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ABSTRACT 
When examining whether two continuous variables are associated, tests based on Pearson’s, 
Kendall’s, and Spearman’s correlation coefficients are typically used. This paper explores 
modern nonparametric independence tests as an alternative, which, unlike traditional tests, 
have the ability to potentially detect any type of relationship. In addition to existing modern 
nonparametric independence tests, we developed and considered two novel variants of 
existing tests, most notably the Heller-Heller-Gorfine-Pearson (HHG-Pearson) test. We con
ducted a simulation study to compare traditional independence tests, such as Pearson’s cor
relation, and the modern nonparametric independence tests in situations commonly 
encountered in psychological research. As expected, no test had the highest power across 
all relationships. However, the distance correlation and the HHG-Pearson tests were found 
to have substantially greater power than all traditional tests for many relationships and only 
slightly less power in the worst case. A similar pattern was found in favor of the HHG- 
Pearson test compared to the distance correlation test. However, given that distance correl
ation performed better for linear relationships and is more widely accepted, we suggest 
considering its use in place or additional to traditional methods when there is no prior 
knowledge of the relationship type, as is often the case in psychological research.
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Investigating whether two continuous variables are 
associated is a recurrent task in psychological 
research. Typically, hypothesis tests based on 
Pearson’s, Kendall’s (Kendall, 1938), or Spearman’s 
correlations are employed. However, the disadvantage 
of these tests is that they can miss certain relation
ships; specifically, they can fail to detect nonlinear 
(Pearson’s correlation) and nonmonotonic (Kendall’s 
and Spearman’s correlation) relationships, even in 
large samples. This is a concern, since relationships 
observed in psychological research are not limited to 
linear and monotonic forms. Nonlinear and nonmo
notonic relationships have been noted in various areas 
of psychology (Guastello et al., 2008), including 
inverted-U (Grant & Schwartz, 2011) and cyclic 
(Verboon & Leontjevas, 2018) relationships. Thus, the 
risk inherent in relying solely on the traditional tests 
is that some associations will be missed.

We will illustrate this using an example. Nook 
et al. (2018) investigated how emotion differentiation 
develops across the lifespan. Emotion differentiation is 
the ability of an individual to distinguish between dif
ferent emotions, such as being angry or sad. To exam
ine this question, Nook et al. (2018) obtained emotion 
differentiation scores from participants aged 4– 
25 years old. To make inference more challenging, we 
use a random subsample of size n¼ 80 instead of the 
whole sample. Figure 1 visualizes the relationship. The 
data are in line with the original statistical analysis, 
which suggests a U-shaped relationship between emo
tion differentiation and age, with scores falling from 
childhood to adolescence and increasing from adoles
cence to adulthood. However, the traditional tests 
failed to find evidence of an association, with Pearson, 
Kendall, and Spearman results of tð78Þ ¼ −1:59, 
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p¼ .115; z ¼ −1:41, p ¼ .158; and S ¼ 98, 212:00, 
p ¼ .181; respectively.

The most common method for examining nonlinear 
and nonmonotonic relationships is the use of nonlinear 
models, such as nonlinear regression (Fox, 2016, 
Chapter 17). For instance, the original analysis of the 
emotion differentiation data set relied on a quadratic 
regression model. However, many nonlinear models 
can only capture relationships of a specific form. For 
example, a quadratic regression model is limited to 
quadratic relationships. Consequently, the appropriate
ness of such nonlinear models hinges on researchers 
having prior knowledge of the relationship type, while 
such knowledge is often not available. Some more gen
eral nonlinear models, like kernel regression, can cap
ture a broader range of relationships. However, even 
these general models are confined to detecting mean 
dependence, that is, the variable Y is related to the vari
able X such that EðYÞ 6¼ EðYjXÞ: This is not the case, 
for example, if the variance but not the mean of Y 
depends on X. As a result, even general nonlinear mod
els may not be suitable for investigating whether two 
variables are associated.

Hypothesis tests are available that can potentially 
detect any type of relationship and are thus suitable 
for this research question. We will call them modern1

nonparametric independence tests. Hoeffding’s test 

(Hoeffding, 1948) has been available since the 1940s. 
Recently, the topic has gained increased attention 
within machine learning and nonparametric statistics. 
As a result, many modern nonparametric independ
ence tests have been developed. They can be catego
rized into those based on ranks (Bergsma & Dassios, 
2014; Chatterjee, 2021; Cs€org}o, 1985; Deb & Sen, 
2021; Drton et al., 2020; Han et al., 2017; Heller et al., 
2016; Hoeffding, 1948; Romano, 1988; Rosenblatt, 
1975; Wang et al., 2017; Weihs et al., 2018), kernels 
(Albert et al., 2022; Gretton et al., 2008; Pfister et al., 
2018), mutual information (Berrett & Samworth, 
2019; Kinney & Atwal, 2014; Y. A. Reshef et al., 
2016), copulas (Ding & Li, 2015; Lopez-Paz et al., 
2013; Schweizer & Wolff, 1981; Zhang, 2019), pairwise 
distances (Heller et al., 2013; Sz�ekely et al., 2007), 
maximum correlation (Breiman & Friedman, 1985; 
Gretton et al., 2008; Papadatos & Xifara, 2013; R�enyi, 
1959), and U-statistics (Berrett et al., 2021).

To showcase the potential of modern nonparamet
ric independence tests, we applied the distance correl
ation (Sz�ekely et al., 2007) and the Hilbert Schmidt 
Independence Criterion (Gretton et al., 2008), two of 
the most popular modern nonparametric independ
ence tests, to the emotion differentiation example. In 
contrast to all traditional tests, they correctly detect 
that emotional differentiation and age are related: 
pdcor ¼ :041, pHSIC ¼ :024:

Despite modern nonparametric independence tests 
having the advantage of potentially detecting any rela
tionship, they are rarely used in psychology for several 
potential reasons. First, many psychological research
ers are not familiarly with modern nonparametric 
independence tests because they are not covered in 
their statistical training. Second, there may be legitim
ate concerns about the power of the modern nonpara
metric independence test, especially in moderately 
sized samples. The disadvantage of being able to 
detect any relationship is that for a particular relation
ship the power can be reduced compared to a more 
specialized test. As an example, if the two variables 
follow a bivariate normal distribution, Pearson’s cor
relation typically has higher power than any modern 
nonparametric independence test, since it has uni
formly the highest power among all unbiased tests 
(Lehmann & Romano, 2005, sec. 5.13). Using modern 
nonparametric independence tests can therefore 
decrease the power and be detrimental in moderately 
sized data sets, which are common in psychology. 
Fourth, the selection of the appropriate nonparametric 
independence test is a question that arises due to the 
abundance of options.

Figure 1. Emotion differentiation across age. The blue line is a 
representation of the best fit obtained by using local polyno
mial regression fitting, and the gray area represents the corre
sponding 95% confidence interval.

1We use the word “modern” to differentiate these nonparametric tests 
from traditional nonparametric tests, most importantly Kendall’s and 
Spearman’s correlation. Notably, modern nonparametric tests can detect 
any type of relationship, while Kendall’s and Spearman’s tests are limited 
to monotonic relationships.
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In this paper, we thus first provide an introduction 
to the most popular modern nonparametric independ
ence tests for psychological researchers. In order to 
address power concerns and the question of which test 
should be used, we conducted a simulation study com
paring traditional tests of independence and modern 
nonparametric independence tests. We included the 
introduced popular nonparametric tests, as well as two 
newly developed variants of existing tests, as candidates. 
The newly developed variants differentiate themselves 
by being specifically designed for data as they occur in 
psychological research, such as small sample sizes com
bined with weak relationships. It is not possible to iden
tify a test that is always the most powerful, since the 
type of relationship determines which test has the high
est power (Bergsma & Dassios, 2014; de Siqueira Santos 
et al., 2014; Lehmann & Romano, 2005). Previous simu
lation studies have consequently provided information 
on which tests are best for which types of relationships 
(de Siqueira Santos et al., 2014; Ding & Li, 2015; Kinney 
& Atwal, 2014; Simon et al., 2014). However, this does 
not resolve the question of which test should be used 
when the type of relationship is unknown, which is 
often the case in psychology. To answer this question, 
we establish an evaluation criterion that considers the 
power across all relationships, which is appropriate for 
answering this question.

Nonparametric independence tests

Notation

The two variables of interest are formalized as ran
dom variables X and Y. The distributions of the ran
dom variables are described by corresponding 
(cumulative) distribution functions FXðxÞ, FYðyÞ and 
joint distribution function FX, Yðx, yÞ: To reflect that 
the variables are continuous, the distribution functions 
FXðxÞ, FYðyÞ, FX, Yðx, yÞ are assumed to be continuous. 
Two variables are called not associated or equivalently 
independent if and only if

FX, Yðx, yÞ ¼ FXðxÞFYðyÞ:

To test whether the variables are independent, a 
sample, which consists of a series of n paired observa
tions of X and Y is available: D ¼ fðxi, yiÞ : i 2 1, :::, ng:
An independence test is called nonparametric if and only 
if its test statistic converges to 0 for independence and 
nonzero for any alternative,2 that is, for any type of rela
tionship between X and Y.

Selection criteria

Due to the large number of available nonparametric 
independence tests, we included tests according to the 
following criteria:

1. the availability of an R implementation;
2. the high level of popularity indicated by at least 

100 citations (as of August 26, 2022, according to 
Google Scholar);

3. not exhibiting consistently lower power than 
other tests.

These criteria lead to the tests we will introduce in 
this section. Nonparametric independence tests that 
are available in R but do not meet one of the other 
two inclusion criteria are as follows: first, the maximal 
information coefficient test (D. N. Reshef et al., 2011) 
provided by the Minerva package (Albanese et al., 
2012), which has been found to have low power com
pared to other tests (Gorfine et al., 2012; Kinney & 
Atwal, 2014; Simon et al., 2014). Second, a mutual 
information test using the K-nearest neighbors 
method (Berrett & Samworth, 2019), which is pro
vided by the FastMIT package (Lin et al., 2019), and 
has not been cited 100 times. Third, the rank-based 
test offered in the XICOR package (Chatterjee, 2021), 
which has not been cited 100 times and has been 
demonstrated to have low power when compared to 
other rank-based tests (Shi et al., 2021).

Shared concepts

Before describing the tests, we introduce two concepts 
shared across many of them. Several tests calculate the 
dissimilarity between the actual joint distribution 
(FX, Y) and the joint distribution assuming independ
ence (FXFY). Multiple dissimilarity measures exist 
such that the corresponding dissimilarity is 0 if and 
only if X and Y are independent. Estimates of those 
dissimilarities are used as test statistics for the non
parametric independence tests, with different dissimi
larity measures giving rise to different tests.

Many tests use a random permutation approach to 
obtain the p value corresponding to the observed 
value of the test statistic (Good, 2005). This approach 
randomly permutes the values of one variable and 
saves the resulting test statistic ti for each permutation 
i. This procedure is repeated I times to estimate a per
mutation sampling distribution under the null 
hypothesis of independence. The p value is obtained 
by counting the proportion of permutations for which 

2Note that under this definition Kendall’s and Spearman’s test are not 
nonparametric.
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the permutation test statistic ti exceeds the original 
test statistic t.

Hoeffding’s test

Hoeffding’s test is based on the following dissimilarity 
measure

DðX, YÞ ¼
ð1

−1

ð1

−1
pX, Yðx, yÞ FX, Yðx, yÞ − FXðxÞFYðyÞ

� �2 dx dy 

where pX, Yðx, yÞ is the probability density function of 
the joint distribution. DðX, YÞ is thus the average 
squared difference between the actual distribution 
function FX, Yðx, yÞ and the joint distribution function 
under independence FXðxÞFYðxÞ: The dissimilarity 
DðX, YÞ is estimated using Hoeffding’s D. The formula 
for D is presented in Hollander et al. (2013, 
Section 8.6).

There are multiple possible approaches to obtain a 
p value from the observed test statistic D. One option 
is to rely on the combination of precalculated tables 
and approximate large sample distributions, as 
described in Hollander et al. (2013, Section 8.6). The 
hoeffd function included in the Hmisc package 
(Harrell, 2021) implements this version of Hoeffding’s 
test.

Distance correlation test

The distance correlation test relies on characteristic 
functions. The characteristic function of a random 
variable is the Fourier transform of its probability 
density function.3 If uXðsÞ, uYðtÞ, uX, Yðs, tÞ are the 
characteristic functions describing the marginal distri
butions, and the actual joint distributions, respectively, 
then X and Y are independent if and only 
if uX, Yðx, yÞ ¼ uXðxÞuYðyÞ:

Sz�ekely et al. (2007) proposed the following dis
tance covariance dissimilarity measure

dCov2ðX, YÞ ¼
1
p2

ð1

−1

ð1

−1

uX, Yðs, tÞ − uXðsÞuYðtÞ
�
�

�
�2

s2t2 dt ds:

The standardized version is the distance correl
ation:

dCorðX, YÞ ¼
dCov2ðX, YÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dCovðX, XÞdCov2ðY , YÞ
q , 

which ranges between 0 (independence) and 1 (perfect 
dependence).

The distance correlation dCor is estimated via the 
empirical distance correlation; see Sz�ekely et al. 
(2007), Definition 5 for the formulas. The correspond
ing p value is obtained via the random permutation 
approach. The dcor.test function within the 
energy package provides an implementation of the 
distance correlation test.

Taustar test

The Taustar test is based on the s� dependence meas
ure (Bergsma & Dassios, 2014), which is an extension 
of Kendall’s s. Kendall’s s is based on the notion of 
concordant and discordant pairs. A pair of observa
tions (x1, y1) and (x2, y2) is said to be concordant if 
the sort order of x1, x2 and y1, y2 agrees: that is, if 
either both xi > xj and yi > yj holds or both xi < xj 

and yi < yj; otherwise they are said to be discordant.4

The population value for Kendall’s s is s ¼ PC2 − PD2 

where PC2 is the probability that two observations are 
concordant and PD2 the probability that they are dis
cordant. If there is any monotonic relationship 
between X and Y, then s 6¼ 0: However, s¼ 0, does 
not imply independence for nonmonotonic 
relationships.

Bergsma and Dassios (2014) extended s to s� such 
that s� ¼ 0 implies independence for all types of rela
tionships. The central idea is to consider concordance 
of quadruples (x1, y1), (x2, y2), (x3, y3), (x4, y4). A 
quadruple is considered concordant if it contains two 
pairs that are either “jointly” concordant or “jointly” 
discordant, while it is called discordant if, “jointly,” 
one pair is concordant and the other is discordant. 
Mathematically, a quadruple is concordant if there is 
a permutation ði, j, k, lÞ of ð1, 2, 3, 4Þ such that:

ðxi, xj < xk, xlÞÙ ðyi, yj < yk, ylÞÚðyi, yj > yk, ylÞ
� �

, 

and discordant if there is a permutation ði, j, k, lÞ such 
that:

ðxi, xj < xk, xlÞÚðxi, xj < xk, xlÞ
� �

Ù ðyi, yk < yj, ylÞÚðyi, yk > yj, ylÞ
� �

, 

where Ú and Ù are logical OR, and AND, respectively. 
The population value is:

s� ¼
2PC4 − PD4

3
, 

3This statement is only true if a probability density function exists, which 
is guaranteed in our setting because we assume continuous random 
variables. 4Ties can be ignored, as we assume continuous distributions.
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where PC4 is the probability that a quadruple is con
cordant and PD4 the probability that it is discordant.

The formula for the estimate t� of s� can be found 
in Bergsma and Dassios (2014, Equation 5). The corre
sponding p value can be obtained via multiple 
approaches (Nandy et al., 2016), including the random 
permutation approach (Bergsma & Dassios, 2014), which 
provides the most accurate results but can be slow for 
large samples. The tauStarTest function within the 
TauStar package implements the Taustar test.

Heller-Heller-Gorfine test

The Heller-Heller-Gorfine (HHG) test (Heller et al., 
2013) utilizes the following observation. Two continu
ous random variables X, Y are dependent if and only 
if dichotomizations5 of X and Y exist such that the 
resulting dichotomous variables are dependent. More 
specifically, the two dependent dichotomous random 
variables are of a specific form for whose presentation 
some terms need to be introduced. Let dXð�, �Þ and 
dYð�, �Þ be norm-based distance metrics so that the 
distance between two observations xi, xj is dXðxi, xjÞ, 
and the distance between two observations yi, yj is 
dYðyi, yjÞ: Furthermore, let (x0, y0) be a pair of x and 
y values, Rx0 , Ry0 radii around x0 and y0 respectively, 
and Ið�Þ be the indicator function. The dichotomous 
random variables are then of the form IfdXðx0, XÞ �
Rx0g and IfdXðy0, YÞ � Ry0g:

As a solution to the problem that (x0, y0) and 
Rx0 , Ry0 are unknown, different values are employed; 
one set of values for each pair of observations (xi, yi) 
and (xj, yj) (see, Heller et al., 2013 for how this is 
done exactly). Nonparametric independence tests for 
dichotomous variables are well known, most notably 
the Pearson chi-squared and the likelihood ratio tests. 
Thus, for each dichotomization indexed by i, j, inde
pendence of the dichotomous random variables can 
be tested by one of those tests, with corresponding 
test statistic t(i, j). To combine the test results across 
all dichotomizations, Heller et al. (2013) propose sum
ming across all test statistics t(i, j), such that the over
all test statistic is t ¼

Pn
i¼1
Pn

j6¼i
j¼1 tði, jÞ: The 

corresponding p value is obtained via the random per
mutation approach. The hhg.test function within 
the HHG package implements the HHG test.

In contrast to the tests discussed so far, the HHG 
test is not a single test but a family of tests. By choos
ing different distance metrics dXð�, �Þ, dYð�, �Þ, 

different tests are obtained. While the HHG test is 
consistent for all norm-based distances, the choice of 
the distance metric impacts the power.

Hilbert-Schmidt Independence Criterion test

The Hilbert-Schmidt Independence Criterion (HSIC) 
(Gretton et al., 2005) is based on the following idea. 
While a covariance of CovðX, YÞ ¼ 0 does not imply 
independence of X and Y, Covðf ðXÞ, gðYÞÞ ¼ 0 for all 
(bounded and continuous) transformations f, g does 
(R�enyi, 1959). However, it is impossible to investigate 
all functions f, g. Gretton et al. (2005) showed that it 
suffices to consider all functions within the unit ball 
in so-called characteristic reproducing Kernel Hilbert 
spaces, f 2 F , g 2 G: This lead to the following meas
ure of independence:

HSIC ¼ sup
f2F , g2G

Cov2ðf ðXÞ, gðYÞÞ:

The kernel trick makes it possible to compute the 
HSIC. Only the reproducing kernels kðx, x0Þ, lðy, y0Þ
of the Hilbert spaces G,F respectively are needed. Put 
another way, instead of specifying characteristic repro
ducing Hilbert spaces directly, only two kernels giving 
rise to characteristic Hilbert spaces can be specified. 
Such kernels are referred to as characteristic. A popu
lar characteristic kernel is the Gaussian kernel 

kðx, x0Þ ¼ exp −ðx−x0Þ2

2r2

� �

, with free bandwidth param
eter r. Given two characteristic kernels 
kðx, x0Þ, lðy, y0Þ that have been centered in the sense 
that E½kðx, XÞ� ¼ 0 and E½lðy, YÞ� ¼ 0 :

HSIC ¼ E kðX, X0ÞlðY , Y 0Þ
� �

, 

with (X, Y) and ðX0, Y 0Þ both having distribution FXY 
but being independent of each other.

For a sample D, those kernels give rise to the gram 
matrices K, L with entries Ki, j ¼ kðxi, xjÞ and Li, j ¼

lðyi, yjÞ: The estimate of HSIC is then given by:

dHSIC ¼
1
n2 traceðKHLHÞ

where H ¼ In − 1
n Jn is the centering matrix, with In 

being the identity matrix of size n and Jn the n-by-n 
matrix of all 1s.

The p value corresponding to an estimate of HSIC 
can be obtained via multiple approaches (Pfister et al., 
2018), including the random permutation approach, 
which provides the most accurate results but can be 
slow for large samples. The dhsic.test function 
within the dHSIC package implements the HSIC test.
Like the HHG test, the HSIC test is not a single test 
but rather a family of tests. By choosing different 

5Dichotomization refers here to binary random variables that are 
functions of X and Y, respectively.
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kernels, different tests can be implemented. In par
ticular, by choosing the appropriate kernels, the HSIC 
test family contains Pearson’s correlation test (linear 
kernel) and the distance correlation test as special 
cases (see Sejdinovic et al., 2013).

New test variant: mutual information by kernel 
density estimation

The first new test we propose relies on the mutual 
information. The mutual information is a dependence 
measure from information theory which is 0 if and 
only if two variables X and Y are independent. The 
mutual information for continuous variables relies on 
probability density functions. In particular, if 
pXðxÞ, pyðyÞ, pX, Yðx, yÞ are the marginal and joint 
probability density functions, the continuous mutual 
information is defined as

IðX, YÞ ¼
ð1

−1

ð1

−1
pX, Yðx, yÞ log

pX, Yðx, yÞ
pXðxÞpYðyÞ

� �

dx dy, 

There are many approaches to estimating the con
tinuous mutual information, most prominently, kernel 
density estimators (Moon et al., 1995), k-nearest 
neighbors (Kraskov et al., 2004), and adaptive parti
tioning (Steuer et al., 2002). The estimator used can 
have profound effects on the power of the resulting 
hypothesis test (Khan et al., 2007). In contrast to most 
existing mutual information-based tests (Berrett & 
Samworth, 2019; Kinney & Atwal, 2014; Y. A. Reshef 
et al., 2016), we chose to employ kernel density esti
mation since Khan et al. (2007) found that this 
approach worked best in samples below a size of 
n< 100 and high noise, which we consider to sub
sume most psychological data sets.

The kernel density estimator of the probability 
density function pXðxÞ is:

p̂XðxÞ ¼
1

nh

Xn

i¼1
K

x − xi

h

� �

, 

where K is a kernel and h is the bandwidth parameter. 
The reproducing kernels used for the HSIC tests and 
the kernels here are related but different concepts. 
Using the kernel density estimates for the probability 
density functions, the mutual information can be esti
mated as follows:

ÎðX, YÞ ¼
Xn

i¼1
p̂X, Yðx, yÞ log

p̂X, Yðx, yÞ
p̂XðxÞp̂YðyÞ

 !

:

As for the HSIC test, many options are available 
for the kernel and the algorithm to choose the 

bandwidth. We used the Epanechnikov Kernel, as it 
leads to the best density estimates (in the sense of 
minimizing the mean squared error; see, for example, 
Wand and Jones (1994)). We chose the Sheater-Jones 
plug-in algorithm for bandwidth selection, since 
Harpole et al. (2014) found that this algorithm outper
forms all other methods. The p value corresponding 
to a mutual information estimate is obtained via the 
permutation approach. Throughout this manuscript, 
we will refer to this test as the mutual information by 
kernel density estimation (MI-KDE) test. We provide 
the R implementation of the MI-KDE test here: 
https://osf.io/yketn/ and a web application here https:// 
solo-fsw.shinyapps.io/ModernNonparametricTests/.

New test variant: combing Pearson’s and 
Heller-Heller-Gorfine’s tests

The second new test combines two existing tests: the 
traditional test of Pearson’s correlation and the HHG 
test. The idea to combine these two tests emerged 
from the following observation: compared to other 
nonparametric tests, the HHG test appears to possess 
high power for many nonlinear relationships, but low 
power for linear relationships. In the comparison by 
de Siqueira Santos et al. (2014), it exhibited close to 
the highest power among the nonparametric tests 
investigated for all nonlinear relationships. However, 
it had low power for the linear relationship. Pearson’s 
test showed the opposite behavior. It typically had the 
highest power for linear relationships but tended to 
have low power for nonlinear relationships (de 
Siqueira Santos et al., 2014; Ding & Li, 2015; Kinney 
& Atwal, 2014; Simon et al., 2014). Thus, by combin
ing the two tests, we aimed at a test that has relatively 
high power across many relationships and only 
slightly lower power than the HHG or Pearson tests 
for the relationships where those tests have the highest 
power. We call this test the HHG-Pearson test.

The combination is straightforward. Both tests are 
performed, and an overall p value is obtained by apply
ing the Bonferroni correction. In particular, if pHHG and 
pPearson are the p values of HHG’s test and Pearson’s test 
respectively, then the p value of the HHG-Pearson 
test is pHHG-Pearson ¼ 2minðpHHG, pPearsonÞ: While 
Bonferroni’s correction is generally conservative, it is 
the only formula-based correction that guarantees 
strong control of the family-wise error rate without add
itional assumptions.6 We provide the R implementation  

6Holm’s procedure is a less conservative alternative but equivalent when 
correcting for two comparisons.
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of the HHG-Pearson test here: https://osf.io/yketn/ and 
a web application here https://solo-fsw.shinyapps.io/ 
ModernNonparametricTests/.

Comparison of tests

Tests included

We included all tests described in the previous section 
in the simulation study. The settings used were as rec
ommended in the literature and are as follows. For 
the HHG test, we used the Euclidean distance for 
both dXð�, �Þ and dYð�, �Þ, along with the likelihood 
ratio test statistic. We chose the Euclidean distance as 
it was suggested in the paper introducing the HHG 
test and demonstrated good performance in terms of 
power (Heller et al., 2013). We chose the likelihood 
ratio test statistic, as Pearson’s test statistic is its 
approximation. However, this choice is likely to have 
only a very limited effect (Heller et al., 2013). For the 
HSIC test, we used the Gaussian kernel with median 
heuristic as bandwidth, as recommended by Pfister 
et al. (2018). For the distance correlation, HHG, 
Taustar, and MI-KDE tests, we used the random per
mutation approach with 1000 permutations to obtain 
p values. This approach was computationally infeasible 
for the HSIC test, so, we instead used 100 permuta
tions. We did not employ the approximation based on 
eigenvalues (Gretton et al., 2009) because a prelimin
ary investigation confirmed the findings of Pfister 
et al. (2018): it leads to low power.

Besides the modern nonparametric independence 
tests, we also included the association tests most com
monly used in psychology; in particular, the traditional 
tests of Pearson’s, Spearman’s, and Kendall’s correlation, 
as implemented by the cor.test function within the 
stats package. Additionally, we included the permu
tation version of Pearson’s test. As with the other tests, 
we used 1000 random permutations. The code to repro
duce the simulation study is available at https://osf.io/ 
yketn/.

Design

Overview
The design of the simulation study can be summar
ized as follows:

1. Sample size (five levels): 10, 20, 50, 100, and 150
2. Type of relationship (six levels): mean independ

ence, linear, inverted-U, negative exponential, cyc
lic, and missed moderator.

3. Strength of relationship (three levels): low, medium, 
high.

4. Distribution of errors (four levels): normal, 
skewed, heavy-tailed, heteroscedastic.

This resulted in a total of 5� 6� 3� 4 ¼ 360 
design cells. The details for each factor and its selected 
levels are described below. For all factors, we took 
care to select levels that are common in psychology.

Sample size
Marszalek et al. (2011) found that the most common 
sample sizes in psychology range from 10 to 140, 
while K€uhberger et al. (2014) found a range from 1 to 
100. Based on this, we selected five levels: 10, 20, 50, 
100, 150.

Type of relationship
We visualize the included relationships in Figure 2. 
All relationships considered fall within the following 
framework: Y ¼ f ðXÞ þ �, where � represents the 
error term (see next subsection). The relationships 
considered were as follows:

Mean Independence: f ðXÞ ¼ 0
Linear: f ðXÞ ¼ 2X

Inverted-U: f ðXÞ ¼ −X2

Negative Exponential: f ðXÞ ¼ −e−X

Cyclic: f ðXÞ ¼ sinð3XÞ
Missed Moderator: f ðXÞ ¼ ZX

with Z � Bernoullið0:5Þ:

We included the linear relationships to investigate 
how the nonparametric independence tests perform 
compared to Pearson’s tests in this situation, where 
Pearson’s test tends to be optimal. The remaining 
relationships were designed to mirror common non
linear relationships that occur in psychology. U-type 
relationships have been found across many domains 
of psychology (Grant & Schwartz, 2011), including the 
emotion differentiation example discussed at the 
beginning. Negative exponential curves are often used 
to model learning curves (Leibowitz et al., 2010). 
Cyclic patterns are commonly found in ecological 
momentary assessment studies (Verboon & 
Leontjevas, 2018). The missed moderator relationship 
represents a situation where the two variables are lin
early related, but a third, unobserved variable moder
ates the relationship.

Distribution of errors
We considered a normal distribution as the baseline, 
as it represents the most straightforward case and is 
an assumption of Pearson’s correlation. Additionally, 
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we examined skewed, heavy-tailed, and heteroscedastic 
error distributions, as these are frequently observed in 
psychological research and are known to impact 
Pearson’s correlation (Bishara & Hittner, 2017). For 
the skewed distribution, we followed Bishara and 
Hittner (2017) and employed a Weibull distribution 
with a shape parameter of 1.5 and a scale of 1, as it 
aptly mimics reaction times.

For the heavy-tailed errors, we used a t-distribution 
with six degrees of freedom. We selected six degrees 
of freedom because this results in substantial excess 
kurtosis (6), thereby robustly testing the methods’ 
ability to handle heavy-tailed errors while still reflect
ing scenarios encountered in psychological data 
(Blanca et al., 2013). For heteroscedastic errors, we 
generated the error term as �ðXÞ ¼ ZX, where Z is a 
normally distributed variable with a mean of zero, as 
is commonly done. All error distributions were cen
tered to have a mean of zero and were scaled to an 
appropriate standard deviation, contingent on the 
desired strength of the relationship.

Strength of relationship
To modify the strength of the relationship, we used 
the generalized measure of correlation (GMC) (Zheng 
et al., 2012), which within the setting of this study is:

GMCðYjXÞ ¼ 1 −
E ðY − f ðXÞ2Þ
� �

varðYÞ
:

Thus, GMCðYjXÞ denotes the amount of variance 
of Y that is accounted for by X. Consequently, it is 
the nonlinear generalization of the commonly used 
multiple squared correlation, the quantity adjusted R- 
squared estimates (Karch, 2020). Following the heuris
tic effect sizes proposed in the literature for R-squared 
(Cohen, 1988), we used the following values for 
GMCðYjXÞ : “low”¼0.1, “medium” ¼ 0.45, “high” ¼

0.75. To obtain a certain GMC value, we modified the 
error standard deviation r� accordingly.

GMC is not appropriate for the missed moderator 
and mean independence relationship, as for both cases 
GMCðYjXÞ ¼ 0: For the missed moderator relation
ship, we used “low” ¼ 0.3, “medium” ¼ 0.6, 
“high”¼1, as error standard deviations, and for mean 
independence, we used “low”¼1, “medium”¼2, 
“high”¼4. For the mean independence condition, the 
error standard deviation had no impact on the results, 
so we will only report the results for r� ¼ 1:

Evaluation of tests

To obtain estimates of the type I error rates and 
power, we generated 10,000 random samples within 
each cell. As significance level, we used the standard 
value of a ¼ 0:05:

Type I error rates
We first examined whether a test is valid, which is the 
case if its type I error rate is always lower than the 
significance level a; that is, the actual type I error rate 
does not exceed the desired type I error rate. For this, 
we only considered cells where the null hypothesis of 
independence held true. This applied to all cells that 
exhibited mean independence and had a nonhetero
scedastic error distribution.

Power
Ideally, we would want to identify the uniformly most 
powerful test of the valid tests (Lehmann & Romano, 
2005). Unfortunately, this does not exist, as which test is 
most powerful depends on the type of relationship 
(Bergsma & Dassios, 2014). Thus, to select the test with 
the highest power, the type of relationship needs to be 
known. Such knowledge is usually not available in psy
chological research. Consequently, an evaluation 

Figure 2. Visualization of investigated relationships.
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criterion is needed that considers power across a set of 
relationships.

Many such criteria are available. Prominent examples 
are worst-case power or (weighted) average power. The 
former is close to the frequentist idea of minimax test
ing, and the latter is close to the Bayesian risk idea 
(Lehmann & Romano, 2005). However, which test is 
considered best based on these two criteria is highly 
dependent on the precise design of the simulation study. 
Consequently, the results cannot be expected to general
ize well. Thus, we instead propose a criterion that is less 
sensitive to the design of the simulation study. It is 
inspired by the relationship between Student’s t test and 
Wilcoxon’s rank-sum test. If the t test’s assumption of 
normality is met, it is only slightly more powerful than 
Wilcoxon’s test (Hodges & Lehmann, 1956), and if it is 
not met, Wilcoxon’s test can be substantially more 
powerful (Blair & Higgins, 1980; Hodges & Lehmann, 
1956). This is commonly used to argue for using 
Wilcoxon’s test as the default procedure instead of the t 
test (Posten, 1982). Similarly, we aimed to identify a test 
that has only slightly less power than Pearson’s test if 
bivariate normality is met but can have much higher 
power if it is not met.

Results

Type I error rates

The type I error results are shown in Table 1. Type I 
error rates were correctly always below 5% for almost 
all tests. Only Hoeffding’s test showed substantially 
inflated type I error rates for small and moderate 
sample sizes. As those sample sizes are common in 
psychology, we excluded Hoeffding’s test from further 
consideration.

For all tests based on the permutation method (all 
tests except the traditional tests and Hoeffding’s test), 
these results confirm theoretical findings: permutation 
tests only require exchangeability to have correct type 
I error rates, and all included conditions meet this 
assumption. Indeed, exchangeability is met for any 
situation in which X and Y are independently and 
identically distributed from any joint distribution. 
Thus, the permutation tests have correct type I error 
rates for a very wide set of conditions.

Power

No test was uniformly most powerful
Table A1 in the Appendix A presents the power 
results for all cells. The results confirm that no test 
had uniformly the highest power across all cells.

The type of relationship heavily influenced which 
test had the highest power. Pearson’s test predomin
antly had the highest power7 for the linear (45/60 
cells) and negative exponential (43/60 cells) relation
ships. As anticipated, all 15 cells where Pearson’s test 
did not exhibit the highest power for a linear relation
ship had nonnormal errors. In cells with heteroge
neous errors, the highest power was achieved by 
either the HHG-Pearson or the HHG tests. This is 
logical, given that heterogeneous errors involve a lin
ear dependency on both the mean—to which 
Pearson’s test is sensitive—and the variance—to which 
the HHG test is sensitive. For cells with heavy-tailed 
or skewed errors, Kendall’s and Spearman’s tests dem
onstrated the highest power, aligning with the 

Table 1. Type I error rates.
N Error Pear. PearP. Kend. Spear. Hoeff. dCor HHG HSIC Taustar MI-KDE HHG-Pear.

10 Normal .05 .05 .05 .05 .11 .05 .05 .05 .05 .05 .04
10 Skewed .05 .05 .05 .05 .11 .05 .05 .05 .05 .05 .05
10 Heavy .05 .05 .05 .05 .1 .05 .05 .05 .05 .05 .04
20 Normal .05 .05 .05 .05 .08 .05 .05 .05 .05 .05 .05
20 Skewed .05 .05 .05 .05 .08 .05 .05 .05 .05 .05 .04
20 Heavy .05 .05 .05 .05 .08 .05 .05 .05 .05 .05 .04
50 Normal .05 .05 .05 .05 .06 .05 .05 .05 .05 .05 .04
50 Skewed .05 .05 .05 .05 .06 .05 .05 .05 .05 .05 .05
50 Heavy .05 .05 .05 .05 .06 .05 .05 .04 .05 .05 .05
100 Normal .05 .05 .05 .05 .06 .05 .05 .05 .05 .05 .04
100 Skewed .05 .05 .05 .05 .06 .05 .05 .05 .05 .05 .04
100 Heavy .05 .05 .05 .05 .06 .05 .05 .05 .05 .05 .05
150 Normal .04 .04 .04 .04 .05 .05 .05 .05 .05 .05 .04
150 Skewed .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .04
150 Heavy .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05

Notes: Type I error rates are boldface if they are substantially too large (> 0.06). N ¼ sample size. Test abbreviations: Pear.: Pearson’s; PearP.: Pearson’s 
permutation version; Kend.: Kendall’s; Spear.: Spearman’s; Hoeff.: Hoeffding’s; dCor: distance correlation; HHG: Heller-Heller-Gorfine; HSIC: Hilbert- 
Schmidt independence criterion; Taustar: Taustar; MI-KDE: mutual information via kernel density estimation; HHG-Pear.: HHG.

7In precise terms, we consider a test to have the highest power if no 
other test exists that has higher power after rounding to two digits. This 
is to account for the many cells in which multiple tests had the highest 
power and the uncertainty in the power estimates.
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consensus that rank-based methods are effective for 
these data types (Bishara & Hittner, 2017). 
Transitioning to the negative exponential relationship, 
in all 17 cells where Pearson’s test was not the most 
powerful, a heterogeneous error distribution was pre
sent, and the highest power was observed for either 
HHG, HHG-Pearson, or MI-KDE.

The proposed MI-KDE test had the highest power 
for the large majority of the remaining cells. 
Specifically, it was almost always the most powerful 
for the quadratic (58/60) and missed moderator rela
tionships (58/60 cells) and predominantly had the 
highest power (41/60 cells) for the cyclic relation
ship. In the remaining 19 cells with a cyclic relation
ship, either the HHG or HSIC test had the highest 
power.

Maximum power-loss
Table 2 presents the maximum power lost across all 
relationships compared to Pearson’s test for each non
parametric independence test. The distance correlation 
and the HHG-Pearson test had a maximum power 
loss of around 7%, and 11%, respectively. All other 
tests had a power loss of at least 20%. We will 

therefore focus on the distance correlation and HHG- 
Pearson tests in the remainder of this result section.

Pairwise comparisons
First, we compared the two selected nonparametric 
tests with Pearson’s test (Figure 3). The same pattern 
emerged for both nonparametric tests. They typically 
had more power than Pearson’s test for the inverted- 
U, cyclic, and missed moderator relationships. Their 
power advantage reached as high as 93%, as shown in 
Table 3. In contrast, they generally had slightly less 
power than Pearson’s test for the negative exponential 
and linear relationships. However, even in these cases, 
the nonparametric tests often exhibited higher power 
when paired with heteroscedastic errors. On average, 
the distance correlation test was 24% more powerful, 
and the HHG-Pearson test was 30% more powerful.

Next, we compared the two selected nonparametric 
tests with Spearman’s and Kendall’s rank-based tests 
(Figure 4). A similar pattern emerged: the nonparamet
ric tests typically outperformed Spearman’s and 
Kendall’s tests in terms of power across almost all cells. 
For both the nonparametric tests, the maximum power 

Figure 3. Power comparisons between Pearson’s test and the distance correlation, and HHG-Pearson tests. Neg. Exp.: negative 
exponential; Missed Mod.: missed moderator; Mean Indep.: mean independence.

Table 3. Pairwise power comparisons.
Test1 Test2 Maximum dif. Mean dif. Minimum dif.

dCor Pearson’s .93 .24 −0.07
HHG-Pearson Pearson’s .93 .30 −0.11
HHG-Pearson dCor .53 .06 −0.07
dCor Kendall’s .90 .27 −0.04
dCor Spearman’s .91 .30 −0.03
HHG-Pearson Kendall’s .90 .33 −0.09
HHG-Pearson Spearman’s .91 .35 −0.09

Notes: Results are based on subtracting the power of Test2 from Test1. 
Thus, if values are positive, Test1 was more powerful. Dif. ¼ difference.

Table 2. Maximum power lost compared to Pearson’s test.
Test Maximum power lost

Distance correlation .07
HHG-Pear. .11
Taustar .21
HHG .34
MI-KDE .35
HSIC .42

Note: MI-KDE: mutual information via kernel density estimation; HHG: 
Heller-Heller-Gorfine; HSIC: Hilbert-Schmidt independence criterion.
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advantage was 90% relative to Kendall’s test and 91% 
relative to Spearman’s test. The nonparametric tests 
exhibited only marginally lower power than either 
Kendall’s or Spearman’s tests in some cells. Such cells 
typically displayed a linear relationship, low relationship 
strength, and an error distribution that was not hetero
scedastic (see Table A1 in the Appendix A).

Finally, we compared the power of the HHG- 
Pearson and distance correlation tests (Figure 5). The 
HHG-Pearson test typically outperformed the distance 
correlation test under the following conditions: missed 
moderator relationships, inverted-U relationships, cyc
lic relationships, exponential relationships with hetero
scedastic errors, and mean independence with 
heteroscedastic errors. Conversely, the distance correl
ation test generally had higher power in the cases of 
exponential and linear relationships, although for the 

latter this was only true when not paired with hetero
scedastic errors. For the remaining types of relation
ships, the two tests exhibited roughly equal power. 
Notably, the HHG-Pearson test had a significant 
advantage, with a maximum power increase of 53%, 
compared to a more modest maximum advantage of 
7% for the distance correlation test.

Discussion

In this paper, we first introduced the most popular 
modern nonparametric independence tests, which are 
able to detect any relationship. We then proposed two 
new variants of existing nonparametric tests optimized 
for psychological data. Finally, we investigated which 
test is appropriate for deciding whether two continu
ous variables are associated or not, without knowledge 

Figure 4. Power comparison between Kendall’s and Spearman’s tests, and the distance correlation and HHG-Pearson tests. Neg. 
Exp.: negative exponential; Missed Mod.: missed moderator; Mean Indep.: mean independence.
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of the type of relationship. As no test can be most 
powerful for all relationships, we set out to identify a 
test with only slightly less power than Pearson’s test 
in the worst case but substantially more power in 
many other situations.

Our central result is that for the conditions investi
gated the distance correlation and the Heller-Heller- 
Gorfine-Pearson (HHG-Pearson) tests fulfill this 
criterion. They both exhibited only slightly less power 
than Pearson’s correlation in the worst case (bivariate 
normal distribution), but they had significantly more 
power in many other situations, particularly for most 
nonlinear relationships.

A danger of simulation studies is that their results 
might not generalize beyond the conditions consid
ered. This is especially problematic in this study, as 
the power of the tests considered depends heavily on 
the type of relationship and, to a lesser extent, the 
error distribution. However, we expect that this cen
tral result generalizes for the following reasons: first, 
we included the linear relationship with normal 
errors, a very favorable condition for Pearson’s correl
ation, and even in that case, Pearson’s test had only 
slightly higher power. Second, it is evident that 
Pearson’s test has almost zero power for some rela
tionships and consequently substantially less power 
than the HHG-Pearson and distance correlation tests, 
whose power approaches 100% with increasing sample 
size for any relationship. Third, earlier simulation 
studies (de Siqueira Santos et al., 2014; Kinney & 
Atwal, 2014), which considered different types of rela
tionships, were also unable to identify a relationship 
for which Pearson’s test had substantially higher 
power than the distance correlation test.

The distance correlation and HHG-Pearson tests 
were typically more powerful than Kendall’s and 

Spearman’s tests, with large power advantages in the 
best and average case and only modest power disad
vantages in the worst case. While these results 
strongly favor the distance correlation and HHG- 
Pearson tests, it is important to note that we only 
examined one monotonic relationship and expect that 
there are monotonic relationships for which Kendall’s 
and Spearman’s tests outperform the distance correl
ation and HHG-Pearson tests more substantially. 
Nevertheless, it cannot be expected that the power 
advantage for those monotonic relationships is suffi
ciently substantial to compensate for the large power 
advantage distance correlation and the HHG-Pearson 
have for the nonmonotonic relationships we 
considered.

Regarding the differences between the HHG- 
Pearson and the distance correlation test, our results 
show a familiar pattern. The HHG-Pearson test had 
substantially more power for some conditions and 
only slightly less power for others, leading to a higher 
average power. This could constitute a reason to rec
ommend the HHG-Pearson test. However, such a rec
ommendation would be premature, as it may rely too 
heavily on the design of the simulation study. In par
ticular, we expect that there are situations for which 
the distance correlation test is substantially more 
powerful than the HHG-Pearson test. Another argu
ment in favor of the distance correlation test is that it 
was more powerful for the linear relationship (outside 
of heteroscedastic errors). Due to the importance of 
the linear relationship in psychology and the fact that 
the favorable properties of distance correlation have 
been replicated in multiple simulation studies with 
different designs (de Siqueira Santos et al., 2014; Ding 
& Li, 2015; Kinney & Atwal, 2014; Simon et al., 

Figure 5. Power comparison between the distance correlation and HHG-Pearson tests. Neg. Exp.: negative exponential; Missed 
Mod.: missed moderator; Mean Indep.: mean independence.
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2014), we therefore, for now, recommend the distance 
correlation in favor of the HHG-Pearson test.

The newly proposed mutual information by kernel 
density estimation (MI-KDE) test was not selected 
under the chosen evaluation criterion as it did not per
form well for the linear relationship. However, it was 
(almost) always most powerful for three out of the five 
relationships considered: the missed moderator, 
inverted-U, and cyclic relationships. Our results thus 
suggest that the MI-KDE test should be chosen if only 
those relationships are expected. Due to this favorable 
performance, further research comparing the MI-KDE 
test with other mutual information-based association 
tests, (Berrett & Samworth, 2019; Kinney & Atwal, 
2014; Y. A. Reshef et al., 2016), is recommended.

If one expects only one certain type of relationship, 
arguably an approach specifically tailored for this par
ticular relationship should be chosen. It is expected 
that a test specialized for a particular kind of relation
ship outperforms any nonparametric independence 
test in this case. The traditional method for doing this 
is to specify a statistical model that captures the 
desired relationship, such as a polynomial regression 
model. However, the findings in Edelmann and 
Goeman (2022) suggest that utilizing the Hilbert- 
Schmidt Independence Criterion (HSIC) with a kernel 
tailored to the anticipated associations may prove to 
be a more effective approach.

Besides being limited to detecting only linear rela
tionships, another shortcoming of Pearson’s correlation 
is its high sensitivity to outliers, a weakness that has 
spurred the development of numerous robust alterna
tives (Wilcox, 2017). This naturally prompts the ques
tion: How robust are modern nonparametric tests? The 
precise robustness properties—such as breakdown 
points and influence functions—are unknown. 
Importantly, none of these tests were originally 
designed to be robust. The rank-based tests (Taustar, 
Hoeffd, and to a certain extent HHG) can be expected 
to be more robust than the remaining approaches rely
ing on the raw data, as ranking of the data naturally 
weakens the effect of outliers. A full examination of the 
robustness of modern nonparametric tests is beyond 
the scope of this article and is recommended for future 
work. In the Online Supplementary, we take the first 
step by investigating the robustness of each test to a sin
gle outlier for two conditions. Most importantly, no 
test was unaffected by the single outlier. However, 
the rank-based tests were more robust, as expected. 
Consequently, we recommend using modern nonpara
metric tests, like the recommended distance correlation, 
with caution when the presence of erroneous data 

points cannot be excluded. Rank-based tests should 
provide some increased robustness to outliers (Bakker 
& Wicherts, 2014; Karch, 2023), and of those, especially 
Taustar can be recommended, as it performed best and 
is almost the rank-based version of the recommended 
distance correlation. However, future work should 
rigorously explore the exact robustness properties of the 
modern nonparametric tests and aim to develop more 
robust versions. A natural starting point could be the 
techniques used to improve the robustness of Pearson’s 
correlation (Wilcox, 2017).

Additional avenues for future work are as follows. 
First, formal mathematical comparisons of the 
involved tests are recommended to overcome the lim
ited generalizability of simulation study results. In the 
best case, this would lead to upper limits for how 
much power the modern nonparametric independence 
tests (most prominently distance correlation) lose 
compared to Pearson’s tests. This might also give fur
ther insight into the relative performance of distance 
correlation and the HHG-Pearson test. Second, it 
might be possible to improve the HHG-Pearson test 
by replacing the Bonferroni correction with more 
modern approaches to combine two tests, most not
ably resampling-based approaches (Dudoit et al., 
2008). Third, our results indicate that combining the 
newly proposed MI-KDE with Pearson’s test could 
lead to a test that performs well across many condi
tions. One of these two tests was the most powerful 
for almost all conditions investigated, yet their average 
power was relatively low. This suggests that they com
plement each other well. Fourth, after an association 
has been detected, quantifying its strength is usually 
of interest. Assuming linearity, Pearson’s correlation 
is the standard quantification approach. Many of 
the measures used as test statistics for the modern 
nonparametric independence tests could be used 
for quantification without assuming linearity. The 
additional challenge when using those measures for 
quantification is that they must be interpretable 
for every possible value (Reimherr & Nicolae, 2013). 
Unfortunately, for many measures, interpretation out
side of the extremes, which denote complete depend
ence and complete independence, is not straightforward 
(Reimherr & Nicolae, 2013). Thus, more work is needed 
regarding the interpretation of the nonparametric inde
pendence measures.

When the selected test of independence fails to 
detect an association, either the variables are indeed 
not associated or the test incorrectly failed to detect 
an association. Given the large power differences 
among the tests, additionally applying other tests will 
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lead to further insights. Care has to be taken, how
ever, not to inflate type I error rates. When none of 
the additional tests shows a significant result, this 
strengthens the result and no additional action has to 
be performed. However, if any additional test shows a 
significant result, it should not be concluded that the 
two variables are dependent as this would risk inflat
ing type I error rates. Instead, any significant results 
among the additional tests should be designated as 
exploratory: this is not conclusive evidence against the 
null hypothesis; instead, it warrants validation on a 
separate data set. Using scatter plots during this 
exploratory phase can be beneficial for exploring the 
type of relationship, guiding the creation of more 
powerful, specialized tests that must also be applied to 
new data to prevent overfitting. The results of our 
simulation study suggest that for the recommended 
distance correlation test, it is advisable to use 
Pearson’s correlation and the proposed MI-KDE test 
as additional tests is. One of these three tests was 
most powerful for 87% of the design cells. It has to be 
noted, however, that this result will very likely not 
generalize beyond the alternatives studied here.

In summary, our results indicate that if the type of 
relationship between two continuous variables is 
unknown, which is a common situation in psycho
logical research, the distance correlation test may well 
be a more suitable option compared to traditional 
tests. The proposed HHG-Pearson test seems a prom
ising alternative, with substantially more power in 
many situations. However, further investigations are 
needed before routine application of this test can be 
recommended.
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Appendix A. Detailed power results.

Table A1. Power.
Rel. Error N Strength Pear. PearP. Kend. Spear. Hoeff. dCor HHG HSIC Taustar MI-KDE HHG-Pear.

Linear Heavy 10 Low .17 .17 .15 .15 .23 .16 .09 .11 .14 .11 .13
Linear Hetero 10 Low .33 .32 .24 .2 .31 .35 .37 .37 .18 .39 .4
Linear Normal 10 Low .15 .15 .13 .13 .2 .15 .09 .09 .12 .1 .12
Linear Skewed 10 Low .16 .16 .14 .15 .22 .15 .09 .11 .13 .11 .12
Linear Heavy 10 High .95 .95 .9 .89 .9 .94 .79 .84 .84 .84 .93
Linear Hetero 10 High .96 .96 .96 .94 .98 .97 .95 .95 .95 .93 .97
Linear Normal 10 High .96 .95 .88 .88 .87 .94 .73 .79 .82 .82 .92
Linear Skewed 10 High .95 .95 .89 .89 .89 .94 .77 .82 .84 .84 .92
Linear Heavy 10 Medium .66 .66 .56 .56 .61 .63 .37 .44 .5 .45 .57
Linear Hetero 10 Medium .69 .68 .64 .58 .73 .71 .65 .64 .58 .62 .72
Linear Normal 10 Medium .63 .63 .5 .51 .55 .58 .3 .37 .44 .39 .52
Linear Skewed 10 Medium .64 .63 .54 .55 .6 .61 .35 .41 .48 .43 .55
Linear Heavy 20 Low .32 .32 .3 .31 .34 .31 .15 .18 .29 .18 .26
Linear Hetero 20 Low .42 .42 .36 .3 .43 .55 .74 .66 .32 .72 .72
Linear Normal 20 Low .28 .28 .24 .25 .27 .25 .13 .13 .22 .15 .22
Linear Skewed 20 Low .3 .3 .29 .3 .32 .29 .16 .17 .27 .19 .25
Linear Heavy 20 High 1 1 1 1 1 1 .99 .99 1 1 1
Linear Hetero 20 High 1 1 1 1 1 1 1 1 1 1 1
Linear Normal 20 High 1 1 1 1 1 1 .98 .99 1 .99 1
Linear Skewed 20 High 1 1 1 1 1 1 .99 .99 1 1 1
Linear Heavy 20 Medium .93 .93 .91 .91 .9 .93 .75 .76 .88 .8 .91
Linear Hetero 20 Medium .88 .88 .92 .88 .95 .95 .96 .94 .91 .93 .97
Linear Normal 20 Medium .93 .93 .87 .88 .86 .9 .64 .66 .83 .72 .89
Linear Skewed 20 Medium .93 .92 .91 .91 .91 .92 .75 .75 .88 .81 .91
Linear Heavy 50 Low .66 .65 .69 .69 .67 .67 .39 .4 .65 .38 .59
Linear Hetero 50 Low .62 .62 .66 .56 .76 .9 1 .98 .68 .98 .99
Linear Normal 50 Low .64 .64 .59 .59 .56 .58 .3 .29 .53 .32 .55
Linear Skewed 50 Low .66 .65 .68 .68 .66 .65 .41 .39 .64 .46 .6
Linear Heavy 50 High 1 1 1 1 1 1 1 1 1 1 1
Linear Hetero 50 High 1 1 1 1 1 1 1 1 1 1 1
Linear Normal 50 High 1 1 1 1 1 1 1 1 1 1 1
Linear Skewed 50 High 1 1 1 1 1 1 1 1 1 1 1
Linear Heavy 50 Medium 1 1 1 1 1 1 1 .99 1 1 1
Linear Hetero 50 Medium .99 .99 1 1 1 1 1 1 1 1 1
Linear Normal 50 Medium 1 1 1 1 1 1 .98 .97 1 .99 1
Linear Skewed 50 Medium 1 1 1 1 1 1 1 1 1 1 1
Linear Heavy 100 Low .91 .91 .94 .94 .93 .94 .73 .71 .92 .64 .89
Linear Hetero 100 Low .81 .81 .89 .82 .97 1 1 1 .95 1 1
Linear Normal 100 Low .91 .91 .88 .89 .85 .88 .59 .55 .84 .56 .87
Linear Skewed 100 Low .91 .91 .94 .94 .93 .93 .77 .71 .92 .8 .91
Linear Heavy 100 High 1 1 1 1 1 1 1 1 1 1 1
Linear Hetero 100 High 1 1 1 1 1 1 1 1 1 1 1
Linear Normal 100 High 1 1 1 1 1 1 1 1 1 1 1
Linear Skewed 100 High 1 1 1 1 1 1 1 1 1 1 1
Linear Heavy 100 Medium 1 1 1 1 1 1 1 1 1 1 1
Linear Hetero 100 Medium 1 1 1 1 1 1 1 1 1 1 1
Linear Normal 100 Medium 1 1 1 1 1 1 1 1 1 1 1
Linear Skewed 100 Medium 1 1 1 1 1 1 1 1 1 1 1
Linear Heavy 150 Low .98 .98 .99 .99 .99 .99 .91 .89 .99 .82 .98
Linear Hetero 150 Low .9 .9 .97 .93 1 1 1 1 1 1 1
Linear Normal 150 Low .98 .98 .97 .97 .96 .97 .79 .74 .95 .73 .97
Linear Skewed 150 Low .98 .98 .99 .99 .99 .99 .94 .89 .99 .95 .98
Linear Heavy 150 High 1 1 1 1 1 1 1 1 1 1 1
Linear Hetero 150 High 1 1 1 1 1 1 1 1 1 1 1
Linear Normal 150 High 1 1 1 1 1 1 1 1 1 1 1
Linear Skewed 150 High 1 1 1 1 1 1 1 1 1 1 1
Linear Heavy 150 Medium 1 1 1 1 1 1 1 1 1 1 1
Linear Hetero 150 Medium 1 1 1 1 1 1 1 1 1 1 1
Linear Normal 150 Medium 1 1 1 1 1 1 1 1 1 1 1
Linear Skewed 150 Medium 1 1 1 1 1 1 1 1 1 1 1
Inv.-U Heavy 10 Low .08 .08 .06 .06 .13 .08 .07 .08 .06 .08 .07
Inv.-U Hetero 10 Low .23 .22 .12 .1 .19 .26 .32 .32 .09 .36 .32
Inv.-U Normal 10 Low .08 .08 .06 .06 .13 .08 .07 .07 .06 .08 .07
Inv.-U Skewed 10 Low .08 .08 .07 .07 .13 .08 .08 .08 .06 .08 .07
Inv.-U Heavy 10 High .26 .23 .12 .11 .28 .36 .38 .39 .13 .43 .37
Inv.-U Hetero 10 High .33 .29 .14 .12 .34 .47 .56 .57 .16 .61 .54
Inv.-U Normal 10 High .26 .23 .11 .1 .26 .33 .33 .36 .12 .4 .34

(Continued)
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Table A1. Continued.
Rel. Error N Strength Pear. PearP. Kend. Spear. Hoeff. dCor HHG HSIC Taustar MI-KDE HHG-Pear.

Inv.-U Skewed 10 High .26 .24 .13 .11 .28 .36 .38 .4 .13 .42 .37
Inv.-U Heavy 10 Medium .18 .16 .09 .09 .19 .21 .19 .22 .09 .23 .2
Inv.-U Hetero 10 Medium .27 .24 .12 .11 .23 .33 .4 .42 .11 .45 .39
Inv.-U Normal 10 Medium .17 .15 .08 .08 .18 .19 .16 .18 .09 .2 .17
Inv.-U Skewed 10 Medium .18 .17 .11 .1 .2 .21 .2 .21 .1 .23 .21
Inv.-U Heavy 20 Low .09 .09 .06 .06 .11 .11 .12 .11 .07 .14 .11
Inv.-U Hetero 20 Low .24 .24 .14 .11 .2 .41 .69 .61 .12 .69 .64
Inv.-U Normal 20 Low .09 .09 .06 .06 .11 .1 .1 .09 .07 .12 .1
Inv.-U Skewed 20 Low .09 .09 .07 .07 .12 .1 .12 .11 .07 .16 .11
Inv.-U Heavy 20 High .29 .28 .13 .11 .48 .72 .79 .73 .3 .86 .76
Inv.-U Hetero 20 High .34 .33 .15 .12 .6 .83 .94 .9 .39 .95 .92
Inv.-U Normal 20 High .29 .28 .12 .11 .42 .7 .74 .67 .26 .84 .71
Inv.-U Skewed 20 High .3 .29 .14 .11 .48 .74 .79 .73 .3 .87 .76
Inv.-U Heavy 20 Medium .21 .21 .1 .09 .25 .41 .44 .4 .15 .53 .41
Inv.-U Hetero 20 Medium .29 .29 .13 .11 .31 .61 .81 .73 .19 .82 .76
Inv.-U Normal 20 Medium .19 .19 .09 .08 .22 .36 .38 .34 .13 .49 .36
Inv.-U Skewed 20 Medium .2 .19 .11 .1 .25 .39 .43 .39 .15 .55 .39
Inv.-U Heavy 50 Low .09 .1 .07 .06 .13 .2 .27 .22 .11 .3 .22
Inv.-U Hetero 50 Low .26 .26 .15 .11 .31 .78 .99 .97 .23 .98 .99
Inv.-U Normal 50 Low .09 .09 .06 .06 .12 .17 .22 .17 .09 .26 .18
Inv.-U Skewed 50 Low .09 .09 .08 .07 .14 .19 .28 .21 .11 .39 .21
Inv.-U Heavy 50 High .31 .31 .14 .11 .95 1 1 .99 .92 1 1
Inv.-U Hetero 50 High .35 .35 .17 .13 .99 1 1 1 .99 1 1
Inv.-U Normal 50 High .31 .31 .14 .11 .93 .99 1 .98 .89 1 .99
Inv.-U Skewed 50 High .32 .31 .16 .12 .95 1 1 .99 .92 1 1
Inv.-U Heavy 50 Medium .24 .23 .11 .09 .61 .85 .91 .82 .52 .94 .87
Inv.-U Hetero 50 Medium .32 .32 .16 .12 .75 .98 1 .99 .67 1 1
Inv.-U Normal 50 Medium .23 .23 .1 .09 .5 .8 .85 .73 .43 .92 .8
Inv.-U Skewed 50 Medium .23 .23 .13 .1 .59 .85 .91 .81 .51 .96 .87
Inv.-U Heavy 100 Low .09 .1 .06 .06 .23 .41 .53 .42 .2 .53 .45
Inv.-U Hetero 100 Low .27 .27 .15 .12 .68 .99 1 1 .59 1 1
Inv.-U Normal 100 Low .1 .1 .06 .06 .17 .32 .43 .3 .15 .46 .34
Inv.-U Skewed 100 Low .09 .09 .08 .07 .23 .37 .56 .41 .2 .71 .45
Inv.-U Heavy 100 High .32 .32 .15 .11 1 1 1 1 1 1 1
Inv.-U Hetero 100 High .35 .35 .17 .13 1 1 1 1 1 1 1
Inv.-U Normal 100 High .32 .31 .14 .11 1 1 1 1 1 1 1
Inv.-U Skewed 100 High .32 .32 .17 .12 1 1 1 1 1 1 1
Inv.-U Heavy 100 Medium .24 .24 .11 .09 .96 1 1 .99 .95 1 1
Inv.-U Hetero 100 Medium .31 .31 .16 .12 1 1 1 1 .99 1 1
Inv.-U Normal 100 Medium .24 .23 .1 .09 .9 .99 .99 .97 .88 1 .99
Inv.-U Skewed 100 Medium .24 .23 .14 .11 .94 .99 1 .99 .93 1 1
Inv.-U Heavy 150 Low .1 .1 .07 .06 .37 .62 .75 .61 .35 .71 .67
Inv.-U Hetero 150 Low .27 .27 .16 .11 .96 1 1 1 .92 1 1
Inv.-U Normal 150 Low .1 .1 .06 .06 .27 .51 .63 .45 .25 .65 .54
Inv.-U Skewed 150 Low .1 .1 .08 .07 .36 .58 .78 .61 .34 .89 .69
Inv.-U Heavy 150 High .33 .33 .15 .12 1 1 1 1 1 1 1
Inv.-U Hetero 150 High .35 .35 .17 .12 1 1 1 1 1 1 1
Inv.-U Normal 150 High .32 .32 .14 .11 1 1 1 1 1 1 1
Inv.-U Skewed 150 High .32 .32 .17 .12 1 1 1 1 1 1 1
Inv.-U Heavy 150 Medium .24 .24 .11 .09 1 1 1 1 1 1 1
Inv.-U Hetero 150 Medium .32 .32 .16 .11 1 1 1 1 1 1 1
Inv.-U Normal 150 Medium .23 .23 .1 .09 .99 1 1 1 .99 1 1
Inv.-U Skewed 150 Medium .24 .24 .13 .1 1 1 1 1 1 1 1
Neg. exp. Heavy 10 Low .13 .13 .1 .11 .18 .12 .08 .09 .1 .09 .1
Neg. exp. Hetero 10 Low .28 .27 .16 .14 .23 .3 .34 .34 .12 .37 .35
Neg. exp. Normal 10 Low .12 .11 .08 .09 .15 .11 .07 .07 .08 .08 .09
Neg. exp. Skewed 10 Low .13 .13 .1 .1 .17 .12 .08 .09 .09 .09 .1
Neg. exp. Heavy 10 High .68 .67 .54 .53 .6 .66 .4 .45 .48 .45 .6
Neg. exp. Hetero 10 High .72 .71 .65 .59 .73 .75 .7 .68 .58 .68 .76
Neg. exp. Normal 10 High .65 .64 .49 .49 .55 .62 .35 .41 .43 .42 .56
Neg. exp. Skewed 10 High .66 .65 .53 .52 .59 .66 .41 .46 .48 .46 .59
Neg. exp. Heavy 10 Medium .38 .38 .28 .28 .36 .36 .19 .22 .25 .23 .31
Neg. exp. Hetero 10 Medium .46 .45 .34 .3 .43 .48 .47 .46 .28 .47 .52
Neg. exp. Normal 10 Medium .35 .34 .24 .24 .31 .32 .16 .19 .21 .21 .28
Neg. exp. Skewed 10 Medium .36 .35 .27 .27 .34 .35 .19 .21 .23 .23 .3
Neg. exp. Heavy 20 Low .22 .22 .17 .17 .21 .21 .11 .12 .16 .14 .18
Neg. exp. Hetero 20 Low .35 .34 .24 .19 .29 .47 .7 .62 .2 .68 .67
Neg. exp. Normal 20 Low .21 .2 .15 .15 .17 .18 .09 .1 .13 .12 .16
Neg. exp. Skewed 20 Low .21 .21 .17 .17 .2 .19 .12 .11 .15 .16 .17
Neg. exp. Heavy 20 High .92 .92 .87 .87 .88 .93 .78 .76 .85 .81 .91
Neg. exp. Hetero 20 High .91 .9 .92 .88 .95 .97 .98 .95 .92 .96 .98
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Rel. Error N Strength Pear. PearP. Kend. Spear. Hoeff. dCor HHG HSIC Taustar MI-KDE HHG-Pear.

Neg. exp. Normal 20 High .93 .92 .84 .84 .84 .91 .72 .69 .81 .78 .9
Neg. exp. Skewed 20 High .93 .93 .87 .87 .89 .93 .79 .76 .86 .82 .91
Neg. exp. Heavy 20 Medium .65 .65 .55 .55 .57 .65 .4 .4 .52 .48 .6
Neg. exp. Hetero 20 Medium .67 .67 .59 .52 .65 .78 .84 .78 .55 .82 .85
Neg. exp. Normal 20 Medium .63 .63 .49 .49 .5 .59 .33 .32 .44 .42 .56
Neg. exp. Skewed 20 Medium .64 .63 .54 .54 .57 .64 .41 .39 .51 .49 .58
Neg. exp. Heavy 50 Low .47 .47 .41 .4 .4 .46 .25 .23 .37 .31 .41
Neg. exp. Hetero 50 Low .49 .49 .41 .34 .52 .83 .99 .97 .44 .98 .99
Neg. exp. Normal 50 Low .45 .44 .34 .34 .32 .38 .2 .17 .3 .26 .37
Neg. exp. Skewed 50 Low .45 .45 .4 .4 .39 .43 .27 .22 .36 .39 .4
Neg. exp. Heavy 50 High 1 1 1 1 1 1 1 .99 1 1 1
Neg. exp. Hetero 50 High 1 1 1 1 1 1 1 1 1 1 1
Neg. exp. Normal 50 High 1 1 1 1 1 1 .99 .98 1 1 1
Neg. exp. Skewed 50 High 1 1 1 1 1 1 1 .99 1 1 1
Neg. exp. Heavy 50 Medium .95 .95 .93 .93 .93 .96 .85 .79 .92 .87 .94
Neg. exp. Hetero 50 Medium .9 .9 .91 .87 .95 .99 1 1 .93 1 1
Neg. exp. Normal 50 Medium .95 .95 .89 .89 .87 .93 .76 .67 .86 .83 .93
Neg. exp. Skewed 50 Medium .95 .95 .92 .92 .93 .96 .86 .78 .92 .92 .94
Neg. exp. Heavy 100 Low .72 .72 .68 .68 .67 .73 .49 .43 .66 .53 .69
Neg. exp. Hetero 100 Low .67 .67 .61 .53 .85 .99 1 1 .79 1 1
Neg. exp. Normal 100 Low .72 .71 .59 .59 .56 .65 .38 .3 .55 .47 .65
Neg. exp. Skewed 100 Low .73 .72 .67 .67 .66 .71 .52 .41 .65 .69 .69
Neg. exp. Heavy 100 High 1 1 1 1 1 1 1 1 1 1 1
Neg. exp. Hetero 100 High 1 1 1 1 1 1 1 1 1 1 1
Neg. exp. Normal 100 High 1 1 1 1 1 1 1 1 1 1 1
Neg. exp. Skewed 100 High 1 1 1 1 1 1 1 1 1 1 1
Neg. exp. Heavy 100 Medium 1 1 1 1 1 1 .99 .98 1 .99 1
Neg. exp. Hetero 100 Medium .99 .99 1 .99 1 1 1 1 1 1 1
Neg. exp. Normal 100 Medium 1 1 .99 .99 .99 1 .98 .94 .99 .99 1
Neg. exp. Skewed 100 Medium 1 1 1 1 1 1 .99 .98 1 1 1
Neg. exp. Heavy 150 Low .87 .87 .85 .85 .84 .89 .69 .6 .83 .7 .85
Neg. exp. Hetero 150 Low .77 .77 .75 .67 .98 1 1 1 .97 1 1
Neg. exp. Normal 150 Low .87 .87 .77 .77 .74 .82 .57 .45 .73 .65 .83
Neg. exp. Skewed 150 Low .87 .87 .84 .83 .83 .88 .73 .59 .83 .86 .86
Neg. exp. Heavy 150 High 1 1 1 1 1 1 1 1 1 1 1
Neg. exp. Hetero 150 High 1 1 1 1 1 1 1 1 1 1 1
Neg. exp. Normal 150 High 1 1 1 1 1 1 1 1 1 1 1
Neg. exp. Skewed 150 High 1 1 1 1 1 1 1 1 1 1 1
Neg. exp. Heavy 150 Medium 1 1 1 1 1 1 1 1 1 1 1
Neg. exp. Hetero 150 Medium 1 1 1 1 1 1 1 1 1 1 1
Neg. exp. Normal 150 Medium 1 1 1 1 1 1 1 .99 1 1 1
Neg. exp. Skewed 150 Medium 1 1 1 1 1 1 1 1 1 1 1
Cyclic Heavy 10 Low .05 .05 .05 .06 .12 .06 .06 .07 .06 .07 .05
Cyclic Hetero 10 Low .2 .19 .15 .11 .27 .24 .36 .33 .13 .36 .34
Cyclic Normal 10 Low .05 .05 .05 .05 .12 .05 .06 .06 .05 .06 .05
Cyclic Skewed 10 Low .05 .05 .05 .05 .12 .06 .06 .07 .06 .06 .05
Cyclic Heavy 10 High .07 .07 .08 .08 .26 .13 .22 .25 .12 .27 .16
Cyclic Hetero 10 High .11 .11 .12 .11 .37 .19 .41 .35 .17 .38 .33
Cyclic Normal 10 High .08 .08 .08 .09 .25 .14 .21 .25 .13 .27 .16
Cyclic Skewed 10 High .07 .07 .08 .09 .26 .13 .22 .25 .12 .27 .16
Cyclic Heavy 10 Medium .06 .06 .07 .07 .19 .09 .12 .15 .09 .14 .09
Cyclic Hetero 10 Medium .15 .15 .15 .13 .36 .23 .41 .34 .17 .38 .35
Cyclic Normal 10 Medium .07 .06 .07 .07 .17 .09 .11 .13 .09 .13 .08
Cyclic Skewed 10 Medium .06 .06 .07 .07 .18 .1 .12 .14 .09 .14 .09
Cyclic Heavy 20 Low .05 .05 .05 .06 .1 .07 .07 .09 .07 .08 .06
Cyclic Hetero 20 Low .23 .22 .2 .14 .38 .39 .73 .59 .23 .66 .67
Cyclic Normal 20 Low .05 .05 .05 .05 .1 .06 .07 .08 .06 .07 .05
Cyclic Skewed 20 Low .05 .05 .05 .06 .1 .07 .08 .09 .07 .09 .06
Cyclic Heavy 20 High .06 .06 .11 .1 .43 .25 .61 .48 .26 .51 .47
Cyclic Hetero 20 High .11 .11 .17 .13 .63 .38 .87 .63 .39 .66 .79
Cyclic Normal 20 High .06 .06 .1 .1 .4 .24 .55 .46 .24 .51 .42
Cyclic Skewed 20 High .06 .06 .1 .1 .42 .25 .58 .48 .25 .5 .45
Cyclic Heavy 20 Medium .05 .05 .08 .08 .24 .16 .27 .29 .16 .3 .18
Cyclic Hetero 20 Medium .17 .17 .21 .15 .56 .41 .81 .63 .36 .68 .74
Cyclic Normal 20 Medium .05 .05 .07 .07 .21 .13 .22 .25 .14 .26 .15
Cyclic Skewed 20 Medium .06 .06 .08 .08 .23 .14 .26 .27 .15 .29 .18
Cyclic Heavy 50 Low .05 .05 .06 .06 .13 .1 .15 .17 .11 .17 .11
Cyclic Hetero 50 Low .23 .23 .33 .19 .75 .77 1 .97 .57 .98 .99
Cyclic Normal 50 Low .05 .05 .06 .06 .11 .08 .12 .13 .09 .14 .08
Cyclic Skewed 50 Low .05 .05 .06 .06 .13 .1 .16 .16 .1 .19 .11
Cyclic Heavy 50 High .06 .06 .16 .14 .95 .81 1 .93 .84 .94 .99
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Rel. Error N Strength Pear. PearP. Kend. Spear. Hoeff. dCor HHG HSIC Taustar MI-KDE HHG-Pear.

Cyclic Hetero 50 High .12 .12 .3 .2 1 .93 1 .98 .97 .98 1
Cyclic Normal 50 High .06 .06 .15 .14 .93 .8 .99 .92 .81 .94 .99
Cyclic Skewed 50 High .06 .06 .15 .14 .95 .8 1 .93 .83 .95 .99
Cyclic Heavy 50 Medium .06 .06 .12 .12 .57 .46 .8 .72 .46 .79 .7
Cyclic Hetero 50 Medium .17 .17 .37 .23 .97 .89 1 .98 .89 .98 1
Cyclic Normal 50 Medium .06 .06 .11 .11 .48 .4 .7 .63 .39 .74 .57
Cyclic Skewed 50 Medium .06 .06 .11 .11 .54 .43 .78 .69 .43 .78 .66
Cyclic Heavy 100 Low .05 .05 .07 .07 .2 .17 .31 .32 .18 .36 .21
Cyclic Hetero 100 Low .24 .24 .48 .25 .99 .99 1 1 .96 1 1
Cyclic Normal 100 Low .05 .05 .07 .07 .16 .14 .22 .22 .15 .29 .15
Cyclic Skewed 100 Low .05 .05 .08 .08 .21 .16 .32 .31 .19 .45 .22
Cyclic Heavy 100 High .07 .07 .24 .22 1 1 1 1 1 1 1
Cyclic Hetero 100 High .14 .14 .48 .31 1 1 1 1 1 1 1
Cyclic Normal 100 High .07 .07 .24 .22 1 1 1 1 1 1 1
Cyclic Skewed 100 High .07 .07 .24 .22 1 1 1 1 1 1 1
Cyclic Heavy 100 Medium .07 .06 .16 .16 .97 .94 1 .98 .94 1 .99
Cyclic Hetero 100 Medium .18 .18 .57 .34 1 1 1 1 1 1 1
Cyclic Normal 100 Medium .07 .07 .16 .15 .92 .89 .99 .95 .87 .99 .97
Cyclic Skewed 100 Medium .06 .06 .15 .15 .96 .93 1 .98 .93 1 .99
Cyclic Heavy 150 Low .06 .06 .1 .1 .32 .29 .49 .5 .3 .56 .38
Cyclic Hetero 150 Low .24 .24 .62 .33 1 1 1 1 1 1 1
Cyclic Normal 150 Low .05 .05 .08 .08 .24 .22 .35 .34 .23 .47 .26
Cyclic Skewed 150 Low .06 .05 .08 .08 .3 .26 .5 .48 .28 .71 .38
Cyclic Heavy 150 High .09 .09 .31 .28 1 1 1 1 1 1 1
Cyclic Hetero 150 High .14 .14 .6 .39 1 1 1 1 1 1 1
Cyclic Normal 150 High .08 .08 .3 .28 1 1 1 1 1 1 1
Cyclic Skewed 150 High .08 .08 .32 .29 1 1 1 1 1 1 1
Cyclic Heavy 150 Medium .07 .07 .22 .21 1 1 1 1 1 1 1
Cyclic Hetero 150 Medium .19 .19 .72 .43 1 1 1 1 1 1 1
Cyclic Normal 150 Medium .07 .07 .2 .19 1 1 1 1 1 1 1
Cyclic Skewed 150 Medium .07 .07 .21 .2 1 1 1 1 1 1 1
Mis. mod. Heavy 10 Low .15 .14 .1 .09 .15 .13 .14 .14 .07 .17 .15
Mis. mod. Hetero 10 Low .22 .21 .13 .11 .19 .25 .33 .33 .09 .37 .33
Mis. mod. Normal 10 Low .14 .14 .09 .08 .14 .12 .12 .12 .07 .15 .14
Mis. mod. Skewed 10 Low .14 .14 .1 .09 .15 .12 .13 .13 .07 .16 .14
Mis. mod. Heavy 10 High .24 .23 .16 .13 .22 .26 .51 .44 .11 .52 .45
Mis. mod. Hetero 10 High .24 .23 .16 .12 .24 .29 .61 .5 .12 .58 .54
Mis. mod. Normal 10 High .24 .23 .16 .13 .22 .26 .48 .43 .11 .51 .43
Mis. mod. Skewed 10 High .24 .23 .16 .13 .23 .26 .49 .43 .11 .52 .44
Mis. mod. Heavy 10 Medium .19 .19 .13 .11 .18 .19 .27 .26 .09 .31 .27
Mis. mod. Hetero 10 Medium .24 .22 .14 .11 .21 .26 .42 .38 .1 .43 .39
Mis. mod. Normal 10 Medium .19 .19 .12 .11 .17 .18 .23 .23 .09 .29 .24
Mis. mod. Skewed 10 Medium .19 .18 .12 .1 .17 .18 .25 .24 .08 .3 .25
Mis. mod. Heavy 20 Low .16 .16 .11 .09 .14 .16 .25 .22 .08 .35 .24
Mis. mod. Hetero 20 Low .24 .24 .14 .11 .19 .37 .7 .6 .12 .68 .63
Mis. mod. Normal 20 Low .16 .16 .1 .09 .12 .15 .2 .18 .08 .31 .2
Mis. mod. Skewed 20 Low .16 .16 .11 .09 .13 .16 .25 .21 .08 .36 .23
Mis. mod. Heavy 20 High .24 .23 .18 .12 .25 .39 .9 .8 .15 .96 .85
Mis. mod. Hetero 20 High .26 .26 .19 .13 .29 .46 .95 .86 .17 .97 .92
Mis. mod. Normal 20 High .24 .24 .17 .13 .24 .39 .88 .79 .15 .96 .83
Mis. mod. Skewed 20 High .24 .24 .17 .12 .24 .39 .89 .79 .14 .96 .84
Mis. mod. Heavy 20 Medium .2 .2 .14 .11 .17 .26 .57 .49 .11 .69 .5
Mis. mod. Hetero 20 Medium .25 .25 .16 .12 .22 .41 .81 .71 .13 .81 .75
Mis. mod. Normal 20 Medium .2 .2 .13 .11 .16 .25 .5 .43 .1 .65 .44
Mis. mod. Skewed 20 Medium .2 .2 .14 .11 .17 .25 .55 .46 .1 .67 .48
Mis. mod. Heavy 50 Low .17 .17 .12 .09 .14 .24 .64 .52 .1 .76 .56
Mis. mod. Hetero 50 Low .26 .25 .16 .12 .26 .71 .99 .97 .19 .98 .99
Mis. mod. Normal 50 Low .16 .16 .11 .09 .12 .2 .52 .38 .09 .67 .44
Mis. mod. Skewed 50 Low .17 .17 .12 .09 .14 .23 .64 .51 .1 .79 .56
Mis. mod. Heavy 50 High .25 .24 .2 .13 .48 .81 1 1 .32 1 1
Mis. mod. Hetero 50 High .26 .25 .2 .13 .65 .89 1 1 .41 1 1
Mis. mod. Normal 50 High .24 .24 .19 .13 .43 .8 1 1 .3 1 1
Mis. mod. Skewed 50 High .25 .25 .2 .13 .46 .81 1 1 .32 1 1
Mis. mod. Heavy 50 Medium .21 .21 .16 .11 .23 .5 .98 .94 .17 .99 .96
Mis. mod. Hetero 50 Medium .26 .26 .17 .12 .34 .78 1 .99 .23 1 1
Mis. mod. Normal 50 Medium .21 .21 .16 .11 .2 .45 .96 .89 .15 .99 .92
Mis. mod. Skewed 50 Medium .21 .21 .15 .12 .22 .48 .97 .92 .16 .99 .96
Mis. mod. Heavy 100 Low .17 .16 .12 .1 .17 .41 .95 .88 .14 .97 .92
Mis. mod. Hetero 100 Low .25 .24 .15 .11 .55 .98 1 1 .42 1 1
Mis. mod. Normal 100 Low .17 .17 .11 .09 .14 .32 .87 .72 .11 .93 .81
Mis. mod. Skewed 100 Low .16 .16 .11 .09 .16 .39 .95 .86 .13 .98 .92
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Mis. mod. Heavy 100 High .24 .24 .2 .13 .99 1 1 1 .94 1 1
Mis. mod. Hetero 100 High .26 .26 .21 .14 1 1 1 1 1 1 1
Mis. mod. Normal 100 High .25 .25 .2 .13 .97 1 1 1 .9 1 1
Mis. mod. Skewed 100 High .25 .24 .2 .13 .99 1 1 1 .92 1 1
Mis. mod. Heavy 100 Medium .22 .22 .16 .12 .43 .9 1 1 .34 1 1
Mis. mod. Hetero 100 Medium .25 .25 .17 .12 .82 1 1 1 .65 1 1
Mis. mod. Normal 100 Medium .21 .21 .15 .11 .32 .84 1 1 .27 1 1
Mis. mod. Skewed 100 Medium .22 .21 .16 .11 .39 .88 1 1 .32 1 1
Mis. mod. Heavy 150 Low .18 .17 .12 .1 .23 .64 1 .98 .2 1 .99
Mis. mod. Hetero 150 Low .26 .26 .16 .12 .92 1 1 1 .83 1 1
Mis. mod. Normal 150 Low .16 .16 .11 .09 .17 .48 .98 .9 .14 .99 .96
Mis. mod. Skewed 150 Low .16 .16 .12 .09 .21 .59 1 .98 .18 1 .99
Mis. mod. Heavy 150 High .24 .24 .2 .13 1 1 1 1 1 1 1
Mis. mod. Hetero 150 High .25 .25 .2 .13 1 1 1 1 1 1 1
Mis. mod. Normal 150 High .25 .25 .2 .13 1 1 1 1 1 1 1
Mis. mod. Skewed 150 High .24 .24 .21 .13 1 1 1 1 1 1 1
Mis. mod. Heavy 150 Medium .21 .21 .16 .12 .76 1 1 1 .68 1 1
Mis. mod. Hetero 150 Medium .25 .25 .17 .12 1 1 1 1 .99 1 1
Mis. mod. Normal 150 Medium .21 .21 .15 .11 .58 .99 1 1 .52 1 1
Mis. mod. Skewed 150 Medium .21 .21 .16 .11 .72 .99 1 1 .63 1 1
Mean Indep. Hetero 10 Low .23 .21 .12 .1 .18 .24 .3 .31 .09 .35 .3
Mean Indep. Hetero 10 High .21 .2 .12 .1 .18 .23 .3 .31 .09 .34 .3
Mean Indep. Hetero 10 Medium .22 .2 .12 .1 .18 .23 .3 .31 .08 .34 .3
Mean Indep. Hetero 20 Low .25 .25 .14 .11 .19 .38 .65 .57 .11 .65 .6
Mean Indep. Hetero 20 High .24 .24 .13 .1 .18 .36 .65 .57 .11 .65 .6
Mean Indep. Hetero 20 Medium .24 .24 .13 .11 .18 .37 .65 .57 .11 .66 .6
Mean Indep. Hetero 50 Low .25 .25 .14 .11 .24 .68 .99 .96 .17 .97 .98
Mean Indep. Hetero 50 High .25 .25 .15 .11 .23 .67 .99 .95 .18 .97 .98
Mean Indep. Hetero 50 Medium .26 .26 .15 .11 .24 .68 .99 .96 .17 .97 .98
Mean Indep. Hetero 100 Low .26 .26 .15 .11 .46 .97 1 1 .36 1 1
Mean Indep. Hetero 100 High .25 .25 .16 .11 .47 .97 1 1 .37 1 1
Mean Indep. Hetero 100 Medium .26 .25 .14 .1 .48 .97 1 1 .37 1 1
Mean Indep. Hetero 150 Low .25 .25 .15 .11 .85 1 1 1 .75 1 1
Mean Indep. Hetero 150 High .25 .25 .15 .11 .84 1 1 1 .73 1 1
Mean Indep. Hetero 150 Medium .25 .25 .15 .11 .84 1 1 1 .74 1 1

Notes: Bold numbers highlight the highest power within each row (not considering Hoeffding’s test due to inflated type I error rates). If multiple numbers 
are boldface, multiple tests had the highest power. N: sample size; Rel.: type of relationship; Test abbreviations: Pear.: Pearson’s; PearP.: Pearson’s 
permutation version; Kend.: Kendall’s; Spear.: Spearman’s; Hoeff.: Hoeffding’s; dCor: distance correlation; HHG: Heller-Heller-Gorfine; HSIC: Hilbert- 
Schmidt independence criterion; Taustar: Taustar; MI-KDE: mutual information via kernel density estimation; HHG-Pear.: HHG.
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