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ABSTRACT

Neural networks like variational autoencoders have been proposed as a statistical tool to fit
item factor models to data. Advantages are that high dimensional models can be estimated
more efficiently as compared to conventional approaches. In this study, we demonstrate
advantages of a specific autoencoder as a tool for amortized joint maximum likelihood esti-
mation of item factor models. Contrary to contemporary joint maximum likelihood estima-
tion and marginal maximum likelihood estimation, no additional parameter constraints are
necessary to ensure standard asymptotic theory to apply. In a simulation study, the perform-
ance of the autoencoder is compared to constrained joint maximum likelihood and various
forms of marginal maximum likelihood under different distributions for the factor scores.
Results show that the amortized joint maximum likelihood estimates of the factors scores
are overall less biased as compared to the other approaches. We illustrate the use of the

autoencoder in two real data examples.

In psychometrics, confirmatory item factor models
have many practical uses including the assessment of
the psychometric properties of tests and question-
naires (e.g., Kline, 2013), accounting for individual
differences and measurement error in inferences about
theoretical constructs (e.g., Mellenbergh, 1994), test
equating (e.g., Kolen & Brennan, 2004), computerized
adaptive testing (e.g., Wainer et al., 2000), and model-
ing change over time (e.g, McArdle, 2009).
Estimation of confirmatory item factor models has
been dominated by variations of maximum likelihood
estimation (e.g., Andersen, 1970; Bock & Aitkin, 1981;
Cai, 2010; Kelderman & Rijkes, 1994; Klein &
Moosbrugger, 2000; Lawley, 1943; Verhelst & Glas,
1995), least squares estimation (e.g., Browne, 1974; Li,
2016; Muthén, 1984), and Bayesian estimation (Albert,
1992, Edwards, 2010; Fox & Glas, 2001; Martin &
McDonald, 1975). Although for continuous observed
indicators, estimation is relatively fast and easily
applied to high dimensional datasets, for discrete data,
estimation is arguably more challenging. Therefore,
recently a number of studies have focused on the
development of estimation approaches for categorical

data that are computationally less demanding. Here
we focus on developments with respect to joint max-
imum likelihood estimation and estimation based on
models from the field of deep learning.

Joint maximum likelihood, originally considered
for item response theory models by Birnbaum (1968),
has recently been rediscovered as a fast and practical
estimation approach. Specifically, in joint maximum
likelihood both the person and the item parameters
are assumed fixed effect parameters by which they are
estimated simultaneously. As a result, no numerical
integration is required which makes approaches like
marginal maximum likelihood and Bayesian estima-
tion computationally demanding. However, in tradi-
tional joint maximum likelihood, the number of free
parameters increases linearly with the sample size
which violates standard asymptotic theory causing
the parameter estimates to be inconsistent (e.g.,
Haberman, 1977). Recently, solutions have been pro-
posed involving either constraining (Chen et al., 2019)
or regularizing (Bergner et al, 2022) the person and
item parameters.
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Other recent studies have used models from the
field of deep learning. In deep learning, latent variables
are used in so-called deep neural networks to capture
complex non-linear functions between observed
dependent and observed independent variables to pre-
dicted future data (Goodfellow et al., 2016). Although
the latent variables in neural networks and the latent
variables in item factor models are used for different
purposes, the models are intrinsically the same. For
instance, Curi et al. (2019, see also Converse et al.,
2021) and Urban and Bauer (2021) focused on fitting
item factor models for respectively binary items scores
(Birnbaum, 1968; Lord, 1952) and ordinal item scores
(Samejima, 1969; Takane & De Leeuw, 1987) by means
of a variational autoencoder (Kingma & Welling,
2013). In these variational autoencoder item factor
models, the factor scores are subject to a multivariate
normal prior distribution, and the resulting posterior
distribution of the factor scores is approximated by an
(importance weighted) normal distribution where the
mean and log-standard deviation depend non-linearly
on the observed data. During the estimation of vari-
ational autoencoders, a value is drawn from the normal
approximate posterior (Converse et al., 2021; Curi
et al., 2019) or from the importance weighted normal
approximate posterior (Urban & Bauer, 2021) to
replace the unknown factor scores during optimization.
In doing so, fitting item factor models to categorical
data is generally faster as compared to marginal max-
imum likelihood (Urban & Bauer, 2021).

Current work on joint maximum likelihood and
variational autoencoders as an approach to item factor
analysis has mainly focused on the computational
advantages: shorter estimation time and increased flexi-
bility with respect to the dimensionality of the models
as compared to maximum likelihood estimation. This
paper is motivated by a statistical advantage: We dem-
onstrate how an fixed-effects autoencoder (Goodfellow
et al, 2016) can be conceived as an amortized joint
maximum likelihood estimator for item factor models.
That is, we consider an autoencoder where the factor
scores are considered fixed effects similar to joint max-
imum likelihood and contrary to variational autoen-
coders where the factors are random effects. Desirable
properties of such a fixed-effects autoencoder are that
(1) contrary to joint maximum likelihood and similar
to variational autoencoders, the number of parameters
does not depend on the sample size; and (2) contrary
to joint maximum likelihood, marginal maximum like-
lihood, and the wvariational autoencoder, the fixed-
effects autoencoder avoids direct constraints on, or reg-
ularizing of, the parameter space.

The fixed-effects autoencoder has been proposed
before as a tool to fit item factor models by Guo et al.
(2017) and Converse et al. (2019). Both Guo et al. and
Converse et al. conducted small simulation studies to
demonstrate the viability of the autoencoder to estimate
the DINA model (Guo et al,, 2017) and the two-par-
ameter logistic item response theory model (Converse
et al., 2019). Converse et al found large bias and rela-
tively small correlations between the true and estimated
item response theory parameters for the autoencoder,
but not for the variational autoencoder, which may
indicate problems related to identification. Therefore,
here, we expand on this work in several ways. First, we
derive the autoencoder item factor model more for-
mally as an amortized joint maximum likelihood
approach of which the properties are known. Next, we
study the identification of the model and propose a
default configuration for the amortization part of the
autoencoder. Furthermore, we study the performance
of the autoencoder as compared to joint maximum
likelihood, and various forms of marginal maximum
likelihood under practical and (double approximate)
asymptotic settings. Finally, we demonstrate that the
autoencoder produces less biased factor score estimates
as compared to the constrained approaches.

Theoretically, our incentive to study the fixed-effects
autoencoder as an estimation approach next to vari-
ational autoencoders is to increase understanding of
the theoretical relation between neural networks for
deep learning and latent variable models for psycho-
metric inference. It has already demonstrated that the
variational autoencoder is the autoencoder counterpart
of the marginal maximum likelihood factor model
framework. In the present study we demonstrate how
the fixed effects autoencoder is the autoencoder coun-
terpart of the joint maximum likelihood factor model
framework. A thorough understanding of such relations
among models from psychometrics and deep learning
will ideally benefit both fields of research. For instance,
in the field of deep learning many well-established effi-
cient and fast algorithms exist that can potentially be
used for various psychometric purposes that are cur-
rently challenging due to numerical demands, while in
psychometrics many powerful tools for statistical infer-
ences and model fit exists from which deep learning
applications can importantly benefit. In addition, the
modeling frameworks developed within psychometrics
can help the field of artificial intelligence in their work
on more explainable and interpretable models (explain-
able artificial intelligence; e.g., Arrieta et al., 2020).

Practically, the fixed-effects autoencoders has a num-
ber of benefits, some of which are illustrated in the



present study. First, we will show that due to the non-
parametric nature of the autoencoder, for normal popu-
lation distributions and finite samples, there is no
shrinkage effects in the factor score estimates, while
these effects are common for marginal and joint max-
imum likelihood approaches. Related, for non-normal
population distributions (e.g., due to heterogeneous
subpopulations) and finite samples, there is less bias in
the factor score estimates as compared to approaches
assuming a normal distribution in the population (e.g.,
marginal maximum likelihood and the variational
autoencoder) or impose similar constraints (as in regu-
larized joint maximum likelihood and constrained joint
maximum likelihood). Next, as opposed to variational
autoencoders, fixed-effects autoencoders do not involve
sampling during estimation which can be time consum-
ing (especially in the case of multiple chains and many
importance samples). Finally, after fitting an autoen-
coder, factor scores can be calculated for new, incom-
ing, data from the same population without additional
estimation, while for importance weighted variational
autoencoders this would involve additional sampling.

The outline is as follows: First, we present the item
factor model and marginal and joint maximum likeli-
hood estimation of its parameters. Next, we present the
fixed-effects autoencoder and demonstrate its relation
to joint maximum likelihood and the variational
autoencoder. We first focus on binary data, and show
how this approach extension straightforwardly to polyt-
omous data. Next, we present a simulation study in
which we compare the performance of the fixed-effects
autoencoder to the performance of constrained joint
maximum likelihood estimation (Chen et al., 2019),
and various forms of marginal maximum likelihood
estimation (Cai, 2010; Chalmers, 2012) in a three
dimensional item factor model with binary items. We
consider different shapes of the factor score distribution
and compare the parameter recovery of the different
approaches. We then present two real data examples
respectively illustrating the use of the autoencoder in
recovering the factor score distribution and illustrating
a robustness analysis of a 16 dimensional autoencoder
for ordinal items to different configurations of the
encoder. We end with a general discussion.

Item factor models

In the next sections we first focus on the item factor
model for binary data  (Birnbaum, 1968;
Christoffersson, 1975; Muthén, 1978; Takane & De
Leeuw, 1987) but the principles discussed are appli-
cable to all models in the generalized linear item
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response theory framework (Mellenbergh, 1994;
Moustaki & Knott, 2000) for continuous latent varia-
bles. For ordinal data we explicitly demonstrate this in
a separate section. If X denotes a matrix of stacked
vectors Xg = [%p1, ..., Xpn) containing the item scores of
person p =1,..,N on items i = 1,...,n, then the dis-
tribution of x, under the item factor model is:

£ (xpinp) = P(xps = 1) ™ x [1 = P = 1, )]~

(1)

with
P(xpi = 1) = ®(=7i + A/n, 2)
in which n, is the vector of factor scores with ele-

ments 7,, indexed by g=1,..,K, 17; is a threshold
parameter for item i, ®(.) is the cumulative standard
normal distribution function, and A; is a vector of dis-
crimination parameters or factor loadings for item i
with elements ;. We assume throughout this paper
that a sufficient number of elements of A; is set to
zero to avoid rotational indeterminacy (we will return
to this point later). In addition, we have omitted an
item specific residual variance parameter for reasons
of identification (although such a parameter can be
identified in ordinal data, see e.g., Mehta et al., 2004;
Millsap & Yun-Tein, 2004; Molenaar et al., 2012).

Marginal maximum likelihood

Marginal maximum likelihood estimation of the
model above is conducted by maximizing the log-mar-
ginal likelihood of X with respect to the unknown
parameter vector

MML MML ;\’MML ;\‘MML
» M s Ay

O = |77, s By vec(Zy)

where p, and X, are respectively the mean vector and
the covariance matrix of the factor scores in the mar-
ginal maximum likelihood specification of the item
factor model, m)"". Specifically, the log- marginal
likelihood function is given by

{(Opmr; X) = ilogj J

11s (xpiInfML)g (nﬁm) dn*M

i=1
in which g(.) is a multivariate normal distribution.
The model can be identified by fixing n, to a vector

of zeros and the diagonal elements of X, to 1. To
evaluate the log-marginal likelihood function above,

3)
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the integral needs to be approximated using, for
instance, numerical quadrature (e.g., Bock & Aitkin,
1981) or stochastic imputation (Cai, 2010). As a
result, the factor scores )" are no free model
parameters but can be estimated in a second step by
for instance empirical Bayes estimation or expected
posterior scoring. Marginal maximum likelihood with
numerical approximation of the integrals in the likeli-
hood function is practically feasible but becomes
numerically challenging for increasing the number of
latent variable dimensions and increasing sample size.

Joint maximum likelihood

In joint maximum likelihood, the factor scores m*
are considered fixed effects and estimated simultan-
eously with the thresholds and loadings. If the joint
maximum likelihood parameter vector is given by

O = [ DM M M M ], the
joint likelihood of the data matrix X is given by
N n
/(OJML; X) = Z logf(xpim{)ML). (4)
p=1i=1

The advantage of joint maximum likelihood so is
that no distributional assumption is needed for )"
and that the procedure is generally much faster as
compared to marginal maximum likelihood where the
approximation of the integrals is time consuming. A
disadvantage is that, for fixed n, the number of
parameters in 0y increases linearly with N (i.e., the
number of elements in 0y, equals 2n 4+ N) by which
standard asymptotic theory does not apply and the
estimates are inconsistent as a result (Haberman,
1977). In addition, for subjects/items with strict 0 or 1
scores in the rows/columns of X, no parameter esti-
mates exist.

To solve the above, Chen et al. (2019) constrained
the parameter space in the following way

L+ <8 and /22 P < 8
(5)

where ||.||> denotes the squared P-norm, and S is
commonly set to 5K2 as a default but can in principle
be set to any sufficiently large number (see Chen
et al., 2019). Chen et al. demonstrated that the param-
eter estimates are consistent in the double asymptotic
case (both N and n approach infinity). To enforce the
constraints in Equation 5, Chen et al used a projected
gradient descent algorithm to estimate the parameters.
In each iteration of this algorithm, the parameters are
transformed to a feasible parameter space using a

projection function. Bergner et al. (2022) achieved
similar constraints by focusing on regularizing the
parameters using the squared [*-norm, that is

N

/Opa; X) = > > logf(xpm)™)

p=1i=1

N n n
—Y | N+l P+ DM A
p=1 i=1 i=1

(6)
where V is a tuning parameter that can be determined
by cross-validation. Note that both approaches are
similar in the restrictions that are imposed on the
P-norms of the parameters, although they are
enforced in a different way (i.e., by projection versus
regularization) and are person/item specific in
Equation (5) but not in Equation (6) (i.e., ¥ is not
person or item specific). These restrictions effectively
impose a normal prior on both the person and the
item parameters in the likelihood function. This is
well known for I*-regularization in Equation (6) and
can be shown in a similar way for Equation (4) sub-
ject to the projection in Equation (5) by focusing on
the Lagrangian function. Specifically, the restrictions

2
in Equation (5) can be reformulated as HHII)MLH <

$? — 1. This adds a term CP(H m™? - 8 + 1) to the

Lagrangian -where (,, is a person specific Lagrange multi-
plier- which, like regularized joint maximum likelihood
in Equation (6), can be construed as a normal prior
term. The main difference between constrained joint
maximum likelihood and regularized joint maximum
likelihood from this perspective is that regularized joint
maximum likelihood is equivalent in form to having a
uniform normal prior on all the parameters, where con-
strained joint maximum likelihood is equivalent in form
to having separate normal priors, one for each set of
parameters. Note that the constrained joint maximum
likelihood approach is not assuming a normal prior, but
the effect of the constraints is in form equivalent to
imposing such priors. Thus both constrained joint max-
imum likelihood and regularized joint maximum likeli-
hood are effectively not fully distribution free.

The effect of these constraints diminishes if N — oo
and n — oo by which these joint maximum likelihood
schemes obtain their asymptotically consistency.
However, similar to prior distributions in a Bayesian
sense, the effects of these constraints may be notable in
finite samples and for finite items (which we also dem-
onstrate in the simulation study). Therefore, below, we
show how autoencoders can be used for amortized joint



maximum likelihood estimation without direct con-
straints on the person and item parameters.

Autoencoders

The key of autoencoders is that the data is first
encoded into so-called hidden nodes. These nodes are
organized in layers [=1,...,L and collected in
Q") -dimensional vector zf(,l). At layer [, z}(,l) is given by

2 = 40 <b(1) —|—A(l)z}(,l_l)) 7

(0)

where zp0 =X, = [xpl,...,xpn]T and Q© = . In add-

ition, h)(.) is the encoding function at layer I, b? is
the Q¥ vector of encoding intercepts at layer I, and A%

is the Q¥ by Q=) matrix of encoding slopes at layer .
After the final layer, L, predictions for the observed data

in x, are obtained from hidden variables zl(,L) by
I (L)
k(s 12" ®

where x; is a vector of model predictions with elements

Xy, k(.) is the decoding function, 8 is a n-dimensional
vector of decoding intercepts, and I' is a n by QW
matrix of decoding slopes with rows y,. See Figure 1 for
a graphical representation of the autoencoder including

the encoding and decoding equations.
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The autoencoder above can be configured in such a
way that, under certain conditions, it is theoretically
equivalent to the joint maximum likelihood specifica-
tion in Eq., 1, 2, and 4. To demonstrate this, we first
specify Q) =K, k(.) to be a cumulative standard
normal distribution function ®(.), and we denote z[(,L)
by 02, 6; by —7/F and v; by AF. Then for a given
item i, the decoder in Equation (8) simplifies to

Gmo( 0 o

with binary cross entropy

N

H(X,X) = - Z Xn:xpilog (x;i) + (1 = xpi)log (1 - x;i).

p=1 i=1
(10)

where X' is the model predicted data matrix which
consists of the stacked x,...,xy/ vectors which are a
function of parameter vector

O0ar = | 0%, ., T 0AE L AE B, b,

(11)
vec(A(U), e vec(AD) |

Note that, if n)" = w)"'" for all p, the negative bin-
ary cross entropy in Equation (10) is equal to the joint
likelihood function in Equation (4).

Layer 0 Layer 1 Layer | Layer L
(€] (L)
Zz(;? = Ry Zyq Zpy xz’)1
0 (€] L) ’
Zz(m) = Xpn Z,0® 2w Xpn

z;l) = (b(l’ + A(l)ZS])) Zé---) = ) (b[---) +A(~->z§))

2®) = 1) (b0 + ACI26) xp = k(8+12)

Figure 1. Graphical representation of the autoencoder including the encoder and decoder functions.
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Amortized inference

Thus, the autoencoder and joint maximum likelihood
item factor model coincide if nﬁE = néML for all p. To
understand the condition for which this holds, it is
important to note that in the autoencoder, n* is not
a free model parameter. That is, n)* is amortized
(e.g., Marino et al, 2018) which means that nﬁE is
modeled as a (non-linear) function of the item scores
with the parameters of this function common to all
subjects p. Thus,

1" = v(x;0,()) (12)

where v(.) is referred to as the inference model and
has a parameter vector 0,(). In the autoencoder, the
inference model v(.) is the multilayer encoder given
by Equation (7). That is, n,* is amortized by

" = v(%pi Ou)
— 0 (b(” 4 AR (b<L—1> +A<L—1>h(L‘2)(...xp))).
(13)

Consequently, the encoder in Equation (13)
approximates " up to a precision depending on the
configuration of the nodes and layers zl(,l) to Z}(,U in
Equation (7). That is, the approximation depends
effectively on the number of nodes, Q¥ the number
of layers L, and the nature of the encoding functions
used in each layer, h('(.).

Hence, the autoencoder above is a joint maximum
likelihood approach with parameters n{,ML amortized
by v(.) in Equation (13). Key advantage of doing so is
that instead of KN free w)“"-parameters to be esti-
mated using (constrained) joint maximum likelihood,
n,* is parameterized by S, QPQEY 1) free
parameters in the autoencoder, which does not
depend on N. Thus, for fixed n, QU, .., QL) sample
size can grow to infinity without problems.

The function in Equation (13) needs to be specified
so that it is sufficiently flexible to cover the parameter
space of 1,, but needs to be sufficiently parsimonious
to avoid overfitting (which will generally occur if the
number of parameters in 0, will be larger than N).
Fortunately, Urban and Bauer (2021) provide useful
recommendations which we will adopt in the simula-
tion study and the real data applications, we elaborate
on these recommendations in those sections.

As mentioned above, a common challenge to the
joint maximum likelihood of binary data is that for
subjects and items with strictly 0 or 1 scores, no par-
ameter estimates exist. As discussed above, in their
joint maximum likelihood approach Chen et al
(2019) solved this issue by directly constraining the

item and person parameter space by Equation (5). In
the autoencoder, the parameter space of nﬁE is also
constraint but in an indirect way by the amortization
in Equation (13). As a result, the effect on the param-
eter space is milder as compared to direct constraints
like prior constraints and regularization (as we also
demonstrate in the simulation study below). In add-
ition, n)* has a natural upper and lower bound that

follow from plugging in a vector of respectively ones
and zeros for x,. For instance, for the very simple

model where L = 1 and h)(.) is a linear function (i.e.,
;" is a linear transformation of x,), the lower bound

of n?E is equal to bV and the upper bound is equal to

b + SUM(AM). As parameters b\ also occurs in the
likelihood of other response patterns it is identified (given
Equations (14) and (15)). Note that for items with strict
Zero Or one scores no item parameter estimates exist
(similarly to e.g., marginal maximum likelihood).

Identification

The autoencoder itself is not identified yet as a linear
transformations of ;" can be absorbed in " and
A and produce the same likelihood. For constrained
and regularized joint maximum likelihood, the model
is identified by the constraints and regularization
respectively. For the autoencoder, no identification
restrictions have been proposed yet. As the autoen-
coder does not include scale and location parameters
for the factor score distribution, the model can’t be
identified by fixing the mean and variance of the fac-
tor scores (as is common in item factor analysis).
Therefore, we propose to identify the model using the
following constraints on tA¥ and A2%:

[T =1 (14)

icF,

for each ¢, and

PR (15)

icF,

for each q where F, is the set of items that have a
non-zero loading on factor q (assuming a simple
structure see below).

In addition to these two constraints, as already
mentioned before, we assume that sufficient elements
in %%, ., 24F are constrained to 0 to avoid rotational
indeterminacy. Specifically, similarly to traditional
(item) factor analysis,

K(K — 1) factor loadings need to be constrained (in

addition to the constraint in Equation (14)) to make



the factor structure just identified. The resulting model
is an exploratory item factor model for which the matrix
AP} could be rotated to facilitate interpretation. The
autoencoder presented here is equally amenable to such
an exploratory use. However, in the present simulation
and applications, we focus on a more confirmatory use
in which A** follows a simple structure.

Note that Equation (14) makes sure that the geo-
metric mean of the absolute factor loadings is equal to
1. Due to the absolute operator, the factor loadings
/lgE are still allowed to be smaller than 0, which is for
instance desirable in applications to personality items
where contra-indicative items are used (see real data
application 2). In addition, that Equation (15) ensures
that the arithmetic mean of the thresholds is equal to
0. These identification constraints are not new and
have been used before in item response theory model-
ing to identify a two parameter model (see e.g.,
Albert, 1992; De Jong et al., 2008). They are sufficient
to identify parameters 15", /lf‘qE, and t#f from the
decoder (given sufficient constraints on /If‘qE as dis-
cussed above). That is, with these constraints in place,
there is only one set of decoder parameter estimates
that optimizes the binary cross entropy in Equation
(10). However, the parameters from the encoder are
not unique so that there may be multiple functions
v(.) in Equation (12) that result in the same n?E.
However, this is unproblematic for the present pur-
pose as the encoder parameters underlying v(.) are
not of direct interest. In fact, it can be proven using
the asymptotic theory of concentrated likelihoods that
given the encoder parameters in v(.), the decoder
parameters /IIAqE , and t4f follow standard asymptotic
theory (see Grasman, 2004, Appendix C). Note that
the non-uniqueness of the encoder is not an exclusive
property of the fixed effects autoencoder approach,
the same applies to the (importance weighted) vari-
ational autoencoder as studied by Urban and Bauer
(2021) and Cauri et al. (2019).

Alternative scales

The identification constraints above preclude direct
comparison of the results from the autoencoder with
results from other estimation techniques that use differ-
ent identification constraints. To enable a comparison,
the results need to be transformed to a common scale.
One can either focus on the standardized parameter esti-
mates, or on a transformation of the autoencoder results
to the scale of the other estimation technique.

First, the standardized parameter estimates, are
obtained largely in the same way as in traditional item
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factor analysis, i.e. (note that we assume simple struc-
ture as discussed above),

~z /qugn
Ulq -
762 + a2
iq 1y &
and
T
~z i
T, = >
52 .0 5
/Lqu'nq + 0%

where superscript z indicates a standardized param-
eter, and a hat indicates a parameter estimate obtained
using the estimation technique and identification con-
straints of choice. In these equations, agis the variance
of the error which is commonly not estimated (as
mentioned before) but depends on the link function
for traditional item factor models, and on the activa-
tion function in the decor for the autoencoder. For
the probit link or normal ogive activation function
02 =1 and for a logit link or logistic activation func-

. 2 N .
tion ag = . Furthermore, 0;27 denotes the variance of
q

factor q which is an explicit parameter in the case of
marginal maximum likelihood (i.e., in that case it is
diagonal element g from X, in the multivariate nor-
mal density g(.) in Equation (3)). In the case of the

autoencoder, 6’% = VAR(ﬁ?f). The standardized fac-

tor loading estimates above have the appealing prop-
erty that they can be interpreted as the biserial
correlation among the item score and the factor score.

Second, to transform the autoencoder results to the
scale used in another estimation technique, it is useful
to note that due to Equations (14) and (15), for the

autoencoder it holds that E(ﬁﬁf) =1 i and

1y i€F, Oy ig

1
SD(ﬁ?f) = (HiquV“iqD% where n, is the number of
elements in F; (i.e., the number of items loading on fac-
tor g). Using these results, the autoencoder parameter
estimates can be transformed to a scale of choice. For
instance, to transform the autoencoder results to the
marginal maximum likelihood scale where E(n%ML) =

0 and VAR(n%ML> =1 for all g, the marginal max-

~ MML
imum likelihood estimates (/™" and Aig ) can be

plugged in for 7; and /; (note that oy, = 1) and the
expressions for E(ﬁ?j) and VAR (ﬁ;‘f) given above

~AE

A AE .
can be used to transform 4, ,7;", and ng‘f to the mar-

ginal maximum likelihood scale (using the general
admissible scale transformation T} = 7; + AizE(1,,),

and }V;q = 2igSD(1pq))-
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The above two transformations can be used to put
the parameter estimates on the same scale across
methods. As the different methods discussed above
(constrained/regularized/amortized joint maximum
likelihood, and marginal maximum likelihood) all
involve the same likelihood function, f(x(n,), but
different constraints on the parameters, the trans-
formed parameters will show discrepancies across
methods. Asymptotically these discrepancies are
expected to diminish as the effects of the constraints
diminish for increasing N and n. Therefore, the item
factor model parameters enjoy the same theoretical
interpretation across methods. For finite samples,
there may be differences across the different methods,
which should be interpreted in terms of the differen-
ces in the constraints adopted in the specific methods.

Estimation

We fit the final model in Equation (9) with n;}E given
in Equation (13) by minimizing the binary cross
entropy in Equation (10) with respect to the unknown
parameters in vector 04r (see Equation (11)). As the
negative binary cross entropy is equivalent to the like-
lihood function, this procedure is the same as max-
imum likelihood estimation. There are multiple
algorithms possible to optimize the likelihood func-
tion. Common iterative algorithms use starting values
for the parameters, determine a step size and the dir-
ection of the optimum of the likelihood function, and
update the parameters using this step size and direc-
tion. The step size can be determined using function
evaluations only (e.g., Nelder-Mead algorithm), using
the gradients of the likelihood function only (e.g.,
quasi-Newton algorithm), or using both the gradients
and the Hessian of the likelihood function (e.g.,
Newton-Raphson algorithm). In this study, we use the
AMSgrad algorithm (Reddi et al., 2019) which utilizes
exponential moving averages of the gradients of the
likelihood to determine the direction and step size in
each iteration of the algorithm, that is:

m
eAE(t) _ eAE(t—l) — _f (16)
Vi
where « is a sufficiently small constant referred to as
the learning rate and ¢ indexes the iterations of the
algorithm. In addition:

= pim,_; + (1 - B)g,
= Byvicr + (1= By)g; (17)
v; = max(V,_1,v;)

m
V,

~ X

where g, is the vector of gradients of the likelihood
function, and where f3; and f3, are between 0 and 1 and

can be used to tune the algorithm. In the simulation
section, we discuss default values for o, f8;, and f,.

Gradient projection

In the AMSgrad algorithm above, we introduce the
identification constraints from Equations (14) and
(15) by rescaling the factor loadings and threshold
parameters after each iteration (i.e., a gradient projec-
tion method; Nocedal & Wright, 2006, p. 485). For
numerical feasibility, the factor loadings are rescaled
on a log-scale to prevent overflow, that is:

1 ¢N,,
A;.q = sign(Zig) X log{exp (log (Miq’) - ;Z |/biq|> }
7=

Note that rescaling of the factor loadings and thresh-
olds only forces the algorithm to iterate to a specific
maximum of the likelihood function where the geomet-
ric mean of the factor loadings equals 1 and the arith-
metic mean of the thresholds equals 0. That is, it does
not complicate the likelihood function further. Gradient
project methods are known to converge slowly in the
case of complex non-linear constraints, but as our con-
straints are relative simply, we did not encounter any
issues with respect to convergence.

Ordinal data

The models above have been presented for binary
data. If xp; is an ordinal variable with C categories, we
code the item scores using vector y,; with elements
Ypic for ¢ =1,...,C — 1. Specifically

Ypic = 1 if x5 > c and  ypic = 0 otherwise.  (18)

for instance if C=5 and x5 =3, yuc =[1,1,1,0].
Then, the item factor model for y; can be given by:

Ypic 1=ypic
£ () = P (e = 1) [1 = P (s = 1m3") |

(19)
with
AE AE ae\" Ak
P(ype = 1) = o =i+ (1) i) o)
where tif is the c-th threshold parameter of item i.

Due to the coding, it holds that " <. <t

which reflect the ordered nature of the data. It can be
shown that the resulting model for x,; is:

T
P<Xpi = C|nﬁE> = (I)< - T?CE + (X?E) T]?E)
_(D< - T:%fﬂ) + (3) T"?E>

with t4F = —oco and with 74¥ = oo, which is the more
familiar form of the ordinal item factor model



(Samejima, 1969; Takane & De Leeuw, 1987). Thus,
the above amortized joint likelihood
approach is equally amenable to ordinal data, by
applying the autoencoder in Equation (9) (10), and
(13) on the y, variables. Note that this involves
equating the factor loadings A*f to be equal across
Vpic from the same item (i€, Ypirs- s Ypi(c-1))-
Alternatively, one can directly plug the likelihood of
x, based on Equation (19) into the loss function in
Equation (10) which is an equivalent approach.

maximum

Relation to variational autoencoders

A variational autoencoder item factor model is
obtained by replacing 1] in the model above by
n,*¥, a stochastic parameter for which its means and
standard deviations are a deterministic functions of

the nodes from the previous layers, i.e., z‘g) to z;,L b,

In the variational autoencoder, I]I‘,’AE is assumed to fol-
low a multivariate standard normal prior distribution
(Kingma & Welling, 2013), p(n,”"). The model is fit
to data using a variational inference framework (e.g.,
Gelman et al., 1995) by running W Monte Carlo
chains in which R samples from an approximate pos-
terior distribution of m)**,q(n,**|x,) are combined
into an importance weighted estimate of the log-
likelihood. Distribution q(.) can be any continuous
distribution but is commonly specified to be a multi-
variate normal distribution (see e.g., Converse et al.,
2021; Curi et al,, 2019; Urban & Bauer, 2021). That is

iy’ ~ a(n)**x, ) = MYN(w,, diag(a;))  (21)

where nl‘;‘i‘f is used to denote importance sample r =

1,..,Rin chain w = 1, ..., W. The means and log-stand-
ard deviations in distribution g(.) are functions of the
previous layers comparable as in the encoder in
Equation (13), that is:

=y (b + AL (22)

Ina, = hy () + CVf ) (23)

where hy(.) is the encoding function for the means of
n,*", and h,(.) is the encoding function for the log-
transformed standard deviations of n,*. Note that in
the fixed-effects autoencoder, it is the factor scores that
are amortized, while for the variational autoencoder it
is the mean and standard deviation of the approximate
posterior of the factor scores being amortized.

Using the above, the observed data is decoded

from nl\frﬁf using
T
Ky = 0= T4 (0.745) A, (24)

MULTIVARIATE BEHAVIORAL RESEARCH 665

where o(.) is commonly a logistic function. If the
variational autoencoder parameter vector is given by

>

VAE VAE 4 VAE VAE 1 L
OVAE:[‘L'I e TVAE QVAE G VAE (1) p(D)

d(l), o d(L>, vec(Am), o vec(A(L)),
vec(C<1>), e vec(Cm)}

then the estimates for these parameters are obtained
by maximizing the importance weighted estimate of
the likelihood, p(x;), that is:

N w R_p AE|x
H:Z%Z log;r 1qEnpAE Z; P(Xp) |- (25)

where p( VAL |xp> is the true posterior evaluated at

samples 1, VAL but which does not need to be evaluated

explicitly as p(nprw |xp)p(xp) = p(npm ,xp). For R =
1, the model above is referred to as variational
autoencoder (Kingma & Welling, 2013) and is studied
as an item factor model by Curi et al. (2019),
Converse et al. (2019), and Converse et al. (2021). For
R>1, the model is referred to as importance
weighted variational autoencoder (Burda et al., 2015)
and is studied as item factor model by Urban and
Bauer (2021). If R — oo, Equation (25) is equivalent
to marginal maximum log-likelihood estimation (see
Appendix A from Burda et al., 2015).

The autoencoder as studied here can be obtain
from the (importance weighted) variational autoen-
coder by two restrictions: First, by fixing 6, to 0 for
all p, the posterior of n,*" is a discrete distribution of
the 2" x K possible Values in p,. As a result, we can
use R=1and W =1 as each sample from g(n,*"[x,)
will be identical for each p. In such a case, Equatlon
(25) reduces to:

H= pzN;log< (xanAE)) ‘KL(‘i( 1)l VAE))

(26)

where KL(.) is the Kullback-Leibler divergence. That

is, Y

p(nXAE). That is, at this point, the model in Equation

is still constrained by a normal prior,

(26) is an autoencoder with a normal prior constraint
on nl‘)’AE. Therefore, a final step in obtaining the
autoencoder as used in the present study, is to omit
the prior distribution on m;** after which H is

equivalent to —H(X, X ) in Equation (10).
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Simulation study

A key advantage of the autoencoder proposed here is
that it, contrary to constrained/regularized joint max-
imum likelihood, marginal maximum likelihood and
the variational autoencoder, it precludes distributional
assumptions about the model parameters. Therefore,
in the simulation study below, we study the parameter
recovery of the amortized joint maximum likelihood
estimator as compared to the approaches above under
normal and non-normal factor distributions.

Design

Following Chen et al. (2019) we incorporate condi-
tions in our design that approximate the single and
double asymptotic situation. That is, we use a con-
firmatory 3 factor model with a simple structure, bin-
ary item scores, and either n, =30 items per factor
(reflecting a more practical setting) or n, = 100 items
per factor (reflecting an approximate asymptotic set-
ting). The sample size is either N = 1000 (practical
setting) or N = 10,000 (approximate asymptotic set-
ting). The binary item scores are generated according
to the item factor model in Equations (1) and (2) and
where, for all g, Npq follows either a multivariate nor-
mal distribution, a lognormal distribution with u =10
and o = 0.4, or a (bimodal) normal mixture distribu-
tion with y;, = -1, u, =2, 1 =1, g, = 0.5, and class
probabilities 7; = 0.8 and m, = 0.2. The correlations
among the dimensions are 0.4. See Figure 2 for the
resulting distribution of the first dimension in the dif-
ferent scenarios. In simulating the data, the true par-
ameter values are fixed for both the item parameters
and the person parameters. The factor loadings are
fixed to 4, = 1 for all items loading on factor g, and
the thresholds 7; are fixed to equally spaced increasing
values between —3 and 3 (normal condition), —5 and
2 (lognormal condition), or —2.5 and 2.5 (bimodal
condition). The true 1, parameter values are obtained
by the quantile functions of the factor distribution in
the corresponding conditions (i.e., normal, lognormal,
normal mixture) evaluated on a vector of increasing
equally spaced numbers in the interval (0, 1). The
resulting true 1, are standardized to facilitate compar-
isons across different approaches (see below). We con-
ducted 100 replications of the above design.

Models and estimation

Autoencoder
As discussed above, the configuration of the encoder
should be done with care as the resulting function

Normal condition

>
2
g 8
U- =
o
L B
(o
| | | | | | |
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Figure 2. Latent variable distributions used in the different
conditions in the simulation study. In this figure N = 1000.

for the amortization in Equation (13) needs to be
flexible enough but should not result in overfitting.
Urban and Bauer (2021) provide useful recommenda-
tions which they base on Heaton (2008) and that
generally work well. Specifically, following the work
by Urban and Bauer into the variational autoencoder
item factor model (see above), we use L = 2 with an
elu-function for k(1 (.), a linear function for h®(.),



and QWY :ﬂooren—l-%Q(z)). From the simulation
study results below, it turns out that in the condi-
tions considered, these choices are satisfactory. In
addition, in the real data example below, we illustrate
how the robustness of these choices can be studied.
We find that, for the data at hand, results are not
affected by changes in the encoder. Note that Q) =
K =3 which is the dimensionality of the factor
model used in the present study.

In the decoder, we use a logistic activation function
(instead of the normal ogive function in Equation 9)
so that the final model becomes:

Xy = w( — 7+ (k?E)Tn;‘E) (27)

with 43" being amortized by
0 = b 1 Al (b + Ay, ) (28)

where A® is n x QV)-dimensional, b® is QV)-dimen-
sional, A is QU x 3-dimensional, and b is
3-dimensional. See Figure 3 for a graphical representa-
tion of the above configuration of the amortized item
factor model for n, = 30.

Layer 0 Layer 1 Layer 2
) _ (1) (@) _ AE
z,’ = xp z z, =1y Xy
!
Xp1
% Xp30
\,/I;
D '%) ,
Nt ol
/‘"L"é
4 YK
ks
x!
p60
x!
p61
r
Xpoo

X, = w(~ + AMEngE)

z5) = elu® + Ax,)

ﬂﬁg =b® 4+ A(Z)Z;U

Figure 3. Graphical representation of the configuration of the
autoencoder item factor model as used in the simulation study
in the condition of ng = 30.
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We implemented this autoencoder (AE) using the
Python package “Keras” (Chollet et al., 2015). The
script to fit the model is available from the website of
the first author. We used the AMSgrad algorithm
(Reddi et al., 2019) in Equations (16) and (17) above
to minimize Equation (10). We take a difference of
le-8 in H (Equation (10)) between consecutive itera-
tions as an indication of convergence. In addition, we
set f;, = 0.9 and f, = 0.999 which can be considered
default values (see Reddi et al., 2019; Urban & Bauer,
2021). In addition, we follow Urban and Bauer (2021)
and set the learning rate o = 0.005. We allowed for a
maximum of 60,000 iterations, but all cases in all
conditions converged far before this maximum with-
out issues.

Other approaches

Besides the AE, we also fit the item factor model to
the simulated data using: constrained joint maximum
likelihood (cJML), marginal maximum likelihood
(MML) with a normal prior distribution (nMML),
MML with a prior distribution based on a Davidian
curve of order 6 (AMML; Woods & Lin, 2009), and
MML with the factor distribution approximated by a
histogram as proposed by Bock and Aitkin (1981) and
Woods (2007; wMML). We do not consider the
importance weighted variational autoencoder as these
estimates are close to the nMML estimates (for suffi-
ciently large W and R, see above).

The ¢cJML estimates are obtained using the R pack-
age “mirtjml” (Zhang et al., 2020) using S = 5VK =
8.66 in Equation 5 (which is the default value of the
package) and with a tolerance of 0.001 (default of the
package is 5 which may be too lenient for the present
study). In addition, the nMML, dMML, and wMML
estimates are obtained using the EM algorithm as
implemented in the R package “mirt” (Chalmers,
2012), where dMML and wMML are applied to each
dimension separately (as the full 3 dimensional factor
model is numerically too demanding for these
approaches).

Factor scores

An important aspect of the present study is to see
how the factor scores, n,, are being recovered by the
estimates of the autoencoder as compared to the other
approaches. For ¢JML, the factor scores are model
parameters that are estimated directly during model
estimation. For the MML approaches, the factor scores
are estimated ad-hoc using expected a posteriori esti-
mation with quasi Monte Carlo integration. For the
autoencoder, factor scores can be obtained by the
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non-linear transformation of the observed item scores
in Equation (28).

In the “mirtjml” package, the cJML estimates are
transformed to a scale comparable to that of MML.
However, as also discussed above with respect to iden-
tification, the parameters from the AE are on a differ-
ent scale due to Equations (14) and (15). We
therefore used the transformations above (see para-
graph ‘alternative scales’, but using the true parameter
values to allow potential parameter bias to still be vis-
ible) to transform the AE estimates to that same scale.

Results

In the below, we discuss the results of the simulation
study. We focus on the results with respect to the first
factor. In tables, we present results with respect to the
mean absolute bias and the root mean square error
(RMSE) for all conditions. In addition, in figures, we
visualize the results for the conditions with N = 1000
and n; = 30 to demonstrate the effects of the prior
constraints (MML) and the constraints on the param-
eters norms (cJML) on the estimates. Generally, these
effects diminish for increasing N and n,.

Factor scores

Table 1 depicts the mean absolute bias and RMSE
across the conditions in the simulation study for the
factors score estimates of the first factor. As can be
seen the AE outperforms all other methods in terms
of absolute bias at the expense of a larger RMSE. For
the MML based approaches and cJML, the bias in the
estimates is related to a shrinkage effect. See Figure 4
which displays the errors of the factor score estimates

of the first dimension in the condition N = 1000 and
ng = 30. The errors are ordered on the true factor
score values. As can be seen, for the MML based
approaches and for cJML, values in the lower tail of
the factor score distribution are overestimated, and
values in the upper tail are underestimated. This
shrinkage effect is common in models like these and
is due to the prior distribution (MML) and due to the
constraints on the norm (cJML). This effect dimin-
ishes for both MML and ¢JML if the number of items
increase. Most importantly, the AE does not suffer
from such an effect. For cJML, there is bias in the log-
normal condition which is related to the shrinkage
effect of the thresholds (which are pulled to 0, see
below).

Factor loadings

Table 2 depicts the mean absolute bias and the RMSE
across the conditions in the simulation study for the
factor loading estimates of the items loading on the
first factor. For these estimates, the non-normal MML
approaches outperform the other approaches in both
the absolute bias and RMSE. The AE outperforms
¢JML and nMML in terms of both the absolute bias
and RMSE. See Figure 5 which displays the errors of
the factor loadings for the items that load on the first
dimension in the condition N = 1000 and n,; = 30.
The errors are ordered on the true item threshold
value. As can be seen wMML and AE are relatively
robust for the different distributions, while the nMML
estimates are biased in the lognormal and bimodal
conditions. The ¢cJML estimates show some bias in all
conditions, due to the constraint on the norm of the
loadings which pulls the estimates toward 0.

Table 1. Mean absolute bias and Root Mean Squared Error (RMSE) for the factor score estimates over replications and over sub-
jects for the first dimension in the Normal condition (N), the Lognormal condition (LN) and the bimodal normal condition (BN).

Mean absolute bias RMSE
Data ng N AE cJML nMML dMML wMML AE cJML nMML dMML wMML
N 30 1000 0.049 0.088 0.153 0.151 0.151 0.511 0.453 0.435 0.434 0.434
30 10,000 0.055 0.089 0.153 0.152 0.152 0.509 0.450 0.434 0.433 0.433
100 1000 0.022 0.033 0.031 0.053 0.054 0.269 0.260 0.273 0.256 0.256
100 10,000 0.025 0.034 0.031 0.054 0.054 0.269 0.258 0.270 0.255 0.255
LN 30 1000 0.080 0.415 0.170 0.162 0.164 0.584 0.655 0.472 0.464 0.463
30 10,000 0.085 0.538 0.172 0.162 0.163 0.577 0.732 0.472 0.463 0.462
100 1000 0.031 0.302 0.046 0.055 0.062 0.300 0.422 0.303 0.283 0.281
100 10,000 0.031 0.529 0.047 0.056 0.062 0.297 0.607 0.302 0.282 0.281
BN 30 1000 0.052 0.087 0.143 0.136 0.140 0.489 0.439 0.419 0.417 0.417
30 10,000 0.053 0.086 0.144 0.137 0.139 0.481 0.435 0.417 0.416 0.416
100 1000 0.024 0.033 0.032 0.036 0.049 0.258 0.249 0.266 0.246 0.245
100 10,000 0.025 0.047 0.035 0.036 0.048 0.254 0.252 0.263 0.245 0.244

ng is the number of items per factor. In addition, AE: amortized joint maximum likelihood using the autoencoder; cJML: constrained joint maximum likeli-
hood; nMML, dMML, wMML: marginal maximum likelihood using respectively a normal prior, a prior based on a Davidian curve of order 6, and an

empirical histogram. For dMML and wMML, the results are obtained by fitting unidimensional models to each dimension separately.
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Figure 4. Plot of the errors of the factor score estimates of the first dimension for the condition with 30 items per factor and
1000 subjects. The errors on the y-axis are ordered according to their true factor scores on the x-axis. AE: amortized joint max-
imum likelihood using the autoencoder; cJML: constrained joint maximum likelihood; nMML, wMML: marginal maximum likelihood
using respectively a normal prior and a prior based on a Davidian curve of order 6. Results for the histogram approach are not dis-
played as these are highly similar to the wMML results.

Table 2. Mean absolute bias and Root Mean Squared Error (RMSE) for the factor loadings estimates over replications and over
subjects for the first dimension in the Normal condition (N), the Lognormal condition (LN) and the bimodal normal
condition (BN).

Mean absolute bias RMSE

Data Ng N AE ML nMML dMML wMML AE cJML nMML dMML wMML
N 30 1,000 0.013 0.157 0.010 0.010 0.010 0.133 0.210 0.117 0.120 0.120
30 10,000 0.009 0.148 0.003 0.003 0.003 0.043 0.157 0.037 0.038 0.038

100 1000 0.012 0.066 0.082 0.009 0.010 0.113 0.138 0.131 0.110 0.110

100 10,000 0.004 0.050 0.086 0.003 0.003 0.035 0.062 0.092 0.034 0.034

LN 30 1000 0.031 0.227 0.142 0.028 0.018 0.163 0.310 0.211 0.142 0.142
30 10,000 0.020 0.196 0.134 0.022 0.004 0.053 0.206 0.143 0.048 0.042

100 1000 0.014 0.073 0.059 0.011 0.011 0.121 0.153 0.135 0.117 0.119

100 10,000 0.008 0.058 0.062 0.012 0.003 0.041 0.072 0.077 0.040 0.038

BN 30 1000 0.012 0.134 0.046 0.010 0.011 0.120 0.188 0.116 0.108 0.109
30 10,000 0.005 0.143 0.044 0.009 0.004 0.040 0.151 0.057 0.037 0.036

100 1000 0.009 0.045 0.094 0.019 0.010 0.106 0.114 0.133 0.104 0.104

100 10,000 0.003 0.046 0.102 0.023 0.002 0.032 0.057 0.106 0.039 0.031

ng is the number of items per factor. In addition, AE: amortized joint maximum likelihood using the autoencoder; cJML: constrained joint maximum likeli-
hood; nMML, dMML, wMML: marginal maximum likelihood using respectively a normal prior, a prior based on a Davidian curve of order 6, and an
empirical histogram. For dMML and wMML, the results are obtained by fitting unidimensional models to each dimension separately.

Thresholds slightly smaller absolute bias in the log-normal condi-
Table 3 depict the mean absolute bias and the RMSE  tion. The cJML approach in turn, has smaller absolute
across the conditions in the simulation study for the  bias and RMSE as compared to the AE in the normal
threshold estimates of the items loading on the first ~ and bimodal conditions with a smaller number of
factor. The non-normal MML approaches again out-  items. The AE outperforms the cJML approach in the
perform the other approaches in terms of both abso-  case of a larger number of items and in all cases with
lute bias and RMSE. In addition, the nMML a lognormal distribution for the factor scores. The
outperforms the AE and cJML generally in terms of = cJML estimates of the thresholds are systematically
both absolute bias and RMSE, although the AE has a  biased in the lognormal condition. This is due to the
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Figure 5. Boxplot of the errors of the factor loading estimates of the items loading on the first dimension for the condition with
30 items per factor and 1000 subjects. The errors on the y-axis are ordered according to the item difficulty (true threshold value)
on the x-axis. AE: amortized joint maximum likelihood using the autoencoder; cJML: constrained joint maximum likelihood; nMML,
wMML: marginal maximum likelihood using respectively a normal prior and a prior based on a Davidian curve of order 6. Results
for the histogram approach are not displayed as these are highly similar to the wMML results.

Table 3. Mean absolute bias and Root Mean Squared Error (RMSE) for the threshold estimates over replications and over subjects
for the first dimension in the Normal condition (N), the Lognormal condition (LN) and the bimodal normal condition (BN).

Mean absolute bias RMSE

Data ng N AE cJML nMML dMML wMML AE cJML nMML dMML wMML
N 30 1000 0.076 0.053 0.010 0.011 0.011 0.145 0.128 0.107 0.109 0.109
30 10,000 0.072 0.047 0.002 0.002 0.002 0.082 0.063 0.033 0.033 0.033

100 1000 0.026 0.050 0.007 0.009 0.009 0.110 0.131 0.110 0.104 0.104

100 10,000 0.022 0.022 0.003 0.003 0.003 0.041 0.042 0.036 0.033 0.033

LN 30 1000 0.077 0.381 0.104 0.030 0.021 0.247 0.486 0.205 0.165 0.162
30 10,000 0.071 0.562 0.088 0.016 0.004 0.103 0.574 0.102 0.050 0.047

100 1000 0.035 0.270 0.054 0.023 0.018 0.195 0.355 0.173 0.158 0.156

100 10,000 0.020 0.529 0.039 0.009 0.004 0.064 0.540 0.064 0.048 0.047

BN 30 1000 0.061 0.054 0.022 0.009 0.010 0.127 0.113 0.100 0.099 0.100
30 10,000 0.058 0.050 0.022 0.003 0.003 0.068 0.064 0.037 0.030 0.030

100 1000 0.022 0.016 0.014 0.009 0.009 0.101 0.094 0.107 0.096 0.097

100 10,000 0.017 0.040 0.018 0.006 0.003 0.035 0.064 0.037 0.030 0.030

ng is the number of items per factor. In addition, AE: amortized joint maximum likelihood using the autoencoder; cJML: constrained joint maximum likeli-
hood; nMML, dMML, wMML: marginal maximum likelihood using respectively a normal prior, a prior based on a Davidian curve of order 6, and an
empirical histogram. For dMML and wMML, the results are obtained by fitting unidimensional models to each dimension separately.

true thresholds having a mean smaller than 0 in this
condition, while the cJML constraints on the norm of
the threshold parameters pull the estimates to 0. See
Figure 6 which displays the errors of the factor load-
ings for the items that load on the first dimension in
the condition N = 1000 and n; = 30. The errors are
ordered on the true item threshold value.

It should be noted that for the AE, the recovery of
the threshold parameters is somewhat worse for
smaller N and #n as compared to the recovery of the

discrimination parameters which is not typical for
MML based estimation of item factor models. This is
due to the slight bias in the factor scores (see Table 1)
which is -due to the absence of a prior- compensated
in the thresholds.

Additional simulations

To see if the pattern of results above holds for a
smaller sample size and for smaller item numbers, we
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Figure 6. Boxplot of the errors of the threshold estimates of the items loading on the first dimension for the condition with 30
items per factor and 1000 subjects. The errors on the y-axis are ordered according to the item difficulty (true threshold value) on
the x-axis. AE: amortized joint maximum likelihood using the autoencoder; cJML: constrained joint maximum likelihood; nMML,
wMML: marginal maximum likelihood using respectively a normal prior and a prior based on a Davidian curve of order 6. Results
for the histogram approach are not displayed as these are highly similar to the wMML results.

ran additional simulations using N =500 and n,
equal to either 10, 15, 20, and 30. All other settings
were the same as in the above, except that we
decreased the number of nodes in the first hidden
layer of the encoder, Q) to respectively 3,5, and 8
for 10, 15, and 20 items respectively (for n, = 30 we
used the same setting as above) as for these settings
the configuration above inflated parameter bias.

Results are in Table 4. As can be seen, for the fac-
tor scores n, = 10 is already enough to outperform
¢JML and nMML in the normal and bimodal condi-
tions in terms of absolute bias. However, for the log-
normal condition, at least n, = 15 is needed to reach
a smaller absolute bias. For the factor loadings and
thresholds, results indicate that the AE is generally
associated with a smaller absolute bias for the factor
loadings as compared to cJML, while cJML is gener-
ally associated with a smaller absolute bias for the
thresholds as compared to the AE. However, both
joint estimation approaches perform worse as com-
pared to MML in the case of N =500, except for
ng =30, the AE has a smaller absolute bias in the
non-normal conditions compared to nMML.

Finally, we also considered N = 1000 (results are
on the website of the first author) which indicated
that for this sample size, 10 items and 15/20 items are

sufficient for the AE to outperform ¢JML and nMML
in terms of absolute bias of respectively the factor
scores and factor loadings.

Conclusion/recommendation

The present results showed that, for factor score esti-
mation, the AE generally has the smallest absolute
bias, in particular in practical situation where n and
N are modest. This is due to the other approaches
suffering from shrinkage effects. This advantage of the
AE comes at the expense of an increased RMSE.

For the item parameters, the non-normal MML
approaches (AMML and wMML) generally perform
best in all conditions in terms of absolute bias and
RMSE. The AE produces less biased item parameter
as compared to nMML and ¢JML in the lognormal
condition and for sufficiently large sample sizes (at
least 1000), but not in the normal and bimodal condi-
tions. Thus, overall, it is recommendable that if the
factor score estimation is the main aim of the study,
the AE can be preferred over normal and non-normal
MML or ¢JML approaches. If item parameter estima-
tion is the main aim of the study, non-normal MML
methods should be preferred. However, it should be
noted that currently these approaches can only be
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Table 4. Mean absolute bias and Root Mean Squared Error
(RMSE) for the estimates over replications and over subjects
for the first dimension in the Normal condition (N), the
Lognormal condition (LN) and the bimodal normal condition
(BN) for N =500 and 10, 15,20, or 30 items.

Mean absolute bias RMSE

Parameter ng Data AE <dML nMML AE <ML nMML

Factor scores 10 N 0.110 0.284 0343 1.132 0799 0.639
LN 039 0370 0358 1393 0950 0.652
BN 0090 0270 0322 1.005 0.790 0.619

15 N 0.085 0.197 0.258 0.796 0.811 0.561
LN 0242 0288 0280 1383 0904 0.589
BN 0.087 0228 0243 0.735 0739 0.544
20 N 0.069 0.138 0.209 0.648 0.599 0.509
LN 0.109 0202 0231 0.902 0.806 0.542
BN 0070 0.139 0.199 0.613 0.587 0.493
30 N 0.050 0.093 0.152 0515 0.457 0.435
LN 0074 0280 0.171 0.587 0.697 0473
BN 0049 0.087 0.144 0490 0.442 0422

Factor loadings 10 N 1953 2583 0.026 13.26 4.538 0.233
LN 1342 2823 0261 4842 5.058 0452
BN 0495 2630 009 3.630 5318 0.216

15 N 0.070 1.227 0.019 0570 4.081 0.197
LN 1575 1476 0.193 8575 4.240 0.345
BN 0070 1.136 0.075 0.513 3.922 0.199
20 N 0.031 0425 0.019 0.241 1586 0.185
LN 0387 0968 0.170 2.784 3.209 0.306
BN  0.024 0356 0.060 0.213 1.049 0.177
30 N 0.022 0.179 0.016  0.193 0.293 0.169
LN 0.038 0244 0.137 0.234 0701 0.268
BN 0.020 0.170 0.047 0.180 0.273 0.164

Thresholds 10 N 0465 0.141 0.034 1.091 0414 0.187
LN 1237 0307 0252 2415 0721 0.534
BN 0375 0.108 0.045 0.908 0418 0.159

15 N 0207 0.132 0.027 0429 0.654 0.173
LN 0568 0234 0.172 2115 0755 0.391
BN 0174 0.169 0.034 0345 0533 0.148
20 N 0.140 0.118 0.017  0.259 0360 0.159
LN 0320 0.163 0.145 139 0711 0327
BN  0.114 0.106 0.031 0.222 0353 0.142
30 N 0.087 0.080 0.017 0.198 0.200 0.154
LN 0099 0259 0.118 0356 0595 0322
BN 0072 0.067 0020 0.175 0.179 0.137

AE: amortized joint maximum likelihood using the autoencoder; cJML:
constrained joint maximum likelihood; nMML: marginal maximum likeli-
hood using a normal prior.

applied to unidimensional models, which may be
undesirable in some situations. For the approaches
that do take the full item factor model into account
(nMML, AE, and ¢JML), the AE can be preferred in
skewed settings if the sample size is large enough, and
¢JML and nMML can be preferred in normal settings
(including bimodal).

Applications
Application 1

Unidimensional binary item factor model

Data and model. We analyze the scores on the 40
“choose a move A” items from the Amsterdam Chess
Test (Van Der Maas & Wagenmakers, 2005). In each

0.4
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0.0

T T T T T
-4 -2 0 2 4

e

Figure 7. Model implied latent variable distribution by a two-
class mixture latent variable model.

item, a configuration of chess pieces on the chess
board is depicted. Subjects were instructed to select
the next best move. Scores are correct (1) or incorrect
(0). The sample consist of 234 amateur and profes-
sional chess players. As a result, due to this heterogen-
eity, the latent variable distribution is not expected to
be normal. A mixture analysis confirms this: A two-
class mixture latent variable model seems to fit some-
what better (AIC: 7885; BIC: 8172; sample size
adjusted BIC: 7909) than a baseline latent variable
model without mixtures (AIC: 7888; BIC: 8165; sam-
ple size adjusted BIC: 7911) at least according to the
AIC and the sample size adjusted BIC. The latent
variable mean and variance in the first class were
fixed for identification reasons at a mean 0 and a vari-
ance of 1. The class size for this first class was esti-
mated to be 0.233. For the second class, the class size
was estimated to be 0.767 with a latent variable mean
and variance of respectively 0.992 and 0.105. Thus,
these two classes can represent a relatively homogen-
ous subgroup of professional chess players and a
more heterogeneous subgroup of amateur chess play-
ers. See Figure 7 for a plot of the implied latent vari-
able distribution by the mixture model. As can be
seen, the distribution is negatively skewed.

To the data we fit a unidimensional item factor
model using the AE, ¢JML, nMML, and the impor-
tance weighted autoencoder (iwVAE). We use the
same procedure as in the simulation study with iden-
tical settings for the optimization algorithms. For the
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Figure 8. Histograms of the factor score estimates across the different approaches.

iwVAE we used the DeepIRTools Python package
(Urban & He, 2022). We compare the results of the
different approaches in the light of the simulation
study results.

Results. First, the item parameters hardly show any
differences between the different approaches with cor-
relations between 0.95 and 0.99 for the factor loadings
and with correlations of 0.99 and 1.00 for the thresh-
old parameters. For the factor score estimates the
results are more interesting: See Figure 8 for a histo-
gram of the standardized factor score estimates in the
different approaches. It seems that the estimates from
the AE and cJML capture the heterogeneity in the
chess data due to expertise better than MML and the
iwVAE where the AE seems to outperform cJML in
the sense that the factors scores for the AE are closer
to the mixture distribution found in Figure 7. This is
also confirmed by an actual mixture analysis of the
standardized estimated factor scores, see Table 5. That
is, for the AE estimates, a one-component normal
mixture distribution is rejected in favor of a two-com-
ponent normal mixture by both the AIC and BIC. For
the factor scores obtained using MML and iwVAE,
the one-component normal mixture model cannot be

rejected, while for cJML, the results are mixed as the
AIC favors the two-component normal mixture and
the BIC favors the one-component normal mixture.
Thus, due to the normal prior used in MML and the
iwVAE, the factor score estimates are pushed into a
normal distribution, by which it is masked that the
distribution is better represented by a mixture distri-
bution. This is more clear from the AE factor score
estimates.

Note that the procedure followed above is not one
that we would recommend in practice (estimating the
factor scores first, then conduct a mixture analysis on
the estimates). In addition, there may be a better rep-
resentation of the chess factor score distribution than
a two-component normal mixture. However, these
analyses are intended to illustrate the benefits of the
AE in providing distribution free estimates of the fac-
tor scores underlying a psychometric dataset.

Application 2

Multidimensional ordinal item factor model

Data and model. Here we analyze a large scale per-
sonality assessment. Specifically, we use the data on
Cattel’s 16 factor personality test as retrieved from
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Table 5. Model fit and parameter estimates of the one- and two-component normal mixture model on the standardized factor

scores estimates of the different approaches.

Estimates two-component model

One-component Two-components

s Iy 1 o1 ) AlC BIC AlC BIC
AE 0.555 —0.410 0.512 1.115 0.463 667.061 673.972 643.458 660.734
ML 0.261 -1.180 0.416 0.667 0.725 667.061 673.972 664.320 681.597
iwVAE 0.507 —0.630 0.649 0.821 0.705 667.061 673.972 670.242 687.519
nMML 0.482 —0.670 0.625 0.820 0.699 667.061 673.972 669.520 686.797
wMML 0.804 —0.202 0.827 0.995 0.408 667.061 673.972 664.465 681.742
dMML 0.797 —0.203 0.797 0.999 0.434 667.061 673.972 665.277 682.553

m, probability of class one; u, and o, mean and standard deviation of class ¢ = 1, 2. In addition, note that as we analyze the standardized estimates, the

AIC and BIC are the same for all approaches in the one-component model.

openpsychometrics.org. These data consist of the
responses of 49,159 subjects to 163 personality items
on a 5 point Likert scale. According to Cattel’s theory,
these items measure 16 factors according to a simple
structure.

To these data we fit a 16 dimensional ordinal item
factor model using an AE for ordinal data as
explained above. We use three different configurations
of the encoder in Equation (13) to verify that the con-
figuration that we have proposed in this paper is rela-
tively robust for the choices made. That is, we
focus on:

AEl: the autoencoder with 2 layers as described
above and as studied in the simulation study;

AE2: similar as AE1 but with halve the number of
nodes in layer 1;

AE3: similar as AE1 but with 3 layers, where layer 1
and layer 2 have the same configuration as layer 1
from AEl, and layer 3 has the same configuration as
layer 2 from AEL.

For these autoencoders, all estimation settings are
the same as discussed above for the simulation study,
except that we use a learning rate of o = 0.001 which
is recommendable for models with many dimensions
and many items (see also Urban & Bauer, 2021).

In addition, we fit unidimensional ordinal item fac-
tor models using MML in R-package 1tm (Rizopoulos,
2006) to each dimension separately (referred to again
as nMML). We do so because we failed to find a sta-
ble solution for the full model (at least using stochas-
tic imputation). We also fit unidimensional ordinal
item factor models with a prior based on a Davidian
curve using MML (dMML, similar as above) but
results are comparable to the normal MML results, so
these are not considered in the below.

Results. Table 6 contains the correlations among the
factor score estimates across the different models for
each dimension. As can be seen, across the autoen-
coders, results are highly comparable indicating that

Table 6. Correlations among the factor score estimates
obtained using three autoencoders and univariate nMML for
each dimension g of Cattel’s 16 dimensional personality test.

1lpq COrrelations

q AE1-AE2 AE1-AE3  AE2-AE3  AE1-nMML  AE2-nMML  AE3-nMML
1 0.997  0.995 0.994 0.991 0.990 0.987
2 0997  0.9% 0.993 0.982 0.981 0.978
3 0.997  0.997 0.996 0.993 0.990 0.992
4 0998  0.99 0.996 0.989 0.990 0.984
5 0.994  0.996 0.995 0.988 0.980 0.985
6 0998  0.997 0.996 0.986 0.987 0.983
7 0.998  0.998 0.997 0.995 0.995 0.994
8 0.841 0.908 0.955 0.988 0.843 0.899
9 0.999  0.997 0.997 0.992 0.994 0.991
10 099  0.99 0.995 0.971 0.965 0.970
1 0.995  0.997 0.995 0.992 0.992 0.990
120998  0.997 0.997 0.993 0.993 0.992
130992 0.99 0.991 0.979 0.970 0.974
14 0998 0.99 0.993 0.985 0.983 0.985
15 0957  0.99 0.952 0.989 0.976 0.986
16 0998  0.997 0.995 0.990 0.992 0.985

AE1: The autoencoder with 2 layers as proposed in this study and as
studied in the simulation study. AE2: An autoencoder with 2 layers, but
with halve the nodes in layer 1 as compared to AE1. AE3: An autoen-
coder with 3 layers, see text.

the results are robust to the exact configuration of the
encoder used.

Discussion

Methods from deep learning in general and the fixed-
effects autoencoder and (importance weighted) vari-
ational autoencoder in particular, are promising tools
for the field of psychometrics. Previous work on the
variational autoencoder has already demonstrated the
benefits of these methods in terms of less computation
time and less numerical challenges for increasing
dimensionality of the models (e.g., Urban & Bauer,
2021, Cari et al,, 2019). In this paper we illustrated
how the fixed-effects autoencoder can provide distri-
bution free amortized joint maximum likelihood esti-
mates of item factor models. We showed that this
approach is less biased in estimating factor scores as
compared to other approaches. These benefits, how-
ever, come with the cost of more parameter
variability.



The increased parameter variability is due to the
fixed-effects autoencoder being free of direct restric-
tions of the parameter space, for instance by means of
a normal prior distribution. Some existing work has
been concerned with incorporating more flexible prior
distributions in the item factor model including the
skew-normal distribution (e.g., Azevedo et al., 2011;
Molenaar et al., 2010; Smits et al., 2016), the Johnson
distribution (van den Oord, 2005), and the log-beta
distribution (Andersen & Madsen, 1977). In addition,
semi-parametric approaches have been proposed based
on mixture distributions (e.g., Haberman, 2005;
Schmitt et al., 2006; Vermunt, 2004). Although these
distributions are more flexible than the normal distri-
bution used in marginal maximum likelihood and
variational autoencoders, these existing approaches
still impose restrictions on the factor score distribu-
tion which may result in shrinkage in the factor score
estimates (as we will demonstrate in this study) or
parameter bias if an incorrect shape is used (e.g.,
Swaminathan & Gifford, 1983; Zwinderman & van
den Wollenberg, 1990). In addition, most of these
approach are computationally more demanding as
compared to the present approach. Thus, in practice,
it should thus be considered how comfortable one is
with a given (non-)normal prior and how complex
the resulting model becomes. If in doubt, the amor-
tized methodology from this study can be of help.

In the simulation study, we explored the number of
items for which the autoencoder still performed
adequately. It turned out that, depending on the exact
purpose and setting of the study, 10 or 15 items may
be sufficient. However, for these smaller item num-
bers, we downsized the configuration of the encoder
as the configuration based on the general recommen-
dation by Urban and Bauer (2021) -which worked
well in the current study for 30 items and 1000 sub-
jects- turned out to inflate bias in the case of fewer
items and subjects. Future research should thus focus
on general rules for the setup of the encoder for dif-
ferent samples sizes, item numbers, and factor num-
bers, especially for smaller datasets.

In general, the practical benefits of using the fixed-
effects autoencoder for estimating item factor models
lie in its computational speed, its non-parametric
nature, and its flexibility. Thus, the autoencoder seems
an appealing choice for fitting high dimensional mod-
els to very large datasets (as illustrated in the second
real data example where a 16 dimensional item factor
model was fit on a dataset with over 50,000 subjects
and 163 items), and/or for datasets for which hetero-
geneity is expected (as was illustrated in the first real
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data example where two subgroups are more evident
in the autoencoder factor scores as compared to the
constrained approaches). In addition, in computerized
adaptive settings, factor scores can be estimated by a
straightforward evaluation of the encoder, without the
need of additional algorithmic computations (e.g.,
maximizing a likelihood or sampling from the
approximate posterior). In addition, the (variational)
autoencoder framework naturally facilitates fitting
more complex nonstandard item factor models with
very flexible item characteristic curves by adding
layers to the decoder part of the (variational)
autoencoder.
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