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ABSTRACT

When examining whether two continuous variables are associated, tests based on Pearson’s,
Kendall's, and Spearman’s correlation coefficients are typically used. This paper explores
modern nonparametric independence tests as an alternative, which, unlike traditional tests,
have the ability to potentially detect any type of relationship. In addition to existing modern
nonparametric independence tests, we developed and considered two novel variants of
existing tests, most notably the Heller-Heller-Gorfine-Pearson (HHG-Pearson) test. We con-
ducted a simulation study to compare traditional independence tests, such as Pearson’s cor-
relation, and the modern nonparametric independence tests in situations commonly
encountered in psychological research. As expected, no test had the highest power across
all relationships. However, the distance correlation and the HHG-Pearson tests were found
to have substantially greater power than all traditional tests for many relationships and only
slightly less power in the worst case. A similar pattern was found in favor of the HHG-
Pearson test compared to the distance correlation test. However, given that distance correl-
ation performed better for linear relationships and is more widely accepted, we suggest
considering its use in place or additional to traditional methods when there is no prior
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knowledge of the relationship type, as is often the case in psychological research.

Investigating whether two continuous variables are
associated is a recurrent task in psychological
research. Typically, hypothesis tests based on
Pearson’s, Kendall’s (Kendall, 1938), or Spearman’s
correlations are employed. However, the disadvantage
of these tests is that they can miss certain relation-
ships; specifically, they can fail to detect nonlinear
(Pearson’s correlation) and nonmonotonic (Kendall’s
and Spearman’s correlation) relationships, even in
large samples. This is a concern, since relationships
observed in psychological research are not limited to
linear and monotonic forms. Nonlinear and nonmo-
notonic relationships have been noted in various areas
of psychology (Guastello et al., 2008), including
inverted-U (Grant & Schwartz, 2011) and cyclic
(Verboon & Leontjevas, 2018) relationships. Thus, the
risk inherent in relying solely on the traditional tests
is that some associations will be missed.

We will illustrate this using an example. Nook
et al. (2018) investigated how emotion differentiation
develops across the lifespan. Emotion differentiation is
the ability of an individual to distinguish between dif-
ferent emotions, such as being angry or sad. To exam-
ine this question, Nook et al. (2018) obtained emotion
differentiation scores from participants aged 4-
25years old. To make inference more challenging, we
use a random subsample of size n =80 instead of the
whole sample. Figure 1 visualizes the relationship. The
data are in line with the original statistical analysis,
which suggests a U-shaped relationship between emo-
tion differentiation and age, with scores falling from
childhood to adolescence and increasing from adoles-
cence to adulthood. However, the traditional tests
failed to find evidence of an association, with Pearson,

Kendall, and Spearman results of ¢(78) = —1.59,
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Figure 1. Emotion differentiation across age. The blue line is a
representation of the best fit obtained by using local polyno-
mial regression fitting, and the gray area represents the corre-
sponding 95% confidence interval.

p=.115 z=—-141, p = .158 and S = 98,212.00,
p = .181; respectively.

The most common method for examining nonlinear
and nonmonotonic relationships is the use of nonlinear
models, such as nonlinear regression (Fox, 2016,
Chapter 17). For instance, the original analysis of the
emotion differentiation data set relied on a quadratic
regression model. However, many nonlinear models
can only capture relationships of a specific form. For
example, a quadratic regression model is limited to
quadratic relationships. Consequently, the appropriate-
ness of such nonlinear models hinges on researchers
having prior knowledge of the relationship type, while
such knowledge is often not available. Some more gen-
eral nonlinear models, like kernel regression, can cap-
ture a broader range of relationships. However, even
these general models are confined to detecting mean
dependence, that is, the variable Y is related to the vari-
able X such that E(Y) # E(Y|X). This is not the case,
for example, if the variance but not the mean of Y
depends on X. As a result, even general nonlinear mod-
els may not be suitable for investigating whether two
variables are associated.

Hypothesis tests are available that can potentially
detect any type of relationship and are thus suitable
for this research question. We will call them modern'
nonparametric independence tests. Hoeffding’s test

"We use the word “modern” to differentiate these nonparametric tests
from traditional nonparametric tests, most importantly Kendall's and
Spearman'’s correlation. Notably, modern nonparametric tests can detect
any type of relationship, while Kendall's and Spearman’s tests are limited
to monotonic relationships.

(Hoeffding, 1948) has been available since the 1940s.
Recently, the topic has gained increased attention
within machine learning and nonparametric statistics.
As a result, many modern nonparametric independ-
ence tests have been developed. They can be catego-
rized into those based on ranks (Bergsma & Dassios,
2014; Chatterjee, 2021; Csorgo, 1985; Deb & Sen,
2021; Drton et al., 2020; Han et al., 2017; Heller et al.,,
2016; Hoeftding, 1948; Romano, 1988; Rosenblatt,
1975; Wang et al., 2017; Weihs et al, 2018), kernels
(Albert et al., 2022; Gretton et al., 2008; Pfister et al.,
2018), mutual information (Berrett & Samworth,
2019; Kinney & Atwal, 2014; Y. A. Reshef et al,
2016), copulas (Ding & Li, 2015; Lopez-Paz et al,
2013; Schweizer & Wolff, 1981; Zhang, 2019), pairwise
distances (Heller et al., 2013; Székely et al., 2007),
maximum correlation (Breiman & Friedman, 1985;
Gretton et al., 2008; Papadatos & Xifara, 2013; Rényi,
1959), and U-statistics (Berrett et al., 2021).

To showcase the potential of modern nonparamet-
ric independence tests, we applied the distance correl-
ation (Székely et al, 2007) and the Hilbert Schmidt
Independence Criterion (Gretton et al.,, 2008), two of
the most popular modern nonparametric independ-
ence tests, to the emotion differentiation example. In
contrast to all traditional tests, they correctly detect
that emotional differentiation and age are related:
Pdcor = .041, pusic = .024.

Despite modern nonparametric independence tests
having the advantage of potentially detecting any rela-
tionship, they are rarely used in psychology for several
potential reasons. First, many psychological research-
ers are not familiarly with modern nonparametric
independence tests because they are not covered in
their statistical training. Second, there may be legitim-
ate concerns about the power of the modern nonpara-
metric independence test, especially in moderately
sized samples. The disadvantage of being able to
detect any relationship is that for a particular relation-
ship the power can be reduced compared to a more
specialized test. As an example, if the two variables
follow a bivariate normal distribution, Pearson’s cor-
relation typically has higher power than any modern
nonparametric independence test, since it has uni-
formly the highest power among all unbiased tests
(Lehmann & Romano, 2005, sec. 5.13). Using modern
nonparametric independence tests can therefore
decrease the power and be detrimental in moderately
sized data sets, which are common in psychology.
Fourth, the selection of the appropriate nonparametric
independence test is a question that arises due to the
abundance of options.



In this paper, we thus first provide an introduction
to the most popular modern nonparametric independ-
ence tests for psychological researchers. In order to
address power concerns and the question of which test
should be used, we conducted a simulation study com-
paring traditional tests of independence and modern
nonparametric independence tests. We included the
introduced popular nonparametric tests, as well as two
newly developed variants of existing tests, as candidates.
The newly developed variants differentiate themselves
by being specifically designed for data as they occur in
psychological research, such as small sample sizes com-
bined with weak relationships. It is not possible to iden-
tify a test that is always the most powerful, since the
type of relationship determines which test has the high-
est power (Bergsma & Dassios, 2014; de Siqueira Santos
et al., 2014; Lehmann & Romano, 2005). Previous simu-
lation studies have consequently provided information
on which tests are best for which types of relationships
(de Siqueira Santos et al., 2014; Ding & Li, 2015; Kinney
& Atwal, 2014; Simon et al., 2014). However, this does
not resolve the question of which test should be used
when the type of relationship is unknown, which is
often the case in psychology. To answer this question,
we establish an evaluation criterion that considers the
power across all relationships, which is appropriate for
answering this question.

Nonparametric independence tests
Notation

The two variables of interest are formalized as ran-
dom variables X and Y. The distributions of the ran-
dom variables are described by corresponding
(cumulative) distribution functions Fx(x), Fy(y) and
joint distribution function Fx y(x,y). To reflect that
the variables are continuous, the distribution functions
Fx(x), Fy(y),Fx,v(x,y) are assumed to be continuous.
Two variables are called not associated or equivalently
independent if and only if

Fx,y(x,y) = Fx(x)Fy(y).

To test whether the variables are independent, a
sample, which consists of a series of n paired observa-
tions of X and Y is available: D = {(x;,y;) :i € 1,...,n}.
An independence test is called nonparametric if and only
if its test statistic converges to 0 for independence and
nonzero for any alternative,” that is, for any type of rela-
tionship between X and Y.

Note that under this definition Kendall's and Spearman’s test are not
nonparametric.

MULTIVARIATE BEHAVIORAL RESEARCH 959

Selection criteria

Due to the large number of available nonparametric
independence tests, we included tests according to the
following criteria:

1. the availability of an R implementation;

2. the high level of popularity indicated by at least
100 citations (as of August 26, 2022, according to
Google Scholar);

3. not exhibiting consistently lower power than
other tests.

These criteria lead to the tests we will introduce in
this section. Nonparametric independence tests that
are available in R but do not meet one of the other
two inclusion criteria are as follows: first, the maximal
information coefficient test (D. N. Reshef et al., 2011)
provided by the Minerva package (Albanese et al.,
2012), which has been found to have low power com-
pared to other tests (Gorfine et al, 2012; Kinney &
Atwal, 2014; Simon et al., 2014). Second, a mutual
information test using the K-nearest neighbors
method (Berrett & Samworth, 2019), which is pro-
vided by the FastMIT package (Lin et al., 2019), and
has not been cited 100 times. Third, the rank-based
test offered in the XICOR package (Chatterjee, 2021),
which has not been cited 100 times and has been
demonstrated to have low power when compared to
other rank-based tests (Shi et al., 2021).

Shared concepts

Before describing the tests, we introduce two concepts
shared across many of them. Several tests calculate the
dissimilarity between the actual joint distribution
(Fx,y) and the joint distribution assuming independ-
ence (FxFy). Multiple dissimilarity measures exist
such that the corresponding dissimilarity is 0 if and
only if X and Y are independent. Estimates of those
dissimilarities are used as test statistics for the non-
parametric independence tests, with different dissimi-
larity measures giving rise to different tests.

Many tests use a random permutation approach to
obtain the p value corresponding to the observed
value of the test statistic (Good, 2005). This approach
randomly permutes the values of one variable and
saves the resulting test statistic ¢; for each permutation
i. This procedure is repeated I times to estimate a per-
sampling distribution under the null
hypothesis of independence. The p value is obtained
by counting the proportion of permutations for which

mutation
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the permutation test statistic f; exceeds the original
test statistic .

Hoeffding’s test

Hoeffding’s test is based on the following dissimilarity
measure

AX,Y) = JOC JhOO px.v(%3) [Fx.v(x.y) = Fx(x)Fy(y)]” dx dy

—o0 J =00

where px y(x,y) is the probability density function of
the joint distribution. A(X,Y) is thus the average
squared difference between the actual distribution
function Fx, y(x,y) and the joint distribution function
under independence Fx(x)Fy(x). The dissimilarity
A(X,Y) is estimated using Hoeffding’s D. The formula
for D is presented in Hollander et al. (2013,
Section 8.6).

There are multiple possible approaches to obtain a
p value from the observed test statistic D. One option
is to rely on the combination of precalculated tables
and approximate large sample distributions, as
described in Hollander et al. (2013, Section 8.6). The
hoeffd function included in the Hmisc package
(Harrell, 2021) implements this version of Hoeffding’s
test.

Distance correlation test

The distance correlation test relies on characteristic
functions. The characteristic function of a random
variable is the Fourier transform of its probability
density function.” If @y(s), @y(t), Py y(s,t) are the
characteristic functions describing the marginal distri-
butions, and the actual joint distributions, respectively,
then X and Y are independent if and only
if ox y(%y) = ox(x)oy(y).

Székely et al. (2007) proposed the following dis-
tance covariance dissimilarity measure
1 JOO Jx |px,v(s:t) = ox(s)py (1)]

2
dCov(X,Y) = = ap

2
dt ds.

—00 J—00

The standardized version is the distance correl-
ation:

dCov*(X, Y)
\/dCov(X, X)dCov*(¥, V)

dCor(X,Y) =

3This statement is only true if a probability density function exists, which
is guaranteed in our setting because we assume continuous random
variables.

which ranges between 0 (independence) and 1 (perfect
dependence).

The distance correlation dCor is estimated via the
empirical distance correlation; see Székely et al
(2007), Definition 5 for the formulas. The correspond-
ing p value is obtained via the random permutation
approach. The dcor.test function within the
energy package provides an implementation of the
distance correlation test.

Taustar test

The Taustar test is based on the t* dependence meas-
ure (Bergsma & Dassios, 2014), which is an extension
of Kendall’s 7. Kendall’s 7 is based on the notion of
concordant and discordant pairs. A pair of observa-
tions (x;, y1) and (x,, y,) is said to be concordant if
the sort order of x;, x, and y;, y, agrees: that is, if
either both x; > x; and y; > y; holds or both x; < x;
and y; < yj; otherwise they are said to be discordant.*
The population value for Kendall’s 7 is 7 = I1¢, — Ip,
where Il¢, is the probability that two observations are
concordant and IIp, the probability that they are dis-
cordant. If there is any monotonic relationship
between X and Y, then 7 # 0. However, =0, does
not imply independence for nonmonotonic
relationships.

Bergsma and Dassios (2014) extended 7 to t* such
that " = 0 implies independence for all types of rela-
tionships. The central idea is to consider concordance
of quadruples (x1, y1), (X2, ¥2), (%3, ¥3), (x4 ya). A
quadruple is considered concordant if it contains two
pairs that are either “jointly” concordant or “jointly”
discordant, while it is called discordant if, “jointly,”
one pair is concordant and the other is discordant.
Mathematically, a quadruple is concordant if there is
a permutation (4,7, k1) of (1,2,3,4) such that:

(x> X < X XA [ (Vi Y < Yo )V i 5 > Yio y1) 5

and discordant if there is a permutation (4,7, k,I) such
that:

[(x,»,xj < X X1V (%5, X < xk,xl)]
Aok < 3py)V Uk > vy

where v and A are logical OR, and AND, respectively.
The population value is:
. 2, —Ip,

T b
3

“Ties can be ignored, as we assume continuous distributions.



where Il¢, is the probability that a quadruple is con-
cordant and Ilp, the probability that it is discordant.
The formula for the estimate t* of t* can be found
in Bergsma and Dassios (2014, Equation 5). The corre-
sponding p value can be obtained via multiple
approaches (Nandy et al,, 2016), including the random
permutation approach (Bergsma & Dassios, 2014), which
provides the most accurate results but can be slow for
large samples. The tauStarTest function within the
TauStar package implements the Taustar test.

Heller-Heller-Gorfine test

The Heller-Heller-Gorfine (HHG) test (Heller et al.,
2013) utilizes the following observation. Two continu-
ous random variables X, Y are dependent if and only
if dichotomizations® of X and Y exist such that the
resulting dichotomous variables are dependent. More
specifically, the two dependent dichotomous random
variables are of a specific form for whose presentation
some terms need to be introduced. Let dx(-,-) and
dy(-,-) be norm-based distance metrics so that the
distance between two observations x;, x; is dx(xi,x;),
and the distance between two observations y; y; is
dy(yi»yj). Furthermore, let (xo, yo) be a pair of x and
y values, Ry, Ry radii around x, and y, respectively,
and I(-) be the indicator function. The dichotomous
random variables are then of the form I{dx(xp,X) <
Ry} and I{dx(y0,Y) < Ry }.

As a solution to the problem that (x, yo) and
Ry, R,, are unknown, different values are employed;
one set of values for each pair of observations (x;, ¥;)
and (xj, y;) (see, Heller et al, 2013 for how this is
done exactly). Nonparametric independence tests for
dichotomous variables are well known, most notably
the Pearson chi-squared and the likelihood ratio tests.
Thus, for each dichotomization indexed by i, j, inde-
pendence of the dichotomous random variables can
be tested by one of those tests, with corresponding
test statistic #(i, j). To combine the test results across
all dichotomizations, Heller et al. (2013) propose sum-
ming across all test statistics (i, j), such that the over-
all test t=3 1,2 i1 t(ij). The

j#i
corresponding p value is obtained via the random per-
mutation approach. The hhg.test function within
the HHG package implements the HHG test.

In contrast to the tests discussed so far, the HHG
test is not a single test but a family of tests. By choos-
ing different distance metrics dx(-,-), dy(--),

statistic is

*Dichotomization refers here to binary random variables that are
functions of X and Y, respectively.
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different tests are obtained. While the HHG test is
consistent for all norm-based distances, the choice of
the distance metric impacts the power.

Hilbert-Schmidt Independence Criterion test

The Hilbert-Schmidt Independence Criterion (HSIC)
(Gretton et al., 2005) is based on the following idea.
While a covariance of Cov(X,Y) =0 does not imply
independence of X and Y, Cov(f(X),g(Y)) = 0 for all
(bounded and continuous) transformations f, g does
(Rényi, 1959). However, it is impossible to investigate
all functions f, g. Gretton et al. (2005) showed that it
suffices to consider all functions within the unit ball
in so-called characteristic reproducing Kernel Hilbert
spaces, f € F,g € G. This lead to the following meas-
ure of independence:

HSIC = sup Cov*(f(X),g(Y)).
feF,geG

The kernel trick makes it possible to compute the
HSIC. Only the reproducing kernels k(x,x’), I(y,y)
of the Hilbert spaces G, F respectively are needed. Put
another way, instead of specifying characteristic repro-
ducing Hilbert spaces directly, only two kernels giving
rise to characteristic Hilbert spaces can be specified.
Such kernels are referred to as characteristic. A popu-
lar characteristic kernel is the Gaussian kernel

k(x,x') = exp <_(§;f/)2), with free bandwidth param-
eter o. Given two characteristic ~ kernels
k(x,x"), I(y,y') that have been centered in the sense

that E[k(x,X)] = 0 and E[l(y,Y)] = 0:
HSIC = E[k(X, X)I(Y,Y")],

with (X, Y) and (X', Y’) both having distribution Fxy
but being independent of each other.

For a sample D, those kernels give rise to the gram
matrices K, L with entries K;; = k(x;,x;) and L;; =
I(yi»y;)- The estimate of HSIC is then given by:

— 1
HSIC = — trace(KHLH)
n

where H =1, —% J. is the centering matrix, with I,
being the identity matrix of size n and J, the n-by-n
matrix of all Is.

The p value corresponding to an estimate of HSIC
can be obtained via multiple approaches (Pfister et al.,
2018), including the random permutation approach,
which provides the most accurate results but can be
slow for large samples. The dhsic.test function
within the dHSIC package implements the HSIC test.
Like the HHG test, the HSIC test is not a single test
but rather a family of tests. By choosing different
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kernels, different tests can be implemented. In par-
ticular, by choosing the appropriate kernels, the HSIC
test family contains Pearson’s correlation test (linear
kernel) and the distance correlation test as special
cases (see Sejdinovic et al., 2013).

New test variant: mutual information by kernel
density estimation

The first new test we propose relies on the mutual
information. The mutual information is a dependence
measure from information theory which is 0 if and
only if two variables X and Y are independent. The
mutual information for continuous variables relies on
probability density functions. In particular, if
px(x),py(¥)s px.y(x,y) are the marginal and joint
probability density functions, the continuous mutual
information is defined as

1060 = [ [ pertuyyion (2050 axay,

There are many approaches to estimating the con-
tinuous mutual information, most prominently, kernel
density estimators (Moon et al., 1995), k-nearest
neighbors (Kraskov et al., 2004), and adaptive parti-
tioning (Steuer et al., 2002). The estimator used can
have profound effects on the power of the resulting
hypothesis test (Khan et al., 2007). In contrast to most
existing mutual information-based tests (Berrett &
Samworth, 2019; Kinney & Atwal, 2014; Y. A. Reshef
et al, 2016), we chose to employ kernel density esti-
mation since Khan et al. (2007) found that this
approach worked best in samples below a size of
n <100 and high noise, which we consider to sub-
sume most psychological data sets.

The kernel density estimator of the probability
density function px(x) is:

. 1 & X — X;

where K is a kernel and h is the bandwidth parameter.
The reproducing kernels used for the HSIC tests and
the kernels here are related but different concepts.
Using the kernel density estimates for the probability
density functions, the mutual information can be esti-
mated as follows:

PXY(X’)’)
Z"’“x’ 1°g< <>py<y>>

As for the HSIC test, many options are available
for the kernel and the algorithm to choose the

bandwidth. We used the Epanechnikov Kernel, as it
leads to the best density estimates (in the sense of
minimizing the mean squared error; see, for example,
Wand and Jones (1994)). We chose the Sheater-Jones
plug-in algorithm for bandwidth selection, since
Harpole et al. (2014) found that this algorithm outper-
forms all other methods. The p value corresponding
to a mutual information estimate is obtained via the
permutation approach. Throughout this manuscript,
we will refer to this test as the mutual information by
kernel density estimation (MI-KDE) test. We provide
the R implementation of the MI-KDE test here:
https://osf.io/yketn/ and a web application here https://
solo-fsw.shinyapps.io/ModernNonparametricTests/.

New test variant: combing Pearson’s and
Heller-Heller-Gorfine’s tests

The second new test combines two existing tests: the
traditional test of Pearson’s correlation and the HHG
test. The idea to combine these two tests emerged
from the following observation: compared to other
nonparametric tests, the HHG test appears to possess
high power for many nonlinear relationships, but low
power for linear relationships. In the comparison by
de Siqueira Santos et al. (2014), it exhibited close to
the highest power among the nonparametric tests
investigated for all nonlinear relationships. However,
it had low power for the linear relationship. Pearson’s
test showed the opposite behavior. It typically had the
highest power for linear relationships but tended to
have low power for nonlinear relationships (de
Siqueira Santos et al., 2014; Ding & Li, 2015; Kinney
& Atwal, 2014; Simon et al., 2014). Thus, by combin-
ing the two tests, we aimed at a test that has relatively
high power across many relationships and only
slightly lower power than the HHG or Pearson tests
for the relationships where those tests have the highest
power. We call this test the HHG-Pearson test.

The combination is straightforward. Both tests are
performed, and an overall p value is obtained by apply-
ing the Bonferroni correction. In particular, if pyyg and
Ppearson are the p values of HHG’s test and Pearson’s test
respectively, then the p value of the HHG-Pearson
test s PHHG-Pearson = 2Inin(pHHG) PPearson)- While
Bonferroni’s correction is generally conservative, it is
the only formula-based correction that guarantees
strong control of the family-wise error rate without add-
itional assumptions.® We provide the R implementation

SHolm’s procedure is a less conservative alternative but equivalent when
correcting for two comparisons.



of the HHG-Pearson test here: https://osf.io/yketn/ and
a web application here https://solo-fsw.shinyapps.io/
ModernNonparametricTests/.

Comparison of tests
Tests included

We included all tests described in the previous section
in the simulation study. The settings used were as rec-
ommended in the literature and are as follows. For
the HHG test, we used the Euclidean distance for
both dx(-,-) and dy(-,-), along with the likelihood
ratio test statistic. We chose the Euclidean distance as
it was suggested in the paper introducing the HHG
test and demonstrated good performance in terms of
power (Heller et al., 2013). We chose the likelihood
ratio test statistic, as Pearson’s test statistic is its
approximation. However, this choice is likely to have
only a very limited effect (Heller et al., 2013). For the
HSIC test, we used the Gaussian kernel with median
heuristic as bandwidth, as recommended by Pfister
et al. (2018). For the distance correlation, HHG,
Taustar, and MI-KDE tests, we used the random per-
mutation approach with 1000 permutations to obtain
p values. This approach was computationally infeasible
for the HSIC test, so, we instead used 100 permuta-
tions. We did not employ the approximation based on
eigenvalues (Gretton et al., 2009) because a prelimin-
ary investigation confirmed the findings of Pfister
et al. (2018): it leads to low power.

Besides the modern nonparametric independence
tests, we also included the association tests most com-
monly used in psychology; in particular, the traditional
tests of Pearson’s, Spearman’s, and Kendall’s correlation,
as implemented by the cor. test function within the
stats package. Additionally, we included the permu-
tation version of Pearson’s test. As with the other tests,
we used 1000 random permutations. The code to repro-
duce the simulation study is available at https://osf.io/
yketn/.

Design

Overview
The design of the simulation study can be summar-
ized as follows:

1. Sample size (five levels): 10, 20, 50, 100, and 150

2. Type of relationship (six levels): mean independ-
ence, linear, inverted-U, negative exponential, cyc-
lic, and missed moderator.
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3. Strength of relationship (three levels): low, medium,
high.

4. Distribution of errors (four levels):
skewed, heavy-tailed, heteroscedastic.

normal,

This resulted in a total of 5x 6 x 3 x4 =360
design cells. The details for each factor and its selected
levels are described below. For all factors, we took
care to select levels that are common in psychology.

Sample size

Marszalek et al. (2011) found that the most common
sample sizes in psychology range from 10 to 140,
while Kiihberger et al. (2014) found a range from 1 to
100. Based on this, we selected five levels: 10, 20, 50,
100, 150.

Type of relationship

We visualize the included relationships in Figure 2.
All relationships considered fall within the following
framework: Y = f(X) + ¢ where € represents the
error term (see next subsection). The relationships
considered were as follows:

Mean Independence: f(X) =0
Linear: f(X) = 2X
Inverted-U: f(X) = —X?
Negative Exponential: f(X) = —e™*
Cyclic: f(X) = sin(3X)

Missed Moderator: f(X) = ZX
with Z ~ Bernoulli(0.5).

We included the linear relationships to investigate
how the nonparametric independence tests perform
compared to Pearson’s tests in this situation, where
Pearson’s test tends to be optimal. The remaining
relationships were designed to mirror common non-
linear relationships that occur in psychology. U-type
relationships have been found across many domains
of psychology (Grant & Schwartz, 2011), including the
emotion differentiation example discussed at the
beginning. Negative exponential curves are often used
to model learning curves (Leibowitz et al, 2010).
Cyclic patterns are commonly found in ecological
momentary  assessment studies (Verboon &
Leontjevas, 2018). The missed moderator relationship
represents a situation where the two variables are lin-
early related, but a third, unobserved variable moder-
ates the relationship.

Distribution of errors

We considered a normal distribution as the baseline,
as it represents the most straightforward case and is
an assumption of Pearson’s correlation. Additionally,
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Figure 2. Visualization of investigated relationships.

we examined skewed, heavy-tailed, and heteroscedastic
error distributions, as these are frequently observed in
psychological research and are known to impact
Pearson’s correlation (Bishara & Hittner, 2017). For
the skewed distribution, we followed Bishara and
Hittner (2017) and employed a Weibull distribution
with a shape parameter of 1.5 and a scale of 1, as it
aptly mimics reaction times.

For the heavy-tailed errors, we used a ¢-distribution
with six degrees of freedom. We selected six degrees
of freedom because this results in substantial excess
kurtosis (6), thereby robustly testing the methods’
ability to handle heavy-tailed errors while still reflect-
ing scenarios encountered in psychological data
(Blanca et al., 2013). For heteroscedastic errors, we
generated the error term as €(X) = ZX, where Z is a
normally distributed variable with a mean of zero, as
is commonly done. All error distributions were cen-
tered to have a mean of zero and were scaled to an
appropriate standard deviation, contingent on the
desired strength of the relationship.

Strength of relationship

To modify the strength of the relationship, we used
the generalized measure of correlation (GMC) (Zheng
et al., 2012), which within the setting of this study is:

E[(v - f00)]

GMC(Y[X) = 1= =0

Thus, GMC(Y|X) denotes the amount of variance
of Y that is accounted for by X. Consequently, it is
the nonlinear generalization of the commonly used
multiple squared correlation, the quantity adjusted R-
squared estimates (Karch, 2020). Following the heuris-
tic effect sizes proposed in the literature for R-squared
(Cohen, 1988), we used the following values for
GMC(Y|X) : “low”=0.1, “medium” = 0.45, “high” =

0.75. To obtain a certain GMC value, we modified the
error standard deviation ¢, accordingly.

GMC is not appropriate for the missed moderator
and mean independence relationship, as for both cases
GMC(Y|X) = 0. For the missed moderator relation-
ship, we used “low” = 0.3, “medium” = 0.6,
“high”=1, as error standard deviations, and for mean
independence, we wused “low”=1, “medium”=2,
“high”=4. For the mean independence condition, the
error standard deviation had no impact on the results,
so we will only report the results for g, = 1.

Evaluation of tests

To obtain estimates of the type I error rates and
power, we generated 10,000 random samples within
each cell. As significance level, we used the standard
value of oo = 0.05.

Type | error rates

We first examined whether a test is valid, which is the
case if its type I error rate is always lower than the
significance level o; that is, the actual type I error rate
does not exceed the desired type I error rate. For this,
we only considered cells where the null hypothesis of
independence held true. This applied to all cells that
exhibited mean independence and had a nonhetero-
scedastic error distribution.

Power

Ideally, we would want to identify the uniformly most
powerful test of the valid tests (Lehmann & Romano,
2005). Unfortunately, this does not exist, as which test is
most powerful depends on the type of relationship
(Bergsma & Dassios, 2014). Thus, to select the test with
the highest power, the type of relationship needs to be
known. Such knowledge is usually not available in psy-
chological research. Consequently, an evaluation
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N Error Pear. PearP. Kend. Spear. Hoeff. dCor HHG HSIC Taustar MI-KDE HHG-Pear.
10 Normal .05 .05 .05 .05 1 05 05 05 .05 05 04
10 Skewed .05 .05 .05 .05 11 05 05 05 .05 05 05
10 Heavy .05 .05 .05 .05 A 05 05 05 .05 05 04
20 Normal .05 .05 .05 .05 .08 05 05 05 .05 05 05
20 Skewed .05 .05 .05 .05 .08 05 05 05 .05 05 04
20 Heavy .05 .05 .05 .05 .08 05 05 05 .05 05 04
50 Normal .05 .05 .05 .05 .06 05 05 05 .05 05 04
50 Skewed .05 .05 .05 .05 .06 05 05 05 .05 05 05
50 Heavy .05 .05 .05 .05 .06 05 05 04 .05 05 05
100 Normal .05 .05 .05 .05 .06 05 05 05 .05 05 04
100 Skewed .05 .05 .05 .05 .06 05 05 05 .05 05 04
100 Heavy .05 .05 .05 .05 .06 05 05 05 .05 05 05
150 Normal .04 .04 .04 .04 .05 05 05 05 .05 05 04
150 Skewed .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .04
150 Heavy .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05

Notes: Type | error rates are boldface if they are substantially too large (> 0.06). N = sample size. Test abbreviations: Pear.: Pearson’s; PearP.: Pearson’s
permutation version; Kend.: Kendall's; Spear.. Spearman’s; Hoeff.. Hoeffding’s; dCor: distance correlation; HHG: Heller-Heller-Gorfine; HSIC: Hilbert-
Schmidt independence criterion; Taustar: Taustar; MI-KDE: mutual information via kernel density estimation; HHG-Pear.: HHG.

criterion is needed that considers power across a set of
relationships.

Many such criteria are available. Prominent examples
are worst-case power or (weighted) average power. The
former is close to the frequentist idea of minimax test-
ing, and the latter is close to the Bayesian risk idea
(Lehmann & Romano, 2005). However, which test is
considered best based on these two criteria is highly
dependent on the precise design of the simulation study.
Consequently, the results cannot be expected to general-
ize well. Thus, we instead propose a criterion that is less
sensitive to the design of the simulation study. It is
inspired by the relationship between Student’s ¢ test and
Wilcoxon’s rank-sum test. If the ¢ test’s assumption of
normality is met, it is only slightly more powerful than
Wilcoxon’s test (Hodges & Lehmann, 1956), and if it is
not met, Wilcoxon’s test can be substantially more
powerful (Blair & Higgins, 1980; Hodges & Lehmann,
1956). This is commonly used to argue for using
Wilcoxon’s test as the default procedure instead of the ¢
test (Posten, 1982). Similarly, we aimed to identify a test
that has only slightly less power than Pearson’s test if
bivariate normality is met but can have much higher
power if it is not met.

Results
Type | error rates

The type I error results are shown in Table 1. Type I
error rates were correctly always below 5% for almost
all tests. Only Hoeffding’s test showed substantially
inflated type I error rates for small and moderate
sample sizes. As those sample sizes are common in
psychology, we excluded Hoeffding’s test from further
consideration.

For all tests based on the permutation method (all
tests except the traditional tests and Hoeftding’s test),
these results confirm theoretical findings: permutation
tests only require exchangeability to have correct type
I error rates, and all included conditions meet this
assumption. Indeed, exchangeability is met for any
situation in which X and Y are independently and
identically distributed from any joint distribution.
Thus, the permutation tests have correct type I error
rates for a very wide set of conditions.

Power

No test was uniformly most powerful

Table Al in the Appendix A presents the power
results for all cells. The results confirm that no test
had uniformly the highest power across all cells.

The type of relationship heavily influenced which
test had the highest power. Pearson’s test predomin-
antly had the highest power” for the linear (45/60
cells) and negative exponential (43/60 cells) relation-
ships. As anticipated, all 15 cells where Pearson’s test
did not exhibit the highest power for a linear relation-
ship had nonnormal errors. In cells with heteroge-
neous errors, the highest power was achieved by
either the HHG-Pearson or the HHG tests. This is
logical, given that heterogeneous errors involve a lin-
the
Pearson’s test is sensitive—and the variance—to which
the HHG test is sensitive. For cells with heavy-tailed
or skewed errors, Kendall’s and Spearman’s tests dem-
onstrated the highest power, aligning with the

ear mean—to which

dependency on both

’In precise terms, we consider a test to have the highest power if no
other test exists that has higher power after rounding to two digits. This
is to account for the many cells in which multiple tests had the highest
power and the uncertainty in the power estimates.
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consensus that rank-based methods are effective for
these data types (Bishara & Hittner, 2017).
Transitioning to the negative exponential relationship,
in all 17 cells where Pearson’s test was not the most
powerful, a heterogeneous error distribution was pre-
sent, and the highest power was observed for either
HHG, HHG-Pearson, or MI-KDE.

The proposed MI-KDE test had the highest power
for the large majority of the remaining cells.
Specifically, it was almost always the most powerful
for the quadratic (58/60) and missed moderator rela-
tionships (58/60 cells) and predominantly had the
highest power (41/60 cells) for the cyclic relation-
ship. In the remaining 19 cells with a cyclic relation-
ship, either the HHG or HSIC test had the highest
power.

Maximum power-loss

Table 2 presents the maximum power lost across all
relationships compared to Pearson’s test for each non-
parametric independence test. The distance correlation
and the HHG-Pearson test had a maximum power
loss of around 7%, and 11%, respectively. All other
tests had a power loss of at least 20%. We will

Table 2. Maximum power lost compared to Pearson’s test.
Test

Maximum power lost

Distance correlation .07
HHG-Pear. 11
Taustar 21
HHG 34
MI-KDE 35
HSIC 42

therefore focus on the distance correlation and HHG-
Pearson tests in the remainder of this result section.

Pairwise comparisons
First, we compared the two selected nonparametric
tests with Pearson’s test (Figure 3). The same pattern
emerged for both nonparametric tests. They typically
had more power than Pearson’s test for the inverted-
U, cyclic, and missed moderator relationships. Their
power advantage reached as high as 93%, as shown in
Table 3. In contrast, they generally had slightly less
power than Pearson’s test for the negative exponential
and linear relationships. However, even in these cases,
the nonparametric tests often exhibited higher power
when paired with heteroscedastic errors. On average,
the distance correlation test was 24% more powerful,
and the HHG-Pearson test was 30% more powerful.
Next, we compared the two selected nonparametric
tests with Spearman’s and Kendall’s rank-based tests
(Figure 4). A similar pattern emerged: the nonparamet-
typically outperformed Spearman’s
Kendall’s tests in terms of power across almost all cells.
For both the nonparametric tests, the maximum power

ric tests and

Table 3. Pairwise power comparisons.

Test1 Test2 Maximum dif.  Mean dif. ~ Minimum dif.
dCor Pearson'’s 93 24 —0.07
HHG-Pearson  Pearson’s .93 .30 —0.11
HHG-Pearson  dCor .53 .06 —0.07
dCor Kendall's .90 27 —0.04
dCor Spearman’s 91 30 —0.03
HHG-Pearson  Kendall's .90 33 —0.09
HHG-Pearson ~ Spearman’s 91 35 —0.09

Note: MI-KDE: mutual information via kernel density estimation; HHG:
Heller-Heller-Gorfine; HSIC: Hilbert-Schmidt independence criterion.

Notes: Results are based on subtracting the power of Test2 from Test1.
Thus, if values are positive, Test1 was more powerful. Dif. = difference.

A 100 B 100 . e
c 7O |
S 0.75 4 & 0.75 A A .‘ n _,/,’
© . %
E % i3 “a L7
Q (] g P
© 050~ o 050 &2
o 0] .
5 T
k]
O 0.25 0.25 +
T T T T 0.00 T T T T
0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00
Pearson Pearson
e Heavy = Normal X . Linear Neg. Exp. Missed Mod.
Error Relationship
4  Hetero + Skewed e |Inverted-U e Cyclic Mean Indep.

Figure 3. Power comparisons between Pearson’s test and the distance correlation, and HHG-Pearson tests. Neg. Exp.:

negative

exponential; Missed Mod.: missed moderator; Mean Indep.: mean independence.
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Figure 4. Power comparison between Kendall's and Spearman’s tests, and the distance correlation and HHG-Pearson tests. Neg.
Exp.: negative exponential; Missed Mod.: missed moderator; Mean Indep.: mean independence.

advantage was 90% relative to Kendall’s test and 91%
relative to Spearman’s test. The nonparametric tests
exhibited only marginally lower power than either
Kendall's or Spearman’s tests in some cells. Such cells
typically displayed a linear relationship, low relationship
strength, and an error distribution that was not hetero-
scedastic (see Table Al in the Appendix A).

Finally, we compared the power of the HHG-
Pearson and distance correlation tests (Figure 5). The
HHG-Pearson test typically outperformed the distance
correlation test under the following conditions: missed
moderator relationships, inverted-U relationships, cyc-
lic relationships, exponential relationships with hetero-
scedastic independence with
heteroscedastic errors. Conversely, the distance correl-
ation test generally had higher power in the cases of
exponential and linear relationships, although for the

errors, and mean

latter this was only true when not paired with hetero-
scedastic errors. For the remaining types of relation-
ships, the two tests exhibited roughly equal power.
Notably, the HHG-Pearson test had a significant
advantage, with a maximum power increase of 53%,
compared to a more modest maximum advantage of
7% for the distance correlation test.

Discussion

In this paper, we first introduced the most popular
modern nonparametric independence tests, which are
able to detect any relationship. We then proposed two
new variants of existing nonparametric tests optimized
for psychological data. Finally, we investigated which
test is appropriate for deciding whether two continu-
ous variables are associated or not, without knowledge
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of the type of relationship. As no test can be most
powerful for all relationships, we set out to identify a
test with only slightly less power than Pearson’s test
in the worst case but substantially more power in
many other situations.

Our central result is that for the conditions investi-
gated the distance correlation and the Heller-Heller-
Gorfine-Pearson (HHG-Pearson) tests fulfill this
criterion. They both exhibited only slightly less power
than Pearson’s correlation in the worst case (bivariate
normal distribution), but they had significantly more
power in many other situations, particularly for most
nonlinear relationships.

A danger of simulation studies is that their results
might not generalize beyond the conditions consid-
ered. This is especially problematic in this study, as
the power of the tests considered depends heavily on
the type of relationship and, to a lesser extent, the
error distribution. However, we expect that this cen-
tral result generalizes for the following reasons: first,
we included the linear relationship with normal
errors, a very favorable condition for Pearson’s correl-
ation, and even in that case, Pearson’s test had only
slightly higher power. Second, it is evident that
Pearson’s test has almost zero power for some rela-
tionships and consequently substantially less power
than the HHG-Pearson and distance correlation tests,
whose power approaches 100% with increasing sample
size for any relationship. Third, earlier simulation
studies (de Siqueira Santos et al, 2014; Kinney &
Atwal, 2014), which considered different types of rela-
tionships, were also unable to identify a relationship
for which Pearson’s test had substantially higher
power than the distance correlation test.

The distance correlation and HHG-Pearson tests
were typically more powerful than Kendall’s and

Spearman’s tests, with large power advantages in the
best and average case and only modest power disad-
vantages in the worst case. While these results
strongly favor the distance correlation and HHG-
Pearson tests, it is important to note that we only
examined one monotonic relationship and expect that
there are monotonic relationships for which Kendall’s
and Spearman’s tests outperform the distance correl-
ation and HHG-Pearson tests more substantially.
Nevertheless, it cannot be expected that the power
advantage for those monotonic relationships is suffi-
ciently substantial to compensate for the large power
advantage distance correlation and the HHG-Pearson
have for the nonmonotonic relationships we
considered.

Regarding the differences between the HHG-
Pearson and the distance correlation test, our results
show a familiar pattern. The HHG-Pearson test had
substantially more power for some conditions and
only slightly less power for others, leading to a higher
average power. This could constitute a reason to rec-
ommend the HHG-Pearson test. However, such a rec-
ommendation would be premature, as it may rely too
heavily on the design of the simulation study. In par-
ticular, we expect that there are situations for which
the distance correlation test is substantially more
powerful than the HHG-Pearson test. Another argu-
ment in favor of the distance correlation test is that it
was more powerful for the linear relationship (outside
of heteroscedastic errors). Due to the importance of
the linear relationship in psychology and the fact that
the favorable properties of distance correlation have
been replicated in multiple simulation studies with
different designs (de Siqueira Santos et al., 2014; Ding
& Li, 2015; Kinney & Atwal, 2014; Simon et al,



2014), we therefore, for now, recommend the distance
correlation in favor of the HHG-Pearson test.

The newly proposed mutual information by kernel
density estimation (MI-KDE) test was not selected
under the chosen evaluation criterion as it did not per-
form well for the linear relationship. However, it was
(almost) always most powerful for three out of the five
relationships  considered: the missed moderator,
inverted-U, and cyclic relationships. Our results thus
suggest that the MI-KDE test should be chosen if only
those relationships are expected. Due to this favorable
performance, further research comparing the MI-KDE
test with other mutual information-based association
tests, (Berrett & Samworth, 2019; Kinney & Atwal,
2014; Y. A. Reshef et al., 2016), is recommended.

If one expects only one certain type of relationship,
arguably an approach specifically tailored for this par-
ticular relationship should be chosen. It is expected
that a test specialized for a particular kind of relation-
ship outperforms any nonparametric independence
test in this case. The traditional method for doing this
is to specify a statistical model that captures the
desired relationship, such as a polynomial regression
model. However, the findings in Edelmann and
Goeman (2022) suggest that utilizing the Hilbert-
Schmidt Independence Criterion (HSIC) with a kernel
tailored to the anticipated associations may prove to
be a more effective approach.

Besides being limited to detecting only linear rela-
tionships, another shortcoming of Pearson’s correlation
is its high sensitivity to outliers, a weakness that has
spurred the development of numerous robust alterna-
tives (Wilcox, 2017). This naturally prompts the ques-
tion: How robust are modern nonparametric tests? The
precise robustness properties—such as breakdown
points and influence functions—are unknown.
Importantly, none of these tests were originally
designed to be robust. The rank-based tests (Taustar,
Hoeffd, and to a certain extent HHG) can be expected
to be more robust than the remaining approaches rely-
ing on the raw data, as ranking of the data naturally
weakens the effect of outliers. A full examination of the
robustness of modern nonparametric tests is beyond
the scope of this article and is recommended for future
work. In the Online Supplementary, we take the first
step by investigating the robustness of each test to a sin-
gle outlier for two conditions. Most importantly, no
test was unaffected by the single outlier. However,
the rank-based tests were more robust, as expected.
Consequently, we recommend using modern nonpara-
metric tests, like the recommended distance correlation,
with caution when the presence of erroneous data
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points cannot be excluded. Rank-based tests should
provide some increased robustness to outliers (Bakker
& Wicherts, 2014; Karch, 2023), and of those, especially
Taustar can be recommended, as it performed best and
is almost the rank-based version of the recommended
distance correlation. However, future work should
rigorously explore the exact robustness properties of the
modern nonparametric tests and aim to develop more
robust versions. A natural starting point could be the
techniques used to improve the robustness of Pearson’s
correlation (Wilcox, 2017).

Additional avenues for future work are as follows.
First, formal mathematical comparisons of the
involved tests are recommended to overcome the lim-
ited generalizability of simulation study results. In the
best case, this would lead to upper limits for how
much power the modern nonparametric independence
tests (most prominently distance correlation) lose
compared to Pearson’s tests. This might also give fur-
ther insight into the relative performance of distance
correlation and the HHG-Pearson test. Second, it
might be possible to improve the HHG-Pearson test
by replacing the Bonferroni correction with more
modern approaches to combine two tests, most not-
ably resampling-based approaches (Dudoit et al,
2008). Third, our results indicate that combining the
newly proposed MI-KDE with Pearson’s test could
lead to a test that performs well across many condi-
tions. One of these two tests was the most powerful
for almost all conditions investigated, yet their average
power was relatively low. This suggests that they com-
plement each other well. Fourth, after an association
has been detected, quantifying its strength is usually
of interest. Assuming linearity, Pearson’s correlation
is the standard quantification approach. Many of
the measures used as test statistics for the modern
nonparametric independence tests could be used
for quantification without assuming linearity. The
additional challenge when using those measures for
quantification is that they must be interpretable
for every possible value (Reimherr & Nicolae, 2013).
Unfortunately, for many measures, interpretation out-
side of the extremes, which denote complete depend-
ence and complete independence, is not straightforward
(Reimherr & Nicolae, 2013). Thus, more work is needed
regarding the interpretation of the nonparametric inde-
pendence measures.

When the selected test of independence fails to
detect an association, either the variables are indeed
not associated or the test incorrectly failed to detect
an association. Given the large power differences
among the tests, additionally applying other tests will



970 J. D. KARCH ET AL.

lead to further insights. Care has to be taken, how-
ever, not to inflate type I error rates. When none of
the additional tests shows a significant result, this
strengthens the result and no additional action has to
be performed. However, if any additional test shows a
significant result, it should not be concluded that the
two variables are dependent as this would risk inflat-
ing type I error rates. Instead, any significant results
among the additional tests should be designated as
exploratory: this is not conclusive evidence against the
null hypothesis; instead, it warrants validation on a
separate data set. Using scatter plots during this
exploratory phase can be beneficial for exploring the
type of relationship, guiding the creation of more
powerful, specialized tests that must also be applied to
new data to prevent overfitting. The results of our
simulation study suggest that for the recommended
distance correlation test, it is advisable to use
Pearson’s correlation and the proposed MI-KDE test
as additional tests is. One of these three tests was
most powerful for 87% of the design cells. It has to be
noted, however, that this result will very likely not
generalize beyond the alternatives studied here.

In summary, our results indicate that if the type of
relationship between two continuous variables is
unknown, which is a common situation in psycho-
logical research, the distance correlation test may well
be a more suitable option compared to traditional
tests. The proposed HHG-Pearson test seems a prom-
ising alternative, with substantially more power in
many situations. However, further investigations are
needed before routine application of this test can be
recommended.
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Appendix A. Detailed power results.

Table A1. Power.

Rel. Error N Strength  Pear.  PearP. Kend. Spear. Hoeff. dCor HHG  HSIC Taustar MI-KDE  HHG-Pear.
Linear Heavy 10  Low A7 A7 15 15 23 .16 .09 ah 14 al 13
Linear Hetero 10  Low 33 32 24 2 31 .35 37 37 .18 .39 4
Linear Normal 10  Low 15 15 13 a3 2 15 .09 .09 12 A 12
Linear Skewed 10  Low .16 .16 14 15 22 15 .09 11 a3 11 12
Linear Heavy 10  High 95 95 9 .89 9 .94 79 .84 .84 .84 93
Linear Hetero 10 High .96 .96 .96 .94 .98 97 .95 .95 .95 93 97
Linear Normal 10 High .96 95 .88 .88 .87 .94 73 79 .82 .82 92
Linear Skewed 10  High .95 .95 .89 .89 .89 .94 77 .82 .84 .84 .92
Linear Heavy 10 Medium .66 .66 .56 .56 61 .63 37 44 5 45 57
Linear Hetero 10 Medium 69 68 64 .58 73 71 65 .64 .58 .62 72
Linear Normal 10 Medium .63 .63 5 51 .55 .58 3 37 A4 .39 .52
Linear Skewed 10 Medium .64 63 .54 .55 6 61 35 41 48 43 .55
Linear Heavy 20 Low 32 32 3 31 34 31 15 18 .29 18 .26
Linear Hetero 20 Low 42 42 .36 3 43 .55 74 .66 32 72 72
Linear Normal 20  Low .28 .28 24 .25 .27 .25 a3 13 22 a5 22
Linear Skewed 20 Low 3 3 .29 3 32 .29 .16 17 27 .19 .25
Linear Heavy 20  High 1 1 1 1 1 1 .99 99 1 1 1
Linear Hetero 20  High 1 1 1 1 1 1 1 1 1 1 1
Linear Normal 20  High 1 1 1 1 1 1 .98 99 1 99 1
Linear Skewed 20 High 1 1 1 1 1 1 .99 .99 1 1 1
Linear Heavy 20  Medium 93 93 91 91 9 93 75 .76 .88 8 91
Linear Hetero 20  Medium .88 .88 .92 .88 .95 .95 .96 .94 91 93 97
Linear Normal 20  Medium 93 .93 .87 .88 .86 9 64 .66 .83 72 .89
Linear Skewed 20 Medium 93 92 91 91 91 92 75 75 .88 .81 91
Linear Heavy 50 Low .66 65 .69 .69 .67 .67 39 4 .65 .38 .59
Linear Hetero 50 Low 62 62 .66 .56 .76 9 1 .98 .68 .98 .99
Linear Normal 50 Low .64 .64 .59 .59 .56 .58 3 .29 .53 32 .55
Linear Skewed 50 Low 66 65 .68 .68 .66 65 41 .39 .64 46 .6
Linear Heavy 50 High 1 1 1 1 1 1 1 1 1 1 1
Linear Hetero 50  High 1 1 1 1 1 1 1 1 1 1 1
Linear Normal 50  High 1 1 1 1 1 1 1 1 1 1 1
Linear Skewed 50  High 1 1 1 1 1 1 1 1 1 1 1
Linear Heavy 50  Medium 1 1 1 1 1 1 1 .99 1 1 1
Linear Hetero 50  Medium .99 .99 1 1 1 1 1 1 1 1 1
Linear Normal 50  Medium 1 1 1 1 1 1 .98 97 1 99 1
Linear Skewed 50  Medium 1 1 1 1 1 1 1 1 1 1 1
Linear Heavy 100  Low 91 91 94 94 93 94 73 71 92 .64 .89
Linear Hetero 100 Low .81 .81 .89 .82 97 1 1 1 95 1 1
Linear Normal 100  Low 91 91 .88 .89 .85 .88 .59 .55 .84 .56 .87
Linear Skewed 100  Low 91 91 94 94 93 .93 77 71 .92 .8 91
Linear Heavy 100  High 1 1 1 1 1 1 1 1 1 1 1
Linear Hetero 100  High 1 1 1 1 1 1 1 1 1 1 1
Linear Normal 100  High 1 1 1 1 1 1 1 1 1 1 1
Linear Skewed 100  High 1 1 1 1 1 1 1 1 1 1 1
Linear Heavy 100  Medium 1 1 1 1 1 1 1 1 1 1 1
Linear Hetero 100  Medium 1 1 1 1 1 1 1 1 1 1 1
Linear Normal 100  Medium 1 1 1 1 1 1 1 1 1 1 1
Linear Skewed 100  Medium 1 1 1 1 1 1 1 1 1 1 1
Linear Heavy 150  Low .98 .98 99 99 .99 99 91 .89 99 .82 98
Linear Hetero 150  Low 9 9 97 .93 1 1 1 1 1 1 1
Linear Normal 150  Low .98 .98 97 97 .96 97 .79 74 .95 73 97
Linear Skewed 150  Low .98 .98 99 99 .99 .99 .94 .89 99 .95 .98
Linear Heavy 150  High 1 1 1 1 1 1 1 1 1 1 1
Linear Hetero 150  High 1 1 1 1 1 1 1 1 1 1 1
Linear Normal 150  High 1 1 1 1 1 1 1 1 1 1 1
Linear Skewed 150  High 1 1 1 1 1 1 1 1 1 1 1
Linear Heavy 150  Medium 1 1 1 1 1 1 1 1 1 1 1
Linear Hetero 150  Medium 1 1 1 1 1 1 1 1 1 1 1
Linear Normal 150  Medium 1 1 1 1 1 1 1 1 1 1 1
Linear Skewed 150  Medium 1 1 1 1 1 1 1 1 1 1 1
Inv.-U Heavy 10  Low .08 .08 .06 .06 a3 .08 .07 .08 .06 .08 .07
Inv.-U Hetero 10  Low 23 22 12 A .19 .26 32 32 .09 .36 32
Inv.-U Normal 10  Low .08 .08 .06 .06 a3 .08 .07 .07 .06 .08 .07
Inv.-U Skewed 10  Low .08 .08 .07 .07 13 .08 .08 .08 .06 .08 .07
Inv.-U Heavy 10  High .26 23 12 1 .28 36 .38 .39 a3 43 .37
Inv.-U Hetero 10  High 33 .29 14 12 34 47 .56 .57 .16 .61 .54
Inv.-U Normal 10  High .26 23 1 Al .26 33 33 .36 12 4 34

(Continued)
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Table A1. Continued.

Rel. Error N Strength  Pear.  PearP. Kend. Spear. Hoeff. dCor HHG  HSIC Taustar MI-KDE  HHG-Pear.
Inv.-U Skewed 10 High .26 .24 13 1 .28 .36 .38 4 13 42 37
Inv.-U Heavy 10 Medium 18 .16 .09 .09 19 .21 19 22 .09 .23 2
Inv.-U Hetero 10 Medium 27 .24 12 1 .23 33 4 42 Al 45 39
Inv.-U Normal 10 Medium 17 15 .08 .08 18 19 .16 18 .09 2 a7
Inv.-U Skewed 10 Medium 18 a7 AR A 2 21 2 21 R .23 21
Inv.-U Heavy 20 Low .09 .09 .06 .06 Rh 1 12 11 .07 14 11
Inv.-U Hetero 20 Low 24 .24 14 11 2 41 .69 .61 12 .69 .64
Inv.-U Normal 20  Low .09 .09 .06 .06 1 A A .09 .07 12 A
Inv.-U Skewed 20 Low .09 .09 .07 .07 12 A 12 1 .07 .16 1
Inv.-U Heavy 20 High 29 .28 13 RA A48 72 79 73 3 .86 .76
Inv.-U Hetero 20 High 34 33 15 12 .6 .83 .94 9 39 95 92
Inv.-U Normal 20  High .29 .28 12 11 42 7 74 .67 .26 .84 71
Inv.-U Skewed 20 High 3 .29 14 1 48 74 79 73 3 .87 .76
Inv.-U Heavy 20 Medium 21 21 A .09 .25 41 44 4 15 53 41
Inv.-U Hetero 20 Medium .29 .29 13 11 31 .61 .81 73 19 .82 .76
Inv.-U Normal 20  Medium .19 .19 .09 .08 22 .36 .38 34 a3 49 .36
Inv.-U Skewed 20 Medium 2 19 1 Al .25 .39 43 39 15 .55 39
Inv.-U Heavy 50 Low .09 A .07 .06 13 2 27 22 11 3 22
Inv.-U Hetero 50 Low .26 .26 15 11 31 .78 99 97 23 .98 .99
Inv.-U Normal 50 Low .09 .09 .06 .06 12 a7 22 17 .09 .26 .18
Inv.-U Skewed 50 Low .09 .09 .08 .07 14 19 .28 21 1 39 21
Inv.-U Heavy 50 High 31 31 14 RN .95 1 1 99 92 1 1
Inv.-U Hetero 50 High 35 35 a7 13 .99 1 1 1 99 1 1
Inv.-U Normal 50  High 31 31 14 1 93 .99 1 .98 .89 1 99
Inv.-U Skewed 50 High 32 31 .16 12 .95 1 1 99 92 1 1
Inv.-U Heavy 50 Medium 24 .23 Al .09 .61 .85 91 .82 52 94 .87
Inv.-U Hetero 50 Medium 32 32 .16 12 75 .98 1 99 .67 1 1
Inv.-U Normal 50  Medium 23 23 R .09 5 .8 .85 73 43 92 8
Inv.-U Skewed 50 Medium .23 .23 13 A .59 .85 91 81 51 .96 .87
Inv.-U Heavy 100 Low .09 A .06 .06 .23 A1 53 42 2 53 45
Inv.-U Hetero 100 Low 27 .27 15 12 .68 .99 1 1 59 1 1
Inv.-U Normal 100  Low A A .06 .06 17 32 43 3 a5 46 34
Inv.-U Skewed 100 Low .09 .09 .08 .07 23 37 .56 41 2 71 45
Inv.-U Heavy 100 High 32 32 15 11 1 1 1 1 1 1 1
Inv.-U Hetero 100 High 35 35 a7 13 1 1 1 1 1 1 1
Inv.-U Normal 100  High 32 31 14 11 1 1 1 1 1 1 1
Inv.-U Skewed 100 High 32 32 a7 12 1 1 1 1 1 1 1
Inv.-U Heavy 100 Medium 24 24 Al .09 .96 1 1 99 95 1 1
Inv.-U Hetero 100 Medium 31 31 .16 12 1 1 1 1 99 1 1
Inv.-U Normal 100  Medium 24 23 R .09 9 .99 99 97 .88 1 .99
Inv.-U Skewed 100 Medium 24 .23 14 1 .94 .99 1 99 93 1 1
Inv.-U Heavy 150 Low A A .07 .06 37 .62 75 61 35 71 67
Inv.-U Hetero 150 Low 27 .27 .16 11 .96 1 1 1 92 1 1
Inv.-U Normal 150 Low N A .06 .06 .27 51 .63 45 25 .65 54
Inv.-U Skewed 150 Low A A .08 .07 .36 .58 .78 .61 34 .89 .69
Inv.-U Heavy 150 High 33 33 15 12 1 1 1 1 1 1 1
Inv.-U Hetero 150 High 35 35 a7 12 1 1 1 1 1 1 1
Inv.-U Normal 150  High 32 32 14 11 1 1 1 1 1 1 1
Inv.-U Skewed 150 High 32 32 a7 12 1 1 1 1 1 1 1
Inv.-U Heavy 150 Medium 24 24 1 .09 1 1 1 1 1 1 1
Inv.-U Hetero 150 Medium 32 32 .16 1 1 1 1 1 1 1 1
Inv.-U Normal 150  Medium 23 23 A .09 99 1 1 1 99 1 1
Inv.-U Skewed 150  Medium 24 24 a3 A 1 1 1 1 1 1 1
Neg. exp. Heavy 10  Low A3 A3 A 11 18 12 .08 .09 A .09 A
Neg. exp. Hetero 10 Low .28 .27 .16 14 .23 3 34 34 12 37 35
Neg. exp. Normal 10  Low 12 1 .08 .09 15 1 .07 .07 .08 .08 .09
Neg. exp. Skewed 10  Low 13 13 Al A 17 12 .08 .09 .09 .09 N
Neg. exp. Heavy 10 High 68 67 54 53 6 66 4 45 48 45 6
Neg. exp. Hetero 10 High 72 71 .65 .59 73 75 7 .68 .58 .68 .76
Neg. exp. Normal 10  High .65 64 49 49 .55 62 35 A1 43 42 .56
Neg. exp. Skewed 10 High .66 .65 53 .52 .59 .66 41 46 48 46 .59
Neg. exp. Heavy 10 Medium .38 .38 .28 .28 .36 .36 19 22 25 23 31
Neg. exp. Hetero 10 Medium 46 45 34 3 43 A48 A7 46 .28 A7 52
Neg. exp. Normal 10 Medium .35 34 24 24 31 32 .16 .19 21 21 .28
Neg. exp. Skewed 10  Medium .36 35 27 27 34 35 19 21 23 23 3
Neg. exp. Heavy 20 Low 22 22 17 17 .21 .21 11 12 .16 14 18
Neg. exp. Hetero 20 Low 35 34 24 19 .29 A7 7 .62 2 .68 .67
Neg. exp. Normal 20  Low 21 2 15 a5 17 18 .09 A a3 12 .16
Neg. exp. Skewed 20 Low 21 21 17 17 2 .19 12 AN 15 .16 17
Neg. exp. Heavy 20 High .92 .92 .87 .87 .88 93 .78 .76 .85 81 91
Neg. exp. Hetero 20 High 91 9 92 .88 .95 97 98 95 92 .96 .98

(Continued)
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Rel. Error N Strength  Pear.  PearP. Kend. Spear. Hoeff. dCor HHG  HSIC Taustar MI-KDE  HHG-Pear.
Neg. exp. Normal 20  High .93 92 .84 .84 .84 91 72 .69 .81 .78 9
Neg. exp. Skewed 20 High 93 93 .87 .87 .89 93 79 .76 .86 .82 91
Neg. exp. Heavy 20 Medium .65 .65 .55 .55 57 .65 4 4 52 A48 .6
Neg. exp. Hetero 20  Medium .67 67 .59 .52 .65 .78 .84 .78 .55 .82 .85
Neg. exp. Normal 20  Medium .63 .63 49 49 5 .59 33 32 44 42 .56
Neg. exp. Skewed 20  Medium .64 63 .54 .54 .57 .64 A1 39 51 49 .58
Neg. exp. Heavy 50 Low 47 47 A1 4 4 46 .25 .23 37 31 A1
Neg. exp. Hetero 50 Low 49 49 A1 34 .52 .83 99 97 44 98 99
Neg. exp. Normal 50 Low 45 44 34 34 32 .38 2 A7 3 .26 37
Neg. exp. Skewed 50 Low 45 45 4 4 39 43 .27 .22 .36 39 4
Neg. exp. Heavy 50 High 1 1 1 1 1 1 1 99 1 1 1
Neg. exp. Hetero 50  High 1 1 1 1 1 1 1 1 1 1 1
Neg. exp. Normal 50 High 1 1 1 1 1 1 .99 .98 1 1 1
Neg. exp. Skewed 50  High 1 1 1 1 1 1 1 99 1 1 1
Neg. exp. Heavy 50 Medium .95 .95 93 93 .93 .96 .85 79 92 .87 94
Neg. exp. Hetero 50  Medium 9 9 91 .87 .95 .99 1 1 93 1 1
Neg. exp. Normal 50  Medium .95 .95 .89 .89 .87 93 .76 .67 .86 .83 .93
Neg. exp. Skewed 50  Medium 95 .95 92 92 93 .96 .86 .78 92 92 .94
Neg. exp. Heavy 100 Low 72 72 .68 .68 .67 73 49 43 .66 .53 .69
Neg. exp. Hetero 100 Low .67 .67 .61 .53 .85 .99 1 1 79 1 1
Neg. exp. Normal 100  Low 72 71 .59 .59 .56 .65 .38 3 .55 47 .65
Neg. exp. Skewed 100 Low 73 72 .67 .67 .66 71 .52 41 .65 .69 .69
Neg. exp. Heavy 100  High 1 1 1 1 1 1 1 1 1 1 1
Neg. exp. Hetero 100  High 1 1 1 1 1 1 1 1 1 1 1
Neg. exp. Normal 100  High 1 1 1 1 1 1 1 1 1 1 1
Neg. exp. Skewed 100  High 1 1 1 1 1 1 1 1 1 1 1
Neg. exp. Heavy 100  Medium 1 1 1 1 1 1 .99 98 1 99 1
Neg. exp. Hetero 100  Medium 99 .99 1 .99 1 1 1 1 1 1 1
Neg. exp. Normal 100  Medium 1 1 .99 .99 .99 1 .98 .94 .99 .99 1
Neg. exp. Skewed 100  Medium 1 1 1 1 1 1 99 .98 1 1 1
Neg. exp. Heavy 150 Low .87 .87 .85 .85 .84 .89 .69 .6 .83 7 .85
Neg. exp. Hetero 150  Low 77 77 .75 .67 .98 1 1 1 97 1 1
Neg. exp. Normal 150  Low .87 .87 77 77 74 .82 .57 45 73 .65 .83
Neg. exp. Skewed 150 Low .87 .87 .84 .83 .83 .88 73 .59 .83 .86 .86
Neg. exp. Heavy 150  High 1 1 1 1 1 1 1 1 1 1 1
Neg. exp. Hetero 150  High 1 1 1 1 1 1 1 1 1 1 1
Neg. exp. Normal 150  High 1 1 1 1 1 1 1 1 1 1 1
Neg. exp. Skewed 150  High 1 1 1 1 1 1 1 1 1 1 1
Neg. exp. Heavy 150  Medium 1 1 1 1 1 1 1 1 1 1 1
Neg. exp. Hetero 150  Medium 1 1 1 1 1 1 1 1 1 1 1
Neg. exp. Normal 150  Medium 1 1 1 1 1 1 1 .99 1 1 1
Neg. exp. Skewed 150  Medium 1 1 1 1 1 1 1 1 1 1 1
Cyclic Heavy 10 Low .05 .05 .05 .06 12 .06 .06 .07 .06 .07 .05
Cyclic Hetero 10  Low 2 .19 15 1 27 24 .36 33 13 .36 34
Cyclic Normal 10 Low .05 .05 .05 .05 12 .05 .06 .06 .05 .06 .05
Cyclic Skewed 10 Low .05 .05 .05 .05 12 .06 .06 .07 .06 .06 .05
Cyclic Heavy 10 High .07 .07 .08 .08 .26 13 22 25 12 .27 .16
Cyclic Hetero 10  High 11 11 12 1 37 19 A1 35 7 38 33
Cyclic Normal 10 High .08 .08 .08 .09 25 14 21 .25 13 .27 .16
Cyclic Skewed 10 High .07 .07 .08 .09 .26 13 22 25 12 27 .16
Cyclic Heavy 10 Medium .06 .06 .07 .07 19 .09 12 15 .09 14 .09
Cyclic Hetero 10  Medium 15 15 15 E] .36 23 41 34 17 .38 35
Cyclic Normal 10 Medium .07 .06 .07 .07 a7 .09 1 13 .09 13 .08
Cyclic Skewed 10 Medium .06 .06 .07 .07 18 A 12 14 .09 14 .09
Cyclic Heavy 20 Low .05 .05 .05 .06 Al .07 .07 .09 .07 .08 .06
Cyclic Hetero 20 Low 23 22 2 14 .38 .39 73 .59 23 .66 67
Cyclic Normal 20 Low .05 .05 .05 .05 A .06 .07 .08 .06 .07 .05
Cyclic Skewed 20 Low .05 .05 .05 .06 A .07 .08 .09 .07 .09 .06
Cyclic Heavy 20 High .06 .06 1 A 43 .25 .61 48 .26 51 47
Cyclic Hetero 20  High 11 11 17 13 .63 .38 .87 .63 39 .66 79
Cyclic Normal 20 High .06 .06 Al Al 4 .24 .55 46 24 51 42
Cyclic Skewed 20 High .06 .06 A A 42 .25 .58 A48 25 5 45
Cyclic Heavy 20 Medium .05 .05 .08 .08 .24 .16 27 29 .16 3 18
Cyclic Hetero 20  Medium 7 a7 21 15 .56 A1 81 .63 .36 .68 74
Cyclic Normal 20  Medium .05 .05 .07 .07 21 a3 22 25 14 .26 15
Cyclic Skewed 20 Medium .06 .06 .08 .08 .23 14 .26 27 15 .29 18
Cyclic Heavy 50 Low .05 .05 .06 .06 13 A 15 A7 1 A7 1
Cyclic Hetero 50 Low 23 23 33 19 75 77 1 97 .57 .98 .99
Cyclic Normal 50 Low .05 .05 .06 .06 11 .08 12 13 .09 .14 .08
Cyclic Skewed 50 Low .05 .05 .06 .06 13 A .16 .16 A .19 11
Cyclic Heavy 50 High .06 .06 .16 14 .95 .81 1 93 .84 94 99
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Table A1. Continued.

Rel. Error N Strength  Pear.  PearP. Kend. Spear. Hoeff. dCor HHG  HSIC Taustar MI-KDE  HHG-Pear.
Cyclic Hetero 50 High 12 a2 3 2 1 93 1 .98 97 .98 1
Cyclic Normal 50 High .06 .06 15 14 .93 8 .99 92 81 94 99
Cyclic Skewed 50 High .06 .06 15 14 .95 8 1 93 .83 95 99
Cyclic Heavy 50  Medium .06 .06 12 12 .57 46 .8 72 46 79 7
Cyclic Hetero 50  Medium a7 a7 37 23 97 .89 1 .98 .89 .98 1
Cyclic Normal 50 Medium .06 .06 1 11 A48 4 7 .63 39 74 57
Cyclic Skewed 50 Medium .06 .06 11 11 .54 43 78 .69 43 .78 .66
Cyclic Heavy 100  Low .05 .05 .07 .07 2 a7 31 32 18 36 21
Cyclic Hetero 100  Low 24 24 48 .25 .99 .99 1 1 .96 1 1
Cyclic Normal 100 Low .05 .05 .07 .07 .16 14 22 22 15 .29 15
Cyclic Skewed 100 Low .05 .05 .08 .08 .21 .16 32 31 19 45 22
Cyclic Heavy 100  High .07 .07 24 22 1 1 1 1 1 1 1
Cyclic Hetero 100  High 14 14 48 31 1 1 1 1 1 1 1
Cyclic Normal 100 High .07 .07 24 22 1 1 1 1 1 1 1
Cyclic Skewed 100 High .07 .07 24 .22 1 1 1 1 1 1 1
Cyclic Heavy 100  Medium .07 .06 .16 .16 97 94 1 .98 94 1 .99
Cyclic Hetero 100  Medium .18 .18 .57 34 1 1 1 1 1 1 1
Cyclic Normal 100 Medium .07 .07 .16 15 .92 .89 .99 95 .87 99 97
Cyclic Skewed 100 Medium .06 .06 15 15 .96 .93 1 98 93 1 99
Cyclic Heavy 150  Low .06 .06 A A 32 .29 49 .5 3 .56 .38
Cyclic Hetero 150  Low 24 24 .62 33 1 1 1 1 1 1 1
Cyclic Normal 150 Low .05 .05 .08 .08 24 22 35 34 23 A7 .26
Cyclic Skewed 150 Low .06 .05 .08 .08 3 .26 .5 48 .28 71 38
Cyclic Heavy 150  High .09 .09 31 .28 1 1 1 1 1 1 1
Cyclic Hetero 150  High 14 14 6 .39 1 1 1 1 1 1 1
Cyclic Normal 150 High .08 .08 3 .28 1 1 1 1 1 1 1
Cyclic Skewed 150 High .08 .08 32 .29 1 1 1 1 1 1 1
Cyclic Heavy 150  Medium .07 .07 22 21 1 1 1 1 1 1 1
Cyclic Hetero 150  Medium .19 .19 72 43 1 1 1 1 1 1 1
Cyclic Normal 150  Medium .07 .07 2 19 1 1 1 1 1 1 1
Cyclic Skewed 150 Medium .07 .07 21 2 1 1 1 1 1 1 1
Mis. mod. Heavy 10  Low a5 14 A .09 15 a3 14 14 .07 17 15
Mis. mod. Hetero 10 Low 22 .21 13 1 19 .25 33 33 .09 37 33
Mis. mod. Normal 10 Low 14 14 .09 .08 14 12 12 12 .07 15 14
Mis. mod. Skewed 10 Low 14 14 A .09 15 12 13 13 .07 .16 14
Mis. mod. Heavy 10  High 24 23 .16 a3 22 .26 51 44 1 52 45
Mis. mod. Hetero 10 High 24 .23 .16 12 24 .29 .61 5 12 .58 54
Mis. mod. Normal 10 High 24 .23 .16 13 22 .26 A48 43 11 51 43
Mis. mod. Skewed 10 High 24 .23 .16 13 .23 .26 49 43 1 52 44
Mis. mod. Heavy 10 Medium .19 .19 13 1 .18 .19 27 .26 .09 31 27
Mis. mod. Hetero 10 Medium 24 22 14 1 21 .26 42 .38 R 43 .39
Mis. mod. Normal 10 Medium 19 .19 12 11 17 18 .23 23 .09 .29 24
Mis. mod. Skewed 10 Medium 19 18 12 Al a7 18 .25 24 .08 3 25
Mis. mod. Heavy 20  Low .16 .16 N .09 14 .16 .25 .22 .08 35 24
Mis. mod. Hetero 20 Low 24 24 14 11 19 37 7 6 12 .68 .63
Mis. mod. Normal 20 Low .16 .16 A .09 12 15 2 18 .08 31 2
Mis. mod. Skewed 20 Low .16 .16 1 .09 13 .16 .25 21 .08 .36 .23
Mis. mod. Heavy 20  High 24 23 18 12 .25 .39 9 8 a5 .96 .85
Mis. mod. Hetero 20 High .26 .26 19 13 29 46 .95 .86 7 97 92
Mis. mod. Normal 20 High 24 24 17 13 24 39 .88 79 15 .96 .83
Mis. mod. Skewed 20 High 24 .24 7 12 24 .39 .89 79 14 .96 .84
Mis. mod. Heavy 20  Medium 2 2 14 11 17 .26 .57 49 1 .69 5
Mis. mod. Hetero 20  Medium 25 .25 .16 12 22 A1 .81 71 RE] .81 75
Mis. mod. Normal 20  Medium 2 2 13 1 .16 .25 ) 43 A .65 44
Mis. mod. Skewed 20 Medium 2 2 14 1 a7 .25 .55 46 A .67 48
Mis. mod. Heavy 50 Low A7 A7 12 .09 14 24 .64 52 N .76 .56
Mis. mod. Hetero 50 Low .26 .25 .16 12 .26 71 99 97 19 .98 .99
Mis. mod. Normal 50 Low .16 .16 1 .09 12 2 .52 38 .09 .67 44
Mis. mod. Skewed 50 Low a7 a7 12 .09 14 .23 .64 51 A .79 .56
Mis. mod. Heavy 50  High 25 24 2 13 48 .81 1 1 32 1 1
Mis. mod. Hetero 50  High .26 .25 2 13 .65 .89 1 1 A1 1 1
Mis. mod. Normal 50 High 24 24 19 13 43 8 1 1 3 1 1
Mis. mod. Skewed 50 High .25 .25 2 13 46 .81 1 1 32 1 1
Mis. mod. Heavy 50  Medium 21 21 .16 1 23 5 .98 .94 a7 99 .96
Mis. mod. Hetero 50  Medium .26 .26 17 12 34 .78 1 .99 23 1 1
Mis. mod. Normal 50 Medium 21 21 .16 11 2 45 .96 .89 15 99 92
Mis. mod. Skewed 50 Medium 21 .21 15 12 22 48 97 92 .16 .99 .96
Mis. mod. Heavy 100  Low 17 .16 12 A 17 A1 95 .88 14 97 92
Mis. mod. Hetero 100  Low .25 24 15 1 .55 .98 1 1 42 1 1
Mis. mod. Normal 100 Low 17 a7 Rl .09 14 32 .87 72 Al 93 81
Mis. mod. Skewed 100 Low .16 .16 1 .09 .16 .39 .95 .86 13 .98 92
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Table A1. Continued.

Rel. Error N Strength  Pear.  PearP. Kend. Spear. Hoeff. dCor HHG  HSIC Taustar MI-KDE  HHG-Pear.
Mis. mod. Heavy 100  High 24 24 2 a3 .99 1 1 1 .94 1 1
Mis. mod. Hetero 100 High .26 .26 21 14 1 1 1 1 1 1 1
Mis. mod. Normal 100  High 25 25 2 a3 97 1 1 1 9 1 1
Mis. mod. Skewed 100  High 25 24 2 13 .99 1 1 1 92 1 1
Mis. mod. Heavy 100  Medium 22 22 .16 12 43 9 1 1 34 1 1
Mis. mod. Hetero 100  Medium .25 .25 17 12 .82 1 1 1 .65 1 1
Mis. mod. Normal 100  Medium 21 21 15 1 32 .84 1 1 27 1 1
Mis. mod. Skewed 100  Medium 22 21 .16 1 .39 .88 1 1 32 1 1
Mis. mod. Heavy 150  Low 18 a7 12 Al 23 .64 1 98 2 1 99
Mis. mod. Hetero 150 Low .26 .26 .16 12 .92 1 1 1 .83 1 1
Mis. mod. Normal 150 Low .16 .16 1 .09 a7 48 .98 9 14 .99 .96
Mis. mod. Skewed 150 Low .16 .16 12 .09 21 .59 1 .98 .18 1 .99
Mis. mod. Heavy 150  High 24 24 2 13 1 1 1 1 1 1 1
Mis. mod. Hetero 150 High .25 .25 2 13 1 1 1 1 1 1 1
Mis. mod. Normal 150  High 25 25 2 a3 1 1 1 1 1 1 1
Mis. mod. Skewed 150  High 24 24 21 a3 1 1 1 1 1 1 1
Mis. mod. Heavy 150  Medium 21 21 .16 12 .76 1 1 1 .68 1 1
Mis. mod. Hetero 150  Medium .25 .25 17 12 1 1 1 1 99 1 1
Mis. mod. Normal 150  Medium 21 21 15 1 .58 .99 1 1 .52 1 1
Mis. mod. Skewed 150  Medium 21 21 .16 1 72 .99 1 1 .63 1 1
Mean Indep.  Hetero 10  Low .23 21 12 Al 18 24 3 31 .09 35 3
Mean Indep.  Hetero 10 High 21 2 12 A 18 23 3 31 .09 34 3
Mean Indep.  Hetero 10  Medium 22 2 12 A .18 23 3 31 .08 34 3
Mean Indep.  Hetero 20 Low .25 .25 14 1 19 .38 .65 57 NN .65 6
Mean Indep.  Hetero 20  High 24 24 13 A .18 36 .65 .57 11 .65 .6
Mean Indep.  Hetero 20  Medium 24 24 a3 1 18 37 .65 .57 1 .66 .6
Mean Indep.  Hetero 50 Low .25 .25 14 1 24 .68 .99 .96 7 97 98
Mean Indep.  Hetero 50  High 25 .25 15 1 23 67 .99 95 .18 97 .98
Mean Indep.  Hetero 50  Medium .26 .26 15 1 24 .68 .99 .96 17 97 .98
Mean Indep.  Hetero 100  Low .26 .26 a5 11 46 97 1 1 .36 1 1
Mean Indep.  Hetero 100  High 25 25 .16 1 47 97 1 1 37 1 1
Mean Indep.  Hetero 100  Medium .26 25 14 A 48 97 1 1 37 1 1
Mean Indep.  Hetero 150  Low .25 .25 15 1 .85 1 1 1 75 1 1
Mean Indep.  Hetero 150  High .25 25 15 1 .84 1 1 1 73 1 1
Mean Indep.  Hetero 150  Medium 25 25 15 11 .84 1 1 1 74 1 1

Notes: Bold numbers highlight the highest power within each row (not considering Hoeffding’s test due to inflated type | error rates). If multiple numbers
are boldface, multiple tests had the highest power. N: sample size; Rel.: type of relationship; Test abbreviations: Pear.. Pearson’s; PearP.: Pearson’s
permutation version; Kend.: Kendall's; Spear.: Spearman’s; Hoeff.: Hoeffding's; dCor: distance correlation; HHG: Heller-Heller-Gorfine; HSIC: Hilbert-
Schmidt independence criterion; Taustar: Taustar; MI-KDE: mutual information via kernel density estimation; HHG-Pear.: HHG.
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