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ABSTRACT
Popular measures of reliability for a single-test administration include coefficient a, coefficient
k2, the greatest lower bound (glb), and coefficient x. First, we show how these measures can
be easily estimated within a Bayesian framework. Specifically, the posterior distribution for
these measures can be obtained through Gibbs sampling – for coefficients a, k2, and the glb
one can sample the covariance matrix from an inverse Wishart distribution; for coefficient x
one samples the conditional posterior distributions from a single-factor CFA-model.
Simulations show that – under relatively uninformative priors – the 95% Bayesian credible
intervals are highly similar to the 95% frequentist bootstrap confidence intervals. In addition,
the posterior distribution can be used to address practically relevant questions, such as “what
is the probability that the reliability of this test is between .70 and .90?”, or, “how likely is it
that the reliability of this test is higher than .80?” In general, the use of a posterior distribution
highlights the inherent uncertainty with respect to the estimation of reliability measures.

KEYWORDS
Bayesian reliability
estimation; Cronbach’s
alpha; Guttman’s lambda-2;
greatest lower bound;
McDonald’s omega; inverse
Wishart distribution

Reliability analysis aims to disentangle the amount of
variance of a test score that is due to systematic influences
(i.e., true-score variance) from the variance that is due to
random influences (i.e., error-score variance; Lord &
Novick, 1968). The most straightforward way to quantify
the proportion of true-score variance is by correlating
two administrations of the same test to the same group of
people under exactly the same conditions. By definition,
this correlation equals the test-score reliability. Thus, reli-
ability provides an idea as to what happens if a test is
readministered. That is, what results would be obtained if
one could replicate the measurement procedure in the
same group as if nothing had changed compared to the
first measurement, except for changes in random error.

Reliability is a general concept that is relevant
across a range of different designs, such as test-retest,
inter-rater, and single-test designs. In practice,
researchers often have data from only a single test
administration rather than multiple administrations,
and thus have to estimate reliability from the data col-
lected by means of a single test version.

A reliability analysis serves three purposes. First,
researchers wish to confirm that their measures are reli-
able. To do so, practitioners usually choose an estimator,

commonly coefficient a (Cronbach, 1951) and obtain a
point estimate, which is compared to a cutoff value to
determine bad, sufficient, or good reliability (Oosterwijk
et al., 2019). Second, reliability, by itself, does not inform
us about the precision with which an individual is meas-
ured. For that, one needs the standard error of the unob-
servable individual’s distribution of test-score
replications. In practice, one uses the standard error of
measurement (sem) for this purpose. The sem indicates
the standard deviation of the measurement error in the
group of interest and is often interpreted as an estimate
of measurement precision (Mellenbergh, 1996). The sem
is calculated as sem ¼ SDðXÞ ffiffiffiffiffiffiffiffiffiffiffi

1� q
p

, where SD(X) is
the standard deviation of the test score X and q is the
reliability of the test score. Third, when assessing the cor-
relation between two variables that are measured with
error, researchers may estimate the correlation between
the true scores by correcting for the unreliability of the
test scores. This so-called correction for attenuation
(Spearman, 1904) is common in validity research and is
often used in meta-analyses (Schmidt & Hunter, 1999).

When one estimates a parameter, the point esti-
mate can be accompanied by an uncertainty interval.
Both a Bayesian credible interval (or credible interval
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for short) and a frequentist confidence interval (or
confidence interval for short) are representatives of an
uncertainty interval, but stem from competing statis-
tical frameworks (see Appendix A for a comprehen-
sive description of the interval types used in this
study). Unfortunately, substantive researchers almost
always ignore these intervals and present only point
estimates in the context of reliability analysis (e.g.,
Oosterwijk et al., 2019). This common practice disre-
gards sampling error and the associated estimation
uncertainty and should be seen as highly problematic.
In this study, we show how the Bayesian credible
interval can provide researchers with a flexible and
straightforward method to quantify the uncertainty of
point estimates in a reliability analysis.

We wish to demonstrate the benefits of conducting
a reliability analysis in the Bayesian statistical frame-
work. We show that the Bayesian reliability coeffi-
cients (a) perform equally well as their frequentist
counterparts, and (b) provide an intuitive interpret-
ation of uncertainty, allowing researchers to address
questions that are beyond the scope of a frequentist
analysis. We employ Bayesian estimation procedures
for some of the most popular single-test reliability
coefficients: coefficient a (Cronbach, 1951), coefficient
k2 (Guttman, 1945), the greatest lower bound (glb)
(Woodhouse & Jackson, 1977), and coefficient x
(McDonald, 2013). Coefficient a provides a lower
bound to the reliability (Cronbach, 1951) and is by far
the most frequently used reliability coefficient (Barry
et al., 2014; Flake et al., 2017; Hogan et al., 2000).
Coefficient k2 is another lower bound and is at least
as high as a (Guttman, 1945); the glb is at least as
high as coefficient k2 and comes closest to reliability
among the lower bounds (Sijtsma, 2009). Finally, we
consider coefficient x as the most prominent repre-
sentative of the factor analytic approach to reliability
(Revelle & Zinbarg, 2009). To obtain a parsimonious
and clear study design, we leave out other reliability
estimators such as Revelle’s beta (Revelle, 1979) or
Guttman’s other k-coefficients (Guttman, 1945).1 For
a Bayesian solution of coefficients a, k2, and the glb
we use and extend the methodology Padilla and
Zhang (2011) described for the Bayesian estimation of
coefficient a; we develop the first Bayesian version of
coefficient x. To promote their use, we implement
the coefficients in an easy-to-use R-package.2

The outline of this paper is as follows. First, we dis-
cuss the purpose of Bayesian reliability estimation and
how the present approach relates to previous work.
Second, we provide an overview of the current state
of uncertainty estimation in reliability analysis. Third,
we discuss reliability estimation in general and more
specifically with respect to the different measurement
models relevant to the different reliability coefficients.
This results in the implementation of the Bayesian
single-test reliability coefficients. Fourth, we apply the
Bayesian coefficients both in a simulation study and
to an example data set. Finally, we discuss our find-
ings and their implications for future work on the
topic of Bayesian reliability estimation.

Purpose of this work

Bayesian theory

In Bayesian inference, estimation uncertainty is quan-
tified by a posterior distribution that represents the
relative plausibility of different parameter values after
the data have been observed. In order to obtain the
posterior distribution we must first choose a prior dis-
tribution. The prior distribution represents the relative
plausibility of different parameter values before the
data have been observed. The prior distribution is
then updated by means of the likelihood to yield the
posterior distribution. Based on the posterior distribu-
tion we can report credible intervals that indicate the
precision with which the parameter has been esti-
mated, we can make statements about the probability
that the parameter has a value larger or smaller than
some threshold, and we can obtain a starting point
for the analysis of additional data.

Previous work

Previous efforts to develop Bayesian reliability esti-
mates focused on coefficient a. Li and Woodruff
(2002) detailed a procedure to obtain the posterior
distribution for a directly by using the distribution of
the maximum likelihood estimator of the coefficient
(Van Zyl et al., 2000). A similar approach was taken
by Najafabadi and Najafabadi (2016), who employed
an exact distribution function of coefficient a (Kistner
& Muller, 2004) to estimate the posterior distribution
of the coefficient.

In contrast, Padilla and Zhang (2011) used the pos-
terior distribution of the covariance matrix of multi-
variate observations to calculate a Bayesian coefficient
a, including credible intervals. Padilla and Zhang
noticed that coefficient a is fully determined by the

1Inclusion of coefficient k4, the maximum split half reliability, was
considered but dismissed due to a strong positive bias and its
uneconomic computational effort when the number of items exceeds ten.
2The R-package Bayesrel can be installed from CRAN or the latest
version can be downloaded from https://github.com/juliuspf/Bayesrel.
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covariance matrix, and that the posterior distribution
of the covariance matrix takes a convenient form
when one assumes the data to be multivariate normal.
They validated the method in a small simulation study
by measuring the bias of the Bayesian point estimate
and the coverage of the credible intervals.

Novel work

In this study we use and extend the approach from
Padilla and Zhang (2011). Their procedure of sam-
pling the posterior covariance matrix can be extended
to estimate a series of well-known coefficients in add-
ition to coefficient a. Specifically, we use Padilla and
Zhangs’ approach to obtain Bayesian estimates of
coefficient k2 and the glb.

Moreover, to the best of our knowledge, our devel-
opment of a Bayesian coefficient x is novel. The setup
of x is more complex than sampling from the multi-
variate normal, since one first needs to fit a factor
model and then calculate x from the model parame-
ters. Fortunately, Lee (2007) detailed a sampling
scheme to estimate a Bayesian single-factor model.
Our work is the first to employ Lee’s procedure and
obtain a Bayesian estimate of coefficient x, which is
currently a popular reliability measure.

With this work we want to achieve two things.
First, we wish to demonstrate the adequacy of
Bayesian single-test reliability estimates by comparing
them to their frequentist counterparts in a simulation
study, and by explaining their benefits with an exem-
plary real-data set. Second, a long-standing problem
in methodological research is the gap between theory
and practice (Sharpe, 2013). We attempt to bridge this
gap for Bayesian reliability analysis by introducing an
R-package that contains the proposed methodology.
This gives researchers all they need to conduct a
Bayesian reliability analysis with multiple estimators
and thus make more informed and intuitive inferences
about reliability.

Current state of uncertainty estimation
in reliability analysis

Researchers usually report a point estimate as an indi-
cator for the quality of a research instrument but
rarely report uncertainty intervals (Flake et al., 2017;
Moshagen et al., 2019; Oosterwijk et al., 2019).3 The
almost complete absence of uncertainty interval
reporting is surprising, especially in the light of

multiple calls to improve the quality of psychological
research by making increased use of confidence inter-
vals (e.g., American Psychological Association, 2010;
Association for Psychological Science, 2018;
Cumming, 2014; Task Force Research on Reporting of
Research Methods in AERA Publications, 2006;
Thompson, 2002; Wilkinson, 1999).

The practice of reporting only reliability point esti-
mates can hardly result from a lack of available meth-
ods. For example, bootstrapping is a mathematically
simple re-sampling procedure that can be used to esti-
mate a confidence interval when the distributional
properties of an estimator are mostly unknown (e.g.,
DiCiccio & Efron, 1996; Efron, 1979). The so-called
bootstrap confidence interval offers a well-known
approach to the uncertainty estimation in reliability
analysis. Several studies examined bootstrap confi-
dence intervals for coefficient a and coefficient x.
They found that the intervals performed satisfactory
under general conditions (Kelley & Pornprasertmanit,
2016; Padilla et al., 2012; Padilla & Divers, 2016;
Raykov & Shrout, 2002). In addition to bootstrapping,
analytic approaches to construct confidence intervals
for the coefficients a and x have been developed, and
are accessible in standard software packages (see for a:
Bonett & Wright, 2015; Feldt et al., 1987; Revelle,
2019; for x: Kelley, 2018; Kelley & Cheng, 2012;
Padilla & Divers, 2016; Raykov, 2002). Indeed, an ana-
lytic confidence interval for coefficient a is available
in SPSS (v25), although disguised as a confidence
interval for an intraclass correlation coefficient that
equals coefficient a under certain conditions.

The common use of cutoff values might be one
explanation why methods for estimating confidence
intervals are not commonly employed in reliability
analysis. Cutoff values such as .70 or .80 are fre-
quently applied to determine “sufficient” or “good”
reliability (Nunnally & Bernstein, 1994; Schmitt,
1996). Adding a confidence interval clashes with the
idea of a simple cutoff value. For example, suppose
the reliability point estimate of a single test is .73, the
cutoff value for comparison .70, and the confidence
interval around the estimate is [.67, .79]; by evaluating
the point estimate the cutoff is exceeded and a clear
conclusion is reached. By evaluating the confidence
interval, however, one cannot say with “complete”
certainty that the reliability is greater than .70.

Moreover, the interpretation of confidence intervals
is subject to a common and troubling misconception.
Many practitioners assume that a specific confidence
interval contains the true parameter value with X%
probability, or that one can be X% certain that the3Personal communications with the authors in the first two references.
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interval contains the true parameter value. However, a
confidence interval is an interval generated by a pro-
cedure that in repeated sampling has at least an X%
probability of containing the true value, for all pos-
sible values of that parameter (e.g., Morey et al., 2016;
Neyman, 1937). Accordingly, it is incorrect to infer
that the population value of a reliability parameter
from a single test administration lies within the confi-
dence interval limits with a probability of X%. Thus,
confidence intervals do not answer practically relevant
questions about the confidence one can have in a reli-
ability estimate. Credible intervals offer a solution to
this predicament. An X% credible interval encloses
the parameter of interest with X% probability.

In sum, researchers almost never report interval
estimates for their reliability coefficients. In addition,
the questions they may have (e.g., “what is the prob-
ability that a > :80?”, “what is the probability that
a 2 ½:70, :90�?”, “what is the relative support for differ-
ent values of a provided by the data?”) fall outside the
purview of frequentist inference. To remedy these
issues, we adopted and developed Bayesian estimation
procedures for the most common single-test reliability
coefficients.

Reliability estimation

According to classical test theory (CTT) a test score
consists of a true score (systematic influences) and an
error score (random influences), which are assumed
to be uncorrelated (Spearman, 1904). In CTT, an indi-
vidual’s true score is defined as the expected value of
a distribution of test scores for that person, known as
the propensity distribution. The test scores are
obtained in a hypothetical experiment, in which the
same test is administered to the person under the
same test administration conditions an infinite num-
ber of times. The crucial assumption is that the per-
son remains the same from administration to
administration. Consequently, the only source of vari-
ation in a person’s test performance is random error
(e.g., Sijtsma & Van der Ark, 2019).

Whereas the true score is defined for an individual,
the true-score variance as well as the reliability are
group characteristics. Reliability is traditionally
defined as the product-moment-correlation between
two parallel measures (Lord & Novick, 1968). Two
test scores X and X0 are parallel if: (1) the true scores
T and T0 are equal for the i-th individual, that is Ti ¼
T0
i; and (2) r2X ¼ r2X0 , in the group of interest. Two

test administrations are assumed parallel when the
same test instrument is administered to the same

sample of participants at two times while, hypothetic-
ally, the participants have no recollection of the previ-
ous administration. Then, the product-moment
correlation between the two parallel test administra-
tions equals the reliability, since both the true scores
for individuals and thus the true-score variances as
well as the test-score variances for the group are equal
across administrations. It can be easily shown that for
either of the parallel test administrations the propor-
tion of test-score variance that is true-score variance
is the same as the correlation of the test scores, which
is the reliability (e.g., Lord & Novick, 1968):

qXX0 ¼ r2T
r2X

¼ r2T0

r2X0
¼ 1� r2E

r2X
¼ 1� r2E0

r2X0
, (1)

with r2E denoting the error-score variance.
Since strictly parallel tests and parallel test adminis-

trations are unavailable in practice, and repeated test
administrations often require substantial resources, a
data matrix from a single test administration is com-
monly used to approximate the true-score variance
(or complementary the error-score variance). Thus,
reliability is calculated not as the product-moment
correlation between scores across parallel test repeti-
tions, but as a function of item covariances based on
a single test administration. This makes it virtually
impossible to accurately retrieve the true reliability,
except when the items satisfy unrealistic conditions.
Consequently, the following single-test reliability coef-
ficients are only approximations to the true reliability.

CTT-coefficients

Coefficient a, coefficient k2, and the glb are based on
CTT and are lower bounds to reliability (e.g.,
Guttman, 1945; Ten Berge & Zegers, 1978). To deter-
mine the error-score variance of a test, the coefficients
estimate an upper bound for the error variances of
the items. The estimators differ in the way they esti-
mate this upper bound. The basis for the estimation is
the covariance matrix R of multivariate observations.
The CTT-coefficients extract information about error-
score variance (or complementary, true-score vari-
ance) from R̂, which denotes the sample estimate of
R, and then weigh the estimated error-score variance
against the total variance and subtract the result from
1 (or complementary, weigh the estimated true-score
variance against the total variance). The CTT-coeffi-
cients estimate error-score variance from the variances
of the items and true-score variance from the cova-
riances of the items. The following paragraphs will
elaborate on this.
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Coefficient a

Let R̂ be the covariance matrix estimated from the
data set consisting of k items, then

a ¼ k
k� 1

1� trðR̂Þ
S

� �
, (2)

where trðÞ is the sum of diagonal elements and S is
obtained by summing all elements in R̂: Cronbach
(1951) left his mark on coefficient a by discussing the
measure in his famous article and deriving some well
known and often repeated properties for it.
Coefficient a equals reliability when the items are
essentially tau-equivalent (Novick & Lewis, 1967).4

When essential tau-equivalence does not hold, coeffi-
cient a is smaller than the true reliability, hence the
lower bound property (Sijtsma, 2009; Zinbarg et al.,
2005). Generally, coefficient a is closer to the reliabil-
ity when a test is closer to unidimensionality (Dunn
et al., 2014; Sijtsma, 2009).

Coefficient k2

Guttman proposed six lower bounds to reliability, one
of which – k3 – equals coefficient a. These six coeffi-
cients take different approaches to the approximation
of the error-score variance and are characterized by
the quality that the reliability is never smaller than the
largest of the six bounds (Guttman, 1945). The second
lower bound is calculated as follows: We define c ¼
1ðR̂�diagðR̂ÞÞ10 as the sum of squares of the off-diag-
onal elements in R̂ and S as before, then

k2 ¼
S� trðR̂Þ þ

ffiffiffiffiffiffiffiffiffi
k

k�1 c
q

S
: (3)

Coefficient k2 is always at least as large as coeffi-
cient a (Guttman, 1945; Sijtsma, 2009) and performed
better than Guttman’s other lower bounds (Oosterwijk
et al., 2016).

Greatest lower bound

As its name implies, the glb is always at least as large
as the other lower bounds. Following directly from
the definition of the glb, the reliability lies in the
interval [glb, 1]. The glb is calculated as follows: Let
R̂ ¼CT þ CE be the split of the sample covariance
matrix into a matrix CT that contains the true-score
variances and a diagonal matrix CE that contains the

error-score variances. The proper estimates of CT and
CE are found by maximizing the sum of the trace of
CE with the only condition being that CT and CE are
positive semidefinite (e.g., Jackson & Agunwamba,
1977). Again, let S be the sum of all elements in R̂,
then

glb ¼ 1� trðCEÞ
S

: (4)

Finding the matrix CE with maximum trace is not
trivial. Various iterative matrix decompostion algo-
rithms attempt to find a solution to the so-called
“educational testing problem”, all of which require a
non-negligible amount of computational power
(Bentler & Woodward, 1980; Ten Berge et al., 1981;
Woodhouse & Jackson, 1977). Whereas among the
lower bounds the glb comes closest to the true reliabil-
ity, its sample estimate is prone to a capitalization on
chance (Oosterwijk et al., 2016; Ten Berge & So�can,
2004). This leads to a considerable positive bias of the
estimate even up to sample sizes of n¼ 1,000 with the
bias being smaller for fewer than ten items (Oosterwijk
et al., 2016; Ten Berge & So�can, 2004).

Factor model coefficient x

Whereas coefficients a, k2, and the glb are rooted in
CTT, coefficient x is based on the single-factor model
(McDonald, 2013). Specifically, the single-factor model
assumes that one factor explains the covariances
between the items (Spearman, 1904). The single-factor
model corresponds to the congeneric measurement
model, where all items load on one factor with vary-
ing loadings opposed to the tau-equivalence model
where all loadings are assumed to be equal (e.g.,
J€oreskog, 1971).

The single-factor model can be considered a special
case of a CTT-model, when one assumes that the
common factor is a valid replacement for the true
score. This way, the common factor variance replaces
the true-score variance and the residual variances
replace the error-score variance. Note that without
this strong assumption coefficient x could not be con-
sidered a reliability estimate. However, if the assump-
tion holds, coefficient x is a reliability measure for
item sets. Please note that coefficient x is not a meas-
ure of the fit of the single-factor model, it merely
expresses reliability assuming unidimensionality.

Let

Xij ¼ kjfi þ Eij, (5)

where Xij is the ith examinee’s score on item j, kj are
the loadings of the items on the common factor, fi are

4The essential tau-equivalence condition states that all items of a test
capture a participant’s true score equally well (Lord & Novick, 1968, p. 50)
– an assumption that can hardly hold in empirical research. Note that tau
stands for the true score.
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the examinees’ factor scores, and Eij is the ith examin-
ee’s error of item j that cannot be explained by the
common factor. Further let W be the diagonal vari-
ance matrix of E with wj as the diagonal elements rep-
resenting the residual variances of the items, then

x ¼ ðP kjÞ2
ðP kjÞ2 þ

P
wj

: (6)

This equation coincides with Equation (6.20b) from
McDonald (2013). Coefficient x equals coefficient a
(and the other lower bound coefficients) when the
condition of tau-equivalence holds (Zinbarg et al.,
2005). Coefficient x represents a well studied alterna-
tive to coefficient a that shows good statistical proper-
ties (Kelley & Cheng, 2012; Zinbarg et al., 2005). To
obtain the factor loadings and residual variances of
the single-factor model one can apply a variety of
application methods from the family of structural
equation modeling (SEM). The most common are
exploratory factor analysis (EFA), principal compo-
nent analysis (PCA), principal factor analysis (PFA),
and confirmatory factor analysis (CFA) (Revelle &
Zinbarg, 2009; Zinbarg et al., 2006).

In the R-package, we implement both CFA and PFA
to obtain coefficient x. CFA models attempt to minim-
ize the discrepancy between the model-implied covari-
ance matrix and the sample covariance matrix using,
for example, maximum likelihood or generalized least
squares (Bollen, 1989). In a PFA, which is highly simi-
lar to the principal factor method or the principal axis
method, the factor loadings are calculated from an
altered sample covariance matrix by means of an eigen-
decomposition. The altered covariance matrix equals
the sample covariance matrix with respect to the off-
diagonal elements, but is different with respect to the
diagonal, which contains the item communalities. The
communalities are found in an iterative procedure that
starts with the squared multiple correlations of the
items (Rencher, 2002, p. 421 ff.).

Note that coefficient x is sometimes split into xh

(h for hierarchical) and xt (t for total) (Revelle &
Zinbarg, 2009). In the calculation of these two coeffi-
cients a hierarchical multi-factor model replaces the
single-factor model and additional factors account for
group-specific variance. Subsequently, coefficient x, as
implemented in this work, can only be interpreted as
a measure of reliability when the test is unidimen-
sional and the single-factor model fully explains the
true-score variance. The value of coefficient x cannot
address the question of dimensionality. To determine
dimensionality one needs to apply more sophisticated
factor analytic methods.

To summarize, the covariance matrix is sufficient
for the CTT-coefficients, and the single-factor model
parameters determine the value of coefficient x. Thus,
the obstacle in Bayesian single-test reliability analysis
becomes the estimation of a posterior distribution for
the covariance matrix and the estimation of the pos-
terior distributions of the factor model parameters.
Note that the formulas for the calculation of the coef-
ficients remain unchanged in the Bayesian paradigm.

Bayesian single-test reliability estimation

Bayesian CTT-coefficients

We employ an approach to Bayesian reliability estima-
tion that was described by Padilla and Zhang (2011),
who provided a Bayesian version of coefficient a.
Their approach is similar to the approach followed in
this article and can be generalized to a series of differ-
ent estimators.

Coefficients a, k2, and the glb are calculated on the
basis of the sample covariance matrix. Thus, a
straightforward way to obtain a posterior distribution
of a CTT-coefficient is to estimate the posterior distri-
bution of the covariance matrix and use it to calculate
the estimate. In this procedure, we follow the methods
also detailed in Murphy (2007). The author presents a
simple and straightforward way to obtain a posterior
distribution of the covariance matrix by choosing a
conjugate prior distribution.

To facilitate the Bayesian estimation of reliability
estimates, we assume data to be normally distributed
with means l and covariance matrix R for items j ¼
1, :::, k: Thus, the normal inverse Wishart distribution
(NW�1) is an obvious choice as a conjugate prior dis-
tribution: Let

ðl,RÞ � NW�1ðl0, j0,W, �0Þ , (7)

where l0 denotes the prior means, j0 is an inverse scal-
ing parameter for the covariance matrix R,W ¼
ð 1j0 W0Þ�1 is a positive definite inverse scaling matrix,
and �0 are its degrees of freedom. The number of obser-
vations are n and the number of items are k. The prior
hyperparameters are chosen as l0 ¼ 0, j0 ¼ 10�10,W0 ¼
Ik, and �0 ¼ k: This yields a relatively uninformative
prior. The posterior distribution of the multivariate nor-
mal distribution is available in closed form:

ðl,RÞ � NW�1ðln, jn,Wn, �nÞ: (8)

Since we are only interested in the covariance
matrix, which is the basis for the CTT-coefficients, we
sample the posterior covariance matrices from an
inverse Wishart distribution, which equals:
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R � W�1ðWn, �nÞ , (9)

with

Wn ¼ Wþ Sþ j0n
j0 þ n

ð�x � l0Þð�x � l0ÞT ,

�n ¼ �0 þ n ,

where S ¼ Pn
i¼1ðxi � �xÞðxi � �xÞT is the sum of

squares matrix, xi are the item scores of the ith exam-
inee, and �x are the item means. The posterior distri-
bution is obtained by drawing a sufficient number of
random samples from the distribution denoted in
Equation (9). By calculating any of the CTT-coeffi-
cients for each of the covariance matrices in the pos-
terior sample, one obtains posterior samples for the
reliability coefficients.

Bayesian factor model coefficient x

Since coefficient x is based on a factor model, its
setup is more challenging. To obtain the posterior dis-
tributions of the parameters in the single-factor
model, we need to sample from their conditional dis-
tributions. A comprehensive account to do so is given
by Lee (2007), who describes how to obtain the pos-
terior distributions of the quantities in Equation (5).
We designed a Gibbs sampling algorithm to sample
from the conditional conjugate distributions of the
parameters in accordance with Lee (2007).

Recall the single-factor model from Equation (5)
with wj as the diagonal elements of W, the diagonal
variance matrix of E. We assume the following rela-
tively uninformative conjugate prior distributions
similar to Lee (2007, p. 71 ff.): Let i ¼ 1, :::, n observa-
tions and j ¼ 1, :::, k items, then fi � Nð0,/Þ; / �
W�1ðR0, p0Þ with scale matrix R0 (in fact a scale value,
as we only assume one factor) and degrees of freedom
p0; w�1

j � Cða0, b0Þ with shape and rate parameter,
also wj ¼ 1=w�1

j , and kj � Nð0,wjh0Þ: We fix the fol-
lowing prior hyperparameters: R0 ¼ k, p0 ¼ kþ 2,
k0j ¼ 0, h0 ¼ 1, a0 ¼ 2, and b0 ¼ 1: Then the condi-
tional posterior distributions are:

ðfi j Xij,wj, kjÞ � N

/�1 þ kTj w
�1
j kj

� ��1
kTj w

�1
j XT

ij , /�1 þ kTj w
�1
j kj

� ��1
� �

,

(10)

ð/ j Xij, fiÞ � W�1ðf Ti fi þ R0, nþ p0Þ , (11)

ðw�1
j j Xij, fiÞ � Cðn=2þ a0, bjÞ , (12)

ðkj j Xij, fi,wjÞ � N mj

ffiffiffiffi
/

p
, wja

� �
, (13)

with

a ¼ h�1
0 þ f Ti fi

	 
�1
,

mj ¼ a h�1
0 k0j þ f Ti Xj

� �
,

bj ¼ diagðBÞ ,

B ¼ b0 þ
1
2

XT
ij Xij �mT

j a
�1mj þ kT0jh

�1
0 k0j

� �
:

In SEM, the latent factor needs to be assigned a metric,
which is commonly done by fixing either the loading of
one indicator to 1 or the factor variance to 1. Since we
are interested in estimating the factor loadings we employ
the latter procedure by dividing the factor scores drawn
from Equation (10) by their standard deviation in every
iteration. Subsequently, we multiply the means of the pos-
terior loadings by the square root of the unstandardized
factor variance (see Equation (13)) (Bollen, 1989).

Eventually, the iterative Gibbs-Sampling algorithm
has the following steps:

1. Draw a sample value from one of the conditional
distributions (henceforth the “first conditional distri-
bution”) in Equations (10)–(13) with starting param-
eter values drawn from the prior distributions.

2. Draw a sample value from any of the three other
conditional distributions with the parameter val-
ues just drawn.

3. Draw a sample value from any of the two other
conditional distributions with the parameter val-
ues just drawn.

4. Draw a sample value from the remaining conditional
distribution with the parameter values just drawn.

5. Draw a sample value from the first conditional
distribution with the parameter values just drawn.

6. Repeat steps (2-5) until sufficient samples have
been drawn and the sampled values converged.
The resulting posterior samples of kj and wj can
be used to calculate a posterior sample of coeffi-
cient x by means of Equation (6).

Simulation study

We conducted a simulation study to evaluate the
Bayesian single-test reliability coefficients across a var-
iety of conditions and data sets. In this study, we
compared the Bayesian coefficients with their fre-
quentist counterparts and their population value.

Method

We constructed data generating covariance matrices
for which we varied the average correlation between
items (�q ¼ 0; :3; :7) and the number of items
(k ¼ 5; 20). The covariance matrices were based on
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the parameters of the single-factor model. Specifically,
loadings and residual variances were combined to cre-
ate the matrices by means of the equation R ¼
kUk0 þW, with loadings k, factor variance U¼ 1, and
diagonal residual variance matrix W: During the pro-
cess the loadings and residual variances were sampled
randomly until the correlation between items reached
the desired average value. Consequently, the
correlations between items varied in the medium and
high-correlation conditions. In the high-correlation
condition, the standard deviations of the average corre-
lations ranged from .04 to .07; in the medium-correl-
ation condition, they ranged from .17 to .21. In the
zero-correlation condition the correlations varied
slightly but were all very close to zero (ranging from
.0002 to .0005). The resulting covariance matrices were
used to generate multivariate normal data with means
of zero in different sample sizes (n ¼ 50; 100; 500).

We chose the zero-correlation condition to represent
a state of very noisy data. The condition can be viewed
as a baseline that is unlikely to appear in empirical
research. However, by pushing the coefficients to their
limits, we could examine how estimates behave for a
wide variety of data sets. Also, in an extreme scenario
like the zero-correlation condition, differences between
the Bayesian and frequentist coefficients could emerge
that we might otherwise not be able to detect.

The setup resulted in a total of 18 conditions with
each condition being replicated 1,000 times. The
population values of the CTT-coefficients were calcu-
lated from the data-generating covariance matrices.
The population value of coefficient x was computed
from the factor loadings and residual variances that
were used to construct the data-generating matrices.
For the CTT-coefficients the data generation from a
single-factor model can be considered proper,
although one does not need to assume the data to be
unidimensional to compute the coefficients.

For all analyses we used the R-package Bayesrel

that we developed to facilitate the calculations and to
make the Bayesian estimators accessible to other
researchers. A detailed description of the package can
be found in Appendix B. Although analytic solutions
of confidence intervals for coefficients a and x are
available (e.g., Bonett & Wright, 2015; Kelley &
Cheng, 2012), we used the non-parametric bootstrap
(DiCiccio & Efron, 1996; Padilla et al., 2012; Padilla &
Divers, 2016) to estimate percentile-type confidence
intervals for reasons of consistency and comparability
(see Table A1). To compute the confidence intervals,
the number of bootstrap samples was set to 1,000.
The number of iterations in the Bayesian solution was

1,000 with a burn-in of 50, because the sampling
reached convergence very quickly. The credible inter-
vals were highest posterior density (HPD) intervals
(Box & Tiao, 1973) (see Table A1). When discussing
the results from the simulation study, we refer to
“percentile-type non-parametric bootstrap confidence
intervals” as “confidence intervals” and we refer to
“HPD credible intervals” as “credible intervals”.

The frequentist calculation of coefficient x was based
on loadings and residual variances from a PFA, instead
of a CFA, because – in several simulation runs – the
CFA model-fitting did not converge or resulted in
negative variances. Note that CFA and PFA yield virtu-
ally identical parameter estimates and thus nearly iden-
tical coefficient x values when data are unidimensional.

We combined the posterior distributions of simula-
tion runs for each condition by calculating the quan-
tiles of those distributions and averaging each
quantile. The analysis of the simulation results
included a visual assessment of the consistency and
the deviance of the estimates by means of summary
plots, the coverage of the uncertainty intervals, the
root mean-square error (RMSE) of the estimates, and
the probability that a coefficient overestimated its
associated population value (risk).

Coverage was computed as the percentage of simula-
tion runs where the interval contained the population
value. When calculating 95% intervals, we expected a
well calibrated method to cover the population value in
95% of the cases. The RMSE quantifies the deviation of
the posterior and bootstrapped samples of the estima-
tors from their associated population values – averaged
over simulation runs.5 The RMSE can be interpreted
on the same scale as the reliability and indicates how
much an estimate spreads around its population value.
Smaller RMSE values are associated with a less biased
estimator. The “risk” was calculated by determining the
quantile of the population coefficient value in the pos-
terior distribution of the estimator. Let FXðxÞ be the
cumulative distribution function of the posterior distri-
bution of X evaluated at the point x, then r is the risk
of overestimation: r ¼ 1� FXðxÞ: FX can be substituted
by the posterior distribution of any one of the Bayesian
reliability coefficients; x then becomes the associated
population value of that coefficient. One would con-
sider a coefficient to perform satisfactory if the risk of
overestimation is close to .50, meaning the risk of
underestimation is close to .50 as well. A more

5The RMSE is computed as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT

t¼1
ðĥ t�hÞ

T

q
, with T as the size of the

posterior/bootstrap sample of a coefficient, ĥt as the values of the
posterior/bootstrap sample of a coefficient, and h as the population value
of a coefficient.
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conservative approach would also render values below
.50 acceptable, since underestimating the reliability is
more acceptable than overestimating it.

All results relate the estimated coefficients to each
other or their corresponding population values. Thus,
when we use the term bias, it reflects differences
between the estimates and their population values.

Results

Comparison of frameworks

The results of the Bayesian coefficients were highly
similar to the frequentist coefficients in almost all
conditions. A summary of the results for the medium-
correlation condition can be found in Figure 1. The
figures summarizing the zero and high-correlation
conditions can be found in Appendix C.

Figure 1 shows the results separated for the number
of items (the columns) and the four coefficients (the
rows). Each coefficient-block is divided into the differ-
ent sample sizes (rows) and statistics frameworks (col-
ors). The bars in the figure show the average 95%
uncertainty interval limits, the vertical line segments in
the bars indicate the average 25% and 75% quartiles,
the dashed lines display the population values of the
coefficients, and the average point estimates are denoted
as rhombuses. We may notice, for example, that the

average Bayesian point estimate for coefficient a with
five items and 50 observations is slightly smaller than
the frequentist one, and – for the same condition – the
average confidence interval is shifted slightly more to
the left and wider than the credible interval.

Except for k2 in the medium and high-correlation
condition, the Bayesian point estimates over- or underes-
timated the associated population coefficient values
slightly more than the frequentist ones when the sample
size was small to medium in almost all conditions. This
indicates an influence of the relatively uninformative
prior distribution in small sample settings. The point-
estimated Bayesian glb showed larger positive bias than
the point-estimated frequentist glb across all conditions.
In general, the Bayesian estimators converged to the
associated population values with increasing sample size.

Both methodological approaches displayed similar
interval coverage performance (see Table 1). The 95%
intervals of both frameworks performed well in the
medium and high-correlation conditions. The credible
intervals for k2 performed slightly worse than the con-
fidence intervals in the zero-correlation condition.
The difference vanished with increasing associations
between items. Furthermore, the credible intervals of
coefficient x performed satisfactory. In the zero-cor-
relation condition the credible intervals for x dis-
played better coverage than the confidence intervals
with a small number of items.

Figure 1. Simulation results for the medium-correlation condition. The endpoints of the bars are the 95% uncertainty interval lim-
its. The 25%- and 75%-quartiles are indicated with vertical line segments.
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In the zero-correlation condition, the RMSEs of the
Bayesian x were slightly smaller than the frequentist
x (see Tables C1 and C2). Other than that, we regard
the differences in RMSEs between the Bayesian and
frequentist coefficients as negligible.

Evaluation of coefficients

As expected – based on CTT-results – an increase in
the number of items lead to better point estimation and
narrower covering uncertainty intervals in the majority
of the conditions. An exception was the glb, which dis-
played a large positive bias in both frameworks when
the number of items was large – a finding consistent
with previous research (e.g., Oosterwijk et al., 2017).

The coverage information underscored the poor per-
formance of the glb. The uncertainty intervals of the
glb – both confidence and credible intervals – did not
cover the population value in any simulation run with
20 items. The bias of the estimator was so large that in
the frequentist approach none of the 95% confidence
interval limits enclosed the point estimate when the
sample size was small or medium. This indicates that
the bootstrap re-sampling of the data set lead to even
more biased estimates for the glb. This happened to dif-
ferent degrees in all three correlation conditions and

illustrates the capitalization on chance mechanism that
affects the measure. In addition to the glb, coefficient
k2 and frequentist x displayed unsatisfactory coverage
in the zero-correlation condition. The other estimators
showed satisfactory coverage performance. Except for
the glb, the other coefficients reached a coverage level
close to 95% with increasing correlations. With the
exception of coefficient a, all other estimators displayed
worse coverage results in the zero-correlation condition
compared to the other conditions.

The RMSEs of coefficient x were smallest among
the estimators in the zero-correlation condition. In
the other correlation conditions coefficient a, k2 and
x reached similar RMSEs. Similar to the coverage
results, the glb had the poorest RMSE values among
the coefficients across all conditions.

We did not compute risk results for the zero-
correlation condition because the population values
of the coefficients were very close to zero (see
Figure C1), and thus a reliability coefficient was in itself
inclined to overestimate its true value, as negative val-
ues were deemed invalid. Thus, the risk results were
only calculated for the medium and high-correlation
conditions. Table 2 contains the exact values. Again,
the glb was at high risk of overestimating the popula-
tion coefficient value. Coefficients a, k2, and x
reached satisfactory results with x showing a more
conservative risk.

Table 1. Coverage of the Population Values for the 95% Confidence and Credible Intervals.

k n

�q � 0 �q � :3 �q � :7 �l

Freq Bayes Freq Bayes Freq Bayes Freq Bayes

a
5

50 .927 .944 .932 .942 .936 .954
.939 .944100 .938 .940 .936 .941 .943 .948

500 .942 .933 .945 .942 .950 .952

20
50 .905 .929 .927 .936 .925 .946

.934 .940100 .934 .937 .934 .943 .943 .945
500 .943 .943 .949 .939 .948 .946

k2
5

50 .832 .784 .930 .928 .947 .951
.904 .893100 .827 .789 .935 .937 .947 .948

500 .823 .811 .943 .940 .954 .947

20
50 .839 .752 .941 .936 .938 .945

.909 .889100 .843 .791 .940 .937 .946 .942
500 .834 .809 .955 .947 .947 .945

glb
5

50 .241 .349 .664 .557 .687 .570
.563 .560100 .269 .418 .706 .646 .708 .625

500 .313 .456 .742 .712 .739 .708

20
50 0 0 0 0 0 0

0 0100 0 0 0 0 0 0
500 0 0 0 0 0 0

x
5

50 .622 .977 .938 .940 .953 .941
.862 .956100 .672 .986 .941 .947 .949 .954

500 .781 .974 .945 .935 .953 .951

20
50 .998 .997 .941 .918 .938 .890

.963 .950100 1 .995 .943 .931 .947 .926
500 1 .997 .957 .949 .946 .944

Note. The confidence intervals are percentile-type non-parametric bootstrap; the credible intervals are HPD intervals. A desirable coverage is close to .95.
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Example: eight-item questionnaire data

To illustrate the advantages of the Bayesian single-test
reliability coefficients, we used a data set by Cavalini
(1992) measuring coping style in response to malodor-
ous environments. Both Sijtsma (2009) and Revelle and
Zinbarg (2009) used the data to discuss several reliabil-
ity coefficients. The data set consists of eight-item
questionnaire data filled out by 828 participants. The
questionnaire is Likert-scaled with scores from 0 to 3,
but is usually treated as quasi-continuous. The data
covariance matrix can be found in Appendix D. The
data set is included in the R-package under the name
“cavalini”. A table containing the exact values of the
point estimates and the uncertainty interval limits for
both the frequentist and Bayesian framework together
with the R-code to reproduce the results for the
example data set can be found in Appendix D.

A simple research question for the reliability analysis
of this data set might be: “Does the reliability of the
test exceed a cutoff value of .80, hence is the reliability
good?”. In the current state of substantive research, the
common way to answer this question would be to use
the point estimate of coefficient a, âfreq ¼ :778: Based
on this result, we would conclude that the scale is asso-
ciated with a sufficient but not a good reliability,
depending on the specific cutoff criteria applied.
Suppose we are in doubt about using the proper coeffi-
cient, because we are aware of some critiques about a
and know that k2 is generally a better coefficient. Also,
we heed recommendations about good research practi-
ces and decide to provide a confidence interval. Thus,
in a more sophisticated analysis we calculate: k̂2freq ¼
:785, 95% CI ½:758, :809�: The correct interpretation of
the 95% confidence interval is: If we would repeatedly

draw samples from the same population and calculate
the 95% confidence intervals for k2 in the same way
each time, the true value would fall into the interval in
95% of the cases. Thus, we are unable to make any
inference about the reliability lying in the particular
confidence interval we just obtained.

In contrast, from the posterior distribution we can
conclude that the specific credible interval contains
95% of the posterior mass. Since k̂2Bayes ¼
:784, 95% HDI ½:761, :806�, we are 95% certain that
k2 lies between .761 and .806. Yet, how certain are we
that the reliability is larger than .80? Using the poster-
ior distribution of coefficient k2, we can calculate the
probability that it exceeds the cutoff of .80: pðk2 >
:80 j dataÞ ¼ :075: We can also determine the poster-
ior probability of coefficient k2 being larger than .70,
which is another common cutoff value, and smaller
than .80, which, in this example, is pð:70 < k2 <
:80 j dataÞ ¼ pðk2 > :70 j dataÞ � pðk2 > :80 j dataÞ
� 1� :075 ¼ :925: In addition to making probabilistic
statements about the values of the reliability coeffi-
cients, the Bayesian approach allows for prior know-
ledge to be incorporated into the analysis. For
example, a data covariance matrix of a previous study,
which worked with the same test instrument, can be
used to update the prior distribution and enhance the
precision of the subsequent reliability analysis.

Figure 2 displays the Bayesian prior and posterior
distributions of the coefficients for the Cavalini-data set
with the original sample size of 828 and a reduced sam-
ple size of 100 randomly drawn observations. The plots
differ for sample sizes and show that the point esti-
mates generally concur, but the posterior distributions
and the width of intervals are quite different for the
smaller sample size. While the Bayesian posterior distri-
bution can be used to calculate probabilities of interest,
its simple graphical display encourages the users’ appre-
ciation for the uncertainty of reliability estimates.

Finally, the R-package Bayesrel allows the display
of the graphical posterior predictive check (PPC) for
the single-factor model. The idea is to use the poster-
ior predictive distributions of the model parameters to
check model fit. In the PPC, which is similar to a
scree plot, we compare the posterior model-implied
covariance matrices with the covariance matrix of the
data to see if the parameters we sampled under the
single-factor model appear similar to the parameters
observed in the data (Gelman et al., 2004, chapter
6.3). Since the model-implied covariance matrix is
fully determined by the loadings and the residual var-
iances, we can use the 95% limits of the loadings and
residual variances to construct a lower and upper

Table 2. Probability of overestimating the population coeffi-
cient value.

n

�q � :3 �q � :7

�lk¼ 5 k¼ 20 k¼ 5 k¼ 20

a
50 .465 .457 .474 .437

.474100 .468 .467 .485 .458
500 .497 .493 .492 .496

k2
50 .533 .549 .513 .496

.517100 .517 .531 .510 .502
500 .513 .522 .506 .514

glb
50 .867 1.00 .859 1.00

.925100 .852 1.00 .852 1.00
500 .835 1.00 .835 1.00

x
50 .428 .426 .374 .343

.429100 .443 .442 .410 .392
500 .479 .483 .462 .466

Note. The probability is calculated by computing the quantile of the
population coefficient value in the posterior distribution of its associ-
ated estimator. The values are averaged over simulation runs. A desir-
able result is a value close to .50 or below.
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bound for the model-implied covariance matrix. We
calculate the eigenvalues of the matrices and plot
them (gray bars in Figure 3) together with the eigen-
values of the observed covariance matrix (black dots
in Figure 3). If all gray bars enclose the black dots, we
assume that the values sampled under the single-factor
model are similar to the values of the observed data,
hence the single-factor model fits the data. Inspecting
the PPC for the full Cavalini-data set, we assess model
fit to be mediocre at best, since not all of the observed
eigenvalues are enclosed in the bars of the model pre-
dicted eigenvalues (see Figure 3).

In this instance, we are unable to interpret coeffi-
cient x as a measure of reliability. This demonstrates
that an analysis of dimensionality should always pre-
cede a reliability analysis and the PPC should only be
used as a post-hoc check of model fit. If one had ana-
lyzed the dimensionality of the Cavalini data before
conducting the reliability analysis, the results might
have pointed toward a multidimensional scale. Thus,
one could have divided the test into subscales and
computed the reliability for each subscale separately.
This way, the coefficients a, k2, and x would have
been better approximations of the reliability of the
total scores based on each of the item subsets.

Discussion

When estimating reliability coefficients, researchers
(a) predominantly report coefficient a; (b) almost
always report only point estimates; and (c) rarely if
ever report Bayesian inference. Here, we addressed
these issues by implementing Bayesian inference pro-
cedures for some popular single-test reliability coeffi-
cients. Using the posterior distribution, researchers
obtain a direct and intuitive appreciation for the
uncertainty in their inference. Moreover, the posterior
distribution allows them to obtain answers to ques-
tions that fall outside of the standard frequentist
framework. Specifically, researchers can obtain the
probability that a reliability coefficient falls in any par-
ticular interval of interest and update this probability
continuously, as more data become available.

Figure 2. Bayesian results of empirical data set from Cavalini (1992) with eight items and sample size of n¼ 828, and n¼ 100 ran-
domly chosen observations. Posterior distributions of estimators with dotted prior density and 95% credible interval bars.

Figure 3. PPC of the single-factor model for the Cavalini-data
from the Bayesrel-package. A good model fit implies that the
gray bars enclose the black dots.
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We tackled the issue of lacking uncertainty estima-
tion and reporting in psychological research by offer-
ing an easy-to-use statistical method readily available
for empirical researchers. The credible intervals imple-
mented in this study offer a simple and intuitive solu-
tion to account for the sampling error in reliability
estimation. We presented Bayesian procedures to esti-
mate coefficient a, coefficient k2, the glb, and coeffi-
cient x, and implemented them into an openly
accessible R-package. A simulation study and the ana-
lysis of an exemplary data set demonstrated the
adequacy and benefits of the Bayesian estimators. In
addition, the study validated bootstrap confidence
intervals for coefficient k2 and the glb.

In particular, the simulation study showed that the
Bayesian coefficients converge to their population val-
ues and concur with the frequentist estimates. As
expected, performance of the Bayesian coefficients
improved with increasing sample size. Whereas the
frequentist and Bayesian methods differed slightly
with respect to point estimation, they generally coin-
cided with respect to interval estimation in terms of
coverage performance.

In contrast to the frequentist coefficients, the
Bayesian reliability estimates allow for more intuitive
and simple statements about reliability, which makes
them superior in almost every aspect. The covariance
sampling procedure introduced here can be easily
extended to other estimators as long as they are calcu-
lated from the covariance matrix. Measures that are
based on the repeated administration or the repeated
rating of the same test, can be subject to future work
on Bayesian test-retest or inter-rater reliability.

Except for k2, the performance of the Bayesian
coefficients appears unsatisfactory for small samples.
However, we do not consider this problematic. In
Bayesian statistics the initial confidence in different
values of a parameter is expressed by means of a prior
distribution. The observed data then cause this confi-
dence to be reallocated following Bayes’ rule:
Confidence is gained for parameter values that accord
well with the data, and confidence is lost for values
that accord poorly. The more informative the data,
the larger the shift in confidence. Small samples gen-
erally result in modest changes of the prior distribu-
tion. Consequently, in practical applications with
small sample data, a visual inspection of the posterior
distribution would reveal that it is relatively wide, and
the primary concern will focus on the large posterior
uncertainty, not on how close the posterior mean may
be to the true value. In addition, with small sample
sizes the relatively uninformative priors for coefficient

a, k2, and x (e.g., see Figure 2) yield underestimates
of the population values. In other words, the bias is
conservative and researchers are safeguarded from
overestimating reliability when the evidence in the
data is small. When sample size is small, we urge
researchers to try and collect more observations. With
more incoming evidence the influence of the prior
distribution will diminish and subsequently the
Bayesian sample estimates will be closer to their
respective population values.

More generally, the results for Bayesian parameter
estimation are relatively robust to changes in the prior
distribution, a regularity captured by the maxim “the
data overwhelm the prior” (e.g., Wrinch & Jeffreys,
1919). Exceptions to this rule occur when the prior dis-
tribution is highly informative or when the sample size
is very small. In the former case one may wonder why,
with such firm knowledge already in hand, one would
seek to collect additional data at all; in the latter case, it
is prudent to interpret any strong conclusions with
considerable caution. If researchers decide to employ
informed prior distributions, these should be well moti-
vated, for instance by an analysis of previous empirical
findings or by a systematic elicitation effort (e.g.,
Stefan, Evans, & Wagenmakers, in press, and references
therein). Even in these cases we see value in reporting
the results for default priors as well, because these pro-
vide a reference against which to assess the conclusions
from informed priors. Specifically, it is always possible
to conduct a sensitivity analysis, where one examines
the extent to which the conclusions vary as a result of
reasonable changes in the prior distribution.

Some researchers may want to capitalize on the ben-
efits of the Bayesian framework and incorporate
informed prior knowledge into their analysis. This is
not a trivial task and we caution readers against using
more informative priors until more research into the
topic is conducted. For academic purposes, however,
we briefly outline a potential process to do so. One
could use the posterior distribution of the covariance
matrix from a previous similar data analysis as the
prior distribution for the current analysis. For example,
one wants to conduct a reliability analysis for a transla-
tion of the Cavalini-questionnaire administered in
Germany. The same questionnaire in Dutch was
administered in a previous study, and the authors of
the study provided the sample covariance matrix. To
obtain more precise CTT-estimators for the adminis-
tration of the German questionnaire one could alter the
parameters of the prior inverse Wishart distribution so
that its mean equals the sample covariance matrix of
the Dutch questionnaire. To obtain coefficient x for
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the German questionnaire one could adjust the hyper-
parameters of the prior distributions of the loadings
and residual variances to better resemble the loadings
and residual variances from a single-factor model fit of
the sample covariance matrix of the Dutch question-
naire. With multiple similar questionnaires at hand, a
more sophisticated approach is to apply a hierarchical
model (e.g., Shiffrin et al., 2008) such that the estimate
of reliability for a single small-sample questionnaire is
informed by knowledge of the reliability for the other
questionnaires, moderated by the extent to which the
questionnaires are similar.

The Bayesian reliability coefficients

In view of common misconceptions about coefficient
a (Cho, 2016; Cho & Kim, 2015; Hoekstra et al.,
2019)6; we appeal to researchers to interpret a only as
a lower bound to reliability. The Bayesian version of
k2 performed equally well in the simulation study as
coefficient a. We suggest that in the future researchers
should take a closer look at coefficient k2, a greater
lower bound to reliability than coefficient a (Guttman,
1945; Oosterwijk et al., 2016, 2017). Although the glb
is the coefficient that comes closest to the true reli-
ability on a population level (Ten Berge & Zegers,
1978), we recommend against using the glb in practice
based on the performance in this study and others
(Oosterwijk et al., 2016; Ten Berge & So�can, 2004).

This study chose the same prior for the covariance
matrices for all coefficients. Being sampled from an
inverse Wishart distribution with the identity as a scal-
ing matrix, the prior covariance matrices can be
assumed relatively uninformative. This yielded accept-
able flat priors for coefficients a and k2 with most val-
ues between 0 and 1 being approximately equally likely
a priori. However, the prior of the glb was heavily
skewed to the left. Specifically, the choice of a relatively
uninformative prior for the covariance matrix lead to a
prior distribution of the glb that put an unwanted
amount of weight on values of .9 and above (see, e.g.,
Figure 2). This became more severe as test length
increased. To establish the glb as a more popular meas-
ure of reliability, future work could investigate different
prior distributions and their effect on the estimator.

The simulation results suggest that the Bayesian
coefficient x proved its usefulness as a reliability coef-
ficient for unidimensional tests. Multidimensional
tests, however, require a more sophisticated model,

for example, a bi-factor model. For this, one needs to
apply a more complex procedure of posterior sam-
pling than the single-factor model (see e.g., Lee, 2007;
Muth�en & Asparouhov, 2012). Estimating coefficient
xh (Zinbarg et al., 2005) from a Bayesian perspective
can be a promising approach to indicate the measure-
ment of a common factor in a multidimensional scale.

To summarize, the Bayesian reliability estimates
displayed similar statistical properties as the frequent-
ist estimators. Furthermore, the shape of the prior dis-
tribution may influence the outcome of a Bayesian
reliability analysis when the sample size is small.

Limitations of the present study

Simulation

Our simulation study covered a limited range of con-
ditions. First, we assumed data to be continuous and
normally distributed. A Bayesian solution for data
that are multivariate non-normal or even categorical
is offered by Gaussian copula graphical models
(Mohammadi, Abegaz, Heuvel, & Wit, 2017). Kelley
and Pornprasertmanit (2016) discussed the implica-
tions of categorical data on different types of x.
Second, we only simulated data that were unidimen-
sional. An account of the behavior of frequentist reli-
ability coefficients with multidimensional data is given
by Cho (2016) and in the case of coefficient x by
Kelley and Pornprasertmanit (2016). Third, we did
not evaluate the coefficients with respect to the popu-
lation reliability but with respect to their population
values. The coefficients are approximations to popula-
tion reliability, thus their population values are
unequal to population reliability under realistic condi-
tions. If one assumes that the factor model can substi-
tute CTT for reliability analysis and thus the factor
score of the single-factor model represents the true
score, the population value of coefficient x equals the
population reliability. Since the purpose of our study
was to compare the reliability coefficients of one stat-
istical framework to another we refrain from compar-
ing coefficients to population reliability.

Bayesian estimation

The Bayesian estimation procedure starts with the
choice of adequate priors for the parameters. Given
the sparsity of research on Bayesian reliability estima-
tion, we conservatively decided on relatively unin-
formative priors on the covariance matrices and
relatively uninformative priors on the factor model
parameters. For future research an alternate approach

6The two most common errors among researchers about coefficient a are
the failure to interpret a as a lower bound and the false assumption of a
as an indicator for unidimensional data (Hoekstra et al., 2019).

MULTIVARIATE BEHAVIORAL RESEARCH 633



would be to specify priors such that the resulting
prior distribution of the reliability coefficients is unin-
formative, instead of the prior covariance matrix or
the factor model parameters.

Conclusion

The posterior distribution answers practically relevant
questions about the confidence one can have in reli-
ability estimation. As such, the Bayesian estimation
adds an essential measure of uncertainty to simple
point-estimated coefficients. Adequate credible inter-
vals for single-test reliability estimates can be easily
obtained applying the procedure described in this art-
icle, and as implemented in the R-package Bayesrel.
Whereas the R-package addresses substantive
researchers who have some experience in program-
ming, we admit that it will probably not reach scien-
tists whose software experiences are limited to
graphical user interface programs such as SPSS. For
this reason we are currently implementing the
Bayesian reliability coefficients in the open-source
statistical software JASP (JASP Team, 2020).

Whereas we cannot stress the importance of report-
ing uncertainty enough, the question of the appropri-
ateness of certain reliability measures cannot be
answered by the Bayesian approach. No single reliabil-
ity estimate can be generally recommended over all
others. Nonetheless, practitioners are faced with the
decision which reliability estimates to compute and
report. Based on a single test administration the pro-
cedure should involve an assessment of dimensional-
ity. Ideally, practitioners report multiple reliability
coefficients with an accompanying measure of uncer-
tainty, that is based on the posterior distribution.
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Appendix A

Uncertainty intervals

Table A1. Uncertainty intervals and their interpretation

Frequentist confidence interval Bayesian credible interval

Definition
An X% confidence interval for a parameter h is an interval with
limits (L, U) generated by a procedure that in repeated sampling
has at least an X% probability of containing the true value of h,
for all possible values of h (Morey et al., 2016; Neyman, 1937).

Procedure
One constructs a confidence interval around a sample estimate ĥ
by adding an estimate of uncertainty to ĥ: The estimate of
uncertainty is obtained by means of the sampling distribution of
the parameter h. This can be done in several ways. We
distinguish between two cases. One where the sampling
distribution is known (analytic confidence intervals) and one
where it is unknown (bootstrap confidence intervals).

Analytic confidence interval
For example, assume a participant gets 9 out of 12 true/false
questions correct. One calculates an analytic confidence interval
for the parameter h (the probability of answering any one
question correctly) on the basis of the known sampling
distribution of h, i.e., the binomial distribution. Commonly, one
approximates the binomial distribution of h with a normal
distribution on the basis of the central limit theorem. Hence, the
95% analytic confidence interval is:

½ð9=12Þ61:96 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:75 � :25=12p � ¼ ½:505, :995�:

Bootstrap confidence interval
For some models, the sampling distribution may not be available or
applicable. In these situations, bootstrapping can be used to obtain
an empirical sampling distribution of the parameter h by re-
sampling the data with replacement and computing h for each data
sample (Efron, 1979). The “bootstrap” confidence interval can be
constructed from this empirical distribution in a number of ways.

Percentile-type confidence interval
To obtain a percentile-type interval we discard 100ða=2Þ% of the
mass in the tails of the empirical sampling distribution. Thus, the
percentile-type interval is given by the quantiles of the empirical
sampling distribution: ½h�a=2, h�1�a=2�, with, i.e., h� being the

bootstrapped parameter estimates. For the binomial example the
95% percentile-type bootstrap confidence interval for h equals [.5,
1]. Note that the percentile-type interval can be constructed for any
sampling distribution (also a posterior distribution) and is not
exclusively relevant to bootstrapped sampling distributions.

Definition
An X% credible interval for parameter h is an interval with limits
(L, U) that encloses 95% of the posterior mass.

Procedure
One constructs a credible interval for a parameter h by
summarizing the posterior distribution of h by means of an
interval; we distinguish two types.

Central credible interval
Consider again the example about answering true/false questions,
where a participant gets 9 out of 12 questions correct. One can
obtain the posterior distribution of h (the probability of answering
any one question correctly) in closed form if one uses a beta (1,
1) distribution as the prior for h. Then the posterior distribution of
h is a beta (10, 4) distribution. One can compute a central
credible interval of the beta (10, 4) distribution by using the a=2
and 1� a=2 quantiles of the posterior distribution. This results in
a 95% central credible interval of [.462, .909].

HPD interval
Another popular way to construct a credible interval is to use the
highest posterior density (HPD) region. The HPD interval is the
smallest possible interval that contains 100ð1� aÞ% of the
posterior mass (Gelman et al., 2004, chapter 2.3). For example, to
obtain the interval limits of an HPD interval for the posterior
probability of the binomial rate h one could sample a sufficient
number of values (e.g. 10,000) from the posterior distribution, i.e.,
the beta (10, 4), and compute the HPD interval with standard
software packages. The 95% HPD interval then equals [.486, .926].
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Appendix B

R-Package: Bayesrel

The functions for computing the frequentist and Bayesian
reliability estimates were combined into the R-package
Bayesrel. The purpose of Bayesrel is to provide six dif-
ferent single-test reliability measures in both the frequentist
and Bayesian way (download: https://github.com/juliuspf/
Bayesrel).7 The frequentist x-computation is by default a
CFA. The glb is calculated based on the “glb.algebraic”-
function from the psych package (Revelle, 2019) which uses
the “csdp”-function to solve the educational testing problem
(Corrada Bravo & Borchers, 2020).

Bayesrel provides the user with credible and confidence
intervals – in addition to point estimates. In the latest ver-
sion, the Bayesian point estimates are the means of the pos-
terior distributions. The confidence intervals are by default
calculated as percentile-type with the non-parametric boot-
strap method (Efron, 1979). The credible intervals are the
highest posterior density (HPD) intervals of the poster-
ior samples.

In addition, the package:

� allows the calculation of the probability that a coefficient
is larger than any specified value;

� displays a graphical posterior predictive check of the
comparison between eigenvalues of the model implied
covariance matrix and the sample covariance matrix to
check the fit of the single-factor model;

� provides the commonly used “if-item-dropped” statistics.

Note that for the if-item-dropped statistics the partition-
ing of the posterior covariance matrices can be done with-
out the need to re-sample, since the covariance matrices
from multivariate normal data are inverse Wishart distrib-
uted (Bodnar & Okhrin, 2008). However, we recommend
against using the if-item-dropped statistics to dismiss items
without thorough theoretical considerations.

Appendix C

Additional simulation results

The aggregated simulation results for the zero and high-correl-
ation conditions are shown in Figure C1 and C2, respectively.

Figure C1. Simulation results for the zero-correlation condition. The endpoints of the bars are the 95% uncertainty interval limits.
The 25%- and 75%-quartiles are indicated with vertical line segments.

7In addition to coefficient a, coefficient k2, the glb and coefficient x, the
package allows the calculation of coefficient k4 and k6. Users should
beware of coefficient k4, however, since its calculation can take a
considerable amount of time.
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Below we calculated the root mean square errors
(RMSE) of the values in the sampled distributions, posterior
and bootstrap, and their associated population values –
averaged over simulation runs. Thus, the RMSEs quantify
the bias of the sampled coefficients in both frameworks.
The tables are separated by number of items.

Figure C2. Simulation results for the high-correlation condition. The endpoints of the bars are the 95% uncertainty interval limits.
The 25%- and 75%-quartiles are indicated with vertical line segments.

Table C1. RMSE of the posterior/bootstrap samples and the population coefficient value for 5 items.

n

�q � 0 �q � :3 �q � :7 �l

Freq Bayes Freq Bayes Freq Bayes Freq Bayes

a
50 0.336 0.330 0.088 0.086 0.026 0.025

0.098 0.097100 0.225 0.223 0.059 0.059 0.017 0.017
500 0.097 0.097 0.025 0.025 0.007 0.007

k
2 50 0.252 0.249 0.076 0.074 0.025 0.024

0.081 0.080100 0.184 0.183 0.053 0.053 0.017 0.016
500 0.089 0.088 0.024 0.024 0.007 0.007

glb
50 0.390 0.379 0.091 0.088 0.028 0.027

0.120 0.117100 0.295 0.289 0.066 0.065 0.020 0.020
500 0.146 0.145 0.032 0.031 0.010 0.010

x
50 0.243 0.153 0.076 0.084 0.024 0.027

0.080 0.061100 0.185 0.119 0.053 0.056 0.016 0.017
500 0.092 0.064 0.024 0.024 0.007 0.007

Note. Size of bootstrap and posterior samples is 1,000.

MULTIVARIATE BEHAVIORAL RESEARCH 639



Appendix D

Cavalini data example

The covariance matrix of the Cavalini-data (Cavalini, 1992)
is given by:

�Rfreq ¼

1:1101925 :3847692 :20299640 :1693611 :15245723 :2230809 :2640517 :2634661
:3847692 :8941506 :25851106 :2030694 :23972335 :4532593 :2337314 :2447967
:2029964 :2585111 :51025913 :1219223 :09646064 :1766177 :2038960 :1396497
:1693611 :2030694 :12192226 :3954971 :24639434 :1906665 :1407961 :1266057
:1524572 :2397233 :09646064 :2463943 :48975109 :2925130 :1450035 :1244706
:2230809 :4532593 :17661766 :1906665 :29251295 :8582210 :1856252 :1923079
:2640517 :2337314 :20389599 :1407961 :14500348 :1856252 :6216798 :2867153
:2634661 :2447967 :13964974 :1266057 :12447061 :1923079 :2867153 :7058806

0
BBBBBBBBBB@

1
CCCCCCCCCCA

The results for the example are:

The R-code and output to reproduce the results for the
example data:

> library(Bayesrel)

> set.seed(1234)

> res <- strel(data = cavalini)

> summary(res)

Call:

strel(data = cavalini)

Results:

estimate interval.low interval.up

Bayes_alpha 0.777417 0.7529134 0.7984593

Bayes_lambda2 0.7842601 0.7611358 0.8055368

Bayes_glb 0.8473377 0.8292795 0.8648511

Bayes_omega 0.780281 0.757462 0.7997919

freq_alpha 0.7783201 0.7548938 0.7999913

freq_lambda2 0.7846576 0.7580393 0.8087328

freq_glb 0.8448238 0.825023 0.8667183

freq_omega 0.7820719 0.7595194 0.8046243

uncertainty interval: 0.95

Table C2. RMSE of the posterior/bootstrap samples and the population coefficient value for 20 items.

n

�q � 0 �q � :3 �q � :7 �l

Freq Bayes Freq Bayes Freq Bayes Freq Bayes

a
50 0.314 0.305 0.026 0.025 0.006 0.006

0.075 0.073100 0.210 0.206 0.017 0.017 0.004 0.004
500 0.088 0.088 0.007 0.007 0.002 0.002

k2
50 0.275 0.270 0.023 0.022 0.006 0.006

0.069 0.068100 0.199 0.196 0.016 0.016 0.004 0.004
500 0.093 0.093 0.007 0.007 0.002 0.002

glb
50 0.855 0.794 0.070 0.065 0.016 0.015

0.230 0.218100 0.674 0.641 0.055 0.052 0.013 0.012
500 0.354 0.346 0.028 0.028 0.007 0.006

x
50 0.146 0.104 0.024 0.024 0.006 0.006

0.039 0.029100 0.102 0.069 0.017 0.016 0.004 0.004
500 0.044 0.027 0.007 0.007 0.002 0.002

Note. Size of bootstrap and posterior samples is 1,000.

Table D1. Reliability statistics for cavalini-data.
2.5% lower bound point estimate 97.5% upper bound

a Freq .755 .778 .800
Bayes .753 .777 .798

k2 Freq .758 .785 .809
Bayes .761 .784 .806

glb Freq .825 .845 .867
Bayes .829 .847 .865

x Freq .760 .782 .805
Bayes .757 .780 .800

Note. The Bayesian point estimates are the means of the posterior distributions.
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> omega_fit(res)

chisq df pvalue rmsea rmsea.ci.lower

297.37364608 20.00000000 0.00000000 0.12942031

0.11663637

rmsea.ci.upper srmr

0.14263586 0.06858548

See Figure 3.

># give the probability for lambda2 larger than.80

> p_strel(res, "lambda2",.80)

prior_prob posterior_prob

0.30366780 0.07481481

> # give the probability for lambda2 larger than.70

> p_strel(res, "lambda2",.70)

prior_prob posterior_prob

0.4637053 1.0000000

> # give the probability that lambda2 is larger

than.70 and smaller than.80

> p_strel(x, "lambda2",.70) - p_strel(x, "lambda2",.80)

prior_prob posterior_prob

0.1600375 0.9251852
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