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ABSTRACT

Extended redundancy analysis (ERA) combines linear regression with dimension reduction to
explore the directional relationships between multiple sets of predictors and outcome variables
in a parsimonious manner. It aims to extract a component from each set of predictors in such a
way that it accounts for the maximum variance of outcome variables. In this article, we extend
ERA into the Bayesian framework, called Bayesian ERA (BERA). The advantages of BERA are
threefold. First, BERA enables to make statistical inferences based on samples drawn from the
joint posterior distribution of parameters obtained from a Markov chain Monte Carlo algorithm.
As such, it does not necessitate any resampling method, which is on the other hand required
for (frequentist’s) ordinary ERA to test the statistical significance of parameter estimates.
Second, it formally incorporates relevant information obtained from previous research into
analyses by specifying informative power prior distributions. Third, BERA handles missing data
by implementing multiple imputation using a Markov Chain Monte Carlo algorithm, avoiding
the potential bias of parameter estimates due to missing data. We assess the performance of
BERA through simulation studies and apply BERA to real data regarding academic achievement.
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Introduction

Extended redundancy analysis (ERA; Takane &
Hwang, 2005) is a statistical tool for exploring the dir-
ectional relationships between multiple sets of predic-
tors and outcome variables (e.g., DeSarbo, Hwang,
Blank, & Kappe, 2015; Hwang, Suk, Takane, Lee, &
Lim, 2015; Lee, Choi, Kim, & Kim, 2016; Lovaglio &
Vacca, 2016; Lovaglio & Vittadini, 2014). It reduces
predictors to a smaller number of new variables,
called components or weighted composites of the pre-
dictors, and at the same time, examines the effects of
these components on outcome variables. ERA aims to
perform dimension reduction and linear regression
simultaneously, and it would be regarded as a special
case of structural equation models, in which the out-
come variables are always observed and affected by
components of the predictors. Other variants of ERA
have also been developed, for example, for analyzing
functional data (Hwang, Suk, Lee, Moskowitz, & Lim,

2012) or for accounting for cluster-level heterogeneity
in functional data (Tan, Choi, & Hwang, 2015).

There exist two other related techniques that also
represent component-based regression models with
dimension reduction: principal component regression
(PCR; Hotelling, 1957; Jolliffe, 1982) and partial least
squares regression (PLSR; Wold, 1966, 1973). In PCR,
a principal component analysis is first carried out to
extract a few principal components of predictors,
which account for as much variation of the predictors
as possible, and subsequently, outcome variables are
regressed on these components (e.g., Wehrens &
Mevik, 2007). PCR is, however, limited in that the
principal components of predictors may not be opti-
mal in explaining the variance of the outcome varia-
bles because they are extracted only to account for the
maximum variance of the predictors, without consid-
ering their associations with the outcome variables
(e.g., Abdi, 2010; Geladi & Kowalski, 1986).
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To address this issue inherent to PCR, PLSR aims
to extract components of predictors, taking into
account the covariances between the components and
outcome variables. It utilizes an iterative algorithm to
estimate component weights for predictors in such a
way that the obtained components are maximally
associated with the outcome variables (e.g., Wold,
1973, 1975; Wold, Ruhe, Wold, & Dunn, 1984).
Although this algorithm is computationally efficient
and seems to converge in practice, it does not involve
a single optimization function to be consistently mini-
mized or maximized to estimate parameters including
the component weights. This makes it difficult to
understand how the algorithm works theoretically and
to generalize PLSR to handle a more variety of prob-
lems (e.g., missing data, capturing cluster-level hetero-
geneity,  incorporating interaction  terms  of
components, etc.) in a technically coherent manner.

ERA is similar to PLSR in the sense that it also
extracts components in such a way that they explain the
maximum variation of outcome variables. However,
ERA is different from PLSR for two main reasons. First,
ERA aims to minimize a single least squares function to
estimate all parameters, using an alternating least squares
(de Leeuw, Young, & Takane, 1976) algorithm (Takane
& Hwang, 2005). Second, whereas PLSR involves only
one set of predictors, ERA considers multiple sets (or
blocks) of predictors simultaneously and reduces each
set into a component based on some substantive theories
or hypotheses about how certain predictors can be
grouped into the same block and aggregated into a com-
ponent. Accordingly, ERA can be regarded as theory-
based regression models with dimension reduction.

ERA has been extended to improve its flexibility
(e.g., Hwang et al., 2012; Tan et al.,, 2015). Nevertheless,
these extensions have been thus far developed within
the frequentist framework, despite the increasing adop-
tion of Bayesian methods by many disciplines including
psychology (Kaplan & Depaoli, 2012; van de Schoot,
Winter, Ryan, Zondervan-Zwijnenburg, & Depaoli,
2017). Therefore, in this article, we propose a Bayesian
approach to ERA, called BERA hereinafter, to transfer
three appealing advantages of Bayesian inference to
ERA. First, while the statistical inference of ordinary
ERA requires an additional step of implementing a
resampling method such as bootstrapping (Efron,
1982) in addition to parameter estimation, that of
BERA can be easily conducted based on samples drawn
from the joint posterior distribution of parameters via
a single Markov chain Monte Carlo (MCMC) algo-
rithm, especially Gibbs sampler (Geman & Geman,
1984) in this article. To test statistical significance of a
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parameter, ordinary ERA typically uses, for example,
500 bootstrapped replications of the data. With the
bootstrapped replications, an empirical distribution of
the parameter estimate is complied, from which the
95% percentile bootstrap confidence interval is calcu-
lated. On the other hand, in BERA, samples simulated
directly from the posterior distribution of the param-
eter is used to compute an interval analogous to, albeit
philosophically different from, confidence interval (also
called credible interval; Edwards, Lindman, & Savage,
1963). Specifically, in the article, we calculate the high-
est posterior density (HPD), hereinafter also called a
credible interval for a parameter, that is, the narrowest
interval that contains a 95% probability mass of the
posterior density. As a by-product of this Bayesian
methodology, the Bayesian credible interval enables to
make the true probabilistic statement about the param-
eter value given a fixed interval, which is frequently
made for a frequentist’s confidence interval by mistake.

Second, BERA provides an intrinsic way of com-
bining data at hand with researcher’s belief or results
of similar and/or previous studies by specifying prior
distributions for the parameters of interest, which is
the most remarkable characteristic of Bayesian models
that frequentist models do not have. In the article, we
demonstrate how to formally incorporate substantial
prior information obtained from previous research
findings into BERA, via the specification of so-called
power prior distributions (Ibrahim & Chen, 2000;
Ibrahim, Chen, Gwon, & Chen, 2015).

Lastly, BERA is capable of handling missingness in
outcome variables via data augmentation (van Dyk &
Meng, 2001), which can be easily integrated into an
MCMC algorithm. Missing data are a common issue
encountered on a routine basis in the social sciences
regardless of their research design (Allison, 2003;
Little & Rubin, 1989; Orme & Reis, 1991; Peugh &
Enders, 2004; Schafer & Graham, 2002; Schlomer,
Bauman, & Card, 2010). To date, ordinary ERA has
typically excluded all cases that include any missing
responses (i.e., listwise deletion) and then estimated
parameters based on the remaining cases. This com-
plete-case analysis, however, may lead to the deletion
of a large portion of the original sample, reducing the
sample size and thus the power of a test of statistical
significance substantially, especially if there exists a
mosaic pattern of missingness in the data. This loss of
information can become a serious problem particu-
larly when the number of variables is large. The com-
plete-case analysis is also considered very limited as it
can produce unbiased estimates only when missing
responses on a variable are assumed to be not related
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to any other variables under study (i.e., missingness
occurs completely at random), which is often unlikely
to hold in practice (e.g., Baraldi & Enders, 2010). As
will be discussed in a later section, BERA applies data
augmentation to produce multiple imputation for
missing responses, which is considered a state-of-the-
art method for handling missing data (e.g., Allison,
2003; Baraldi & Enders, 2010; Schafer & Graham,
2002) and is easily incorporated into the proposed
MCMC algorithm.

To our knowledge, no attempt has been made to
develop a Bayesian approach to ERA models as well
as examine its compatibility with ordinary ERA. Thus,
we will compare BERA with conjugate non-inform-
ative or diffuse prior specification with ordinary ERA,
focusing not only on similarities but also on distinc-
tions between frequentist and Bayesian approaches to
ERA. We highlight BERA by extending its applicabil-
ity for more various and complicated scenarios, in
particular, where (1) external information on parame-
ters are available from previous research findings and
(2) the proportion of the missingness in outcome data
is considerably large and/or propensity for a response
to be missing on a variable is assumed to be not com-
pletely at random.

In the reminder of the paper, we present the tech-
nical underpinnings of frequenist and Bayesian ERA
using a hypothetical example, and explicate how BERA
quantifies and constructs prior distributions from any
relevant previous research findings. Subsequently, we
describe how BERA deals with missing data. We then
conduct simulation studies to evaluate the performance
of BERA. We also apply BERA to real data concerning
the academic performance of children and compare
the results of different prior specifications. We finally
conclude with a summary and discussion.

Frequentist extended redundancy analysis
Model specification

Let y;; denote the ith value of the gth outcome vari-
able (i=1,..., N; g=1, ..., Q) and x; the ith value
of the Ith predictor in the kth set (I=1,...,p; and
k=1,...,K), where pj refers to the number of predic-
tors in the kth set. Let P = Zszl px be the total num-
ber of predictors in K sets. Let wy denote a
component weight assigned to x;. Let fi denote the
ith component score for the kth component defined
as a linear combination or weighted composite of the
predictors in the kth set, that is, fyx = [>_7", xukwWi)-
Let ai, denote the kth regression coefficient connect-
ing the kth component to the outcome variable yq,

and e;; denote the ith residual value for Yig- Then, as
proposed by Takane and Hwang (2005), we can write
an ERA model as follows:

K Px
Yig = Z inlkwlk

Akq T €iq
k=1 |I=1
- (1)

= ikOkq + €ig-
k=1

We can re-express this model in matrix notation as
follows:

Y=XWA+E

=FA+E, @)

where Y is an N by Q matrix of outcome variables, X
is an N by P matrix of predictors, W is a P by K
matrix of weights, A is a K by Q matrix of regression
coefficients, and E is an N by Q matrix of residuals.
For identifiability of F, a standardization constraint is
imposed on F such that diag(F'F) = NI

Figure 1 displays an exemplary ERA model. In the
figure, square boxes are used to indicate observed pre-
dictors and outcome variables, and circles are to rep-
resent components. This model contains four
predictors, two components, and two outcome varia-
bles. The two outcome variables (Q=2) are regressed
on two components (K=2), each of which is a linear
combination of two predictors (i.e., py=2). For this
example, the W and A matrices in (2) are given as

w1 0

w= | "2 0 and A = [an alz} (3)
0 wp ar 4
0 wx

Each weight indicates how a predictor contributes
to producing its corresponding component, which is
in turn to explain outcome variables. The regression
coefficients in A are another set of parameters, each
of which indicates the effect of each component on an
outcome variable.

Parameter estimation
The ordinary ERA model contains two sets of param-
eters to be estimated: component weights (W) and
loadings (A). These unknown parameters are esti-
mated by minimizing the following sum of squares
(SS) objective function:

¢ = SS(Y — XWA), (4)

with respect to W and A, subject to the constraint
diag(F'F) = NI. An alternating least squares algorithm
(ALS; de Leeuw et al. 1976) is developed to minimize
the criterion (Takane & Hwang, 2005). The ALS
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Figure 1. A hypothetical example of an ERA model.

algorithm repeats two main steps until convergence.
In the first step, we update W for fixed A. The object-
ive function (4) can be re-written as:

¢ = SS(vec(Y) — vec(XWA))

= SS(vec(Y) — (A’ @ X)vec(W)), ®)

where ® refers to the Kronecker product and vec(W)
is the supervector formed by staking the columns of
W. Let W* denote a column vector formed by elimi-
nating zero elements from vec(W), and Q denote a
matrix formed by eliminating the columns of A’ ® X
corresponding to the zero elements in vec(W). The
least squares estimate of W* is obtained as

W = (Q) ' Q'vec(Y). (6)

After reconstructing W from W~ the updated W
is multiplied by \/Ninv(W'X'XW) to satisfy the con-
straint diag(F'F) = NIL.

In the second step, we update A for fixed W.
Minimizing (4) with respect to A is equivalent to
minimizing:

¢

SS(vec(Y) — vec(XWA))
SS(vec(Y) — (I® F)vec(A)) (7)
SS(vec(Y) — TA¥),

where I is a matrix formed by removing the columns
in (I® F) that correspond to zero elements in vec(A),
and A” is a column vector formed by eliminating zero
elements from vec(A). The least squares estimate of
A" is given by

A" = (F/F)fll“’vec(Y). (8)

YVi2

Similarly, A is then recovered from A*.

In this algorithm, the signs of the updated param-
eter estimates can change between iterations without
changing their interpretations. For example, if a set of
predictors is positively associated with its component
(i.e., positive weights) and the component has positive
effects on outcome variables (i.e., positive regression
coefficients), the interpretation of these relationships
still remains the same even if the signs of both the
weights and regression coefficients become negative.
This is in fact the same in BERA, which will be dis-
cussed in the next section. Typically, ERA imposes a
sign constraint by either fixing the sign of each com-
ponent on the basis of empirical/substantive meanings
or determining the sign as the sign of the weight
estimate that results in the strongest association with
outcome variables.

Bayesian extended redundancy analysis

Bayesian analysis treats an unknown parameter as a
random variable rather than fixed, and quantifies the
uncertainty about the parameter using its probability
distribution. The probabilistic statement about the
parameter is inferred from updating the so-called pos-
terior distribution, which is a combination of evidence
collected from data that is formally expressed by the
likelihood function and a prior belief that is specified
with a prior distribution. Because the posterior distri-
bution cannot be expressed as a closed form analytic-
ally, especially for multiple parameters, an MCMC
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algorithm is used to approximate the posterior distri-
bution. For example, a Gibbs sampler is one of the
most popular MCMC algorithms, which iteratively
draws samples from relatively simpler full conditional
distributions (Geman & Geman, 1984).

In ordinary ERA, there is an implicit assumption of
independent residuals with zero means but no form
of the likelihood since no error distribution is
assumed. For BERA, however, we need to additionally
consider a reasonable distribution for vector residuals,
which can be a multivariate normal distribution such
that

Epq = (e1g, - eng) ~MVN (0, (,—21), (9)

forg=1, ..., Q.

Conjugate priors

To make the posterior sampling process efficient, we
consider conjugate prior distributions for the parame-
ters. One reason for employing conjugate priors is
that the posterior distribution can be derived as the
same known family of the prior distribution, while
still combining information from the prior and the
data. Another reason is that with a large valued vari-
ance of the prior distribution, these conjugate priors
become non-informative or diffuse priors with no
concern of an improper posterior distribution. Last
but not least, in a case where a non-conjugate prior is
considered, the posterior distributions are known up
to the normalizing constant and therefore a general
Metropolis-Hastings ~ algorithm  (Hastings, 1970;
Metropolis & Ulam, 1949) is implemented instead
with some tuning parameter, which is difficult for a
researcher with a minimal statistics background to
control. With conjugate priors, all the full conditional
distributions in a Gibbs sampler, as proposed in this
article, are expressed as known distributions and
therefore general audience can easily run the algo-
rithm simply by specifying hyperparameters of the
conjugate prior distributions.

Let Wy, denote a p; by 1 column vector containing
the weight estimates for the kth component, and A
denote a K by 1 column vector containing the regres-
sion coefficients affecting the gth outcome variable. In
BERA, we consider the following conjugate priors:

Wi ?2~MVN, (0,7%1) for k= 1, ... K
©|ay, bi~IG(ay, by)
Agg|oi~MVNi (0,¢4021) for g = 1. ... .Q
a§|a0,b0~IG(ao,bo) for q= 1, ... 7Q7

where a scalar constant ¢, (c;>0) for the gth out-
come variable is used to determine the dispersion of
Al If we set ¢, to large values such as ¢; = 100, the
prior distribution on A[, will become a diffuse prior
conditional on o;. Although we can fix t* and o to
constant values to fully utilize the appealing features
of Bayesian inference, we specify a hyperprior for t?
and a prior for 02. As one major objective of the
paper is to introduce the general usage of BERA, a set
of objective priors, that is, diffuse conjugate priors,
(e.g., Chen, Bakshi, & Goel, 2009; Spiegelhalter,
Thomas, Best, & Lunn, 2003) are specified with a, =
bo = 1 and ¢; =100 for simulated and real data analy-
ses. Any subjective information obtained from previ-
ous research findings would also be formulated with
power priors, as discussed in the next section.

Power priors

As the capability of incorporating any relevant prior
information into a statistical analysis is one of the
advantages of Bayesian methodologies, we consider
using a power prior, that is, an informative prior con-
structed from historical data (Ibrahim & Chen, 2000;
Ibrahim et al., 2015) for BERA. Because the accumula-
tion of information occurs from past to future, it is
natural to construct a prior from any previous
research findings or information from historical data.

Following the notations of Ibrahim and Chen
(2000), the power prior distribution for the current
study can be expressed as

(0D, &) o L(0|Dy) 1o (0co), (11)

where L(60|Dp)indicates the likelihood for the histor-
ical data D, given a set of parameters 0, and mo(0|-)
denotes the initial prior distribution for 0, and ¢, is a
specified hyperparameter for the initial prior. Note
that the power parameter ¢ will serve as a weight that
controls for the influence of the historical data on the
current data, and it is reasonable to restrict the range
of 0 to be between 0 and 1, 0 < 6 < 1. When 6 =
0, no information from the historical data is incorpo-
rated (no borrowing), leading to the usual update
through Bayes’ Theorem (or Bayes’ rule) only with
the initial prior distribution. On the other hand, 6 =
1 gives equal weights to L(0|Dy) and the likelihood of
the current data. In Ibrahim et al. (2015), power pri-
ors are extended to accommodate multiple historical
datasets, imposing a power parameter J,, for the mth
historical data. With J,, defined distinctively from
past to near past, the priors from the historical data
sets can accumulate information. Although we may



update J by modeling a hyperprior (e.g., a beta prior,
a truncated gamma prior, or a truncated normal
prior) as suggested by Ibrahim and Chen (2000), it
might be more appealing to consider few possible val-
ues of 0 based on the analytic meaning of the esti-
mated weights and regression coefficients for
interpretation purposes. This is common practice in
applied research implementing a power prior
(Rietbergen, Klugkist, Janssen, Moons, & Hoijtink,
2011; Shao 2012), which we also follow by evaluating
how results would change depending on the values of
0 as sensitivity analyses.

In this article, we only consider a power prior from
the nearest past with the initial prior distribution for 0
in (11) being an improper uniform prior, that is
79(0|co) ox 1, for simplicity. Even though the proposed
method can be extended with many sets of past studies,
we consider a simple form of priors for comparisons to
ordinary ERA. In BERA, power priors are specified as:

e Power Normal prior on W

Wik [Wopks Zo~ [MV N, (Wo x, Eey )| %

where W[y is a mean vector of weights from the
past study for the kth component and X, is a diag-
onal matrix with (z}, ...,rf,k), where 17 is the variance
of wy. Although it is possible to further consider a
hyperprior distribution (e.g., inverse Wishart priors)
on X, we fix them with the estimated values from
the historical data.

e Power Normal prior on component loading A
o
Apal[Aojq), By, ~ [MV Nk (Aopq), 2, )]

where Ay is the gth outcome variable’s mean vector
of regression coefficients and X, is a diagonal matrix
with (y2,...,7%) from the past study.

e An Inverse Gamma prior on o*fz

O'é|a(), bONIG(a(), bo)

for g=1, ..., Q. For a simpler notation, let X =
diag(ai, ..., 63)) hereinafter.

It is worthy to note two things related to the above
formulation of power priors. First, it is common in
practice to report maximum-likelihood estimates
(MLEs) for parameters of interest and their standard
errors, but not the estimated covariance matrix of the
parameter estimates as a result of data analysis.
Taking this practice into account together with the
asymptotic normality of MLEs (Casella & Berger,
2002), it is natural to assume that both the prior vari-
ance matrices X;, and X, of weight W, 1) and regres-
sion coefficients A, in the conjugate multivariate
normal prior distributions are to be a diagonal matrix

MULTIVARIATE BEHAVIORAL RESEARCH 35

with diagonal elements being squared standard errors
of the corresponding parameter estimates from the
past study. In a case where the full data set or the
estimated covariance matrix of parameter estimates is
available from the past study, the prior variance
matrices can be specified to incorporate covariance
information of the parameter estimates further.
Second, because of the conjugacy of the above power
priors, there will be no improper posterior issue even
with power parameters.

Dealing with missing data in BERA

For simplicity, we assume that missingness occurs in
outcome variables only, which is typically contem-
plated in a model with missing data (e.g., Asparouhov
& Muthén, 2010). In this setting, it is reasonable to
assume that missing data are classified as missing at
random (MAR), that is, missing responses on an out-
come variable can depend on predictors and other
outcome variables but not on the outcome variable
itself (Rubin, 1976, 1978). Missing completely at ran-
dom (MCAR), that is, missing responses on an out-
come variable is unrelated to any other variables, is
another missing pattern that researchers in the social
sciences typically assume (Schlomer et al, 2010).
However, because MAR is a more general assumption
than MCAR, we incorporate multiple imputation to
handling missing data, which is known to hold well
under the assumption of MAR.

In the presence of missing responses, the gth out-
come variable vector Y[, = (yig, .- yng) can be writ-
ten as Y4 = (Yopspqp Ymisiq))» Where Yope and Yo
are vectors of observed and missing responses,
respectively. Let @ = {W, A, a7, ...03} denote a set of
all parameters. Then, the likelihood function of ® and
Yonis given Yops, can be written as

L(®7 Ymis|Yobs) = L(®|YObS)L(YmiS|®7 Yobs)~ (12)

Based on (10), we implement a Bayesian approach to
multiple imputation by generating a Markov chain
that iterates the imputation and posterior sampling
steps as follows. At the (s+ 1)th iteration,

e Imputation step: Yﬁzl)wn(YmiJYobs, 0(5))

e Posterior sampling step: ®(S+1)~n(®|Yobs,Y$?;1)).

The imputation step generates new samples from
the conditional distribution of Y, given Yops and
the current values of the parameters. Then, using the
just updated values of Y,,;s each set of the parameters
is sampled from the posterior distribution based on
full-data likelihood n(®|Yobs,Yr(;;1)). The imputation
step above is a data augmentation (Tanner & Wong,
1987; Schafer, 1997; van Dyk & Meng, 2001), which
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enables full-data inference even in the presence of
missing responses.

In BERA, the full conditional distribution of
Yoisq» given all the other parameters ® in the
imputation step, is obtained from a multivariate nor-
mal distribution as

Yonis q)|W, A, 07, ., 55, T, X, Yobg g ~MVN (g WA 4, a§1> ,

(13)

where N* is the number of observed responses for the
gth outcome variable, X is an (N - N*) by P matrix
of predictors, and I is the identity matrix of order
(N - N*). Then, the posterior sampling step is carried
out using the Gibbs sampling with either conjugate or
power priors, as discussed earlier. Further details on
the sampling scheme with the full conditional distri-
butions are provided in the Appendix.

Other computational issues in BERA

As the same scale indeterminacy between F and A
remains in BERA, we impose the same scaling con-
straint of diag(F'F) = NI on each component. Also in
BERA, to avoid the potential sign-switching between
W and A, we fix signs of W to the sign of a weight
estimate that yields the strongest association with out-
come variables.

To examine if a sequence of posterior samples
obtained from an MCMC method converges to the
target distribution after a number of iterations, we
check convergence and mixing of a chain by drawing
trace plots for the samples simulated. When a lack of
convergence and mixing is suspected by showing a
systematic or cyclic trend over the iterations (e.g.,
staying in a certain range of values for a longer period
of time rather than traversing up and down), we
would increase the number of early iterations to dis-
card in the chain (ie., a burn-in period) (Lynch,
2007) and/or choose every rth posterior sample (i.e., a
thinning) to improve the mixing of the chain. To
monitor dependency among posterior samples and
determine the value of r in the thinning, autocorrel-
ation function (ACF) plots are used to check around
what lag the autocorrelations decrease to being not
significantly different from zero (decrease towards
zero). Additionally, we also check convergence of the
proposed MCMC algorithm by running chains mul-
tiple times with different initial values for parameters.

Examples
Simulation studies

We conducted two series of simulations studies to
investigate how well the proposed method performed
in terms of recovering the original underlying struc-
ture of the data under different conditions. Across the
different conditions, the number of predictors, com-
ponents, and outcome variables remained the same as
shown in Figure 1: Q=2, K=2, and py=2 for k=1
and 2. The weight and regression coefficient parame-
ters in W and A in (2) were prescribed as

0.9 0

0.5 0 21
W=10 o5 andA_[l.s 1.5}

0 05

Furthermore, X and Y in (2) were assumed to be
generated from

X~MVNp(0,9) and Y~MVNq(0,X),

where

1 03 01 0.1

0.3 1 01 0.1 12 0.1
=101 01 1 03 andz[o.l 0.8}

0.1 01 03 1

A summary of other model specifications varied at
each condition is provided as follows:

e Condition 1: We set the two outcome variables
to be continuous without missing values. Four differ-
ent sample sizes were considered: N=50, 100, 200,
and 1000.

e Condition 2: The data were generated in the
same way as in Condition 1 across the sample sizes,
except that the proportion of missingness in the out-
come variables was also varied. We considered two
levels of the proportions of missingness, that is, 30%
and 50% of the responses in an outcome variable
were set to be missing. Three combinations of these
two proportions were then considered for two out-
come variables: 30-30%, 30-50%, and 50-50%. Note
that the sample size of N=50 was not considered in
this condition, because the combination of 50-50%
missingness may result in a too small sample size,
which in turn would not be advisable to carry out
ordinary ERA with a complete-case analysis.

To analyze simulated data in absence of relevant
prior research findings or belief, diffuse conjugate
prior distributions were considered first (i.e., without
power prior specifications, d=0). In specific, we
assigned the conjugate priors as specified in (10) with
a hyperprior for 7> set to follow an inverse-gamma
distribution 72~IG(1,1), ¢,=100 for g=1, ..., Q



and ay=by=1. These specifications were set to
ensure a large variance and thus diffuse priors on the
parameters of interest. This makes the contribution of
the priors the least, while allowing for the comparison
with the ordinary ERA.

Both BERA and the ordinary ERA were applied to
the simulated data to compare their recovery of the
parameters of interest. Moreover, BERA was applied
with and without imputation for Condition 2 to com-
pare their relative performance of multiple imput-
ation. For BERA, the total number of iterations were
set at 10,000. Fast convergence and good mixing of
the MCMC chain was observed for all parameters of
interest across all the simulation scenarios considered
and the autocorrelations of the posterior samples were
kept <0.01 after the lag time of 3 or more (Figure 2).
Based on these observations, the first 1000 iterations
were discarded as a burn-in period and every fifth
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posterior sample was used by applying a thinning
approach to calculate the posterior means, standard
deviations, and HPD credible intervals (CI) of param-
eters of interest. For ordinary ERA, the bootstrap
method (Efron, 1982), with 500 bootstrap samples,
was used to obtain the 95% percentile bootstrap confi-
dence intervals of parameter estimates.

Table 1 presents the results of analyzing the simu-
lated data under Condition 1. As the sample size
increased, posterior mean estimates obtained from
BERA became closer to the parameters on average.
The posterior standard deviations as well as the width
of the credible intervals decreased with the sample
size, as expected. This was the case for the boot-
strapped confidence intervals obtained from ERA. The
similarity between the results of BERA and ERA was
not entirely surprising given that the Bayesian esti-

mates here were obtained wusing diffuse prior
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Figure 2. Trace and autocorrelation function (ACF) plots of weight element w;; (top row) and regression coefficient a;; (bottom
row) in Condition 1 with N=50. The white horizontal solid line in the trace plot indicates the true value.
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Table 1. Results of the simulation study under Condition 1
applying BERA (with diffuse priors) and ordinary ERA.

BERA ERA

truth post.mean post.sd 95ClLlow 95ClLup est. bCllow bCl.up

wy; 0.9 0.841 0.056 0.724 0944 0818 0.676 1.085
Wy 05 0.481 0.067 0354 0615 0495 0374 0.667
wy, 05 0414 0.055  0.309 0.521 0428 0304 0.606
Wy 05 0.566 0.047 0473 0656 0.546 0402 0.722

a2 1.887 0.130 1.648 2147 1.852 1429 2241

a; 1.5 1.528 0.184 1.142 1.884 1611 1103 2114

ay 1 1.163 0.108  0.946 1372 1135 0719 1.533

dy; 1.5 1.724 0.151 1.432 2039 1795 1317 2180
N=100

wy 0.9 0.832 0.035  0.761 0.898 0.831 0.711 1.004
wy; 05 0.522 0.042  0.440 0.604 0.517 0426 0.643
wiy 05 0.544 0.034 0478 0.609 0.542 0463 0.645
Wy 0.5 0.494 0.036  0.420 0.560 0.492 039 0.599

an 2 2.090 0.083 1.933 2263 2.057 1.698 2423

a; 1.5 1.470 0.118  1.247 1717 1510 1.126 1.866

ay 1 0.871 0.080  0.704 1.017 0866 0.644 1.064

a;y 1.5 1.444 0.112 1.239 1674 1488 1.207 1.781
N=200

wy; 0.9 0.889 0.024  0.843 0935 0.885 0.783 0.937
Wy 05 0.467 0.032 0406 0528 0468 0390 0.561
wy, 05 0.488 0.028 0435 0.541 0487 0420 0.564
Wy 05 0.527 0.026 0474 0576 0527 0460 0.611

a2 2.010 0.067  1.871 2127 1.967 1769 2.193

a; 1.5 1.495 0.099 1318 1.695 1528 1287 1758

ay 1 0.961 0.053  0.854 1.059 0939 0812 1.078

ay 1.5 1.439 0.078  1.284 1592 1471 1.245 1.694
N =1000

wy 0.9 0.897 0.010  0.879 0916 0.897 0.854 0.940
wy; 0.5 0.505 0.013  0.480 0.530 0.504 0472 0.504
wi, 05 0.520 0.012  0.497 0.544 0519 0486 0.556
Wy 0.5 0.493 0.012  0.470 0.518 0494 0464 0.528

an 2 2061 0027 2010 2115 2017 1914 2117
ap 15 1447 0039 1366 1519 1459 1357 1553
ay 1 0993 0025 0944 1043 0971 0904 1.035

ay 1.5 1.459 0.035 1.389 1531 1473 1383 1.571

Note: post.mean = posterior mean; post.sd = posterior standard deviation;
Cllow =lower bound of the 95% HPD credible interval; Cl.up =upper
bound of the 95% HPD credible interval; est. = mean parameter esti-
mate; bCllow = lower bound of the bootstrapped 95% confidence
interval; bCl.up = upper bound of the bootstrapped 95% confidence
interval. These abbreviated terms remained the same hereinafter.

distributions. Nevertheless, at a relatively small sample
size (N=100), the width of the bootstrapped confi-
dence intervals from ERA tended to be wider than
that of the credible intervals from BERA. This differ-
ence in the interval’s width decreased with the sample
size. Overall, BERA seemed to recover the prescribed
parameters sufficiently well.

In addition to the analysis of data from Condition
1 with diffuse priors, we applied power prior distribu-
tions to the same condition in order to examine
whether the results obtained from BERA were sensi-
tive to different prior specifications. For this, an inde-
pendent set of samples was generated from the same
simulation model with a sample size of 50 and used
as historical data, whose obtained posterior means
and standard deviations served as the hyperparameter
values for specifying the power prior distributions. By
fixing the sample size of historical data as N=50

across the four different sample sizes in Condition 1,
we would also investigate how the amount of infor-
mation in the likelihood overwhelms that in the prior.
Table 2 presents results of Condition 1 with the
informative prior distributions while varying across
three different values of the power parameter (6 =
0.2, 0.34, and 0.5). Results obtained under N =1000 is
provided in the Supplemental materials (refer to
Supporting Information Table S1) to improve read-
ability of Table 2. Note that the last two rows in the
table are the results of the historical data itself with
N =50, which were used as hyperparameters in power
priors. Overall, on average, the posterior mean esti-
mates after updating the power prior regardless of the
power parameter 0 were closer to the true parameters,
and their posterior standard deviations and their HPD
intervals were smaller and narrower, respectively,
compared to the results with the same sample size in
Table 1 (Conditionl with diffuse priors). These were
shown consistently regardless of different degrees of
the power parameter ¢. The accuracy of recovering
the true parameter values increased with a better pre-
cision as the sample size of current data from
Condition 1 increased. In case of analyzing larger
sample sizes of current data (e.g., N>100), it was
observed that the posterior was mainly dominated by
the likelihood. Because of the small sample size used
in the historical data, some estimated parameters were
found to be notably deviated from the true parameter
value (e.g., the mean of w;, was estimated as 0.337
when its true value was 0.5). When the current data
have sufficient number of sample sizes, however, we
rather observed stable results, recovering the true val-
ues well. This suggested that even with a power prior
distribution specified with a less accurate hyperpara-
meter value, BERA would be still able to produce
robust results if there are sufficient number of sample
size in current data.

Tables 3 and 4 show the results under Condition 2
across different sample sizes. Results with the sample
size of N=1000 are presented in the Supplemental
materials at Supporting Information Table S2. The
number of complete cases was reported as N* in the
corresponding combination of missingness on the out-
come variables. For example, at N=100, there were
22 cases left after removing those containing missing
responses (N* = 22). The width of the credible inter-
val tended to become wider as the proportion of miss-
ingness increased. This pattern was observed
regardless of the sample sizes. BERA with imputation
outperformed the other two alternative methods, that
is, BERA without imputation and ordinary ERA,
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Table 2. Results of the simulation study under Condition 1 applying BERA with informative power priors
varying the power parameters (6 = 0.2, 0.34, and 0.5).

N =50 N =100 N =200
truth post.mean post.sd 95Cllow 95ClLup post.mean post.sd 95ClLlow 95CLup post.mean post.sd 95Cllow 95CLup
0=02
wyp 09 0.972 0.029 0.916 1.031 0.963 0.025 0914 1.010 0914 0.019 0.878 0.953
wy 0.5 0.419 0.046 0328 0510 0.458 0.039 0382  0.531 0.490 0.027 0435 0541
wi, 0.5 0.513 0.040 0.427 0.585 0.517 0.037 0.446 0.592 0.489 0.027 0.431 0.536
Wy, 0.5 0.500 0.041 0423 0582 0.514 0.037 0443 0588 0.508 0.026 0459  0.562
a2 2219 0.110 2.001 2442 1.904 0.085 1.735 2.067 2.089 0.063 1.968 2217
dap;, 1.5 1.684 0.162 1.361 1.985 1.268 0.123 1.024 1.507 1.412 0.091 1.218 1.578
a1 1.056 0.103 0.849 1.247 0.985 0.077 0.842 1.148 0.891 0.053 0.780 0.992
a 15 1.711 0.140 1.443 1.981 1.504 0.107 1.299 1.71 1.504 0.073 1.357 1.646
0 =034
wy 09 0.976 0.026 0926  1.030 0.971 0.023 0928 1.015 0.923 0.018  0.890  0.960
wy; 0.5 0.413 0.042 0.325 0.490 0.446 0.036 0.372 0.512 0.479 0.026 0.426 0.527
wyy, 0.5 0.506 0.037 0429 0576 0.511 0.035 0446  0.582 0.486 0.026 0436  0.538
Wy, 0.5 0.508 0.037 0.436 0.583 0.519 0.034 0456 0.592 0.510 0.025 0.464 0.563
a2 2.210 0.103 1999 2411 1.922 0.082 1.767  2.086 2.091 0.062 1972 2215
ap;, 15 1.641 0.152 1.331 1.917 1.272 0.118 1.035 1.499 1411 0.089 1.221 1.572
ay 1 1.043 0.096 0.852 1.222 0.981 0.074 0.844 1137 0.891 0.052  0.783  0.990
d; 15 1.714 0.130 1.466 1.967 1.522 0.103 1.317 1.71 1.513 0.072 1.371 1.653
0=105
wqyp 09 0.979 0.024 0.933 1.028 0.977 0.021 0.937 1.017 0.930 0.017 0.897 0.964
wy 0.5 0.409 0.038 0328 0479 0.436 0.034 0369  0.499 0.469 0.025 0418 0515
wqi, 0.5 0.500 0.035 0.431 0.568 0.507 0.033 0.445 0.574 0.484 0.025 0.436 0.534
Wy, 0.5 0.514 0.034 0447 0582 0.524 0.032 0465 0591 0.512 0.024 0469  0.564
a2 2.202 0.096 2.019 2.402 1.940 0.079 1.792 2.097 2.092 0.060 1.977 2.213
a;, 15 1.604 0.143 1.313 1.864 1.277 0.113 1.042 1.484 1.409 0.087 1.221 1.564
dy; 1 1.032 0.090 0.854 1.201 0.978 0.071 0.848 1.129 0.892 0.051 0.785 0.988
ay 15 1.717 0.121 1488 1.954 1.540 0.098 1348 1.725 1.523 0.070 1383  1.660
Summary of the historical data (N=50)
Wiq W21 Wz W2 an an axn a
post.mean 0.879 0.337 0.549 0.648 2.466 1.094 1.103 1.398
post.sd 0.024 0.042 0.063 0.059 0.124 0.126 0.114 0.112

across all possible levels of missingness and sample
sizes. When the total sample size was not large
enough (e.g., N=100) and N* was less than half of N,
the estimates from BERA without imputation and
ordinary ERA were less accurate with wider credible/
confidence intervals. Thus, when missing responses
are present, it can be more useful to apply BERA with
imputation, particularly when N* was less than half
of N.

To further assess the properties of parameter esti-
mates and investigate the relative performance of
BERA with imputation, as compared to BERA without
imputation and ordinary ERA, we replicated 1000
data sets at each scenario of Condition 2 and imple-
mented all three methods. The biases and root mean
square errors (RMSE) of the estimates of the parame-
ters were calculated from each method. Table 5 dis-
plays the results with 1000 replicated data sets when
the two proportions of missingness for two outcome
variables were 50% each. As shown in the table, the
magnitudes of biases and RMSE decreased with
increasing sample sizes regardless of the methods.
Nonetheless, it was noteworthy that the biases and
RMSE estimated from BERA with imputation were

always the smallest, indicating that it overall outper-
formed the alternative methods in recovering the true
parameters. The biases obtained from BERA with
imputation were quite close to zeros across all sample
sizes, whereas those from the alternative methods
were somewhat larger when N=100. Similarly, the
RMSE of BERA with imputation were about twice
smaller than those of BERA without imputation and
ordinary ERA consistently across different sample
sizes. As expected, similar overall patterns of the
biases and RMSE were observed for Condition 2 with
the missing proportions of 30% - 30% combination,
which is presented in Table S3 in the Supporting
Information.

A real data example

This section provides an example of applying BERA
to analyze real data. The data used here were a subset
of the National Longitudinal Survey of Youth 1979-
Children (NLSY79-C) data (Center for Human
Resource Research, 2000), where 440 children
(N=440) responded to nine observed variables in
2000. As displayed in Figure 3, five of the observed
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Table 3. Results of the simulation study under Condition 2 with N=100 (N* indicates the
number of complete-case sample sizes).

BERA with imputation BERA without imputation ERA
truth post.mean post.sd 95ClLlow 95ClLup post.mean post.sd 95Cllow 95CLup est 95ClLlow 95Clup
30-30 missing N* =48
wqyp 09 0.833 0.043  0.743 0.909 0.793 0.054  0.681 0.899 0.790 0.652 1.024
wy 0.5 0.520 0.052 0427 0.625 0.499 0.053 0399 0.611 0490 0.348 0.662
wi, 05 0.538 0.039 0461 0.610 0.534 0.045 0449 0.625 0529 0410 0.694
wy 0.5 0.500 0.041 0419 0.575 0.504 0.050 0410 0.602 0.504 0404 0.650
a2 2.066 0.100  1.858 2.248 2.145 0.130  1.887 2413 2113 1598  2.609
d;; 15 1.555 0.146  1.266 1.836 1.630 0.187  1.278 1994 1684 1.140 2.198
day; 1 0.890 0.097  0.698 1.086 0.975 0.117  0.752 1.212 0951 0.650 1.214
dy 1.5 1.479 0.141 1.214 1.752 1.320 0.171 0.977 1.644 1374 1.028 1.732
30-50 missing N* = 36
wy; 09 0.843 0.042 0766  0.929 0.758 0.059 0643 0.868 0.758 0.626  0.980
wy 05 0.508 0.052  0.409 0.609 0.513 0.059 0398 0.623 0516 0.362 0.716
wy; 05 0.540 0.041 0459 0.616 0.536 0.053 0437 0.640 0.531 0391 0.806
wy, 05 0.498 0.043 0414 0.580 0.514 0.055 0408 0.619 0528 0414 0.716
an 2 2.068 0.101  1.873  2.264 2.121 0.144 1846 2399 2101 1.556  2.650
d;, 15 1.556 0.145 1.268 1.828 1.587 0204 1171 1993 1.643 1.108 2.236
a1 0914 0.111 0.695 1.124 0.975 0.129 0.721 1.228 0973 0.642 1.277
dy, 15 1.366 0.151 1.061 1.674 1.137 0.182  0.757 1480 1.177 0.847 1.530
50-50 missing N* =22
wqyp 09 0.824 0.048 0.722 0.908 0.801 0.059 0.682 0.909 0.845 0.636 1.260
wy 0.5 0.531 0.057 0427 0.646 0.345 0.094 0159 0521 0351 0.128 0.783
wi, 05 0.536 0.049 0.439 0.627 0.572 0.114  0.353 0.790 0.608 0.181 0.988
wy; 0.5 0.501 0.051 0400 0.59 0.556 0.149 0264 0.839 0.607 0328 1.023
a2 2.057 0.107 1.840  2.258 2.305 0210 1.871 2686 2.208 1.260  3.100
d;; 15 1.514 0.182 1.183 1.882 1.022 0312 0.384 1612 1534 0.674 2284
dy; 1 0.885 0.128  0.627 1.134 1.080 0.169  0.736 1409 0.988 0.510 1.455
ap 15 1.455 0.168  1.117  1.769 0.834 0.253 0275 1.288 1.092 0.027 1.668

Table 4. Results of the simulation study under Condition 2 with N=200 (N* indicates the
number of complete-case sample sizes)

BERA with imputation BERA without imputation ERA
truth post.mean post.sd 95ClLlow 95ClLup post.mean postsd 95CLlow 95CLup est 95ClLlow 95CLup
30-30 missing N* =101
w09 0.888 0.032 0.827 0.950 0.800 0.036  0.732 0.873 0.797 0.662 0.952
wy 0.5 0.468 0.041 0384  0.545 0.461 0.046  0.363 0.546 0470 0373 0.600
wy; 05 0.490 0.035 0419 0554 0.514 0.047 0418 0.604 0517 0393 0.660
wy 0.5 0.525 0.033  0.467 0.596 0.515 0.055 0418 0.633 0512 0375 0.650
a2 1.988 0.083 1.828 2.155 2.163 0.103 1.958 2362 2131 1773 2.448
a;; 1.5 1.479 0.117 1.239 1.704 1.383 0.151 1.085 1.674 1401 1.021 1.704
a1 0.943 0.063 0.818 1.060 1.050 0.086 0.882  1.208 1.033 0.833 1.234
d,; 1.5 1.396 0.102 1.195 1.584 1.285 0.120 1.049 1523 1307 1.016 1.575
30-50 missing N* =70
w09 0.874 0.034 0.810 0.940 0.832 0.044  0.750 0921 0.833 0.682 1.054
wy; 0.5 0.486 0.043  0.401 0.568 0.494 0.051 0394 0592 0510 0387 0.692
wyy 0.5 0.481 0.037  0.407 0.551 0.569 0.055  0.459 0.676 0567 0424 0.733
wy 0.5 0.533 0.035 0.463 0.599 0.486 0.068  0.353 0.621 0.484 0326 0.677
a2 1.989 0.082 1.823 2141 2.099 0.122 1.864 2339 2071 1.671 2443
a; 15 1.488 0.118  1.263 1.721 1.246 0.172  0.901 1584 1278 0.848 1.684
day 1 0.949 0.070 0.818 1.096 1.004 0.093  0.821 1.179 0999 0.757 1.249
a,, 1.5 1.345 0.111 1.138 1.574 1.198 0.129  0.933 1437 1222 0.835 1.579
50-50 missing N* = 53
wyp 09 0.909 0.036 0.842  0.981 1.028 0.050  0.925 1.118 0.833 0.801 1.234
wy 0.5 0.439 0.049  0.338 0.528 0.344 0.084 0.181 0.502 0510 0.216 0.601
wy 05 0.505 0.038  0.431 0.581 0.450 0.052  0.352 0.555 0567 0327 0.670
wy 0.5 0.509 0.038  0.441 0.590 0.507 0.056  0.396 0.615 0.484 0321 0.669
a2 1.980 0110  1.756  2.189 1.815 0.140 1558  2.092 2071 1340 2135
a;; 1.5 1.522 0.146 1.215 1.781 1.655 0.207 1.242 2062 1.278 1.221 2316
ay 1 0.899 0.072  0.757 1.032 0.772 0.115  0.556 1.003 0.999 0.462 1.007
d,, 1.5 1.423 0.098 1.236 1.617 1511 0.160 1.204 1.821 1.222 1.100 2.067
variables were predictors, including: (1) cognitive  environment was constructed as a linear combination

stimulation (COG), (2) emotional support (EMO), (3)
compliance (CMP), (4) insecure attachment (INS),
and (5) sociability (SOC). The component home

of COG and EMO, measured using the Home
Observation for Measurement of the Environment
(Bradley & Caldwell, 1984). Another component



Table 5. The biases and root mean square errors (RMSE) of
the 1000 simulation replicates with 50-50% of missingness
across different sample sizes.

BERA
BERA without
with imputation imputation*® ERA*

bias RMSE bias RMSE bias RMSE

N=50 0.010 0.081 0.035 0.223 0.045 0.257
0.004 0.101 0.008 0.203 0.028 0.212
—0.001 0.095 0.014 0.174 0.016 0.213

—0.001 0.090 —0.071 0.223 0.013 0.197
—0.028 0.219 —0.051 0.458 —0.036 0.447
—0.015 0.283 —0.127 0.618 0.000 0.498
—0.020 0.188 —0.023 0.312 —0.033 0.316
—0.007 0.265 —0.129 0.573 —0.026 0.442
N=100 0.001 0.054 0.024 0.153 0.029 0.150

0.003 0.064 0.012 0.127 0.008 0.124
0.000 0.059 0.010 0.117 0.017 0.128
0.001 0.060 0.005 0.113 0.009 0.120

—0.017 0.144 —0.037 0.313 —0.019 0.313
—0.004 0.192 —0.006 0.340 —-0.013 0.331
—0.005 0.117 —0.014 0.208 —0.009 0.202
—-0.014 0.176 —0.031 0.309 -0.017 0.319
N=200 0.001 0.039 0.011 0.097 0.013 0.095

0.002 0.046 0.003 0.082 0.011 0.082
—0.002 0.043 0.005 0.080 0.009 0.077
0.002 0.043 0.005 0.077 0.005 0.075

—0.007 0.097 —0.010 0.220 —0.018 0.213
—0.006 0.138 —0.011 0.225 —0.002 0.227
—0.005 0.082 —0.005 0.145 —0.009 0.144
—0.005 0.124 —0.007 0.212 —0.006 0.210

N=1000 0.000 0.017 0.000 0.042 0.002 0.042
0.001 0.019 0.002 0.037 —0.002 0.034

—0.001 0.018 0.001 0.034 0.001 0.032

0.001 0.018 0.001 0.034 0.000 0.033

—0.003 0.044 0.002 0.097 0.003 0.094

—0.003 0.060 —0.003 0.103 0.001 0.098
—0.001 0.037 —0.002 0.065 0.003 0.065
—0.001 0.054 —0.002 0.101 0.004 0.096

*An average sample size for BERA without imputation and ERA across
1000 replicates was half of the corresponding sample size (N) for BERA
with imputation due to 50% of missingness.

temperament was defined as a linear combination of
CMP, INS, and SOC, which were measured by
Rothbart’s Infant Behavior Questionnaire (Rothbart,
1981) and Campos and Kagan’s Compliance Scale
(Campos Joseph, Barrett, Lamb, Goldsmith, &
Stenberg, 1983). The remaining four observed varia-
bles were outcome variables that assessed the perform-
ance of the children in mathematics (MATH), reading
recognition (RECG), reading comprehension (COMP),
and vocabulary (VOCB), using the Peabody Individual
Achievement Test battery (Dunn & Markwardt, 1970)
as well as the revised edition of the Peabody Picture
Vocabulary Test (Dunn & Dunn, 1981). We assumed
that each of the two components affected the out-
come variables.

Although the sample size was 440, only three chil-
dren had responded to all of the four outcome varia-
bles, whereas the remaining participants had not
responded to at least one of the outcome variables. If
we excluded all cases having missing responses in any
of the outcome variables, there would be only three
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cases left, which would be too small to apply ordinary
ERA. Hence, we applied BERA with multiple imput-
ation to the data.

The MCMC algorithm converged fast and the mix-
ing looked good (Supporting Information Figure S1).
Therefore, in the analysis, the first 2000 iterations
were discarded as a burn-in period, after which
another set of 8000 iterations were run while saving
posterior samples at every fifth iteration from the
algorithm for the posterior inferences (i.e., setting the
thinning interval = 5). As a summary of the posterior
distribution, the posterior mean estimate and standard
deviation, and the 95% HPD credible interval were
calculated. Figure 4 presents two sets of exemplary
posterior densities with their corresponding HPD
intervals to make the figure concise. The model fit
was satisfactory, since there were no notable patterns
observed in residual plots (refer to Supporting
Information Figure S2 in the Supplemental materials).

Table 6 summarizes the results of the posterior dis-
tributions for the model parameters with the same dif-
fuse priors specified in the simulation study. As
expected, children who received more cognitive simu-
lation (COG) and emotional support (EMO) were
positively and statistically significantly associated with
home environment, indicating that higher levels of
COG (wy; = 1.025, 95%CI = [0.916 1.133]) and EMO
(w2 = 0.246, 95%CI = [0.043 0.447]) led to higher
scores of home environment. Both predictors contrib-
uted well to determining home environment, although
the magnitude of COG was larger. With a 95% prob-
ability, the weight of COG on defining home environ-
ment lies between 0.916 and 1.133, and that of EMO
resides between 0.043 and 0.447. On the other hand,
insecure attachment (INS) more strongly contributed
to constructing temperament than compliance (CMP)
and children’s sociability (SOC). INS was also posi-
tively and statistically significantly associated with this
component (wy,, = 0.333, 95%CI = [0.021 0.690]),
whereas both CMP and SOC were not statistically sig-
nificantly related to it. The component home environ-
ment had positive and statistically significant effects
on all the four outcome variables (a;; = 0.336, 95%CI
= [0.225 0.433]; a;, = 0.240, 95%CI = [0.140 0.351];
;5 = 0.205, 95%CI = [0.043 0.385]; and a;4 = 0.409,
95%CI = [0.280 0.532]), suggesting that children’s
home environment built on both cognitive simulation
and emotional support were likely related to their
competency on the different performance measures.
In contrast, Temperament had no statistically signifi-
cant impact on all the four outcome variables. This
indicates that children’s academic achievements were
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Figure 3. A model specification for the real data example.

not strongly related to their temperament that was
dominantly determined by how much of the insecure
attachment were formed in childhood.

For illustration, we analyzed another subset of the
NLSY79-C data collected in an earlier year (i.e., year
1996) so as to use the findings for constructing power
prior distributions. This data in 1996 consisted of 902
children who were completely independent of the 440
children measured in 2000. Table 7 represents the
results of the data in 1996 using diffuse or uninforma-
tive prior distributions (i.e., the same prior distribu-
tions specified in the simulation study). Then, the
results in Table 7 were used for constructing inform-
ative power prior distributions; the estimated posterior
means and standard deviations of W and A were set
as the hyperparemter values of the corresponding
prior distributions in analyzing year 2000s data.

Table 8 shows results with the informative prior
distributions while varying across three different val-
ues of the power parameter J. As § determines the
relative importance of the past 1996s data in compari-
son to the current data, compared to Table 8(a,b),
results of Table 8(c) are found after placing more
importance on the prior information. Substantially,
when 6 = 0.5, it means that two samples in 1996 is
accounting for a sample in 2000. Given the difference
in the sample sizes across two data (902 children in

1996 vs 440 children in 2000), 6 = 0.5 is regarded as
the case where it exerts an equal weightage on the his-
torical and current data. Also note that the results in
Table 6 (i.e., with diffuse priors) would be equiva-
lently obtained from the same power prior specifica-
tions but with J = 0.

The results of 1996’s data in Table 7 showed that
both cognitive simulation (COG) and emotional sup-
port (EMO) were positively and statistically signifi-
cantly associated with home environment, indicating
that higher levels of COG and EMO led to higher
scores of home environment. All three predicators of
temperament were found to be statistically significant
as well. Based on the positive and negative associa-
tions from INS and CMP/SOC on temperament,
respectively, the temperament was to represent a ten-
dency to behave in an uncontrolled or bad-tempered
way. Children who were in a good home environment
were more likely to exhibit better performance on
MATH, RECG, and VOCSB. In addition, difficult tem-
perament had statistically significant and negative
impact on all four outcome variables, suggesting that
children with difficult temperament were likely to
have poor academic performance.

After including the 1996’s data as prior information
in analyzing 2000’s data, the posterior standard devia-
tions in Table 8 became smaller than those in Table 6
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Figure 4. Density plots with highest posterior density (HPD) intervals, comparing posterior estimates results with diffuse and
power priors: (a) displays the plots for the posterior regression coefficient estimates of Home Environment on COMP; and (b) dis-
plays the plots for regression coefficient estimates of Temperament on COMP. A red colored bar in each plot refers to its

HPD interval.

(regardless of different values of J). Accordingly, cred-
ible intervals were all narrower for all of the model
parameters, although the width became even much
narrower with larger 6. As an example, consider the
posterior regression coefficient estimates of home
environment on COMP (a,3). Its posterior mean was
estimated as 0.205 with a 95% HPD credible interval
of [0.043 0.385], using diffuse priors (see Table 6). As
the priors become more informative than the settings
in Table 6, we would find that the posterior estimate
of a;; was pulled towards its corresponding prior
mean (estimated mean of a;35 = 0.152 in Table 7)

with a narrower 95% HPD credible interval. For 6 =
0.2, the resulting posterior mean became 0.183 and its
credible interval changed to [0.032 0.361], while for
0 = 0.5 placing an equal weightage on historical and
current data, the corresponding posterior
became 0.170 (getting closer to the prior mean of
0.152) with a credible interval of [0.045 0.326]. Their
posterior densities seemed to be normally distributed
(in Figure 4(a)), from which their highest posterior
density (HPD) intervals were found. In sum, the stat-
istical significance of home environment on the four

mean

outcome variables remained unchanged even after
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adopting different &’s, suggesting that these effects
were likely to be the true significance. That is, the
effects of home environment on the outcome variables
were less likely to be false positive findings.

Similarly, with a stronger weightage on the histor-
ical data (6 = 0.5), the weight estimate from compli-
ance (CMP) to temperament (ws,) shifted toward the
mean estimate obtained in 1996’s data, eventually
leading to a result similar to that of 1996’s data.
Moreover, with informative prior specifications, the
regression  coefficient estimates of temperament
became statistically significant, not including zeros in
their credible intervals. This would be due to relatively
small posterior standard deviation estimates obtained
from the 1996’s data, which were further encompassed
in the analysis as small variance hyperparameters.
When diffuse priors (i.e., large variances) were used in
the analysis, the resultant posterior standard deviations
as well as credible intervals were relatively large (e.g.,
a,3’s posterior mean = —0.172, standard deviation =
0.150, and 95%CI = [—0.414 0.305] in Table 6).
However, as more prior information was added to the

Table 6. Results obtained from BERA with multiple imput-
ation for the National Longitudinal Survey of Youth 1979-
Children (NLSY79-C) data in 2000.

parameters post.mean post.sd 95CLlow 95ClLup
COG — Home Environment (W) 1.025 0.057 0916 1.133
EMO — Home Environment (w;) 0.246  0.106 0.043  0.447
CMP — Temperament (w;5) 0.090 0.342 —0.556 0.759
INS — Temperament (w5;) 0.333 0.184 0.021 0.690
SOC — Temperament (ws,) -0.727 0501 —0.994 0.954

Home Environment — MATH (a;,) 0.336 0.054 0.225 0433
Home Environment — RECG (a,,) 0.240 0.056 0.140  0.351
Home Environment — COMP (a;3) 0.205 0.088 0.043 0.385
Home Environment — VOCB (dq4) 0.409 0.063 0280 0.532

Temperament — MATH (a,;) —0.070 0.071 —0.193 0.133
Temperament — RECG (ay;) —0.164 0.121  —0.301 0.257
Temperament — COMP (a,3) —-0.172  0.150 —0.414  0.305
Temperament — VOCB (a,4) —0.070 0.092 —-0.239 0.165

Table 7. Results obtained from BERA with multiple imput-
ation for the National Longitudinal Survey of Youth 1979-
Children (NLSY79-C) data in 1996.*

parameters post.mean post.sd 95CLlow 95CLup

COG — Home Environment (W) 1.005 0.049 0.908 1.092
EMO — Home Environment (w5,) 0.219 0.089 0.057 0.388
CMP — Temperament (w;5) —0.376 0.112 —0.595 —0.147
INS — Temperament (w55) 0.696 0.094 0.515 0.870
SOC — Temperament (ws,) —0.555 0.106 —0.752 —0.358
Home Environment — MATH (a;,) 0.307 0.038 0.232 0.379
Home Environment — RECG (a;5) 0274  0.039 0202  0.350
Home Environment — COMP (a5) 0.152 0.083 —0.012 0.340
Home Environment — VOCB (dq4) 0.345 0.052 0.240 0.439

Temperament — MATH (a,;) —0.177 0.039 —0.252 —-0.099
Temperament — RECG (ay;) —0.173 0.040 —0.252 —0.100
Temperament — COMP (ay3) —0.268 0.083 —0435 -0.113
Temperament — VOCB (d,4) —0.213 0.051 —0.307 —0.110

*Note that children in 1996 were independent of the 426 children meas-
ured in 2000.

model, the posterior estimates were shifted towards
the prior means and their posterior standard devia-
tions and 95% credible intervals became all smaller
(e.g., a3’s posterior mean = —0.237, standard devi-
ation = 0.080, 95%CI = [—0.395—-0.076] with
0 = 0.5). Figure 4(b) presents a,;’s HPD intervals with
(1) diffuse prior and (2) power prior (6 = 0.5).
Although the mode for the posterior with diffuse prior
was on the around —0.2, its posterior distribution was
left-skewed containing a zero in its HPD interval. On
the other hand, using an informative prior, its distri-
bution became unimodal and symmetric with an HPD
interval of [—0.395 — 0.076].

Conclusions

We proposed a Bayesian extension of ERA to combine
prior information in a more principled way through

Table 8. Results obtained from BERA with multiple imput-
ation for the National Longitudinal Survey of Youth 1979-
Children (NLSY79-C) data in 2000, using the results in 1996 to
formulate informative priors: (a) results when 6 = 0.2; (b) 6 =
0.34; and (c) 6 = 0.5.

parameters  postmean  postsd  95CLlow  95CLup
(@) 0 =02 Iz 1.030 0.049 0.936 1.124
Waq 0.240 0.090 0.054 0.410
Wi —0.188 0.180 —0.512 0.188
Wyy 0.535 0.132 0.255 0.780
W3y —0.795 0.108 —0.966  —0.600
an 0.323 0.045 0.228 0.407
arn 0.243 0.046 0.162 0.337
dis 0.182 0.082 0.032 0.361
a4 0.381 0.054 0.273 0.480
dy —0.097 0.047 —0.187 —0.002
ax —0.169 0.050 —0.269  —0.070
dy3 —0.230 0.094 —0.407 —0.038
Gy —0.158 0.057 —0.266  —0.043
(b) 0 =034  wy, 1.033 0.043 0.951 1.114
Wa4 0.236 0.081 0.080 0.391
Wia —0.241 0.148 —0.526 0.051
Wi 0.588 0.117 0.364 0.816
W3y —0.747 0.098 —0.931 —0.557
an 0.321 0.042 0.236 0.400
di, 0.249 0.041 0.170 0.332
ars 0.173 0.074 0.031 0.317
dig 0.375 0.052 0.280 0.482
an —0.107 0.043 —0.190  —0.023
dy —0.163 0.045 —0.255 —0.081
ax —0.234 0.089 —0416  —0.074
[P —0.171 0.051 —0.262 —0.067
() 0 =05 W4 1.031 0.041 0.947 1.108
Waq 0.239 0.077 0.082 0.383
Wiy —0.271 0.127 —0.510  —0.019
Woy 0.613 0.100 0.406 0.788
W3y —0.719 0.089 —0.889  —0.551
d 0.315 0.037 0.246 0.390
arn 0.251 0.039 0.175 0.326
dis 0.170 0.071 0.045 0318
a4 0.370 0.048 0.281 0.467
dy —0.117 0.040 —0.194 —0.041
ax —0.160 0.041 —0.238  —0.081
dy3 —0.237 0.080 —0.395 —0.076
Gy —0.180 0.046 —0.264  —0.085




Bayes’” Theorem when there exist any relevant previ-
ous research findings as well as to deal with missing
responses in outcome variables under the MAR
assumption. The proposed method integrated multiple
imputation into an MCMC algorithm. The simulation
studies showed that when there were no missing data,
Bayesian and ordinary ERA recovered the parameters
sufficiently well across different sample sizes.
However, when missing data were present, BERA with
multiple imputation outperformed ERA, regardless of
the sample sizes. We further explored the usefulness
of BERA through the analysis of real data. BERA was
useful for examining how each component could be
characterized by a given set of predictors and how the
component might affect various aspects of children’s
academic performance. Moreover, it could formally
incorporate past relevant information about the model
parameters into our analysis and further update infer-
ences in line with the past information.

Despite these technical and empirical implications,
BERA has several limitations. Although this present
study analyzed the empirical data just using three dif-
ferent values of the power parameterd for an illustra-
tive purpose, it may be still imposing some
subjectivity in selecting an optimal value. To minimize
such subjectivity, it would be worthwhile to carry out
several sensitivity analyses using a wider range of J’s.
Alternatively, as mentioned earlier, we may choose an
optimal value by modeling another hyperprior for J
(Ibrahim & Chen, 2000).

In addition, BERA has been thus far applied to
continuous variables only. In the social sciences,
nevertheless, it is not uncommon to collect other
types of variables, such as binary, ordered categorical,
and unordered categorical. In regression models, per-
haps the most common one is ordered categorical var-
iables (e.g., Anderson, 1984; Bollen, 2002). Thus, we
may extend the proposed method to accommodate
various types of variables, for example, in a manner
similar to that developed by Albert and Chib (1993).

Appendix: Sampling scheme of the parameters
for missing data in BERA

With the power prior specification described in the
section of Power Priors, the full-data joint posterior
distribution, from which the full conditional distribu-
tions are derived for a Gibbs sampler, has the form of

n(W,A, 2,2, %,[X,R,Y)

Q /2 1
<] [(“é) exp { 202 (Yiq — XWA)'(Yq — XWAq) }

=1
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where R is an N by Q indicator matrix which takes 1
for observed response in Y and 0 elsewhere.

We obtain the posterior samples of the parameters
by alternating the following steps:

1. Missing imputation: For g =1, , Q, new sam-
ples from the conditional distribution of Y, given
Yobs in (13). Using the just updated values of Y, we
reconstruct Y4 = (Yobsiql> YmisL.q))-

2. Conditional posterior distribution based on full-
data likelihood

(a) Update W: For k=1, ..., K

n(w[,k] |W[,7k]7 A, Za W, Ao, er z}’a X, R, Y)
1 4 A[2k~q] -1
e | 3w (3 S com
q=

N Afk q] 1

/ ) —a— _

—2W[,k] Zl 2 XYM] + 52” Wo[,k] }:| ,
q= q

where W _y refers to the other columns of W exclud-
ing kth column, and

YF«,‘I]: Y[,q]_XW[,fk]A[fk,qb where Y[,q] is the gth
column vector of Y.

Thus, the full conditional distribution of Wiy
given W _j and other parameters is

W[,k] |W[,—k]7 A7 27 W07 A07 21’7 2}'7 X7 R7 Y~

MVN,,
-1
oS
* Q A[zk-q] - A Iy *
where Wiy =", - X+0z, )" (Zq ) “31 XY ®

+0X, 1WO[_,;{]). Note that to satisfy the standardization

constraint of diag(F'F)=NI,
the weight matrix W such as

we need to standardize

W=vNWXxXW) *w

~

where W= (W[ 1] F'=XW,

then diag(F*'F*)=NIL.

’WLK])' Let



46 J.Y. CHOI ET AL.

(b) Update A: For g=1, ..., Q.

n (A[l]] |A[*q] 3 W727 WOv AOv 2‘57 Z}'X7 Rv Y)

1 / 1 */ -1

/ 1 B Vas -1
—ZA[,q] <O_—5F Y[,q] + 527‘q AO[,q] y

where Aj g = (14, ..., aky)’ is the gth column vector of A.
Thus, the full conditional distribution of A is

o< exp

AglAL g WE W5,A0,%, %, X, R, Y

-1
F"'F
MVNg | AF |, | — + 0! ,
[4] gé Tq

' x* __ (FY —1\—1 % -1
where Af = (FG; + 52,% ) (U%F "Yig + 5qu Agg)
(c) Update X = diag(o1, ..., 03) : For g=1, ..., Q
n(a;p:[,q,,q] WA, Wy, Ao, =, Z,X, R, Y)
—(N/2+a0+1) 11
2 * /
o <O'q) exp | — G_é {5 (Y[ﬁq] —F A[ﬁq])

(Yiqg —FAy) + bOH )

where X, is the diagonal variance matrix exclud-
ing the variance of the gth variable.
The full conditional distribution of a7, is

aé|z[—q,—q]7 WvAv W07 A07 Z‘L’v 277 X7 Y7 R

N 1 . )
e (5 a0, (Yig — F'Ayg) (Yig — FAgg) + bo) '

Note that in a case, in which there is no missing in
the outcome Y, step (1) can be skipped.
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