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ABSTRACT

The effects of treatments may differ between persons with different characteristics.
Addressing such treatment heterogeneity is crucial to investigate whether patients with spe-
cific characteristics are likely to benefit from a new treatment. The current paper presents a
novel Bayesian method for superiority decision-making in the context of randomized con-
trolled trials with multivariate binary responses and heterogeneous treatment effects. The
framework is based on three elements: a) Bayesian multivariate logistic regression analysis
with a Pélya-Gamma expansion; b) a transformation procedure to transfer obtained regres-
sion coefficients to a more intuitive multivariate probability scale (i.e., success probabilities
and the differences between them); and ¢) a compatible decision procedure for treatment
comparison with prespecified decision error rates. Procedures for a priori sample size esti-
mation under a non-informative prior distribution are included. A numerical evaluation dem-
onstrated that decisions based on a priori sample size estimation resulted in anticipated
error rates among the trial population as well as subpopulations. Further, average and con-
ditional treatment effect parameters could be estimated unbiasedly when the sample was
large enough. lllustration with the International Stroke Trial dataset revealed a trend toward
heterogeneous effects among stroke patients: Something that would have remained
undetected when analyses were limited to average treatment effects.

1. Introduction pharmacological support, and other experimental
types of care.

The current paper focuses on estimating treatment
pap 8 Such RCTs often assess multiple types of (clinical)

ffect lations, sub lations, and indi-
e. e am.ong Pop Liations, SUbpopuiations, an H,l ' events (e.g., quitting substance abuse, death), func-
vidual patients in the context of two-arm randomized

controlled trials (RCTs) with multiple (correlated)

binary dependent variables. Such RCTs are random-

tional measures (e.g., memory decline, ability to walk),
or disease symptoms (e.g., fatigue, anxiety) (Food &
Drug Administration, 2017). Studying multiple
dependent variables in RCT's is useful, since multiple
dependent variables provide multidimensional insights
into the effects of a treatment and since analyzing mul-
tiple dependent variables together has the potential to

ized experiments with subjects being assigned at ran-
dom to either an experimental or a control group,
often having the objectives a) to evaluate whether an
experimental treatment is superior or inferior to a

control condition; and b) to inform the prescription
of treatments to patients in (clinical) practice (Food &
Drug Administration, 2016). Although RCTs are
broadly applicable to experimental research in general,
we focus on the health domain and use the word
“treatment” to refer to psychological and medical
interventions in the broad sense. These interventions
include - but are not limited to — behavioral therapies,

improve the connection between clinical and statistical
desicion-making. More specifically, multiple effects of
the intervention can be combined and weighted in
various ways to provide a single statistical decision
regarding superiority or inferiority, similar to decisions
regarding treatment prescription made by therapists or
clinicians (e.g., Pocock et al., 1987; O’Brien, 1984;
Murray et al., 2016). Whereas performing multiple
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univariate analyses on individual dependent variables
is a common strategy to deal with data from multiple
dependent variables, a single multivariate analysis is
often preferable from a statistical point of view (Senn
& Bretz, 2007; Ristl et al, 2019; Food & Drug
Administration, 2017; Murray et al, 2016).
Multivariate analysis takes the correlation between
dependent variables into account and therefore has the
potential to reduce decision errors: Correlations influ-
ence the sample sizes required for decision-making
with prespecified error rates and provoke under- or
overpowerment when falsely omitted (Chow et al.,
2017; Sozu et al., 2010; Xiong et al., 2005).

RCTs often focus on average treatment effects
(ATEs) among the study population when comparing
interventions (Thall, 2020). Average treatment effects
can be sufficiently insightful when the effects of a
treatment are relatively homogeneous over the trial
population. In this case, patients react relatively simi-
larly to the treatment. However, average effects may
give a limited, or even erroneous, impression when
the actual effects of a treatment are heterogeneous
and thus interact with characteristics of patients. In
that case, patients differ in their reactions to the treat-
ment. Taking characteristics of patients into account
in the estimation of treatment effects (i.e., estimating
conditional average treatment effects; CATEs) can
then contribute to a better understanding of the treat-
ment’s potential for an individual patient. Despite
efforts to provide statistical methodology to model
CATEs (e.g., Wang et al, 2015; Yang et al,, 2021;
Jones et al., 2011), investigating these effects is not the
standard yet: Thall noted that “the great majority of
clinical trial designs ignore the possibility of treat-
ment-covariate interactions, and often ignore patient
heterogeneity entirely” (Thall, 2020, p.1). This is
unfortunate as addressing conditional effects in the
evaluation of treatments is crucial to a) identify how
likely a specific patient will benefit from a treatment;
and b) optimize treatment results of individual
patients via personalized treatment assignment
(Goldberger & Buxton, 2013; Hamburg & Collins,
2010; Wang et al., 2015; Simon, 2010).

An example of a trial with multiple dependent vari-
ables and potential treatment heterogeneity is the
International Stroke Trial (IST; Sandercock et al,
2011; International Stroke Trial Collaborative Group,
1997). Strokes may have far-reaching implications for
the quality of life, as they may be recurring and/or
lead to long-term impaired (daily) functioning. The
IST investigated whether the short-term and long-
term perspective of stroke patients can be improved

with anti-thrombotic drug therapy. The average treat-
ment differences in the IST were small, so one might
conclude that treatment with one of these drugs was
marginally effective. However, these overall findings
were based on the assumption that specific character-
istics of patients (e.g., sex or age) and/or disease (e.g.,
type of stroke or functional status after stroke) did
not interact with the treatment to produce different
effects for different patients. Average treatment effects
could, for example, not reveal whether older patients
have better prospects in terms of short-term damage
risk and/or long-term recovery potential than younger
patients. Clearly, hypothetical heterogeneous effects as
these would have clinically and psychologically rele-
vant implications and advocate the development of
more personalized treatment policies.

While multivariate treatment effects for patients
with specific characteristics are theoretically relevant
for many contemporary RCTs contributing to the per-
sonalization of treatments, decision-making under
treatment heterogeneity in the multivariate context is
considerably more complex compared to the non-het-
erogeneous and/or univariate setting. Generalizations
to the heterogeneous and multivariate context are sub-
ject to assumptions that need to be carefully evaluated
in light of the research problem at hand. First, the
multivariate setting demands an analysis method that
incorporates the correlation between dependent varia-
bles (i.e., a multivariate analysis method) to obtain
accurate decision error rates (e.g., Sozu et al., 2010,
2016; Kavelaars et al., 2020). Ignoring or misspecifying
a non-zero correlation can result in over- or under-
estimation of the required sample size and thus affects
the statistical power of the analysis. For accurate infer-
ence regarding conditional average treatment effects,
the analysis should not only include the overall correl-
ation among the trial population, but should also be
flexible enough to deal with correlations that differ
over subpopulations. The latter is not evident in exist-
ing multivariate analysis methods for binary depend-
ent variables: Some methods impose the marginal
correlation structure of the trial population on subpo-
pulations (e.g., multivariate probit models by Chib
(1995) or Rossi et al. (2005) and multivariate logit
models by Malik and Abraham (1973) and O’Brien
and Dunson (2004)). Second, the interpretation of
treatment effects can be complex in multivariate non-
linear models. Creating insights into so-called mar-
ginal effects (i.e., treatment effects on the individual
dependent variables) is recommended in treatment
comparison, demanding any multivariate method to
return interpretable univariate effects (Food & Drug



Administration, 2017; O’Brien & Dunson, 2004).
Some existing multivariate models lack insight into
marginal distributions (e.g Malik & Abraham, 1973).
Third, some multivariate methods estimate a single
regression parameter to capture the relation between a
covariate and all dependent variables (e.g., O’Brien &
Dunson, 2004; Rossi et al., 2005). The latter assumes
that all dependent variables vary identically over the
full support of the covariate. In other words, all rela-
tions between the covariate and the outcome variable
have the same size and direction. Clearly, such an
assumption may be too strict to hold in practice.

In order to deal with the complexity of heteroge-
neous, multivariate treatment effects, we build upon an
existing Bayesian multivariate Bernoulli framework for
superiority decision-making proposed by Kavelaars
et al. (2020). The existing procedure consists of three
major components: a) a multivariate analysis model to
estimate unknown parameters; b) a transformation
procedure to interpret treatment effects on the (more
intuitive) probability scale; and c) a compatible deci-
sion procedure to make inferences regarding treatment
superiority with prespecified error rates. The analysis
procedure has advantages over several other
approaches, as it relies on a multinomial distribution
and therefore has the flexibility to model univariate
effects and correlations between dependent variables.
The transformation procedure facilitates the interpret-
ation of treatment comparison: marginal (i.e., univari-
ate) probabilities, multivariate probabilities, and
differences between (multivariate) probabilities can be
used in inference as well. The decision procedure is
suitable for Bayesian inference and can be flexibly
applied with several decision rules for multiple depend-
ent variables. Noteworthy is a decision rule with a com-
pensatory mechanism, that can weigh dependent
variables by their importance and has a natural com-
pensatory mechanism that can balance positive and
negative treatment effects. With this decision proced-
ure, decisions regarding treatment superiority can be
made with targeted decision error rates (i.e., Type I and
Type II errors) and a priori computed sample sizes.

Kavelaars et al. (2020) proposed a multivariate
Bernoulli model for multivariate Bernoulli outcomes
to estimate average treatment effects and to make
decisions based on multivariate treatmeat effects. In
the current paper we propose a more flexible model-
ing framework for multivariate Bernoulli outcomes
using Bayesian multivariate logistic regression models.
This extension allows us to model and estimate multi-
variate treatment effects for different (sub)populations
based on available covariate information. Moreover, to
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make decisions about multivariate treatment effects
for these different subpopulations, we extend the deci-
sion procedure of Kavelaars et al. (2020) to the new
multivariate logistic regression model. Additionally,
sample size recommendations are provided for esti-
mating and decision-making under this framework.

Note that the proposed multivariate modeling
framework aims to estimate heterogeneous multivariate
treatment effects that are caused by observed covariate
information and to make decisions about treatment
superiority. Thereby, the aim is different from mixture
modeling which aims to capture unobserved (treat-
ment) heterogeneity using latent variables (either dis-
crete or continuous). Mixture models use response data
to cluster respondents based on their patterns of out-
come data (e.g., patterns of symptoms), where each
cluster has an individual distribution that forms a con-
stituent of the mixture (McLachlan et al., 2019). The
proposed regression model does not include latent vari-
ables (either discrete or continuous) to capture unob-
served heterogeneity. Instead, multivariate (logistic)
regression uses observed covariate information to
define patient groups of interest, often based on theor-
etical (such as accepted cutoft values for high and low
blood pressure) or statistical (such as those respondents
with more extreme scores than one standard deviation
below or above the mean) grounds. Subgroups are thus
bounded by criteria specified by the researcher, rather
than by response patterns in the data.

The paper is organized as follows. In the next sec-
tion, we introduce the decision framework, including
the multivariate logistic regression model to obtain a
sample from the multivariate posterior distribution of
regression coefficients, a transformation procedure to
find posterior treatment differences, and a decision
procedure to draw conclusions regarding treatment
superiority and inferiority. The section on capturing
heterogeneity explains how the framework can be
applied to different patient populations. We evaluate
frequentist operating characteristics of the framework
via simulation in the numerical evaluation section.
Next, we illustrate the methods with data from the
International Stroke Trial and conclude the paper
with a discussion.

2. Decision-framework
2.1. Multivariate logistic regression

Response y¥ is the binary response for subject i on
outcome variable k € {1,...,K}, where y*e {0,1},
0 = failure and 1 = success. Vector y; = (y},...,yX) is

the multivariate (or joint) binary response vector of
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subject i on K dependent variables and has configur-
ation H,, which is one of the Q=2K possible
response combinations of length K given in the g
row of matrix H :

11 .. 11
11 10

H = (1)
00 .. 01
00 .. 00

The probability of y, can be expressed in two
meaningful and related ways. First, 8, = (0},...,0%)
denotes the vector of K-variate success probabilities
on individual outcome 1, ..., K, where Hff = pQ/f‘ =1).
Second, ¢, = ((,bll, - d)?) denotes the vector of Q-vari-
ate joint response probabilities, where ¢! =p(y, =
H, ) and sums to unity. The joint response of subject
i can be conditioned on covariates in vector x; =
(%11, ..., x;p). In this case, the probabilities of response
vector y,|x; are expressed as functions of x;, namely
¢;(x;) and 0;(x;).

Joint response probability ¢?(x;) maps the depend-
ency of joint response probabilities on covariates x;
via a multinomial logistic function:

€xp w (xz)]

U(x,) = 1
BT S e 1 @

for response categories g = 1,...,Q — 1. In Equation 2,
Y1(x;) reflects the linear predictor of response cat-
egory q and subject i:

Yl(xi) = Po+ Blxa + ...+ Pixip. (3)

Here, xj, can be a treatment indicator, a patient
characteristic, or an interaction between these. Vector
B = (BL, B, ..., BL) is the vector of regression coeffi-
cients of response category gq. To ensure identifiability,
all regression coefficients of response category Q are
fixed at zero, i.e., ﬁQ =0.

The likelihood of response data follows from taking
the product over » individual joint response probabil-
ities from Equation 2 of Q response categories:

n Q—1 exp (xl)] I(y;=H,)
ik HH > Texp [0 (x)] +1
(4)

1 I(y=Hq.)
( Q- 1exp[lﬁ( ,)} + 1) .

Bayesian analysis is done via the posterior distribu-
tion which is given by

p(Bly) o< p(yIB")p(B), (5)

where p(p?) reflects the prior distribution of the
unknown parameters before observing the data.
Posterior sampling can be done with a Gibbs sampling
algorithm based on a Pdlya-Gamma expansion
(Polson et al., 2013). Computational details of this
procedure can be found in Appendix A.

2.2. Transformation to treatment differences

In contrast to several other regression analyses, the
obtained multinomial regression coefficients have no
straightforward interpretation. We aim to make the
posterior sample of regression coefficients interpret-
able in terms of a treatment difference, which is
defined as the (multivariate) difference between suc-
cess probabilities of two treatments. To this end, we
execute the following multistep procedure with a fic-
tive setup of the IST trial as running example.
Suppose we are interested in the effect of combined
drug therapy (Heparin plus Asparin; Tp4) Vvs. single
drug therapy (Aspirin only; T4) on recurrent stroke
on the short-term (y*'*) and dependency on the long-
term (ydeP). There is a total of Q = 4 response catego-
ries: {ystrk =1, ydep _ 1} {ystrk =1, ydep _ 0}
{ytk = 0,y% =1}, {y"* =0,y% =0}, which we
refer to as {11}, {10}, {01}, and {00} respectively.
The treatments are blood thinning agents and may
thus interact with the patient’s blood pressure.
Therefore, we include systolic blood pressure at the
time of randomization as a covariate, so that we can
estimate conditional effects for patients with different
values of blood pressure, resulting in the following
model:
Wix) = B4+ BITi+ Blbp: + BibpiT, (6)
where x; = (T}, bp;, bp; T;). The transformation proced-
ure is then as follows:

1. Regression coefficients f to joint response prob-
abilities ¢, (x): In the first step, the posterior
sample of regression coefficients B is transformed
to a treatment effect in terms of joint response
probabilities ¢;(x;) for each treatment T €
{0,1}. Linear predictor y?(x;) is then trans-
formed to individual joint response probability
¢1(x;) via the multinomial logistic function in
Equation 2:

¢} (x;) = o

exp [Y!(x)]
Lexp [} (x)] + 1

(2 revisited)

r=1



For example, the probability that patient i in the
IST does not experience a new stroke and is
dependent after six months can be expressed as:

¢1,(x:) = p(y;(x:) = {01})
_ exp [y (x:)] .
Zf:l exp [Yj(x:)] +1

This probability can be computed for the other
joint response combinations as well. Note that we
are in fact interested in joint response probability
¢ (x), which reflects a treatment effect among a
(sub)population defined by x. This notation is
more general than the joint response probability of
an individual patient with covariates x;. The popu-
lation can be reflected by an individual patient
(e.g., with a systolic blood pressure of 100) in some
situations, while other cases target the entire study
population (e.g., no restriction on systolic blood
pressure) or a subpopulation of interest (e.g., with
a systolic blood pressure above 150). These varia-
tions have slightly different computational proce-
dures, which we discuss in more detail in Section 3.
Joint response probabilities ¢;(x) to multivariate
success probabilities 07 (x): The next step in the
transformation involves the conversion from joint
response probabilities ¢ (x) to multivariate success
probabilities of individual dependent variables
0r(x). Especially when the number of dependent
variables increases, success probabilities are more
straightforward in their interpretation than joint
response probabilities. The relation between both
quantities is additive: Success probability 91} on out-
come k and treatment T equals the sum of a selec-
tion of elements of ¢, denoted by matrix Uy :

@)

Q
05(x) =D “¢h(x)I(H, € Uy). (8)
q=1
Selection Uy consists of the 257! rows of H that
have their k" element equal to 1. More con-
cretely, the two dependent variables from the IST
are the following combinations, where we drop
the dependency on x for notational simplicity.

1 1 1 1
JWUstrk = |:1 0:|7 and Udep: |:0 1

O O =
S = O

Hence, the multivariate success probabilities in
d . o

0r = (05™,09") consists of univariate success

probabilities:

1
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07" = p(y,(x) = {11}) + p(y;(x:) = {10})

=1+ ¢7 o)
077 = p(y,(x:) = {11}) + p(y;(x:) = {01})
= o1 + 7.

The correlation between these dependent variables
is captured in joint response probabilities ¢ (x)
and automatically taken into account in further
transformations (Olkin & Trikalinos, 2015; Dai
et al., 2013).

3. Success probabilities 0r(x) to treatment differ-
ences 6(x): The treatment difference on outcome
k, 8 (x), is defined as the difference between the
success probabilities of two treatments on out-
come k, such that:

O (x) = 0% (x) — 0K (x). (10)
The K-variate treatment difference is then
o(x) = (6 (%), ..., 05 (x)).

Multivariate treatment difference & = (5%, 39®) in
the IST is a vector of the univariate treatment differ-
ences:

strk strk strk
5d —95+A—99 (11)

__ pdep ep

O =044 — 0y

Applying the three above-mentioned steps to each
draw of the posterior sample of B, results in a poster-
ior sample of multivariate treatment difference d(x).
This sample provides estimates that can be used for
prediction, where various measures of central ten-
dency (e.g., a mean or high posterior density interval)
can be used to summarize the sample into a point
estimate. Moreover, the sample can be used for statis-
tical inference to generalize the conclusion to the
specified (sub)population, as outlined in the next
subsection.

2.3. Posterior decision-making

Decisions rely on estimated treatment effects, such as
differences between success probabilities, and their
uncertainties. More formally, multivariate treatment
difference 6 has complete parameter spaces S C
[—1,1]%, which is divided into a rejection region Sg
and a non-rejection region Sy. Rejection region Sp
reflects the part of the parameter space that indicates
the treatment difference of interest, where we would
conclude that the treatments differ. The non-rejection
region Sy refers to the part of the parameter space
that would not be considered a (relevant) treatment
difference. Rejection regions depend on the type of
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decision and be composed of multiple subregions if
desired (Van Ravenzwaaij et al., 2019). We consider
the following three (commonly used) decision types:

1. superiority with region Sy € Ss, where the treat-
ment is better;

2. inferiority with region Sz € S;, where the treat-
ment is worse;

3. two-sided with rejection region Sy € {Ss,Si},
where the treatment can be either better or worse.

We consider evidence sufficiently strong and would
conclude superiority and/or inferiority when the pos-
terior probability that treatment difference é(x) lies in
the rejection region exceeds a prespecified decision
threshold, p. :

p(5(x) € SR|y) > Peut- (12)

When the functional form of the posterior distribu-
tion is unknown, the rejection probability can be con-
cluded from an MCMC sample of L draws from the
posterior distribution of d4(x). Equation 12 is then
applied in practice as:

L
> 109 (x) € Sely) > peur. (13)
=1

1=

In a situation with multiple dependent variables,
superiority and inferiority can be defined in multiple
ways, resulting in different rejection regions (e.g Pocock
et al,, 1987; Pocock, 1997; O’Brien, 1984; Prentice, 1997;
Tang et al, 1993; Zhao et al, 2007). Although not
intended as an exhaustive overview, we list three possible
rules and graphically present their rejection regions in
Figure D1. Two of these rules (which we refer to as the
“Any” and “All” rules) are presented as part of the regu-
latory guideline regarding multiple endpoints, as pre-
sented by the Food and Drug Administraction Food and
Drug Administration (2017) and have been extensively
discussed in literature (e.g., Chuang-Stein et al., 2006;
Sozu et al., 2010, 2016; Xiong et al., 2005). The third rule
(“Compensatory”) is a - relatively unknown - flexible
alternative that weighs benefits and risks of treatments
by their (clinical) relevance (Murray et al., 2016;
Kavelaars et al., 2020). A more elaborate comparison of
these rules can be found in Kavelaars et al. (2020).

1. Any rule: The Any rule results in superiority or
inferiority when the difference between success
probabilities is larger or smaller than zero respect-
ively on at least one of the dependent variables
(Sozu et al., 2016). The superiority and inferiority
spaces are defined as:

S?ny = 0(x)| max, .p.x 0(x) > 0

14
SM = §(x)| min i 05 (x) < 0. (14)

2. All rule: The All rule results in superiority or
inferiority when the difference between success
probabilities is larger or smaller than zero respect-
ively on all of the dependent variables (Sozu
et al,, 2010). The superiority and inferiority spaces
are defined as:

S?H = 0(x)| min; <<k 5k(x) >0

15
S = §(x)| max, gk 0°(x) < 0. (15)

3. Compensatory rule: The Compensatory rule
results in superiority or inferiority when the
weighted difference between success probabilities
is larger or smaller than zero respectively. The
superiority and inferiority spaces are defined as:

S (w) = 8(x)|0(w,x) > 0
Comp (16)

S (w) = d(x)[o(w,x) <0
where w = (w!, ..., wK) reflect weights of K treatment
differences, d(w,x) = S ¢, wkd*(x), 0 <wk <1 and

S wk =1 (Kavelaars et al., 2020).

2.4. Sample size computations

Decisions resulting from analysis with the Bayesian
multivariate logistic regression framework are based
on a posterior probability. In absence of prior infor-
mation, the Bayesian posterior probability has a direct
relation with the frequentist p-value: The Bayesian
posterior probability equals 1 — p and behaves accord-
ing to the well-known relationship between effect size,
sample size, and decision error rates (Marsman &
Wagenmakers, 2016). This allows for control of deci-
sion error rates (Type I and Type II-error) via a priori
computed sample sizes. Methods to compute required
sample sizes are available for variables that follow a
multivariate Bernoulli distribution and are eligible for
large sample approximation by a (multivariate) nor-
mally distributed latent variable (Sozu et al, 2016,
2010; Chow et al., 2017). These procedures have
shown to accurately control Type I rate « and Type II
error rate f in a Bayesian multivariate Bernoulli -
Dirichlet-model on multivariate response data with a
non-informative prior distribution (Kavelaars et al,
2020). Each of the presented decision rules in
Subsection 2.3 has an individual procedure to com-
pute sample sizes, as discussed below. These equations
provide insight into the required number of observa-
tions in absence of prior information and in the influ-
ence of the correlation on the sample sizes needed to
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Figure D1. Bivariate superiority and inferiority spaces for the All, Any, and Compensatory (w = 0.50,0.50) rules.

obtain targeted decision error rates. For notational
simplicity, we discard the dependence on x in the
remainder of this subsection.

2.4.1. All and Any rules

Sample size computations for the All and Any rules
were formulated in Sozu et al. (2010) and Sozu et al.
(2016) respectively and rely on the assumption of a
multivariate normal latent variable. The power, 1 — f3,
can be expressed in terms of a cumulative K-variate
normal distribution Wk with mean 0 and correlation
matrix X (Sozu et al., 2016):

1— B =Yk(c,...,cX). (17)

In Equation 17, ¢* for outcome k is defined by the
decision rule of interest. Further, the off-diagonal ele-
ments of X denote (estimated) pairwise correlations
between dependent variables.

For the Any rule,

k k
Ckzzlx— (01_00) .
N Ty (18)
n

For the All rule,
(6 — 05)

07 (1-07) +05(1-05)
n

=21 + (19)

In Equations 18 and 19, n is the sample size
per treatment and z() refers to the selected (1 —%)
or (1 — o) quantile from the univariate normal distribu-
tion. Further, 0% and 0% refer to success probabilities on
outcome variable k of treatments 1 and 0 respectively.

Since the cumulative multivariate normal distribu-
tion does not have a closed-form, the sample size that
satisfies targeted decision error rates can be found via
the following iterative procedure proposed by Sozu

et al. Sozu et al. (2010):

1. Plug in estimates of 6% and 0f in Equation 18 or 19.

2. Plug in a starting value for n in Equation 18 or
19 and calculate the power via Equation 17.

3. Repeat step 2 with gradually increasing n until
the power exceeds the desired level

4. Select n as the sample size per treatment group

2.4.2. Compensatory rule

Sample sizes for the compensatory rule can be com-
puted using standard methodology for large sample
tests with two binomial proportions (Chow et al,
2017, Chapter 4). Plugging in estimates of weighted
success probabilities per treatment T, 07, results in:

w= oo v oy -] Frse] o
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where 0% = Y5, wk05, and z, 4 is the (1 — B) quan-
tile of the univariate normal distribution.

2.4.3. Correlation, sample size, and statistical power
We illustrate the relation between the sample size, the
statistical power and the correlation between depend-
ent variables with an example. We computed required
sample sizes to obtain 80% statistical power for the
following bivariate (K = 2) and trivariate (K = 3) out-
comes, where we used different correlations (pok)ol)
and multivariate treatment differences (6).

1. S K =2, Py g € —0.20,0.00,0.20,
& = (0.20,0.10)

2. S3: K =3, Py g € —0.20,0.00,0.20,
& = (0.20,0.10,0.20)

3. L2 K=2, P g € —0.40,0.00,0.40,
& = (0.30,0.20)

4. L3 K =3, Py g € —0.40,0.00,0.40,

& = (0.30,0.20,0.30)

Scenarios S2 and S3 had a smaller multivariate
treatment difference & and weaker non-zero correla-
tions than scenarios L2 and L3.

Table D1 shows the the required sample sizes for
these scenarios as well as the anticipated statistical
power for right-sided superiority decision-making
under two scenarios:

1. When sample sizes computations are based on
the true multivariate treatment difference 6 and
the true correlation between dependent variables
Py, ¢~ This scenario aims to highlight that statis-
tical power can be targeted when sample size

Table D1. Example of required sample sizes (n) for analysis
with correlated data and anticipated probabilities to conclude
superiority when sample size computations use the true cor-
relation (pr) vs. assume uncorrelated dependent variables (py)
under four different data-generating mechanisms (DGM:s).

p<0 p=0 p>0
DGM n pr___py__n pr___py__n pr by
All rule
S2 307 0.801 0.801 307 0.801 0.801 307 0.801 0.801
L2 77 0.801 0.801 77 0.803 0.803 76 0.803 0.808
S3 307 0.800 0.800 307 0.801 0.801 307 0.801 0.801
L3 79 0.801 0.800 79 0.804 0.804 77 0.803 0.812
Any rule
S2 76 0.801 0.825 81 0.803 0.803 85 0.802 0.783
L2 27 0.811 0.862 31 0.807 0.807 35 0.801 0.756
S3 51 0.807 0.850 57 0.804 0.804 64 0.805 0.760
L3 18 0.821 0918 23 0.809 0.809 29 0.804 0.714

Compensatory rule

S2 53 0.798 0.845 61 0801 0801 68 0.799 0.760
L2 18 0.807 0.884 23 0.794 0794 29 0799 0.714
S3 24 0.796 0.923 37 0804 0804 49 0.802 0.699
L3 5 0826 0.99% 14 0.798 0.798 24 0.807 0.608

computations follow the true data generating
mechanism.

2. When sample sizes computations are based on
the true multivariate treatment difference é and
uncorrelated dependent variables (i.e., Py g = 0).
This scenario provides insight in anticipated error
rates where the correlation is not taken into
account in sample size computations. This situ-
ation is equivalent to performing multiple uni-
variate analyses on correlated dependent variables.

These probabilities are computed by plugging in
true treatment differences and correlations, while
using either the required sample size (scenario 1) or
the sample size for uncorrelated data (scenario 2) in
Equations (17)-(20)).

This illustration provides five takeaways. First,
larger effect sizes (L2 and L3) result in smaller
required samples than smaller effect sizes (S2 and $3)
respectively. Second, adding an additional dependent
variable has the potential to reduce sample sizes.
Required sample sizes are larger for a three-dimen-
sional outcome (S§3 and L3) than for a two-dimen-
sional outcome (S2 and L2). Third, the required
sample size depends on the correlation between
dependent variables. Compared to uncorrelated
dependent variables, the Any and Compensatory rules
require fewer observations when dependent variables
are negatively correlated, whereas positively correlated
dependent variables require more observations.
Consequently, when sample size computations do not
take non-zero correlations into account, statistical
power will be larger or smaller than targeted respect-
ively. Fourth, the relation between correlation and
required sample size is different for different decision
rules. Compared to the Any and Compensatory rules,
the All rule shows the opposite relation between the
direction of the correlation and the required sample
size. Here, positively correlated dependent variables
require a smaller number of observations than uncor-
related or negatively correlated dependent variables.
Moreover, the All rule appears less sensitive to the
correlation than the other rules. Sample sizes are not
very different and statistical power under independ-
ence is still close to the targeted .80. Fifth, the effect
of the correlation on required sample size and statis-
tical power is larger in the scenarios where non-zero
correlations are stronger (L2 and L3). In these scen-
arios, the discrepancy between the targeted power of
0.80 and the actual power is larger for non-zero corre-
lations. Further, the differences between presented
sample sizes for negatively correlated, uncorrelated,



and positively correlated dependent variables is larger
compared to the scenarios with less strong correlation
(82 and S3).

These takeaways are in line with detailed discus-
sions in Sozu et al. (2010, 2016); Food and Drug
Administration (2017); Kavelaars et al. (2020).

3. Estimating conditional average treatment
effects

In the proposed framework, treatment heterogeneity
can be captured by joint response probabilities that
reflect conditional average treatment effects and thus
depend on prespecified characteristics of a subpopula-
tion of interest. We describe two ways to represent
subpopulations: by fixed covariate values or by a pre-
specified interval of the covariate distribution(s). Both
representations have their own applications. Fixed val-
ues of covariates may be relevant when we wish to
investigate treatment effects based on individual
patients or on patient populations that can be accur-
ately represented by a single number of the covariate
(such as a mean or a level of a discrete variable).
Intervals of covariate distributions may be sensible in
particular when multiple consecutive covariate values
are sufficiently exchangeable to estimate a marginal
treatment effect among a population specified by this
range. Although such intervals can be specified for
discrete covariates as well, their use is particularly rea-
sonable with continuous covariates, as intervals are
inherently consistent with the idea of continuity.

We will discuss procedures to estimate conditional
average treatment effects based on fixed values and
based on intervals in more detail in the remainder of
this subsection. In these discussions, we use a linear
predictor ¥?(x) (cf. Equation 3) that distinguishes
between treatments via a treatment indicator and
allows for interaction between the treatment and a
covariate. For such a model that includes a single
population characteristic z, x = (z, T,2T) and I,V% (x) is
defined as:

Yh(x) = B+ BIT + plz + plzT. 1)

3.1. Fixed values of covariate

For a patient population with fixed values of patient
covariates, a posterior sample of joint response proba-
bilities ¢;(x) can be found by plugging in a vector of
fixed covariate values x in linear predictor l//(Tl) (x).
Subsequently applying the multinomial logistic link
function in Equation 2 to each ¢<Tl> (%) results in joint
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response probability qb(Tl) (x) for treatment T. Applying
these steps each posterior draw (I) of regression coef-
ficients B results in a sample of posterior joint
response probabilities. The procedure is presented in
Algorithm 1 in Appendix C.

3.2. Marginalization over a distribution of
covariates

When the population is characterized by a range of
covariates, the treatment effect can be marginalized
over the interval under consideration, based on avail-
able information regarding the distribution of the
covariate.

A sample of covariate data can be used as input for
marginalization. Empirical marginalization involves
repeating the fixed values procedure for each subject
in the sample to obtain a sample of joint response
probabilities for each posterior draw (I). Averaging
the resulting sample of joint response probabilities per
treatment results in a marginal joint response prob-
ability d)(Tl) (x) for draw (I). The procedure is presented
in Algorithm 2 in to Appendix C. Empirical marginal-
ization is computationally efficient for patient popula-
defined by
continuous covariate. Note however that the proced-
ure is prone to sampling variability in x and that esti-
mation might depend on the availability of cases with
the selected covariate values. Increasing the specificity
of subpopulations - often resulting from a higher
number of included covariates and/or a limited inter-
val size — will reduce the number of available observa-

tions intervals of more than one

tions eligible for inclusion.!

4, Numerical evaluation

The current section presents an evaluation of the per-
formance of the proposed multivariate logistic regres-
sion procedure. The goal of the evaluation was
twofold and we aimed to demonstrate:

1. how well the obtained regression coefficients and
treatment effects correspond to their true values
to examine bias;

2. how often the decision procedure results in an
(in)correct superiority conclusion to learn about
decision error rates when sample sizes are esti-
mated a priori.

If this is the case, (numerical) integration can be an alternative to
interpolate the conditional treatment effect distribution of interest.
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4.1. Setup

4.1.1. Conditions

The performance of the framework was evaluated in a
treatment comparison based on one covariate and two
dependent variables. In Appendix D, we present an
evaluation of the performance with three dependent
variables. Six aspects were varied: the analysis proced-
ure, the effect size, measurement level of the covariate,
the correlation between dependent variables, the
(sub)population, and the decision rule. Each of these
factors will be discussed in the following paragraphs.

4.1.1.1.  Analysis procedure. We present three
Bayesian analysis procedures:
(1) Multivariate logistic regression analysis

(mLR): We analyzed the generated data via the pro-
posed Bayesian multivariate logistic regression model
presented in Section 2.

The performance of the mLR-model was compared
to two reference approaches:

(2) Multivariate Bernoulli analysis (mB): To dem-
onstrate the gain of a multivariate regression approach
over multivariate subgroup analysis (i.e., multivariate
stratified analysis), we fitted the unconditional
Bayesian multivariate Bernoulli model in Kavelaars
et al. (2020) to the data as well. Whereas the multi-
variate Bernoulli model takes the correlation between
dependent variables into account, the multivariate
Bernoulli model computes conditional average treat-
ment effects via stratified multivariate analysis: the
multivariate Bernoulli model only uses the response
data from observations that belong to the (sub)popu-
lation of interest. Hence, the estimation of ATEs uses
the full sample of response data, whereas CATEs are
estimated based on a subsample of response data.
Samples of treatment-specific joint response probabil-
ities ¢, could be drawn directly from a posterior
Dirichlet  distribution with  parameters o} =
o+ {7 I(Ti=T)I(y, = Hq.)};?:l, where o’ is a
vector of Q prior hyperparameters.

(3) Univariate logistic regression (uLR): To dem-
onstrate the added value of a multivariate model over
multiple univariate models, we fitted Bayesian univari-
ate logistic regression models from Polson et al.
(2013) to the individual dependent variables for the
scenario with two dependent variables. This univariate
model is a special case of the multivariate model pre-
sented in Section 2 and Appendix A. While these
regression-based models use the full sample of data to
estimate conditional average treatment effects among
subpopulations, they cannot capture correlations
between dependent variables.

4.1.1.2. Datagenerating mechanisms: effect size,
measurement level of covariate, and correlation.
We included treatment differences of four different
sizes that varied in heterogeneity:

1. Effect size 1.1 & 1.2: A homogeneous treatment
effect, with average and conditional treatment
differences of zero. This scenario aims to
demonstrate the Type I error rate under a least
favorable treatment difference for the Any and
Compensatory rules in the trial as well as the
subpopulation.

2. Effect size 2.1 & 2.2: A heterogeneous treatment
effect, with an average treatment difference of
zero and a conditional treatment effect larger
than zero.

3. Effect size 3.1 & 3.2: A heterogeneous treatment
treatment effect, with one average and both con-
ditional treatment differences larger than zero.
The conditional treatment difference is larger
than the average treatment difference. The effect
size is chosen to compare power of different
methods, when the sample size should not lead to
underpowerment for any of the approaches to the
estimation of conditional average treatment
effects. The effect size of the conditional average
treatment effect reflects the least favorable average
treatment effect for a right-sided test of the All
rule and should result in a Type I error rate equal
to the chosen level of o if the sample size is suffi-
ciently large.

4. Effect size 4.1 & 4.2: A heterogeneous treatment
treatment effect, with one average and both con-
ditional treatment differences larger than zero.
The conditional treatment difference is smaller
than the average treatment effect. The effect size
is chosen such that the expected sample size after
stratification of the study sample is smaller than
the required sample for evaluation of the condi-
tional treatment effect and aims to investigate the
statistical power of regression-based methods
when stratification leads to underpowered deci-
sions. Similar to effect size 3.1/3.2, the effect size
of the conditional average treatment effect reflects
the least favorable effect for a right-sided test of
the All rule and should result in a Type I error
rate equal to the chosen level of o if the sample
size is sufficiently large.

For each of these four effect sizes, we varied the
measurement level of the covariate and created a
model with a binary covariate and a model with a



Table D2. Parameters of average treatment effects (ATEs) in
the trial and conditional average treatment effects (CATEs) in
a subpopulation for two outcome variables.

ATE CATE
ES ((51,52) (S(W) Po o ((51,(52) ()(W) Py o
1.1 D (0.000, 0.000) 0.000 —0.160 (0.000, 0.000) 0.000 —0.200
0.030 0.000
0.220 0.200
1.2 C (0.000, 0.000) 0.000 —0.163 (0.000, 0.000) 0.000 —0.207
0.028 0.002
0.219 0.208
21 D (0.000, 0.000) 0.000 —0.154 (0.250, 0.150) 0.225 —0.200
0.037 0.000
0.229 0.200
22 C (0.000, 0.000) 0.000 —0.157 (0.116, 0.069) 0.104 —0.206
0.036 0.003
0.228 0.207
31 D (0.100, 0.000) 0.075 —0.152 (0.300, 0.200) 0.275 —0.200
0.040 0.000
0.232 0.200
32 C (0.100, 0.000) 0.075 —0.155 (0.196, 0.093) 0.170 —0.205
0.038 0.003
0.231 0.206
41 D (0350, 0.000) 0.263 —0.197 (0.200, 0.000) 0.150 —0.200
0.000 0.000
0.197 0.200
42 C (0350, 0.0000 0.263 —0.197 (0.288, 0.000) 0.216 —0.202
0.000 0.000
0.197 0.202

Es = Effect size, D = Discrete covariate, C = Continuous covariate.

continuous covariate. Further, we specified three pair-
wise correlations for the dependent variables: a nega-
tive correlation (pp g = —.20), no correlation
(pgr ¢ = -00), and a positive correlation (py » = .20).
These pairwise correlations were identical for all
dependent variable pairs and were specified for the
conditional average treatment effects (x =0 and x =1
for the dichotomous covariate; at x =—1 and x =1
for the continuous covariate). The correlation struc-
tures and effect sizes of the conditional average treat-
ment effects determine, together with the probability
distribution of the covariates, the correlation and
effect size of average treatment effects.

These four effect sizes, two measurement levels of
the covariate, and three correlation structures resulted
in the 4 x2x3 =24 data generating mechanisms
(DGMs) presented in Table D2.

4.1.1.3. Treatment effects and (sub)populations. We
estimated three different treatment effects:

1. An average treatment effect (ATE) among the
trial population. The trial population with a dis-
crete covariate was defined by a binomially dis-
tributed covariate with a probability of 0.50. The
trial population with a continuous covariate was
defined by a covariate that followed a standard
normal distribution.
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2. A conditional average treatment effect (CATE)
among a subpopulation defined by a sample of
covariate an interval of a continuous covariate.
This treatment effect was also estimated among
patients scoring low on the covariate, but this
time the subpopulation was defined as all values
between the mean and one standard deviation
below the mean. Note that the discrete covariate
could not be assigned an interval, since subsetting a
binary variable inherently results in a single value.

3. A conditional average treatment effect (CATE)
among a subpopulation defined by a fixed value
of a covariate. The treatment effect was estimated
among patients scoring low on the covariate and
was described by a value of 0 (discrete covariate)
or —1 (continuous covariate).

4.1.1.4. Decision rules and sample size. We applied
the three decision rules from Subsection 4.1.2:

1. Any rule

2. All rule

3. Compensatory rule with unequal weights (w =
(0.75, 0.25))

We computed sample sizes per treatment group via
the procedures from Subsection 2.4 for conditions
with non-zero true average treatment effects targeting
at a power of 0.80 and a right-sided o of 0.05. If the
true average treatment difference was equal to zero,
we used n = 1,000 per treatment group. The sample
size for the average treatment effect was thus leading
for the analysis of both average and conditional aver-
age treatments effects. As a result, the power of condi-
tional treatment effects was not targeted at 0.80, but
should exceed this target when the required sample
size for a CATE was larger than the sample size for
an ATE. Similarly, the power of CATEs with a sample
size smaller than the ATE sample size should be lower
than .80. The required sample sizes are presented in
Table D3. In these tables, we also included a) the
required sample size for the conditional average treat-
ment effect in the subpopulation; and b) the sample
size after stratification of the trial population. The
sample size after stratification is the expected size in
subpopulation analysis of a) response data in a strati-
fied analysis approach; and b) covariate data in empir-
ical marginalization.

4.1.2. Procedure
4.1.2.1. Data generation. For each data generating
mechanism and each unique (decision-rule specific)
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Table D3. Required sample sizes to evaluate the average treatment effect (ATE) and conditional treatment effect (CATE) for two

outcome variables.

All Any Compensatory
ES Pko, 1o ATE CATE Sub ATE CATE Sub ATE CATE Sub
1.1 <0 - - 500 - - 500 - - 500
~0 - . 500 - . 500 . - 500
>0 - - 500 - - 500 - - 500
1.2 <0 - - 342 - - 342 - - 342
~0 - - 342 - - 342 - - 342
>0 - - 342 - - 342 - B 342
2.1 <0 - 136 500 - 45 500 - 32 500
~0 - 136 500 - 48 500 - 36 500
>0 - 136 500 - 51 500 - 40 500
2.2 <0 - 658 342 - 215 342 . 154 342
~0 - 649 342 - 229 342 - 175 342
>0 - 644 342 - 245 342 - 196 342
3.1 <0 - 77 500 381 29 191 309 21 155
~0 - 77 500 385 31 193 349 23 175
>0 - 76 500 387 33 194 388 26 194
3.2 <0 - 358 342 379 81 130 307 56 105
~0 - 358 342 383 86 131 347 65 119
>0 - 356 342 386 91 132 386 73 132
4.1 <0 - - 500 28 93 14 22 73 11
~0 - - 500 28 93 14 25 83 13
>0 - - 500 28 94 14 28 93 14
4.2 <0 - - 342 28 43 10 22 34 8
~0 - - 342 28 44 10 25 39 9
>0 - - 342 28 44 10 28 43 10

Sub = expected size of subsample.

Bold-faced subsamples are smaller than required for estimation of the CATE.

sample size, we sampled 1000 datasets. We generated
one covariate x and included an interaction between
the treatment and the covariate as well, resulting in
the following linear predictor ¥ :

W) = BE 4 BLT; + Blzi + iz T

To generate response data, we first applied the
multinomial logistic link function (Equation 2) to
each true linear predictor W;(x;) to obtain joint
response probabilities ¢;(x;) for each subject i. Next,
we sampled response vector y;|x; from a multinomial
distribution with probabilities ¢;(x;).

(22)

4.1.2.2. Prior distribution. We specified diffuse prior
distributions. This is motivated by the idea that
obtained the posterior distributions are then com-
pletely based on the information in the data, which is
a common choice in default Bayesian analyses. For
the multivariate logistic regression analysis, we set
multivariate normally distributed prior with means
b? = 0 and variance matrix B% = diag(10, ...,10) for
all regression coefficients. Prior covariances between
regression coefficients were set at zero, implying that
regression coefficients were independent a priori. For
the univariate logistic regression analysis we used uni-
variate normally distributed priors with a mean of 0
and a variance of 10 for all parameters. The specified
variance parameters of regression coefficients were

motivated by work of Gelman et al. (2008). These
authors recommend to choose a variance parameter
that results in realistic support for the probability par-
ameter after non-linear transformations in logistic
regression and has sufficient information to stabilize
posterior computations. For the mB reference
approach, we used a Dirichlet prior distribution with
hyperparameters a’ = 0.01. This prior is close to the
improper Haldane prior (a = 0), which is considered
the least informative prior distribution for bi- or multi-
nomially distributed data, results in a posterior mean
equal to the maximum likelihood estimator, and corre-
sponds to a uniform prior on the log-odds scale (Tuyl
et al., 2008; Kerman, 2011). The small deviation from
the Haldane prior makes the prior distribution proper
and ensures that cell probabilities can be sampled from
the Dirichlet distribution when cells have no observa-
tions (Kavelaars et al., 2020).

4.1.2.3. Gibbs sampling. The regression coefficients
in response categories 1, ..., (Q — 1) were estimated via
the Gibbs sampler detailed in Appendix A. We ran
two MCMC-chains with L = 10,000 iterations plus
1,000 burnin iterations. We visually inspected trace-
plots of MCMC-chains and used multivariate
Gelman-Rubin convergence diagnostics to assess con-
vergence (Gelman & Rubin, 1992; Brooks & Gelman,
1998). As these traceplots showed satisfactory overlap



between chains and the convergence diagnostics were
all between 1.00 and 1.10, we concluded that there
were no issues with convergence.

4.1.2.4. Transformation and decision-making. We
applied the procedures from Subsections 2.2 and 2.3
to arrive at a decision. In marginalization, we included
the selection of subjects that belonged to the subpopu-
lation. We performed a right-sided (superiority) test
aiming at a Type I-error rate of a = .05. We used a
decision threshold p. =1 — o = 0.95 (Compensatory
and All rules) and a for multiple tests corrected p., =
1 —%=0.975 (Any rule) (Marsman & Wagenmakers,
2016; Kavelaars et al., 2020; Sozu et al., 2016).

4.1.3. Software

We conducted our analyses in R (R Core Team,
2020). We drew variables from the multivariate nor-
mal, Pélya-Gamma, and Dirichlet distributions with
the MASS, pgdraw and MCMCpack packages respect-
ively (Venables & Ripley, 2002; Makalic & Schmidt,
2016; Martin et al., 2011). We used the coda package
to explore MCMC chains (Plummer et al., 2006). The
simulation procedure was parallellized using the fore-
ach and doParallel packages (Microsoft & Weston,
2020a, 2020b). LaTeXtables were created with the
xtable package (Dahl et al., 2019).

4.2. Results

4.2.1. Bias

Bias of multivariate and weighted treatment differences
was negligible (< [.01|) in most conditions, implying
that Bayesian multivariate logistic regression analysis
was generally able to reproduce true treatment effects.
However, the estimation of average treatment effects
under effect sizes 4.1 and 4.2 resulted in slightly biased
treatment differences for the Any and Compensatory
rules. As shown in Table D4, these absolute biases
ranged up to |0.04|. These biases were produced in
both univariate and multivariate logistic regression ana-
lysis, but not in multivariate Bernoulli analysis.
Conditional average treatment effects were estimated
with comparable patterns of bias and a maximum of
|0.025|. This bias showed up in conditions with a small
sample, which is a well-documented property of logistic
regression in general (Nemes et al., 2009).

This bias in treatment differences could be traced
back to bias in regression coefficients. Mean estimates
of regression coefficients were asymptotically
unbiased, implying that bias was negligible (< [0.01|)
in conditions with a sufficiently large sample. We
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Table D4. Bias in average treatment differences of effect size
(ES) 4.1 and 4.2 by decision rule.

All rule
uLR mB mLR

ES  ppy ', 6% (',8%) (6',6%

4.1 <0 (0.000, 0.000) (—0.002, 0.001) (0.000,—0.002)
= (0.000, 0.000) (0.000, 0.000) (—0.001,—0.001)
>0 (—0.001, 0.000) (—0.001,—0.001) (—0.001, 0.000)

4.2 <0 (—0.002, 0.000) (0.002,—0.001) (0.000,—0.002)
= (—0.001,—0.001) (—0.001, 0.001) (—0.002,—0.001)
>0 (—0.001,—0.001) (0.001,—0.001) (—0.001, 0.001)

Any rule
uLR mB mLR

ES  pyy ', 6% (',8%) (6',6%

4.1 <0 (—0.013, 0.001) (—0.001, 0.005) (—0.024,—0.011)
~ (—0.009,—0.002) (0.001, 0.001) (—0.023,-0.016)
>0 (—0.006, 0.001) (0.002, 0.004) (—0.028,—0.007)

4.2 <0 (—0.018,—0.009) (—0.005, 0.003) (—0.031,—0.019)
= (—0.014, 0.003) (—0.002,—0.001) (—0.032,—0.011)
>0 (—0.018,—0.002) (—0.001, 0.005) (—0.030,—0.008)

Compensatory rule
uLR mB mLR

ES P o o(w) o(w) o(w)

4.1 <0 —0.006 0.000 —0.030
~0 —0.012 0.000 —0.019
>0 —0.004 —0.006 —0.015

4.2 <0 —0.018 —0.003 —0.040
~0 —0.017 —0.003 —0.029
>0 —0.013 0.003 —0.024

uLR = univariate logistic regression.
mB = multivariate Bernoulli.
mLR = multivariate logistic regression.

observed some bias in conditions with smaller samples
(ES 3.1, 32, 4.1, and 4.2 under the Any and
Compensatory decision rules). We can conclude that
bias in regression coefficients was not necessarily prob-
lematic for our actual parameters of interest, namely
success probabilities and differences between them.
Even when regression coefficients had a small bias
(< ]0.20] on the log-odds scale), success probabilities
and treatment differences could be estimated without
bias (< [0.01|), similar to the conditions without biased
regression coefficients. This was the case for ES 3.1 and
3.2 under sample sizes of the Any and Compensatory
rules. Only more severe bias of regression coefficients
(< ]0.57] on the log-odds scale) in conditions with
smaller sample sizes was not fully corrected in the
transformation steps. This was seen in ES 4.1 and 4.2
under sample sizes of the Any and Compensatory rules.

4.2.2. Decision error rates

4.2.2.1. Average treatment effects. Probabilities to
conclude superiority of average treatment effects are
presented in Table D5. Decisions resulted in appropri-
ate Type I error rates around 0.05 for each of the pos-
terior distribution types under a least favorable
scenario of no effect (i.e., ES 1.1, 1.2, 2.1, 2.2 of Any
and Compensatory rules) and the proportions of
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Table D5. Proportions of superiority decisions for ATEs with two outcome variables by data-generating mechanism, correlation,

and decision rule.

p<0 p=0 p>0
ES uLR mB mLR uLR mB mLR uLR mB mLR
Rule =All
1.1 0.000 0.004 0.000 0.000 0.005 0.001 0.004 0.005 0.007
1.2 0.003 0.002 0.001 0.000 0.005 0.002 0.006 0.006 0.005
2.1 0.000 0.001 0.003 0.002 0.004 0.004 0.006 0.005 0.008
2.2 0.002 0.003 0.000 0.007 0.002 0.005 0.003 0.005 0.010
3.1 0.064 0.051 0.046 0.066 0.046 0.056 0.054 0.043 0.046
3.2 0.051 0.048 0.055 0.050 0.057 0.050 0.049 0.052 0.061
4.1 0.059 0.051 0.042 0.059 0.044 0.044 0.052 0.046 0.053
42 0.051 0.058 0.045 0.045 0.041 0.051 0.044 0.049 0.053
Rule = Any
1.1 0.052 0.046 0.054 0.060 0.064 0.060 0.059 0.047 0.050
1.2 0.054 0.055 0.043 0.035 0.042 0.050 0.038 0.053 0.049
2.1 0.063 0.053 0.059 0.055 0.044 0.045 0.052 0.049 0.049
2.2 0.059 0.055 0.062 0.059 0.045 0.062 0.046 0.048 0.060
3.1 0.807 0.802 0.789 0.810 0.812 0.806 0.796 0.787 0.791
3.2 0.814 0.790 0.807 0.819 0.811 0.791 0.811 0.803 0.815
4.1 0.804 0.756 0.781 0.816 0.775 0.787 0.808 0.780 0.777
4.2 0.790 0.749 0.793 0.806 0.774 0.770 0.781 0.754 0.785
Rule = Compensatory
1.1 0.049 0.056 0.054 0.059 0.069 0.050 0.076 0.047 0.048
1.2 0.045 0.041 0.056 0.045 0.040 0.051 0.063 0.047 0.055
2.1 0.053 0.040 0.053 0.069 0.054 0.048 0.076 0.051 0.053
2.2 0.051 0.048 0.054 0.059 0.040 0.061 0.057 0.048 0.058
3.1 0.757 0.821 0.813 0.824 0.802 0.815 0.815 0.801 0.794
3.2 0.779 0.804 0.838 0.802 0.811 0.804 0.836 0.801 0.815
4.1 0.794 0.795 0.774 0.805 0.799 0.810 0.858 0.781 0.790
4.2 0.759 0.786 0.771 0.820 0.792 0.806 0.815 0.798 0.792

uLR = Univariate logistic regression.
mB = Multivariate Bernoulli.
mLR = Multivariate logistic regression.

Bold-faced entries have effect sizes that should lead to a superiority conclusion.

correct superiority conclusions (i.e., power) were close
to the targeted 0.80 under a priori estimated sample
sizes when the true effect was larger than zero (i.e., ES
3.1, 32, 4.1, 42 of Any and Compensatory rules).
These results showcase that a priori computed sample
sizes result in adequate statistical decisions.

In general, multivariate logistic regression (mLR)
performed comparable to stratified multivariate ana-
lysis (mB) in the estimation of average treatment
effects: Type I-error rates of mB were around 0.05
and statistical power was close to the targeted 0.80 as
well. Compared to univariate logistic regression ana-
lysis (uLR), statistical power of multivariate logistic
regression (mLR) appeared less sensitive to the correl-
ation of the data. Effect sizes 3.1/3.2 and 4.1/4.2
under the Compensatory rule demonstrate most
clearly how power of uLR increased when the correl-
ation moved from negative to positive, with uncorre-
lated data reaching the targeted .80. For these
conditions, the sample size which the uLR model was
fitted on was smaller and larger respectively than
needed for an analysis that assumes uncorrelated data.
The difference between uLR and mLR was relatively
subtle however, which is in line with the pattern of
required sample sizes in Table D3. This table shows
that differences in required sample sizes for different

correlations were relatively small under most data-
generating mechanisms. This implies that the effect of
using an incorrect sample size on statistical power is
relatively limited under the data-generating mecha-
nisms in the simulation study, in contrast with the
scenarios presented in Table D1.

4.2.2.2. Conditional average treatment effects. The
results of conditional treatment effects in the subpo-
pulations are presented in Table D6. Similar to aver-
age treatment effects, Type I error rates were around
the targeted 0.05 under the least favorable scenarios of
no effect (ES 1.1, 1.2 for Any and Compensatory
rules) for all estimation methods. The proportion to
conclude superiority correctly was above 0.80 in all
scenarios with a sample size exceeding the required
sample size for CATEs. In the scenarios where the
sample size for CATEs was lower than requirer (4.1
and 4.2 for the Any and Compensatory rules and 2.2
and 3.2 for the All rule), the power was below 0.80.

A comparison of estimations methods for the con-
tinuous covariate revealed that multivariate logistic
regression (mLR) was generally more powerful than
the stratified multivariate analysis (mB) approach
when the covariate was continuous. These effects are
prominent in ES 2.2 and 3.2 (All rule) as well as ES
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Table D6. Proportions of superiority decisions for CATEs with two outcome variables by data-generating mechanism, correlation,

and decision rule.

p<0 p=0 p>0
ES mB mLR-S mLR-V mB mLR-S mLR-V mB mLR-S mLR-V
Rule =All
1.1 0.002 - 0.000 0.006 - 0.001 0.009 - 0.004
1.2 0.000 0.000 0.001 0.004 0.002 0.004 0.007 0.003 0.004
2.1 0.999 - 0.997 0.999 - 0.998 1.000 - 0.999
2.2 0.484 0.873 0.998 0.537 0.854 1.000 0.529 0.880 1.000
3.1 1.000 N 1.000 1.000 . 1.000 1.000 N 1.000
3.2 0.790 0.972 1.000 0.801 0.979 1.000 0.804 0.982 1.000
4.1 0.050 - 0.040 0.042 - 0.036 0.045 - 0.048
4.2 0.051 0.045 0.054 0.052 0.053 0.059 0.046 0.056 0.060
Rule = Any
1.1 0.054 - 0.050 0.064 - 0.039 0.051 - 0.052
1.2 0.053 0.038 0.054 0.057 0.055 0.056 0.063 0.048 0.048
2.1 1.000 - 1.000 1.000 - 1.000 1.000 - 1.000
2.2 0.933 1.000 1.000 0.913 0.999 1.000 0.904 0.999 1.000
3.1 1.000 - 1.000 1.000 - 1.000 1.000 - 1.000
3.2 0.932 0.999 1.000 0.939 0.998 1.000 0.899 0.999 1.000
4.1 0.251 - 0.266 0.251 - 0.242 0.233 - 0.230
4.2 0.336 0.508 0.181 0.305 0.522 0.183 0.308 0.512 0.174
Rule = Compensatory
1.1 0.061 - 0.047 0.076 - 0.033 0.048 - 0.039
1.2 0.040 0.040 0.043 0.062 0.057 0.056 0.057 0.046 0.048
2.1 1.000 N 1.000 1.000 . 1.000 1.000 N 1.000
2.2 0.980 1.000 1.000 0.969 1.000 1.000 0.945 0.999 1.000
3.1 1.000 - 1.000 1.000 - 1.000 1.000 - 1.000
3.2 0.951 1.000 1.000 0.953 1.000 1.000 0.945 1.000 1.000
4.1 0.283 N 0.326 0.292 . 0.319 0.287 N 0.316
4.2 0.390 0.504 0.190 0.354 0.534 0.183 0.359 0.537 0.232

mB = Multivariate Bernoulli.
mLR-S = Multivariate logistic regression —sample.
mLR-V = Multivariate logistic regression —value.

Bold-faced entries have effect sizes that should lead to a superiority conclusion.

42 (Any and Compensatory rules). The statistical
power of stratified multivariate analysis (mB) and
multivariate logistic regression analysis (mLR) did not
differ for the discrete covariate, as demonstrated
under ES 2.1 and 3.1 (All rule) as well as ES 4.1 (Any
and Compensatory rules).

5. lllustration

We applied the proposed method to a subset of data
from the n = 19,435 subjects from the International
Stroke Trial (International Stroke Trial Collaborative
Group, 1997). We selected participants who were
alive after six months and were treated with either a
combined treatment (Aspirin 4+ medium / high-dose
Heparin) or one of the single treatments (Aspirin
only), resulting in a sample of n = 5,657 participants,
of which np4 = 1,859 were in the Heparin + Aspirin
group (treatment = 1) and ny = 3,798 subjects were
in the Aspirin group (treatment = 0). We fitted the
model in Equation 6 to compare the effects of the two
treatments on a) recurrent stroke within 14 days
(0=no; 1=yes) and b) dependency after six months
(0=no, 1=yes) while taking systolic blood pressure
of the subjects (Bp) into account.

5.1. Method

We applied the two procedures from Subsection 3
(fixed values and interval of the covariate) to assess
the multivariate and weighted treatment differences in
three different types of patient populations:

1. Average treatment effects in the trial population;

2. Conditional treatment effects in populations
defined by a fixed value. Patient populations were
defined by six different values of blood pressure,
specifically 1,2, and 3 standard deviations below
and above the mean.

3. Conditional treatment effects

defined by an interval. Patient populations were

defined by two different regions of blood pres-

sure: Bp < —1SD (Low), and Bp > 1SD (High).

in populations

Similar to the Numerical evaluation, we specified
a diffuse multivariate normally distributed prior
with means b7 =0 and variance matrix B°=
diag(10,...,10) for all regression coefficients, except
the reference category (strk = 0,dep = 0). Prior cova-
riances between regression coefficients were set at
zero, implying that regression coefficients were inde-
pendent a priori. We ran three MCMC-chains via our
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Figure D2. Traceplot of MCMC chains for the application of Bayesian multivariate logistic regression to the IST data.

proposed Gibbs sampler with 20,000 iterations plus
10,000 burnin iterations. Similar to the simulation
study, we used traceplots and multivariate Gelman-
Rubin convergence diagnostics to assess convergence
(Gelman & Rubin, 1992; Brooks & Gelman, 1998).
Traceplots (Figure D2) showed that chains mixed
properly and the multivariate Gelman-Rubin conver-
gence statistic had a value of 1.000, implying that
there were no signals of non-convergence.

We performed two-sided tests for the All, Any, and
Compensatory rules. For the Compensatory rule, we
assumed that long-term impaired functioning is more
important than short-term complications and specified
weights w = (0.25,0.75) for recurring stroke in
14 days and dependency at 6 months respectively.
These weights implied that the longterm outcome was
three times more relevant for the decision than the
Since 07 reflects failure

shortterm  outcome.
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Table D7. Average and conditional average treatment effects (ATE and CATE respectively) and their posterior probabilities (pp) in
the IST data, by interval of blood pressure (Bp). Superiority or inferiority was concluded when > or < respectively.

Method 4(Bp) pp Any All d(w, Bp) pp Comp
ATE (—o0 < Bp < o0) Nyya = 1859, np = 3798

mB (0.005, —0.015) (0.859, 0.151) - - —0.010 0.182 -
mLR (0.004, —0.014) (0.825, 0.152) - - —0.010 0.178 -
CATE (—00 < Bp < —15D) Muen = 316, np = 620

mB (—0.001, 0.066) (0.459, 0.972) - - 0.049 0.970 -
mLR (0.012, 0.043) (0.932, 0.963) - - 0.035 0.972 -
CATE (+1SD < BP < 00) Nyip = 290, np = 646

mB (—0.009, —0.052) (0.214, 0.070) - - —0.041 0.063 -
mLR (—0.003, —0.081) (0.330, 0.001) > - —0.062 0.001

mB = Multivariate Bernoulli analysis.
mLR = Multivariate logistic regression.

Table D8. Conditional average treatment effects in the IST
data, by value of blood pressure (Bp). Superiority or inferiority
was concluded when > or < respectively.

Value 4(Bp) pp Any All 6(w,Bp) pp Comp
—3SD (0.029, 0.110) (0.922,0994) < - 0090 09% <
—2SD (0.017, 0.068) (0.930, 0.985) - - 0.055 0.989 <
—1SD (0.009, 0.026) (0.927,0908) - - 0.022 0929 -
+1SD (—0.001, —0.056) (0.421, 0.002) > - —0.042 0.002 >
+2 SD (—0.004, —0.097) (0.294, 0.001) > - —0.074 0.001 >
+3 SD (—0.007, —0.137) (0.263, 0.001) > - —0.104 0.001 >

probabilities rather than success probabilities, the
treatment is considered superior when there is suffi-
cient evidence that the treatment difference of interest
is smaller than zero, while inferiority was concluded
when the treatment difference of interest is larger
than zero. The two-sided test with a targeted Type I-
error rate of o = 0.05 was performed with a decision
threshold p.,; = 1 — 3 = 0.975 (Compensatory and All
rules) and a for multiple tests corrected pg =

1 — 2% = 0.9875 (Any rule).

5.2. Results

Results are presented in Table D7 for different inter-
vals and in Table D8 for fixed values of blood pres-
sure. Among the trial population, the regression-based
and reference approaches resulted in similar treatment
difference estimates and posterior probabilities.
Treatment differences were close to zero and each of
the decision rules resulted in the conclusion that it
did not matter whether Aspirin was administered
alone or in combination with Heparin.

These average treatment effects gave a limited
impression of the efficacy of Aspirin and Heparin,
since a picture of heterogeneous treatment effects
emerged when conditional treatment effects among
subpopulations were considered separately. As
opposed to Aspirin only, the combination of Aspirin
and Heparin showed a trend toward higher failure
probabilities on both dependent variables for patients
with a lower blood pressure, while failure probabilities

were generally lower among patients with a higher
blood pressure.

A visual comparison of multivariate logistic regres-
sion (mLR) and stratified multivariate analysis (mB)
of response data resulted in relatively similar estimates
and posterior probabilities in the center of the distri-
bution of blood pressure (e.g., between —1 SD and
+1 SD), but deviated from the regression-based
approach in the tails. Point estimates of treatment dif-
ferences demonstrated a less stable relation between
blood pressure and treatment differences after stratifi-
cation, as shown in Figure D3. If the regression-based
approach is flexible enough to properly model the
effects over the full support of blood pressure, the dif-
ferent behavior in the tails of the covariate distribu-
tion might be explained by the smaller sample size
after stratification, as implied by the larger error bars.

6. Discussion

The current paper proposed a novel Bayesian multi-
variate logistic regression framework for analysis and
decision-making with multiple correlated dependent
variables. The framework is suitable to capture treat-
ment heterogeneity among (groups of) patients that
are distinguishable by observed covariate information
(i.e., conditional average treatment effects) and to esti-
mate overall treatment effects among the full popula-
tion (i.e., average treatment effects) under a wide
range of scenarios. In general, the proposed regression
models were able to reproduce point estimates of
average and conditional treatment differences cor-
rectly and resulted in decisions with anticipated error
rates among the trial population and among subpopu-
lations - as long as the sample was sufficiently large.
Further, anticipated decision error rates were found
under a priori sample size estimation for different
correlation structures (namely negatively correlated,
uncorrelated, and positively correlated dependent vari-
ables) and for two- and three-dimensional dependent
variables. The illustration with the International
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Figure D3. Comparison of CATEs and their standard deviations per interval of blood pressure after stratified multivariate analysis
(mB) and multivariate logistic regression (mLR). Each interval reflects one standard deviation.

Stroke Dataset demonstrated how conditional average
treatment effects could provide a more in-depth
understanding of results beyond average treatment
effects.

Compared to other approaches, the Bayesian multi-
variate logistic regression framework showed favorable
properties. Decisions were more powerful than those
obtained by multivariate stratified analysis when cova-
riates were continuous, since they were based on
information from the full sample rather than a sub-
sample. Moreover, the Bayesian multivariate logistic
regression model was more effective in targeting
statistical power compared to multiple univariate logistic
regression analyses when the correlation between
dependent variables was non-zero. Whereas these
effects were relatively subtle in the simulation study, the
illustrative example in Section 2.4.3 showcased that

they are more prominent when correlations are further
from zero.

An advantage of the proposed multivariate logistic
regression approach is its flexibility to model multi-
variate treatment effects with correlation structures
that are free to vary over covariates, supporting accur-
ate decision error rates and a priori sample size com-
putations. This flexiblity comes with additional
parameters, compared to other multivariate logistic
models for correlated binary dependent variables (e.g.,
Malik & Abraham, 1973; O’Brien & Dunson, 2004)
and may result in computational issues when the
number of parameters becomes too high. The Gibbs
sampling procedure may become unstable when the
sample size is too small compared to the number of
parameters, although weakly informative priors may
be helpful in stabilizing computations (Gelman et al.,



2008). Therefore, the model is most suitable for a lim-
ited number of dependent variables and (continous)
covariates.

In practice, researchers are encouraged to consider
model assumptions in real data. Additional efforts
may be undertaken to verify that the chosen general-
ized linear model fits the data well enough. If the
assumption of linearity on the log-odds scale does not
hold, the modeling procedure may benefit from gener-
alization to methods that are more flexible with
respect to this assumption, such as (penalized) splines.
Again, increased flexibility increases the number of
parameters and should be balanced with a) the general
risk of overfitting; and b) computational challenges as
outlined above. In a more general sense, the
researcher should determine which type of flexibility
is most appropriate for the research question and data
at hand. Further, researchers who aim to target deci-
sion error rates have to decide which treatment effect
should be leading in the actual choice of sample size.
Under treatment heterogeneity, average and (multiple)
conditional average treatment effects have different
effect sizes by definition, resulting in different sample
sizes and raising the question which considerations
meaningfully guide this choice.

Theoretically, the framework lends itself for use
under a much wider range of scenarios than show-
cased in this paper. Each of the elements - modeling,
transformation, decision-making - can be replaced by
an alternative, resulting in a large number of varia-
tions. Some variations, such as a less computationally
intensive analysis model, a wider range of prior distri-
butions, and interim monitoring as an alternative to
decision-making with a priori estimated sample sizes,
were presented already (Kavelaars et al., 2020). Here,
we mention two additional suggestions to elaborate
the framework. First, in addition to the presented
transformations to success probabilities and treatment,
transformations to other associations between treat-
ment and outcome, such as relative risks and risk
ratios, may be of interest and are worth investigating.
Second, other hypotheses than superiority and inferior-
ity, such as non-inferiority or equality decision-making,
can be relevant to be included in the framework as
well (see for a discussion Van Ravenzwaaij et al., 2019).
More flexible formulations of hypotheses and another
perspective on the assessment of evidence can be
achieved via the computation of Bayes factors (see for
an introduction e.g., Mulder & Wagenmakers, 2016).

Other than the abovementioned variations, several
directions for future research naturally follow from
the current results. First, the procedure theoretically
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lends itself for out-of-sample prediction to popula-
tions within or beyond the covariate range of the trial
population. The robustness of the framework in these
applications remains to be investigated and may
include evaluations of model fit.

Second, research might shed light on further sam-
ple size considerations. The current paper provided
tools to compute required sample sizes and to control
decision error rates, if researchers are able to estimate
effect sizes with reasonable accuracy prior to the study
and when sample sizes are sufficiently large. When
sample sizes were relatively small, bias was intro-
duced. In line with our observations, small-sample
bias in regression coefficients is a well-documented
property of nonlinear regression methods in general
(Firth, 1993; Nemes et al., 2009). Although some bias
in regression coefficients disappeared during trans-
formation to joint response probabilities, success
probabilities, and treatment differences, the mechan-
ism is not yet fully understood. Hence, more light
may be shed on circumstances for inheritance of dis-
tributional properties in the (non-linear) multinomial
logistic transformation to obtain more elaborate
insights into the minimum number of observations
required for satisfactory model performance. Larger
effect sizes (i.e., smaller sample sizes), complexity of
the model (i.e., number of parameters), and events
per variable are candidate factors to interact in their
effects on model performance in small samples (De
Jong et al., 2019). There is no short answer to that
question, but in practice power among different sub-
populations might be balanced with the number of
subjects a researcher is willing or able to include in
the trial. Therefore, optimum sample sizes in these
regression-based decision approaches remain to be
investigated more elaborately.

Further, another interesting direction for future
research would be to extend the proposed multivariate
logistic regression model for estimating average and
conditional average treatment effects and for decision-
making with (discrete or continuous) latent variables
to capture unexplained heterogeneity. This extension
falls outside of the scope of the current paper which
focuses on modeling treatment heterogeneity caused
by observed covariate information.

Lastly, causal inference is less straightforward in
(stratified) subgroup analysis as conditioning upon
covariates might interfere with randomization
(European Medicine Agency, 2019; Food & Drug
Administration, 2019). Causal relationships might
require additional checking of assumptions and



878 (&) X.KAVELAARS ET AL.

tutorials by Hoogland et al. (2021) and Lipkovich
et al. (2016) may be of help.
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Appendix A. Details of posterior computation

The current section describes the Gibbs sampling procedure
used to obtain parameters. To simplify notations, we omit
the dependence on x in denoting functions that rely on
covariates (e.g., ¢, 0).

Starting from the likelihood of individual K-variate
response y; (Equation 2), the likelihood of n K-variate
responses follows from taking the product over n individual
joint response probabilities in Q response categories:

] I(y=q)

exp
HH AR,

i=1q= ,leXp

1 I(Yi:Q)
<Z?_11 exp [¥] + 1) '

Following Polson et al. (Polson et al, 2013), we intro-
duce the Pdlya-gamma variable by rewriting the multivari-
ate likelihood in Equation Al as a series of binomial
likelihoods. The likelihood of y conditional on the parame-
ters of the g™ response category, %, then equals:

el ) 1 o
WylB%, B7%) = g (exp [ﬂﬂ + 1) €xXp [’7?] +1

(A2)

(A1)

where —q refers to all rows in H not having index g

and ’71 l//q (Zm;ﬁH exp [lrb ])
The Polya-Gamma transformation to a Gaussian distri-
bution relies on the following equality (Polson et al., 2013):

1 00 —j ?2
s ] e [ oo

(A3)

exp [nf]
exp [nf] +1

where ! has a Polya-Gamma distribution, i.e. p(w!) ~
PG (1),

If we use the equality in Equation A3, the binomial like-
lihood in Equation A2 can be transformed to a multivariate
Gaussian likelihood by including an auxiliary Pélya-Gamma
variable w? (Polson et al., 2013):

- T expnf]
I(y|gd, B4 _ P
o =11 o
D\ gl [7 ?’7?2 NEIK
= HZeXP yi—5 |ni J exp p(w;)dw;
i=1 2 0 2
~[Tew [statat - 50| Pocoiio
i=1
x exp B 2xlwind — wq(nq)z}
xexp | = 5061 — (e )|
1 T
=exp{77(rcq Xp1+ ln{z exp (XB™ )})
m#q
QI — XpT + ln|:z exp [Xﬁm]”,
m#q
(A4)
where k! = ==t 2, k1= (i1, ... kl), ol = (o], ... o),

and Q1 = dlag((x)q)

A.0.1. Prior distribution

The Gaussian likelihood in Equation A4 is conditionally
conjugate with a normal prior distribution on regression
coefficients p7:

B? ~ N(b?,B%) (A5)

where b? is the vector of prior means of regression coeffi-
cient vector 7 and B is a P x P symmetric square matrix
reflecting the prior precision of regression coefficients p7. A
researcher who is willing to include prior information
regarding treatment effects into the analysis, has several
options to specify prior hyperparameters for a normally dis-
tributed prior that is compatible with the Gibbs sampling
procedure (e.g. Sullivan & Greenland, 2012; Chen &
Ibrahim, 2000). We discuss the specification of informative
prior means b? in terms of joint response probabilities ¢ in
the next Appendix.

A.0.2. Posterior distribution

Bayesian statistical inference is done via the posterior distri-
bution which is given by:

p(Bly) o< p(y|B. x)p(B), (A6)

The combination of a Polya-Gamma transformed
Gaussian likelihood (Equation A4) and a normal prior dis-
tribution (Equation A5) respectively is proportional to a
normally distributed posterior distribution, conditionally on
Polya-Gamma variables in w? (Polson et al., 2013):



p(BIY, Q%) o< p(y|p?, 0)p(B?) .
X exp {— % (xq —Xp1+ ln{z exp [Xﬂ"‘]}) QI(k1 — Xp1
m#q

+ ln[z exp [Xﬁm]})} X

m#q

exp| = (91— 0) 7~ )|
S N(VIOXTQA (1 4[5, exp [XB"]) + (BY)'b), V)

(A7)

where V1 = (X"QIX + (B?)"")"'. Similarly, subject-specific
variable o follows a Polya-Gamma distribution that depends
on regression coefficients p? via linear predictor y!.
Updating these two conditional distributions via a Gibbs
sampling procedure results in a sample from the posterior
distribution of . Specifically, the sampling procedure
involves iterating L times over the following two steps for
q=1,...,Q— 1, while keeping ﬁQ fixed at zero:

1. Draw a vector of P+ 1 regression coefficients p7|w?
from a multivariate normal distribution with mean vec-
tor m? and precision matrix V1.

Pl ~ N(m1, V1)
where [VI]~! = XQIX + [v%] !

(A8)

m? = VI(X(x7 + Qic) + [V] ' m®)

Cc= {m <mzﬂ exp [¢r]>?_l}.

2. Sample @|p? as a vector of n draws w!|p? from a
Pélya-Gamma distribution:

The Gibbs sampling procedure results in a sample of L sets
of regression coefficients from the posterior distribution
of B.

(A9)

Appendix B. Specification of prior means of
regression coefficients

In the current Section, we introduce a procedure to deter-
mine prior means, based on beliefs regarding success proba-
bilities and correlations between them. We outline the
procedure for two outcome variables and a linear predictor
Yy with one covariate and an interaction between the treat-
ment and the covariate:

Yl =L+ PIT+ Pix+ Pixx T

First, choose x; and xy as low and high values of covari-
ate x respectively. Next, specify success probabilities and
correlations Or(xl), pr(xl), Or(xf), and pr(x) for each
treatment T that accompany the low and high values of
covariates respectively. These success probabilities Or(x)
and correlations pp(x) can be transformed to joint
response probabilities ¢r(x) via the following set of
equations:

(B1)
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or (x)
¢7 (x) = 07(x) = ¢r (x)
¢r(x) =1-0p(x) = 07(x) + o7 (x)

(B2)

For each response category g, joint responses ¢ can be
transformed to linear predictor Y% using the multinomial
logistic link function in Equation 2.

Solving these linear predictors for p? results in the fol-
lowing definitions of the elements in 7 :

) — g )

g _ PG —uieh)] 4 G — )
o xH _ 4L

PR CORC
2 KH — 4L

g Y1 (") — g () — i (") + ¥ (xh)
3T xH — oL

(B3)

For example, if we would believe that treatment have the
following parameters:

0" =(0.60,0.70), p = —0.30
07 = (0.40,0.30), p = —0.30
0; = (0.40,0.30), pk = —0.30
0, = (0.60,0.70), p = —0.30,

then the regression coefficients would be as presented in
Table D9.

Table D9. Example of means of the prior distribution of
regression coefficients.

qg=1 qg=2 qg=3 qg=4
[f§ —0.000 0.766 0.766 0.000
2 0.000 0.000 0.000 0.000
[}2 1.902 0.781 1.121 0.000
b3 —3.804 —1.562 —2.241 0.000

Appendix C. Procedures for estimation and
inference over a specified (Sub)population

Algorithm 1 Transformation of posterior regression coef-
ficients to posterior joint response probabilities based on
fixed covariate values.

Let f¢ = (0,...,0)

1. for draw (I) — 1:L do
2. for treatment T < 0: 1 do
3. for joint response g «+— 1: Q do
4. Compute
w%(l) — ﬁg(l) + ﬂ?(l)T'i‘ ﬁg(l)x—k ﬁg(l)x < T
5. Compute (,bq(l) = o lor’]
T Zv:l exp [l//fr“)]+l
6. end for
7. end for
8. end for
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Algorithm 2 Transformation of posterior regression coef-
ficients to posterior joint response probabilities based on
empirical marginalization.

Let B¢ = (0,...,0)

1. for draw (I) < 1:L do

2 for subject i < 1 : n do

3. for joint response g «—— 1: Q do
4

Compute y{ = p10T; + p10x + pi¥x x T;

a _ e[yl
5. Compute ¢;"' = m
6. for T 0:1 do
0 0
8. end for
9. end for
10. end for
11. end for

Appendix D. Numerical evaluation with three
outcome variables

In the current section, we present an evaluation of the
BMLR framework with three dependent variables.

D.1. Setup

The evaluation largely follows the setup of the simulation
with two dependent variables (Section 4). Aspects that differ
from this simulation will be discussed here.

D.1.1.  Analysis
We presented the results of Bayesian trivariate logistic
regression analysis and compared it to a multivariate
Bernoulli procedure.

D.1.2. Effect size

We presented the results of the Bayesian trivariate logistic
regression analysis for a selection of effect sizes, namely 1.1
and 3.1. Using the three correlation structures (p <0, p ~
0, and p > 0) for each of the effect sizes resulted in the six
data generating mechanisms presented in Table D10.

Table D10. Parameters of average treatment effects (ATEs) in
the trial and conditional average treatment effects (CATEs) in
a subpopulation for tree outcome variables.

ATE CATE
ES (61,02,05)  o(wW) pyy (61,02,95)  o(w) pyy
1.1 D (0.000, 0.000, 0.000) 0.000 —0.160 (0.000, 0.000, 0.000) 0.000 —0.200
0.030 0.000
0.220 0.200
3.1 D (0.100, 0.000, 0.100) 0.075 —0.152 (0.300, 0.200, 0.300) 0.275 —0.200
0.040 0.000
0.232 0.200

ES = Effect size, D = Discrete covariate.

Table D11. Required sample sizes to evaluate the average
treatment effect (ATE) and conditional treatment effect (CATE)
for three outcome variables.

All Any

Compensatory

ES  pwp ATE CATE Sub ATE CATE Sub ATE CATE Sub
1.1 <0 - - 500 - - 500 - - 500
~0 - - 500 - - 500 - - 500
>0 - - 500 - - 500 - - 500
31 <0 - 79 500 234 20 117 153 9 77
~0 - 79 500 255 23 128 218 14 109
>0 - 78 500 276 26 138 284 19 142

Sub = expected size of subsample.

D.1.3. Sample size

Similar to the Numerical evaluation, we applied the All, Any,
and Compensatory rules. We assigned the Compensatory
rule unequal weights w = (0.50, 0.25,0.25).

The required sample sizes for three outcome variables
are computed via the procedure described in Section 2.4,
targeting at a Type I error rate of 0.05 and a power of .80.
The sample sizes are presented in Table D11.

D.1.4. Decision rule

We performed a right-sided (superiority) test aiming at a
Type I-error rate of o = 0.05. We used a decision threshold
Peur =1 — o0 = 0.95 (Compensatory and All rules) and a for
multiple tests corrected pe, =1—%=0.981 (Any rule)
(Marsman & Wagenmakers, 2016; Kavelaars et al., 2020;
Sozu et al., 2016).

D.1.5. Procedure
To stabilize computations, we used 20,000 iterations for the
multivariate Bernoulli model.

D.2. Results

Table D12. Proportions of superiority decisions for three out-
come variables by data-generating mechanism, correlation,
and decision rule.

p<0 p=0 p>0
ES Type mB mLR mB mLR mB mLR
Rule =All
1.1 ATE  0.000 0.000 0.000 0.001 0.004 0.002
3.1 ATE 0.045 0.045 0.058 0.048 0.044 0.058
1.1 CATE 0.000 0.000 0.000 0.000 0.001 0.000
3.1 CATE 1.000 1.000 1.000 1.000 1.000 1.000
Rule = Any
1.1 ATE 0.049 0.056 0.045 0.050 0.046 0.056
3.1 ATE 0.814 0.822 0.796 0.775 0.815 0.775
1.1 CATE 0.047 0.050 0.042 0.037 0.063 0.032
3.1 CATE 1.000 1.000 1.000 1.000 1.000 1.000
Rule = Compensatory
1.1 ATE 0.048 0.068 0.050 0.052 0.052 0.063
3.1 ATE 0.781 0.826 0.788 0.757 0.787 0.776
1.1 CATE 0.051 0.043 0.056 0.029 0.053 0.035
3.1 CATE 1.000 1.000 1.000 1.000 1.000 1.000

mB = Multivariate Bernoulli.
mLR = Multivariate logistic regression.
Bold-faced entries should lead to a superiority conclusion.
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