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ABSTRACT 
The effects of treatments may differ between persons with different characteristics. 
Addressing such treatment heterogeneity is crucial to investigate whether patients with spe
cific characteristics are likely to benefit from a new treatment. The current paper presents a 
novel Bayesian method for superiority decision-making in the context of randomized con
trolled trials with multivariate binary responses and heterogeneous treatment effects. The 
framework is based on three elements: a) Bayesian multivariate logistic regression analysis 
with a P�olya-Gamma expansion; b) a transformation procedure to transfer obtained regres
sion coefficients to a more intuitive multivariate probability scale (i.e., success probabilities 
and the differences between them); and c) a compatible decision procedure for treatment 
comparison with prespecified decision error rates. Procedures for a priori sample size esti
mation under a non-informative prior distribution are included. A numerical evaluation dem
onstrated that decisions based on a priori sample size estimation resulted in anticipated 
error rates among the trial population as well as subpopulations. Further, average and con
ditional treatment effect parameters could be estimated unbiasedly when the sample was 
large enough. Illustration with the International Stroke Trial dataset revealed a trend toward 
heterogeneous effects among stroke patients: Something that would have remained 
undetected when analyses were limited to average treatment effects.
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1. Introduction

The current paper focuses on estimating treatment 
effects among populations, subpopulations, and indi
vidual patients in the context of two-arm randomized 
controlled trials (RCTs) with multiple (correlated) 
binary dependent variables. Such RCTs are random
ized experiments with subjects being assigned at ran
dom to either an experimental or a control group, 
often having the objectives a) to evaluate whether an 
experimental treatment is superior or inferior to a 
control condition; and b) to inform the prescription 
of treatments to patients in (clinical) practice (Food & 
Drug Administration, 2016). Although RCTs are 
broadly applicable to experimental research in general, 
we focus on the health domain and use the word 
“treatment” to refer to psychological and medical 
interventions in the broad sense. These interventions 
include - but are not limited to – behavioral therapies, 

pharmacological support, and other experimental 
types of care.

Such RCTs often assess multiple types of (clinical) 
events (e.g., quitting substance abuse, death), func
tional measures (e.g., memory decline, ability to walk), 
or disease symptoms (e.g., fatigue, anxiety) (Food & 
Drug Administration, 2017). Studying multiple 
dependent variables in RCTs is useful, since multiple 
dependent variables provide multidimensional insights 
into the effects of a treatment and since analyzing mul
tiple dependent variables together has the potential to 
improve the connection between clinical and statistical 
desicion-making. More specifically, multiple effects of 
the intervention can be combined and weighted in 
various ways to provide a single statistical decision 
regarding superiority or inferiority, similar to decisions 
regarding treatment prescription made by therapists or 
clinicians (e.g., Pocock et al., 1987; O’Brien, 1984; 
Murray et al., 2016). Whereas performing multiple 
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univariate analyses on individual dependent variables 
is a common strategy to deal with data from multiple 
dependent variables, a single multivariate analysis is 
often preferable from a statistical point of view (Senn 
& Bretz, 2007; Ristl et al., 2019; Food & Drug 
Administration, 2017; Murray et al., 2016). 
Multivariate analysis takes the correlation between 
dependent variables into account and therefore has the 
potential to reduce decision errors: Correlations influ
ence the sample sizes required for decision-making 
with prespecified error rates and provoke under- or 
overpowerment when falsely omitted (Chow et al., 
2017; Sozu et al., 2010; Xiong et al., 2005).

RCTs often focus on average treatment effects 
(ATEs) among the study population when comparing 
interventions (Thall, 2020). Average treatment effects 
can be sufficiently insightful when the effects of a 
treatment are relatively homogeneous over the trial 
population. In this case, patients react relatively simi
larly to the treatment. However, average effects may 
give a limited, or even erroneous, impression when 
the actual effects of a treatment are heterogeneous 
and thus interact with characteristics of patients. In 
that case, patients differ in their reactions to the treat
ment. Taking characteristics of patients into account 
in the estimation of treatment effects (i.e., estimating 
conditional average treatment effects; CATEs) can 
then contribute to a better understanding of the treat
ment’s potential for an individual patient. Despite 
efforts to provide statistical methodology to model 
CATEs (e.g., Wang et al., 2015; Yang et al., 2021; 
Jones et al., 2011), investigating these effects is not the 
standard yet: Thall noted that ”the great majority of 
clinical trial designs ignore the possibility of treat
ment-covariate interactions, and often ignore patient 
heterogeneity entirely” (Thall, 2020, p.1). This is 
unfortunate as addressing conditional effects in the 
evaluation of treatments is crucial to a) identify how 
likely a specific patient will benefit from a treatment; 
and b) optimize treatment results of individual 
patients via personalized treatment assignment 
(Goldberger & Buxton, 2013; Hamburg & Collins, 
2010; Wang et al., 2015; Simon, 2010).

An example of a trial with multiple dependent vari
ables and potential treatment heterogeneity is the 
International Stroke Trial (IST; Sandercock et al., 
2011; International Stroke Trial Collaborative Group, 
1997). Strokes may have far-reaching implications for 
the quality of life, as they may be recurring and/or 
lead to long-term impaired (daily) functioning. The 
IST investigated whether the short-term and long- 
term perspective of stroke patients can be improved 

with anti-thrombotic drug therapy. The average treat
ment differences in the IST were small, so one might 
conclude that treatment with one of these drugs was 
marginally effective. However, these overall findings 
were based on the assumption that specific character
istics of patients (e.g., sex or age) and/or disease (e.g., 
type of stroke or functional status after stroke) did 
not interact with the treatment to produce different 
effects for different patients. Average treatment effects 
could, for example, not reveal whether older patients 
have better prospects in terms of short-term damage 
risk and/or long-term recovery potential than younger 
patients. Clearly, hypothetical heterogeneous effects as 
these would have clinically and psychologically rele
vant implications and advocate the development of 
more personalized treatment policies.

While multivariate treatment effects for patients 
with specific characteristics are theoretically relevant 
for many contemporary RCTs contributing to the per
sonalization of treatments, decision-making under 
treatment heterogeneity in the multivariate context is 
considerably more complex compared to the non-het
erogeneous and/or univariate setting. Generalizations 
to the heterogeneous and multivariate context are sub
ject to assumptions that need to be carefully evaluated 
in light of the research problem at hand. First, the 
multivariate setting demands an analysis method that 
incorporates the correlation between dependent varia
bles (i.e., a multivariate analysis method) to obtain 
accurate decision error rates (e.g., Sozu et al., 2010, 
2016; Kavelaars et al., 2020). Ignoring or misspecifying 
a non-zero correlation can result in over- or under
estimation of the required sample size and thus affects 
the statistical power of the analysis. For accurate infer
ence regarding conditional average treatment effects, 
the analysis should not only include the overall correl
ation among the trial population, but should also be 
flexible enough to deal with correlations that differ 
over subpopulations. The latter is not evident in exist
ing multivariate analysis methods for binary depend
ent variables: Some methods impose the marginal 
correlation structure of the trial population on subpo
pulations (e.g., multivariate probit models by Chib 
(1995) or Rossi et al. (2005) and multivariate logit 
models by Malik and Abraham (1973) and O’Brien 
and Dunson (2004)). Second, the interpretation of 
treatment effects can be complex in multivariate non- 
linear models. Creating insights into so-called mar
ginal effects (i.e., treatment effects on the individual 
dependent variables) is recommended in treatment 
comparison, demanding any multivariate method to 
return interpretable univariate effects (Food & Drug 
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Administration, 2017; O’Brien & Dunson, 2004). 
Some existing multivariate models lack insight into 
marginal distributions (e.g Malik & Abraham, 1973). 
Third, some multivariate methods estimate a single 
regression parameter to capture the relation between a 
covariate and all dependent variables (e.g., O’Brien & 
Dunson, 2004; Rossi et al., 2005). The latter assumes 
that all dependent variables vary identically over the 
full support of the covariate. In other words, all rela
tions between the covariate and the outcome variable 
have the same size and direction. Clearly, such an 
assumption may be too strict to hold in practice.

In order to deal with the complexity of heteroge
neous, multivariate treatment effects, we build upon an 
existing Bayesian multivariate Bernoulli framework for 
superiority decision-making proposed by Kavelaars 
et al. (2020). The existing procedure consists of three 
major components: a) a multivariate analysis model to 
estimate unknown parameters; b) a transformation 
procedure to interpret treatment effects on the (more 
intuitive) probability scale; and c) a compatible deci
sion procedure to make inferences regarding treatment 
superiority with prespecified error rates. The analysis 
procedure has advantages over several other 
approaches, as it relies on a multinomial distribution 
and therefore has the flexibility to model univariate 
effects and correlations between dependent variables. 
The transformation procedure facilitates the interpret
ation of treatment comparison: marginal (i.e., univari
ate) probabilities, multivariate probabilities, and 
differences between (multivariate) probabilities can be 
used in inference as well. The decision procedure is 
suitable for Bayesian inference and can be flexibly 
applied with several decision rules for multiple depend
ent variables. Noteworthy is a decision rule with a com
pensatory mechanism, that can weigh dependent 
variables by their importance and has a natural com
pensatory mechanism that can balance positive and 
negative treatment effects. With this decision proced
ure, decisions regarding treatment superiority can be 
made with targeted decision error rates (i.e., Type I and 
Type II errors) and a priori computed sample sizes.

Kavelaars et al. (2020) proposed a multivariate 
Bernoulli model for multivariate Bernoulli outcomes 
to estimate average treatment effects and to make 
decisions based on multivariate treatmeat effects. In 
the current paper we propose a more flexible model
ing framework for multivariate Bernoulli outcomes 
using Bayesian multivariate logistic regression models. 
This extension allows us to model and estimate multi
variate treatment effects for different (sub)populations 
based on available covariate information. Moreover, to 

make decisions about multivariate treatment effects 
for these different subpopulations, we extend the deci
sion procedure of Kavelaars et al. (2020) to the new 
multivariate logistic regression model. Additionally, 
sample size recommendations are provided for esti
mating and decision-making under this framework.

Note that the proposed multivariate modeling 
framework aims to estimate heterogeneous multivariate 
treatment effects that are caused by observed covariate 
information and to make decisions about treatment 
superiority. Thereby, the aim is different from mixture 
modeling which aims to capture unobserved (treat
ment) heterogeneity using latent variables (either dis
crete or continuous). Mixture models use response data 
to cluster respondents based on their patterns of out
come data (e.g., patterns of symptoms), where each 
cluster has an individual distribution that forms a con
stituent of the mixture (McLachlan et al., 2019). The 
proposed regression model does not include latent vari
ables (either discrete or continuous) to capture unob
served heterogeneity. Instead, multivariate (logistic) 
regression uses observed covariate information to 
define patient groups of interest, often based on theor
etical (such as accepted cutoff values for high and low 
blood pressure) or statistical (such as those respondents 
with more extreme scores than one standard deviation 
below or above the mean) grounds. Subgroups are thus 
bounded by criteria specified by the researcher, rather 
than by response patterns in the data.

The paper is organized as follows. In the next sec
tion, we introduce the decision framework, including 
the multivariate logistic regression model to obtain a 
sample from the multivariate posterior distribution of 
regression coefficients, a transformation procedure to 
find posterior treatment differences, and a decision 
procedure to draw conclusions regarding treatment 
superiority and inferiority. The section on capturing 
heterogeneity explains how the framework can be 
applied to different patient populations. We evaluate 
frequentist operating characteristics of the framework 
via simulation in the numerical evaluation section. 
Next, we illustrate the methods with data from the 
International Stroke Trial and conclude the paper 
with a discussion.

2. Decision-framework

2.1. Multivariate logistic regression

Response yk
i is the binary response for subject i on 

outcome variable k 2 f1, :::, Kg, where yk
i 2 f0, 1g, 

0 ¼ failure and 1 ¼ success. Vector yi ¼ ðy1
i , :::, yK

i Þ is 
the multivariate (or joint) binary response vector of 
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subject i on K dependent variables and has configur
ation Hq�, which is one of the Q ¼ 2K possible 
response combinations of length K given in the qth 

row of matrix H :

H ¼

1 1 ::: 1 1
1 1 ::: 1 0

:::

0 0 ::: 0 1
0 0 ::: 0 0

2

6
6
6
6
4

3

7
7
7
7
5

(1) 

The probability of yi can be expressed in two 
meaningful and related ways. First, hi ¼ ðh

1
i , :::, hK

i Þ

denotes the vector of K-variate success probabilities 
on individual outcome 1, :::, K, where hk

i ¼ pðyk
i ¼ 1Þ:

Second, /i ¼ ð/
1
i , :::, /Q

i Þ denotes the vector of Q-vari
ate joint response probabilities, where /

q
i ¼ pðyi ¼

Hq�Þ and sums to unity. The joint response of subject 
i can be conditioned on covariates in vector xi ¼

ðxi1, :::, xiPÞ: In this case, the probabilities of response 
vector yijxi are expressed as functions of xi, namely 
/iðxiÞ and hiðxiÞ:

Joint response probability /q
i ðxiÞ maps the depend

ency of joint response probabilities on covariates xi 
via a multinomial logistic function:

/
q
i ðxiÞ ¼

exp w
q
i ðxiÞ

� �

PQ� 1
r¼1

exp wr
i ðxiÞ

� �
þ 1 (2) 

for response categories q ¼ 1, :::, Q � 1: In Equation 2, 
w

q
i ðxiÞ reflects the linear predictor of response cat

egory q and subject i:

w
q
i ðxiÞ ¼ b

q
0 þ b

q
1xi1 þ :::þ b

q
PxiP: (3) 

Here, xip can be a treatment indicator, a patient 
characteristic, or an interaction between these. Vector 
bq ¼ ðb

q
0, bq

1, :::, bq
PÞ is the vector of regression coeffi

cients of response category q. To ensure identifiability, 
all regression coefficients of response category Q are 
fixed at zero, i.e., bQ ¼ 0:

The likelihood of response data follows from taking 
the product over n individual joint response probabil
ities from Equation 2 of Q response categories:

lðyjb, xÞ ¼
Yn

i¼1

YQ� 1

q¼1

exp w
q
i ðxiÞ

� �

PQ� 1
r¼1

exp wr
i ðxiÞ

� �
þ 1

0

@

1

A

Iðyi¼Hq�Þ

1
PQ� 1

r¼1
exp wr

i ðxiÞ
� �

þ 1

 !Iðyi¼HQ�Þ

:

(4) 

Bayesian analysis is done via the posterior distribu
tion which is given by

pðbqjyÞ / pðyjbqÞpðbqÞ, (5) 

where pðbqÞ reflects the prior distribution of the 
unknown parameters before observing the data. 
Posterior sampling can be done with a Gibbs sampling 
algorithm based on a P�olya-Gamma expansion 
(Polson et al., 2013). Computational details of this 
procedure can be found in Appendix A.

2.2. Transformation to treatment differences

In contrast to several other regression analyses, the 
obtained multinomial regression coefficients have no 
straightforward interpretation. We aim to make the 
posterior sample of regression coefficients interpret
able in terms of a treatment difference, which is 
defined as the (multivariate) difference between suc
cess probabilities of two treatments. To this end, we 
execute the following multistep procedure with a fic
tive setup of the IST trial as running example.

Suppose we are interested in the effect of combined 
drug therapy (Heparin plus Asparin; THþA) vs. single 
drug therapy (Aspirin only; TA) on recurrent stroke 
on the short-term (ystrk) and dependency on the long- 
term (ydep). There is a total of Q ¼ 4 response catego
ries: fystrk ¼ 1, ydep ¼ 1g, fystrk ¼ 1, ydep ¼ 0g, 
fystrk ¼ 0, ydep ¼ 1g, fystrk ¼ 0, ydep ¼ 0g, which we 
refer to as f11g, f10g, f01g, and f00g respectively. 
The treatments are blood thinning agents and may 
thus interact with the patient’s blood pressure. 
Therefore, we include systolic blood pressure at the 
time of randomization as a covariate, so that we can 
estimate conditional effects for patients with different 
values of blood pressure, resulting in the following 
model:

w
q
i ðxiÞ ¼ b

q
0 þ b

q
1Ti þ b

q
2bpi þ b

q
2bpiTi, (6) 

where xi ¼ ðTi, bpi, bpiTiÞ: The transformation proced
ure is then as follows:

1. Regression coefficients b to joint response prob
abilities /TðxÞ: In the first step, the posterior 
sample of regression coefficients b is transformed 
to a treatment effect in terms of joint response 
probabilities /TiðxiÞ for each treatment T 2
f0, 1g: Linear predictor w

q
i ðxiÞ is then trans

formed to individual joint response probability 
/

q
i ðxiÞ via the multinomial logistic function in 

Equation 2:

/
q
i ðxiÞ ¼

exp w
q
i ðxiÞ

� �

PQ� 1
r¼1

exp wr
i ðxiÞ

� �
þ 1 (2 revisited) 
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For example, the probability that patient i in the 
IST does not experience a new stroke and is 
dependent after six months can be expressed as: 

/3
Ti
ðxiÞ ¼ pðyiðxiÞ ¼ f01gÞ

¼
exp w3

i ðxiÞ
� �

PQ� 1
r¼1

exp wr
i ðxiÞ

� �
þ 1

: (7) 

This probability can be computed for the other 
joint response combinations as well. Note that we 
are in fact interested in joint response probability 
/TðxÞ, which reflects a treatment effect among a 
(sub)population defined by x: This notation is 
more general than the joint response probability of 
an individual patient with covariates xi: The popu
lation can be reflected by an individual patient 
(e.g., with a systolic blood pressure of 100) in some 
situations, while other cases target the entire study 
population (e.g., no restriction on systolic blood 
pressure) or a subpopulation of interest (e.g., with 
a systolic blood pressure above 150). These varia
tions have slightly different computational proce
dures, which we discuss in more detail in Section 3.

2. Joint response probabilities /TðxÞ to multivariate 
success probabilities hTðxÞ: The next step in the 
transformation involves the conversion from joint 
response probabilities /TðxÞ to multivariate success 
probabilities of individual dependent variables 
hTðxÞ: Especially when the number of dependent 
variables increases, success probabilities are more 
straightforward in their interpretation than joint 
response probabilities. The relation between both 
quantities is additive: Success probability hk

T on out
come k and treatment T equals the sum of a selec
tion of elements of /T , denoted by matrix Uk :

hk
TðxÞ ¼

XQ

q¼1
/

q
TðxÞIðHq� 2 UkÞ: (8) 

Selection Uk consists of the 2K� 1 rows of H that 
have their kth element equal to 1. More con
cretely, the two dependent variables from the IST 
are the following combinations, where we drop 
the dependency on x for notational simplicity.

H ¼

1 1
1 0
0 1
0 0

2

6
6
4

3

7
7
5;U strk ¼

1 1
1 0

� �

; and Udep ¼
1 1
0 1

� �

:

Hence, the multivariate success probabilities in 
hT ¼ ðh

strk
T , hdep

T Þ consists of univariate success 
probabilities:

hstrk
T ¼ pðyiðxiÞ ¼ f11gÞ þ pðyiðxiÞ ¼ f10gÞ

¼ /1
T þ /2

T

h
dep
T ¼ pðyiðxiÞ ¼ f11gÞ þ pðyiðxiÞ ¼ f01gÞ

¼ /1
T þ /3

T :

(9) 

The correlation between these dependent variables 
is captured in joint response probabilities /TðxÞ
and automatically taken into account in further 
transformations (Olkin & Trikalinos, 2015; Dai 
et al., 2013).

3. Success probabilities hTðxÞ to treatment differ
ences dðxÞ: The treatment difference on outcome 
k, dkðxÞ, is defined as the difference between the 
success probabilities of two treatments on out
come k, such that:

dkðxÞ ¼ hk
1ðxÞ � hk

0ðxÞ: (10) 

The K-variate treatment difference is then 
dðxÞ ¼ ðd1ðxÞ, :::, dKðxÞÞ:

Multivariate treatment difference d ¼ ðdstrk, ddepÞ in 
the IST is a vector of the univariate treatment differ
ences:

dstrk ¼ hstrk
HþA � hstrk

A

ddep ¼ h
dep
HþA � h

dep
A :

(11) 

Applying the three above-mentioned steps to each 
draw of the posterior sample of b, results in a poster
ior sample of multivariate treatment difference dðxÞ:
This sample provides estimates that can be used for 
prediction, where various measures of central ten
dency (e.g., a mean or high posterior density interval) 
can be used to summarize the sample into a point 
estimate. Moreover, the sample can be used for statis
tical inference to generalize the conclusion to the 
specified (sub)population, as outlined in the next 
subsection.

2.3. Posterior decision-making

Decisions rely on estimated treatment effects, such as 
differences between success probabilities, and their 
uncertainties. More formally, multivariate treatment 
difference d has complete parameter spaces S �
½� 1, 1�K , which is divided into a rejection region SR 
and a non-rejection region SN : Rejection region SR 
reflects the part of the parameter space that indicates 
the treatment difference of interest, where we would 
conclude that the treatments differ. The non-rejection 
region SN refers to the part of the parameter space 
that would not be considered a (relevant) treatment 
difference. Rejection regions depend on the type of 
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decision and be composed of multiple subregions if 
desired (Van Ravenzwaaij et al., 2019). We consider 
the following three (commonly used) decision types:

1. superiority with region SR 2 SS, where the treat
ment is better;

2. inferiority with region SR 2 SI , where the treat
ment is worse;

3. two-sided with rejection region SR 2 fSS,SIg, 
where the treatment can be either better or worse.

We consider evidence sufficiently strong and would 
conclude superiority and/or inferiority when the pos
terior probability that treatment difference dðxÞ lies in 
the rejection region exceeds a prespecified decision 
threshold, pcut :

pðdðxÞ 2 SRjyÞ > pcut: (12) 

When the functional form of the posterior distribu
tion is unknown, the rejection probability can be con
cluded from an MCMC sample of L draws from the 
posterior distribution of dðxÞ: Equation 12 is then 
applied in practice as:

1
L

XL

ðlÞ¼1

IðdðlÞðxÞ 2 SRjyÞ > pcut: (13) 

In a situation with multiple dependent variables, 
superiority and inferiority can be defined in multiple 
ways, resulting in different rejection regions (e.g Pocock 
et al., 1987; Pocock, 1997; O’Brien, 1984; Prentice, 1997; 
Tang et al., 1993; Zhao et al., 2007). Although not 
intended as an exhaustive overview, we list three possible 
rules and graphically present their rejection regions in 
Figure D1. Two of these rules (which we refer to as the 
“Any” and “All” rules) are presented as part of the regu
latory guideline regarding multiple endpoints, as pre
sented by the Food and Drug Administraction Food and 
Drug Administration (2017) and have been extensively 
discussed in literature (e.g., Chuang-Stein et al., 2006; 
Sozu et al., 2010, 2016; Xiong et al., 2005). The third rule 
(“Compensatory”) is a - relatively unknown - flexible 
alternative that weighs benefits and risks of treatments 
by their (clinical) relevance (Murray et al., 2016; 
Kavelaars et al., 2020). A more elaborate comparison of 
these rules can be found in Kavelaars et al. (2020).

1. Any rule: The Any rule results in superiority or 
inferiority when the difference between success 
probabilities is larger or smaller than zero respect
ively on at least one of the dependent variables 
(Sozu et al., 2016). The superiority and inferiority 
spaces are defined as:

S
Any
S ¼ dðxÞjmax1<k<K dkðxÞ > 0
S

Any
I ¼ dðxÞjmin1<k<K dkðxÞ < 0:

(14) 

2. All rule: The All rule results in superiority or 
inferiority when the difference between success 
probabilities is larger or smaller than zero respect
ively on all of the dependent variables (Sozu 
et al., 2010). The superiority and inferiority spaces 
are defined as:

SAll
S ¼ dðxÞjmin1<k<K dkðxÞ > 0
SAll

I ¼ dðxÞjmax1<k<K dkðxÞ < 0:
(15) 

3. Compensatory rule: The Compensatory rule 
results in superiority or inferiority when the 
weighted difference between success probabilities 
is larger or smaller than zero respectively. The 
superiority and inferiority spaces are defined as:

S
Comp
S ðwÞ ¼ dðxÞjdðw, xÞ > 0
S

Comp
I ðwÞ ¼ dðxÞjdðw, xÞ < 0

(16) 

where w ¼ ðw1, :::, wKÞ reflect weights of K treatment 
differences, dðw, xÞ ¼

PK
k¼1 wkdkðxÞ, 0 � wk � 1 and 

PK
k¼1 wk ¼ 1 (Kavelaars et al., 2020).

2.4. Sample size computations

Decisions resulting from analysis with the Bayesian 
multivariate logistic regression framework are based 
on a posterior probability. In absence of prior infor
mation, the Bayesian posterior probability has a direct 
relation with the frequentist p-value: The Bayesian 
posterior probability equals 1 � p and behaves accord
ing to the well-known relationship between effect size, 
sample size, and decision error rates (Marsman & 
Wagenmakers, 2016). This allows for control of deci
sion error rates (Type I and Type II-error) via a priori 
computed sample sizes. Methods to compute required 
sample sizes are available for variables that follow a 
multivariate Bernoulli distribution and are eligible for 
large sample approximation by a (multivariate) nor
mally distributed latent variable (Sozu et al., 2016, 
2010; Chow et al., 2017). These procedures have 
shown to accurately control Type I rate a and Type II 
error rate b in a Bayesian multivariate Bernoulli - 
Dirichlet-model on multivariate response data with a 
non-informative prior distribution (Kavelaars et al., 
2020). Each of the presented decision rules in 
Subsection 2.3 has an individual procedure to com
pute sample sizes, as discussed below. These equations 
provide insight into the required number of observa
tions in absence of prior information and in the influ
ence of the correlation on the sample sizes needed to 
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obtain targeted decision error rates. For notational 
simplicity, we discard the dependence on x in the 
remainder of this subsection.

2.4.1. All and Any rules
Sample size computations for the All and Any rules 
were formulated in Sozu et al. (2010) and Sozu et al. 
(2016) respectively and rely on the assumption of a 
multivariate normal latent variable. The power, 1 � b, 
can be expressed in terms of a cumulative K-variate 
normal distribution WK with mean 0 and correlation 
matrix R (Sozu et al., 2016):

1 � b ¼ WKðc1, :::, cKÞ: (17) 

In Equation 17, ck for outcome k is defined by the 
decision rule of interest. Further, the off-diagonal ele
ments of R denote (estimated) pairwise correlations 
between dependent variables.

For the Any rule,

ck ¼ zð1� a

K
Þ �

ðhk
1 � hk

0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hk

1ð1� hk
1Þþhk

0ð1� hk
0Þ

n

q : (18) 

For the All rule,

ck ¼ � zð1� aÞ þ
ðhk

1 � hk
0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hk
1ð1� hk

1Þþhk
0ð1� hk

0Þ

n

q : (19) 

In Equations 18 and 19, n is the sample size 
per treatment and zð:Þ refers to the selected 1 � a

K
� �

or ð1 � aÞ quantile from the univariate normal distribu
tion. Further, hk

1 and hk
0 refer to success probabilities on 

outcome variable k of treatments 1 and 0 respectively.
Since the cumulative multivariate normal distribu

tion does not have a closed-form, the sample size that 
satisfies targeted decision error rates can be found via 
the following iterative procedure proposed by Sozu 
et al. Sozu et al. (2010):

1. Plug in estimates of hk
1 and hk

0 in Equation 18 or 19.
2. Plug in a starting value for n in Equation 18 or 

19 and calculate the power via Equation 17.
3. Repeat step 2 with gradually increasing n until 

the power exceeds the desired level
4. Select n as the sample size per treatment group

2.4.2. Compensatory rule
Sample sizes for the compensatory rule can be com
puted using standard methodology for large sample 
tests with two binomial proportions (Chow et al., 
2017, Chapter 4). Plugging in estimates of weighted 
success probabilities per treatment T, hw

T , results in:

n ¼ hw
1 1 � hw

1
� �

þ hw
0 1 � hw

0
� �h i

z1� aþz1� b

hw
1 � hw

0

h i2
, (20) 

Figure D1. Bivariate superiority and inferiority spaces for the All, Any, and Compensatory (w ¼ 0:50, 0:50) rules.
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where hw
T ¼

PK
k¼1 wkhk

T , and z1� b is the ð1 � bÞ quan
tile of the univariate normal distribution.

2.4.3. Correlation, sample size, and statistical power
We illustrate the relation between the sample size, the 
statistical power and the correlation between depend
ent variables with an example. We computed required 
sample sizes to obtain 80% statistical power for the 
following bivariate (K ¼ 2) and trivariate (K ¼ 3) out
comes, where we used different correlations (qhk , hl ) 
and multivariate treatment differences (d). 

1. S2: K ¼ 2, qhk , hl 2 � 0:20, 0:00, 0:20, 
d ¼ ð0:20, 0:10Þ

2. S3: K ¼ 3, qhk , hl 2 � 0:20, 0:00, 0:20, 
d ¼ ð0:20, 0:10, 0:20Þ

3. L2: K ¼ 2, qhk , hl 2 � 0:40, 0:00, 0:40, 
d ¼ ð0:30, 0:20Þ

4. L3: K ¼ 3, qhk , hl 2 � 0:40, 0:00, 0:40, 
d ¼ ð0:30, 0:20, 0:30Þ

Scenarios S2 and S3 had a smaller multivariate 
treatment difference d and weaker non-zero correla
tions than scenarios L2 and L3.

Table D1 shows the the required sample sizes for 
these scenarios as well as the anticipated statistical 
power for right-sided superiority decision-making 
under two scenarios:

1. When sample sizes computations are based on 
the true multivariate treatment difference d and 
the true correlation between dependent variables 
qhk, hl : This scenario aims to highlight that statis
tical power can be targeted when sample size 

computations follow the true data generating 
mechanism.

2. When sample sizes computations are based on 
the true multivariate treatment difference d and 
uncorrelated dependent variables (i.e., qhk , hl ¼ 0). 
This scenario provides insight in anticipated error 
rates where the correlation is not taken into 
account in sample size computations. This situ
ation is equivalent to performing multiple uni
variate analyses on correlated dependent variables.

These probabilities are computed by plugging in 
true treatment differences and correlations, while 
using either the required sample size (scenario 1) or 
the sample size for uncorrelated data (scenario 2) in 
Equations (17)–(20)).

This illustration provides five takeaways. First, 
larger effect sizes (L2 and L3) result in smaller 
required samples than smaller effect sizes (S2 and S3) 
respectively. Second, adding an additional dependent 
variable has the potential to reduce sample sizes. 
Required sample sizes are larger for a three-dimen
sional outcome (S3 and L3) than for a two-dimen
sional outcome (S2 and L2). Third, the required 
sample size depends on the correlation between 
dependent variables. Compared to uncorrelated 
dependent variables, the Any and Compensatory rules 
require fewer observations when dependent variables 
are negatively correlated, whereas positively correlated 
dependent variables require more observations. 
Consequently, when sample size computations do not 
take non-zero correlations into account, statistical 
power will be larger or smaller than targeted respect
ively. Fourth, the relation between correlation and 
required sample size is different for different decision 
rules. Compared to the Any and Compensatory rules, 
the All rule shows the opposite relation between the 
direction of the correlation and the required sample 
size. Here, positively correlated dependent variables 
require a smaller number of observations than uncor
related or negatively correlated dependent variables. 
Moreover, the All rule appears less sensitive to the 
correlation than the other rules. Sample sizes are not 
very different and statistical power under independ
ence is still close to the targeted .80. Fifth, the effect 
of the correlation on required sample size and statis
tical power is larger in the scenarios where non-zero 
correlations are stronger (L2 and L3). In these scen
arios, the discrepancy between the targeted power of 
0.80 and the actual power is larger for non-zero corre
lations. Further, the differences between presented 
sample sizes for negatively correlated, uncorrelated, 

Table D1. Example of required sample sizes (n) for analysis 
with correlated data and anticipated probabilities to conclude 
superiority when sample size computations use the true cor
relation (pT ) vs. assume uncorrelated dependent variables (pU) 
under four different data-generating mechanisms (DGMs).

q < 0 q ¼ 0 q > 0

DGM n pT pU n pT pU n pT pU
All rule

S2 307 0.801 0.801 307 0.801 0.801 307 0.801 0.801
L2 77 0.801 0.801 77 0.803 0.803 76 0.803 0.808
S3 307 0.800 0.800 307 0.801 0.801 307 0.801 0.801
L3 79 0.801 0.800 79 0.804 0.804 77 0.803 0.812

Any rule
S2 76 0.801 0.825 81 0.803 0.803 85 0.802 0.783
L2 27 0.811 0.862 31 0.807 0.807 35 0.801 0.756
S3 51 0.807 0.850 57 0.804 0.804 64 0.805 0.760
L3 18 0.821 0.918 23 0.809 0.809 29 0.804 0.714

Compensatory rule
S2 53 0.798 0.845 61 0.801 0.801 68 0.799 0.760
L2 18 0.807 0.884 23 0.794 0.794 29 0.799 0.714
S3 24 0.796 0.923 37 0.804 0.804 49 0.802 0.699
L3 5 0.826 0.996 14 0.798 0.798 24 0.807 0.608
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and positively correlated dependent variables is larger 
compared to the scenarios with less strong correlation 
(S2 and S3).

These takeaways are in line with detailed discus
sions in Sozu et al. (2010, 2016); Food and Drug 
Administration (2017); Kavelaars et al. (2020).

3. Estimating conditional average treatment 
effects

In the proposed framework, treatment heterogeneity 
can be captured by joint response probabilities that 
reflect conditional average treatment effects and thus 
depend on prespecified characteristics of a subpopula
tion of interest. We describe two ways to represent 
subpopulations: by fixed covariate values or by a pre
specified interval of the covariate distribution(s). Both 
representations have their own applications. Fixed val
ues of covariates may be relevant when we wish to 
investigate treatment effects based on individual 
patients or on patient populations that can be accur
ately represented by a single number of the covariate 
(such as a mean or a level of a discrete variable). 
Intervals of covariate distributions may be sensible in 
particular when multiple consecutive covariate values 
are sufficiently exchangeable to estimate a marginal 
treatment effect among a population specified by this 
range. Although such intervals can be specified for 
discrete covariates as well, their use is particularly rea
sonable with continuous covariates, as intervals are 
inherently consistent with the idea of continuity.

We will discuss procedures to estimate conditional 
average treatment effects based on fixed values and 
based on intervals in more detail in the remainder of 
this subsection. In these discussions, we use a linear 
predictor w

q
i ðxÞ (cf. Equation 3) that distinguishes 

between treatments via a treatment indicator and 
allows for interaction between the treatment and a 
covariate. For such a model that includes a single 
population characteristic z, x ¼ ðz, T, zTÞ and wq

TðxÞ is 
defined as:

w
q
TðxÞ ¼ b

q
0 þ b

q
1T þ b

q
2z þ b

q
3zT: (21) 

3.1. Fixed values of covariate

For a patient population with fixed values of patient 
covariates, a posterior sample of joint response proba
bilities /TðxÞ can be found by plugging in a vector of 
fixed covariate values x in linear predictor w

ðlÞ
T ðxÞ:

Subsequently applying the multinomial logistic link 
function in Equation 2 to each wðlÞT ðxÞ results in joint 

response probability /ðlÞT ðxÞ for treatment T. Applying 
these steps each posterior draw ðlÞ of regression coef
ficients bðlÞ results in a sample of posterior joint 
response probabilities. The procedure is presented in 
Algorithm 1 in Appendix C.

3.2. Marginalization over a distribution of 
covariates

When the population is characterized by a range of 
covariates, the treatment effect can be marginalized 
over the interval under consideration, based on avail
able information regarding the distribution of the 
covariate.

A sample of covariate data can be used as input for 
marginalization. Empirical marginalization involves 
repeating the fixed values procedure for each subject 
in the sample to obtain a sample of joint response 
probabilities for each posterior draw ðlÞ: Averaging 
the resulting sample of joint response probabilities per 
treatment results in a marginal joint response prob
ability /ðlÞT ðxÞ for draw ðlÞ: The procedure is presented 
in Algorithm 2 in to Appendix C. Empirical marginal
ization is computationally efficient for patient popula
tions defined by intervals of more than one 
continuous covariate. Note however that the proced
ure is prone to sampling variability in x and that esti
mation might depend on the availability of cases with 
the selected covariate values. Increasing the specificity 
of subpopulations – often resulting from a higher 
number of included covariates and/or a limited inter
val size – will reduce the number of available observa
tions eligible for inclusion.1

4. Numerical evaluation

The current section presents an evaluation of the per
formance of the proposed multivariate logistic regres
sion procedure. The goal of the evaluation was 
twofold and we aimed to demonstrate:

1. how well the obtained regression coefficients and 
treatment effects correspond to their true values 
to examine bias;

2. how often the decision procedure results in an 
(in)correct superiority conclusion to learn about 
decision error rates when sample sizes are esti
mated a priori.

1If this is the case, (numerical) integration can be an alternative to 
interpolate the conditional treatment effect distribution of interest.
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4.1. Setup

4.1.1. Conditions
The performance of the framework was evaluated in a 
treatment comparison based on one covariate and two 
dependent variables. In Appendix D, we present an 
evaluation of the performance with three dependent 
variables. Six aspects were varied: the analysis proced
ure, the effect size, measurement level of the covariate, 
the correlation between dependent variables, the 
(sub)population, and the decision rule. Each of these 
factors will be discussed in the following paragraphs.

4.1.1.1. Analysis procedure. We present three 
Bayesian analysis procedures:

(1) Multivariate logistic regression analysis 
(mLR): We analyzed the generated data via the pro
posed Bayesian multivariate logistic regression model 
presented in Section 2.

The performance of the mLR-model was compared 
to two reference approaches:

(2) Multivariate Bernoulli analysis (mB): To dem
onstrate the gain of a multivariate regression approach 
over multivariate subgroup analysis (i.e., multivariate 
stratified analysis), we fitted the unconditional 
Bayesian multivariate Bernoulli model in Kavelaars 
et al. (2020) to the data as well. Whereas the multi
variate Bernoulli model takes the correlation between 
dependent variables into account, the multivariate 
Bernoulli model computes conditional average treat
ment effects via stratified multivariate analysis: the 
multivariate Bernoulli model only uses the response 
data from observations that belong to the (sub)popu
lation of interest. Hence, the estimation of ATEs uses 
the full sample of response data, whereas CATEs are 
estimated based on a subsample of response data. 
Samples of treatment-specific joint response probabil
ities /T could be drawn directly from a posterior 
Dirichlet distribution with parameters an

T ¼

a0 þ f
Pn

i¼1 IðTi ¼ TÞIðyi ¼ Hq�Þg
Q
q¼1, where a0 is a 

vector of Q prior hyperparameters.
(3) Univariate logistic regression (uLR): To dem

onstrate the added value of a multivariate model over 
multiple univariate models, we fitted Bayesian univari
ate logistic regression models from Polson et al. 
(2013) to the individual dependent variables for the 
scenario with two dependent variables. This univariate 
model is a special case of the multivariate model pre
sented in Section 2 and Appendix A. While these 
regression-based models use the full sample of data to 
estimate conditional average treatment effects among 
subpopulations, they cannot capture correlations 
between dependent variables.

4.1.1.2. Datagenerating mechanisms: effect size, 
measurement level of covariate, and correlation. 
We included treatment differences of four different 
sizes that varied in heterogeneity:

1. Effect size 1:1 & 1:2: A homogeneous treatment 
effect, with average and conditional treatment 
differences of zero. This scenario aims to 
demonstrate the Type I error rate under a least 
favorable treatment difference for the Any and 
Compensatory rules in the trial as well as the 
subpopulation.

2. Effect size 2:1 & 2:2: A heterogeneous treatment 
effect, with an average treatment difference of 
zero and a conditional treatment effect larger 
than zero.

3. Effect size 3:1 & 3:2: A heterogeneous treatment 
treatment effect, with one average and both con
ditional treatment differences larger than zero. 
The conditional treatment difference is larger 
than the average treatment difference. The effect 
size is chosen to compare power of different 
methods, when the sample size should not lead to 
underpowerment for any of the approaches to the 
estimation of conditional average treatment 
effects. The effect size of the conditional average 
treatment effect reflects the least favorable average 
treatment effect for a right-sided test of the All 
rule and should result in a Type I error rate equal 
to the chosen level of a if the sample size is suffi
ciently large.

4. Effect size 4:1 & 4:2: A heterogeneous treatment 
treatment effect, with one average and both con
ditional treatment differences larger than zero. 
The conditional treatment difference is smaller 
than the average treatment effect. The effect size 
is chosen such that the expected sample size after 
stratification of the study sample is smaller than 
the required sample for evaluation of the condi
tional treatment effect and aims to investigate the 
statistical power of regression-based methods 
when stratification leads to underpowered deci
sions. Similar to effect size 3.1/3.2, the effect size 
of the conditional average treatment effect reflects 
the least favorable effect for a right-sided test of 
the All rule and should result in a Type I error 
rate equal to the chosen level of a if the sample 
size is sufficiently large.

For each of these four effect sizes, we varied the 
measurement level of the covariate and created a 
model with a binary covariate and a model with a 
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continuous covariate. Further, we specified three pair
wise correlations for the dependent variables: a nega
tive correlation (qhk, hl ¼ � :20), no correlation 
(qhk, hl ¼ :00), and a positive correlation (qhk, hl ¼ :20). 
These pairwise correlations were identical for all 
dependent variable pairs and were specified for the 
conditional average treatment effects (x ¼ 0 and x ¼ 1 
for the dichotomous covariate; at x ¼ � 1 and x ¼ 1 
for the continuous covariate). The correlation struc
tures and effect sizes of the conditional average treat
ment effects determine, together with the probability 
distribution of the covariates, the correlation and 
effect size of average treatment effects.

These four effect sizes, two measurement levels of 
the covariate, and three correlation structures resulted 
in the 4� 2� 3 ¼ 24 data generating mechanisms 
(DGMs) presented in Table D2.

4.1.1.3. Treatment effects and (sub)populations. We 
estimated three different treatment effects:

1. An average treatment effect (ATE) among the 
trial population. The trial population with a dis
crete covariate was defined by a binomially dis
tributed covariate with a probability of 0.50. The 
trial population with a continuous covariate was 
defined by a covariate that followed a standard 
normal distribution.

2. A conditional average treatment effect (CATE) 
among a subpopulation defined by a sample of 
covariate an interval of a continuous covariate. 
This treatment effect was also estimated among 
patients scoring low on the covariate, but this 
time the subpopulation was defined as all values 
between the mean and one standard deviation 
below the mean. Note that the discrete covariate 
could not be assigned an interval, since subsetting a 
binary variable inherently results in a single value.

3. A conditional average treatment effect (CATE) 
among a subpopulation defined by a fixed value 
of a covariate. The treatment effect was estimated 
among patients scoring low on the covariate and 
was described by a value of 0 (discrete covariate) 
or � 1 (continuous covariate).

4.1.1.4. Decision rules and sample size. We applied 
the three decision rules from Subsection 4.1.2:

1. Any rule
2. All rule
3. Compensatory rule with unequal weights (w ¼
ð0:75, 0:25Þ)

We computed sample sizes per treatment group via 
the procedures from Subsection 2.4 for conditions 
with non-zero true average treatment effects targeting 
at a power of 0.80 and a right-sided a of 0.05. If the 
true average treatment difference was equal to zero, 
we used n ¼ 1, 000 per treatment group. The sample 
size for the average treatment effect was thus leading 
for the analysis of both average and conditional aver
age treatments effects. As a result, the power of condi
tional treatment effects was not targeted at 0.80, but 
should exceed this target when the required sample 
size for a CATE was larger than the sample size for 
an ATE. Similarly, the power of CATEs with a sample 
size smaller than the ATE sample size should be lower 
than .80. The required sample sizes are presented in 
Table D3. In these tables, we also included a) the 
required sample size for the conditional average treat
ment effect in the subpopulation; and b) the sample 
size after stratification of the trial population. The 
sample size after stratification is the expected size in 
subpopulation analysis of a) response data in a strati
fied analysis approach; and b) covariate data in empir
ical marginalization.

4.1.2. Procedure
4.1.2.1. Data generation. For each data generating 
mechanism and each unique (decision-rule specific) 

Table D2. Parameters of average treatment effects (ATEs) in 
the trial and conditional average treatment effects (CATEs) in 
a subpopulation for two outcome variables.

ATE CATE
ES ðd1, d2Þ dðwÞ qhk , hl ðd1, d2Þ dðwÞ qhk , hl

1.1 D (0.000, 0.000) 0.000 � 0.160 (0.000, 0.000) 0.000 � 0.200
0.030 0.000
0.220 0.200

1.2 C (0.000, 0.000) 0.000 � 0.163 (0.000, 0.000) 0.000 � 0.207
0.028 0.002
0.219 0.208

2.1 D (0.000, 0.000) 0.000 � 0.154 (0.250, 0.150) 0.225 � 0.200
0.037 0.000
0.229 0.200

2.2 C (0.000, 0.000) 0.000 � 0.157 (0.116, 0.069) 0.104 � 0.206
0.036 0.003
0.228 0.207

3.1 D (0.100, 0.000) 0.075 � 0.152 (0.300, 0.200) 0.275 � 0.200
0.040 0.000
0.232 0.200

3.2 C (0.100, 0.000) 0.075 � 0.155 (0.196, 0.093) 0.170 � 0.205
0.038 0.003
0.231 0.206

4.1 D (0.350, 0.000) 0.263 � 0.197 (0.200, 0.000) 0.150 � 0.200
0.000 0.000
0.197 0.200

4.2 C (0.350, 0.000) 0.263 � 0.197 (0.288, 0.000) 0.216 � 0.202
0.000 0.000
0.197 0.202

Es¼ Effect size, D¼Discrete covariate, C¼ Continuous covariate.
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sample size, we sampled 1000 datasets. We generated 
one covariate x and included an interaction between 
the treatment and the covariate as well, resulting in 
the following linear predictor wq

i :

w
q
i ðxiÞ ¼ b

q
0 þ b

q
TTi þ b

q
1zi þ b

q
2ziTi: (22) 

To generate response data, we first applied the 
multinomial logistic link function (Equation 2) to 
each true linear predictor wiðxiÞ to obtain joint 
response probabilities /iðxiÞ for each subject i. Next, 
we sampled response vector yijxi from a multinomial 
distribution with probabilities /iðxiÞ:

4.1.2.2. Prior distribution. We specified diffuse prior 
distributions. This is motivated by the idea that 
obtained the posterior distributions are then com
pletely based on the information in the data, which is 
a common choice in default Bayesian analyses. For 
the multivariate logistic regression analysis, we set 
multivariate normally distributed prior with means 
bq ¼ 0 and variance matrix B0q ¼ diagð10, :::, 10Þ for 
all regression coefficients. Prior covariances between 
regression coefficients were set at zero, implying that 
regression coefficients were independent a priori. For 
the univariate logistic regression analysis we used uni
variate normally distributed priors with a mean of 0 
and a variance of 10 for all parameters. The specified 
variance parameters of regression coefficients were 

motivated by work of Gelman et al. (2008). These 
authors recommend to choose a variance parameter 
that results in realistic support for the probability par
ameter after non-linear transformations in logistic 
regression and has sufficient information to stabilize 
posterior computations. For the mB reference 
approach, we used a Dirichlet prior distribution with 
hyperparameters a0 ¼ 0:01: This prior is close to the 
improper Haldane prior (a ¼ 0), which is considered 
the least informative prior distribution for bi- or multi
nomially distributed data, results in a posterior mean 
equal to the maximum likelihood estimator, and corre
sponds to a uniform prior on the log-odds scale (Tuyl 
et al., 2008; Kerman, 2011). The small deviation from 
the Haldane prior makes the prior distribution proper 
and ensures that cell probabilities can be sampled from 
the Dirichlet distribution when cells have no observa
tions (Kavelaars et al., 2020).

4.1.2.3. Gibbs sampling. The regression coefficients 
in response categories 1, :::, ðQ � 1Þ were estimated via 
the Gibbs sampler detailed in Appendix A. We ran 
two MCMC-chains with L ¼ 10, 000 iterations plus 
1,000 burnin iterations. We visually inspected trace
plots of MCMC-chains and used multivariate 
Gelman-Rubin convergence diagnostics to assess con
vergence (Gelman & Rubin, 1992; Brooks & Gelman, 
1998). As these traceplots showed satisfactory overlap 

Table D3. Required sample sizes to evaluate the average treatment effect (ATE) and conditional treatment effect (CATE) for two 
outcome variables.

All Any Compensatory

ES qkh , lh ATE CATE Sub ATE CATE Sub ATE CATE Sub

1.1 < 0 – – 500 – – 500 – – 500
� 0 – – 500 – – 500 – – 500
> 0 – – 500 – – 500 – – 500

1.2 < 0 – – 342 – – 342 – – 342
� 0 – – 342 – – 342 – – 342
> 0 – – 342 – – 342 – – 342

2.1 < 0 – 136 500 – 45 500 – 32 500
� 0 – 136 500 – 48 500 – 36 500
> 0 – 136 500 – 51 500 – 40 500

2.2 < 0 – 658 342 – 215 342 – 154 342
� 0 – 649 342 – 229 342 – 175 342
> 0 – 644 342 – 245 342 – 196 342

3.1 < 0 – 77 500 381 29 191 309 21 155
� 0 – 77 500 385 31 193 349 23 175
> 0 – 76 500 387 33 194 388 26 194

3.2 < 0 – 358 342 379 81 130 307 56 105
� 0 – 358 342 383 86 131 347 65 119
> 0 – 356 342 386 91 132 386 73 132

4.1 < 0 – – 500 28 93 14 22 73 11
� 0 – – 500 28 93 14 25 83 13
> 0 – – 500 28 94 14 28 93 14

4.2 < 0 – – 342 28 43 10 22 34 8
� 0 – – 342 28 44 10 25 39 9
> 0 – – 342 28 44 10 28 43 10

Sub¼ expected size of subsample.
Bold-faced subsamples are smaller than required for estimation of the CATE.
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between chains and the convergence diagnostics were 
all between 1.00 and 1.10, we concluded that there 
were no issues with convergence.

4.1.2.4. Transformation and decision-making. We 
applied the procedures from Subsections 2.2 and 2.3
to arrive at a decision. In marginalization, we included 
the selection of subjects that belonged to the subpopu
lation. We performed a right-sided (superiority) test 
aiming at a Type I-error rate of a ¼ :05: We used a 
decision threshold pcut ¼ 1 � a ¼ 0:95 (Compensatory 
and All rules) and a for multiple tests corrected pcut ¼

1 � a
K ¼ 0:975 (Any rule) (Marsman & Wagenmakers, 

2016; Kavelaars et al., 2020; Sozu et al., 2016).

4.1.3. Software
We conducted our analyses in R (R Core Team, 
2020). We drew variables from the multivariate nor
mal, P�olya-Gamma, and Dirichlet distributions with 
the MASS, pgdraw and MCMCpack packages respect
ively (Venables & Ripley, 2002; Makalic & Schmidt, 
2016; Martin et al., 2011). We used the coda package 
to explore MCMC chains (Plummer et al., 2006). The 
simulation procedure was parallellized using the fore
ach and doParallel packages (Microsoft & Weston, 
2020a, 2020b). LaTeXtables were created with the 
xtable package (Dahl et al., 2019).

4.2. Results

4.2.1. Bias
Bias of multivariate and weighted treatment differences 
was negligible (< j:01j) in most conditions, implying 
that Bayesian multivariate logistic regression analysis 
was generally able to reproduce true treatment effects. 
However, the estimation of average treatment effects 
under effect sizes 4.1 and 4.2 resulted in slightly biased 
treatment differences for the Any and Compensatory 
rules. As shown in Table D4, these absolute biases 
ranged up to j0.04j. These biases were produced in 
both univariate and multivariate logistic regression ana
lysis, but not in multivariate Bernoulli analysis. 
Conditional average treatment effects were estimated 
with comparable patterns of bias and a maximum of 
j0.025j. This bias showed up in conditions with a small 
sample, which is a well-documented property of logistic 
regression in general (Nemes et al., 2009).

This bias in treatment differences could be traced 
back to bias in regression coefficients. Mean estimates 
of regression coefficients were asymptotically 
unbiased, implying that bias was negligible (< j0:01j) 
in conditions with a sufficiently large sample. We 

observed some bias in conditions with smaller samples 
(ES 3.1, 3.2, 4.1, and 4.2 under the Any and 
Compensatory decision rules). We can conclude that 
bias in regression coefficients was not necessarily prob
lematic for our actual parameters of interest, namely 
success probabilities and differences between them. 
Even when regression coefficients had a small bias 
(< j0:20j on the log-odds scale), success probabilities 
and treatment differences could be estimated without 
bias (< j0:01j), similar to the conditions without biased 
regression coefficients. This was the case for ES 3.1 and 
3.2 under sample sizes of the Any and Compensatory 
rules. Only more severe bias of regression coefficients 
(< j0:57j on the log-odds scale) in conditions with 
smaller sample sizes was not fully corrected in the 
transformation steps. This was seen in ES 4.1 and 4.2 
under sample sizes of the Any and Compensatory rules.

4.2.2. Decision error rates
4.2.2.1. Average treatment effects. Probabilities to 
conclude superiority of average treatment effects are 
presented in Table D5. Decisions resulted in appropri
ate Type I error rates around 0.05 for each of the pos
terior distribution types under a least favorable 
scenario of no effect (i.e., ES 1.1, 1.2, 2.1, 2.2 of Any 
and Compensatory rules) and the proportions of 

Table D4. Bias in average treatment differences of effect size 
(ES) 4.1 and 4.2 by decision rule.

All rule

uLR mB mLR
ES qhk , hl (d1, d2) (d1, d2) (d1, d2)

4.1 < 0 (0.000, 0.000) (� 0.002, 0.001) (0.000,� 0.002)
� 0 (0.000, 0.000) (0.000, 0.000) (� 0.001,� 0.001)
> 0 (� 0.001, 0.000) (� 0.001,� 0.001) (� 0.001, 0.000)

4.2 < 0 (� 0.002, 0.000) (0.002,� 0.001) (0.000,� 0.002)
� 0 (� 0.001,� 0.001) (� 0.001, 0.001) (� 0.002,� 0.001)
> 0 (� 0.001,� 0.001) (0.001,� 0.001) (� 0.001, 0.001)

Any rule

uLR mB mLR
ES qhk , hl (d1, d2) (d1, d2) (d1, d2)

4.1 < 0 (� 0.013, 0.001) (� 0.001, 0.005) (� 0.024,� 0.011)
� 0 (� 0.009,� 0.002) (0.001, 0.001) (� 0.023,� 0.016)
> 0 (� 0.006, 0.001) (0.002, 0.004) (� 0.028,� 0.007)

4.2 < 0 (� 0.018,� 0.009) (� 0.005, 0.003) (� 0.031,� 0.019)
� 0 (� 0.014, 0.003) (� 0.002,� 0.001) (� 0.032,� 0.011)
> 0 (� 0.018,� 0.002) (� 0.001, 0.005) (� 0.030,� 0.008)

Compensatory rule

uLR mB mLR
ES qhk , hl dðwÞ dðwÞ dðwÞ

4.1 < 0 � 0.006 0.000 � 0.030
� 0 � 0.012 0.000 � 0.019
> 0 � 0.004 � 0.006 � 0.015

4.2 < 0 � 0.018 � 0.003 � 0.040
� 0 � 0.017 � 0.003 � 0.029
> 0 � 0.013 0.003 � 0.024

uLR¼ univariate logistic regression.
mB¼multivariate Bernoulli.
mLR¼multivariate logistic regression.
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correct superiority conclusions (i.e., power) were close 
to the targeted 0.80 under a priori estimated sample 
sizes when the true effect was larger than zero (i.e., ES 
3.1, 3.2, 4.1, 4.2 of Any and Compensatory rules). 
These results showcase that a priori computed sample 
sizes result in adequate statistical decisions.

In general, multivariate logistic regression (mLR) 
performed comparable to stratified multivariate ana
lysis (mB) in the estimation of average treatment 
effects: Type I-error rates of mB were around 0.05 
and statistical power was close to the targeted 0.80 as 
well. Compared to univariate logistic regression ana
lysis (uLR), statistical power of multivariate logistic 
regression (mLR) appeared less sensitive to the correl
ation of the data. Effect sizes 3:1=3:2 and 4:1=4:2 
under the Compensatory rule demonstrate most 
clearly how power of uLR increased when the correl
ation moved from negative to positive, with uncorre
lated data reaching the targeted .80. For these 
conditions, the sample size which the uLR model was 
fitted on was smaller and larger respectively than 
needed for an analysis that assumes uncorrelated data. 
The difference between uLR and mLR was relatively 
subtle however, which is in line with the pattern of 
required sample sizes in Table D3. This table shows 
that differences in required sample sizes for different 

correlations were relatively small under most data- 
generating mechanisms. This implies that the effect of 
using an incorrect sample size on statistical power is 
relatively limited under the data-generating mecha
nisms in the simulation study, in contrast with the 
scenarios presented in Table D1.

4.2.2.2. Conditional average treatment effects. The 
results of conditional treatment effects in the subpo
pulations are presented in Table D6. Similar to aver
age treatment effects, Type I error rates were around 
the targeted 0.05 under the least favorable scenarios of 
no effect (ES 1.1, 1.2 for Any and Compensatory 
rules) for all estimation methods. The proportion to 
conclude superiority correctly was above 0.80 in all 
scenarios with a sample size exceeding the required 
sample size for CATEs. In the scenarios where the 
sample size for CATEs was lower than requirer (4.1 
and 4.2 for the Any and Compensatory rules and 2.2 
and 3.2 for the All rule), the power was below 0.80.

A comparison of estimations methods for the con
tinuous covariate revealed that multivariate logistic 
regression (mLR) was generally more powerful than 
the stratified multivariate analysis (mB) approach 
when the covariate was continuous. These effects are 
prominent in ES 2.2 and 3.2 (All rule) as well as ES 

Table D5. Proportions of superiority decisions for ATEs with two outcome variables by data-generating mechanism, correlation, 
and decision rule.

q < 0 q ¼ 0 q > 0

ES uLR mB mLR uLR mB mLR uLR mB mLR

Rule¼All
1.1 0.000 0.004 0.000 0.000 0.005 0.001 0.004 0.005 0.007
1.2 0.003 0.002 0.001 0.000 0.005 0.002 0.006 0.006 0.005
2.1 0.000 0.001 0.003 0.002 0.004 0.004 0.006 0.005 0.008
2.2 0.002 0.003 0.000 0.007 0.002 0.005 0.003 0.005 0.010
3.1 0.064 0.051 0.046 0.066 0.046 0.056 0.054 0.043 0.046
3.2 0.051 0.048 0.055 0.050 0.057 0.050 0.049 0.052 0.061
4.1 0.059 0.051 0.042 0.059 0.044 0.044 0.052 0.046 0.053
4.2 0.051 0.058 0.045 0.045 0.041 0.051 0.044 0.049 0.053

Rule¼Any
1.1 0.052 0.046 0.054 0.060 0.064 0.060 0.059 0.047 0.050
1.2 0.054 0.055 0.043 0.035 0.042 0.050 0.038 0.053 0.049
2.1 0.063 0.053 0.059 0.055 0.044 0.045 0.052 0.049 0.049
2.2 0.059 0.055 0.062 0.059 0.045 0.062 0.046 0.048 0.060
3.1 0:807 0:802 0:789 0:810 0:812 0:806 0:796 0:787 0:791
3.2 0:814 0:790 0:807 0:819 0:811 0:791 0:811 0:803 0:815
4.1 0:804 0:756 0:781 0:816 0:775 0:787 0:808 0:780 0:777
4.2 0:790 0:749 0:793 0:806 0:774 0:770 0:781 0:754 0:785

Rule¼ Compensatory
1.1 0.049 0.056 0.054 0.059 0.069 0.050 0.076 0.047 0.048
1.2 0.045 0.041 0.056 0.045 0.040 0.051 0.063 0.047 0.055
2.1 0.053 0.040 0.053 0.069 0.054 0.048 0.076 0.051 0.053
2.2 0.051 0.048 0.054 0.059 0.040 0.061 0.057 0.048 0.058
3.1 0:757 0:821 0:813 0:824 0:802 0:815 0:815 0:801 0:794
3.2 0:779 0:804 0:838 0:802 0:811 0:804 0:836 0:801 0:815
4.1 0:794 0:795 0:774 0:805 0:799 0:810 0:858 0:781 0:790
4.2 0:759 0:786 0:771 0:820 0:792 0:806 0:815 0:798 0:792

uLR¼Univariate logistic regression.
mB¼Multivariate Bernoulli.
mLR¼Multivariate logistic regression.
Bold-faced entries have effect sizes that should lead to a superiority conclusion.
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4.2 (Any and Compensatory rules). The statistical 
power of stratified multivariate analysis (mB) and 
multivariate logistic regression analysis (mLR) did not 
differ for the discrete covariate, as demonstrated 
under ES 2.1 and 3.1 (All rule) as well as ES 4.1 (Any 
and Compensatory rules).

5. Illustration

We applied the proposed method to a subset of data 
from the n ¼ 19, 435 subjects from the International 
Stroke Trial (International Stroke Trial Collaborative 
Group, 1997). We selected participants who were 
alive after six months and were treated with either a 
combined treatment (Aspirinþmedium / high-dose 
Heparin) or one of the single treatments (Aspirin 
only), resulting in a sample of n ¼ 5, 657 participants, 
of which nHþA ¼ 1, 859 were in the HeparinþAspirin 
group (treatment ¼ 1) and nA ¼ 3, 798 subjects were 
in the Aspirin group (treatment ¼ 0). We fitted the 
model in Equation 6 to compare the effects of the two 
treatments on a) recurrent stroke within 14 days 
(0¼ no; 1¼ yes) and b) dependency after six months 
(0¼ no, 1¼ yes) while taking systolic blood pressure 
of the subjects (Bp) into account.

5.1. Method

We applied the two procedures from Subsection 3
(fixed values and interval of the covariate) to assess 
the multivariate and weighted treatment differences in 
three different types of patient populations:

1. Average treatment effects in the trial population;
2. Conditional treatment effects in populations 

defined by a fixed value. Patient populations were 
defined by six different values of blood pressure, 
specifically 1, 2, and 3 standard deviations below 
and above the mean.

3. Conditional treatment effects in populations 
defined by an interval. Patient populations were 
defined by two different regions of blood pres
sure: Bp < � 1SD (Low), and Bp > 1SD (High).

Similar to the Numerical evaluation, we specified 
a diffuse multivariate normally distributed prior 
with means bq ¼ 0 and variance matrix B0 ¼

diagð10, :::, 10Þ for all regression coefficients, except 
the reference category (strk ¼ 0, dep ¼ 0). Prior cova
riances between regression coefficients were set at 
zero, implying that regression coefficients were inde
pendent a priori. We ran three MCMC-chains via our 

Table D6. Proportions of superiority decisions for CATEs with two outcome variables by data-generating mechanism, correlation, 
and decision rule.

q < 0 q ¼ 0 q > 0

ES mB mLR-S mLR-V mB mLR-S mLR-V mB mLR-S mLR-V

Rule¼All
1.1 0.002 – 0.000 0.006 – 0.001 0.009 – 0.004
1.2 0.000 0.000 0.001 0.004 0.002 0.004 0.007 0.003 0.004
2.1 0:999 – 0:997 0:999 – 0:998 1:000 – 0:999
2.2 0:484 0:873 0:998 0:537 0:854 1:000 0:529 0:880 1:000
3.1 1:000 – 1:000 1:000 – 1:000 1:000 – 1:000
3.2 0:790 0:972 1:000 0:801 0:979 1:000 0:804 0:982 1:000
4.1 0.050 – 0.040 0.042 – 0.036 0.045 – 0.048
4.2 0.051 0.045 0.054 0.052 0.053 0.059 0.046 0.056 0.060

Rule¼Any
1.1 0.054 – 0.050 0.064 – 0.039 0.051 – 0.052
1.2 0.053 0.038 0.054 0.057 0.055 0.056 0.063 0.048 0.048
2.1 1:000 – 1:000 1:000 – 1:000 1:000 – 1:000
2.2 0:933 1:000 1:000 0:913 0:999 1:000 0:904 0:999 1:000
3.1 1:000 – 1:000 1:000 – 1:000 1:000 – 1:000
3.2 0:932 0:999 1:000 0:939 0:998 1:000 0:899 0:999 1:000
4.1 0:251 – 0:266 0:251 – 0:242 0:233 – 0:230
4.2 0:336 0:508 0:181 0:305 0:522 0:183 0:308 0:512 0:174

Rule¼ Compensatory
1.1 0.061 – 0.047 0.076 – 0.033 0.048 – 0.039
1.2 0.040 0.040 0.043 0.062 0.057 0.056 0.057 0.046 0.048
2.1 1:000 – 1:000 1:000 – 1:000 1:000 – 1:000
2.2 0:980 1:000 1:000 0:969 1:000 1:000 0:945 0:999 1:000
3.1 1:000 – 1:000 1:000 – 1:000 1:000 – 1:000
3.2 0:951 1:000 1:000 0:953 1:000 1:000 0:945 1:000 1:000
4.1 0:283 – 0:326 0:292 – 0:319 0:287 – 0:316
4.2 0:390 0:504 0:190 0:354 0:534 0:183 0:359 0:537 0:232

mB¼Multivariate Bernoulli.
mLR-S¼Multivariate logistic regression –sample.
mLR-V¼Multivariate logistic regression –value.
Bold-faced entries have effect sizes that should lead to a superiority conclusion.
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proposed Gibbs sampler with 20,000 iterations plus 
10,000 burnin iterations. Similar to the simulation 
study, we used traceplots and multivariate Gelman- 
Rubin convergence diagnostics to assess convergence 
(Gelman & Rubin, 1992; Brooks & Gelman, 1998). 
Traceplots (Figure D2) showed that chains mixed 
properly and the multivariate Gelman-Rubin conver
gence statistic had a value of 1.000, implying that 
there were no signals of non-convergence.

We performed two-sided tests for the All, Any, and 
Compensatory rules. For the Compensatory rule, we 
assumed that long-term impaired functioning is more 
important than short-term complications and specified 
weights w ¼ ð0:25, 0:75Þ for recurring stroke in 
14 days and dependency at 6 months respectively. 
These weights implied that the longterm outcome was 
three times more relevant for the decision than the 
shortterm outcome. Since hT reflects failure 

Figure D2. Traceplot of MCMC chains for the application of Bayesian multivariate logistic regression to the IST data.
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probabilities rather than success probabilities, the 
treatment is considered superior when there is suffi
cient evidence that the treatment difference of interest 
is smaller than zero, while inferiority was concluded 
when the treatment difference of interest is larger 
than zero. The two-sided test with a targeted Type I- 
error rate of a ¼ 0:05 was performed with a decision 
threshold pcut ¼ 1 � a

2 ¼ 0:975 (Compensatory and All 
rules) and a for multiple tests corrected pcut ¼

1 � a
2K ¼ 0:9875 (Any rule).

5.2. Results

Results are presented in Table D7 for different inter
vals and in Table D8 for fixed values of blood pres
sure. Among the trial population, the regression-based 
and reference approaches resulted in similar treatment 
difference estimates and posterior probabilities. 
Treatment differences were close to zero and each of 
the decision rules resulted in the conclusion that it 
did not matter whether Aspirin was administered 
alone or in combination with Heparin.

These average treatment effects gave a limited 
impression of the efficacy of Aspirin and Heparin, 
since a picture of heterogeneous treatment effects 
emerged when conditional treatment effects among 
subpopulations were considered separately. As 
opposed to Aspirin only, the combination of Aspirin 
and Heparin showed a trend toward higher failure 
probabilities on both dependent variables for patients 
with a lower blood pressure, while failure probabilities 

were generally lower among patients with a higher 
blood pressure.

A visual comparison of multivariate logistic regres
sion (mLR) and stratified multivariate analysis (mB) 
of response data resulted in relatively similar estimates 
and posterior probabilities in the center of the distri
bution of blood pressure (e.g., between � 1 SD and 
þ1 SD), but deviated from the regression-based 
approach in the tails. Point estimates of treatment dif
ferences demonstrated a less stable relation between 
blood pressure and treatment differences after stratifi
cation, as shown in Figure D3. If the regression-based 
approach is flexible enough to properly model the 
effects over the full support of blood pressure, the dif
ferent behavior in the tails of the covariate distribu
tion might be explained by the smaller sample size 
after stratification, as implied by the larger error bars.

6. Discussion

The current paper proposed a novel Bayesian multi
variate logistic regression framework for analysis and 
decision-making with multiple correlated dependent 
variables. The framework is suitable to capture treat
ment heterogeneity among (groups of) patients that 
are distinguishable by observed covariate information 
(i.e., conditional average treatment effects) and to esti
mate overall treatment effects among the full popula
tion (i.e., average treatment effects) under a wide 
range of scenarios. In general, the proposed regression 
models were able to reproduce point estimates of 
average and conditional treatment differences cor
rectly and resulted in decisions with anticipated error 
rates among the trial population and among subpopu
lations – as long as the sample was sufficiently large. 
Further, anticipated decision error rates were found 
under a priori sample size estimation for different 
correlation structures (namely negatively correlated, 
uncorrelated, and positively correlated dependent vari
ables) and for two- and three-dimensional dependent 
variables. The illustration with the International 

Table D7. Average and conditional average treatment effects (ATE and CATE respectively) and their posterior probabilities (pp) in 
the IST data, by interval of blood pressure (Bp). Superiority or inferiority was concluded when > or < respectively.
Method dðBpÞ pp Any All dðw, BpÞ pp Comp

ATE (� 1 < Bp <1) nHþA ¼ 1859, nA ¼ 3798
mB (0.005, � 0.015) (0.859, 0.151) – – � 0.010 0.182 –
mLR (0.004, � 0.014) (0.825, 0.152) – – � 0.010 0.178 –
CATE (� 1 < Bp < � 1SD) nHþA ¼ 316, nA ¼ 620
mB (� 0.001, 0.066) (0.459, 0.972) – – 0.049 0.970 –
mLR (0.012, 0.043) (0.932, 0.963) – – 0.035 0.972 –
CATE (þ1SD < Bp <1) nHþA ¼ 290, nA ¼ 646
mB (� 0.009, � 0.052) (0.214, 0.070) – – � 0.041 0.063 –
mLR (� 0.003, � 0.081) (0.330, 0.001) > – � 0.062 0.001 >

mB¼Multivariate Bernoulli analysis.
mLR¼Multivariate logistic regression.

Table D8. Conditional average treatment effects in the IST 
data, by value of blood pressure (Bp). Superiority or inferiority 
was concluded when > or < respectively.
Value dðBpÞ pp Any All dðw, BpÞ pp Comp

� 3 SD (0.029, 0.110) (0.922, 0.994) < – 0.090 0.996 <
� 2 SD (0.017, 0.068) (0.930, 0.985) – – 0.055 0.989 <

� 1 SD (0.009, 0.026) (0.927, 0.908) – – 0.022 0.929 –
þ1 SD (� 0.001, � 0.056) (0.421, 0.002) > – � 0.042 0.002 >

þ2 SD (� 0.004, � 0.097) (0.294, 0.001) > – � 0.074 0.001 >
þ3 SD (� 0.007, � 0.137) (0.263, 0.001) > – � 0.104 0.001 >
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Stroke Dataset demonstrated how conditional average 
treatment effects could provide a more in-depth 
understanding of results beyond average treatment 
effects.

Compared to other approaches, the Bayesian multi
variate logistic regression framework showed favorable 
properties. Decisions were more powerful than those 
obtained by multivariate stratified analysis when cova
riates were continuous, since they were based on 
information from the full sample rather than a sub
sample. Moreover, the Bayesian multivariate logistic 
regression model was more effective in targeting 
statistical power compared to multiple univariate logistic 
regression analyses when the correlation between 
dependent variables was non-zero. Whereas these 
effects were relatively subtle in the simulation study, the 
illustrative example in Section 2.4.3 showcased that 

they are more prominent when correlations are further 
from zero.

An advantage of the proposed multivariate logistic 
regression approach is its flexibility to model multi
variate treatment effects with correlation structures 
that are free to vary over covariates, supporting accur
ate decision error rates and a priori sample size com
putations. This flexiblity comes with additional 
parameters, compared to other multivariate logistic 
models for correlated binary dependent variables (e.g., 
Malik & Abraham, 1973; O’Brien & Dunson, 2004) 
and may result in computational issues when the 
number of parameters becomes too high. The Gibbs 
sampling procedure may become unstable when the 
sample size is too small compared to the number of 
parameters, although weakly informative priors may 
be helpful in stabilizing computations (Gelman et al., 

Figure D3. Comparison of CATEs and their standard deviations per interval of blood pressure after stratified multivariate analysis 
(mB) and multivariate logistic regression (mLR). Each interval reflects one standard deviation.
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2008). Therefore, the model is most suitable for a lim
ited number of dependent variables and (continous) 
covariates.

In practice, researchers are encouraged to consider 
model assumptions in real data. Additional efforts 
may be undertaken to verify that the chosen general
ized linear model fits the data well enough. If the 
assumption of linearity on the log-odds scale does not 
hold, the modeling procedure may benefit from gener
alization to methods that are more flexible with 
respect to this assumption, such as (penalized) splines. 
Again, increased flexibility increases the number of 
parameters and should be balanced with a) the general 
risk of overfitting; and b) computational challenges as 
outlined above. In a more general sense, the 
researcher should determine which type of flexibility 
is most appropriate for the research question and data 
at hand. Further, researchers who aim to target deci
sion error rates have to decide which treatment effect 
should be leading in the actual choice of sample size. 
Under treatment heterogeneity, average and (multiple) 
conditional average treatment effects have different 
effect sizes by definition, resulting in different sample 
sizes and raising the question which considerations 
meaningfully guide this choice.

Theoretically, the framework lends itself for use 
under a much wider range of scenarios than show
cased in this paper. Each of the elements – modeling, 
transformation, decision-making – can be replaced by 
an alternative, resulting in a large number of varia
tions. Some variations, such as a less computationally 
intensive analysis model, a wider range of prior distri
butions, and interim monitoring as an alternative to 
decision-making with a priori estimated sample sizes, 
were presented already (Kavelaars et al., 2020). Here, 
we mention two additional suggestions to elaborate 
the framework. First, in addition to the presented 
transformations to success probabilities and treatment, 
transformations to other associations between treat
ment and outcome, such as relative risks and risk 
ratios, may be of interest and are worth investigating. 
Second, other hypotheses than superiority and inferior
ity, such as non-inferiority or equality decision-making, 
can be relevant to be included in the framework as 
well (see for a discussion Van Ravenzwaaij et al., 2019). 
More flexible formulations of hypotheses and another 
perspective on the assessment of evidence can be 
achieved via the computation of Bayes factors (see for 
an introduction e.g., Mulder & Wagenmakers, 2016).

Other than the abovementioned variations, several 
directions for future research naturally follow from 
the current results. First, the procedure theoretically 

lends itself for out-of-sample prediction to popula
tions within or beyond the covariate range of the trial 
population. The robustness of the framework in these 
applications remains to be investigated and may 
include evaluations of model fit.

Second, research might shed light on further sam
ple size considerations. The current paper provided 
tools to compute required sample sizes and to control 
decision error rates, if researchers are able to estimate 
effect sizes with reasonable accuracy prior to the study 
and when sample sizes are sufficiently large. When 
sample sizes were relatively small, bias was intro
duced. In line with our observations, small-sample 
bias in regression coefficients is a well-documented 
property of nonlinear regression methods in general 
(Firth, 1993; Nemes et al., 2009). Although some bias 
in regression coefficients disappeared during trans
formation to joint response probabilities, success 
probabilities, and treatment differences, the mechan
ism is not yet fully understood. Hence, more light 
may be shed on circumstances for inheritance of dis
tributional properties in the (non-linear) multinomial 
logistic transformation to obtain more elaborate 
insights into the minimum number of observations 
required for satisfactory model performance. Larger 
effect sizes (i.e., smaller sample sizes), complexity of 
the model (i.e., number of parameters), and events 
per variable are candidate factors to interact in their 
effects on model performance in small samples (De 
Jong et al., 2019). There is no short answer to that 
question, but in practice power among different sub
populations might be balanced with the number of 
subjects a researcher is willing or able to include in 
the trial. Therefore, optimum sample sizes in these 
regression-based decision approaches remain to be 
investigated more elaborately.

Further, another interesting direction for future 
research would be to extend the proposed multivariate 
logistic regression model for estimating average and 
conditional average treatment effects and for decision- 
making with (discrete or continuous) latent variables 
to capture unexplained heterogeneity. This extension 
falls outside of the scope of the current paper which 
focuses on modeling treatment heterogeneity caused 
by observed covariate information.

Lastly, causal inference is less straightforward in 
(stratified) subgroup analysis as conditioning upon 
covariates might interfere with randomization 
(European Medicine Agency, 2019; Food & Drug 
Administration, 2019). Causal relationships might 
require additional checking of assumptions and 
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tutorials by Hoogland et al. (2021) and Lipkovich 
et al. (2016) may be of help.
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Appendix A. Details of posterior computation

The current section describes the Gibbs sampling procedure 
used to obtain parameters. To simplify notations, we omit 
the dependence on x in denoting functions that rely on 
covariates (e.g., /, h).

Starting from the likelihood of individual K-variate 
response yi (Equation 2), the likelihood of n K-variate 
responses follows from taking the product over n individual 
joint response probabilities in Q response categories:

lðyjb, xÞ ¼
Yn

i¼1

YQ� 1

q¼1

exp w
q
i
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exp wr
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(A1) 

Following Polson et al. (Polson et al., 2013), we intro
duce the P�olya-gamma variable by rewriting the multivari
ate likelihood in Equation A1 as a series of binomial 
likelihoods. The likelihood of y conditional on the parame
ters of the qth response category, bq, then equals:

lðyjbq, b� qÞ ¼
Yn

i¼1

exp g
q
i
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Þ

exp g
q
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where � q refers to all rows in H not having index q 
and gq

i ¼ w
q
i � ln ð

P
m6¼Hq�

exp wm
i

� �
Þ:

The Polya-Gamma transformation to a Gaussian distri
bution relies on the following equality (Polson et al., 2013):
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where x
q
i has a Polya-Gamma distribution, i.e. pðxq

i Þ �

PG ð1, wq
i Þ:

If we use the equality in Equation A3, the binomial like
lihood in Equation A2 can be transformed to a multivariate 
Gaussian likelihood by including an auxiliary P�olya-Gamma 
variable xq

i (Polson et al., 2013):
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where jq
i ¼

Iðyi¼Hq���Þ�
1
2

x
q
i

, jq ¼ ðj
q
1, :::, jq

nÞ, xq ¼ ðx
q
1, :::, xq

nÞ, 
and Xq ¼ diagðxqÞ:

A.0.1. Prior distribution

The Gaussian likelihood in Equation A4 is conditionally 
conjugate with a normal prior distribution on regression 
coefficients bq:

bq � Nðbq, B0qÞ (A5) 

where bq is the vector of prior means of regression coeffi
cient vector bq and B0q is a P � P symmetric square matrix 
reflecting the prior precision of regression coefficients bq: A 
researcher who is willing to include prior information 
regarding treatment effects into the analysis, has several 
options to specify prior hyperparameters for a normally dis
tributed prior that is compatible with the Gibbs sampling 
procedure (e.g. Sullivan & Greenland, 2012; Chen & 
Ibrahim, 2000). We discuss the specification of informative 
prior means bq in terms of joint response probabilities / in 
the next Appendix.

A.0.2. Posterior distribution

Bayesian statistical inference is done via the posterior distri
bution which is given by:

pðbjyÞ / pðyjb, xÞpðbÞ, (A6) 

The combination of a Polya-Gamma transformed 
Gaussian likelihood (Equation A4) and a normal prior dis
tribution (Equation A5) respectively is proportional to a 
normally distributed posterior distribution, conditionally on 
Polya-Gamma variables in xq (Polson et al., 2013):
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where Vq ¼ ðXTXqXþ ðBqÞ
� 1
Þ
� 1
: Similarly, subject-specific 

variable xq
i follows a Polya-Gamma distribution that depends 

on regression coefficients bq via linear predictor wq
i :

Updating these two conditional distributions via a Gibbs 
sampling procedure results in a sample from the posterior 
distribution of b: Specifically, the sampling procedure 
involves iterating L times over the following two steps for 
q ¼ 1, :::, Q � 1, while keeping bQ fixed at zero:

1. Draw a vector of Pþ 1 regression coefficients bqjxq 

from a multivariate normal distribution with mean vec
tor mq and precision matrix Vq:

bqjxq � Nðmq, VqÞ (A8) 

where ½Vq�� 1 ¼ XXqXþ ½V0q�
� 1

mq ¼ VqðXðjq þXqcÞ þ V0q½ �
� 1m0qÞ

C ¼ ln
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exp wm

i
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( )

:

2. Sample xqjbq as a vector of n draws x
q
i jb

q from a 
P�olya-Gamma distribution:

x
q
i jb

q � PGð1, wq
i � ln

P
m6¼q exp wm

i
� �

Þ: (A9) 

The Gibbs sampling procedure results in a sample of L sets 
of regression coefficients from the posterior distribution 
of b:

Appendix B. Specification of prior means of 
regression coefficients

In the current Section, we introduce a procedure to deter
mine prior means, based on beliefs regarding success proba
bilities and correlations between them. We outline the 
procedure for two outcome variables and a linear predictor 
w with one covariate and an interaction between the treat
ment and the covariate:

w
q
T ¼ b

q
0 þ b

q
1T þ b

q
2xþ b

q
3x� T (B1) 

First, choose xL and xH as low and high values of covari
ate x respectively. Next, specify success probabilities and 
correlations hTðxLÞ, qTðxLÞ, hTðxHÞ, and qTðxHÞ for each 
treatment T that accompany the low and high values of 
covariates respectively. These success probabilities hTðx:Þ
and correlations qTðx:Þ can be transformed to joint 
response probabilities /Tðx:Þ via the following set of 
equations:

/11
T ðx:Þ ¼ qTðx:Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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/10
T ðx:Þ ¼ h1

Tðx:Þ � /11
T ðx:Þ

/01
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/00
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(B2) 

For each response category q, joint responses /q:
T can be 

transformed to linear predictor w
q:
T using the multinomial 

logistic link function in Equation 2.
Solving these linear predictors for bq results in the fol

lowing definitions of the elements in bq :

b
q
0 ¼

xHw
q
0ðxLÞ � xLw

q
0ðxHÞ

xH � xL

b
q
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xH w
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q
0ðxLÞ
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w
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b
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q
0ðxLÞ

xH � xL

(B3) 
For example, if we would believe that treatment have the 

following parameters:
hL

1 ¼ ð0:60, 0:70Þ, qL
1 ¼ � 0:30

hH
1 ¼ ð0:40, 0:30Þ, qH

1 ¼ � 0:30
hL

0 ¼ ð0:40, 0:30Þ, qL
0 ¼ � 0:30

hH
0 ¼ ð0:60, 0:70Þ, qH

0 ¼ � 0:30, 

then the regression coefficients would be as presented in 
Table D9.

Appendix C. Procedures for estimation and 
inference over a specified (Sub)population

Algorithm 1 Transformation of posterior regression coef
ficients to posterior joint response probabilities based on 
fixed covariate values.

Let bQ ¼ ð0, :::, 0Þ
1. for draw ðlÞ  1 : L do
2.  for treatment T  0 : 1 do
3.   for joint response q 1 : Q do
4.    Compute 

w
qðlÞ
T ¼ b

qðlÞ
0 þ b

qðlÞ
1 T þ b

qðlÞ
2 xþ b

qðlÞ
3 x� T

5.     Compute /qðlÞ
T ¼

exp w
qðlÞ
T½ �

PQ� 1

r¼1
exp w

rðlÞ
T½ �þ1 

6.    end for
7.   end for
8. end for 

Table D9. Example of means of the prior distribution of 
regression coefficients.

q ¼ 1 q ¼ 2 q ¼ 3 q ¼ 4

b
q
0 � 0.000 0.766 0.766 0.000

b
q
1 0.000 0.000 0.000 0.000

b
q
2 1.902 0.781 1.121 0.000

b
q
3 � 3.804 � 1.562 � 2.241 0.000
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Algorithm 2 Transformation of posterior regression coef
ficients to posterior joint response probabilities based on 
empirical marginalization.

Let bQ ¼ ð0, :::, 0Þ

1. for draw ðlÞ  1 : L do
2.  for subject i 1 : n do
3.   for joint response q 1 : Q do

4.    Compute wqðlÞ
i ¼ b

qðlÞ
1 Ti þ b

qðlÞ
2 xi þ b

qðlÞ
3 xi � Ti

5.    Compute /qðlÞ
i ¼

exp w
qðlÞ
i½ �

PQ� 1

r¼1
exp w

rðlÞ
i½ �þ1

6.    for T  0 : 1 do

7.      Compute /qðlÞ
T ðxÞ¼ 1Pn

i¼1
IðTi¼TÞ

/
qðlÞ
i IðTi¼TÞ

8.    end for
9.   end for

10.  end for
11. end for

Appendix D. Numerical evaluation with three 
outcome variables

In the current section, we present an evaluation of the 
BMLR framework with three dependent variables.

D.1. Setup

The evaluation largely follows the setup of the simulation 
with two dependent variables (Section 4). Aspects that differ 
from this simulation will be discussed here.

D.1.1. Analysis
We presented the results of Bayesian trivariate logistic 
regression analysis and compared it to a multivariate 
Bernoulli procedure.

D.1.2. Effect size
We presented the results of the Bayesian trivariate logistic 
regression analysis for a selection of effect sizes, namely 1.1 
and 3.1. Using the three correlation structures (q < 0, q �

0, and q > 0) for each of the effect sizes resulted in the six 
data generating mechanisms presented in Table D10.

D.1.3. Sample size
Similar to the Numerical evaluation, we applied the All, Any, 
and Compensatory rules. We assigned the Compensatory 
rule unequal weights w ¼ ð0:50, 0:25, 0:25Þ:

The required sample sizes for three outcome variables 
are computed via the procedure described in Section 2.4, 
targeting at a Type I error rate of 0.05 and a power of .80. 
The sample sizes are presented in Table D11.

D.1.4. Decision rule
We performed a right-sided (superiority) test aiming at a 
Type I-error rate of a ¼ 0:05: We used a decision threshold 
pcut ¼ 1 � a ¼ 0:95 (Compensatory and All rules) and a for 
multiple tests corrected pcut ¼ 1 � a

K ¼ 0:981 (Any rule) 
(Marsman & Wagenmakers, 2016; Kavelaars et al., 2020; 
Sozu et al., 2016).

D.1.5. Procedure
To stabilize computations, we used 20,000 iterations for the 
multivariate Bernoulli model.

D.2. Results

Table D11. Required sample sizes to evaluate the average 
treatment effect (ATE) and conditional treatment effect (CATE) 
for three outcome variables.

All Any Compensatory

ES qkh , lh ATE CATE Sub ATE CATE Sub ATE CATE Sub

1.1 < 0 – – 500 – – 500 – – 500
� 0 – – 500 – – 500 – – 500
> 0 – – 500 – – 500 – – 500

3.1 < 0 – 79 500 234 20 117 153 9 77
� 0 – 79 500 255 23 128 218 14 109
> 0 – 78 500 276 26 138 284 19 142

Sub¼ expected size of subsample.

Table D10. Parameters of average treatment effects (ATEs) in 
the trial and conditional average treatment effects (CATEs) in 
a subpopulation for tree outcome variables.

ATE CATE
ES ðd1, d2, d3Þ dðwÞ qhk , hl ðd1, d2, d3Þ dðwÞ qhk , hl

1.1 D (0.000, 0.000, 0.000) 0.000 � 0.160 (0.000, 0.000, 0.000) 0.000 � 0.200
0.030 0.000
0.220 0.200

3.1 D (0.100, 0.000, 0.100) 0.075 � 0.152 (0.300, 0.200, 0.300) 0.275 � 0.200
0.040 0.000
0.232 0.200

ES¼ Effect size, D¼Discrete covariate.

Table D12. Proportions of superiority decisions for three out
come variables by data-generating mechanism, correlation, 
and decision rule.

q < 0 q ¼ 0 q > 0

ES Type mB mLR mB mLR mB mLR

Rule¼All
1.1 ATE 0.000 0.000 0.000 0.001 0.004 0.002
3.1 ATE 0.045 0.045 0.058 0.048 0.044 0.058
1.1 CATE 0.000 0.000 0.000 0.000 0.001 0.000
3.1 CATE 1:000 1:000 1:000 1:000 1:000 1:000

Rule¼Any
1.1 ATE 0.049 0.056 0.045 0.050 0.046 0.056
3.1 ATE 0:814 0:822 0:796 0:775 0:815 0:775
1.1 CATE 0.047 0.050 0.042 0.037 0.063 0.032
3.1 CATE 1:000 1:000 1:000 1:000 1:000 1:000

Rule¼ Compensatory
1.1 ATE 0.048 0.068 0.050 0.052 0.052 0.063
3.1 ATE 0:781 0:826 0:788 0:757 0:787 0:776
1.1 CATE 0.051 0.043 0.056 0.029 0.053 0.035
3.1 CATE 1:000 1:000 1:000 1:000 1:000 1:000

mB¼Multivariate Bernoulli.
mLR¼Multivariate logistic regression.
Bold-faced entries should lead to a superiority conclusion.
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