
Bayesian Uncertainty Estimation for Gaussian Graphical Models and
Centrality Indices

Joran Jongerlinga, Sacha Epskampb,c, and Donald R. Williamsd

aDepartment of Methodology and Statistics, Tilburg School of Social and Behavioral Sciences, Tilburg University; bDepartment of
Psychology, Faculty of Social and Behavioral Sciences, University of Amsterdam; cCentre for Urban Mental Health, University of
Amsterdam; dDepartment of Psychology, University of California

ABSTRACT
In the network approach to psychopathology, psychological constructs are conceptualized
as networks of interacting components (e.g., the symptoms of a disorder). In this network
view, interest is on the degree to which symptoms influence each other, both directly and
indirectly. These direct and indirect influences are often captured with centrality indices,
however, the estimation method often used with these networks, the frequentist graphical
LASSO (GLASSO), has difficulty estimating (uncertainty in) these measures. Bayesian estima-
tion might provide a solution, as it is better suited to deal with bias in the sampling distri-
bution of centrality indices. This study therefore compares estimation of symptom networks
with Bayesian GLASSO- and Horseshoe priors to estimation using the frequentist GLASSO
using extensive simulations. Results showed that the Bayesian GLASSO performed better
than the Horseshoe, and that the Bayesian GLASSO outperformed the frequentist GLASSO
with respect to bias in edge weights, centrality measures, correlation between estimated
and true partial correlations, and specificity. Sensitivity was better for the frequentist
GLASSO, but performance of the Bayesian GLASSO is usually close. With respect to uncer-
tainty in the centrality measures, the Bayesian GLASSO shows good coverage for strength
and closeness centrality, but uncertainty in betweenness centrality is estimated less well.
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Introduction

In recent years, psychological research is increasingly
adopting a network perspective to psychological
behavior (Borsboom, 2008; Borsboom
et al., 2011; Borsboom & Cramer, 2013; Cramer et al.,
2010; Schmittmann et al., 2013) in which psycho-
logical constructs are conceptualized as networks of
interacting components referred to as nodes in net-
work literature. Usually in psychological networks,
these nodes represent observed variables (e.g., symp-
toms), while connections between nodes (edges) rep-
resent statistical relationships between the behaviors
(Epskamp et al., 2017). Psychological networks are
often estimated using Gaussian Graphical Models
(GGM; Costantini et al., 2015; Lauritzen, 1996), which
assume that the data are multivariate normally

distributed, and in which edges can be interpreted as
partial correlation coefficients, that is, correlations
between two nodes after conditioning on all other
nodes in the network, which are proportional to
regression coefficients (Epskamp et al., 2017; Epskamp
& Fried, 2018). Currently, a popular form of regular-
ized GGM estimation is by using the graphical LASSO
(GLASSO) (Epskamp & Fried, 2018; Friedman
et al., 2008), which limits the sum of the absolute
edge weights, and therefore shrinks small estimates
toward zero. As such, the GLASSO returns a sparse
network model, in which only a relatively small num-
ber of edges are used to explain the covariation struc-
ture in the data (Epskamp et al., 2017). Because of
this sparsity, the estimated models become more
interpretable. Regularized estimation is not (always)
necessary (especially with larger sample sizes), and
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unregularized estimation of GGMs is also possible
(Liang et al., 2015; Williams et al., 2019). Regularized
estimation is often used however, and is the estima-
tion method on which we will focus in this study.

There are currently no real significance tests for
edge weights in regularized networks (although they
do exist for unregularized networks, for example in
the psychonetrics R-package (Epskamp, 2020). Instead,
since regularization sets small edges equal to zero, the
presence of an edge alone is taken as evidence that
the two nodes are related to each (after conditioning
on all other nodes in the network). The “importance”
of nodes is often subsequently operationalized as how
connected a node is to all others, either directly
(strength centrality: the sum of the absolute values of
all edges of a node (i.e., the partial correlations between
the node and all other nodes)) or indirectly (closeness cen-
trality: the inverse of the sum of largest indirect effects
between nodes; betweenness centrality: the number of
shortest paths between two other nodes that a node is part
of)—although whether connectedness is indeed a good
measure of importance, and whether it is always inform-
ative is under debate (see for example, Bringmann et al.
(2019)). Yet, proper inference based on network models
requires taking the accuracy of the estimates of edges and
centrality measures into account, both to get an idea about
the range of plausible value for these parameters, and to
be able to determine which nodes can be considered as
different from each other. Epskamp et al. (2017) intro-
duced a method, included in the bootnet R-package
(Epskamp et al., 2017), to do this based on bootstrapping.
However, while their method allows the estimation of
intervals representing likely values of edges, called boot-
strapped confidence intervals, these intervals are not the
same as regular confidence intervals and can’t be used to
test the null hypothesis of no relation when regularization
is used. In addition, simulations showed that it is difficult
to get unbiased estimates and 95% confidence intervals for
centrality indices. This is due to the instability in centrality
indices caused by sampling variation and due to bias in
their sampling distributions (i.e., strength centrality is cal-
culated using the absolute value of edge weights which
leads to skewed distributions, also see the supplementary
material of Epskamp et al. (2017)). In addition, their
results showed that constructing bootstrapped CIs on very
low significance levels is not feasible with a limited num-
ber of bootstrap samples (Epskamp et al., 2017).

In this paper, we therefore investigate Bayesian esti-
mation of GGMs using a Bayesian version of the
GLASSO (Wang, 2012) and using a Graphical
Horseshoe prior (Li et al., 2019) for the partial correl-
ation matrix. We chose these two Bayesian estimation
methods because they are popular in the social science

literature and therefore often used. In addition, we
wanted to test alternative methods against the regular-
ized estimation method that is quite common in the
social sciences, which is the frequentist GLASSO. A
Bayesian GLASSO is the most natural comparison
method for this often used frequentist GLASSO in our
opinion. Since the Bayesian estimation of GGMs pro-
vides posterior distributions for all sampled parameters
and allows easy estimation of transformations and/or
functions of these parameters, these methods could lead
to measures of centrality that are less biased. For
example, as mentioned above, strength centrality is cal-
culated using the sum of the absolute values of the edge
weights of a node (so positive and negative nodes don’t
cancel out), but this distorts the distribution of edges,
and therefore the distribution of sums of (absolute val-
ues) of these edges as well (strength centrality) as well
(see the left panel of Figure 1).

With Bayesian analysis it’s easy to use an alterna-
tive for absolute values. We could, for example, simply
shift the posterior distributions of edge weights to be
centered around positive values. If a posterior is cen-
tered around �.20 (the left distribution in both panels
of Figure 1), we can shift the entire distribution .4
points to the right to center it around a positive value
of .20 (right distribution in the right panel of Figure
1). As can be seen in Figure 1, shifting the entire pos-
terior prevents distortion of the distributions of an
edge weight (the right distribution in the right panel
of Figure 1 is the exact same shape as the left distribu-
tion in that panel), unlike taking absolute values (the
two distributions in the left panel of Figure 1 are
clearly different). If we apply an appropriate shift to
each individual edge (to make sure they are all cen-
tered around the positive ’version’ of their individual
point estimates), we can still prevent positive and
negative (point estimates of) edges from canceling out
when calculating strength centrality, but do so while
distorting the distributions of the edges less. This
could make the sum of these shifted posterior distri-
butions a better behaved estimate of strength central-
ity than one based on absolute values. An extensive
simulation study will therefore be undertaken to
determine the ability of our Bayesian estimation meth-
ods to accurately estimate centrality measures and
their uncertainty. In addition, to make sure that being
able to estimate centralities and there uncertainty does
not come at the cost of precision in estimation of
individual edges, we also compare the Bayesian
GLASSO and Horseshoe against the ”standard” fre-
quentist GLASSO (with tuning parameter selection
based on the Extended Bayesian Information
Criterion (EBIC) as implemented in the R-package
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bootnet (Epskamp et al., 2017) with respect to bias in
edges, sensitivity, and specificity. This article is struc-
tured as follows. In the next section we will fist dis-
cuss the Bayesian GLASSO and Horseshoe estimation
methods for GGMs. Then we will describe the differ-
ent methods for estimating strength, closeness, and
betweenness centrality that we will be testing. In the
third section we will describe our simulation study,
the results of which are presented in section four. We
end with a discussion.

The Bayesian GLASSO and Horseshoe, and the
estimation methods for the different centrality meas-
ures are incorporated into the R-package BUEG
(Bayesian Uncertainty Estimation for GGMs) which is
available on OSF (https://osf.io/9kjxv/).

Bayesian estimation of GGMs

Assume we have observations from N individuals on
P multivariate normally distributed variables
yp(p ¼ 1, :::,P). If the means of these variables are
equal to 0, the distribution of these data are given by,

y � MVNð0,RÞ, (1)

where y is a N by P matrix containing all item
responses of the N individual on the P variables yp
(i.e., the vectors yp make up the columns of matrix y),
and R is the variance-covariance matrix. The inverse
of the variance-covariance matrix, K, is called the pre-
cision matrix, which, after standardizing and inverting
the signs of its elements, contains the partial correla-
tions between the P random variables on its off-diag-
onal elements. These partial correlations can be
displayed as a weighted network, in which each vari-
able yp represents a node, and the partial correlations
between variables show up as connections (edges)

between the respective nodes. If a partial correlation
between two variables is equal to 0, these two varia-
bles are conditionally independent given all other vari-
ables, and the nodes of these variables are
unconnected in the graph of the weighted network. A
challenge in precision matrix estimation is that the
number of free parameters grows quadratically with
the number of variables, which is why the precision
matrix is often assumed to be sparse (i.e., some ele-
ments in K are expected to be zero even though every
element of R may be non-zero).

Estimation of such a sparse model, termed a
Gaussian Graphical Model (GGM; Epskamp et al.,
2017) when data are multivariate normally distributed,
can be achieved by penalizing the likelihood. A popu-
lar penalized estimation method is the Graphical
LASSO (GLASSO) proposed by Friedman et al.
(2008), which uses the LASSO penalization
(Tibshirani, 1996) and can be written as,

log ðdetKÞ � trðSKÞ �
X
j, k

/kðjjjkjÞ, (2)

where S is the covariance matrix, jjk is the entry on
the jth row and kth column of K (proportional to the
partial correlation between variables j and k),
/kðjjjkjÞ ¼ kjjjkj is the ‘1 penalty, and k (with k > 0)
is a tuning parameter which controls the sparsity of K
(with larger values of k leading to more regularization
and thus more sparsity) and that is typically chosen
through cross-validation. The sum

P
j, k /kðjjjkjÞ in

Equation (2) can be taken with or without a penalty
on the diagonal terms (Friedman et al., 2008;
Meinshausen & B€uhlmann, 2006; Rothman
et al., 2010; Yuan & Lin, 2007).

Figure 1. Effect of taking absolute values vs. shifting posteriors on the distribution of edges. (a) Psych Network: Network based on
the bfi-data. (b) RED Network: Random Network with density equal to the Psych Network. (c) RHD Network: Random Network with
density half that of the Psych Network.
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Bayesian GLASSO

A Bayesian version of the GLASSO was introduced by
Wang (2012). This Bayesian GLASSO is based on put-
ting a double exponential prior on the off-diagonal
entries of the precision matrix and an exponential
prior on the diagonal entries,

pðKjkÞ /
Y
j<k

ðDEðkjkjkÞÞ
YP
p¼1

ðEXP ðkjjjk=2ÞÞ1K2SP ,

(3)

where DEðxjkÞ indicates the double exponential distri-
bution with rate k, EXP ðxjk=2Þ represents an expo-
nential distribution with rate k=2, and SP is the space
of P�P positive definite matrices (Li et al., 2019).
The tuning parameter k can be chosen by cross-valid-
ation as in a frequentist framework (Friedman et al.,
2008; Rothman et al., 2010), or by specifying an
appropriate hyperprior on this parameter (Li et al.,
2019). The maximum a posteriori estimate of K under
the prior in Equation (3) is equal to the regularized
estimate of K you would obtain with the frequentist
GLASSO (Li et al., 2019). Unlike the frequentist
GLASSO, the Bayesian GLASSO does not set elements
of the precision matrix to exactly 0. In fact, there is
zero probability, according to the prior, that any of
the partial correlations in K is exactly 0 (Wang, 2012).
To make the Bayesian methods as comparable to the
frequentist GLASSO as possible, we therefore have to
apply either a discrete and continuous mixture prior
distribution (Wang, 2012), such as the G-Wishart
prior (Dawid & Lauritzen, 1993; Roverato, 2000), or
use a heuristic decision rule to set elements of K to 0.
In this study, we will use an additional decision rule
as part of the Bayesian regularized estimation of
GGMs, which sets edges whose 95% Credibility
Intervals contain 0 to be equal to 0 (note that this
approach is quite similar to frequentist hypothesis
testing, and is only one possible decision rule). This
second, decision rule (or pruning) step of our
Bayesian regularization could be left out, in which
case all regularization is done purely by the GLASSO
or Horseshoe priors. This can be a useful alternative if
having edges set to exactly to 0 is not required.
However, as said above, we decided to add this second
step as (an integral) part of our Bayesian regulariza-
tion to keep the similarity with the frequentist
GLASSO as close as possible (and to have the calcula-
tion of sensitivity, specificity, etc. make sense).

Sampling from the Bayesian GLASSO was done
using the data-augmented block Gibbs sampling
scheme discussed in (Wang, 2012).

Bayesian Horseshoe

An alternative penalized Bayesian Estimation method
is the Graphical Horseshoe introduced by Li et al.
(2019). Instead of a double exponential prior, the
graphical horseshoe puts a horseshoe prior on the off-
diagonal elements of K. The element-wise priors are
specified for ði, j ¼ 1, :::,KÞ as (Li et al., 2019),

kii / 1,
kij:i6¼j � Normalð0, k2ijs2Þ,

kij:i 6¼j � Cþð0, 1Þ,
s � Cþð0, 1Þ,

(4)

where Cþ denotes a half-Cauchy random variable
with density pðxÞ � ð1þ x2Þ�1; x > 0 (Carvalho
et al., 2010; Li et al., 2019). The horseshoe prior has
two shrinkage parameters; the local shrinkage param-
eter kij which is unique for each unique combination
of variables, and the global shrinkage parameter s
which influences all partial correlation estimates. The
global shrinkage parameter adapts to the sparsity of
the entire matrix K and shrinks the estimates of the
off-diagonal elements toward zero. In contrast, the
local shrinkage parameters preserve the magnitude of
non-zero off-diagonal elements, and ensure that the
element-wise biases are not very large (Li et al., 2019).
Based on the above the horseshoe prior for K can be
written as (Li et al., 2019),

pðKjsÞ �
Y
i<j

Normalðkijjk2ij, s2Þ
Y
i<j

C2ðkijj0, 1Þ1K2SK

(5)

where SK again is the space of K�K positive definite
matrices (Li et al., 2019). Like the Bayesian GLASSO,
the Bayesian Horseshoe does not set elements of the
precision matrix to exactly 0. For that it also requires
an additional decision rule like setting elements whose
95% Credibility Intervals contain 0 to be equal to 0.

Sampling from the Bayesian Horseshoe was done
using the data-augmented block Gibbs sampling
scheme discussed in (Li et al., 2019).

Bayesian methods for estimating
centrality indices

As mentioned in the introduction, Bayesian estimation
of GGMs provides posterior distributions for all
sampled parameters and allows easy estimation of
transformations and/or functions of these parameters.
In other words, with Bayesian estimation we can com-
bine (posteriors of) model parameters in different
ways to get (posteriors of) new, composite, parameters
of interest. The different centrality estimates can be
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viewed as such composite parameters. We can combine
(posteriors of) parameters any way we want, and as such
can construct (the posterior of) a composite parameter of
interest in different ways. As long as these different combi-
nations make substantive sense, they can be viewed as rep-
resenting (slightly) different operationalization of the
same construct (i.e., composite parameter). As a simplistic
example, if we want to construct a posterior for a compos-
ite parameter c from the posterior of model parameter a,
with c ¼ 2 � a, we could multiply the posterior of a by 2,
or divide it by .5. Both would be different ways of getting
to the posterior of c. In this study, we will test three differ-
ent methods of combining (posteriors of) parameters to
get estimates for the three centrality types (i.e., we will test
three different Bayesian operationalizations for the cen-
trality measures). All three methods are estimating the
same constructs (the three centrality types), but do so in
slightly different ways that might work more or less well
in practice. Part of the aim of this study is determining
which operationalization of the centrality estimates works
best. The different estimation methods (operationaliza-
tions) for the three centrality types are discussed in the fol-
lowing three sub-sections.

Simple Gibbs-Sampler estimation

The first method used to calculate the three different
centrality measures for each node involved estimating
each node’s strength, closeness, and betweenness cen-
trality in each iterations of the Gibbs-sampler.
Specifically, this method consists of the following steps:

A problem with this method is that, as men-
tioned above, the Bayesian GLASSO and Horseshoe
doesn’t set edges to exactly 0, which is why the
Bayesian regularization employed in this study also
uses a decision rule that sets all edges whose 95%
Credibility Interval contains 0, to 0. This decision
rule can only be applied after all iterations of the
Gibbs-sampler are done however, because it
requires the complete posterior distribution of the
edges. Since the Simple Gibbs-Sampler Estimation
approach involves calculating centrality values in
each iteration of the Gibbs-sampler (so before the
Gibbs-sampler is completely done), the centrality
estimations mentioned in step 1 above have to be
done without the (heuristic) pruning step. This will
lead to positive bias in the strength and closeness
centralities estimates of this method, as edges that
will eventually be set to exactly 0 (and should there-
fore not contribute to these centrality measures at
all), are not set to 0 yet and will therefore have
non-zero contributions to these centrality values.
Betweenness centrality could also be biased, but
since this measure depends on how many shortest
paths between two nodes a third node is a part of,
it is less directly influenced by the values of edges.
After all, regularization does not necessarily change
which path between nodes is shortest. As such, the
extend and form of the bias introduced in this cen-
trality measure by the absence of the pruning step is
harder to predict. Note that the edge estimates
used for the calculations of the centrality values in
this method are still regularized to some degree by
the prior, which pulls the values toward 0. They are
not completely regularized however, because they
can’t be set to exactly zero without the prun-
ing heuristic.

To solve for this issue, and to more fully correct
our centrality estimates for regularization, we also
devised the 2 methods described below.

Post-processing shift estimation

The first method for calculating the centrality
measures that takes complete Bayesian regulariza-
tion (including pruning) into account is by
using what we termed Post-Processing Shift
Estimation. This approach consists of the follow-
ing step:

. Algorithm 1. Simple Gibbs-Sampler Estimation

1. For each of the k (k ¼ 1,…, K) iteration of the Gibbs-sam-
pler, use the current estimate for the inverse variance-
covariance matrix as input for the calculations of strength,
closeness, and betweenness centrality described in Opsahl
et al. (2010) and implemented in the qgraph R-package
(Epskamp et al., 2012).

2. For each node p (p ¼ 1,…, P), use the K estimates of
strength, closeness, and betweenness centrality obtained in
the previous step to obtain the posteriors for these three
centrality types for each node.

3. For each node p (p ¼ 1,…, P), take the modes of the pos-
terior distributions of the centrality measures as the point
estimate for the centralities of the node.

4. For each node p (p ¼ 1,…, P), take the 2.5th and 97.5th
percentile of the posterior distributions of the centrality
measures to construct the 95% Credibility intervals for each
node’s strength, closeness, and betweenness centrality.
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Note that since we’re merely shifting the posteriors
obtained from the Simple Gibbs-Sampler Estimation
method to construct our new posteriors with this
method, the widths of the intervals will be the same
across these two methods. However, in this method the
posteriors are centered around less biased point esti-
mates of strength, closeness, and betweenness centrality.

For the Simple Gibbs-Sampler Estimation method,
the posterior distributions of the centrality measures
were restricted to be larger than or equal to 0, as they
should be, since the values of the centrality measures
can’t be smaller than 0. By shifting these posteriors, as
we do in this second method, we could make some of
the posteriors cover values smaller than 0 as well. In
practice however, this will likely not cause any problems.
First, in the tests analyses that we ran, the 95%
Credibility Intervals for the centrality measures of the
Post-Processing Shift method never went below 0. In
addition, even if they did, this would just imply that we
can’t rule out that the corresponding node is uncon-
nected to all others in the network (although the nega-
tive values should obviously not be interpreted).

Estimation based on edge weight estimates

The second fully regularized estimation method for
the centrality measures is not based on calculating the
centrality values for each node in each iteration of the
Gibbs-sampler. Instead it is based on the estimates of
the edges themselves and the mathematical expres-
sions for the variance of a(n) (inverse of a) sum.

For random variables Y1, :::,Yk, the variance of
their sum is given by,

var
XK
k¼1

Yk

" #
¼
XK
k¼1

r2k þ 2
X

1�k�l�K

rkrl, (6)

where r2k is the variance of variable k. In addition,
the variance of the inverse of a random variable Y is
given by Mood et al. (1985),

var
1
Y

� �
� 1

lY

� �2 r2Y
l2Y

 !
(7)

This second Equation can be obtained by a Taylor-
series expansion and dropping all terms of order
higher than 2 (Mood et al., 1985).

For strength centrality, the steps of this Estimation
Based approach are as follows:

Algorithm 2 Post-Processing Shift Estimation

1. Calculate the posteriors for centrality measures according to
the Simple Gibbs-Sampler Estimation method dis-
cussed above.

2. Prune the final estimate of the precision matrix by setting
edges whose 95% CI contains 0 to 0. Point estimates of the
edges are based on the modes of the posterior
(MAP estimates).

3. For each node p (p ¼ 1,…, P), estimate the three centrality
values based on the pruned precision matrix from step 2
(using the calculations described in Opsahl et al. (2010) and
implemented in the qgraph R-package (Epskamp
et al., 2012)).

4. For each node p (p ¼ 1,…, P), calculate the difference
between the point estimates of the three centrality meas-
ures obtained with Simple Gibbs-Sampler Estimation method
(in step 3) and the point estimates obtained in the previous
step. The difference between these two estimates can be
interpreted as the bias introduced in the centrality estimates
by not setting edges to exactly 0.

5. For each node p (p ¼ 1,…, P), use the difference between
the two sets of point estimates calculated in the previous
step to shift the posteriors for the three centrality measures
obtained with the Simple Gibbs-Sampler Estimation method
so that the modes of these posteriors become equal to the
point estimates for the centralities obtained from the pruned
precision matrix (step 3).

6. For each node p (p ¼ 1,…, P), take the 2.5th and 97.5th
percentiles of the shifted posteriors from the previous step
to construct the 95% Credibility intervals for each node’s
strength, closeness, and betweenness centrality.

Algorithm 3 Estimation Based Strength Centrality

1. Prune the final estimate of the precision matrix by setting
edges whose 95% CI contains 0 to 0. Point estimates of the
edges are based on the modes of the posterior
(MAP estimates).

2. For each node p (p ¼ 1, :::, P), estimate the strength centrality
based on the pruned precision matrix from the previous step
(using the calculations described in Opsahl et al. (2010)).

3. For each edge k (k ¼ 1, :::, K), that is, each element of the
inverse covariance matrix, use it’s posterior to determine its
variance r2k .

4. For each pair of edges k and l (k ¼ 1, :::, K , l ¼ 1, :::, K , k 6¼ l),
use their values from each iteration of the Gibbs-Sampler to
calculate the covariance between the two rkl.

5. For each node p (p ¼ 1, :::, P), calculate the variance of the
sum of it’s edges (to all other nodes) using Equation (6):
r2Strength, p ¼

PS
k¼1 r

2
k þ 2

P
1�k�l�S rkl (for

k ¼ 1, :::, S, l ¼ 1, :::, S, k 6¼ l), where r2k is the variance of
edge k, rkl is the covariance between edge k and edge l,
and S is the maximum number of edges of node p. Note
that we also take the variance of the edges that are set to
0 after regularization into account when calculating the vari-
ance of the strength centrality of a node.

6. For each node p (p ¼ 1, :::, P), calculate the 95% Credibility
Intervals for each node’s strength centrality by taking the
point estimate for the strength centrality of that node (step
2) and adding and subtracting 1:96 � r2Strength, p to the point
estimate, where r2Strength, p is estimated in the previous step.
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For closeness centrality, the steps of the Estimation
Based approach are:

Note that in the steps above we have two “types”
of paths when combining variances and covariances
into total variance. The first type are the successive

edges on the same shortest path (e.g., on the path A – B
– C, we have the edges/paths A – B and B – C), and the
second are the separate shortest paths emanating from
the same node (e.g., the paths A – B – C and A – D –
E). We aren’t sure whether it makes sense for these two
types of paths to be correlated amongst each other (i.e.,
for successive edges on the same shortest path to be cor-
related, or for separate shortest paths emanating from
the same node to be correlated). As a result we used
four different variations of our edge weight based calcu-
lation of closeness centrality. We calculated the total
closeness centrality assuming that 1) both successive
edges on the same shortest path and different shortest
paths emanating from the same node could be corre-
lated, 2) only separate shortest paths emanating from
the same node could be correlated, 3) only successive
edges on the same shortest paths could be correlated,
and 4) assuming that both shortest and successive paths
were uncorrelated.

A downside of this second, edge weight based, method
is that it can’t be used for a new estimate of betweenness
centrality, as it isn’t a direct function of individual edges
weights. Instead, betweenness centrality is about how
many shortest paths between two other nodes a node is
part of. In addition, it assumes normally distributed ran-
dom variables. This second downside, isn’t necessarily a
large problem however. In our data, the posterior distribu-
tions of most edges look pretty normal. Furthermore, the
width of the CIs for strength centrality of this method also
appear quite similar to those obtained with the other two
methods (that don’t assume normality). Sometimes they
are a little wider, sometimes a little narrower but the dif-
ference is always in the second decimal place or even
smaller.The width of CIs for closeness centrality are also
quite similar. They tend to be a little narrower of wider
depending on whether one assumes successive edges on
shortest paths to be correlated (if successive edges on a
shortest path are assumed to be correlated the intervals
tend to be a little wider than those of the other methods,
while assuming independent successive edges on a short-
est path leads to slightly narrower intervals than the other
methods), but these differences tend to be in the 4 decimal
place or even smaller (typically the fifth decimal place).

Simulation study

To test the performance of the two Bayesian estima-
tion methods mentioned above and the different cen-
trality estimation methods we ran an extensive
simulation study. Our focus for this paper is on the social
sciences (specifically psychology), which is why we gener-
ated data that is representative for data encountered in

Algorithm 4 Estimation Based Closeness Centrality

1. Prune the final estimate of the precision matrix by setting
edges whose 95% CI contains 0 to 0. Point estimates of
the edges are based on the modes of the posterior
(MAP estimates).

2. For each node p (p ¼ 1, :::, P), estimate the closeness cen-
trality based on the pruned precision matrix from the pre-
vious step (using the calculations described in Opsahl
et al. (2010) and implemented in the qgraph R-package
(Epskamp et al., 2012)).

3. For each edge k (k ¼ 1, :::, K)(i.e., element of the inverse
covariance matrix), use it’s posterior to determine its vari-
ance r2k .

4. For each pair of edges k and l
(k ¼ 1, :::, K , l ¼ 1, :::, K , k 6¼ l), use their values from each
iteration of the Gibbs-Sampler to calculate the covariance
between the two rkl.

5. For each node p (p ¼ 1, :::, P), determine the edges on
the largest/strongest shortest path from the node to all
other nodes using Dijkstra’s algorithm (Dijkstra, 1959)
(implemented in the qgraph R-package (Epskamp
et al., 2012))).

6. For each pair of nodes p and m
(p ¼ 1, :::, P,m ¼ 1, :::, P, p 6¼ m), calculate the variance of
the sum of the edges of the shortest path connecting the
two nodes (determined in the previous step) using
Equation (6): r2Shortest Path, pm ¼PS

k¼1 r
2
k þ 2

P
1�k�l�S rkl ,

where r2k is the variance of edge k, rkl is the covariance
between edges k and l, and S is the maximum number of
edges on the shortest path between the two nodes.

7. For each node p (p ¼ 1, :::, P), calculate the variance of
the sum of all of its shortest paths to all other nodes
using Equation (6): r2Sum of Shortest Paths of node p ¼

PP
m¼1

r2Shortest Path, pm þ 2
P

1�m�n�P rpm, pn (for m 6¼ p), where
r2Shortest Path, pm is the variance of the shortest path
between nodes p and m (determined in the previous
step), and rpm, pn is the covariance between the shortest
path from node p to node m, and the shortest path from
node p to node n.

8. For each node p (p ¼ 1, :::, P), calculate the mean of the
sum of all of its shortest paths to all other nodes. This is
done by calculating the sum of the shortest paths
between the node and all other nodes in each iteration of
the Gibbs-sampler, and then taking averaging
across iterations.

9. For each node p (p ¼ 1, :::, P), calculate the variance of
the closeness centrality using Equation (7):

r2Clsnss, p ¼
r2Sum of Shortest Paths of node p

l4Sum of Shortest Paths of node p
, where lSumof Shortest Paths of node p

is the mean of the sum of all of shortest paths from node
p to all other nodes (calculated in previous step).

10. For each node p (p ¼ 1, :::, P), calculate the 95%
Credibility Intervals for each node’s closeness centrality by
taking the point estimate for the closeness centrality of
that node (step 2) and adding and subtraction 1:96 �
r2Clsnss, p to the point estimate, where r2Clsnss, p is estimated
in the previous step.
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this field (while also looking at the effect of network struc-
ture and sparsity on performance). Specifically, we gener-
ated data for two different network structures: 1) a
network based on the partial correlation from the bfi-data
in the Psych R-package (Revelle, 2019), which contains
information on 25 personality self-report items taken
from the International Personality Item Pool (ipip.ori.org),
and 2) a random network structure for 25 nodes generated
with the genGGM function from the bootnet package
(Epskamp et al., 2017) (Figure 2). We generated data for
sample sizes of N¼ 900, 5,000 and 10,000 (which gives us
N (sample size) to p (number of estimated parameters)
ratios of 3, 16.67, and 33.33 respectively). In addition, we
also varied the density of the random network so that it
either closely matched that of the bfi-data (.537 vs .517) or
was equal to about half that of the bfi-data (.263 vs .517).
The partial correlations in the bfi-data ranged from �.256
to.528 (mean¼.023, sd¼.080), the partial correlations in
the random network of equal density ranged from �.216
to.492 (mean¼.013, sd¼.093), and the partial correlations
in the random network of half-density ranged from �.319
to.510 (mean¼–.001, sd¼.089). For each scenario (i.e.,
combination of N and network-structure) we ran 1000
replications.

For the Bayesian estimation of the generated data we
used the Bayesian GLASSO prior (with k �
gammað1, :01Þ, i.e. we used a gamma distribution with
rate parameter of 1 and scale parameter of .01 as hyper-
prior for the tuning parameter) and Bayesian Horseshoe
prior (with Cþð0, 1Þ hyperpriors for both the local (kij)
and global (s) shrinkage parameters) discussed above. For
both methods we used 10,000 burn-in iterations and
10,000 subsequent iterations. Traceplots showed good
convergence with these number of iterations. We also ana-
lyzed the generated data using a frequentist graphical
LASSO for comparison. For this frequentist estimation we
used the estimation method used in the popular bootnet
R-package (Epskamp et al., 2017), in which the optimal
value for the regularization parameter was selected using
the Extended Bayesian Information Criterion (EBIC).
Specifically, this frequentist method runs the Glasso esti-
mation 100 times (with 100 different values for the tuning
parameter). The values of the tuning parameter in these
runs are logarithmically spaced between the maximal
value of the tuning parameter at which all edges are zero
(kmax) and kmax=100: For each of the resulting graphs the
EBIC is computed and the graph with the best EBIC is
selected (Epskamp et al., 2012).

To assess performance, we first compared the per-
formance of the Bayesian GLASSO and Horseshoe to
frequentist GLASSO estimation on KL-loss, the
Frobenius norm, the correlation between the estimated

and true precision-matrix elements, F1 (the harmonic
mean of the positive predictive value and sensitivity),
sensitivity, and specificity. The KL-loss and Frobenius
norm are measures of the ”distance” between the true
and estimated precision matrix and can therefore be
viewed as measures of bias in edge estimates. The correl-
ation between the estimated and true precision-matrix

Figure 2. The three network-structures under which data were
generated. (a) Bias for Psych Network. (b) Bias for Random
Network. (c) Bias for Random Network (Half Density).
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Figure 3. Bias in estimated edge weights for the different estimation methods at N¼ 900, 5,000, and 10,000.
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elements give an indication of how well the rank-order
of edges are maintained. The sensitivity and specificity
give an indication of how well edges are classified as
present or absent respectively, while F1 gives and indica-
tion of how well edges that are present in the population
are identified as such.

Next, we assessed performance of the Bayesian
methods with regard to the different centrality measures
by looking at the mean square error of the centrality
estimates, the correlation between the true and esti-
mated centrality measures, and the coverage of the 95%
Credibility Intervals (both per node and on average).
Coverages between .92 and .98 were deemed acceptable
(Bradley, 1978), and per node coverage was deemed suf-
ficient if at least 75% of nodes had acceptable coverage.

Results

Comparison to frequentist GLASSO

Figure 3 shows that the Bayesian estimation methods
compare well to the frequentist GLASSO in terms of
total bias in the (regularized) partial correlation
matrix. For both the network based on the bfi-data
from the Psych R-package (the Psych Network)
(Revelle, 2019) and the Random Network with half
the density of the Psych Network (the Random Half
Density or RHD Network) the two Bayesian methods
show lower KL-distance and lower Frobenius norms
than the frequentist GLASSO for all three sample
sizes. For the Random Network with equal density
(the Random Equal Density or RED Network), the
frequentist GLASSO performs better that the
Horseshoe, and slightly better than the Bayesian
GLASSO, with respect to KL-distance at N¼ 900. For
sample size of 5,000 and 10,000, the two Bayesian
methods perform better however. The Bayesian
GLASSO and Horseshoe also perform better in terms
of the Frobenius Norm for the RED Network at all
sample sizes.

To improve readability, figures for the the correl-
ation between the estimated and true precision-matrix
elements, sensitivity, and specificity are given in
Appendix A. Figure A1 shows that all three estimation
methods show high correlations between true and
estimated edge weights at all sample sizes (with corre-
lations becoming larger as N increases). Again the
Bayesian method appear to have a slight edge over the
frequentist GLASSO. For all networks, the Bayesian
GLASSO always has higher correlations than its fre-
quentist counterpart, while the Horseshoe has higher
correlations for N> 900.

Figure A2 shows that for the Psych Network, the
frequentist GLASSO has better sensitivity that the
Bayesian methods at all sample sizes. For the RED
Network (Figure A3) the frequentist GLASSO works
better for N < 10, 000: At N¼ 10,000 the Bayesian
GLASSO performs best (although the difference with
the frequentist GLASSO is not large). For the RHD
Network (Figure A4), the frequentist GLASSO always
has better sensitivity than the Graphical Horseshoe.
At N> 900, however, the sensitivity of the Bayesian
GLASSO is equal or slightly better. The specificity is
always better for the Bayesian methods, while F1 is
better for all networks for sample size larger than 900.
For the two random networks the F1 for the Bayesian
GLASSO is also larger than that of the frequentist
GLASSO at N¼ 900.

Figures A5–A7 show the correlation between the
true and estimated centrality measures. For the Psych
Network (Figure A5), the correlation between true
and estimated strength and closeness centrality is
always higher for the Bayesian methods (although the
frequentist GLASSO also has high correlations). The
correlation between true and estimated betweenness
centrality is about the same for all estimation meth-
ods. For the RED network (Figure A6), the Bayesian
methods have higher correlations between true and
estimated closeness and betweenness centrality. The
correlation between true and estimated strength cen-
trality is better for this network if N> 900. All three
measures are always really close in performance.
Finally, for the RHD network (Figure A7), the
Bayesian GLASSO always has higher correlation
between true and estimated strength and closeness
centrality, and has the highest correlations for betwe-
enness centrality if N > 900 (otherwise the variability
in correlation is slightly larger than for the other
methods). The Horseshoe has higher correlations than
the frequentist GLASSO for strength and betweenness
centrality, but the correlation for closeness centrality
in this network is really unstable for this estima-
tion method.

Centrality measure coverage

For the Psych, RED, and RHD networks, Figures 4a,b,
6a,b, and 8a,b show the true Strength, Closeness, and
Betweenness centrality of each of the 25 nodes
respectively (in red). In addition, they show the esti-
mated values of these centralities for the Frequentist
GLASSO (in green), the Bayesian GLASSO (in blue),
and the Graphical Horseshoe (in purple), for each of
the three sample sizes under which data was generated
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from the networks. For the Bayesian methods, esti-
mated obtained with the Post-Processing Shift estima-
tion method are given in Figures 4a, 6a, and 8a, while
the estimated obtained with the Simple Gibbs-Sampler

estimation method are given in Figures 4b, 6b,
and 8b.

For the Bayesian estimation methods, Figures 5, 7,
and 9 give information on the average coverage rates
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MULTIVARIATE BEHAVIORAL RESEARCH 321



and the variability in these rates across the 25 nodes
(for Strength, Closeness, and Betweenness centrality
respectively), for each combination of the three net-
works and the three generated sample sizes.

For readability, tables with the detailed centrality
information for each of the 25 nodes in each of the
three networks are given in an online Appendix
(https://osf.io/9kjxv/files/).

Strength
When using the Bayesian GLASSO, strength centrality
of all networks is estimated best by the Post-
Processing Shift estimation method. This method has
the lowest MSE (tied with the estimation method
based on edge weights which uses the same point esti-
mate) (see Figures 4a–4b and the Tables A.1–A.3 in
the online Appendix).

Importantly, for N > 900, this method also has
good coverage for the two denser networks (the Psych-
and RED Network) (Figure 5 and Table 1). For the

Psych Network, the average coverage rate and propor-
tion of nodes with sufficient coverage is .949 and .760
for N ¼ 5, 000, and .969 and .920 for N ¼ 10, 000: For
the RED network the average coverage and proportion
of nodes with sufficient coverage is .941 and .760 for
N¼ 5, 000 and .951 and .800 for N¼ 10,000. For both
these denser networks coverage at N¼ 900 is too low
due to negative bias in the point estimates for each
node strength centrality. For the less dense RHD net-
work, the Post-Processing Shift estimation method has
good average coverage at all sample sizes, but the pro-
portion of nodes with sufficient coverage is too low,
although, at N> 900, this is due to the method being
too conservative (i.e., to many coverages above .98 (see
Table A.3 of the online Appendix)).

Estimation using the Simple Gibbs-sampler estima-
tion method resulted in positive bias in the strength
estimates as expected, and as a result average and per
node coverage where too low for all networks and
sample sizes.
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Estimation based on edge weights performed well
in terms of MSE, but performed worse than the Post-
Processing Shift approach in terms of coverage. This
method only showed good coverage for N¼ 10,000 in
the Psych Network, and N> 900 in the RED network.

When using the graphical Horseshoe, strength cen-
trality is estimated less well than when the Bayesian
GLASSO is used (see Table 2, Tables A.4–A.6 of the
online Appendix, and Figures 4a and 4b). The MSE’s
of both the Post-Processing Shift estimation method
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and the estimation based on edge weights are slightly
larger (although the difference is very small) while the
average and per node coverage of these methods is
insufficient for all networks and sample sizes. Simple
Gibbs-sampler estimation method does have smaller
MSE’s when the Horseshoe is used, but as mentioned
above, there is substantial positive bias, and therefore,
low coverage when using this method.

Closeness
When using the Bayesian GLASSO, closeness central-
ity of the denser Psych- and RED networks is again
estimated best by the Post-Processing Shift Estimation
method. This method had low MSE and good average
coverage for all N (see Table 1, Tables A.1–A.3 of the
online Appendix, and Figures 6a and 6b).

The proportion of nodes with sufficient coverage is
also good for this method in these denser networks
(Table 1), except for N¼ 900 in the Psych Network
where it is a little too low (.720). For the sparser RHD

network, the coverage of closeness centrality of this
method is too low.

Estimation using the Simple Gibbs-Sampler estima-
tion method resulted in positive bias in the closeness
estimates, as expected, for the denser Psych and RED
networks. For the RHD network, there was a small
negative bias (except at N¼ 900). This is probably due
to the fact that there are a lot more edges that were
close to 0 (in each iteration of the Gibbs-sampler) in
this network, which could have limited the effect of
the Bayesian GLASSO not setting edges explicitly to 0
when estimating a network. Average and per node
coverage where too low for this method however,
except for N of 5,000 or 10,000 in the RED network.

Of the 4 estimation methods based on edge
weights, the methods with correlated successive and
shortest paths and the method with correlated shortest
paths worked best. In fact, performance of these two
methods was exactly the same, as was that of the two
methods assuming either uncorrelated shortest paths
or uncorrelated successive and shortest paths. This
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indicates that successive paths on a shortest route
between nodes are (effectively) uncorrelated. In the
rest of this paper we will therefore only distinguish
between methods with correlated shortest paths and
the methods with uncorrelated shortest paths. The
method with correlated successive paths showed good

coverage for N¼ 10,000 in the Psych Network, and
for N> 900 in the RED network. For lower sample
sizes, this method was too conservative in these
denser networks. In the sparser RHD network, this
method did not have good coverage. This could be
due to shrinkage being “stronger” in this network
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(due to it’s sparser nature), which could pose a prob-
lem for the assumption of normality that this method
is based on.

When using the graphical Horseshoe, closeness
centrality is estimated with a little more bias than
with the Bayesian GLASSO, however coverage is
better for all methods except the Post-Processing
Shift method (see Table 2, Tables A.4–A.6 of the
online Appendix, and Figures 6a and 6b). When
using the Graphical Horseshoe, coverage of the
Post-Processing Shift method is only sufficient for
N> 900 in the Psych and RED network, and never
sufficient for the RHD network. The coverage for
the estimation based method with correlated succes-
sive paths shows lower average and per node cover-
age than when the Bayesian GLASSO is used, but
this method does have good average and per node
coverage in the RHD network now for N> 900.
The Simple Gibbs-Sampler estimation method again
works a little better with the Horseshoe prior and
now has good average and per node coverage for

N¼ 10,000 in all three networks, and for N> 900 in
the RED network.

Betweenness
Out of the 3 centrality estimates, betweenness central-
ity was estimated the least well by all methods. When
using the Bayesian GLASSO, the Post-Processing Shift
Estimation method again tends to have the lowest
MSE (except for N¼ 10,000 in the RHD network) (see
Tables A.1–A.3 of the online Appendix, and Figures
8a and 8b).

Unlike for strength and closeness centrality, coverage
for betweenness centrality is not sufficient with any
method. Also, coverage for the Post-Processing Shift
estimation method is worse than that of the Simple
Gibbs-Sampler (Table 1). This last method has better
average coverage rates, and only has insufficient average
coverage for N> 900 in the RHD network, where aver-
age coverage is too conservative. The per node coverage
of the Simple Gibbs-Sampler is insufficient however for
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all networks and sample sizes, although at N> 900 the
method tends to be too conservative.

When using the Graphical Horseshoe, the MSE’s
for the betweenness centrality estimates again tend to
be larger than when the Bayesian GLASSO is used
(see Tables A.4–A.6 of the online Appendix, and
Figures 8a and 8b). With this prior the MSE of the
Post-Processing Shift method tend to be smaller than
that of the Simple Gibbs-Sampler method for the
denser Psych and RED networks (except when
N¼ 900). For the RHD network, the Simple Gibbs-
Sampler always has the lowest MSE. In terms of
coverage the overall picture is similar to that seen
with the Bayesian GLASSO (although coverage for
Post-Processing Shift method appears somewhat
lower, and that of the Simple-Gibbs Sampler method
somewhat higher) (see Table 2). The average and per
node coverage for the Post-Processing Shift method is
too low, while the Simple Gibbs-Sampler method has
good average coverage, with average coverage only
being insufficient for N> 900 in the RHD network
(where average coverage is too conservative). In add-
ition, as was the case when the Bayesian GLASSO was
used, the per node coverage of the Simple Gibbs-
Sampler is insufficient for all networks and sample
sizes, although at N> 900 the method tends to be too
conservative.

Conclusion

Taken together, results of our simulation study shows
that the Bayesian methods (particularly the Bayesian
GLASSO) are strong alternatives for the frequentist
GLASSO. The Bayesian GLASSO outperforms the fre-
quentist GLASSO with respect to a) bias in edge
weights, b) bias in the centrality measures, and c) the
correlation between the estimated and true partial-cor-
relations. The Bayesian Horseshoe also typically out-
performs the frequentist GLASSO on these three
measures (except at N¼ 900 where the frequentist
GLASSO shows less bias in edge weights and higher
correlations between estimated and true values).

In terms of sensitivity and specificity results are
more mixed. The frequentist GLASSO has better sen-
sitivity overall (although the Bayesian GLASSO is very
close or slightly better in the RED and RHD networks
for N � 5, 000), while the Bayesian methods have bet-
ter specificity. A choice between methods here there-
fore appears to come down to a preference for erring
on the side of caution (deciding an edge is absent
while it isn’t) versus erring on the sides of discovery
(deciding an edge is there while it isn’t). However, the
Bayesian GLASSO does perform better than the

frequentist GLASSO (except at N¼ 900 in the Psych
Network) on F1 which gives a harmonic mean of pre-
cision (the proportion of truly positive edges out of
all the edges identified as positive by a method) and
recall (the proportion of all true positive edges that
gets identified as positive), while the Graphical
Horseshoe performs better on this measure
for N � 900:

In terms of (coverage for) the three different cen-
trality measures, the Bayesian GLASSO outperform
the Graphical Horseshoe, and shows good coverage
for strength and closeness centrality at sample sizes of
N¼ 5, 000 or higher (in which case there are 16.66
observations for each partial correlation with 25
nodes). For smaller sample sizes the Bayesian
GLASSO has insufficient coverage for strength cen-
trality in the denser Psych- and RED networks, and
insufficient coverage for closeness centrality in the less
dense RHD network. This is likely the case because
there is less shrinkage at N> 900. As mentioned,
Bayesian regularization is a two-step approach; 1) esti-
mates are pulled toward zero (but not set to zero) by
the GLASSO or Horseshoe priors, and 2) estimates
whose 95% Credibility Intervals contain zero are set
to 0. At N> 900, the shrinkage in the first of these
steps is less “severe” than at N¼ 900, likely leading to
less distorted posteriors. For strength and closeness
centrality the Post-Processing Shift estimation method
provided the best performance out of all methods
tested with the Bayesian GLASSO in both coverage
and MSE. Performance with regard to betweenness
centrality was worse than for the other two centrality
measures, and coverage is insufficient for both the
Bayesian GLASSO and Graphical Horseshoe at all N
for all networks. For this centrality measure the
Simple-Gibbs estimation appear to be the best choice.
It has a larger MSE than the Post-Processing Shift
method, but shows better coverage rates and tends to
have intervals that are too wide for N � 900, imply-
ing that it will err on the side of being too
conservative.

Finally, performance of the Bayesian GLASSO (and
the Bayesian methods in general) appears to be better
when networks are not to sparse, but this should not
pose a problem in social sciences. With regard to net-
work-structure, the methods worked well for both the
structure of the bfi-data from the psych-package, and
for a random network.

Limitations

In this study we evaluated the performance of differ-
ent estimation methods by looking at their ability to
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recover an underlying true- or generating model. This
is only one way of evaluating estimation methods, and
some argue not the most important one (Cudeck &
Henly, 2003), as in practice there are no true models,
and not being able to recover a generating model in a
simulation study does not mean that a method does
not have other merits (like simplicity or interpretabil-
ity) or cannot capture relevant aspects of underlying
processes in practical research (Cudeck &
Henly, 2003; Hand & Vinciotti, 2003). Future research
should also look at accuracy of model-based predic-
tion and/or cross-validation as performance measures.

In addition, as is always the case with simulation
studies, results only generalize within the scope of the
settings and scenarios used in this study. That is, we
only looked at a subset of possible data generating-
and prior models. We did not consider an exhaustive
set of different generating network structures because
our focus was on the use of GGMs in the social-, and
specifically, psychological sciences. We therefore
wanted to compare methods on network structures
that researchers in these field are likely to encounter
(such as the bfi-data). Also, when determining the
effect of network structure on the performance of the
different methods, by also generating data based on
networks with a different structure and/or density as
that of the bfi-data, we wanted to keep these varia-
tions in structure within the limits that they might be
encountered by, and therefore relevant to, applied
social scientists (e.g., the size of the edge weights and
the number of variables). Getting a more fine grained
picture of the effect of different network characteris-
tics (i.e., size of edge weights, general structure, spars-
ity, etcetera) on the performance of different
estimation methods is important however. Future
research should therefore look at more diverse sets of
data, including but not limited to i) networks whose
precision matrices includes edge weights that are
(mostly) very close to zero, ii) networks much denser
than the ones used in this study, or even iii) from net-
works who’s characteristics are less common (or per-
haps even unlikely) in psychological practice (to
determine boundary performance). Regarding priors,
we chose to focus on the Bayesian GLASSO and
Horseshoe priors, again because of our focus on the
use of GGMs in the social sciences. These two priors
are currently quite popular in that field and therefore
often used. However, many alternatives to these two
choices exist. One interesting alternative is the already
mentioned G-Wishart prior (Dawid &
Lauritzen, 1993; Roverato, 2000), a continuous and
discrete mixture prior that can set edges to 0 without

the need for a heuristic like the one we used in this
article. In addition, future research might also want to
consider priors with Ridge-type penalization as in the
Eigenvalue decomposition based Wishart prior intro-
duced by Kuismin and Sillanp€a€a (2016). Ridge penal-
ization tends to shrink to 0 less strongly than LASSO
regularization, and could therefore lead to better
results with respect to sensitivity, albeit likely at the
cost of specificity. Studying alternative priors will give
valuable information about how they compare to each
other and what analytic goals are best served by what
prior. As suggested above, the GLASSO could be pre-
ferred when specificity is more important for example,
while Ridge-type priors could be the better choice if
sensitivity is more important. Lastly, future research
might also want to study variations on the priors used
in this study in more detail. For example, by setting
different hyper-priors on the tuning parameters of the
GLASSO and Horseshoe priors, or by using different
heuristics for setting edges to 0, to further investigate
the impact of choices in those aspects of the priors in
different contexts.

In addition, we only looked at forms of regulariza-
tion in which edges are set to exactly 0. As men-
tioned, Bayesian regularization does not set elements
of the precision matrix to exactly 0 by default. It pulls
estimates toward zero, but does not make them
exactly zero. This less strict regularization might actu-
ally be a better option in some circumstances, depend-
ing on how realistic the assumption of sparsity is for
the data (or population) at hand. Another, interesting
difference between Bayesian regularization and fre-
quentist regularization, is that, as Bayesian regulariza-
tion is achieved by means of priors, the amount of
regularization diminishes as the sample size goes up.
This is actually really useful behavior. The more signal
there is in the data, the less estimates are pulled to 0.
Frequentist regularization also prunes less edges as
data increases, as the EBIC will select denser graphs,
but how the amount of regularization depends on the
amount of data, and how this dependence is different
than for the Bayesian methods is not very clear.
Looking into Bayesian regularization (and how it
compares to it’s Frequentist cousin) in more detail,
both from an applied and more theoretical point of
view, is therefore needed.

Next to looking more closely into the differences
between frequentist and Bayesian regularization men-
tioned above, future research could also look into
non-regularized estimation of GGMs in more detail
(Liang et al., 2015; Williams et al., 2019 ).
Regularization makes inference more difficult as the
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meaning of p-values becomes less clear. What is the
exact null-hypothesis being tested, for example? And
how can one account for the fact that the data is used
not only for model estimation, but also for the process
used to determine the penalty term (and therefore the
sparsity of the final model)? As mentioned in the
introduction, usually the presence of an edge is taken
as proof for the presence of a relation between nodes,
while the absence is taken as proof for conditional
independence. This might seem to side-step the men-
tioned issues with p-values, but doesn’t really. For
every method (not just regularized methods) 1 – sen-
sitivity gives the false negative rate, which indicates
we cannot simply use the absence of an edge/connec-
tion as evidence the relationship is null. Similarly, 1 –
specificity gives the false positive rate (and the fre-
quentist GLASSO has been show to have a quite a few
false positives, although this is less the case for the
Bayesian GLASSO, see above), which indicates we
cannot simply use the presence of an edge/connection
as evidence the relationship exists. Non-regularized
estimation could circumvent some of the inference
problems mentioned above (although issues with post-
selection inference apply to non-regularized estimation
as well (Berk et al., 2013)), but it’s performance (com-
pared to regularized estimation) has not been exten-
sively studied yet.

Finally, there is some debate on whether the differ-
ent centrality indices should be used in the context of
psychological networks (Bringmann et al., 2019). In
their paper Bringmann et al. (2019), observe that cen-
trality indices display wide confidence intervals
(Bringmann et al., 2013), low stability in cross-sec-
tional data (Epskamp et al., 2017), inconsistency
(regarding which node is most central) across data
sets (Bringmann et al., 2016; Forbes et al., 2017; how-
ever also see Borsboom et al., 2017), and are not
always linked to external measure of interest
(Rodebaugh et al., 2018). In addition, Bringmann
et al. (2019) also discuss more conceptual difficulties
with the actual meaning of the different centrality esti-
mates in the context of psychological networks.
Particularly betweenness and closeness centrality
appear to be unsuitable as measures of node import-
ance in psychological networks context. As mentioned
in the introduction however, proper inference based
on network models requires taking the accuracy of
the estimates, including centrality measures, into
account. Until now it wasn’t possible to do this prop-
erly, which is why we looked into the Bayesian esti-
mation of centrality indices in this paper. Proper
uncertainty estimation for the centrality measures

might make them more useful in practice, at least
with regard to (consistently) ranking nodes based on
centrality, and/or with regard to relating node central-
ity to external measures of interest or outcomes. For
example, it could be that only when a node is clearly
more central than another (based on it’s 95%
Credibility Interval and those of others), that it can be
viewed as more important, but that so far identifying
truly more central nodes was not possible due to the
limitations in estimating the uncertainty of node cen-
tralities. In addition, when truly more central nodes
can be identified from among all other nodes, central-
ity might also become more usefully related to exter-
nal outcomes. The problem raised by Bringmann
et al. (2019) on how the indices should be interpreted
in the context of psychological networks, and on how
they are unsuited to capture certain processes in a
network won’t be solved by proper uncertainty esti-
mation however. In addition, our Bayesian methods
also don’t provide proper uncertainty estimates for
betweenness centrality, so this measure will remain
problematic regardless.
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Figure A5. Correlation between the estimated and true centrality values for the Psych Network.

MULTIVARIATE BEHAVIORAL RESEARCH 337



�

�

�

�

�

�
�
�

�

�

�

�
�

��
�

�

�

�

�

��
�

�

�
�

�

��
��
�

��
�
��
��

��
��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

����
�
��
��

������
��

�

����

��

�

�

����

������
����
���������
�

���
�����
��
��
���
�����

��

�������������������

0.85

0.90

0.95

1.00

900 5000 10000
Sample Size

C
or

re
la

tio
n 

E
st

im
at

ed
 a

nd
 T

ru
e 

S
tr

en
gt

h 
C

en
tr

al
ity

Correlation Estimated and True Strength Centrality

��

�

�

�

�

�
�

�

���
�

�

�

��

�
�

�

�

�

�
�

�

�

�
�

�

�

�
��
�

�

�
�

�

�

�����
����
�
���

�

�������

�

�

�
����
�
�

�

���
������

�
����
�

�

����

�����
�
����������

����

������
���������

0.75

0.80

0.85

0.90

0.95

1.00

900 5000 10000
Sample Size

C
or

re
la

tio
n 

E
st

im
at

ed
 a

nd
 T

ru
e 

C
lo

se
ne

ss
 C

en
tr

al
ity

Correlation Estimated and True Closeness Centrality

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�
�

�

�

�

�
�

�

�

�
��

�

�

��

�

�

�

�

�

�

�

�

��

�

��

�
�
��
��
�
�

�

���

��

��
��

�

�

�
�

�

��
�
�
�

�
�
�
�

�

��������

��
�
��

�

��

�
�

�

�

�

�

���

�

����

��
�

�

�

�
�

�
�
��

�

�
�
�
�

��
�

������

0.6

0.7

0.8

0.9

1.0

900 5000 10000
Sample Size

C
or

re
la

tio
n 

E
st

im
at

ed
 a

nd
 T

ru
e 

B
et

w
ee

nn
es

s 
C

en
tr

al
ity

Correlation Estimated and True Betweenness Centrality

Estimator

B−GLASSO

F−GLASSO

Horseshoe

Figure A6. Correlation between the estimated and true centrality values for the random network.
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Figure A7. Correlation between the estimated and true centrality values for the random network (half density).
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