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ABSTRACT 
Neural networks like variational autoencoders have been proposed as a statistical tool to fit 
item factor models to data. Advantages are that high dimensional models can be estimated 
more efficiently as compared to conventional approaches. In this study, we demonstrate 
advantages of a specific autoencoder as a tool for amortized joint maximum likelihood esti
mation of item factor models. Contrary to contemporary joint maximum likelihood estima
tion and marginal maximum likelihood estimation, no additional parameter constraints are 
necessary to ensure standard asymptotic theory to apply. In a simulation study, the perform
ance of the autoencoder is compared to constrained joint maximum likelihood and various 
forms of marginal maximum likelihood under different distributions for the factor scores. 
Results show that the amortized joint maximum likelihood estimates of the factors scores 
are overall less biased as compared to the other approaches. We illustrate the use of the 
autoencoder in two real data examples.
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In psychometrics, confirmatory item factor models 
have many practical uses including the assessment of 
the psychometric properties of tests and question
naires (e.g., Kline, 2013), accounting for individual 
differences and measurement error in inferences about 
theoretical constructs (e.g., Mellenbergh, 1994), test 
equating (e.g., Kolen & Brennan, 2004), computerized 
adaptive testing (e.g., Wainer et al., 2000), and model
ing change over time (e.g., McArdle, 2009). 
Estimation of confirmatory item factor models has 
been dominated by variations of maximum likelihood 
estimation (e.g., Andersen, 1970; Bock & Aitkin, 1981; 
Cai, 2010; Kelderman & Rijkes, 1994; Klein & 
Moosbrugger, 2000; Lawley, 1943; Verhelst & Glas, 
1995), least squares estimation (e.g., Browne, 1974; Li, 
2016; Muth�en, 1984), and Bayesian estimation (Albert, 
1992, Edwards, 2010; Fox & Glas, 2001; Martin & 
McDonald, 1975). Although for continuous observed 
indicators, estimation is relatively fast and easily 
applied to high dimensional datasets, for discrete data, 
estimation is arguably more challenging. Therefore, 
recently a number of studies have focused on the 
development of estimation approaches for categorical 

data that are computationally less demanding. Here 
we focus on developments with respect to joint max
imum likelihood estimation and estimation based on 
models from the field of deep learning.

Joint maximum likelihood, originally considered 
for item response theory models by Birnbaum (1968), 
has recently been rediscovered as a fast and practical 
estimation approach. Specifically, in joint maximum 
likelihood both the person and the item parameters 
are assumed fixed effect parameters by which they are 
estimated simultaneously. As a result, no numerical 
integration is required which makes approaches like 
marginal maximum likelihood and Bayesian estima
tion computationally demanding. However, in tradi
tional joint maximum likelihood, the number of free 
parameters increases linearly with the sample size 
which violates standard asymptotic theory causing 
the parameter estimates to be inconsistent (e.g., 
Haberman, 1977). Recently, solutions have been pro
posed involving either constraining (Chen et al., 2019) 
or regularizing (Bergner et al., 2022) the person and 
item parameters.
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Other recent studies have used models from the 
field of deep learning. In deep learning, latent variables 
are used in so-called deep neural networks to capture 
complex non-linear functions between observed 
dependent and observed independent variables to pre
dicted future data (Goodfellow et al., 2016). Although 
the latent variables in neural networks and the latent 
variables in item factor models are used for different 
purposes, the models are intrinsically the same. For 
instance, C�uri et al. (2019, see also Converse et al., 
2021) and Urban and Bauer (2021) focused on fitting 
item factor models for respectively binary items scores 
(Birnbaum, 1968; Lord, 1952) and ordinal item scores 
(Samejima, 1969; Takane & De Leeuw, 1987) by means 
of a variational autoencoder (Kingma & Welling, 
2013). In these variational autoencoder item factor 
models, the factor scores are subject to a multivariate 
normal prior distribution, and the resulting posterior 
distribution of the factor scores is approximated by an 
(importance weighted) normal distribution where the 
mean and log-standard deviation depend non-linearly 
on the observed data. During the estimation of vari
ational autoencoders, a value is drawn from the normal 
approximate posterior (Converse et al., 2021; C�uri 
et al., 2019) or from the importance weighted normal 
approximate posterior (Urban & Bauer, 2021) to 
replace the unknown factor scores during optimization. 
In doing so, fitting item factor models to categorical 
data is generally faster as compared to marginal max
imum likelihood (Urban & Bauer, 2021).

Current work on joint maximum likelihood and 
variational autoencoders as an approach to item factor 
analysis has mainly focused on the computational 
advantages: shorter estimation time and increased flexi
bility with respect to the dimensionality of the models 
as compared to maximum likelihood estimation. This 
paper is motivated by a statistical advantage: We dem
onstrate how an fixed-effects autoencoder (Goodfellow 
et al., 2016) can be conceived as an amortized joint 
maximum likelihood estimator for item factor models. 
That is, we consider an autoencoder where the factor 
scores are considered fixed effects similar to joint max
imum likelihood and contrary to variational autoen
coders where the factors are random effects. Desirable 
properties of such a fixed-effects autoencoder are that 
(1) contrary to joint maximum likelihood and similar 
to variational autoencoders, the number of parameters 
does not depend on the sample size; and (2) contrary 
to joint maximum likelihood, marginal maximum like
lihood, and the variational autoencoder, the fixed- 
effects autoencoder avoids direct constraints on, or reg
ularizing of, the parameter space.

The fixed-effects autoencoder has been proposed 
before as a tool to fit item factor models by Guo et al. 
(2017) and Converse et al. (2019). Both Guo et al. and 
Converse et al. conducted small simulation studies to 
demonstrate the viability of the autoencoder to estimate 
the DINA model (Guo et al., 2017) and the two-par
ameter logistic item response theory model (Converse 
et al., 2019). Converse et al found large bias and rela
tively small correlations between the true and estimated 
item response theory parameters for the autoencoder, 
but not for the variational autoencoder, which may 
indicate problems related to identification. Therefore, 
here, we expand on this work in several ways. First, we 
derive the autoencoder item factor model more for
mally as an amortized joint maximum likelihood 
approach of which the properties are known. Next, we 
study the identification of the model and propose a 
default configuration for the amortization part of the 
autoencoder. Furthermore, we study the performance 
of the autoencoder as compared to joint maximum 
likelihood, and various forms of marginal maximum 
likelihood under practical and (double approximate) 
asymptotic settings. Finally, we demonstrate that the 
autoencoder produces less biased factor score estimates 
as compared to the constrained approaches.

Theoretically, our incentive to study the fixed-effects 
autoencoder as an estimation approach next to vari
ational autoencoders is to increase understanding of 
the theoretical relation between neural networks for 
deep learning and latent variable models for psycho
metric inference. It has already demonstrated that the 
variational autoencoder is the autoencoder counterpart 
of the marginal maximum likelihood factor model 
framework. In the present study we demonstrate how 
the fixed effects autoencoder is the autoencoder coun
terpart of the joint maximum likelihood factor model 
framework. A thorough understanding of such relations 
among models from psychometrics and deep learning 
will ideally benefit both fields of research. For instance, 
in the field of deep learning many well-established effi
cient and fast algorithms exist that can potentially be 
used for various psychometric purposes that are cur
rently challenging due to numerical demands, while in 
psychometrics many powerful tools for statistical infer
ences and model fit exists from which deep learning 
applications can importantly benefit. In addition, the 
modeling frameworks developed within psychometrics 
can help the field of artificial intelligence in their work 
on more explainable and interpretable models (explain
able artificial intelligence; e.g., Arrieta et al., 2020).

Practically, the fixed-effects autoencoders has a num
ber of benefits, some of which are illustrated in the 
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present study. First, we will show that due to the non- 
parametric nature of the autoencoder, for normal popu
lation distributions and finite samples, there is no 
shrinkage effects in the factor score estimates, while 
these effects are common for marginal and joint max
imum likelihood approaches. Related, for non-normal 
population distributions (e.g., due to heterogeneous 
subpopulations) and finite samples, there is less bias in 
the factor score estimates as compared to approaches 
assuming a normal distribution in the population (e.g., 
marginal maximum likelihood and the variational 
autoencoder) or impose similar constraints (as in regu
larized joint maximum likelihood and constrained joint 
maximum likelihood). Next, as opposed to variational 
autoencoders, fixed-effects autoencoders do not involve 
sampling during estimation which can be time consum
ing (especially in the case of multiple chains and many 
importance samples). Finally, after fitting an autoen
coder, factor scores can be calculated for new, incom
ing, data from the same population without additional 
estimation, while for importance weighted variational 
autoencoders this would involve additional sampling.

The outline is as follows: First, we present the item 
factor model and marginal and joint maximum likeli
hood estimation of its parameters. Next, we present the 
fixed-effects autoencoder and demonstrate its relation 
to joint maximum likelihood and the variational 
autoencoder. We first focus on binary data, and show 
how this approach extension straightforwardly to polyt
omous data. Next, we present a simulation study in 
which we compare the performance of the fixed-effects 
autoencoder to the performance of constrained joint 
maximum likelihood estimation (Chen et al., 2019), 
and various forms of marginal maximum likelihood 
estimation (Cai, 2010; Chalmers, 2012) in a three 
dimensional item factor model with binary items. We 
consider different shapes of the factor score distribution 
and compare the parameter recovery of the different 
approaches. We then present two real data examples 
respectively illustrating the use of the autoencoder in 
recovering the factor score distribution and illustrating 
a robustness analysis of a 16 dimensional autoencoder 
for ordinal items to different configurations of the 
encoder. We end with a general discussion.

Item factor models

In the next sections we first focus on the item factor 
model for binary data (Birnbaum, 1968; 
Christoffersson, 1975; Muth�en, 1978; Takane & De 
Leeuw, 1987) but the principles discussed are appli
cable to all models in the generalized linear item 

response theory framework (Mellenbergh, 1994; 
Moustaki & Knott, 2000) for continuous latent varia
bles. For ordinal data we explicitly demonstrate this in 
a separate section. If X denotes a matrix of stacked 
vectors xT

p ¼ ½xp1, :::, xpn� containing the item scores of 
person p ¼ 1, :::, N on items i ¼ 1, :::, n; then the dis
tribution of xp under the item factor model is:

f xpijgp
� �

¼ P xpi ¼ 1jgp
� �xpi � ½1 − P xpi ¼ 1jgp

� �
�
1−xpi

(1) 

with

P xpi ¼ 1jgp
� �

¼ U −si þ kT
i gp

� �
(2) 

in which gp is the vector of factor scores with ele
ments gpq indexed by q ¼ 1, :::, K; si is a threshold 
parameter for item i; Uð:Þ is the cumulative standard 
normal distribution function, and ki is a vector of dis
crimination parameters or factor loadings for item i 
with elements kiq: We assume throughout this paper 
that a sufficient number of elements of ki is set to 
zero to avoid rotational indeterminacy (we will return 
to this point later). In addition, we have omitted an 
item specific residual variance parameter for reasons 
of identification (although such a parameter can be 
identified in ordinal data, see e.g., Mehta et al., 2004; 
Millsap & Yun-Tein, 2004; Molenaar et al., 2012).

Marginal maximum likelihood

Marginal maximum likelihood estimation of the 
model above is conducted by maximizing the log-mar
ginal likelihood of X with respect to the unknown 
parameter vector

hMML ¼

�

sMML
1 , :::, sMML

n , kMML
1 , :::, kMML

n , lg, vecðRgÞ

�

where lg and Rg are respectively the mean vector and 
the covariance matrix of the factor scores in the mar
ginal maximum likelihood specification of the item 
factor model, gMML

p : Specifically, the log- marginal 
likelihood function is given by

l hMML; Xð Þ ¼
XN

p¼1
log
ð1

−1
:::

ð1

−1

Yn

i¼1
f xpijg

MML
p

� �
g gMML

p

� �
dgMML

(3) 

in which gð:Þ is a multivariate normal distribution. 
The model can be identified by fixing lg to a vector 
of zeros and the diagonal elements of Rg to 1. To 
evaluate the log-marginal likelihood function above, 
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the integral needs to be approximated using, for 
instance, numerical quadrature (e.g., Bock & Aitkin, 
1981) or stochastic imputation (Cai, 2010). As a 
result, the factor scores gMML

p are no free model 
parameters but can be estimated in a second step by 
for instance empirical Bayes estimation or expected 
posterior scoring. Marginal maximum likelihood with 
numerical approximation of the integrals in the likeli
hood function is practically feasible but becomes 
numerically challenging for increasing the number of 
latent variable dimensions and increasing sample size.

Joint maximum likelihood

In joint maximum likelihood, the factor scores gJML
p 

are considered fixed effects and estimated simultan
eously with the thresholds and loadings. If the joint 
maximum likelihood parameter vector is given by 
hJML ¼ ½s

JML
1 , :::, sJML

n , kJML
1 , :::, kJML

n , gJML
1 , :::, gJML

N �; the 
joint likelihood of the data matrix X is given by

l hJML; Xð Þ ¼
XN

p¼1

Xn

i¼1
log f ðxpijg

JML
p Þ: (4) 

The advantage of joint maximum likelihood so is 
that no distributional assumption is needed for gJML

p 
and that the procedure is generally much faster as 
compared to marginal maximum likelihood where the 
approximation of the integrals is time consuming. A 
disadvantage is that, for fixed n; the number of 
parameters in hJML increases linearly with N (i.e., the 
number of elements in hJML equals 2nþ N) by which 
standard asymptotic theory does not apply and the 
estimates are inconsistent as a result (Haberman, 
1977). In addition, for subjects/items with strict 0 or 1 
scores in the rows/columns of X; no parameter esti
mates exist.

To solve the above, Chen et al. (2019) constrained 
the parameter space in the following way

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jjgJML
p jj

2
q

� S and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sJML
i 2þ jjkJML

i jj
2

q

� S

(5) 

where jj:jj2 denotes the squared l2-norm, and S is 
commonly set to 5K1

2 as a default but can in principle 
be set to any sufficiently large number (see Chen 
et al., 2019). Chen et al. demonstrated that the param
eter estimates are consistent in the double asymptotic 
case (both N and n approach infinity). To enforce the 
constraints in Equation 5, Chen et al used a projected 
gradient descent algorithm to estimate the parameters. 
In each iteration of this algorithm, the parameters are 
transformed to a feasible parameter space using a 

projection function. Bergner et al. (2022) achieved 
similar constraints by focusing on regularizing the 
parameters using the squared l2-norm, that is

l hJML; Xð Þ ¼
XN

p¼1

Xn

i¼1
log f ðxpijg

JML
p Þ

−w N þ
XN

p¼1
jjgJML

p jj
2
þ
Xn

i¼1
sJML

i
2 þ

Xn

i¼1
jjkJML

i jj
2

0

@

1

A

(6) 

where w is a tuning parameter that can be determined 
by cross-validation. Note that both approaches are 
similar in the restrictions that are imposed on the 
l2-norms of the parameters, although they are 
enforced in a different way (i.e., by projection versus 
regularization) and are person/item specific in 
Equation (5) but not in Equation (6) (i.e., w is not 
person or item specific). These restrictions effectively 
impose a normal prior on both the person and the 
item parameters in the likelihood function. This is 
well known for l2-regularization in Equation (6) and 
can be shown in a similar way for Equation (4) sub
ject to the projection in Equation (5) by focusing on 
the Lagrangian function. Specifically, the restrictions 

in Equation (5) can be reformulated as gJML
p

�
�
�

�
�
�

�
�
�

�
�
�

2
�

S2 − 1: This adds a term fp k gJML
p k

2 − S2 þ 1
� �

to the 

Lagrangian -where fp is a person specific Lagrange multi
plier- which, like regularized joint maximum likelihood 
in Equation (6), can be construed as a normal prior 
term. The main difference between constrained joint 
maximum likelihood and regularized joint maximum 
likelihood from this perspective is that regularized joint 
maximum likelihood is equivalent in form to having a 
uniform normal prior on all the parameters, where con
strained joint maximum likelihood is equivalent in form 
to having separate normal priors, one for each set of 
parameters. Note that the constrained joint maximum 
likelihood approach is not assuming a normal prior, but 
the effect of the constraints is in form equivalent to 
imposing such priors. Thus both constrained joint max
imum likelihood and regularized joint maximum likeli
hood are effectively not fully distribution free.

The effect of these constraints diminishes if N !1
and n!1 by which these joint maximum likelihood 
schemes obtain their asymptotically consistency. 
However, similar to prior distributions in a Bayesian 
sense, the effects of these constraints may be notable in 
finite samples and for finite items (which we also dem
onstrate in the simulation study). Therefore, below, we 
show how autoencoders can be used for amortized joint 
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maximum likelihood estimation without direct con
straints on the person and item parameters.

Autoencoders

The key of autoencoders is that the data is first 
encoded into so-called hidden nodes. These nodes are 
organized in layers l ¼ 1, :::, L and collected in 
QðlÞ-dimensional vector zðlÞp : At layer l; zðlÞp is given by

zðlÞp ¼ hðlÞ
�

b lð Þ þ AðlÞzðl−1Þ
p

�

(7) 

where zð0Þp ¼ xp ¼ xp1, :::, xpn½ �
T and Qð0Þ ¼ n: In add

ition, hðlÞð:Þ is the encoding function at layer l; bðlÞ is 
the QðlÞ vector of encoding intercepts at layer l; and AðlÞ

is the QðlÞ by Qðl−1Þ matrix of encoding slopes at layer l:
After the final layer, L; predictions for the observed data 
in xp are obtained from hidden variables z Lð Þ

p by

x0p ¼ k
�

dþ Cz Lð Þ
p

�

(8) 

where x0p is a vector of model predictions with elements 
x0pi; kð:Þ is the decoding function, d is a n-dimensional 
vector of decoding intercepts, and C is a n by QðLÞ

matrix of decoding slopes with rows ci: See Figure 1 for 
a graphical representation of the autoencoder including 
the encoding and decoding equations.

The autoencoder above can be configured in such a 
way that, under certain conditions, it is theoretically 
equivalent to the joint maximum likelihood specifica
tion in Eq., 1, 2, and 4. To demonstrate this, we first 
specify QðLÞ ¼ K; kð:Þ to be a cumulative standard 
normal distribution function Uð:Þ; and we denote zðLÞp 
by gAE

p ; di by −sAE
i and ci by kAE

i : Then for a given 
item i; the decoder in Equation (8) simplifies to

x0pi ¼ U

�

− sAE
i þ kAE

i

� �T
gAE

p

�

(9) 

with binary cross entropy

H X, X
0

� �
¼ −

XN

p¼1

Xn

i¼1
xpilog x0pi

� �
þ ð1 − xpiÞlog 1 − x0pi

� �
:

(10) 

where X0 is the model predicted data matrix which 
consists of the stacked x01, :::, xN 0 vectors which are a 
function of parameter vector

hAE ¼

�

sAE
1 , :::, sAE

n , kAE
1 , :::, kAE

n , b 1ð Þ, :::, b Lð Þ,

vec A 1ð Þð Þ, :::, vec A Lð Þð Þ

�

:

(11) 

Note that, if gAE
p ¼ gJML

p for all p; the negative bin
ary cross entropy in Equation (10) is equal to the joint 
likelihood function in Equation (4).

Figure 1. Graphical representation of the autoencoder including the encoder and decoder functions.
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Amortized inference

Thus, the autoencoder and joint maximum likelihood 
item factor model coincide if gAE

p ¼ gJML
p for all p. To 

understand the condition for which this holds, it is 
important to note that in the autoencoder, gAE

p is not 
a free model parameter. That is, gAE

p is amortized 
(e.g., Marino et al., 2018) which means that gAE

p is 
modeled as a (non-linear) function of the item scores 
with the parameters of this function common to all 
subjects p: Thus,

gAE
p ¼ vðxp; hvð:ÞÞ (12) 

where vð:Þ is referred to as the inference model and 
has a parameter vector hvð:Þ: In the autoencoder, the 
inference model vð:Þ is the multilayer encoder given 
by Equation (7). That is, gAE

p is amortized by

gAE
p ¼ v xp; hv :ð Þ

� �

¼ h Lð Þ bðLÞ þ A Lð Þh L−1ð Þ bðL−1Þ þ A L−1ð Þh L−2ð Þ
:::xpð Þ

� �� �

:

(13) 

Consequently, the encoder in Equation (13)
approximates gJML

p up to a precision depending on the 
configuration of the nodes and layers zð1Þp to zðLÞp in 
Equation (7). That is, the approximation depends 
effectively on the number of nodes, QðlÞ; the number 
of layers L; and the nature of the encoding functions 
used in each layer, hðlÞ :ð Þ:

Hence, the autoencoder above is a joint maximum 
likelihood approach with parameters gJML

p amortized 
by vð:Þ in Equation (13). Key advantage of doing so is 
that instead of KN free gJML

p -parameters to be esti
mated using (constrained) joint maximum likelihood, 
gAE

p is parameterized by 
PL

l¼1 Q lð ÞðQ l−1ð Þ þ 1Þ free 
parameters in the autoencoder, which does not 
depend on N: Thus, for fixed n; Qð1Þ, :::, QðLÞ; sample 
size can grow to infinity without problems.

The function in Equation (13) needs to be specified 
so that it is sufficiently flexible to cover the parameter 
space of gp; but needs to be sufficiently parsimonious 
to avoid overfitting (which will generally occur if the 
number of parameters in hvðÞ will be larger than NÞ:
Fortunately, Urban and Bauer (2021) provide useful 
recommendations which we will adopt in the simula
tion study and the real data applications, we elaborate 
on these recommendations in those sections.

As mentioned above, a common challenge to the 
joint maximum likelihood of binary data is that for 
subjects and items with strictly 0 or 1 scores, no par
ameter estimates exist. As discussed above, in their 
joint maximum likelihood approach Chen et al. 
(2019) solved this issue by directly constraining the 

item and person parameter space by Equation (5). In 
the autoencoder, the parameter space of gAE

p is also 
constraint but in an indirect way by the amortization 
in Equation (13). As a result, the effect on the param
eter space is milder as compared to direct constraints 
like prior constraints and regularization (as we also 
demonstrate in the simulation study below). In add
ition, gAE

p has a natural upper and lower bound that 
follow from plugging in a vector of respectively ones 
and zeros for xp: For instance, for the very simple 
model where L ¼ 1 and hð1Þð:Þ is a linear function (i.e., 
gAE

p is a linear transformation of xp), the lower bound 

of gAE
p is equal to bð1Þ and the upper bound is equal to 

bð1Þ þ SUMðAð1ÞÞ: As parameters bð1Þ also occurs in the 
likelihood of other response patterns it is identified (given 
Equations (14) and (15)). Note that for items with strict 
zero or one scores no item parameter estimates exist 
(similarly to e.g., marginal maximum likelihood).

Identification

The autoencoder itself is not identified yet as a linear 
transformations of gAE

p can be absorbed in sAE
i and 

kAE
i and produce the same likelihood. For constrained 

and regularized joint maximum likelihood, the model 
is identified by the constraints and regularization 
respectively. For the autoencoder, no identification 
restrictions have been proposed yet. As the autoen
coder does not include scale and location parameters 
for the factor score distribution, the model can’t be 
identified by fixing the mean and variance of the fac
tor scores (as is common in item factor analysis). 
Therefore, we propose to identify the model using the 
following constraints on sAE

i and kAE
i :

Y

i2Fq

jkAE
iq j ¼ 1 (14) 

for each q; and
X

i2Fq

sAE
i ¼ 0 (15) 

for each q where Fq is the set of items that have a 
non-zero loading on factor q (assuming a simple 
structure see below).

In addition to these two constraints, as already 
mentioned before, we assume that sufficient elements 
in kAE

1 ; ., kAE
n are constrained to 0 to avoid rotational 

indeterminacy. Specifically, similarly to traditional 
(item) factor analysis,

KðK − 1Þ factor loadings need to be constrained (in 
addition to the constraint in Equation (14)) to make 
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the factor structure just identified. The resulting model 
is an exploratory item factor model for which the matrix 
KAER

1
2
g could be rotated to facilitate interpretation. The 

autoencoder presented here is equally amenable to such 
an exploratory use. However, in the present simulation 
and applications, we focus on a more confirmatory use 
in which KAE follows a simple structure.

Note that Equation (14) makes sure that the geo
metric mean of the absolute factor loadings is equal to 
1. Due to the absolute operator, the factor loadings 
kAE

iq are still allowed to be smaller than 0; which is for 
instance desirable in applications to personality items 
where contra-indicative items are used (see real data 
application 2). In addition, that Equation (15) ensures 
that the arithmetic mean of the thresholds is equal to 
0. These identification constraints are not new and 
have been used before in item response theory model
ing to identify a two parameter model (see e.g., 
Albert, 1992; De Jong et al., 2008). They are sufficient 
to identify parameters gAE

pq ; kAE
iq ; and sAE

i from the 
decoder (given sufficient constraints on kAE

iq as dis
cussed above). That is, with these constraints in place, 
there is only one set of decoder parameter estimates 
that optimizes the binary cross entropy in Equation 
(10). However, the parameters from the encoder are 
not unique so that there may be multiple functions 
tð:Þ in Equation (12) that result in the same gAE

p :

However, this is unproblematic for the present pur
pose as the encoder parameters underlying tð:Þ are 
not of direct interest. In fact, it can be proven using 
the asymptotic theory of concentrated likelihoods that 
given the encoder parameters in tð:Þ; the decoder 
parameters kAE

iq ; and sAE
i follow standard asymptotic 

theory (see Grasman, 2004, Appendix C). Note that 
the non-uniqueness of the encoder is not an exclusive 
property of the fixed effects autoencoder approach, 
the same applies to the (importance weighted) vari
ational autoencoder as studied by Urban and Bauer 
(2021) and C�uri et al. (2019).

Alternative scales

The identification constraints above preclude direct 
comparison of the results from the autoencoder with 
results from other estimation techniques that use differ
ent identification constraints. To enable a comparison, 
the results need to be transformed to a common scale. 
One can either focus on the standardized parameter esti
mates, or on a transformation of the autoencoder results 
to the scale of the other estimation technique.

First, the standardized parameter estimates, are 
obtained largely in the same way as in traditional item 

factor analysis, i.e. (note that we assume simple struc
ture as discussed above),

k̂
z
iq ¼

k̂iqr̂gq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k̂
2
iqr̂

2
gq
þ r2

e

r

and

ŝz
i ¼

ŝi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k̂
2
iqr̂

2
gq
þ r2

e

r

where superscript z indicates a standardized param
eter, and a hat indicates a parameter estimate obtained 
using the estimation technique and identification con
straints of choice. In these equations, r2

e is the variance 
of the error which is commonly not estimated (as 
mentioned before) but depends on the link function 
for traditional item factor models, and on the activa
tion function in the decor for the autoencoder. For 
the probit link or normal ogive activation function 
r2

e ¼ 1 and for a logit link or logistic activation func
tion r2

e ¼
p2

3 : Furthermore, r̂2
gq 

denotes the variance of 
factor q which is an explicit parameter in the case of 
marginal maximum likelihood (i.e., in that case it is 
diagonal element q from Rg in the multivariate nor
mal density g(.) in Equation (3)). In the case of the 
autoencoder, r̂2

gq
¼ VARðĝAE

pq Þ: The standardized fac
tor loading estimates above have the appealing prop
erty that they can be interpreted as the biserial 
correlation among the item score and the factor score.

Second, to transform the autoencoder results to the 
scale used in another estimation technique, it is useful 
to note that due to Equations (14) and (15), for the 
autoencoder it holds that E ĝAE

pq

� �
¼ 1

nq

P
i2Fq

si
rgq kiq 

and 

SD ĝAE
pq

� �
¼

Q
i2Fq

kiq
�
�
�
�

� � 1
nq where nq is the number of 

elements in Fq (i.e., the number of items loading on fac
tor q). Using these results, the autoencoder parameter 
estimates can be transformed to a scale of choice. For 
instance, to transform the autoencoder results to the 
marginal maximum likelihood scale where E gMML

pq

� �
¼

0 and VAR gMML
pq

� �
¼ 1 for all q; the marginal max

imum likelihood estimates (ŝMML
i and k̂

MML
iq Þ can be 

plugged in for si and kiq (note that rgq ¼ 1Þ and the 

expressions for E ĝAE
pq

� �
and VAR ĝAE

pq

� �
given above 

can be used to transform k̂
AE
iq , ŝAE

i , and ĝAE
pq to the mar

ginal maximum likelihood scale (using the general 
admissible scale transformation s0i ¼ si þ kiqEðgpqÞ;

and k0iq ¼ kiqSD gpqð Þ).
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The above two transformations can be used to put 
the parameter estimates on the same scale across 
methods. As the different methods discussed above 
(constrained/regularized/amortized joint maximum 
likelihood, and marginal maximum likelihood) all 
involve the same likelihood function, f ðxpijgpÞ; but 
different constraints on the parameters, the trans
formed parameters will show discrepancies across 
methods. Asymptotically these discrepancies are 
expected to diminish as the effects of the constraints 
diminish for increasing N and n: Therefore, the item 
factor model parameters enjoy the same theoretical 
interpretation across methods. For finite samples, 
there may be differences across the different methods, 
which should be interpreted in terms of the differen
ces in the constraints adopted in the specific methods.

Estimation

We fit the final model in Equation (9) with gAE
p given 

in Equation (13) by minimizing the binary cross 
entropy in Equation (10) with respect to the unknown 
parameters in vector hAE (see Equation (11)). As the 
negative binary cross entropy is equivalent to the like
lihood function, this procedure is the same as max
imum likelihood estimation. There are multiple 
algorithms possible to optimize the likelihood func
tion. Common iterative algorithms use starting values 
for the parameters, determine a step size and the dir
ection of the optimum of the likelihood function, and 
update the parameters using this step size and direc
tion. The step size can be determined using function 
evaluations only (e.g., Nelder-Mead algorithm), using 
the gradients of the likelihood function only (e.g., 
quasi-Newton algorithm), or using both the gradients 
and the Hessian of the likelihood function (e.g., 
Newton-Raphson algorithm). In this study, we use the 
AMSgrad algorithm (Reddi et al., 2019) which utilizes 
exponential moving averages of the gradients of the 
likelihood to determine the direction and step size in 
each iteration of the algorithm, that is:

hAEðtÞ ¼ hAEðt−1Þ − a
mt
ffiffiffiffi
v t
p (16) 

where a is a sufficiently small constant referred to as 
the learning rate and t indexes the iterations of the 
algorithm. In addition:

mt ¼ b1mt−1 þ 1 − b1ð Þgt
vt ¼ b2vt−1 þ 1 − b2ð Þg2

t
vt ¼ maxðv t−1, vtÞ

(17) 

where gt is the vector of gradients of the likelihood 
function, and where b1 and b2 are between 0 and 1 and 

can be used to tune the algorithm. In the simulation 
section, we discuss default values for a; b1; and b2:

Gradient projection
In the AMSgrad algorithm above, we introduce the 
identification constraints from Equations (14) and 
(15) by rescaling the factor loadings and threshold 
parameters after each iteration (i.e., a gradient projec
tion method; Nocedal & Wright, 2006, p. 485). For 
numerical feasibility, the factor loadings are rescaled 
on a log-scale to prevent overflow, that is:

k0iq ¼ sign kiq
� �

� log exp log kiq
�
�
�
�

� �
−

1
nq

Xnq

i¼1
jkiqj

 !( )

:

Note that rescaling of the factor loadings and thresh
olds only forces the algorithm to iterate to a specific 
maximum of the likelihood function where the geomet
ric mean of the factor loadings equals 1 and the arith
metic mean of the thresholds equals 0. That is, it does 
not complicate the likelihood function further. Gradient 
project methods are known to converge slowly in the 
case of complex non-linear constraints, but as our con
straints are relative simply, we did not encounter any 
issues with respect to convergence.

Ordinal data

The models above have been presented for binary 
data. If xpi is an ordinal variable with C categories, we 
code the item scores using vector ypi with elements 
ypic for c ¼ 1, :::, C − 1: Specifically

ypic ¼ 1 if xpi � c and ypic ¼ 0 otherwise: (18) 

for instance if C ¼ 5 and xpi ¼ 3; ypic ¼ ½1, 1, 1, 0�:
Then, the item factor model for ypic can be given by:

f ypicjg
AE
p

� �
¼ P xpic ¼ 1jgAE

p

� �ypic
1 − P xpic ¼ 1jgAE

p

� �h i1−ypic

(19) 

with

P ypic ¼ 1jgAE
p

� �
¼ U

�
− sAE

ic þ
�
kAE

i

�T
gAE

p

�
(20) 

where sAE
ic is the c-th threshold parameter of item i:

Due to the coding, it holds that sAE
i1 < ::: < sAE

i C−1ð Þ

which reflect the ordered nature of the data. It can be 
shown that the resulting model for xpi is:

P xpi ¼ cjgAE
p

� �
¼ U

�
− sAE

ic þ kAE
i

� �T
gAE

p

�

−U
�

− sAE
iðcþ1Þ þ kAE

i

� �T
gAE

p

�

with sAE
i0 ¼ −1 and with sAE

iC ¼ 1; which is the more 
familiar form of the ordinal item factor model 
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(Samejima, 1969; Takane & De Leeuw, 1987). Thus, 
the above amortized joint maximum likelihood 
approach is equally amenable to ordinal data, by 
applying the autoencoder in Equation (9) (10), and 
(13) on the ypic variables. Note that this involves 
equating the factor loadings kAE

i to be equal across 
ypic from the same item (i.e., ypi1, :::, ypiðC−1Þ). 
Alternatively, one can directly plug the likelihood of 
xp based on Equation (19) into the loss function in 
Equation (10) which is an equivalent approach.

Relation to variational autoencoders
A variational autoencoder item factor model is 
obtained by replacing gAE

p in the model above by 
gVAE

p ; a stochastic parameter for which its means and 
standard deviations are a deterministic functions of 
the nodes from the previous layers, i.e., zð0Þp to zðL−1Þ

p :

In the variational autoencoder, gVAE
p is assumed to fol

low a multivariate standard normal prior distribution 
(Kingma & Welling, 2013), pðgVAE

p Þ: The model is fit 
to data using a variational inference framework (e.g., 
Gelman et al., 1995) by running W Monte Carlo 
chains in which R samples from an approximate pos
terior distribution of gVAE

p , qðgVAE
p jxp) are combined 

into an importance weighted estimate of the log- 
likelihood. Distribution q :ð Þ can be any continuous 
distribution but is commonly specified to be a multi
variate normal distribution (see e.g., Converse et al., 
2021; C�uri et al., 2019; Urban & Bauer, 2021). That is

~gVAE
prw � q

�
gVAE

p jxp

�
¼ MVNðlp, diagðrpÞÞ (21) 

where ~gVAE
prw is used to denote importance sample r ¼

1, :::, R in chain w ¼ 1, :::, W: The means and log-stand
ard deviations in distribution qð:Þ are functions of the 
previous layers comparable as in the encoder in 
Equation (13), that is:

lp ¼ hl

�
b Lð Þ þ AðLÞzðL−1Þ

p

�
(22) 

lnrp ¼ hr

�
d Lð Þ þ CðLÞzðL−1Þ

p

�
(23) 

where hl :ð Þ is the encoding function for the means of 
gVAE

p ; and hr :ð Þ is the encoding function for the log- 
transformed standard deviations of gVAE

p : Note that in 
the fixed-effects autoencoder, it is the factor scores that 
are amortized, while for the variational autoencoder it 
is the mean and standard deviation of the approximate 
posterior of the factor scores being amortized.

Using the above, the observed data is decoded 
from ~gVAE

prw using

x0pirw ¼ x
�

− sVAE
i þ kVAE

i

� �T
~gVAE

prw

�
: (24) 

where xð:Þ is commonly a logistic function. If the 
variational autoencoder parameter vector is given by

hVAE ¼
h
sVAE

1 , :::, sVAE
n , kVAE

1 , :::, kVAE
n , b 1ð Þ, :::, b Lð Þ,

d 1ð Þ, :::, d Lð Þ, vec A 1ð Þð Þ, :::, vec A Lð Þð Þ,

vec C 1ð Þ
� �

, :::, vec C Lð Þ
� �i

then the estimates for these parameters are obtained 
by maximizing the importance weighted estimate of 
the likelihood, pðxpÞ; that is:

H ¼
XN

p¼1

1
W

XW

w¼1
log

1
R

XR

r¼1

p ~gVAE
prw jxp

� �

q ~gVAE
prw jxp

� � p xpð Þ

0

B
@

1

C
A: (25) 

where p ~gVAE
prw jxp

� �
is the true posterior evaluated at 

samples ~gVAE
prw but which does not need to be evaluated 

explicitly as p ~gVAE
prw jxp

� �
p xpð Þ ¼ p ~gVAE

prw , xp

� �
. For R ¼

1; the model above is referred to as variational 
autoencoder (Kingma & Welling, 2013) and is studied 
as an item factor model by C�uri et al. (2019), 
Converse et al. (2019), and Converse et al. (2021). For 
R > 1; the model is referred to as importance 
weighted variational autoencoder (Burda et al., 2015) 
and is studied as item factor model by Urban and 
Bauer (2021). If R!1; Equation (25) is equivalent 
to marginal maximum log-likelihood estimation (see 
Appendix A from Burda et al., 2015).

The autoencoder as studied here can be obtain 
from the (importance weighted) variational autoen
coder by two restrictions: First, by fixing rp to 0 for 
all p; the posterior of gVAE

p is a discrete distribution of 
the 2n � K possible values in lp: As a result, we can 
use R ¼ 1 and W ¼ 1 as each sample from qðgVAE

p jxpÞ

will be identical for each p: In such a case, Equation 
(25) reduces to:

H ¼
XN

p¼1
log
�

p xpj~g
VAE
p

� ��

− KL
�

q ~gVAE
p jxp

� �
jjp ~gVAE

p

� ��

(26) 

where KLð:Þ is the Kullback–Leibler divergence. That 
is, ~gVAE

p is still constrained by a normal prior, 
pðgVAE

p Þ: That is, at this point, the model in Equation 
(26) is an autoencoder with a normal prior constraint 
on gVAE

p : Therefore, a final step in obtaining the 
autoencoder as used in the present study, is to omit 
the prior distribution on gVAE

p after which H is 

equivalent to −HðX, X0

Þ in Equation (10).
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Simulation study

A key advantage of the autoencoder proposed here is 
that it, contrary to constrained/regularized joint max
imum likelihood, marginal maximum likelihood and 
the variational autoencoder, it precludes distributional 
assumptions about the model parameters. Therefore, 
in the simulation study below, we study the parameter 
recovery of the amortized joint maximum likelihood 
estimator as compared to the approaches above under 
normal and non-normal factor distributions.

Design

Following Chen et al. (2019) we incorporate condi
tions in our design that approximate the single and 
double asymptotic situation. That is, we use a con
firmatory 3 factor model with a simple structure, bin
ary item scores, and either nq ¼30 items per factor 
(reflecting a more practical setting) or nq ¼ 100 items 
per factor (reflecting an approximate asymptotic set
ting). The sample size is either N ¼ 1000 (practical 
setting) or N ¼ 10, 000 (approximate asymptotic set
ting). The binary item scores are generated according 
to the item factor model in Equations (1) and (2) and 
where, for all q; gpq follows either a multivariate nor
mal distribution, a lognormal distribution with l ¼ 0 
and r ¼ 0:4; or a (bimodal) normal mixture distribu
tion with l1 ¼ −1; l2 ¼ 2; r1 ¼ 1; r2 ¼ 0:5; and class 
probabilities p1 ¼ 0:8 and p2 ¼ 0:2: The correlations 
among the dimensions are 0:4: See Figure 2 for the 
resulting distribution of the first dimension in the dif
ferent scenarios. In simulating the data, the true par
ameter values are fixed for both the item parameters 
and the person parameters. The factor loadings are 
fixed to kiq ¼ 1 for all items loading on factor q; and 
the thresholds si are fixed to equally spaced increasing 
values between −3 and 3 (normal condition), −5 and 
2 (lognormal condition), or −2.5 and 2.5 (bimodal 
condition). The true gp parameter values are obtained 
by the quantile functions of the factor distribution in 
the corresponding conditions (i.e., normal, lognormal, 
normal mixture) evaluated on a vector of increasing 
equally spaced numbers in the interval (0, 1). The 
resulting true gp are standardized to facilitate compar
isons across different approaches (see below). We con
ducted 100 replications of the above design.

Models and estimation

Autoencoder
As discussed above, the configuration of the encoder 
should be done with care as the resulting function 

for the amortization in Equation (13) needs to be 
flexible enough but should not result in overfitting. 
Urban and Bauer (2021) provide useful recommenda
tions which they base on Heaton (2008) and that 
generally work well. Specifically, following the work 
by Urban and Bauer into the variational autoencoder 
item factor model (see above), we use L ¼ 2 with an 
elu-function for hð1Þð:Þ; a linear function for hð2Þð:Þ;

Figure 2. Latent variable distributions used in the different 
conditions in the simulation study. In this figure N ¼ 1000:
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and Qð1Þ ¼ floor 1
2 nþ 1

2 Qð2Þ
� �

: From the simulation 
study results below, it turns out that in the condi
tions considered, these choices are satisfactory. In 
addition, in the real data example below, we illustrate 
how the robustness of these choices can be studied. 
We find that, for the data at hand, results are not 
affected by changes in the encoder. Note that Qð2Þ ¼
K ¼ 3 which is the dimensionality of the factor 
model used in the present study.

In the decoder, we use a logistic activation function 
(instead of the normal ogive function in Equation 9) 
so that the final model becomes:

x0pi ¼ x

�

− sAE
i þ kAE

i

� �T
gAE

p

�

(27) 

with gAE
p being amortized by

gAE
p ¼ bð2Þ þ A 2ð Þelu bð1Þ þ A 1ð Þxp

� �

(28) 

where Að2Þ is n� Qð1Þ-dimensional, bð2Þ is Qð1Þ-dimen
sional, Að1Þ is Qð1Þ � 3-dimensional, and bð1Þ is 
3-dimensional. See Figure 3 for a graphical representa
tion of the above configuration of the amortized item 
factor model for nq ¼ 30:

We implemented this autoencoder (AE) using the 
Python package “Keras” (Chollet et al., 2015). The 
script to fit the model is available from the website of 
the first author. We used the AMSgrad algorithm 
(Reddi et al., 2019) in Equations (16) and (17) above 
to minimize Equation (10). We take a difference of 
1e-8 in H (Equation (10)) between consecutive itera
tions as an indication of convergence. In addition, we 
set b1 ¼ 0:9 and b2 ¼ 0:999 which can be considered 
default values (see Reddi et al., 2019; Urban & Bauer, 
2021). In addition, we follow Urban and Bauer (2021) 
and set the learning rate a ¼ 0:005: We allowed for a 
maximum of 60, 000 iterations, but all cases in all 
conditions converged far before this maximum with
out issues.

Other approaches
Besides the AE, we also fit the item factor model to 
the simulated data using: constrained joint maximum 
likelihood (cJML), marginal maximum likelihood 
(MML) with a normal prior distribution (nMML), 
MML with a prior distribution based on a Davidian 
curve of order 6 (dMML; Woods & Lin, 2009), and 
MML with the factor distribution approximated by a 
histogram as proposed by Bock and Aitkin (1981) and 
Woods (2007; wMML). We do not consider the 
importance weighted variational autoencoder as these 
estimates are close to the nMML estimates (for suffi
ciently large W and R; see above).

The cJML estimates are obtained using the R pack
age “mirtjml” (Zhang et al., 2020) using S ¼ 5

ffiffiffiffi
K
p
¼

8:66 in Equation 5 (which is the default value of the 
package) and with a tolerance of 0.001 (default of the 
package is 5 which may be too lenient for the present 
study). In addition, the nMML, dMML, and wMML 
estimates are obtained using the EM algorithm as 
implemented in the R package “mirt” (Chalmers, 
2012), where dMML and wMML are applied to each 
dimension separately (as the full 3 dimensional factor 
model is numerically too demanding for these 
approaches).

Factor scores
An important aspect of the present study is to see 
how the factor scores, gp; are being recovered by the 
estimates of the autoencoder as compared to the other 
approaches. For cJML, the factor scores are model 
parameters that are estimated directly during model 
estimation. For the MML approaches, the factor scores 
are estimated ad-hoc using expected a posteriori esti
mation with quasi Monte Carlo integration. For the 
autoencoder, factor scores can be obtained by the 

Figure 3. Graphical representation of the configuration of the 
autoencoder item factor model as used in the simulation study 
in the condition of nq ¼ 30:
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non-linear transformation of the observed item scores 
in Equation (28).

In the “mirtjml” package, the cJML estimates are 
transformed to a scale comparable to that of MML. 
However, as also discussed above with respect to iden
tification, the parameters from the AE are on a differ
ent scale due to Equations (14) and (15). We 
therefore used the transformations above (see para
graph ‘alternative scales’, but using the true parameter 
values to allow potential parameter bias to still be vis
ible) to transform the AE estimates to that same scale.

Results

In the below, we discuss the results of the simulation 
study. We focus on the results with respect to the first 
factor. In tables, we present results with respect to the 
mean absolute bias and the root mean square error 
(RMSE) for all conditions. In addition, in figures, we 
visualize the results for the conditions with N ¼ 1000 
and nq ¼ 30 to demonstrate the effects of the prior 
constraints (MML) and the constraints on the param
eters norms (cJML) on the estimates. Generally, these 
effects diminish for increasing N and nq:

Factor scores

Table 1 depicts the mean absolute bias and RMSE 
across the conditions in the simulation study for the 
factors score estimates of the first factor. As can be 
seen the AE outperforms all other methods in terms 
of absolute bias at the expense of a larger RMSE. For 
the MML based approaches and cJML, the bias in the 
estimates is related to a shrinkage effect. See Figure 4
which displays the errors of the factor score estimates 

of the first dimension in the condition N ¼ 1000 and 
nq ¼ 30: The errors are ordered on the true factor 
score values. As can be seen, for the MML based 
approaches and for cJML, values in the lower tail of 
the factor score distribution are overestimated, and 
values in the upper tail are underestimated. This 
shrinkage effect is common in models like these and 
is due to the prior distribution (MML) and due to the 
constraints on the norm (cJML). This effect dimin
ishes for both MML and cJML if the number of items 
increase. Most importantly, the AE does not suffer 
from such an effect. For cJML, there is bias in the log
normal condition which is related to the shrinkage 
effect of the thresholds (which are pulled to 0, see 
below).

Factor loadings

Table 2 depicts the mean absolute bias and the RMSE 
across the conditions in the simulation study for the 
factor loading estimates of the items loading on the 
first factor. For these estimates, the non-normal MML 
approaches outperform the other approaches in both 
the absolute bias and RMSE. The AE outperforms 
cJML and nMML in terms of both the absolute bias 
and RMSE. See Figure 5 which displays the errors of 
the factor loadings for the items that load on the first 
dimension in the condition N ¼ 1000 and nq ¼ 30:
The errors are ordered on the true item threshold 
value. As can be seen wMML and AE are relatively 
robust for the different distributions, while the nMML 
estimates are biased in the lognormal and bimodal 
conditions. The cJML estimates show some bias in all 
conditions, due to the constraint on the norm of the 
loadings which pulls the estimates toward 0.

Table 1. Mean absolute bias and Root Mean Squared Error (RMSE) for the factor score estimates over replications and over sub
jects for the first dimension in the Normal condition (N), the Lognormal condition (LN) and the bimodal normal condition (BN).

Mean absolute bias RMSE

Data nq N AE cJML nMML dMML wMML AE cJML nMML dMML wMML

N 30 1000 0.049 0.088 0.153 0.151 0.151 0.511 0.453 0.435 0.434 0.434
30 10,000 0.055 0.089 0.153 0.152 0.152 0.509 0.450 0.434 0.433 0.433

100 1000 0.022 0.033 0.031 0.053 0.054 0.269 0.260 0.273 0.256 0.256
100 10,000 0.025 0.034 0.031 0.054 0.054 0.269 0.258 0.270 0.255 0.255

LN 30 1000 0.080 0.415 0.170 0.162 0.164 0.584 0.655 0.472 0.464 0.463
30 10,000 0.085 0.538 0.172 0.162 0.163 0.577 0.732 0.472 0.463 0.462

100 1000 0.031 0.302 0.046 0.055 0.062 0.300 0.422 0.303 0.283 0.281
100 10,000 0.031 0.529 0.047 0.056 0.062 0.297 0.607 0.302 0.282 0.281

BN 30 1000 0.052 0.087 0.143 0.136 0.140 0.489 0.439 0.419 0.417 0.417
30 10,000 0.053 0.086 0.144 0.137 0.139 0.481 0.435 0.417 0.416 0.416

100 1000 0.024 0.033 0.032 0.036 0.049 0.258 0.249 0.266 0.246 0.245
100 10,000 0.025 0.047 0.035 0.036 0.048 0.254 0.252 0.263 0.245 0.244

nq is the number of items per factor. In addition, AE: amortized joint maximum likelihood using the autoencoder; cJML: constrained joint maximum likeli
hood; nMML, dMML, wMML: marginal maximum likelihood using respectively a normal prior, a prior based on a Davidian curve of order 6, and an 
empirical histogram. For dMML and wMML, the results are obtained by fitting unidimensional models to each dimension separately.
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Thresholds

Table 3 depict the mean absolute bias and the RMSE 
across the conditions in the simulation study for the 
threshold estimates of the items loading on the first 
factor. The non-normal MML approaches again out
perform the other approaches in terms of both abso
lute bias and RMSE. In addition, the nMML 
outperforms the AE and cJML generally in terms of 
both absolute bias and RMSE, although the AE has a 

slightly smaller absolute bias in the log-normal condi
tion. The cJML approach in turn, has smaller absolute 
bias and RMSE as compared to the AE in the normal 
and bimodal conditions with a smaller number of 
items. The AE outperforms the cJML approach in the 
case of a larger number of items and in all cases with 
a lognormal distribution for the factor scores. The 
cJML estimates of the thresholds are systematically 
biased in the lognormal condition. This is due to the 

Figure 4. Plot of the errors of the factor score estimates of the first dimension for the condition with 30 items per factor and 
1000 subjects. The errors on the y-axis are ordered according to their true factor scores on the x-axis. AE: amortized joint max
imum likelihood using the autoencoder; cJML: constrained joint maximum likelihood; nMML, wMML: marginal maximum likelihood 
using respectively a normal prior and a prior based on a Davidian curve of order 6. Results for the histogram approach are not dis
played as these are highly similar to the wMML results.

Table 2. Mean absolute bias and Root Mean Squared Error (RMSE) for the factor loadings estimates over replications and over 
subjects for the first dimension in the Normal condition (N), the Lognormal condition (LN) and the bimodal normal 
condition (BN).

Mean absolute bias RMSE

Data nq N AE cJML nMML dMML wMML AE cJML nMML dMML wMML

N 30 1,000 0.013 0.157 0.010 0.010 0.010 0.133 0.210 0.117 0.120 0.120
30 10,000 0.009 0.148 0.003 0.003 0.003 0.043 0.157 0.037 0.038 0.038

100 1000 0.012 0.066 0.082 0.009 0.010 0.113 0.138 0.131 0.110 0.110
100 10,000 0.004 0.050 0.086 0.003 0.003 0.035 0.062 0.092 0.034 0.034

LN 30 1000 0.031 0.227 0.142 0.028 0.018 0.163 0.310 0.211 0.142 0.142
30 10,000 0.020 0.196 0.134 0.022 0.004 0.053 0.206 0.143 0.048 0.042

100 1000 0.014 0.073 0.059 0.011 0.011 0.121 0.153 0.135 0.117 0.119
100 10,000 0.008 0.058 0.062 0.012 0.003 0.041 0.072 0.077 0.040 0.038

BN 30 1000 0.012 0.134 0.046 0.010 0.011 0.120 0.188 0.116 0.108 0.109
30 10,000 0.005 0.143 0.044 0.009 0.004 0.040 0.151 0.057 0.037 0.036

100 1000 0.009 0.045 0.094 0.019 0.010 0.106 0.114 0.133 0.104 0.104
100 10,000 0.003 0.046 0.102 0.023 0.002 0.032 0.057 0.106 0.039 0.031

nq is the number of items per factor. In addition, AE: amortized joint maximum likelihood using the autoencoder; cJML: constrained joint maximum likeli
hood; nMML, dMML, wMML: marginal maximum likelihood using respectively a normal prior, a prior based on a Davidian curve of order 6, and an 
empirical histogram. For dMML and wMML, the results are obtained by fitting unidimensional models to each dimension separately.
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true thresholds having a mean smaller than 0 in this 
condition, while the cJML constraints on the norm of 
the threshold parameters pull the estimates to 0: See 
Figure 6 which displays the errors of the factor load
ings for the items that load on the first dimension in 
the condition N ¼ 1000 and nq ¼ 30: The errors are 
ordered on the true item threshold value.

It should be noted that for the AE, the recovery of 
the threshold parameters is somewhat worse for 
smaller N and n as compared to the recovery of the 

discrimination parameters which is not typical for 
MML based estimation of item factor models. This is 
due to the slight bias in the factor scores (see Table 1) 
which is -due to the absence of a prior- compensated 
in the thresholds.

Additional simulations

To see if the pattern of results above holds for a 
smaller sample size and for smaller item numbers, we 

Figure 5. Boxplot of the errors of the factor loading estimates of the items loading on the first dimension for the condition with 
30 items per factor and 1000 subjects. The errors on the y-axis are ordered according to the item difficulty (true threshold value) 
on the x-axis. AE: amortized joint maximum likelihood using the autoencoder; cJML: constrained joint maximum likelihood; nMML, 
wMML: marginal maximum likelihood using respectively a normal prior and a prior based on a Davidian curve of order 6. Results 
for the histogram approach are not displayed as these are highly similar to the wMML results.

Table 3. Mean absolute bias and Root Mean Squared Error (RMSE) for the threshold estimates over replications and over subjects 
for the first dimension in the Normal condition (N), the Lognormal condition (LN) and the bimodal normal condition (BN).

Mean absolute bias RMSE

Data nq N AE cJML nMML dMML wMML AE cJML nMML dMML wMML

N 30 1000 0.076 0.053 0.010 0.011 0.011 0.145 0.128 0.107 0.109 0.109
30 10,000 0.072 0.047 0.002 0.002 0.002 0.082 0.063 0.033 0.033 0.033

100 1000 0.026 0.050 0.007 0.009 0.009 0.110 0.131 0.110 0.104 0.104
100 10,000 0.022 0.022 0.003 0.003 0.003 0.041 0.042 0.036 0.033 0.033

LN 30 1000 0.077 0.381 0.104 0.030 0.021 0.247 0.486 0.205 0.165 0.162
30 10,000 0.071 0.562 0.088 0.016 0.004 0.103 0.574 0.102 0.050 0.047

100 1000 0.035 0.270 0.054 0.023 0.018 0.195 0.355 0.173 0.158 0.156
100 10,000 0.020 0.529 0.039 0.009 0.004 0.064 0.540 0.064 0.048 0.047

BN 30 1000 0.061 0.054 0.022 0.009 0.010 0.127 0.113 0.100 0.099 0.100
30 10,000 0.058 0.050 0.022 0.003 0.003 0.068 0.064 0.037 0.030 0.030

100 1000 0.022 0.016 0.014 0.009 0.009 0.101 0.094 0.107 0.096 0.097
100 10,000 0.017 0.040 0.018 0.006 0.003 0.035 0.064 0.037 0.030 0.030

nq is the number of items per factor. In addition, AE: amortized joint maximum likelihood using the autoencoder; cJML: constrained joint maximum likeli
hood; nMML, dMML, wMML: marginal maximum likelihood using respectively a normal prior, a prior based on a Davidian curve of order 6, and an 
empirical histogram. For dMML and wMML, the results are obtained by fitting unidimensional models to each dimension separately.
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ran additional simulations using N ¼ 500 and nq 
equal to either 10, 15, 20, and 30. All other settings 
were the same as in the above, except that we 
decreased the number of nodes in the first hidden 
layer of the encoder, Qð1Þ to respectively 3, 5, and 8 
for 10; 15; and 20 items respectively (for nq ¼ 30 we 
used the same setting as above) as for these settings 
the configuration above inflated parameter bias.

Results are in Table 4. As can be seen, for the fac
tor scores nq ¼ 10 is already enough to outperform 
cJML and nMML in the normal and bimodal condi
tions in terms of absolute bias. However, for the log
normal condition, at least nq ¼ 15 is needed to reach 
a smaller absolute bias. For the factor loadings and 
thresholds, results indicate that the AE is generally 
associated with a smaller absolute bias for the factor 
loadings as compared to cJML, while cJML is gener
ally associated with a smaller absolute bias for the 
thresholds as compared to the AE. However, both 
joint estimation approaches perform worse as com
pared to MML in the case of N ¼ 500; except for 
nq ¼ 30; the AE has a smaller absolute bias in the 
non-normal conditions compared to nMML.

Finally, we also considered N ¼ 1000 (results are 
on the website of the first author) which indicated 
that for this sample size, 10 items and 15/20 items are 

sufficient for the AE to outperform cJML and nMML 
in terms of absolute bias of respectively the factor 
scores and factor loadings.

Conclusion/recommendation

The present results showed that, for factor score esti
mation, the AE generally has the smallest absolute 
bias, in particular in practical situation where n and 
N are modest. This is due to the other approaches 
suffering from shrinkage effects. This advantage of the 
AE comes at the expense of an increased RMSE.

For the item parameters, the non-normal MML 
approaches (dMML and wMML) generally perform 
best in all conditions in terms of absolute bias and 
RMSE. The AE produces less biased item parameter 
as compared to nMML and cJML in the lognormal 
condition and for sufficiently large sample sizes (at 
least 1000), but not in the normal and bimodal condi
tions. Thus, overall, it is recommendable that if the 
factor score estimation is the main aim of the study, 
the AE can be preferred over normal and non-normal 
MML or cJML approaches. If item parameter estima
tion is the main aim of the study, non-normal MML 
methods should be preferred. However, it should be 
noted that currently these approaches can only be 

Figure 6. Boxplot of the errors of the threshold estimates of the items loading on the first dimension for the condition with 30 
items per factor and 1000 subjects. The errors on the y-axis are ordered according to the item difficulty (true threshold value) on 
the x-axis. AE: amortized joint maximum likelihood using the autoencoder; cJML: constrained joint maximum likelihood; nMML, 
wMML: marginal maximum likelihood using respectively a normal prior and a prior based on a Davidian curve of order 6. Results 
for the histogram approach are not displayed as these are highly similar to the wMML results.
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applied to unidimensional models, which may be 
undesirable in some situations. For the approaches 
that do take the full item factor model into account 
(nMML, AE, and cJML), the AE can be preferred in 
skewed settings if the sample size is large enough, and 
cJML and nMML can be preferred in normal settings 
(including bimodal).

Applications

Application 1

Unidimensional binary item factor model
Data and model. We analyze the scores on the 40 
“choose a move A” items from the Amsterdam Chess 
Test (Van Der Maas & Wagenmakers, 2005). In each 

item, a configuration of chess pieces on the chess 
board is depicted. Subjects were instructed to select 
the next best move. Scores are correct (1) or incorrect 
(0). The sample consist of 234 amateur and profes
sional chess players. As a result, due to this heterogen
eity, the latent variable distribution is not expected to 
be normal. A mixture analysis confirms this: A two- 
class mixture latent variable model seems to fit some
what better (AIC: 7885; BIC: 8172; sample size 
adjusted BIC: 7909) than a baseline latent variable 
model without mixtures (AIC: 7888; BIC: 8165; sam
ple size adjusted BIC: 7911) at least according to the 
AIC and the sample size adjusted BIC. The latent 
variable mean and variance in the first class were 
fixed for identification reasons at a mean 0 and a vari
ance of 1. The class size for this first class was esti
mated to be 0.233. For the second class, the class size 
was estimated to be 0.767 with a latent variable mean 
and variance of respectively 0.992 and 0.105. Thus, 
these two classes can represent a relatively homogen
ous subgroup of professional chess players and a 
more heterogeneous subgroup of amateur chess play
ers. See Figure 7 for a plot of the implied latent vari
able distribution by the mixture model. As can be 
seen, the distribution is negatively skewed.

To the data we fit a unidimensional item factor 
model using the AE, cJML, nMML, and the impor
tance weighted autoencoder (iwVAE). We use the 
same procedure as in the simulation study with iden
tical settings for the optimization algorithms. For the 

Table 4. Mean absolute bias and Root Mean Squared Error 
(RMSE) for the estimates over replications and over subjects 
for the first dimension in the Normal condition (N), the 
Lognormal condition (LN) and the bimodal normal condition 
(BN) for N ¼ 500 and 10, 15, 20; or 30 items.

Mean absolute bias RMSE

Parameter nq Data AE cJML nMML AE cJML nMML

Factor scores 10 N 0.110 0.284 0.343 1.132 0.799 0.639
LN 0.396 0.370 0.358 1.393 0.950 0.652
BN 0.090 0.270 0.322 1.005 0.790 0.619

15 N 0.085 0.197 0.258 0.796 0.811 0.561
LN 0.242 0.288 0.280 1.383 0.904 0.589
BN 0.087 0.228 0.243 0.735 0.739 0.544

20 N 0.069 0.138 0.209 0.648 0.599 0.509
LN 0.109 0.202 0.231 0.902 0.806 0.542
BN 0.070 0.139 0.199 0.613 0.587 0.493

30 N 0.050 0.093 0.152 0.515 0.457 0.435
LN 0.074 0.280 0.171 0.587 0.697 0.473
BN 0.049 0.087 0.144 0.490 0.442 0.422

Factor loadings 10 N 1.953 2.583 0.026 13.26 4.538 0.233
LN 1.342 2.823 0.261 4.842 5.058 0.452
BN 0.495 2.630 0.096 3.630 5.318 0.216

15 N 0.070 1.227 0.019 0.570 4.081 0.197
LN 1.575 1.476 0.193 8.575 4.240 0.345
BN 0.070 1.136 0.075 0.513 3.922 0.199

20 N 0.031 0.425 0.019 0.241 1.586 0.185
LN 0.387 0.968 0.170 2.784 3.209 0.306
BN 0.024 0.356 0.060 0.213 1.049 0.177

30 N 0.022 0.179 0.016 0.193 0.293 0.169
LN 0.038 0.244 0.137 0.234 0.701 0.268
BN 0.020 0.170 0.047 0.180 0.273 0.164

Thresholds 10 N 0.465 0.141 0.034 1.091 0.414 0.187
LN 1.237 0.307 0.252 2.415 0.721 0.534
BN 0.375 0.108 0.045 0.908 0.418 0.159

15 N 0.207 0.132 0.027 0.429 0.654 0.173
LN 0.568 0.234 0.172 2.115 0.755 0.391
BN 0.174 0.169 0.034 0.345 0.533 0.148

20 N 0.140 0.118 0.017 0.259 0.360 0.159
LN 0.320 0.163 0.145 1.396 0.711 0.327
BN 0.114 0.106 0.031 0.222 0.353 0.142

30 N 0.087 0.080 0.017 0.198 0.200 0.154
LN 0.099 0.259 0.118 0.356 0.595 0.322
BN 0.072 0.067 0.020 0.175 0.179 0.137

AE: amortized joint maximum likelihood using the autoencoder; cJML: 
constrained joint maximum likelihood; nMML: marginal maximum likeli
hood using a normal prior.

Figure 7. Model implied latent variable distribution by a two- 
class mixture latent variable model.
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iwVAE we used the DeepIRTools Python package 
(Urban & He, 2022). We compare the results of the 
different approaches in the light of the simulation 
study results.

Results. First, the item parameters hardly show any 
differences between the different approaches with cor
relations between 0.95 and 0.99 for the factor loadings 
and with correlations of 0.99 and 1.00 for the thresh
old parameters. For the factor score estimates the 
results are more interesting: See Figure 8 for a histo
gram of the standardized factor score estimates in the 
different approaches. It seems that the estimates from 
the AE and cJML capture the heterogeneity in the 
chess data due to expertise better than MML and the 
iwVAE where the AE seems to outperform cJML in 
the sense that the factors scores for the AE are closer 
to the mixture distribution found in Figure 7. This is 
also confirmed by an actual mixture analysis of the 
standardized estimated factor scores, see Table 5. That 
is, for the AE estimates, a one-component normal 
mixture distribution is rejected in favor of a two-com
ponent normal mixture by both the AIC and BIC. For 
the factor scores obtained using MML and iwVAE, 
the one-component normal mixture model cannot be 

rejected, while for cJML, the results are mixed as the 
AIC favors the two-component normal mixture and 
the BIC favors the one-component normal mixture. 
Thus, due to the normal prior used in MML and the 
iwVAE, the factor score estimates are pushed into a 
normal distribution, by which it is masked that the 
distribution is better represented by a mixture distri
bution. This is more clear from the AE factor score 
estimates.

Note that the procedure followed above is not one 
that we would recommend in practice (estimating the 
factor scores first, then conduct a mixture analysis on 
the estimates). In addition, there may be a better rep
resentation of the chess factor score distribution than 
a two-component normal mixture. However, these 
analyses are intended to illustrate the benefits of the 
AE in providing distribution free estimates of the fac
tor scores underlying a psychometric dataset.

Application 2

Multidimensional ordinal item factor model
Data and model. Here we analyze a large scale per
sonality assessment. Specifically, we use the data on 
Cattel’s 16 factor personality test as retrieved from 

Figure 8. Histograms of the factor score estimates across the different approaches.
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openpsychometrics.org. These data consist of the 
responses of 49, 159 subjects to 163 personality items 
on a 5 point Likert scale. According to Cattel’s theory, 
these items measure 16 factors according to a simple 
structure.

To these data we fit a 16 dimensional ordinal item 
factor model using an AE for ordinal data as 
explained above. We use three different configurations 
of the encoder in Equation (13) to verify that the con
figuration that we have proposed in this paper is rela
tively robust for the choices made. That is, we 
focus on:

AE1: the autoencoder with 2 layers as described 
above and as studied in the simulation study;

AE2: similar as AE1 but with halve the number of 
nodes in layer 1;

AE3: similar as AE1 but with 3 layers, where layer 1 
and layer 2 have the same configuration as layer 1 
from AE1, and layer 3 has the same configuration as 
layer 2 from AE1.

For these autoencoders, all estimation settings are 
the same as discussed above for the simulation study, 
except that we use a learning rate of a ¼ 0:001 which 
is recommendable for models with many dimensions 
and many items (see also Urban & Bauer, 2021).

In addition, we fit unidimensional ordinal item fac
tor models using MML in R-package ltm (Rizopoulos, 
2006) to each dimension separately (referred to again 
as nMML). We do so because we failed to find a sta
ble solution for the full model (at least using stochas
tic imputation). We also fit unidimensional ordinal 
item factor models with a prior based on a Davidian 
curve using MML (dMML, similar as above) but 
results are comparable to the normal MML results, so 
these are not considered in the below.

Results. Table 6 contains the correlations among the 
factor score estimates across the different models for 
each dimension. As can be seen, across the autoen
coders, results are highly comparable indicating that 

the results are robust to the exact configuration of the 
encoder used.

Discussion

Methods from deep learning in general and the fixed- 
effects autoencoder and (importance weighted) vari
ational autoencoder in particular, are promising tools 
for the field of psychometrics. Previous work on the 
variational autoencoder has already demonstrated the 
benefits of these methods in terms of less computation 
time and less numerical challenges for increasing 
dimensionality of the models (e.g., Urban & Bauer, 
2021, C�uri et al., 2019). In this paper we illustrated 
how the fixed-effects autoencoder can provide distri
bution free amortized joint maximum likelihood esti
mates of item factor models. We showed that this 
approach is less biased in estimating factor scores as 
compared to other approaches. These benefits, how
ever, come with the cost of more parameter 
variability.

Table 5. Model fit and parameter estimates of the one- and two-component normal mixture model on the standardized factor 
scores estimates of the different approaches.

Estimates two-component model One-component Two-components

p1 l1 l2 r1 r2 AIC BIC AIC BIC

AE 0.555 −0.410 0.512 1.115 0.463 667.061 673.972 643.458 660.734
cJML 0.261 −1.180 0.416 0.667 0.725 667.061 673.972 664.320 681.597
iwVAE 0.507 −0.630 0.649 0.821 0.705 667.061 673.972 670.242 687.519
nMML 0.482 −0.670 0.625 0.820 0.699 667.061 673.972 669.520 686.797
wMML 0.804 −0.202 0.827 0.995 0.408 667.061 673.972 664.465 681.742
dMML 0.797 −0.203 0.797 0.999 0.434 667.061 673.972 665.277 682.553

p1 probability of class one; lc and rc mean and standard deviation of class c ¼ 1, 2: In addition, note that as we analyze the standardized estimates, the 
AIC and BIC are the same for all approaches in the one-component model.

Table 6. Correlations among the factor score estimates 
obtained using three autoencoders and univariate nMML for 
each dimension q of Cattel’s 16 dimensional personality test.

gpq correlations

q AE1-AE2 AE1-AE3 AE2-AE3 AE1-nMML AE2-nMML AE3-nMML

1 0.997 0.995 0.994 0.991 0.990 0.987
2 0.997 0.994 0.993 0.982 0.981 0.978
3 0.997 0.997 0.996 0.993 0.990 0.992
4 0.998 0.996 0.996 0.989 0.990 0.984
5 0.994 0.996 0.995 0.988 0.980 0.985
6 0.998 0.997 0.996 0.986 0.987 0.983
7 0.998 0.998 0.997 0.995 0.995 0.994
8 0.841 0.908 0.955 0.988 0.843 0.899
9 0.999 0.997 0.997 0.992 0.994 0.991
10 0.996 0.996 0.995 0.971 0.965 0.970
11 0.995 0.997 0.995 0.992 0.992 0.990
12 0.998 0.997 0.997 0.993 0.993 0.992
13 0.992 0.995 0.991 0.979 0.970 0.974
14 0.998 0.996 0.993 0.985 0.983 0.985
15 0.957 0.996 0.952 0.989 0.976 0.986
16 0.998 0.997 0.995 0.990 0.992 0.985

AE1: The autoencoder with 2 layers as proposed in this study and as 
studied in the simulation study. AE2: An autoencoder with 2 layers, but 
with halve the nodes in layer 1 as compared to AE1. AE3: An autoen
coder with 3 layers, see text.
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The increased parameter variability is due to the 
fixed-effects autoencoder being free of direct restric
tions of the parameter space, for instance by means of 
a normal prior distribution. Some existing work has 
been concerned with incorporating more flexible prior 
distributions in the item factor model including the 
skew-normal distribution (e.g., Azevedo et al., 2011; 
Molenaar et al., 2010; Smits et al., 2016), the Johnson 
distribution (van den Oord, 2005), and the log-beta 
distribution (Andersen & Madsen, 1977). In addition, 
semi-parametric approaches have been proposed based 
on mixture distributions (e.g., Haberman, 2005; 
Schmitt et al., 2006; Vermunt, 2004). Although these 
distributions are more flexible than the normal distri
bution used in marginal maximum likelihood and 
variational autoencoders, these existing approaches 
still impose restrictions on the factor score distribu
tion which may result in shrinkage in the factor score 
estimates (as we will demonstrate in this study) or 
parameter bias if an incorrect shape is used (e.g., 
Swaminathan & Gifford, 1983; Zwinderman & van 
den Wollenberg, 1990). In addition, most of these 
approach are computationally more demanding as 
compared to the present approach. Thus, in practice, 
it should thus be considered how comfortable one is 
with a given (non-)normal prior and how complex 
the resulting model becomes. If in doubt, the amor
tized methodology from this study can be of help.

In the simulation study, we explored the number of 
items for which the autoencoder still performed 
adequately. It turned out that, depending on the exact 
purpose and setting of the study, 10 or 15 items may 
be sufficient. However, for these smaller item num
bers, we downsized the configuration of the encoder 
as the configuration based on the general recommen
dation by Urban and Bauer (2021) -which worked 
well in the current study for 30 items and 1000 sub
jects- turned out to inflate bias in the case of fewer 
items and subjects. Future research should thus focus 
on general rules for the setup of the encoder for dif
ferent samples sizes, item numbers, and factor num
bers, especially for smaller datasets.

In general, the practical benefits of using the fixed- 
effects autoencoder for estimating item factor models 
lie in its computational speed, its non-parametric 
nature, and its flexibility. Thus, the autoencoder seems 
an appealing choice for fitting high dimensional mod
els to very large datasets (as illustrated in the second 
real data example where a 16 dimensional item factor 
model was fit on a dataset with over 50,000 subjects 
and 163 items), and/or for datasets for which hetero
geneity is expected (as was illustrated in the first real 

data example where two subgroups are more evident 
in the autoencoder factor scores as compared to the 
constrained approaches). In addition, in computerized 
adaptive settings, factor scores can be estimated by a 
straightforward evaluation of the encoder, without the 
need of additional algorithmic computations (e.g., 
maximizing a likelihood or sampling from the 
approximate posterior). In addition, the (variational) 
autoencoder framework naturally facilitates fitting 
more complex nonstandard item factor models with 
very flexible item characteristic curves by adding 
layers to the decoder part of the (variational) 
autoencoder.
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