or half).

The above-listed drawbacks are potential reasons
that the partial longitudinal invariance model is not
commonly used in the literature. A quick search of
articles published in Child Development in 2018-2019
showed 21 articles that used growth modeling in the
SEM framework, but only one (4.7%) used a second-
order growth model that potentially adjusted for
measurement errors and biases.

AO and AwC

An alternative approach to the factorial invariance
problem is the alignment optimization (AO) method
proposed by Asparouhov and Muthén (2014) for mul-
tiple-group structural equation modeling. To under-
stand AO, first note that due to factor indeterminacy
(Kline, 2016), in the configural invariance model with
one latent variable per wave, each wave requires one
constraint to identify the variance-covariance structure
and one constraint to identify the mean structure.
There are infinitely many possible sets of identifica-
tion constraints, such as (a) fix the latent means and
variances to 0 and 1, respectively, for all waves; (b) fix
the latent mean and variance to 0 and 1, respectively,
for the first wave, and constrain the loadings and
intercepts of the first indicator to be invariant across
waves. Both (a) and (b) place 2 x T identification
constraints to the model and give the same model fit
and the same expectation and covariances of y, as do
infinitely many other possible sets of constraints.
However, they correspond to different latent means
and variances, factor
values, and have different implications of factor-
ial invariance.

AQ aims to achieve a set of measurement param-
eter estimates that retain large noninvariances while
keeping other parameters approximately invariant
across groups. It uses a component loss function to
“align” the parameters so that the latent variables are
on similar metrics and are thus comparable. Such an
optimization problem is similar to the rotation prob-
lem in exploratory factor analysis (EFA) aiming to
achieve a simple structure that retains large loadings
while minimizing small loadings. An additional set of
constraints to scaling the latent variables is to fix the

loadings, and intercepts



mean and variance of the latent variable to 0 and 1,
respectively, for the first group.’

With T sets of measurement parameters and
assuming equal sample sizes across waves, the compo-
nent loss function with respect to the parameter dif-
ferences of a set of aligned loadings and intercepts,
Atq and vy 4, is defined as

p p
F= Z Zf(ijtl,a = jtr,a) + Z Zf(”jtl,a — Vjty.a)-

=1 h<t, j=1 ti<t
(2)

While there could be many options for the loss
function f for the differences in individual parameters
across waves, Asparouhov and Muthén (2014) pro-

posed the use of
flx) =\ Vxt+e (3)

which has been found to work very well for multiple-
group analyses with many groups (e.g., 15-60 groups
in Marsh et al., 2018) and with a few groups (e.g., 2-4
groups in Lai et al, in press), using a small € such as
0.01 or 0.001. Readers can find a numerical example
in the Appendix, which further illustrates the compo-
nent loss function.

Much like in EFA where different rotation methods
give the same model-implied correlation/covariance
matrix, when using AO, traditional fit indices in CFA,
like the root-mean-square error of approximation
(RMSEA) and the comparative fit index (CFI), are not
sensitive to different alignment solutions, as the
aligned loadings and intercepts have exactly the same
fit as the configural model. That said, fit indices
should still be informative to other aspects of model
misspecification in the AwC growth model, such as
unique nonlinear growth shape.
However, researchers should supplement fit indices
with effect size indices for noninvariance, such as the
duvacs index discussed in the Simulation Study sec-
tion, to assess to what degree longitudinal factorial
invariance holds.

Currently, AO can only be applied in confirmatory
factor analytic (CFA) models without any imposed
structures on the latent variables or any external cova-
riates or outcome variables. However, Marsh et al.
(2018) proposed a two-step alignment-within-CFA
(AwC) procedure that greatly enhanced the usefulness

covariances or

3This was denoted as “fixed” alignment in Asparouhov and Muthén
(2014), which is suitable in the current paper as then the growth
parameters can be interpreted as standard deviation unit of the first
occasion. Another option is “random” alignment which sets the average
of the means across groups/occasions to zero.
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of AO. After obtaining the aligned measurement
parameters using AO in the first step, in the second
step of structural modeling, AwC requires fixing one
loading and one intercept for each latent variable to
be equal to the solution in AO so that the metric of
the latent variables will be similar to that from the
AOQO solution. Thus, parameters found to have large
differences across groups in AO are kept as such, so
that theoretically the resulting structural parameter
estimates (e.g., latent means and variances) will be less
confounded with measurement bias. Lai et al
(in press) conducted a simulation study and found
that AwC performs well in terms of precision and
confidence interval (CI) coverage rates for latent path
coefficients across sample size and degree of nonin-
variance conditions.

To my knowledge, however, until now the applica-
tions of AO has been limited to multiple-group analy-
ses, as the software Mplus (Muthén & Muthén, 2017),
which first implemented AO, does not support AO
with longitudinal factorial invariance at the time of
writing. On the other hand, it is straightforward to
extend AO to longitudinal measurement models by
applying the same optimization algorithm on the
loadings and intercepts obtained from a longitudinal
configural invariance model with longitudinal data.
After that, AwC can be used to adjust for noninvar-
second-order growth model, as

iance wusing a

reviewed below.

Second-order growth model

Growth modeling aims to model the trajectory of one
or more constructs over time. In a commonly adopted
linear growth model, each individual’s trajectory is
described by two person-specific parameters: level
(initial status) and slope (growth rate). Traditionally,
and still a popular practice, researchers use first-order
growth models (Ferrer et al., 2008), meaning that the
construct is represented by a single composite score in
each wave. Such an approach, however, can lead to
erroneous estimations and inferences in the presence
of (a) measurement unreliability and (b) measurement
noninvariance. For (a), it is well known that failure to
account for unreliability biases structural coefficient
estimates (Cole & Preacher, 2014; Kenny, 1979). For
(b), as demonstrated in Ferrer et al. (2008), strong
invariance is needed to establish a meaningful com-
parison of construct means across time, which is a
prerequisite to
meaningfully.

interpret the growth parameters
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Figure 1. Data generating model for the simulation study. Each of the # variables was measured by five indicators, which were

omitted from the diagram.

Unfortunately, a first-order growth model does not
allow for the evaluation and adjustment of (a) and
(b). To fully capitalize on the capability of structural
equation modeling, a second-order growth model can
instead be used by replacing the single composites
with longitudinal factor models of multiple indicators.
Such a model imposes a growth structure on the 7z
variables in (1). Specifically, under the linear SEM
framework,

n;, =T¢+ ¢, (4)

where &; contains r person-specific growth parameters
for the ith person, I' is a T x r matrix specifying the
contrast codes for modeling time trend, and is usually
fixed, and {; contains latent disturbances of deviations
from the predicted trajectory with E({) =0 for all
persons and waves. For example, with a linear growth
model, there are r=2 person-specific growth parame-
ters, and usually

1 T-1

Figure 1 shows a path diagram for a linear growth
model with four waves. It is commonly assumed that
conditioning on the growth parameters &, ys are nor-
mally and independently distributed so that
Var(y|é) = ¥ = diag(y;1> ... ¥rr).  The  growth
parameters ¢ are assumed multivariate-normally dis-
tributed with E(¢) = K and Var(¢) = ®.

The benefits of a second-order growth model are
that it takes into account measurement unreliability
(Hancock et al., 2001) and, through modeling of

partial strong invariance, adjusts for violations of lon-
gitudinal noninvariance, so that the resulting growth
parameter estimates are less biased (Kim & Willson,
2014; Leite, 2007). However, as previously pointed
out, the use of a partial strong invariance model is
only valid when researchers do not mistakenly con-
strain any noninvariant parameters, and in practice, it
may not work when the proportion of noninvariance
is large (Marsh et al., 2018).

On the other hand, using AwC, one can model
growth while adjusting for noninvariance using align-
ment, which does not require a priori knowledge of
noninvariant parameters and an iterative process of
searching for them. In the following, I first report
results from a Monte Carlo simulation study evaluat-
ing the performance of the AwC approach in terms of
parameter bias, efficiency, and confidence interval
coverage. A step-by-step example of applying AwC
using real data is then provided.

Simulation study

I report how I determined my design conditions, the
number of replications, and all evaluative measures of
the simulation results. I used the SimDesign package
(Chalmers, 2020; Chalmers & Adkins, 2020) in R
(Version 4.0.3; R Core Team, 2020) to structure the
simulation studies. The full simulation code can be
found in the supplemental materials.

In the present simulation study, I evaluated the
performance of the AwC approach for estimating a
linear growth model with potential violations of fac-
torial invariance. Based on previous simulations (e.g.,
Kim & Willson, 2014; Kim et al., 2016; Kwok et al.,,
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Table 1. Factor loadings and measurement intercepts for the data generating model across noninvariance conditions.

Ini = ‘25/pni = .40 i = .Ss/pni =1
mi=20

Parameter All Ts T1 T2 T3 T4 T] Tz T3 T4

A 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
A 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
A3 0.70 0.70 0.70 0.70 0.70 0.70 0.90 1.00 0.80
g 0.65 0.65 0.65 0.65 0.65 0.65 0.60 0.65 0.70
As 0.70 0.70 0.80 0.90 1.00 0.70 0.80 0.90 1.00
12 0.000 0.000 0.000 0.000 0.000 0.000 0.750 0.500 0.250
12 0.500 0.500 0.500 0.500 0.500 0.500 0.750 0.500 1.000
V3 —0.250 —0.250 —0.250 —0.250 —0.250 —0.250 —0.250 —0.250 —0.250
Vg 0.250 0.250 0.500 0.750 1.000 0.250 0.500 0.750 1.000
Vs —0.500 —0.500 -0.375 -0.625 —0.500 —0.500 -0.375 -0.625 —0.500
Note. r,, = proportion of noninvariant parameters. p,; = proportion of noninvariant items. /. = factor loadings. ¥ = measurement intercepts.

Noninvariant parameters are bolded.

2007; Liu & West, 2018), a typical latent growth
model fitted in the literature has four waves, so I set
T=4 in my simulation. The data generating model is
shown in Figure 1, following a linear growth pattern.
Each latent response # is measured by five indicators
(not shown in the Figure), which is similar to the
design in Liu and West (2018) and Kim and Willson
(2014). The measurement parameter values used to
generate the data are shown in Table 1, and the
growth parameter values are discussed in the design
conditions. I kept the measurement parameters at
Wave 1 the same across all simulations so that the
scale remains constant. At Wave 1, the composite reli-
ability is .806. Following Liu and West (2018), I also
added a lag 1 autoregressive structure for each unique
factor across waves with a lag 1 autocorrelation of .20,
a lag 2 autocorrelation of .20°, and so forth
(ie., Corr[ejr, v |n] = .20171).

Design conditions

The current simulation has a 3 (sample size) x 3
(proportion of noninvariance) x 2 (average growth
rate) x 2 (model design, as
described below.

misspecification)

Sample size (N)

From the review by Kwok et al. (2007), the mean
sample size of longitudinal studies published in
Developmental  Psychology ~was 210 (SD=180),
whereas from the meta-analysis by Huang (2011) on
the relationship between self-concept and academic
achievement in 39 longitudinal studies, the median
sample size was 267. Therefore, I chose 100, 250, and
1,000 for our sample size conditions for small,
medium, and large samples, which was similar to the
conditions in Kim and Willson (2014).

Proportion of noninvariant parameters/

items (ryi/pni)

I generated data with various r,i/pn; conditions, where
ri was defined as the proportion of noninvariant
loadings and intercepts out of 40 parameters (i.e., 20
loadings + 20 intercepts), and py; was the proportion
out of the five items that were invariant over time.
Specifically, I manipulated r,; to be 0%, 25%, and
55%, and the corresponding p, to be 0, 40%, and
100%. For conditions with ry = 25%/pn; = 40%, 1
simulated item 5 to have large biases in loadings
across all four waves (based on the criterion from Nye
et al, 2019) and have small biases in intercepts for
Waves 2 and 3, and item 4 to have large biases in
intercepts across all four waves (see Table 1). For con-
ditions with r4; = 55%/py; = 100%, there was a mix of
small, medium, and large biases in the intercepts and
loadings, but more importantly, none of the five items
were fully invariant across waves, which allows an
examination of whether AwC can be a viable option
with no invariant items.

Growth rate (ic;)

I set the average growth rate per wave, which is the
mean of the linear slope factor, to be either 0 or 0.25.
The level x, = 0 was chosen to evaluate Type I error
rates of the AwC procedure, while x, = 0.25 corre-
sponds to a medium growth rate.

The mean of the intercept factor was set to 0 with-
out loss of generality. The variances of the intercept
and the slope factor were 0.5 and 0.1, respectively,
and the covariance between them was set to 0.089,
which was consistent with Kim and Willson (2014).
The error variances of #, to 1, were equally set to 0.5.
Therefore, at Wave 1, the intraclass correlation—the
proportion of variance the intercept factor accounted
for—was 0.5. When x, = 0.25, the marginal R* effect
size was 0.38 (Johnson, 2014).
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Model misspecification

In practice, researchers rarely have data that perfectly
fit the data well. Therefore, I had two sets of condi-
tions for model misspecification, where the generated
data either followed exactly or deviated slightly from
the model in equations (1) and (4). For conditions
with model misspecification, after generating the #
values based on equation (4), I added a small quad-
ratic trend such that

My = My + (t — 2.5)%; (5)

where ¢&; is the quadratic growth factor with mean =
—0.01 and variance = 0.004. Besides, to resemble
minor misspecification in the measurement model, I
used a procedure similar to MacCallum and Tucker
(1991) by adding minor unique factor covariances
with magnitudes between —0.1 and 0.1 to the gener-
ated y values. The R code for generating the unique
factor covariances can be found in the supplemental
materials. Overall, the misspecification corresponds to
a population RMSEA of .057.

Data generation

For each simulation condition, I used R to simulate
2,500 data sets, which was sufficient to keep the
Monte Carlo error to £2% of the parameter and SE
estimates. It was also sufficient to keep the margin of
error for empirical Type I error rates to 5%=*0.5%,
which satisfied the stringent criterion defined by
Bradley (1978). For each condition I used the model
defined in equations (1) and (4) (and equation 5 for
conditions with misspecifications) to compute the
marginal mean vector and covariance matrix of the 20
manifest variables, and used the rmvn() function from
the mvnfast package (Fasiolo, 2016) in R to simulate
multivariate normal data.

Data analysis

I used lavaan (Version 0.6.7; Rosseel, 2012) for all my
analyses. For each simulated data set, I fitted (a) AwC,
an AwC-growth model, (b) FI, a second-order growth
model assuming full strong invariance that constrains
all loadings and intercepts to be equal across waves,
and (c) PI, a second-order growth model assuming
partial strong invariance with equality constraints only
on the unbiased items (except when r,; =.55). When
ai = .55/pni = 1, all intercepts were noninvariant, so
I placed the intercept equality constraints on the first
item, which resembled the usual practice (see Shi
et al., 2019) while allowing the loadings and the inter-
cepts of the other items to be freely estimated without

cross-wave constraints. For both FI and PI, the mod-
els were identified by fixing the loadings of the first
item (which is assumed invariant) to 0.8 and the
intercepts of that item to 0 across all waves, so that
the scales of the latent variables are the same across
replications. For AwC, I fixed the loadings and the
intercepts of the first item in each wave to the values
based on the alignment solution. For all methods, I
constrained the error variance associated with the s
to be equal (ie, ¥, =... =,,). Maximum likeli-
hood estimation for multivariate normal data was
used for all methods.

For each method I obtained point and SE estimates
and the 95% Wald CI reported from lavaan for the
means and variances of the level and slope growth
factors. For each parameter 0 (i.e., means and varian-
ces of levels and slopes), the evaluative measures were
described below.

Evaluative measures

Bias R
. > = S0,

The bias was computed as 6 — 0, where 0 = =2'— is

the mean of the @r estimates across 2,500 replications
and 0 is the population parameter value.

Root mean squared error (RMSE)

Considering  the  bias-variance tradeoff (e.g,
Ledgerwood & Shrout, 2011), a slightly biased estima-
tor may be preferred over a biased estimator if the
former has a smaller sampling variance. Thus, for
each method M I computed the RMSE of the parame-
ters of interest, defined as

R M 2
RMSE(@M) - Zr:l(e—re)
R
A method with a smaller RMSE should

be preferred.

Error rates of 95% Cl

To evaluate the CIs based on AwC and PI, I com-
puted the 95% Wald CI as éizwsgg(ﬁ), where zg75
is the quantile in a standard normal distribution cor-
responding to a probability of .975. For each param-
eter, the empirical error rates were calculated as the
proportion of times the constructed CI failed to con-
tain the population parameter value (ie,
1 — coverage rates). A valid 95% CI should have an
error rate of 5%. Note that when the population value
of a parameter is zero, the 95% CI error rate is also
the empirical Type I error rate of a Wald test with a
5% nominal significance level.
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Figure 2. Bias for estimating mean level (i;). Pl=partial strong invariance model. FI=full strong invariance model.
AwC = alignment-within-confirmatory factor analysis. For conditions with r,; =.55/p, = 1, the Pl model was misspecified as there

were no noninvariant items.

In addition, to estimate the proportion of parameters
that are substantially noninvariant for each simulated
data set, I computed the dyacs effect size proposed by
Nye and Drasgow (2011). The dyacs effect size repre-
sents the standardized mean difference of each item
across two groups or waves due to differences in load-
ings and intercepts. When an item is invariant across all
groups/waves, dyacs = 0, which is the minimum value.
For example, if dyacs = 0.5 for item 1 between Wave 1
and Wave 3, it means that the noninvariance in loadings
and intercepts of item 1 across these two waves results
in a mean difference of half a standard deviation. In the
simulation, after obtaining the aligned loadings and
intercepts, I computed dyacs for each of the 30 pairwise
comparisons (5 items, each with 6 contrasts of time
points). As Nye et al. (2019) suggested a cutoff of
dmacs < .20 for negligible noninvariance, for each simu-
lated sample I computed (a) the proportion of pairwise
comparisons with dyacs > .20 and (b) the proportion
of items (out of five) with at least one dyacs > .20.
Sample R codes for computing dmacs statistics after
alignment can be found in the supplemental materials.

Results

In some replications there were warnings from lavaan
that some estimated variances were negative or that

the estimates resulted in non-positive definite covari-
ance matrices of the latent or observed variables; how-
ever, for all replications in all simulation conditions,
the fitted models converged, so we used all 2,500 rep-
lications to summarize the results.

Mean level (k;)

As shown in Figure 2, when all items were invariant
(i.e., rp; = 0), all three methods (PI, FI, and AwC)
were unbiased when there were no misspecifications,
but had a small downward bias of about —0.01 when
there were misspecifications (i.e., unmodelled quad-
ratic trend and unique covariances). The biases were
relatively stable across sample size conditions. The
estimates under PI and AwC were not affected when
tni =.25/pn; =.40, but the estimates under FI started
to show upward bias as it falsely constrained some
noninvariant parameters to be equal. When r,; =.55/
Pni = 1, PI showed the worst bias (Mpj,s = 0.21) as it
anchored on a noninvariant item; FI showed large
biases (My,s = 0.15), whereas AwC was also biased
but to a much lesser degree (My;,s = 0.04).

The RMSEs and error rates of 95% ClIs for estimat-
ing the mean level were shown in Table 2. When
i = 0 or 0.25, PI was generally more efficient than
AwC, but the difference was not large. On the other
hand, when ry; =.55/py; = 1, PI was the least efficient.
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Table 2. Root mean squared error (RMSE) and error rates of 95% confidence intervals (Cls) for mean level (x;) and level

variance (¢).

Mean Level (k)

Level Variance (¢+)

RMSE Cl Error Rate RMSE Cl Error Rate
Model N Ini/ P Pl FlI AwC Pl FI AwC PI FI AwC Pl Fl AwC
C 100 0 0.10 0.10 0.11 48 4.8 4.1 0.16 0.16 0.16 6.0 6.0 39
.25/.40 0.10 0.12 0.11 4.7 7.2 39 0.15 0.17 0.16 6.1 13.8 4.9
.55/1 0.24 0.19 0.12 45.6 294 54 0.17 0.18 0.18 9.3 15.4 6.4
250 0 0.07 0.07 0.07 49 4.9 37 0.10 0.10 0.10 55 55 35
.25/.40 0.06 0.08 0.07 3.6 11.0 3.1 0.09 0.11 0.10 4.6 14.5 33
.55/1 0.22 0.17 0.08 84.6 62.2 9.4 0.11 0.12 0.12 8.7 15.7 6.8
1000 0 0.03 0.03 0.03 38 38 3.0 0.05 0.05 0.05 52 5.2 35
.25/.40 0.03 0.06 0.03 4.0 33.0 33 0.05 0.07 0.05 38 27.4 2.6
.55/1 0.22 0.16 0.06 100.0 99.5 31.2 0.07 0.08 0.07 17.8 30.1 12.0
M 100 0 0.10 0.10 0.11 53 53 3.2 0.16 0.16 0.17 10.5 10.5 58
.25/.40 0.10 0.11 0.11 5.2 6.1 2.8 0.16 0.19 0.18 9.9 21.7 7.1
.55/1 0.23 0.18 0.11 38.0 27.6 3.1 0.20 0.21 0.20 155 25.2 8.5
250 0 0.07 0.07 0.07 52 52 2.6 0.11 0.11 0.11 10.8 10.8 6.4
.25/.40 0.07 0.07 0.07 43 6.9 23 0.10 0.15 0.12 9.6 29.6 6.7
.55/1 0.22 0.16 0.07 79.1 571 44 0.15 0.17 0.14 20.9 36.0 10.2
1000 0 0.03 0.03 0.04 6.5 6.5 38 0.07 0.07 0.07 17.5 17.5 11.2
.25/.40 0.04 0.04 0.04 6.0 15.0 3.6 0.07 0.12 0.07 17.5 69.4 13.7
.55/1 0.21 0.15 0.05 100.0 98.7 12.8 0.12 0.14 0.09 55.1 80.7 25.1

Note. r,; = proportion of noninvariant parameters. p,; = proportion of noninvariant items. Pl = partial strong invariance model. FI =full strong invariance
model. AwC = alignment-within-confirmatory factor analysis. C= correctly specified model. M = misspecified model. RMSEs are averaged across condi-
tions of average growth rate. Bolded values indicate error rates > 7.5%; For conditions with ry =.55/p, = 1, the Pl model was misspecified as there

were no noninvariant items.

When r,; > 0, AwC generally had a smaller RMSE
than FI, which was largely driven by the bias of FI
For CI error rates, AwC generally maintained error
rates < 5% when ry; < .25 even in the presence of
misspecification, and its error rates (Me, = 3.38%)
tended to be lower than those based on PI
(Mery = 5.12%); FI had large CI error rates when ry;
and sample size increased as it did not yield a consist-
ent estimate. When ry =.55/py; = 1, AwC also had
increased CI error rates when sample size increased,
indicating that it also did not provide a consistent
estimate, but the error rates were much smaller than
those under PI and FI.

In addition, there were
results as the CI error rates were smaller when model
misspecification was present and when ry; =.55/pp; =
1. Upon further investigation, such results were likely
due to wider sample CIs when data were simulated
with misspecification (8% wider for PI and 12% wider
for AwC).*

some counterintuitive

Mean slope (i)

The bias of estimating x, is summarized in Figure 3,
which depends on its population value. For conditions
with r; =0 and ry =25/py =40, PI yielded
unbiased estimates, whereas AwC estimates showed
small positive biases when ry; =.25/pp; =.40 and x, =
.25 (up to 0.03, or 12.56%), and FI estimates showed

“This explanation was suggested by an anonymous reviewer.

stronger biases (up to 0.07, or 28.54%). When ry;
=.55/pn; = 1, both PI (up to 37.03%) and FI (up to
49.68%) showed strong bias regardless of sample size;
AwC was still biased but to a much lesser degree,
with the largest bias of 28.21% when N=100, but
reduced to 14.80% when N = 1,000.

As shown in Table 3, like x;, the RMSE pattern
was largely driven by the bias pattern. Similarly, in
terms of CI error rates, AwC yielded CIs with the
lowest error rates when ry; < .25, regardless of model
misspecifications. On the other hand, FI vyielded
highly inflated error rates when ry > 0. When ry
=.55/pni = 1, AwC had inflated error rates when
Ky = 0 (ie., Type I error rates) of up to 15.04%, but it
was much better than FI, which had error rates of up
to 98.44%, and PI, which had error rates of up to
98.76%. When k; = .25, the CI error rates for all
methods were much higher due to the larger biases in
the estimates.

Level variance (¢,)

Figure 4 shows the relative bias (i.e., bias/¢;) when
estimating ¢,. Similar to the results for x;, when
there were no misspecification both PI and AwC
yielded estimates with little bias for conditions with
i < .25, but the misspecification led to an underesti-
mation of about 10%. For FI, the underestimation was
bigger. When ry; =.55/py = 1, all methods suffered
larger biases, but AwC yielded estimates with smaller
bias (relative bias between —21.10% to —8.90%) than
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Figure 3. Bias for estimating mean slope (k;). Pl=partial strong invariance model. FI=full strong invariance model.
AwC = alignment-within-confirmatory factor analysis. For conditions with r,; =.55/p,; = 1, the Pl model was misspecified as there

were no noninvariant items.

FI (relative bias between —28.40% to —11.29%) and
PI (relative bias between —23.43% to —10.91%).

The RMSE patterns (Table 2) were similar to the
ones for estimating mean level, with AwC generally
performing better than falsely assuming invariance.
For CI error rates, when there were no misspecifica-
tions, AwC had rates < 5% for all conditions with
i < .25, but increased to up to 12.16% when ry;
=.55/py; = 1. The error rates of FI increased as a
function of r,; and N and were much higher than
AwC. The error rates of PI increased as a function of
N when ry =.55/py; = 1 and were higher than AwC.
When there were misspecifications, all methods in all
conditions had increased error rates, but the error
rates were lowest with AwC.

Slope variance (¢,)

Figure 4 shows the relative bias (i.e., bias/¢p,) when
estimating ¢,. With the current simulation set up, the
misspecifications generally resulted in downward biases
for ¢,, whereas increasing ry; resulted in upward biases
for FI and AwC and downward biases for PI (when ry;
=.55/pni = 1), and the relative bias for ¢, was larger

than for ¢;. It was found that AwC had a larger bias
than FI when r; =.55/p,; = 1 and N < 250.

The RMSE patterns (Table 3) were similar to the
ones for other parameters. The CI error rates tended
to be above 5% for all methods even without misspe-
cifications, and with misspecifications, AwC resulted
in better control of error rates for all conditions with
i <.25. When ry =.55/py = 1, AwC actually had
better error rates when there were misspecifications,
mainly due to the compensatory effects of misspecifi-
cations and noninvariance resulting in smaller biases.

duacs effect size

It was found that when using the AwC method, the x;
and K, estimates were acceptable when (a) less than
30% of the pairwise dyacs was larger than.20 AND (b)
less than 50% of the items had at least one dyacs >
.20. More details about the analyses with the dmacs
effect size can be found in the supplemental material.

Summary and remarks

From the simulation, I found that AwC generally worked
well in reducing bias on growth parameter estimates due
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Table 3. Root mean squared error (RMSE) and error rates of 95% confidence intervals (Cls) for mean slope (i;) and slope vari-

ance (¢,).
Mean Slope (x;) Slope Variance (¢,)
RMSE Cl Error Rate RMSE Cl Error Rate
Model Ko N Ini/ P Pl FI AwC Pl FI AwC Pl FI AwC Pl Fl AwC
C 0.00 100 0 0.05 0.05 0.05 54 54 3.6 0.04 0.04 0.04 59 5.9 55
.25/.40 0.05 0.07 0.06 57 12.2 4.6 0.04 0.05 0.05 6.4 7.7 5.7
.55/1 0.09 0.10 0.08 253 29.3 9.8 0.04 0.05 0.07 12.8 10.2 7.7
250 0 0.03 0.03 0.03 47 47 2.5 0.02 0.02 0.03 5.9 5.9 5.4
.25/.40 0.03 0.05 0.03 54 19.6 3.6 0.02 0.04 0.03 55 13.0 6.9
.55/1 0.08 0.08 0.05 48.1 57.0 9.5 0.03 0.04 0.05 14.0 19.1 15.3
1000 0 0.02 0.02 0.02 4.8 4.8 24 0.01 0.01 0.01 5.7 5.7 53
.25/.40 0.02 0.04 0.02 53 52.5 3.1 0.01 0.03 0.01 5.2 41.8 6.4
.55/1 0.07 0.08 0.03 96.0 98.2 15.0 0.02 0.03 0.03 28.3 573 31.6
0.25 100 0 0.05 0.05 0.05 53 53 4.1 0.04 0.04 0.04 5.8 5.8 5.5
.25/.40 0.05 0.09 0.07 6.0 24.5 7.3 0.04 0.05 0.05 6.4 8.9 5.7
.55/1 0.09 0.13 0.10 24.8 58.1 23.1 0.04 0.06 0.07 12.8 12.0 7.8
250 0 0.03 0.03 0.03 43 43 3.1 0.02 0.02 0.03 6.0 6.0 54
.25/.40 0.03 0.07 0.04 53 48.4 6.2 0.02 0.04 0.03 5.5 15.0 6.9
.55/1 0.08 0.13 0.07 46.3 91.7 27.4 0.03 0.04 0.05 14.0 234 15.5
1000 0 0.02 0.02 0.02 4.5 4.5 2.8 0.01 0.01 0.01 57 5.7 5.2
.25/.40 0.02 0.07 0.02 4.8 96.1 5.6 0.01 0.03 0.01 53 49.0 6.4
.55/1 0.07 0.12 0.04 93.8 100.0 43.4 0.02 0.04 0.03 28.3 68.3 32.0
M 0.00 100 0 0.05 0.05 0.05 5.2 5.2 1.8 0.04 0.04 0.04 11.0 11.0 8.0
.25/.40 0.05 0.07 0.06 5.2 14.0 34 0.04 0.04 0.05 11.6 7.3 5.9
.55/1 0.11 0.10 0.07 314 31.2 7.1 0.05 0.05 0.06 20.2 8.2 55
250 0 0.03 0.03 0.03 49 49 14 0.03 0.03 0.03 124 12.4 8.9
.25/.40 0.03 0.05 0.03 53 23.8 2.2 0.03 0.03 0.03 13.1 7.8 7.2
.55/1 0.10 0.08 0.05 59.0 59.4 7.6 0.04 0.03 0.04 32.0 10.1 7.0
1000 0 0.02 0.02 0.02 4.6 4.6 0.9 0.02 0.02 0.02 24.8 24.8 18.0
.25/.40 0.02 0.04 0.02 49 63.9 14 0.02 0.02 0.02 25.5 10.6 10.5
.55/1 0.09 0.08 0.03 98.8 98.4 12.8 0.04 0.02 0.02 72.8 21.5 73
0.25 100 0 0.05 0.05 0.06 5.0 5.0 2.6 0.04 0.04 0.04 11.2 11.2 8.0
.25/.40 0.05 0.09 0.07 5.0 28.3 6.0 0.04 0.04 0.05 11.5 74 58
.55/1 0.12 0.14 0.10 33.8 60.5 18.7 0.05 0.05 0.06 20.2 9.0 5.5
250 0 0.03 0.03 0.03 46 4.6 1.6 0.03 0.03 0.03 124 12.4 8.8
.25/.40 0.03 0.08 0.04 5.0 55.8 5.6 0.03 0.03 0.03 13.2 8.5 7.2
.55/1 0.10 0.13 0.07 62.9 929 23.2 0.04 0.04 0.04 32.0 124 7.1
1000 0 0.02 0.02 0.02 44 44 1.8 0.02 0.02 0.02 24.8 24.8 18.0
.25/.40 0.02 0.07 0.02 4.8 98.1 4.8 0.02 0.02 0.02 255 13.6 10.6
.55/1 0.09 0.12 0.05 99.2 100.0 423 0.04 0.02 0.02 72.8 32.0 74

Note. r,; = proportion of noninvariant parameters. p,; = proportion of noninvariant items. Pl = partial strong invariance model. FI =full strong invariance
model. AwC = alignment-within-confirmatory factor analysis. C = correctly specified model. M = misspecified model. Bolded values indicate error rates >
7.5%; italic values indicate error rates < 2.5%. For conditions with r,; =.55/p,; = 1, the Pl model was misspecified as there were no noninvariant items.

to noninvariance, and performed best in terms of bias
when the sample size is large (e.g., 1,000). It produces a
slight loss of efficiency compared to the correctly speci-
fied partial invariance model when the proportion of
noninvariant parameters is small but performs better
than picking the wrong anchor item in a partial invari-
ance model when the proportion of noninvariant param-
eters is large. It also generally shows better control on
Type I error rates and CI coverage rates. Therefore, the
proposed AwC growth method is a viable alternative to
the traditional partial invariance approach. On the other
hand, while using a correctly specified partial invariance
model works well, it leads to the highest bias when it
anchors on items with large noninvariance; in the current
simulation, it performs worse than the strong invariance
model, as in the latter noninvariance in different direc-
tions partially cancels out (see Horn & McArdle, 1992).
One limitation of the simulation is that it does
not inform whether the magnitude of noninvariance,

which was not a manipulated factor, would affect
the results.” A supplemental simulation was con-
ducted for the simulation conditions with ry; =.55/
Pni 1 but with the magnitude of noninvariance
reduced by half, and the results can be found in the
supplemental materials. In summary, the parameter
bias was smaller for all methods with a smaller mag-
nitude of noninvariance, but the overall pattern of
the results was similar. The AwC method still per-
formed better than PI and FI, but all methods
showed non-negligible biases when estimating the
level and slope parameters.

Another issue of interest is whether the results of
AwC depend on which indicator has the identification
constraints,’ which I here refer to as the reference

>An anonymous reviewer brought up this excellent point.

%Both the Associate Editor (Keith Widaman) and an anonymous reviewer
brought up this excellent point.
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Figure 4. Percentage relative bias for estimating level and slope variance (¢, and ¢,). Pl=partial strong invariance model.
FI =full strong invariance model. AwC = alignment-within-confirmatory factor analysis. For conditions with ry =.55/pni = 1, the PI

model was misspecified as there were no noninvariant items.

indicator. Theoretically, because the loadings and the
intercepts of the reference indicator are fixed to the
corresponding values of the AO solution, the metric
of the latent variables will remain similar, so the
latent parameter estimates should be the
However, if one chooses an indicator with weak
loadings (i.e., close to 0), the metric of the latent
variables will be only weakly identified, leading to
larger standard errors of the latent parameters. In the
simulation study, I followed Marsh et al. (2018) to
use the first indicator as the reference indicator for
AwC, which happened to be one with the largest

same.

loadings. To evaluate the sensitivity of AwC growth
model results to choices of reference indicator, I
reran the simulations using the second indicator
(with loadings =.50) as the reference indicator. As
expected, the parameter bias of AwC remained simi-
lar, but the constructed 95% CI was generally wider
due to larger standard error estimates, leading to
lower statistical power. Based on these results, a ten-
tative recommendation is to choose an item with
large loadings as the reference indicator, but future
research is needed to determine the optimal choice
of reference indicator.
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Table 4. Factor loadings, measurement intercepts, and latent
means and variances of the longitudinal configural model of
the applied example before and after alignment optimization.

Loading/Variance Intercept/Mean
Variable Pre-aligned Aligned Pre-aligned Aligned
Measurement Parameters
moody1 0.44 0.44 2.40 2.40
moody2 0.41 0.45 2.18 2.32
moody3 0.43 0.46 2.09 2.21
worry1 0.79 0.79 2.62 2.62
worry2 0.73 0.80 238 2.63
worry3 0.72 0.77 241 2.62
nervousl 0.77 0.77 224 2.24
nervous2 0.68 0.74 1.98 2.21
nervous3 0.71 0.75 2.05 2.25
calm1 0.32 0.32 2.11 2.1
calm2 0.33 0.36 217 2.28
calm3 0.34 0.36 2.14 2.24
Structural Parameters
m 1.00 1.00 0.00 0.00
12 1.00 0.92 0.00 —0.31
13 1.00 0.94 0.00 —0.27

Note. The items moody, worry, and nervous were reversely coded.

Finally, based on the associations between the
dvacs effect size statistics and the estimated mean
intercept and slope, I suggest a 50/30/20 rule of
thumb for using dmacs effect size statistics to gauge
the appropriateness of the AwC method: AwC is
trustworthy when (a) no more than 50% of items
have one or more dyacs >.20 and (b) no more than
30% of the pairwise dyacs >.20.

Applied example

The illustrative data come from Waves I (1995-1996),
1T (2004-2006), and III (2013-2014) of the Midlife in
the United States project (MIDUS; Brim et al., 2020;
Ryff et al, 2017, 2019). For the demonstration, I
investigated how neuroticism changed over time. At
each wave, participants indicated how each of the four
words: “moody,” “worry,” “nervous,” and “calm,”
described them on a 4-point scale (1=A lot,
2 =Some, 3=A little, 4= Not at all). To make inter-
pretations easier, I reverse-coded the first three items
so that for all items, a higher score indicated higher
neuroticism. For illustration, I used a subsample of
participants who were 40 years old or below at Wave
I; also, to simplify the illustration I included only par-
ticipants with no missing data on all four items across
all three waves, resulting in a subsample of 833 partic-
ipants (M,g. = 33.79). The descriptive statistics of
each item can be found in the supplemental materials.

A longitudinal configural invariance model with
three factors was first fitted to the 12 observed varia-
bles (four items across three waves), and unique cova-
riances of the items across waves were allowed. To
use AO, it is easiest to identify the configural model

by fixing the latent factor variances to 1 and the latent
means to 0. The overall 4> test for this model was
statistically significant, ¥ (N=833, df=39) = 74.49,

p <.001, indicating lack of exact fit. However, the

model fit was acceptable using common standards,
with CFI =.991, RMSEA =.033, 90% CI [.021,.044],
and SRMR =.038. The factor loading and intercept
estimates before alignment are shown in Table 4,
which is not very meaningful as the model does not
place the latent variables on similar metrics across
waves. It should be emphasized that like other meth-
ods for evaluating measurement invariance, one needs
to make sure the configural model demonstrates
acceptable model fit before performing AO.

Using the loading and intercept estimates from the
configural model, I obtained the aligned loadings and
intercept estimates that minimized the component
loss function, using the invariance.alignment() func-
tion from the sirt package (Robitzsch, 2020b) in R.
The aligned solutions are also shown in Table 4,
together with the aligned factor means and variances.
From the aligned solution, the latent factor means
were estimated to be —0.31 in Wave II and —0.27 in
Wave IIL

As shown in the simulation results, AwC may
result in biased latent parameter estimates when the
proportion of noninvariant parameters/items is large,
as indicated by the dyacs statistics. In the neuroticism
example, there were 12 pairwise comparisons, and two
of them (16.7%) showed non-negligible dyacs :
“moody” for Wave 1 vs. Wave 3 (0.23), and “calm”
for Wave 1 vs. Wave 2 (0.21); 50% of the items
showed at least one dyacs > .20. Based on the sug-
gested 50/30/20 rule of thumb, I continue with the
AwC growth model.

As shown in the supplemental materials, I fixed the
loadings and intercepts of the second indicator
(“worry”), which had the largest loadings overall, to
the values from the AO solution for each wave (e.g.,
0.79, 0.78, and 0.80 for loadings; 2.62, 2.63, and 2.62
for intercepts), and the resulting model fit was exactly
the same as the unaligned configural model. I then fit
a second-order linear latent growth model with the
same minimum identification constraints. Based on
the mean pattern, a linear growth model is probably
not a good fit for the data, but I keep it for my illus-
tration as the linear growth model as it is widely used.
It should also be pointed out that other growth shapes

’Other ways of identifying the model, such as fixing the latent factor
variances to 1 and the latent means to 0 for Wave 1 while constraining
the loadings and intercepts of the first item to be equal across waves,
give identical model fit and lead to the same aligned solution.



can be easily applied, and readers can check out excel-
lent resources by Grimm et al. (2016) and Newsom
(2015), for example. The AwC growth model had an
acceptable fit, > (N =833, df=40) = 101.70, p <.001,
CFI =.985, RMSEA =.043, 90% CI [.033,.053], and
SRMR =.041. Based on the parameter estimates, after
adjusting for potential violations of factorial invari-
ance, the mean slope estimate was —0.124, 95% CI
[-0.166, —0.082], indicating an overall decreasing
trend of about 0.124 SD in neuroticism per wave.

To illustrate the sensitivity to different reference
indicators, I also fit an AwC growth model using
“calm” as the reference indicator, which had the low-
est loadings (0.32 to 0.36). This AwC growth model
with alignment had a similar fit, y* (N =833, df=40)
= 81.03, p <.001, CFI =.990, RMSEA =.035, 90% CI
[.024,.046], and SRMR =.039. The mean slope esti-
mate was —0.127, which was similar to the estimate
when using “worry” as the reference indicator, but the
95% CI [-0.215, —0.038] was wider.

The full R code for this example can be found in
the supplemental materials.

Discussion

In growth models, for growth parameters to be mean-
ingful, the quantification of the target construct must
be consistent across time. Under the common factor
model with continuous and normally distributed indi-
cators, this means that strong factorial invariance
needs to hold. When strong invariance is violated for
some but not all items, falsely assuming invariance
and using a full strong invariance model results in
biased growth parameter (i.e., level and slope) esti-
mates and the corresponding between-person variance
estimates, as demonstrated in previous studies (Ferrer
et al.,, 2008; Liu & West, 2018) and the current simu-
lation. The empirical Type I error rates for the mean
slope (i.e., CI error rates when the true slope is zero)
increase as sample size and proportion of noninvar-
iant parameters increase and approach 100% when
N=1,000. In other words, if noninvariance is not cor-
rectly accounted for, researchers are almost guaran-
teed to falsely detect significant growth or changes,
when none exists.

One can also use a second-order growth model
with a partial strong invariance model to adjust for
the noninvariance, which performed well in my simu-
lation when the proportion of noninvariant parame-
ters is relatively small (e.g., < 25%) and there are at
least some truly invariant items. However, two major
limitations of this approach is that (a) it requires
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either prior knowledge or an intensive iterative speci-
fication search process, which may capitalize on
chance (MacCallum et al., 1992; Marsh et al., 2018),
(b) it may lead to even worse bias when it anchors on
the wrong item(s) (see Ferrer et al., 2008; Shi et al.,
2019), and (c) it cannot be used when all items are
noninvariant, based on our simulation results. All of
them are potential reasons that the second-order
growth model with adjustment of partial invariance
has not been widely adopted.

In the current paper, I propose adapting the align-
ment optimization (AO) and the alignment-within-
CFA (AwC) techniques, originally developed in
multiple-group analyses, to growth modeling to adjust
for longitudinal noninvariance. To my knowledge, the
current paper is the first in demonstrating how AwC
can be applied to longitudinal factor models.

The AwC growth method has several advantages.
First, compared to searching for a partial invariance
model, which usually requires many iterations of add-
ing/relaxing constraints and examining modification
indices or other fit indices, AwC only requires fitting
a longitudinal configural model, performing alignment
optimization, and fitting a second-order growth
model. Therefore, it presents less burden for applied
researchers and avoids problems that different
researchers may wuse different cutoffs for freeing
invariance constraints. Second, unlike the partial
invariance approach, the AwC approach does not
require identifying anchoring item(s). As demon-
strated in Marsh et al. (2018) and Shi et al. (2019),
and also in my simulation, using noninvariant items
as anchors can lead to severe bias in structural param-
eters; by not depending on any anchoring items, AwC
thus eliminates one potential source of error.

Researchers should use AwC with caution, how-
ever. As the current study show, when the proportion
of substantially noninvariant parameters (with dyacs
> .20) is large (e.g., > 30%; see also Muthén &
Asparouhov, 2014) or when the proportion of nonin-
variant items is large (e.g., > 50%), AwC still leads to
biased parameter estimates, even though the bias may
be smaller than using a noninvariant anchor item
with a partial invariance model. The observed bias in
AwC was consistent with Asparouhov and Muthén
(2014)’s suggestion that the alignment method may
fail when the “assumption of approximate measure-
ment invariance is violated” (p. 506), meaning a sub-
stantial proportion of parameters with medium-to-
large noninvariance. Therefore, when using AwC, I
recommend researchers to report the range of dyacs
values, the proportion of dyacs > .20, and the
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proportion of items with at least one dyacs > .20,
and be skeptical of parameter estimates when more
than 30% of dyacs are >.20 or when more than 50%
of the items have one or more dyacs >.20.
Furthermore, a large proportion of noninvariance may
suggest that an instrument does not measure con-
structs that are comparable over time.® Instead of
merely applying AwC or partial invariance for statis-
tical adjustment, researchers should carefully consider
the developmental nature of the target constructs and
the content of the items to decide whether the instru-
ment can still be meaningfully compared over the
time span of the research; it is possible that the
instrument does not allow for meaningful compari-
sons over certain period of time, and refinement of
the instrument or development of a new instrument
will be needed.

Limitations and future directions

The current simulation study is not without limita-
tions. First, I only evaluated the linear growth models
as my goal was mainly to introduce how AwC can
work for longitudinal data and provide the first piece
of evidence of its performance; future research can
thus examine alternative growth models, such as poly-
nomial growth, piecewise growth, and latent change
score models (McArdle & Grimm, 2010; McArdle &
Hamagami, 2001). Second, it is possible to apply AwC
to designs with more time points and potentially with
intensive longitudinal data with many time points
(Bolger & Laurenceau, 2013; Hamaker & Wichers,
2017), in which case the advantage of AwC may be
even bigger as identifying an appropriate partial
invariance model is hard with many time points.
However, the results by Asparouhov and Muthén
(2014) and Marsh et al. (2018) on independent groups
suggested that AO/AwC may produce biased latent
parameter estimates when the ratio between group
sample size and the number of groups is less than 6
(e.g., 90 individuals per group with 15 groups), so
future studies are needed to examine the sample size
requirement for using AwC with a larger number of
time points. Third, as AO can also be applied to
ordered categorical data (Muthén & Asparouhov,
2014), future research can explore whether my find-
ings on AwC hold for such data.

In addition, my simulation only focused on viola-
tions of factorial invariance with respect to time, but
in real research, noninvariance can happen with

8Both the Associate Editor and an anonymous reviewer brought up this
excellent point.

respect to a combination of time and demographic
variables (e.g., gender, age; Horn & McArdle, 1992;
Kim & Willson, 2014), which has been an important
but understudied area of research. The AwC approach
is potentially useful by considering simultaneous
invariance across combinations of time points and
demographic subgroups, and future research is needed
to formalize how AwC can work in such designs and
evaluate its performance and efficiency. Finally, the
current study assumes that the sample size is constant
across time points, meaning that data are complete or
listwise deletion has been used; when there is missing
at random attrition that can be handled by full-infor-
mation maximum likelihood, one can include weights
in the component loss function for alignment to
reflect different sample sizes across time (see
Asparouhov & Muthén, 2014), but future research is
needed to evaluate the use of such weights in the
AwC growth modeling method.

Given that the AwC method is relatively new, there
are also a lot of research opportunities to further opti-
mize it. For example, the component loss function
proposed by Asparouhov and Muthén (2014) was
chosen mostly because of its empirical performance,
and alternative functions or family of functions may
perform better in some models and may have better
theoretical justifications (see Robitzsch, 2020a).
Another direction that can greatly benefit the research
community is to automate the steps for fitting
second-order growth models with AwC so that users
can just specify one second-order growth model; pro-
grams can then automatically provide fit indices of
both the configural model and the final growth model
and the growth parameter estimates after adjustment
with AwC, as well as effect size indices indicating the
degree of noninvariance.
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Appendix
A heuristic example of alignment
optimization (AO)

As an example of applying the AO loss function defined in
equations (2) and (3), consider a scenario where three items
are used to measure a latent variable across two waves (t; =
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1 and t, = 2). Assume that for the first wave, one already
knows o; = 0,4, =1, 4; =[0.9,0.8,0.7], and v; = [0,0,0].
Because of factor indeterminacy, for the second wave, there
are infinitely many possible sets of parameter estimates that
correspond to the same model-implied means and covarian-
ces for the observed variables. For example, consider the
following two sets of parameters for the second wave:

e Model 0 (MO): O, 0 = 0, \112,0 =1, 12,0 =
[0.81,0.72, .45], vy,0 = [0.45,0.4,0.4]
e Model 1 (M1)5 01 = 0.5,\1/2,1 = 0.81, 12’1 =

[0.9,0.8,0.5], v, = [0,0,0.15]

Under both M, and M,, the latent variable accounts for
variances of 0.6561, 0.5184, and 0.2025 for the three items
(using 221//), and the mean of the three items are 0.45, 0.4,
and 0.4 (using v + Aa), so they are equivalent models, and
there are infinitely many more combinations of oy, V5, 4,,
and v, that are equivalent. However, M, and M; give differ-
ent implications with respect to factorial invariance, as M,
implies all items are noninvariant, whereas M; implies only
item 3 is noninvariant. Because AO aims to identify a set of
parameters, among all the equivalent models, that has very
few large noninvariant parameters and many approximately
invariant parameters, it should prefer M; over M.

Let’s go through equations (2) and (3) to get the compo-
nent loss (F) values for the parameter differences of M, and
M, with € = .001. For the loading of the first indicator in
M,,

F(An0 — Aao) = f(0.9 — 0.81) = £(0.09)

= (0.09)* 4 .001 = 0.31,

and under M,

f(A1 — Ai2,1) = £(0.9 — 0.9) = £(0) = 1/ v/0? +.001
=0.18.

One can verify that the loss values for the loadings and
intercepts under M, are 0.31, 0.29, 0.50, 0.67, 0.63, 0.63,
and those under M; are 0.18, 0.18, 0.45, 0.18, 0.18, 0.39.
Summing the loss values as in equation (2), one gets Fy =
3.04 and F; =1.55, so M, is indeed preferred in AO
over M.

This heuristic example only considers two sets of param-
eter values, but the AO algorithm considers all possible sets
and identifies the one, denoted as M,, that gives the small-
est F.
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