
Bayesian Testing of Scientific Expectations under Multivariate Normal
Linear Models

Joris Muldera and Xin Gub

aTilburg University; bEast China Normal University, Educational Psychology

ABSTRACT
The multivariate normal linear model is one of the most widely employed models for statis-
tical inference in applied research. Special cases include (multivariate) t testing,
(M)AN(C)OVA, (multivariate) multiple regression, and repeated measures analysis. Statistical
criteria for a model selection problem where models may have equality as well as order
constraints on the model parameters based on scientific expectations are limited however.
This paper presents a default Bayes factor for this inference problem using fractional Bayes
methodology. Group specific fractions are used to properly control prior information.
Furthermore the fractional prior is centered on the boundary of the constrained space to
properly evaluate order-constrained models. The criterion enjoys various important proper-
ties under a broad set of testing problems. The methodology is readily usable via the R
package ‘BFpack’. Applications from the social and medical sciences are provided to illus-
trate the methodology.
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Introduction

The multivariate normal linear model is one of the
most widely used statistical models for applied
research. Special cases include multivariate t testing,
multivariate analysis of variance, multivariate mul-
tiple regression, and repeated measures analysis. In
applied research scientific expectations are often for-
mulated using competing equality and order con-
straints on the parameters under this model
(Braeken et al., 2015; de Jong et al., 2017; Dogge et
al., 2019; Flore et al., 2018; Kluytmans et al., 2012;
van de Schoot et al., 2011; van Schie et al., 2016;
Vrinten et al., 2016; Well et al., 2008; Zondervan-
Zwijnenburg et al., 2020). In a repeated measures
experiment it may be anticipated that the measure-
ment means decrease over time; in an analysis of
variance a specific order of the group means may
be expected based on substantive arguments, or in
regression analyses it may be expected that certain
predictor variables have stronger effects on the
dependent variables than other predictor variables.
Given a set of constrained multivariate normal mod-
els based on competing scientific viewpoints, the
goal is to quantify the relative evidence in the data

between these models. Currently, statistical methods
for this testing problem are limited however.

Classical significance tests are not particularly suit-
able for this problem as a single null model needs to
be specified (which we would then reject or not
given the observed data), while researchers often for-
mulate multiple competing expectations which need
to be tested simultaneously. Furthermore, classical p
values are not available for testing nonnested models
such as H1 : h1 < h2 ¼ h3 versus H2 : h1 ¼ h2 < h3,
which limits their applicability. Alternatively, multiple
comparison tests can also be executed between all
possible pairs of parameters. This may however
result in conflicting conclusions (e.g., there is no evi-
dence to reject h1 ¼ h2 and h2 ¼ h3, but there is evi-
dence to reject h1 ¼ h3). Yet another approach
would be to use information criteria such as the
AIC, BIC, or DIC. These however suffer from an ill-
defined definition for the complexity for order-con-
strained models as the number of free parameters
(Mulder et al., 2009). Finally one might be tempted
to simply eyeball the estimates to draw conclusions
about the hypotheses. Drawing conclusions based on
eyeballing can be highly subjective however.
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Moreover eyeballing the estimates would not result
in a clear scale of the relative evidence in the data
between the hypotheses, where fit and complexity are
also balanced as an Occam’s razor. This scale is
needed to quantify our (un)certainty when draw-
ing inferences.

In this paper we propose a Bayes factor as criter-
ion for hypothesis testing and model selection
(Jeffreys, 1961; Kass & Raftery, 1995). The Bayes fac-
tor quantifies the relative evidence in the data
between two competing hypotheses or models, where
fit and complexity of hypotheses are balanced in a
principled manner. So far the statistical literature on
Bayes factors has mainly focused on univariate
(regression) models (e.g. Berger & Pericchi, 1996;
Casella & Moreno, 2006; Liang et al., 2008; Rouder
& Morey, 2012), with an exception of the BIEMS
method (Mulder et al., 2012). This method however
is computationally very expensive, and therefore of
limited use for general practice. The Bayes factor
that is proposed in this paper is easy to compute
and readily applicable using the R package BFpack
(Mulder et al., 2020).

As Bayes factors can be sensitive to the choice of
the prior, the proposed Bayes factor builds on frac-
tional Bayes methodology (B€oing-Messing et al.,
2017; Conigliani & O’Hagan, 2000; Fox et al., 2017;
O’Hagan, 1995, 1997). In the fractional Bayes factor
(FBF), a fractional prior is implicitly constructed
using a fraction of the information in the data while
the remaining fraction is used for marginal likeli-
hood computation (Gilks, 1995). When using a min-
imal fraction for prior specification, maximal
information is used for model selection (Berger &
Mortera, 1995). Fractional Bayes factors can therefore
be used when prior information is weak or when
researchers prefer not to include external information
about the parameters via the prior distributions.
Alternative but very similar approaches that have
been considered in the literature include the intrinsic
Bayes factor (Berger & Pericchi, 1996) and Bayes fac-
tors based on expected posterior priors (P�erez &
Berger, 2002).

The proposed Bayes factor can be used in a broad
set of testing scenarios. To ensure consistent selection
behavior in the case of (extremely) unbalanced
grouped data, different fractions are used from the
different groups to properly tune the amount of prior
information across the groups. To achieve this we
extend the methodology of De Santis and Spezzaferri
(2001) and Hoijtink et al. (2019) to the multivariate
normal model. To incorporate the relative complexity

of the underlying order constrained parameter space
that is tested, the fractional prior is centered on the
boundary of the constrained space. This was recom-
mended in Mulder (2014b) for univariate testing
problems. To be able to test hypotheses for incom-
plete data with missing observations, we show how to
compute the Bayes factors by only sampling complete
imputed data sets from the unconstrained posterior
predictive distribution. It is also shown that the
implied fractional prior is very similar to the popular
g prior (Zellner, 1986). Unlike the Bayes factor based
on the standard g prior however the proposed Bayes
factor is information consistent when the evidence
based on the observed estimates accumulates.

The paper is organized as follows. The second sec-
tion presents a general formulation of the model and
the multiple hypothesis test together with the default
Bayes factor. In the third section, various properties of
the Bayes factor is presented, such as its relation to
Bayes factor based on Zellner’s g prior and the way
model fit and complexity are properly balanced when
testing order hypotheses. In the fourth section the
method is applied to two empirical applications using
the software package ‘BFpack’. We end the paper with
a discussion.

Default Bayes factors for hypothesis testing
under multivariate normal linear models

The model and multiple hypothesis
testing problem

Under a P dimensional multivariate normal linear
model with J groups and K predictor variables, the i-
th observation of the p-th outcome variable is distrib-
uted as follows

yip ¼ l1pdi1 þ :::þ lJpdiJ þ b1pxi1 þ :::þ bKpxiK þ �ip,

(1)

where �i ¼ ð�i1, :::, �iPÞ0 � Nð0,RÞ, where dij is a
dummy group indicator which equals 1 if observation
i belongs to group j and zero elsewhere, xik is the k-th
predictor variable of observation i, ljp is the j
(adjusted) mean for the p-th outcome variable, bkp is
the effect of the k-predictor variable on the p-th out-
come variable, and R is a P�P unknown covariance
matrix. In matrix notation the model can be written
as

Y ¼ XHþ E

where the i-th row of the N� P matrix Y is
ðyi1, :::, yiPÞ, the i-th row of the N�K matrix X is
ðdi1, :::, diJ , xi1, :::, xiKÞ, L� P parameter matrix of
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(adjusted) group means and regression coefficients is
given by

H ¼

l11 � � � l1P
..
. . .

. ..
.

lJ1 � � � lJP
b11 � � � b1P
..
. . .

. ..
.

bL1 � � � bLP

2
6666666664

3
7777777775
,

and the i-th row of the N�P error matrix is
ð�i1, :::, �iPÞ: Special cases of the model include
(M)AN(C)OVA, multivariate multiple linear regres-
sion, or multivariate or univariate t testing.

In this paper we focus on confirmatory hypothesis
testing where a limited set of T equality/order hypoth-
eses are formulated based on prior scientific expecta-
tions. The T hypotheses have the following general
form with equality and order constraints on the
parameters of interest, i.e.,

Ht : Rt,Eh ¼ rt,E & Rt,Oh > rt,O, (2)

where h ¼ vecðHÞ is the vector of (adjusted) means
and regression coefficients of interest, and ½Rt,Ejrt,E�
and ½Rt,Ojrt,O� are augmented matrices containing the
coefficients of the rt,E equality constraints and rt,O
order constraints under Ht, respectively, for t ¼
1, :::,T: As none of the constrained hypotheses of
interest may fit the data well it is recommended to
also include the complement hypothesis in the ana-
lysis. The complement hypothesis covers the uncon-
strained parameter space excluding the constrained
subspaces under H1 to HT : The goal is to determine
which model receives most evidence from the data at
hand. Throughout the paper the constrained param-
eter space under Ht will be denoted
by Ht ¼ fhjRt,Eh ¼ rt, E & Rt,Oh > rt,Og:

Multiple hypothesis testing using competing equal-
ity and order constraints is useful in at least two types
of situations (see also, Hoijtink, 2011; Mulder &
Raftery, 2019). First, it may be that existing theories
or substantive beliefs can be directly translated to
hypotheses with order constraints on the key parame-
ters. See for example Jong et al. (2017) who formu-
lated hypotheses using social theories on psychological
contracts, and Braeken et al. (2015) who used the
Karasek (1979) theory of psychological strain to for-
mulate order hypotheses. Second, order hypotheses
follow naturally when a researcher has an expectation
about the direction of an effect of a predictor variable
with an ordinal measurement level. An example is
provided in the order-constrained MANOVA section.

In this application there is a grouping variable that
corresponds to increasing serum dosages in a clinical
trial. Because a positive effect is expected of the
serum, it is anticipated that the effects increase across
the dosage groups.

Finally note that the direction of the order con-
straints should not be chosen after inspecting the
data. The motivation is similar as for simple one-sided
testing. It is generally recommended that the equality
and order hypotheses of interest are preregistered (see
also Hoijtink et al., 2019; Wagenmakers et al., 2012,
among others).

A default Bayes factor for testing
constrained hypotheses

The marginal likelihood is the Bayesian predictive
probability of the data under hypothesis Ht . It is
defined as the integral over the likelihood of the data,
pðYjX,H,RÞ, and the proper prior, ptðH,RÞ, under
the constrained parameter space Ht,

ptðYÞ ¼
ð
R

ð
Ht

pðYjX,H,RÞptðH,RÞdHdR: (3)

Subsequently, the Bayes factor between two con-
strained hypotheses is defined by the ratio of the mar-
ginal likelihoods, i.e.,

B12 ¼
p1ðYÞ
p2ðYÞ

: (4)

The Bayes factor can be interpreted as the relative
evidence in the data between the two hypotheses. If
B12 ¼ 10, this implies that the data was 10 times
more likely under H1 than under H2, and thus the
first would receive 10 times more evidence from the
data. If prior probabilities are specified for the
hypotheses, the Bayes factor can update the prior
odds to obtain the posterior odds for the hypotheses
according to

PrðH1jY,XÞ
PrðH2jY,XÞ

¼ B12 �
PrðH1Þ
PrðH2Þ

:

The posterior probability of a hypothesis has an
intuitive interpretation as the probability that the
hypothesis is true after observing the data under the
assumption that one of the hypotheses under consid-
eration is true.

As is well-known, the Bayes factor can be sensitive
to the prior for testing equality constrained hypothe-
ses (Jeffreys, 1961). To avoid ad hoc or arbitrary prior
specification in the case of little prior information, we
extend the adjusted fractional Bayes factor (Mulder,
2014b; Mulder & Olsson-Collentine, 2019) to the
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multivariate normal linear model. We start by using
the (flat) noninformative improper Jeffrey prior,
pNðH,RÞ / jRj�

Pþ1
2 : As this prior is improper, we fol-

low O’Hagan (1995) and divide the marginal likeli-
hood by a marginal likelihood where the likelihood is
raised to a fraction ‘b’, so that the unknown normaliz-
ing constant of the prior cancels out,

ptðY, bÞ �
Ð
R

Ð
Ht
pðYjX,H,RÞpNðH,RÞdHdRÐ

R

Ð
Ht
pðYjX,H,RÞbpNðH,RÞdHdR

: (5)

Implicitly this results in a Bayes factor based on
a fractional prior which contains the information of
a fraction b of the complete data set while the
remaining fraction, 1� b, is used for hypoth-
esis testing.

The fractional Bayes factor however may not
result in desirable selection behavior (i) for unbal-
anced grouped data (De Santis & Spezzaferri, 2001)
and (ii) when testing order constrained hypotheses
(Mulder, 2014b). To address the first issue, differ-
ent fractions are used for the information in the
observations across different groups according to,
i.e.,

pðYjX,H,RÞb �
YN
i¼1

pðyijxi,H,RÞbi ,

with a slight abuse of notation where the likelihood is
raised to the vector b. The importance of this general-
ization is discussed in the section Group specific frac-
tions for unbalanced data.

To address the second issue, the denominator is
integrated over an adjusted integration region, H�

t ¼
fhjRt,Eðh� ĥÞ ¼ 0, Rt,Oðh� ĥÞ > 0g, so that the
Bayes factor balances between fit and complexity of
order-constrained hypotheses as an Occam’s razor.
This is shown in Section 3.3. The final marginal likeli-
hood is defined as follows

p�t ðY, bÞ �
Ð
R

Ð
Ht
pðYjX,H,RÞpNðH,RÞdHdRÐ

R

Ð
H�

t
pðYjX,H,RÞbpNðH,RÞdHdR

: (6)

More details will be given in the prior adjustment
for order-constrained testing section.

The computation of the resulting Bayes factor of a
constrained hypothesis against an unconstrained
hypothesis under the multivariate normal linear model
is summarized in the following lemma.

Lemma 1. The default Bayes factor for a constrained
model Ht of the form (2) against an unconstrained
alternative model Hu based on the marginal likelihood
in (6) can be expressed as

B�
tu ¼

f Et
cEt

� f Ot
cOt

¼ puðRt,Eh ¼ rt,EjY,XÞ
p�uðRt,Eh ¼ rt,EjY,X, bÞ

� PruðRt,Oh > rt,OjRt,Eh ¼ rt,E,Y,XÞ
Pr�uðRt,Oh > rt,OjRt,Eh ¼ rt,E,Y,X, bÞ

(7)

where the marginal unconstrained posterior and frac-
tional prior for H under Hu follow a matrix Student
t distribution and a matrix Cauchy distribution,
respectively, given by

puðHjY,XÞ ¼ T K�PðĤ, ðX0XÞ�1, S,N � K � P þ 1Þ
(8)

p�uðHjY,X, bÞ ¼ CK�PðH0, ðX0
bXbÞ�1, SbÞ, (9)

from which the conditional and marginal distributions
used for computing f Et , f

O
t , c

E
t , and cOt naturally follow,

and where h0 ¼ vecðH0Þ satisfies
½R0

t,E R0
t,O�

0
h0 ¼ ½r0t,E r0t,O�

0, the OLS estimate equals
Ĥ ¼ ðX0XÞ�1X0Y, the sums of square matrix in the
posterior equals S ¼ ðY� XĤÞ0ðY� XĤÞ, the sums of
square matrix in the fractional prior equals
Sb ¼ ðYb � XbĤbÞ0ðYb � XbĤbÞ, with
Ĥb ¼ ðX0

bXbÞ�1X0
bYb, where Yb and Xb are the

stacked matrices of yi, bi
0 and xi, bi

0, with yi, bi ¼
ffiffiffiffi
bi

p
yi

and xi, bi ¼
ffiffiffiffi
bi

p
xi, and the i-th fraction is equal to the

KþP
JNj

if the i-th observation belongs to group j, where Nj

is the sample size of group j.

Proof: See Appendix A.
The four elements in (7) can be computed using a

Monte Carlo estimate which does not require MCMC
sampling, and is computationally cheap (Appendix B).
Furthermore, the proposed fractional Bayes factor is
based on a “fractional prior”, denoted by
p�uðHjY,X, bÞ in (9), which contains the information
of a minimal sample size and which is centered on
the boundary of the constrained parameter space
(having prior location H0 which satisfies Rt,Eh0 ¼ rt,E
and Rt,Oh0 ¼ rt,O; see Appendix A).

For the multiple hypothesis test of T hypotheses
with competing equality and order constraints under
a multivariate normal linear model in (2), the default
Bayes factor defined in (7) with group specific min-
imal fractions is consistent. Consistency is a crucial
property in statistics which implies that the evidence
goes to infinity for the true constrained hypothesis
relative to the other (false) hypotheses, as the sample
size grows. A sketch of the proof for consistency can
be found in Appendix C.

In the following section we compare the behavior
of the proposed Bayes factor with alternatives and
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highlight various attractive properties for the multiple
hypothesis testing problem in (2).

Properties of the proposed methodology

In this section several properties of the proposed default
Bayes factor under multivariate normal linear models
are highlighted. For illustrative purposes we use a run-
ning example under a bivariate normal model with two
groups, and the following multiple hypothesis test,

H1 : l11 ¼ l21, l12 ¼ l22
H2 : l11 < l21, l12 < l22

H3 : complement,

where H1 assumes that the group means are equal
across the two outcome variables, H2 assumes that the
means in group 2 are larger on both outcome varia-
bles, and the complement hypothesis H3 assumes that
neither the constraints of H1 hold, nor the constraints
of H2:

Relation to Zellner’s g prior

Zellner’s (1986) g prior is a popular prior for the
regression coefficients in a linear regression model.
Under a multivariate normal linear model, the g prior
is given by

pðhjRÞ ¼ Nðh0, gR	 ðX0XÞ�1Þ,
where the tuning parameter g controls the amount of
prior information, and 	 denotes the Kronecker
product. The prior mean h0 is a “prior guess”. When
testing, say, H0 : h ¼ 0, the default choice is h0 ¼ 0,
so that the prior for h under the unconstrained alter-
native is centered around the test value (Liang et al.,
2008). A unit information prior is obtained by setting
g¼N (Kass & Wasserman, 1996).

The conditional fractional prior for the proposed
default Bayes factor under the multivariate normal lin-
ear model follows a K� P matrix normal distribution
(Appendix A), which is given by

p�uðHjR,Y,X, bÞ ¼ NK�PðH0, ðX0
bXbÞ�1,RÞ,

where Xb is the stacked matrix of rows
biðdi1, :::, diJ , xi1, :::, xiKÞ, and prior mean h0 ¼
½R�1

t,E R�1
t,O�ðr0t,E, r0t,EÞ

0 (Appendix A). The fraction bi
can be viewed as the relative amount of information
in the i-th observation that is used for specifying the
fractional prior (De Santis & Spezzaferri, 2001; Gilks,
1995; Hoijtink et al., 2019; O’Hagan, 1995). Now
assume we use the same fraction for all observations,
i.e., bi ¼ b, for all i, so that Xb ¼ bX: As a matrix

normal distribution is equivalent to a multivariate
normal prior on its vectorization, the fractional prior
can be written as

p�uðhjR,Y,X, bÞ ¼ Nðh0, b�1R	 ðX0XÞ�1Þ,

where h0 ¼ vecðH0Þ: Thus, if we set b ¼ g�1 we
obtain a multivariate generalization of the g prior.
Further note that when testing, say, H0 : h ¼ 0, the
fractional prior mean is also set to 0, similar as the g
prior. This illustrates the similarity between our
approach and Bayes factors based on g priors.

On the other hand the two priors are different in
the sense that the fractional prior is constructed by
updating a noninformative Jeffreys prior with a frac-
tion of the information in the data, while the g prior
is a proper prior that is “manually” specified. Another
difference is that for the nuisance covariance matrix
the g prior uses the improper Jeffreys prior, i.e.,

jRj�
Pþ1
2 , while the proposed method uses a proper

inverse Wishart prior containing minimal information.
A final important difference is that the proposed

adjusted fractional Bayes factor is information consist-
ent while the Bayes factor based on the standard g
prior is not information consistent (Liang et al.,
2008). Information consistency implies that the evi-
dence against an equality constrained hypothesis
diverges as the observed effect goes to infinity. To
obtain an information consistent Bayes factor based
on the g prior, a common solution is to mix g with a
prior distribution (Liang et al., 2008; Mulder et al.,
2020). To see that the proposed default Bayes factor is
information consistent, observe that the posterior in
the numerators in (7) are centered around the OLS
estimate of H: Thus, as the evidence against an equal-
ity constraint based on the observed effects accumu-
lates in the sense that Rt,Eĥ � rt,E ! 1, then B�

tu

goes to 0. To see this in our running example test of
H1 against H2, we consider data with OLS estimates
of ðl̂11, l̂21, l̂12, l̂22Þ ¼ eð�1, 0, 1, 2Þ, while increasing
e from 0 to 9, while keeping the sample sizes fixed at
N1 ¼ N2 ¼ 5 (the exact choice of the sample size does
not qualitatively affect the result). Thus, a larger value
for e implies more evidence against H1 in favor of
H2: As can be seen in Figure 1a, the evidence against
H1 accumulates in accordance with the evidence
based on the observed estimates while e increases.

Group specific fractions for unbalanced
group data

A key difference between the original fractional Bayes
factor and the proposed method is that different
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fractions are used across observations from different
groups. As described in Lemma 1 a fraction of bi ¼
KþP
JNj

is used of the i-th observation if it belongs to
group j. Thus, as there are Nj observations in group j,
the information of KþP

J observations is used from
group j, and as there are J groups, in total the frac-
tional prior contains the information of KþP obser-
vations. This is exactly equal to the minimal sample
size to obtain a proper posterior under the uncon-
strained model when using the Jefferys priors (also
called minimal training sample size in the objective
Bayes factor literature; see Berger and Pericchi (2004),
for example).

The use of group specific fractions is important to
properly control the amount of information from
every group that is used to construct the fractional
prior. For the running example with two groups,
straightforward calculation reveals that the scale

matrix in the fractional prior equals ðX0
bXbÞ�1 ¼

diag J
KþP ,

J
KþP

� �
, which is independent of the sample

sizes N1 and N2 across groups. Instead when equal
fractions would be used, i.e., bi ¼ b, then
ðX0

bXbÞ�1 ¼ diagðb�1N�1
1 , b�1N�1

2 Þ, then the prior
scale would be unequal for both group means in the
case of unbalanced data. It has been noted in the lit-
erature that using the same fraction across different
groups results in inconsistent selection behavior (De
Santis & Spezzaferri, 2001; Hoijtink et al., 2019).

To see that the proposed fractional Bayes factor
results in consistent behavior for unbalanced data
under the multivariate normal model, we investigate
the Bayes factor in our running example for a sample
size of N1 ¼ 5 for group 1 while the sample size of
group N2 increases from N2 ¼ 5 to 195 when the esti-
mates remain fixed at ðl̂11, l̂21, l̂12, l̂22Þ ¼
ð�1, 0, 1, 2Þ: In this case we expect that the evidence
for H1 against H2 decreases as the estimates are in
agreement with the constraints of H2 and we increase
the sample size for group 2. Figure 1b shows that this
is only the case for the proposed Bayes factor with
group specific fractions. When using the sample

Figure 1. (a) Illustration of information consistent behavior for the proposed Bayes factor when the observed effect e increases.
(b) Illustration of the effect of different fractions across groups when the sample in group 1 is fixed at N1 ¼ 5 and the sample in
group 2 increases. (c) Illustration of the difference between the adjusted prior mean and the unadjusted (OLS) prior mean. (d)
Illustration of the change in evidence when increasing the number of random missing observations using list-wise deletion and
sampling missings from the posterior predictive distribution.
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fraction on the other hand we see that the evidence
for the equality hypothesis increases when the sample
size for group 2 increases. This is caused by the frac-
tional prior for group 1 which becomes more vague
when the sample size of group 2 increases. This is
essentially an illustration of the Bartlett-Lindley-
Jeffreys paradox (Bartlett, 1957; Jeffreys, 1961;
Lindley, 1957).

Prior adjustment for order-constrained testing

Due to the adjusted parameter space H�
t in the

numerator in (5), the implied fractional prior is cen-
tered on the boundary of the constrained space
because Rt,Eh0 ¼ rt,E and Rt,Oh0 ¼ rt,O hold, where h0
is the vectorization of the prior location H0: As the
prior probability that the order constraints hold serves
as a measure of relative complexity of order-con-
strained parameter spaces (Klugkist et al., 2005;
Mulder et al., 2010), centering the prior on the
boundary results in a Bayes factor that properly incor-
porates the relative complexity of order-constrained
hypotheses (Mulder, 2014a).

When using the original fractional Bayes factor, the
fractional prior is centered around the OLS estimate,
and therefore when the order constraints are sup-
ported by the data (in the sense that the OLS estimate
is located in the constrained parameter space) the
fractional Bayes factor may not properly balance
model fit and complexity as an “Occam’s razor”. To
see this in our running example we consider data
where the estimates are ðl̂11, l̂21, l̂12, l̂22Þ ¼
eð�1, 0, 1, 2Þ, and we let e go from 0 (no effect) to 9
(in the direction of H2). Figure 1c shows the adjusted
fractional Bayes factor and the original (unadjusted)
fractional Bayes factor for the order hypothesis H2

against an unconstrained hypothesis where
ðl̂11, l̂21, l̂12, l̂22Þ 2 R

4 as a function of the effect e.
As the effect increases, the order hypothesis and the
unconstrained hypothesis gradually receive the same
amount of evidence from the data by the original frac-
tional Bayes factor even though the constraints of the
order hypothesis has a good fit and the order con-
strained subspace only covers a proportion of the
complete unconstrained parameter space R

4: The
adjusted FBF on the other hand converges to log ð4Þ
because the posterior probability that the constraints
hold goes to 1 and the prior probability remains fixed
at 1

4 due to the prior adjustment.

Hypothesis testing with missing observations

Missing data are ubiquitous in statistical practice. In a
Bayesian framework the natural solution to missing
data is to sample the data that are missing at random
using the posterior predictive distribution given the
observed data. Thereby, the uncertainty induced by
the missing observations is properly incorporated
when making inferences given the observed data
(Rubin, 1987, 1996).

In hypothesis testing and model selection problems
this would imply that we would need to use the pos-
terior predictive distribution under every separate
model when computing the marginal likelihoods. This
can be computationally intensive when the number of
models is large and when the models under investiga-
tion also contain order constraints. The advantage of
the proposed method however is that direct computa-
tion of the marginal likelihoods under the models is
avoided, and instead all the necessary components to
compute the Bayes factors using (7) are carried out
under the unconstrained model. This implies that we
only need to estimate the components for all con-
strained hypotheses using the same posterior predict-
ive distribution under an unconstrained model (see
also Hoijtink et al., 2019). Thereby we build on the
multiple imputation framework where missing obser-
vations are imputed from a posterior predictive distri-
bution assuming a properly specified missing data
model (Rubin, 1996). As such, a proper quantification
of the relative evidence between the hypotheses given
the observed data is only obtained when the missing
observations are missing at random (MAR), assuming
a well-specified model for the missing observations,
possibly with additional auxiliary variables, and
assuming there is enough information in the
observed data.

We illustrate how this works for the posterior
probability that the order constraints of H2 hold given
the observed data, i.e., the numerator in the second
factor in (7), when certain observations are missing at
random. The computation is a direct application of
the law of total probability:

Pruðl11 < l21, l12 < l22jYobs,XobsÞ ¼ð ð
Pruðl11 < l21, l12 < l22jYobs,Xobs,Ymiss,XmissÞ

puðYmiss,XmissjYobs,XobsÞdYmissdXmiss 
 M�1
XM
m¼1

Pru

ðl11 < l21, l12 < l22jYobs,Xobs,Y
ðmÞ
miss,X

ðmÞ
missÞ

where puðYmiss,XmissjYobs,XobsÞ denotes the posterior
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predictive distribution of the missings under the
unconstrained model, and ðYðmÞ

miss,X
ðmÞ
missÞ denotes the

m-th draw from the posterior predictive distribution.
Thus, the posterior probability based on the observed
data can simply be computed as the arithmetic aver-
age of the probabilities based on the M complete data
where the missings were sampled from the uncon-
strained posterior predictive distribution. This holds
for all the four quantities in (7) for all constrained
hypotheses of interest. The R package mice can easily
be used for imputing random draws from the poster-
ior predictive distribution (van Buuren, 2018; van
Buuren & Groothuis-Oudshoorn, 2011).

As an illustration, we evaluate the evidence for H2

versus H1 while increasing the number of random
missings in a given dataset of size N1 ¼ N2 ¼ 15 and
ðl̂11, l̂21, l̂12, l̂22Þ ¼ ð�1, 0, 1, 2Þ: Over 19 steps, a ran-
dom dependent variable of a random complete case
was generated consecutively between the two groups.
We compare the result when using list-wise deletion
which is known to bias the results in estimation prob-
lems. The result is displayed in Figure 1d. As we can
see using the posterior predictive distribution the evi-
dence decreases more gradually (but still noisy due to
the random selection of missings) than when using
list-wise deletion. Further observe that in the last step
when 19 cases have one missing observation we still
see there is some evidence in the direction of H2

when using the posterior predictive distribution but
the evidence is essentially zero when only using the
complete cases.

Empirical applications

In this section we consider two applications of the
proposed Bayesian hypothesis testing procedure. The
R code can be found in Appendix D.

Order-constrained MANOVA

Silvapulle and Sen (2004) described an application
where four groups of 10 male Fischer-344 rats
received different dosages of vinylidene fluoride. Of

each rat three serum enzymes were measured: SDH,
SGOT, and SGPT. It was expected that these serum
levels were affected by vinylidene fluoride. As groups
1 to 4 received increasing dosage, it is was expected
that the mean serum levels increased over the groups,
i.e.,

H1 : l1 ¼ l2 ¼ l3 ¼ l4
H2 : l1 < l2 < l3 < l4

H3 : neither H1, nor H2,

where lj ¼ ðlj1, lj2, lj3Þ denotes the serum means of
SDH, SGOT, and SGPT in group j, for j ¼ 1, :::, 4:
Equal prior probabilities are assumed for the three
hypotheses, i.e., PðH1Þ ¼ PðH2Þ ¼ PðH3Þ ¼ 1

3 : The
data are part of the goric package (Gerhard & Kuiper,
2020). The descriptives of the data are given in
Table 1.

To compute the Bayes factor, first the multivariate
model needs to be fit using the standard lm function.

install.packages("BFpack")

install.packages("goric")

library(BFpack)

mlm1 <- lm(cbind(SDH,SGOT,SGPT) � -1 þ dose,
data¼ goric::vinylidene)

The constrained hypotheses are formulated using
character strings on the named parameters (where
x1_on_y1 denotes the effect of named predictor vari-
able x1 on the named outcome variable y1, different
constraints within the same hypothesis are separated
with a ampersand (‘&’), and hypotheses are separated
with a semi-colon “;”). To see the possible named
parameters on which constraints can be formulated,
the function get_estimates can be used via get_estima-
tes(mlm1).1 For example dosed1_on_SDH is the mean
of the serum enzym SDH for group with dose 1.
Bayes factors and posterior probabilities can be
obtained by plugging in the object mlm1 and the
string with hypotheses in the BF function
from BFpack:

Table 1. Unconstrained estimates and properties of the rats data with levels of enzyme type SDH (y1), enzyme type SGOT (y2),
and enzyme type SGPT (y3). Note. SDH¼ sorbitol dehydrogenase. SGOT¼ serum glutamic oxaloacetic transaminase.
SGPT¼ serum gtutamic-pyruvic transaminase.

group
parameter estimate ± standard error

sample size fraction
SDH SGOT SGPT SDH SGOT SGPT

1 l 11 l12 l13 22.7 ± 1.1 99.3 ± 5.0 61.9 ± 1.7 10 .175
2 l21 l22 l23 22.8 ± 1.1 108.4 ± 5.0 63.8 ± 1.7 10 .175
3 l31 l32 l33 23.7 ± 1.1 100.9 ± 5.0 60.2 ± 1.7 10 .175
4 l41 l42 l43 27.3 ± 1.1 112.9 ± 5.0 52.9 ± 1.7 10 .175

For more information about testing hypotheses using the R package
‘BFpack’ we refer the interested to Mulder et al. (in press).
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hypothesis <- "dosed1_on_SDH¼ dosed2_on_ SDH
¼ dosed3_on_SDH ¼
dosed4_on_SDH & dosed1_on_SGOT¼
dosed2_on_ SGOT¼ dosed3_on_SGOT ¼
dosed4_on_SGOT & dosed1_on_SGPT¼
dosed2_on_ SGPT¼ dosed3_on_SGPT ¼
dosed4_on_SGPT; dosed1_on_SDH<
dosed2_on_ SDH< dosed3_on_SDH <

dosed4_on_SDH & dosed1_on_SGOT<
dosed2_on_ SGOT< dosed3_on_SGOT <

dosed4_on_SGOT & dosed1_on_SGPT<
dosed2_on_ SGPT< dosed3_on_SGPT <

dosed4_on_SGPT"
set.seed(12) BF1
<- BF(mlm1, hypothesis) print(BF1)

round(BF1$BFtable_confirmatory,3)

Table 2 shows the four quantities f Et , c
E
t , f

O
t , and cOt

from (7), the posterior probabilities of the three mod-
els, and the Bayes factors. By default BFpack uses
equal prior probabilities, so that the posterior odds
between pairs of hypotheses correspond with the
respective Bayes factors. Based on these results we
obtain very strong evidence for the complement
hypothesis H3: Note that eyeballing the estimates also
showed no evidence in the direction of the order
hypothesis. The Bayesian analysis confirms this result
and provides an exact quantification of the relative of
evidence in the data between the three hypotheses.

Constrained multivariate multiple regression

Stevens (1996) presented a study concerning the effect
of the first year of watching the Sesame street series
on the knowledge of 240 children in the age range 34
to 69months. To illustrate the Bayesian hypothesis
test in the context of a multivariate multiple

regression model, the outcome variables y1 and y2,
which are the knowledge of body parts and the know-
ledge of numbers of children after watching Sesame
Street, respectively, are regressed on x1 and x2, which
are the knowledge of body parts and the knowledge of
numbers of children before watching Sesame Street
for a year. To facilitate replicability of this application,
the data are taken from the R package bain (Gu et al.,
2019; 2020). First we perform an analysis on the com-
plete data. Second, we randomly generate 20% missing
observations and perform the analysis on the list-wise
deleted data, and perform the analysis using on
imputed data with the posterior predictive distribution
(using the mice package van Buuren & Groothuis-
Oudshoorn, 2011).

The following multivariate multiple regression
model will be used for i ¼ 1, ::,N, where N ¼ 240
denotes the sample size:

yi1 ¼ l11 þ b11xi1 þ b21xi2 þ ei1
yi2 ¼ l12 þ b12xi1 þ b22xi2 þ ei2
ei1
ei2

� �
� N 0

0

� �
,

r21 r12
r21 r22

� �� �
:

(10)

Note that this is a cross lagged panel model with
two measurement occasions. Note that, in order to
ensure comparability of the regression coefficients, in
this application each imputed data matrix (see below)
is standardized.

The goal is to test whether the knowledge of num-
bers and letters before watching Sesame Street can
predict the knowledge of numbers and letters after
watching. Given the two different skills, it was
expected that the knowledge of letters after watching
Sesame Street can better be predicted by the know-
ledge of letters before watching Sesame Street than by
the knowledge of numbers before watching Sesame
Street. In the same line of reasoning, the knowledge
of numbers after watching Sesame Street can better be
predicted by the knowledge of numbers before watch-
ing Sesame Street than the knowledge of letters before
watching Sesame Street. Furthermore, as these types
of abilities are very often positively correlated, it was
expected that all effects were positive. This results in
the following order (or ‘informative’) hypothesis H1,
which will be tested against a traditional null

Table 2. Bayesian model selection for the rats application. In the second, third, fourth, fifth, sixth and seventh column, the rela-
tive measures of fit of the equality constraints, complexity of the equality constraints, fit of the order constraints, complexity of
the order constraints, the Bayes factors against an unconstrained alternative (Equation (7)), and the posterior probability are pre-
sented, respectively.
Model f Et cEt f Ot cOt Btu Bt1 Bt2 Bt3 PðHtjyÞ
H1 1.62e–15 1.86e–13 .009 1.000 1795.995 0.009 .009
H2 1.40e–08 2.36e–3 .000 0.001 1.000 0.000 .000
H3 1.000 0.998 1.002 106.057 190478.668 1.000 .991

Table 3. Unconstrained estimates for the Sesame Street
application.
parameter estimate standard error correlation matrix

b11 .505 .066 1.00
b21 .188 .066 �.664 1.00
b12 .327 .062 .375 �.249 1.00
b22 .441 .062 �.249 .375 �.664 1.00
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hypothesis (here denoted by H2) and a complement
hypothesis, denoted by H3 :

H1 : b11 > b21 > 0 b22 > b12 > 0
H2 : b11 ¼ b21 ¼ 0 b22 ¼ b12 ¼ 0

H3 : neither H1, nor H2:

Note that it would also be possible to test con-
straints across dimensions (e.g., b11 against b12). For
illustrative purposes we limit ourselves to only testing
constraints within the same dimension.

First, we perform an analysis on the complete data
set. The descriptive statistics can be found in Table 3.
The multivariate regression model is fit using the ‘lm’
function, and the hypotheses are formulated on the
named parameters:

library(BFpack)

# standardize data

sesamesim_st <- as.data.frame(scale(bain::
sesamesim))[,c(10,13,16,19)]

# fit model

mlm2 <- lm(cbind(Ab, An) � 1 þ BbþBn,
data¼ sesamesim_st)

# formulate hypotheses

hypothesis <-

"Bn_on_An>Bb_on_An > 0 & Bb_on_Ab>
Bn_on_Ab > 0;

Bn_on_An¼Bb_on_An ¼ 0 & Bb_on_Ab¼
Bn_on_Ab ¼ 0"

# perform Bayesian hypothesis test

set.seed(123)

BF2 <- BF(mlm2, hypothesis¼ hypothesis)

In the formulation of the hypothesis, the named
parameter Bb_on_An denotes the effect of know-
ledge on body parts before watching Sesame Street
(‘Bb’) on knowledge of numbers after watching
Sesame Street (‘An’), i.e., b21: Table 4 shows the
resulting Bayes factors and posterior probabilities,
together with their building blocks in (7). The
results indicate that the null hypothesis H2 can be
safely ruled out. Moreover, there is approximately
700 times more evidence for the order hypothesis

H1 against the complement H3 as can be seen from
the Bayes factor B13 ¼ 699:11:

Next we perform an analysis after creating 20% of
random missing observations in the data. The
complete R code can be found in Appendix D. After
list-wise deletion only have 94 complete cases
left. Computing the Bayes factors
for H1 against H2 and H3 yields B12 ¼ 4:6e12 and
B13 ¼ 19:05, respectively. This illustrates a clear loss
of the evidence in favor of the most supported
hypothesis, H1:

Now we compute the Bayes factors by first estimat-
ing the four different ingredients f Et , c

E
t , f

O
t , and cOt

using the posterior predictive distribution of the
observed data (hypothesis testing with missing obser-
vations section). This was done using the mice pack-
age (van Buuren & Groothuis-Oudshoorn, 2011)
(Appendix D). This results in Bayes factors of B12 ¼
1:0e36 and B13 ¼ 362:76: As can be seen, the evi-
dence for H1 is considerably larger in comparison to
the analysis after list-wise deletion. This can be
explained from the fact that this analysis uses all the
available information in the observed data while the
analysis after list-wise deletion only uses the informa-
tion from the complete cases in the data.

Discussion

A default Bayes factor was proposed for evaluating
multivariate normal linear models with competing sets
of equality and order constraints on the parameters of
interest. The methodology has the following attractive
features. First the method can be used for evaluating
statistics models with equality as well as order con-
straints on the parameters of interest. The possibility
of order constrained testing is particularly useful in
the applied sciences where researchers often formulate
their scientific expectations using order constraints.
Second, the method is fully automatic and therefore
can be applied when prior information is weak or
completely unavailable. The fractional prior is based
on a minimal fraction of the information in the
observed data of every group so that maximal infor-
mation is used for model selection. Third, the Bayes

Table 4. Bayesian Hypothesis Evaluation for the Sesame Street application. In the second, third, fourth, fifth, sixth and seventh
column, the relative measures of fit of the equality constraints, complexity of the equality constraints, fit of the order constraints,
complexity of the order constraints, the Bayes factors against an unconstrained alternative (Equation (7)), and the posterior prob-
ability are presented, respectively.
Model f Et cEt f Ot cOt Btu Bt1 Bt2 Bt3 PðHtjyÞ
H1 0.836 0.007 115.409 1.000 2.8e44 699.11 0.999
H2 0.000 0.107 0.000 0.000 1.000 0.000 0.000
H3 0.164 0.993 0.165 0.001 4.0e41 1.000 0.001

776 J. MULDER AND X. GU



factor is relatively simple to compute via Monte Carlo
estimation that can be done in parallel. The Bayes fac-
tor has analytic expressions for special cases. Fourth
the criterion is consistent which implies that the true
constrained model will always be selected it the sam-
ple is large enough. Fifth, in the presence of missing
data that are missing at random, the Bayes factor can
be computed relatively easily using a multiple imput-
ation method only under the unconstrained model. In
sum, the method gives substantive researchers a sim-
ple tool for quantifying the evidence between compet-
ing scientific expectations while also correcting for
missing data that are missing at random (MAR) for
many popular models including (multivariate) linear
regression, (M)AN(C)OVA, repeated measures.

The methodology is implemented in the R-package
BFpack (cran.r-project.org/web/packages/BFpack/
index.html) which allows the applied statistical com-
munity to use the methodology in a relatively easy
manner. We recommend the proposed methodology
and software for default testing of multiple equality/
order hypotheses when clear prior information about
the magnitude of the parameters is absent or if
researchers prefer to refrain from using informative
priors. The hypotheses need to have been formulated
before inspecting the data. Ideally, the hypotheses of
interest have been preregistered to avoid possible bias
on the reported evidence between the hypotheses
(Hoijtink et al., 2019; Wagenmakers et al., 2012).
Researchers can choose to either report the posterior
probabilities of the formulated hypotheses or to report
the Bayes factors between all pairs of hypotheses. Both
are directly available using BFpack. One may prefer to
report Bayes factors when clear prior beliefs about the
hypotheses are absent.

The proposed methodology was specifically
designed under the multivariate normal model which
assumes normally distributed errors. Therefore a rea-
sonable question is how robust our approach is to
violations of this assumption. Answering this question
falls outside of the scope of the current paper. This
may be interesting for future work. We expect that
the robustness of our approach is comparable to other
(Bayesian and non Bayesian) approaches as the
unconstrained posterior (which is the main building
block for the proposed Bayes factor) becomes approxi-
mately normal for moderate to large samples (abiding
large sample theory). Furthermore the robustness of
Bayes factors to violations of normality reported in
van Wesel et al. (2011) and B€oing-Messing and
Mulder (2018) was not alarming.

The proposed adjusted fractional Bayes method-
ology can also be extended to generalized linear mod-
els for non-normal data. This would yet be another
interesting direction for future research. Until an exact
Bayes factor test is available, we recommend using the
approximate Bayes factor (Gu et al., 2018) as imple-
mented in the R packages BFpack (Mulder et al.,
2020) and bain (Gu et al., 2020, 2019).

As the goal of Bayesian hypothesis testing is not to
control unconditional type I and type II error proba-
bilities, but to quantify the relative evidence between
hypotheses and to quantify conditional error probabil-
ities given the observed data (via the posterior proba-
bilities), no numerical simulations were presented to
explore specificity and sensitivity. Moreover, due to
the generality of the proposed method (allowing a
very broad class of equality/order hypotheses under
many different designs, such as (multivariate) t tests,
(M)AN(C)OVA, and (multivariate) regression), such
simulations would only give a narrow view under very
controlled settings. Further note that due to the con-
sistency of the proposed Bayes factor, the type I and
type II error probabilities will go to 0 by definition as
the sample size grows. It may be interesting however
to explore specificity and sensitivity under certain
common designs. We leave this for future work.

In this paper the Bayes factor was used as a con-
firmatory tool for model selection among a specific
set of models with equality and/or order constraints.
Equal model prior model probabilities were consid-
ered under the assumption that all models were
(approximately) equally plausible based on substantive
justifications before observing the data. In a more
exploratory setting other choices may be preferable,
(e.g., see Scott & Berger, 2006, who considered a
model selection problem of many competing equality
constrained models). It will be interesting to investi-
gate how prior model probabilities should be specified
in such exploratory settings when models may contain
equality as well as order constraints on the parameters
of interest.
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A Derivation of the Bayes factor

The constrained hypothesis, Ht : Rt, Eh ¼ rt,E & Rt,Oh >
rt,O in (2), can equivalently be written on the transformed
parameter vector

ft ¼
ft,E
ft,O
ft,D

2
4

3
5 ¼

Rt,E

Rt,O

Dt

2
4

3
5h ¼ Rth,

so that Ht : ft,E ¼ rt,E & ft,O > rt,O, where Dt is a dummy
matrix with independent rows that are permutations of

ð1, 0, :::, 0Þ, so that the transformation is one-to-one. In this
parameterization, the (unconstrained) nuisance parameters
are ft,D and R: The adjusted parameter space, H�

t ¼
fhjRt,Eðh� ĥÞ ¼ 0, Rt,Oðh� ĥÞ > 0g, then becomes Z�

t ¼
fftjft,E � f̂t, E ¼ 0, ft,O � f̂t,O > 0g,
where f̂t, E ¼ Rt,Eĥ and f̂t,O ¼ Rt,Oĥ:

The marginal likelihood under Ht in (5) can then
equivalently be written as

p�t ðY, bÞ ¼
Ð Ð Ð

ft,O>rt,O
pðYjX, ft,E ¼ rt,E, ft,O, ft,D,RÞjRj�

Pþ1
2 dft,Odft,DdRÐ Ð Ð

ft,O>f̂ t,O
pðYjX, ft,E ¼ f̂t,E , ft,O , ft,D ,RÞbjRj�

Pþ1
2 dft,Odft,DdR

,

and the marginal likelihood under an unconstrained alter-
native, Hu, equals

puðY, bÞ ¼
Ð Ð Ð Ð

pðYjX, ft,E , ft,O , ft,D ,RÞjRj�
Pþ1
2 dft,Edft,Odft,DdRÐ Ð Ð Ð

pðYjX, ft,E , ft,O , ft,D ,RÞbjRj�
Pþ1
2 dft,Edft,Odft,DdR

:

Thus, the Bayes factor can be written as

Btu ¼ p�t ðY, bÞ
puðY, bÞ

¼
Ð Ð Ð

ft,O>rt,O
pðYjX, ft, E ¼ rt,E , ft,O , ft,D ,RÞjRj�

Pþ1
2 dft,Od, ft,DdRÐ Ð Ð

ft,O>f̂ t,O
pðYjX, ft, E ¼ f̂ t,E , ft,O , ft,D ,RÞbjRj�

Pþ1
2 dft,Od, ft,DdR

=

Ð Ð Ð Ð
pðYjX, ft,E , ft,O , ft,D ,RÞjRj�

Pþ1
2 dft,Edft,Odft,DdRÐ Ð Ð Ð

pðYjX, ft, E , ft,O , ft,D ,RÞbjRj�
Pþ1
2 dft, Edft,Odft,DdR

¼
Ð Ð Ð

ft,O>rt,O

pðYjX, ft,E ¼ rt, E , ft,O , ft,D ,RÞjRj�
Pþ1
2Ð Ð Ð Ð

pðYjX, ft,E , ft,O , ft,D ,RÞjRj�
Pþ1
2 dft,Edft,Odft,DdR

dft,Odft,DdR=

Ð Ð Ð
ft,O>f̂ t,O

pðYjX, ft,E ¼ f̂ t, E , ft,O , ft,D ,RÞbjRj�
Pþ1
2Ð Ð Ð Ð

pðYjX, ft,E , ft,O , ft,D ,RÞbjRj�
Pþ1
2 dft,Edft,Odft,DdR

dftdR

¼
Ð Ð Ð

ft,O>rt,O
puðft, E ¼ rt, E , ft,O , ft,D ,RjY,XÞdft,Odft,DdR=Ð Ð Ð

ft,O>f̂ t,O
puðft, E ¼ f̂ t,E , ft,O , ft,D ,RjY,X, bÞdft,Odft,DdR

¼
Ð
ft,O>rt,O

puðft,E ¼ rt, E , ft,OjY,XÞdft,OÐ
ft,O>f̂ t,O

puðft,E ¼ rt, E , ft,OjY,X, bÞdft,O

¼ puðft, E ¼ rt, EjY,XÞ
puðft, E ¼ f̂ t,EjY,X, bÞ

� Pruðft,O > rt,Ojft,E ¼ rt, E ,Y,XÞ
Pruðft,O > f̂ t,Ojft, E ¼ rt,E ,Y,X, bÞ

¼ puðft,E ¼ rt, EjY,XÞ
p�uðft, E ¼ rt,EjY,X, bÞ

� Pruðft,O > rt,Ojft, E ¼ rt,E ,Y,XÞ
Pr�uðft,O > rt,Ojft, E ¼ rt, E ,Y,X, bÞ

¼ puðRt,Eh ¼ rt, EjY,XÞ
p�uðRt,Eh ¼ rt,EjY,X, bÞ

� PruðRt,Oh > rt,OjRt,Eh ¼ rt, E ,Y,XÞ
Pr�uðRt,Oh > rt,OjRt,Eh,Y,X, bÞ

,

(11)

where the adjusted default prior in the second last step is
given by

p�uðft,E, ft,OjY,X, bÞ ¼ puðft,E þ f̂t,E � rt,E, ft,O þ f̂t,O

� rt,OjY,X, bÞ,
which is centered at ðrt,E, rt,OÞ, so that is located on the

boundary of the constrained space, unlike the underlying
default prior based on the original fractional Bayes factor
which is centered at the ML estimates ðf̂t, E, f̂t,OÞ:

Next we derive the unconstrained marginal and condi-
tional posteriors by applying Bayes’ theorem under Hu,

puðh,RjY,XÞ / jRj�
Pþ1
2 pðYjX,H,RÞ

/ jRj�
NþPþ1

2 exp f� 1
2
tr R�1ðY� XHÞ0ðY� XHÞg

/ puðHjY,X,RÞpuðRjY,XÞ,
with pðHjY,X,RÞ ¼ N K, PðĤ, ðX0XÞ�1,RÞ

(12)

pðRjY,XÞ ¼ IWðN � K, SÞ (13)

where the least squares estimate is given by Ĥ ¼
ðX0XÞ�1X0Y and the sums of square matrix equals S ¼
ðY� XĤÞ0ðY� XĤÞ: Furthermore, N K,P and IW denote
a matrix normal distribution for a K � P matrix and an
inverse Wishart distribution, respectively. Note that the
conditional posterior distribution for H is equivalent to a
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multivariate normal on the vectorization, pðhjY,X,RÞ ¼
N ðĥ,R	 ðX0XÞ�1Þ: Integrating the covariance matrix out
results in a marginal posterior for H having a K � P matrix
Student t distribution,

pðHjY,XÞ ¼ T K,PðĤ, ðX0XÞ�1, S,N � K � Pþ 1Þ:
The unconstrained fractional prior is obtained by first rais-

ing the likelihood of the i-th observation to a fraction bi, i.e.,

pðyij~x i,H,RÞbi / jRj�
bi
2 exp f� bi

2
ðyi �H0~x iÞ0R�1ðyi �H0~x iÞg

¼ jRj�
bi
2 exp f� 1

2
ðyi, bi �H0~x i, biÞ

0R�1ðyi, bi �H0~x i, biÞg,

where yi, bi ¼
ffiffiffiffi
bi

p
yi and ~x i, bi ¼

ffiffiffiffi
bi

p
~x i, with ~x 0i ¼ ðdi, x0iÞ:

The likelihood raised to observation specific fractions is
then defined as

pðYjX,H,RÞb �
Yn
i¼1

pðyij~x i ,H,RÞbi

/ jRj
�1

2

Xn
i¼1

bi
exp f� 1

2
tr R�1ðYb � XbHÞ0ðYb � XbHÞg

¼ jRj
�1

2

Xn
i¼1

bi
exp f� 1

2
tr R�1Sbg

exp f� 1
2
tr R�1ðH� ĤbÞ0X0

bXbðH� ĤbÞg,

where the least squares estimate is given by Ĥb ¼
ðX0

bXbÞ�1X0
bYb and the sums of square matrix equals Sb ¼

ðYb � XbĤbÞ0ðYb � XbĤbÞ, and Yb and Xb are the stacked
matrices of yi, bi

0 and ~xi, bi
0, respectively. In combination

with the improper noninformative independence Jeffreys’
prior, the fractional prior based on generalized fractional
Bayes methodology can then be written as

puðH,RjY,X, bÞ / jRj�
Pþ1
2 pðYjX,H,RÞb

/ pðHjR,Y,X, bÞpuðRjY,X, bÞ,
with puðHjR,Y,X, bÞ ¼ N K,PðĤb, ðX0

bXbÞ�1,RÞ,

puðRjY,X, bÞ ¼ IWð
Xn
i¼1

bi � K, SbÞ,

so that

puðHjY,X, bÞ ¼ T K,PðĤb, Sb, ðX0
bXbÞ�1,

XN
i¼1

bi � K � P

þ 1Þ:
The adjusted fractional prior is obtained by shifting the

fractional prior to the location H0, such that Rt, Eh0 ¼
rt,E and Rt,Oh0 ¼ rt,O holds, i.e., h0 ¼ ½R�1

t,E R�1
t,O�½r0t,E r0t,O�

0,
where we use the generalized Moore-Penrose matrix
inverse. This yields

p�uðHjY,X, bÞ ¼ puðHþ Ĥb �H0jY,X, bÞ

¼ T K,PðH0, Sb, ðX0
bXbÞ�1,

XN
i¼1

bi � K � P þ 1Þ,

which is equivalent to

p�uðHjR,Y,X, bÞ ¼ N K, PðH0, ðX0
bXbÞ�1,RÞ

p�uðRjY,X, bÞ ¼ IWð
XN
i¼1

bi � K, SbÞ:

B Bayes factor computation

B.1. General case

If the marginal posterior for the parameter matrix H has a
matrix-variate Student t distribution, the marginal posterior
of the vectorization h ¼ vecðHÞ does not follow a multivari-
ate Student t distribution; only the marginal distributions of
the separate columns or rows of H have multivariate t distri-
butions (Box & Tiao, 1973, p. 443). Consequently, a linear
combination of the elements in h, say, ft,E ¼ Rt,Eh, does not
have a multivariate student t distribution or other known dis-
tributional form for a coefficient matrix Rt,E in general.
Therefore, the posterior density in the numerator in the first
term in (7) does not have an analytic form. A Monte Carlo
estimate can be obtained relatively easy however. First we
define the one-to-one transformation as in Appendix A, i.e.,
ft ¼ ðf0t, E, f0t,O, f0t,DÞ

0 ¼ R0
t,E,R

0
t,O,D

0
t

	 

h ¼ Rth: Conditionally

on R, the transformed parameters, ft , have a multivariate
normal conditional posterior, Nðlft ,WftÞ, with lft ¼
Rtĥ and Wft ¼ Rt½R	 ðX0XÞ�1�R0

t: Then,
puðRt,Eh ¼ rt, EjY,XÞ

¼
ð ð

puðft, E ¼ rt, E, ft,O, ft,DjY,XÞdft,Odft,D ¼
ð ð ð

puðft, E

¼ rt, E, ft,O, ft,DjY,X,RÞpuðRjY,XÞdRdft,Odft,D


 S�1
XS
s¼1

N rt, Eðrt,E;Rt,Eĥ,Rt,E RðsÞ 	 ðX0XÞ�1
h i

R0
t,EÞ, (14)

where RðsÞ � IWðN � K, SÞ, for s ¼ 1, :::, S, and
N rt, Eðr;l,WÞ denotes a rt, E-variate normal density with
mean vector l and covariance matrix W evaluated at r,
which has an analytic expression (in R, for instance, it can
be computed using the dmvnorm function from the
mvtnorm package). This Monte Carlo estimate can be
obtained via parallelized computation, and it is therefore
computationally cheap.

The conditional posterior probability in the numerator
in the second term can be obtained in a similar manner.
First note that the order constraints Rt,Oh > rt,O for the
transformed parameter vector are equivalent to ft,O > rt,O:
Furthermore, a property of the multivariate normal distri-
bution is that the conditional posterior of
ðft,O, ft,DÞ given ft,E ¼ rt,E has a multivariate normal distri-
bution, and the respective marginal (conditional) posterior
of ft,O also has a multivariate normal distribution where we
denote the mean and covariance matrix by
lft ,OjE and Wft ,OjE, respectively.
PruðRt,Oh > rt,OjRt,Eh ¼ rt, E,Y,XÞ ¼ Pruðft,O > rt,Ojft,E

¼ rt, E,Y,XÞ 
 S�1
XS
s¼1

UN ð�rt,O;�lft ,OjE,W
ðsÞ
ft ,OjEÞ,

where WðsÞ
ft ,OjE is computed using the s-th posterior draw of

the error covariance matrix, RðsÞ � IWðN � K, SÞ, for s ¼
1, :::, S, and UN denotes the multivariate normal cdf. Note
that the cdf can be computed using standard statistical soft-
ware (e.g., using the pmvnorm function from the mvtnorm
package in R).
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Note that if the sample size is sufficiently large, the
matrix t can be well approximated using a matrix normal
distribution, N K�PðĤ, ðX0XÞ�1, ðN � K � P þ 1Þ�1SÞ (Box
& Tiao, 1973, p. 447). In this case no Monte Carlo estimate
would be needed as the posterior density and the posterior
probability could directly be computed using the approxi-
mated matrix (or multivariate) normal distribution of H
(or h).

B.2. Special cases with analytic expressions

The marginal distribution of a column (or row) of a matrix
random variable with a matrix Student t distribution has a
multivariate Student t distribution (Box & Tiao, 1973, p.
442-443). This implies that the unconstrained marginal
prior and posterior of the p-th column of H, denoted by
hp, are distributed as

puðhpjY,XÞ ¼ T Kðĥp, ðN � K � Pþ 1Þ�1sppðX0XÞ�1,

N � K � Pþ 1Þp�uðhpjY,X, bÞ ¼ CKðh0, p, sb, ppðX0
bXbÞ�1Þ,

where sb, pp and spp denote the ðp, pÞ-th element of
Sb and S, respectively. Thus, using standard calculus, it can
be shown that for a constrained model with only constraints
on the elements in column p, i.e., Ht : Rt,Ehp ¼
rt,E & Rt,Ohp > rt,O, the posterior and prior quantities in
(7) are equal to

f Et ðY,XÞ ¼ T ðrt,E;Rt,Eĥp, ðN � K � P þ 1Þ�1sppRt,EðX0XÞ�1R0
t,E,

N � K � P þ 1Þ
cEt ðY,X, bÞ ¼ Cðrt,E;Rt,Eh0, p, sb, ppRt,EðX0

bXbÞ�1R0
t,EÞ

f Ot ðY,XÞ ¼ WT ð�rt,O;�l
f
gt ,O

,Wf
gt ,O

,N � K � P þ 1Þ
cOt ðY,X, bÞ ¼ WCð0; 0,Wc

gt ,O
Þ

where WT ðx; l,W, �Þ is the cdf of a multivariate Student t
distribution at x with location l, scale matrix W, and �
degrees of freedom, WCðx; l,WÞ is the cdf of a multivariate
Cauchy distribution at x with location l and scale matrix
W, and

l
f
gt ,O

¼ Rt,O ĥp þ Rt,OðX0XÞ�1R0
t,EðRt,EðX0XÞ�1R0

t,EÞ
�1ðrt,E � Rt, E ĥpÞ

Wf
gt ,O

¼
spp þ ðrt,E � Rt,E ĥpÞ0ðRt,EðX0XÞ�1R0

t,EÞ
�1ðrt,E � Rt,E ĥpÞ

N � K � Pþ 1þ rt,E
Rt,OðX0XÞ�1 IK�rt,E � R0

t,EðRt, EðX0XÞ�1R0
t, EÞ

�1Rt,EðX0XÞ�1
� �

R0
t,O

Wc
gt ,O

¼
sb, pp

1þ rt,E
Rt,OðX0

bXbÞ�1 IK�rt, E � ðX0
bXbÞ�1R0

t,EðRt,EðX0
bXbÞ�1R0

t, EÞ
�1Rt,EðX0

bXbÞ�1
� �

R0
t,O ,

where rt, E is the number of rows of Rt,E: Note that the cdf’s
can be computed using standard functions in statistical soft-
ware (e.g., using pmvt in the mvtnorm-package (Genz
et al., 2016))

Hence, the proposed default Bayes factor has an analytic
expression for univariate testing problems (e.g., AN(C)OVA
or linear regression), for multivariate/univariate t tests, or
in other testing problems where the constraints are formu-
lated solely on the elements of one specific column or row
of H:

C Sketch of the proof for consistency

First note that the unconstrained posterior density in the
numerator in the first term in (7) goes to infinity if the
equality constraints hold, and to zero if they do not hold.
Second, the conditional posterior probability in the numer-
ator in the second term goes to 1 if the constraints hold

and to 0 if they do not hold. The quantities in the denomi-
nators depend on the unconstrained matrix-variate Cauchy
prior with scale matrices ðX0

bXbÞ�1 and Sb: As the sample
sizes, nj for all groups go to infinity, these scale matrices
converge to finite scale matrices which depend on the
population distributions of the observed variables. Note that
X0
bXb ¼ PþK

J

PJ
j¼1 N

�1
j X0

jXj, where Xj is the design matrix
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as Nj ! 1 with the same rate, for all j ¼ 1, :::, J: Similar
results hold for the matricesPJ

j¼1 N
�1
j X0

jYj and
PJ

j¼1 N
�1
j Y0

jYj in
Sb ¼ Y0

bYb � Y0
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bYb

¼ P þ K
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N�1
j X0
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j Y0
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XJ
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N�1
j X0

jXjÞ�1ð
XJ

j¼1

N�1
j X0

jYjÞ

0
@

1
A

in the limit. The unconstrained default prior distribution
therefore converges to some fixed matrix Cauchy distribu-
tion. This implies that the value of the prior density in the
denominator in the first term in (7) converges to some
positive constant as well as the conditional prior probability
in the numerator in the second term for all constrained
models under consideration. Consequently the Bayes factor
Btu for a true constrained model Mt goes to infinity, and
Btu converges to zero for an incorrect model. The proposed
default Bayes factor is therefore consistent.

D R code for second empirical application with
missing data

set.seed(123)
#create 20 missings
missings <-.2
n <- nrow(sesamesim_st)
#create data frame with incomplete observations
sesamesim_st_incomplete <- sesamesim_st
# create random missings
for(r in 1:nrow(sesamesim_st_incomplete)) {
miss_row <- runif(4)<missings
sesamesim_st_incomplete[r,miss_row] <- NA
}
# Perform Bayesian hypothesis test after list-wise deletion

sesamesim_st_LD <- sesamesim_st_incomplete[!is.na(
apply(sesamesim_st_incomplete,1,sum)),]

mlm2_LD <- lm(cbind(An,Ab) �
1þBnþBb, data¼ sesamesim_st_LD) BF2_LD <-
BF(mlm2_LD,hypothesis¼ hypothesis)

summary(BF2_LD) # Perform Bayesian
hypothesis test using the posterior predictive # distribu-

tion using
MICE package library(mice) # create 100 imputed data

sets M <- 100
sesamesim_st_mice <- mice(data¼ sesamesim_

st_incomplete, m¼M,
seed ¼ 999, meth¼ c("norm","norm","norm","norm"),

diagnostics¼ FALSE,
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printFlag = FALSE)
BFtable_complete <- lapply(1:M,function(m){

mlm2_MI <- lm(cbind(An,Ab) � 1þBnþBb,
data¼ complete(sesamesim_st_mice, m))
BF2_MI <- BF(mlm2_MI, hypothesis

¼ hypothesis)
return(BF2_MI$BFtable_confirmatory)
}) comp_E <-apply(matrix(unlist(lapply(1:M, function(m){

BFtable_complete[[m]][,1]})), ncol¼M),1,mean)
comp_O <-apply(matrix(unlist(lapply(1:M,function(m){

BFtable_complete[[m]][,2]
})), ncol¼M),1,mean)
fit_E <-apply(matrix(unlist(lapply(1:M, function(m){

BFtable_complete[[m]][,3]})), ncol¼M),1,mean)
fit_O <-apply(matrix(unlist(lapply(1:M,function(m){

BFtable_complete[[m]][,4]
})),ncol¼M),1,mean)
BFmatrix <-matrix(c(fit_E, comp_E,fit_O, comp_O), ncol
¼ 4)
BFmatrix <-cbind(BFmatrix, fit_O�fit_E/(comp_O�comp_E))
BFmatrix <-cbind(BFmatrix,BFmatrix[,5]/sum(BFmatrix[,5]))
row.names(BFmatrix) <- c("H1","H2","H3")
colnames(BFmatrix) <-c("f_E","c_E","f_O","c_O","BF","PMP")
# Bayes factors of H1 against

H1, H2, and H3
BFmatrix[1,5]/BFmatrix[,5]
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