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ABSTRACT

Propensity score methods are a widely recommended approach to adjust for confounding
and to recover treatment effects with non-experimental, single-level data. This article
reviews propensity score weighting estimators for multilevel data in which individuals (level
1) are nested in clusters (level 2) and nonrandomly assigned to either a treatment or control
condition at level 1. We address the choice of a weighting strategy (inverse probability
weights, trimming, overlap weights, calibration weights) and discuss key issues related to
the specification of the propensity score model (fixed-effects model, multilevel random-
effects model) in the context of multilevel data. In three simulation studies, we show that
estimates based on calibration weights, which prioritize balancing the sample distribution of
level-1 and (unmeasured) level-2 covariates, should be preferred under many scenarios (i.e.,
treatment effect heterogeneity, presence of strong level-2 confounding) and can accommo-
date covariate-by-cluster interactions. However, when level-1 covariate effects vary strongly
across clusters (i.e., under random slopes), and this variation is present in both the treat-
ment and outcome data-generating mechanisms, large cluster sizes are needed to obtain
accurate estimates of the treatment effect. We also discuss the implementation of survey
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weights and present a real-data example that illustrates the different methods.

In the last decades, propensity score methods have
received significant attention for estimating treatment
effects with non-experimental, observational data in
psychology and educational research (e.g., Morgan &
Winship, 2014; Schafer & Kang, 2008). Propensity
score methods aim to balance the distribution of
observed covariates between the treatment and control
group, in order to ensure that an estimated treatment
effect is not due to differences in observed characteris-
tics between the groups (Austin, 2011; Rosenbaum &
Rubin, 1983). In practical applications, the balance of
the covariate distributions is achieved by matching
observations on the propensity score (Stuart, 2010),
stratifying them according to quantiles of the propen-
sity score (Lunceford & Davidian, 2004), or reweight-
ing the sample using functions of the propensity score
(Hirano et al., 2003). A relatively small propensity
score literature focuses on designs where lower-level
units (e.g., students, employees; level 1) are nested

within higher-level units (e.g., classrooms, firms; level
2), and recommendations for the use of propensity
score methods with multilevel data are still scarce (see
Hong, 2015, Hong & Raudenbush, 2006; Kim &
Seltzer, 2007; Leite et al., 2015, 2019; Thoemmes &
West, 2011), particularly for data structures that are
typical in psychological research.

The purpose of this article is to evaluate different
propensity score weighting methods for estimating treat-
ment effects in data that have a multilevel structure. We
study multilevel scenarios in which individuals are
nested in clusters and nonrandomly assigned to either a
treatment or control condition (ie. binary treatment
variable) at the individual level (level 1). With treatment
assignment at level 1, it is crucial to determine which
level-1 and level-2 covariates are potential confounders.
Thus, it has been shown in previous research that the
propensity score model should take the multilevel struc-
ture into account (e.g., Arpino & Mealli, 2011; Li et al,
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2013). The present study focuses on propensity weight-
ing methods, which can be easily combined with the
sampling weights that are often included in the analysis
of large-scale survey data (e.g., school achievement stud-
ies) to obtain a representative sample of the population
(Dong et al., 2020; Stapleton, 2013). In three simulation
studies, we compare traditional inverse probability
weighting (IPW; i.e., weights determined by the inverse
probability of receiving the treatment that was actually
received) with two alternative methods that have been
proposed to stabilize IPW estimators, particularly in
scenarios with extreme weights: trimming IPW weights
(Lee et al,, 2011), and overlap weights (Li et al, 2018).
Also, we evaluate two recently introduced versions of
calibration weights (Kim et al., 2017; Yang, 2018), and a
clustered estimator that estimates the treatment effect
separately within each cluster (Li et al, 2013).
Calibration weights have the attractive feature that they
directly balance the distribution of level-1 and (unmeas-
ured) level-2 covariates when determining the weights
(see Hainmueller, 2012; Imai & Ratkovic, 2014).

In our review of these propensity weighting methods,
we put particular emphasis on three issues. First, we dis-
cuss the ability of these methods to control for unmeas-
ured level-2 confounders, the so-called “unmeasured
context” problem (Arpino & Mealli, 2011). More specif-
ically, we investigate how the estimation of the propen-
sity scores (ie, fixed-effects models or multilevel
random-effects models) that are used to compute the dif-
ferent weights affect the performance of the different
weighting methods. However, we assume that all relevant
level-1 covariates are observed. Second, we evaluate the
performance of the different methods under heteroge-
neous treatment effects, which may arise from interac-
tions of the treatment with level-1 and/or level-2
covariates. Third, we clarify the role of level-1 covariate
effects that vary across clusters (i.e., random slopes), and
show that random slopes need to be present in the treat-
ment as well as the outcome model in order to deterior-
ate estimates of the treatment effects.

It should be emphasized that in our discussion of
causal inference with two-level data, we focus on the
case that nonrandom treatment assignment occurs at
level 1. In many research designs, clusters of individuals
are selected to participate in different treatments (e.g.,
schools are assigned to different programs), and nonran-
dom treatment assignment occurs at the group level
(level 2). With treatment assignment at level 2, potential
confounder variables are located at the group level (e.g.,
school resources, student characteristics aggregated at the
school level), and covariates at level 1 are not relevant.
Methods for estimating treatment effects with cluster-
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level assignment are discussed in Hansen et al. (2014),
Keele et al. (2020), and Page et al. (2020).

The article is organized as follows. We begin with a
brief description of the potential outcomes framework.
We then describe the role of the propensity score and
its estimation in the context of multilevel data. Next,
we compare different propensity score weighting meth-
ods, discuss how each achieves covariate balance, and
review previous findings from the literature concerning
their performance. We then present the results of three
simulation studies. In Study 1, the treatment assign-
ment mechanism is a multilevel random-intercept
model, and the treatment effect is homogeneous in the
population. In Study 2, the treatment assignment mech-
anism is again a multilevel random-intercept model,
but we introduce a heterogeneous treatment effect and
allow for endogeneity at the cluster level. A brief sec-
tion then describes the role of covariate-by-cluster
interactions, before Study 3 investigates the role of ran-
dom slopes. Finally, we discuss the implementation of
survey weights and present a real-data example that
illustrates the different methods.

Potential outcomes and
ignorability assumption

Consider a two-level structure in which a sample of N
units is grouped into ] clusters (e.g., N students
grouped by the ] schools they attend), each with n;
units indexed i=1, 2, ..., n. We assume a binary
treatment variable Tj;, such that Tj; = 1 if unit i in
cluster j is treated and Tj; = 0 otherwise. In the
potential outcomes framework (Imbens & Rubin,
2015), each unit has two potential outcomes: Y;(1) is
the potential outcome under the treatment condition
(T;; = 1), and Yj;(0) is the potential outcome under
the control condition (T;; = 0). We further assume
that, for each unit, the observed outcome equals the
potential outcome under the observed treatment sta-
tus, ie, Y; = Y;(Ty), and thus write the observed
outcomes as Yj; = Yj(1) - Ty + Y;(0) - (1 = Ty).

The average treatment effect (ATE) is then defined
as:

= E(Y;(1)-Y5(0)) = m-Ho (1)

where u; and g, are the average potential outcomes
under the treatment and control status, respectively.
Since none of the units are observed under both the
treatment and control conditions simultaneously, the
ATE is not identified without further assumptions
(Holland, 1986). Non-experimental research proceeds
by conditioning on a set of observed covariates so
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that the two potential outcomes Yj(1) and Y;/(0) are
independent of the treatment Tj. More formally, let
X;; and V; denote vectors of level-1 and level-2 covari-
ates. In the context of our study, it is instructive to
further decompose the level-2 covariates V; into an
observed part Z; and an unobserved part W, ie,
V; = (Z, W). If contextual effects of level-1 covariates
are present, the observed part Z; also includes the cor-
responding cluster means of the level-1 covariates. It
can be shown that the ATE is identified under the
ignorability assumption (see Rosenbaum & Rubin,
1983):

Y;(1), Y3(0) LT5X5, Vj ©)

which states that the potential outcomes are inde-
pendent of the treatment given the covariates. This
assumption is also labeled the unconfoundedness,
conditional independence or selection on observables
assumption in the literature (Herndn & Robins, 2020;
Imbens, 2004; Morgan & Winship, 2014)." Because
the ignorability assumption in Equation (2) also
involves the unobserved cluster-level variables Wj,
Yang (2018) used the term latent ignorability. Note
that the vector of observed cluster-level variables Z;
can also include information about cluster member-
ship, and that cluster indicator variables can be used
to represent the effects of unobserved cluster level
confounders, as will be discussed in the next section.
The goal is then to estimate the ATE from the data
(Yy, Ty Xy V). If the ignorability assumption in
Equation (2) holds, the ATE can be identified as follows:

T = E[E(Y,.j|x,~j, V;, Ty = 1)-E(Y;|X;;, V), Tj; = 0)].
(3)

The expected values of the potential outcomes in the
treatment and control conditions (i.e., u; and p) can
be determined by averaging the conditional expectation
of the outcome given the observed covariates and the
treatment status across the covariate distribution. Thus,
the ignorability assumption ensures that the ATE can
be estimated from the observed data. However, it
should be emphasized that the ignorability assumption
cannot be empirically tested and needs to be justified
by substantive knowledge (Aronow & Miller, 2019). In
this article, we assume that ignorability holds at level 1
(i.e., all important covariates at level 1 were measured)
and focus on the role of level-2 covariates.

'A second assumption is needed (positivity assumption; see Rosenbaum &
Rubin, 1983) which states that in the population the probability of
receiving the treatment given the covariates is between 0 and 1, i. e.
0 < P(T; = 1] X3 V) < 1. This assumption implies that there exists
sufficient overlap in the covariate distributions between the treatment
and control groups.

It is often reasonable to assume that the treatment
effect varies across different subgroups, in which case
the conditional ATE (CATE; Imbens, 2004) defines
the ATE conditional on covariate values (i.e., X; = x
and V; = v):

teate(% V) = E(Y[X; =x,V; =v,T; = 1)

If Tcate(X, V) is a constant function of the covariate
values, the ATE is said to be homogeneous; otherwise,
the treatment effect is labeled as heterogeneous (e.g.,
Morgan & Winship, 2014). Note that the ATE in
Equation (3) is obtained by averaging the CATE across
the covariate distribution, i.e., E[tcate(Xip V)] = .

Propensity scores

A useful summary measure of the covariates is the
propensity score, defined as the conditional probabil-
ity of treatment given the covariates:

mij = Xy Vi) = P(Ty = 11X, V) (5)

Rosenbaum and Rubin (1983) showed that it suffices
to condition on the propensity score, rather than on
the covariates themselves, in order to fulfill the igno-
rability assumption that the potential outcomes are
independent of the treatment:

Y,](l),Y,J(O)J_T,]|7'C,](X1],V) (6)

In practice, the propensity scores m; have to be
estimated from data, and previous research has con-
sistently emphasized the importance of taking the
multilevel structure into account at this estimation
stage (e.g., Arpino & Mealli, 2011; Li et al., 2013;
Steiner et al. 2013; Thoemmes & West, 2011). To this
end, propensity score estimates are typically obtained
with either the logistic fixed-effects or logistic ran-
dom-effects specifications from the multilevel model-
ing literature. The two approaches mainly differ in
how they deal with the effects of unobserved con-
founders at the cluster level. To further describe these
two methods, we introduce the following multilevel
logistic random-intercept model as a data-generating
mechanism for the propensity scores (Snijders &
Bosker, 2012):

=g(P(

=70 + Xij¥x + Zivz +

Wivw + Uo; (7)

g(my)

where 7y, is the intercept, yx are the effects of the
covariates at the individual level, y; and yyw are the
effects of the observed and unobserved covariates at



the cluster level, and g denotes the logit link
function. The random effects Uy; are assumed to
have zero mean and are uncorrelated with the cova-
riates: Cov(W;, Uy) = 0, Cov(X;, Up;) = 0, and
Cov(Zj, Uy) = 0. Note that W; is not observed (e.g.,
unmeasured school resources) and has the potential to
distort the estimation of treatment effects. Also note
that we make the simplifying assumption that the
effects of the level-1 covariates are constant across clus-
ters (ie, no random slopes). In the later section
“Extension to Models with Covariate-by-Cluster
Interactions,” we discuss the more general case of treat-
ment assignment models in which the effects of level-1
covariates vary across clusters.

In the fixed-effects modeling approach, a logistic
regression model is specified for estimating the pro-
pensity scores:

g(mi) = o5 + XifYx. v + Uoj pE (8)

Here, Ug; g are cluster-specific effects, estimated by
introducing a set of cluster-specific dummy varia-
bles that take values of 1 when a unit belongs to the
cluster and 0 otherwise (Allison, 2009). The param-
eter estimates yx pp and Uoj,FE are then used to
compute predicted probabilities of treatment
#iee = g ' (Do rx + Xi¥x.pe + Uoj,re). Previous simu-
lation studies (e.g., Arpino & Mealli, 2011) have shown
that the fixed-effects approach is able to remove con-
founding at the cluster level. This has the advantage that
researchers do not need to measure the relevant level-2
covariates. However, with small cluster sizes (e.g., 10
level-1 units per level-2 unit), the estimated fixed effects
can yield extreme predicted probabilities and unstable
results (Li et al.,, 2013).

In the random-effects modeling approach, a multi-
level logistic random-intercept model is specified for
estimating the propensity scores:

g(mij) = yo.re + Xij¥x.Re + ZjYz re + Uoj e 9)

The random intercepts Upjre are assumed to be
normally distributed. Because the unobserved cluster-
level variables W; are not included in the model,
the random intercepts Uoj.re will, in general, be corre-
lated with the level-1 and level-2 variables, i.e.,
Cov(Xj; Upire) # 0, and Cov(Z;, Uy;rg) # 0. Thus,
the random-effects model will be misspecified in the
presence of unknown group-level confounders (Ebbes
et al., 2004). However, for larger cluster sizes (e.g., 50
or larger), the estimated slopes of level-1 covariates
and the estimated random intercepts of the random-
effects model approximate the estimates of the fixed-
effects model (e.g., Kreft & de Leeuw, 1998); this
yields predicted probabilities 7;; gz that converge
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against 7;pg. We now discuss how the estimated
probabilities are used to construct weighting estima-
tors of the treatment effect.

Propensity score weighting estimators

The estimated propensity scores, 7;;, are used to com-
pute weights, @;, which are in turn used to construct
estimators of the treatment effect. In general, the pro-
pensity score weighting estimators are of the form (Li
et al., 2018):

n;j A n; A
]]'=1 > il @5 T;Yy Z]]'=1 Y il @(1 = Ty)Yy
J n; - Vi n A
j=1 Qi1 =1 > ity @(1 = Tj)
(10)

T = -

These are weighted averages of the outcome among
the treated and non-treated units, where the first term
is an estimate of yu;, and the second term estimates y,
(see Equation (1)). Note that the estimated weights
@;; are functions of the observed covariates. If the
propensity score model is correctly specified, the fol-
lowing balancing conditions are asymptotically ful-
filled for the covariates:
E(@;T;Xy) = E(ay(1 -
E(@;T;V;) = E(@;(1 —

T;)X;) = E(Xy)

T;)V;) = E(V)) (1)

In words, the weights create a pseudopopulation in
which the treatment indicator Tj; is independent of
the covariates. In empirical applications, these bal-
ancing conditions are checked by comparing the
weighted means of the observed covariates across the
treatment and control conditions (e.g., Imbens &
Rubin, 2015). However, it needs to be pointed out
that balance does not imply that the ignorability
assumption holds because balance on observed varia-
bles does not imply balance on unobserved variables
(i.e., unmeasured confounder variables at level 1 or
level 2).
For the inverse probability weighting (IPW) estima-
tor, Tipw, the weights are defined as:
. _ 1/ for T =1
@iy ew = { 1/(1 —7;) for T =0°

The weight of each unit is the inverse of the probabil-
ity of assignment to the condition it was assigned to.
As a result, individuals who are very unlikely to be
assigned to treatment are upweighted in the treatment
condition and downweighted in the control condition,
and vice versa.

Though the weights in Equation (12) are widely
used, they are known to exhibit large variability, espe-
cially in the case of small to moderate samples and

(12)
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when the distribution of the covariates strongly differs
between the treatment and control groups (Cole &
Hernan, 2008; Harder et al, 2010). Indeed, while
treated units with small propensities and control units
with large propensities make for ideal counterfactual-
type comparisons, their estimated probability values
can be too extreme, in the sense that some of the
weights implied are unreasonably large. Trimmed
weights have been proposed to stabilize the IPW esti-
mator (Crump et al., 2009; Lee et al,, 2011)* by choos-
ing a cutoff value ¢ and setting all weights larger than
the cutoff value to zero:

Wi, IPW-T = Qij, PW {6 pyy<c}> (13)

where 1y, denotes the indicator function. The
trimmed welght d)ij,IPW—T equals Cbij)lpw if CAUI‘J')IPW is
smaller than ¢, and it is 0 otherwise. Trimmed weights
are then used to obtain an IPW trimming estimator
Tpw—t for the ATE as in Equation (10). Importantly,
trimming implies a redefinition of the causal estimand
(i.e., ATE in Equation (1)), since Tipw_r is aimed at a
different target population: the population of units
with mild probabilities of treatment. For example,
with ¢=10, only units with propensity scores that lie
between .10 and .90 are considered. Thus, different
trimming parameters lead to different target distribu-
tions, leaving it up to the analyst to choose an appro-
priate cutoff. Still, this is not a problem under
homogenous treatment effects, that is, treatment
effects that are constant across the distribution of
the covariates.

A more principled approach uses overlap weights
proposed by Li et al. (2018):

R _J1—m; forTj =1

for the treated and control units, respectively. The
overlap weights upweight units with propensity scores
close to .5, and downweight units with extreme pro-
pensity scores instead of completely discarding them.
The estimator obtained from the overlap weights,
Tow, therefore focuses on the overlapping area of the
propensity distributions of the treated and control
samples. While this also redefines the target popula-
tion, the overlap is often a meaningful area on the
support of the propensity score, as it represents a
subpopulation that had nontrivial probabilities for

2Alternatively, truncation or winsorization of weights has been proposed
(Leite, 2016). Instead of discarding units with extreme weights, truncation
assigns the cut-off value to units with weights above the cut-off (e.g., all
units with weights larger than ¢=10 obtain a weight of 10). In
Simulation Study 1, we also applied truncation and found that it did not
substantially improve the performance of the IPW estimator.

both being among the treated and the controls (Mao
et al., 2019). Li et al. (2018; see also Li, Thomas, &
Li, 2019) show that Tow has two desirable features:
weighting by overlap weights achieves an exact bal-
ance of the covariates between treatment and control
groups, and Tow achieves minimum asymptotic vari-
ance under certain conditions. However, to the best
of our knowledge, the performance of overlap
weights has not been investigated in the context of
multilevel data.

Calibration estimator

Importantly, if the ignorability assumption holds
(see Equation (2)), any set of weights that yields a
pseudopopulation where the balance conditions of
Equation (11) are fulfilled will result in an unbiased
estimator of the average treatment effect, regardless
of how the weights are obtained (i.e., whether they
are constructed from estimates of the propensity
score or not). The basic idea of calibration weights
is to directly incorporate these balancing conditions
in the construction of the weights. Hainmueller
(2012) and Imai and Ratkovic (2014) were among
the first to exploit calibration conditions to con-
struct weights in the single-level literature and,
more recently, Kim et al. (2017) and Yang (2018)
extended these ideas to settings with clustered data.
Specifically, calibration weights @;;car must fulfill
sample analogs of the balancing conditions for the
level-1 covariates

nj J nj
D ogcaTiXy =Y Y dyca(l— Ty)X;y
=1 =1 =1

J o n

-2

j=1 i=

j=1
1

(15)

and the level-2 covariates

]

J ] n;
ZV] Z (bij,CALTij = ZVJ z]:&)ij,CAL(l — Tz])
=1 = =1 =

J
=V,
=1

(16)

Since not all variables in V; are observed, the
empirical balancing condition cannot be directly
evaluated. Instead, a sufficient condition for
Equation (16) is:
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G=1,...]) (17)

Under this condition, the within-cluster sum of
weights for treated units equals the within-cluster sum
of weights for the controls, which equals the cluster
size. The weighted sample is, therefore, a pseudopopu-
lation in which the proportion of treated is constant
across clusters, which implies that a cluster’s treat-
ment prevalence is uncorrelated with any level-2 con-
founders. The calibration estimator Tca; is obtained
by inserting the weights @; car into Equation (10).
We now show that the calibration estimator provides
unbiased estimates of the ATE if the ignorability
assumption is fulfilled.

Unbiasedness of calibration estimators

Let us assume that a multilevel random-intercept
model holds for the continuous outcome (see Yang,

2018):
Y;(t)

= BO,t +XijﬂX,t +VjﬁV,t + Ut + eij,t(t =0,1)

(18)

where E(Uj,) = E(e;;;) = 0. The random intercept is
allowed to be correlated with X and V, while residuals
ejj,, are uncorrelated with these covariates. If the data-
generating model in Equation (18) holds, it can be
shown that the calibration estimator 7¢,; provides an
unbiased estimate of the ATE. Let us denote by puy
and py, the expected values of X and V, respectively.
The ATE is then obtained by inserting Equation (18)
into Equation (1) and taking expectations

T = E[Y;(1) — Y;(0)]

= o1 — Bo,o + #x(Bx,1 — Bx.0) + #v(Bv,1 — Bv.o)

(19)
When the ignorability condition of Equation (2)
holds, and the balancing conditions of Equations (15)
and (17) are met (also note that

]]-:1 ZI 1 @i,caLTij = N directly follows), we obtain
for the first term in Tcag :

E[ D YN (b;,-,CALTi,-Yij]
[ i 27’1@1‘1' CALTinij(l)]
il 1quALTU(ﬁ01+ijﬂx1+VﬁV1+ Ujl+ezjl)

E
B[%
E[ il 1 ﬁ01+xuﬁx1+vﬂv1)}
N[ﬁo 1 +l‘xﬁx 1+ pyBya]

[
Pt

(20)

Hence, we arrive at
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] i’l]‘ ~
5 | 2 >it1 Oy,cacTyYy
Vi n A
j=1 Zilzl Wi, CALTij

= ﬁO,l + ”XﬁX,l + ﬂvﬂv,l

(21)

Similarly, we obtain for the second term in the cali-
bration estimator of the treatment effect:

}:1 Z =1 (,l),] CAL(1 z])Yij
]
j=1 Zi:l ajj,can(l — Tj)

= Bo,o + #xPx,0 + ByBv,o (22)

Now, by subtracting Equation (22) from Equation
(21), the ATE in Equation (19) is obtained, and hence,
the treatment effect estimator based on calibration
weights is unbiased, if the balancing conditions are
correctly specified (i.e., all relevant level-1 covariates
are included in Equation (15))

Calibration estimators for multilevel data

Two approaches for computing calibration weights in
multilevel-data settings are available in the literature.
The two approaches differ in the number of parame-
ters used to obtain weights that fulfill the balancing
conditions. First, Kim et al. (2017) introduced the fol-
lowing calibration weights:

exp {Xij;l}

1 =+ noj P " fOI' TI] =1
7
A Zh:lThj exp {thl}
Wij,CAL1 = A
ij exp {*X,‘jl} ;
1+ mny; - or T;; =0
Z]:l(l — Thj) exp {—th}.}

(23)

where n,; and ng; are the number of treated and con-
trol units in the jth cluster, respectively, and iis a
vector of coefficients for the level-1 covariates. In
Appendix A it is shown how the estimation equations
for @jj car1 are obtained from a multilevel random-
intercept model that includes the balancing conditions
as additional estimation constraints.

Yang (2018) followed a different approach, which
uses an initial vector of weights wj; (e.g., weights con-
structed from the propensities of an initial working
model) to arrive at the calibration weights:

w;; exp {X,j jvl }

" — - for Tj; = 1
gl k
& Zh:lo)hj Th] exp {thll } (24)
ij,CAL2 = ; N
©}; exp {X,jlo} for T — 0
ﬂj = or ij =
Z’lezj(l — Tyj) exp {th}vo}
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Figure 1. Schematic description of the data-generating model
of simulation study 1.

where 11 and }40 are vectors of coefficients for the
level-1 covariates, obtained by minimizing a loss func-
tion (the Kullback-Leibler distance) subject to the bal-
ancing conditions in Equations (15) and (17) (see
Appendix B).

In simulations, Kim et al. (2017) found their esti-
mator Tcap; to be superior to the Tipw based on ran-
dom-effects propensities in terms of both bias and
variance in all conditions studied. Yang (2018) pit her
estimator Tcay, against Tipw both with fixed and ran-
dom-effects propensities and found that, in scenarios
with a continuous outcome, it dominated both of the
IPW estimators, though with a binary outcome the
variance of the calibration estimator was often higher
than that of Tipyw based on a fixed-effects propen-
sity score.

Clustered estimator

Another strategy to control for the confounding effect
of level-2 covariates is to compute an estimate of the
treatment effect within each cluster and then average
those within-cluster estimates (Li et al., 2013). Such
an estimator is equivalent to applying the following
cluster-normalized weights:

Wij, IPW
”jnjlj— for T;; =1

) E et Thi©hj, oW
Wij,cL = @jj, 1PW ’

n; _ 2 for T; =0

] nj 7]

(1= Thj)omj, pw
(25)

One major limitation of the clustered estimator 7y, is
that only the level-2 balance condition (see Equation
(17)) is fulfilled exactly, while the level-1 balance con-
dition is only guaranteed asymptotically. Li et al.
(2013) showed that, as the cluster size approaches

infinity, the bias of 7¢y vanishes. However, with small
to moderate cluster sizes (15 to 50 level-1 units),
biased estimates of the treatment effects can be
obtained (Lee et al., 2019; see also Thoemmes &
West, 2011).

We now turn to the results of three simulation
studies, which provide a comprehensive evaluation of
the different propensity score weighting estimators
under various data-generating mechanisms of interest.

Simulation study 1: homogeneous treatment
effect and random intercepts

We begin with a simulation study in which both the
treatment and the outcome data-generating mecha-
nisms are random-intercept models, with a treatment
effect that is constant across the support of the covari-
ates (ie., is homogeneous). In this scenario, it is
straightforward to observe how the different propen-
sity score weighting estimators deal with confounding
information at both levels of analysis. Indeed, ran-
dom-intercept simulation studies in the literature have
shown that propensity scores obtained from a fixed-
effects approach can be used to adjust for confound-
ing at level 2, even if the confounding information is
unobserved (Arpino & Mealli, 2011). In contrast, ran-
dom-effects propensities are known to capture level-2
information less accurately, due to the shrinkage of
posterior modes in multilevel models; as a conse-
quence, random-effects propensities are deemed reli-
able only when clusters are large or all level-2
confounders are available (Leite et al., 2015).
Conditioning within clusters, like with the cluster-nor-
malized weights in Equation (25), automatically deals
with level-2 confounding, but is known to require
large clusters to account for confounding at level 1 (Li
et al, 2013). To the best of our knowledge, trimmed
and overlap weights have not been evaluated in the
context of multilevel data, though one would expect
their stabilization property to carry over to this set-
ting. Finally, simulations by Kim et al. (2017) and
Yang (2018) showed their calibration estimators to
perform favorably in various conditions, and we
expect them to also outperform the traditional IPW
estimator with fixed-effects and random-effects pro-
pensities in this setup.

Method

For the data-generating mechanisms, we specified a
standardized and normally distributed covariate at
level 1 (Xj;) and another at level 2 (Z;), assumed to be
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Figure 2. Relative Bias of different estimators of the treatment effect as a function of the number of clusters, and cluster sizes n;
= 10 (left panel), n; = 30 (middle panel) and large cluster sizes n; = 50 (right panel). FE = fixed-effects propensity scores; RE(XZ)
= random-effects propensity scores with covariates X and Z IPW=inverse probability weighting; OW =overlap weights;

CAL2 = calibration weights of Yang (2018).

uncorrelated (see Figure 1). Treatment assignment fol-
lows the multilevel logistic random-intercept model:

T; = o + axXij + 0zZj + ug; + & (26)

where an individual was assigned to treatment (T} =
1) if T}, > 0; ax, and oy are the regression coefficients;
ugj ~ N(0,02) is the residual at level 2, and &; ~
Logistic(0, 1) is the residual at level 1. The intraclass
correlation of X (ICCx) was set to .2. The residual
ICC of the treatment indicator was fixed to .2, that is,
o2/(6% + m*/3) = .2. We fixed the intercept to zero
(o = 0), which implies a treated-to-control ratio of
1:1. The explained variation in the treatment assign-
ment model at level 1 is given by R =
(43 (1 — ICCx)] /Varow, and at level 2 by R%, =
[03ICCx + 02] /Varow, where Vargw = o + 0%+
02 + m*/3 is the total variation of the treatment indi-
cator (Snijders & Bosker, 2012; see Rights &
Sterba, 2019).

The outcome follows a multilevel random-inter-
cept model:

Yii = Bo + 1Ty + BxXij + BzZ; + v + eij, (27)

where Bx and B, are regression coefficients, and vy,
and e; are normally distributed residuals at level 2
and level 1, respectively. The treatment effect 7 (ATE)
was set to .30. The residual ICC of the outcome was
set to .2, and the intercept was fixed to zero (f, = 0).

Simulated conditions. We specified four different
conditions for the effect of the covariates on the treat-
ment indicator and the outcome. In each condition,
we assumed that the effects of the level-1 covariate

and the level-2 covariate were equal for both the treat-
ment and outcome equations, but manipulated the
strength of confounding at level 1 and level 2: only
confounding at level 2 (ax = fx = 0 and oy = ff; =
1, which implies R?, =0 and R?, = .20 for the treat-
ment equation); only confounding at level 1 (ax = fx
= .5 and oy = f, = 0, implying R}, = .05 and
R?, = .01); confounding at both levels (ax = fix = .5
and oy = f, = .5, implying R?, = .04 and RZ, = .07);
and confounding at both levels with a stronger effect
of the confounder at level 2 (aux = fix = .5 and oy =
pz = 1, implying R%l = .04 and Riz =.20).

The number of clusters was set to /=50 and 100.
Studies with about 50 groups are commonly found in
educational and organizational psychology (e.g., Maas
& Hox, 2005; Mathieu et al., 2012). The number of
units per cluster was set to n; = 10, 20, 30, and 50.
Group sizes of 10 are common in small-group
research, whereas group sizes of 30 and 50 are typical
of educational psychology research on class or school
characteristics.

Analysis model. For each of the 4 (different effects
of covariates) x 2 (number of clusters) x 4 (number
of observations per cluster) = 32 conditions, 1,000
simulated data sets were generated. For each simu-
lated data set, propensity scores were estimated by
using three different models. First, to implement the
fixed-effects (FE) approach, we specified a logistic
regression model, including the level-1 covariate X
and a set of J-1 cluster-indicator variables (see
Equation (8)). In addition, we implemented two var-
iants of the random-effects (RE) approach by specify-
ing two different multilevel logistic regression models:
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Figure 3. Relative RMSE of different estimators of the treatment effect as a function of the number of clusters, and cluster sizes n;
= 10 (left panel), n; = 30 (middle panel) and large cluster sizes n; = 50 (right panel). FE = fixed-effects propensity scores; RE(XZ)
= random-effects propensity scores with covariates X and Z IPW=inverse probability weighting; OW =overlap weights;

CAL2 = calibration weights of Yang (2018).

a model that includes both covariates, labeled RE(XZ),
and a model that only includes the level-1 covariate,
labeled RE(X). Note that in the presence of a level-2
confounder (i.e., conditions in which Z has an effect),
the RE(X) model is misspecified. Logistic regression
models were estimated with the glm function, and the
multilevel logistic regression models were specified in
the Ime4 package (using the glmer function).

The propensity score predictions from these models
were used to construct IPW weights (see Equation
(12)), trimmed IPW weights (IPW-T; see Equation
(13)), overlap weights (OW; see Equation (14)), and
cluster-normalized weights (CL; see Equation (25)).
For the trimmed weights, we applied a cutoff value of
c¢=20, including only cases with propensity scores
that lie between .05 and .95 (Crump et al., 2009).°
Thus, 3 (propensity score model) x 4 (type of
weights) = 12 different estimators of the ATE were
computed by substituting the various weights into
Equation (10). Additionally, we implemented the two
calibration estimators that were proposed by Kim et
al. (2017; see Equation (23)) and Yang (2018; see
Equation (24)). In total, 14 estimators of the ATE
were compared. The R code for the data-generating
model and the different analysis models is provided in
Supplements S1, S2, S3, and S4 at https://doi.org/10.
17605/OSF.IO/3FERB.

3We also computed trimmed weights with cut-off values of ¢=100, and
10. As expected, higher cut-off values resulted in less biased but more
variable estimates. We only report the results for ¢ =20 because they
provided a reasonable trade-off between bias and variance.

Note that clusters in which all units had the same
treatment status were discarded prior to estimation.
The probability of simulating clusters in which all
units had the same treatment status is higher for con-
ditions with small cluster sizes, and conditions with
strong confounding at level 2.

Evaluation criteria. We used two criteria to evalu-
ate the different weighting approaches: relative bias
and root mean square error (RMSE). Relative bias was
calculated by dividing the empirical raw bias (the dif-
ference between the mean parameter estimate and the
true population parameter value from each design
cell) by the true parameter value. Relative bias of less
than .05 in magnitude was considered acceptable and
is referred to as approximately unbiased. We assessed
the overall accuracy with the (empirical) RMSE, which
combines the squared empirical relative bias and vari-
ance of the parameter estimates into a measure of
overall accuracy.

Results

Table 1 presents the relative bias and relative RMSE
of the 14 different estimators of the ATE for a large
number of clusters (J=100; see Supplement S5 for
full results). The weighting estimators that rely on FE
propensity scores yielded approximately unbiased esti-
mates, even under conditions with a strong confound-
ing influence of the covariate Z at level 2 (ie., ay =
- = 1). In contrast, the estimators based on the RE
propensity scores produced biased estimates, particu-
larly in the condition with a strong level-2 confounder
and when the misspecified multilevel logistic model is



Table 1. Simulation study 1: relative bias and relative RMSE
as a function of strength of level-1 and level-2 confounder
effects and cluster size for a large number of groups (J = 100).
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Table 2. Simulation study 1: Relative bias and relative RMSE
as a function of cluster size and proportion treated for a large
number of groups (J = 100).

Bias RMSE Bias RMSE
Model Weight (0,1) (.50) (5.5 (.51) (0,1) (50) (5,.5) (.5,1) Model Weight n; 10 20 30 50 10 20 30 50
J=100, n; =10 10% Treated
FE IPW 0 -2 0 -2 .29 33 A 51 FE IPW 2 4 0 4 79 65 .58 .52
FE IPW-T 0 1 3 -1 .29 27 31 34 FE IPW-T 0 3 0 0 57 38 32 .25
FE ow 0 1 2 -1 .27 23 .25 25 FE ow —1 2 -1 0 43 30 23 a7
FE CL 0 14 19 19 28 31 35 37 CAL1 40 19 6 1 67 47 37 30
CAL1 0 3 9 15 .28 .26 32 .36 CAL2 24 11 2 0 59 43 36 .30
CAL2 1 1 3 -1 .28 24 27 28 RE(XZ) IPW =17 =25 =32 =27 79 80 .84 .76
RE(XZ) IPW -5 10 13 4 31 .26 33 49 RE(XZ) IPW-T —2 0 -6 —6 54 38 32 .26
RE(XZ) IPW-T -2 8 9 5 .29 25 .30 32 RE(XZ) OW -5 -5 -7 -6 44 30 24 18
RE(XZ) OW -5 —4 —4 -8 .28 23 .25 27 RE(X) IPW 29 71 56 49 113 87 73 .64
RE(XZ) CL 0 31 36 37 .28 .39 A5 A7 RE(X) IPW-T 920 54 34 19 103 65 45 31
RE(X)  IPW 80 10 57 102 .85 .26 .63 1.07 RE(X) ow 84 53 38 26 95 61 44 31
RE(X)  IPW-T 80 8 53 94 85 .25 .59 .99 20% Treated
RE(X) OW 68 —4 36 67 .73 23 43 72 FE IPW 0 2 4 0 64 54 46 4
RE(X) CL 0 31 37 39 .28 .39 A45 A48 FE IPW-T 1 1 1 0 43 30 25 .19
J=100, n; = 30 FE ow 1 1 0 0 33 23 .18 .14
FE IPW 1 0 0 2 18 18 24 .36 CAL1 27 3 1 0 S50 31 .27 22
FE IPW-T 1 0 0 1 a7 15 A7 21 CAL2 3 0 1 0 40 29 25 21
FE ow 1 0 0 0 .15 13 14 15 RE(XZ) IPW -9 -1 -9 -12 63 67 55 57
FE CL 1 6 8 16 .18 17 19 27 RE(XZ) IPW-T 1 2 -1 -3 42 29 24 19
CAL1 1 1 -1 0 .18 14 16 .20 RE(XZ) OW —6 -7 -6 —4 34 24 19 15
CAL2 1 0 —1 0 .18 A3 15 18 RE(X) IPW 100 72 60 47 109 .81 .70 57
RE(XZ) IPW 2 6 11 8 .23 .16 22 A1 RE(X) IPW-T 92 54 36 21 1.00 .61 43 .28
RE(XZ) IPW-T 10 3 3 3 .19 14 A7 .20 RE(X) ow 75 44 31 20 82 49 36 .25
RE(XZ) OW -2 =3 -4 -5 15 3 15 .16 50% Treated
RE(XZ) CL 1 1 14 22 .18 18 21 .30 FE IPW 0 0 1 1 54 48 37 35
RE(X) IPW 53 6 30 62 .55 .16 .35 .68 FE IPW-T 2 0 0 0 36 .25 20 .16
RE(X)  IPW-T 53 3 21 37 55 14 .26 42 FE ow 0 0 0 0 28 19 15 a2
RE(X) OW 28 -3 12 26 31 .13 .19 .30 CAL1 16 1 0 0 37 23 20 .17
RE(X) CL 1 1 14 22 .17 18 21 .30 CAL2 1 0 0 0 30 .21 .18 a5
Note. J = number of clusters; n; = cluster size; FE = fixed-effects propen- RE(XZ) IPW 5 10 10 n A7 46 38 .35
sity scores; RE(XZ) = random-effects propensity scores with covariates X RE(XZ)  IPW-T 6 4 2 1 3424200 15
and Z RE(X) = random-effects propensity scores with covariate X; RE(XZ) Ow —8 -7 =5 -4 29 21 16 2
IPW =inverse probability weighting; IPW-T =inverse probability weight- RE(X)  IPW 102 74 61 48 107 81 67 54
ing with trimming; OW = overlap weights; CL = cluster-normalized IPW; RE(X)  IPW-T 95 55 37 21 99 60 41 .26
RE(X) ow 67 37 26 16 73 42 30 .20

CAL1 = calibration weights of Kim et al. (2017); CAL2 = calibration
weights of Yang (2018). Relative biases smaller than —5 or larger than
5 are printed in bold.

used for estimating propensity scores, i.e., RE(X).
However, even the estimates based on the correctly-
specified multilevel logistic model, i.e., RE(XZ), were
slightly biased, particularly in conditions with small
cluster sizes. The two estimators based on the calibra-
tion weights (CAL1 and CAL2) provided approxi-
mately unbiased estimates of the ATE, with the
exception that CAL1 was slightly positively biased in
conditions with small cluster sizes. Finally, the estima-
tor with cluster-normalized (CL) weights, which aver-
ages the cluster-specific estimates, produced strongly
biased estimates of the ATE whenever level-1 con-
founding was present, even in the scenarios with 30
units per cluster.

In terms of RMSE, we found for both the FE and
the RE propensity scores that the estimators based on
IPW weights resulted in more variable estimates of
the ATE, particularly in conditions with confounding
at both levels. Consistent with results for single-level
data, trimming (i.e., IPW-T) units with extreme

Note. J = number of clusters; n; = cluster size; FE = fixed-effects propen-
sity scores; RE(XZ) = random-effects propensity scores with covariates X
and Z RE(X) = random-effects propensity scores with covariate X;
IPW =inverse probability weighting; IPW-T =inverse probability weight-
ing with trimming; OW = overlap weights; CAL1 = calibration weights of
Kim et al. (2017); CAL2 = calibration weights of Yang (2018). Relative
biases smaller than —5 or larger than 5 are printed in bold.

weights provided more stable estimates of the ATE.
The overlap weights (OW) produced the most accur-
ate estimates of the ATE in terms of RMSE. However,
the two calibration estimators performed very similar
to OW and were only outperformed in conditions
with strong confounding at level-2. In line with the
results for bias, the estimates with the CL weights
were not very accurate in terms of RMSE.

We also investigated whether our results generalize
to scenarios with treated-to-control ratios other than
1:1 (see Table 2). In an additional simulation, we gen-
erated data with confounding at both levels (ox = fx
= .5, ay = B, = 1), various treated-to-control ratios
(10%, 20% and 50% treated per cluster on average),
and different cluster sizes (10, 20, 30, and 50 units per
cluster). Under these conditions, OW, IPW-T, and the
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two calibration weights (CAL1 and CAL2) outper-
formed the other estimators in terms of bias and
RMSE, with the exception that in conditions with a
very low proportion of treated units per cluster and a
small cluster size CALl1 and CAL2 were posi-
tively biased.

Furthermore, in many research designs less than 50
clusters are included at level 2. Therefore, we con-
ducted additional simulations in which we investi-
gated the performance of the different approaches for
smaller numbers of clusters. We evaluated for a
selected condition of the main simulation (confound-
ing at both levels and a stronger effect of the con-
founder at level 2; ie., ax = fx = .5 and oy = ff, =
1), the bias and RMSE of the different approaches as
a function of the cluster sizes (n; = 10, 30, and 50),
and the number of clusters (J=20, 30, 50, and 100).
Figure 2 shows the bias and Figure 3 shows the RMSE
as a function of the cluster sizes, and the number of
clusters for four selected estimators that performed
favorably in the main simulation (FE-IPW, RE-IPW,
FE-OW, and CAL2; the full results for all estimators
are presented in Supplement S6). Overall, the results
show the main conclusions about the performance of
the different estimators can be generalized to condi-
tions with a smaller number of clusters. As can be
seen, the estimator that is based on the overlap
weights that are obtained from an FE propensity score
model (FE-OW), and the estimator that is based on
the calibration weights (CAL2) clearly outperformed
the two estimators that are based on IPW weights that
are obtained from an FE propensity score model (FE-
IPW) or a RE propensity score model (RE-IPW) in
terms of RMSE.*

Summary and discussion

The main findings of the simulation can be summar-
ized as follows. First, the estimators based on the FE
propensity scores were able to adjust for confounders
at level 2 and yielded suitable estimates of the ATE, as

“With real educational or organizational data, cluster sizes usually differ
across clusters. To evaluate the robustness of the different estimators in
the case of unbalanced cluster sizes, we conducted an additional,
restricted simulation for a subset of the conditions of Simulation Study 1.
We fixed the number of clusters (J=100) and manipulated the
confounding at level 1 and level 2. In the unbalanced condition, the
cluster sizes were uniformly distributed across {5, 6,...,15} with an
average cluster size of 10. In the balanced condition, the cluster sizes
were constant (n=10). Overall, the results show that for some
approaches (OW and IPW weights, and CAL2), the RMSE slightly increased
in conditions with unbalanced clusters. However, all differences in RMSE
(unbalanced vs. balanced condition) were below 5%, and the conclusions
about the performance of the different approaches did not change with
unbalanced cluster sizes (see for the results Supplement S7).”

did the estimators based on the RE propensity scores
from the correctly-specified multilevel model RE(XZ).
Second, we confirmed the variance findings of the lit-
erature regarding IPW weights, which provided
unstable estimates of the ATE in challenging data
constellations (i.e., strong confounding). Third, the
performance of the propensity score weighting estima-
tors in terms of RMSE was nevertheless improved by
trimming units with extreme weights (IPW-T) or
downweighting units at the tails of the propensity
score distribution (OW). Moreover, because in this
study, the treatment effect is the same everywhere on
the support of the propensity score, the variance gains
of discarding or downweighting the troublesome tails
come at no cost in terms of bias. Fourth, though the
well-known variance advantage of RE over FE estima-
tors is present in the simulation results, the variance
difference practically vanishes when either of the
weight-stabilization procedures is applied (IPW-T or
OW). In the most demanding condition (ox = fx =
5, ay = By = 1, nj = 10), trimming, and down-
weighting units at the tails of the FE propensity score
distribution yielded RMSE reductions of around 30%
and 50%, respectively. Fifth, the calibration estimators
performed best overall, although CAL1 showed some
bias in scenarios with small clusters (i.e., n; = 10) and
strong confounding. Sixth, the misspecified RE(X)
model produced weighting estimators that were sub-
stantially biased, especially in conditions with strong
confounding at level 2, and the estimator with cluster-
normalized weights was not able to control for the
effects of a measured level-1 covariate. We, therefore,
decided to leave out the RE(X) model and the cluster-
normalized weights in the simulation studies of the
next sections. Finally, we note that rare treatments
(i.e., 10% treated units) can strain the calibration esti-
mators, which required moderate or large cluster sizes
(i.e., n; > 30) for obtaining accurate estimates of the
treatment effect.

Simulation study 2: heterogeneous treatment
effects and cluster-level endogeneity

In Study 2, we explore the impact of introducing
treatment-covariate interactions, which, in the single-
level literature, is a well-known issue when working
with estimators that modify the target population (Li
et al., 2013). Since trimmed and overlap weights disre-
gard or downweight the tails of the propensity score
distribution, one cannot hope to recover an ATE
when the treatment effect changes across the support
of the propensity score. Nevertheless, heterogeneous



treatment effects are common in psychological and
educational research (see, e.g., Morgan & Winship,
2014). Additionally, by manipulating the correlation
of the intercepts of the treatment and outcome data-
generating models, this study further explores the
behavior of estimators that are based on the RE pro-
pensities when some of the level-2 confounding infor-
mation is unobserved. Such scenarios of “omitted
context” (Arpino & Mealli, 2011) arise in practice
whenever researchers fail to gather data on all relevant
level-2 covariates. Previous studies suggest that the
IPW estimator with FE propensities should also be
able to handle the effects of unobserved level-2 con-
founders in this setting (Arpino & Mealli, 2011).

Method

We adopted a simulation design of Kim et al. (2017)
and specified the following data-generating mechan-
ism for treatment assignment:

T = oo + oxXij + 0zZ; + ugj + &, (28)

where, again, the level-1 covariate Xij and the level-2
covariate Z; were specified to be independent, though
now Z; ~ Unif(0, 1), while X;; follows a standard nor-
mal distribution with an ICCy of zero. The regression
coefficients were set to oy = —1, ax = 0.7, and oy =
—0.8, and the variance of the level-2 residual was set
to 1. This implies explained variations at level 1 and
level 2 of R, = .10, and R?, = .01, respectively.

The outcome equation allows for heterogeneity of
the treatment effect:

Yij = o + (10 + 11 Xjj + 12Zj + 13vy)) Ty + Bx Xy + B2
+ Voj + €ij
(29)

Here, in line with Kim et al. (2017), we set the regres-
sion coefficients to i, = .3, fx = 1.3, and f, = —0.5.
The variance of the residual at level 2 was fixed to 1,
and the variance of the residual at level 1 to 0.4. The
random slope was set equal to the random intercept
(ie, vij = vg). In addition, we set 7, =1.25 and
manipulated the heterogeneity by setting the effect of
the interactions to 7, = 0, 7, = 0, and 73 = 0 (i.e., no
treatment effect heterogeneity) or 7; = 1, 7, = —0.5,
and 73 = 0.8 (i.e., treatment effect heterogeneity). The
true ATE is given by 7, + 0.57,. Furthermore, we
manipulated the endogeneity at level 2 by setting the
correlation of the cluster-level residuals, ug; and vy, to
either zero or one. Note that perfectly correlated
residuals at level 2 imply omitted context variables
that influence assignment to treatment and the
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outcome (Arpino & Mealli, 2011). The number of
clusters was set to J=50 and 100, and the number of
units per cluster was set to n; = 10, 20, 30, and 50.
The R code for the data-generating model is provided
in Supplement S8.

For each of the 2 (treatment effect homogeneity vs.
heterogeneity) x 2 (exogeneity vs. endogeneity at level
2) x 2 (number of clusters) x 4 (number of observa-
tions per cluster) = 32 conditions, 1,000 simulated
data sets were generated. Eight different estimates of
the treatment effect were computed: three estimates
using the IPW, IPW-T, and OW weights based on FE
propensity scores; three estimates that used the same
weighting approaches (IPW, IPW-T, OW), but were
based on propensity scores obtained from a multilevel
logistic model including the covariates X and Z (i.e.,
RE(XZ)); and the two calibration estimators (i.e.,
CAL1 and CAL2). The implementation of the eight
estimators was identical to Study 1. Again, we eval-
uated their performance through relative bias and
RMSE statistics.

Results

Table 3 presents the relative bias and RMSE of the
different estimators with a large number of groups
(J=100; see Supplement S9 for the full results).
Consistent with the results from Study 1, the weights
constructed with FE propensities yielded approxi-
mately unbiased estimates of the ATE under condi-
tions with level-2 endogeneity. However, when the
treatment effect was heterogeneous, both the IPW-T
weights that discard units with extreme weights and
the OW weights that focus more on units in the mid-
dle range of the propensity score distribution pro-
duced strongly biased estimates of the ATE. The bias
of IPW-T and OW was independent of the cluster
size and of the model used to estimate propensity
scores, i.e., FE or RE(XZ). The estimators based on
propensity scores from a multilevel logistic regression,
i.e., RE(XZ), produced biased estimates, particularly in
conditions with level-2 endogeneity and treatment
effect heterogeneity. This finding was expected since,
due to shrinkage, the RE(XZ) model does a poor job
of capturing the omitted group-level confounding
introduced by the perfectly correlated random inter-
cepts of the treatment assignment model and the out-
come model. The two calibration estimators
performed favorably under level-2 endogeneity and
treatment effect heterogeneity, with the exception that
both were positively biased in conditions with a small
cluster size (nj = 10). Again, consistent with Study 2,
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Table 3. Simulation study 2: Relative bias and relative RMSE
as a function of level 2 endogeneity, treatment effect hetero-

geneity and cluster size for a large number of
groups (J=100).
Bias RMSE
Exo Endo Exo Endo

Model Weights Hom Het Hom Het Hom Het Hom Het
J=100,n;, = 10
FE IPW 0 2 0 17 19 32 .20 38
FE IPW-T 1 12 0 32 .16 27 .16 41
FE ow 0 23 0 52 .14 30 .14 55

CAL1 217 2 32 16 29 a7 39

CAL2 1 3 0 19 .16 22 a7 28
RE(XZ) IPW 4 9 33 81 16 25 37 84
RE(XZ) IPW-T 3 9 32 81 .15 24 35 84
RE(XZ) OW -2 20 27 98 14 29 31 100
J=100, n; = 30
FE IPW -1 0 0 5 13 21 13 23
FE IPW-T 0 12 0 29 .09 20 .09 32
FE ow 0 24 0 52 08 28 08 53

CAL1 0 5 0 9 .10 .16 .10 17

CAL2 0 0 0 5 .09 15 .09 15
RE(XZ) IPW 2 4 19 43 10 18 .22 47
RE(XZ) IPW-T -1 6 14 47 09 a7 a7 49
RE(XZ) OW -2 22 12 72 08 26 .14 73
J=100, n; = 50
FE IPW 0 1 0 2 .10 a7 a0 20
FE IPW-T 0 13 0 28 .07 a8 07 31
FE ow 0 25 0 53 06 .28 .06 53

CAL1 0 3 0 5 .08 .13 08 14

CAL2 0 0 0 2 07 a2 07 13
RE(XZ) IPW 2 4 14 31 08 .15 .16 35
RE(XZ) IPW-T —1 8 9 38 07 A5 .11 40
RE(XZ) OW -1 24 8 65 .06 27 .10 66

Note. Endo=endogeneity; Exo=exogeneity; Hom =treatment effect
homogeneity; Het = treatment effect heterogeneity; J = number of clus-
ters; n; = cluster size; FE = fixed-effects propensity scores; RE(XZ) = ran-
dom-effects propensity scores with covariates X and Z; IPW =inverse
probability weighting; IPW-T =inverse probability weighting with trim-
ming; OW = overlap weights; CAL1 = calibration weights of Kim et al.
(2017); CAL2 = calibration weights of Yang (2018). Relative biases
smaller than —5 or larger than 5 are printed in bold.

the estimator CAL2 slightly outperformed CAL1. The
RMSE results closely paralleled the relative bias
results, with the calibration estimators outperforming
the others in scenarios of treatment effect
heterogeneity.

Summary and discussion

The main takeaways of this study are as follows. First,
the IPW weights with FE propensities were able to
deal with treatment effect heterogeneity, and control
for unobserved level-2 confounding information.
Note, however, that the combination of these two dif-
ficulties still resulted in bias in scenarios with small
clusters (i.e., n; < 30). Second, the IPW weights with
RE propensities can also recover the ATE under treat-
ment effect heterogeneity but is strongly biased under
omitted context. Third, IPW-T and OW weights could
not recover the ATE when the treatment effect is het-
erogeneous, since they focus on a different target

distribution and only estimate the treatment effect for
a subset of the support of the propensity score.
Finally, as long as clusters were not too small, the esti-
mators based on the calibration weights can estimate
without bias under both heterogeneity and omitted
context, and they achieved lower variance than the
IPW weights with FE propensities in most conditions.

Extension to models with covariate-by-cluster
interactions

Our previous simulation studies assumed that the
effects of the covariates in the treatment assignment
were constant across clusters. More specifically, we
assumed that a multilevel logistic random-intercept
model describes the data-generating mechanism for
treatment assignment (see Equation (7)). However, it
is typically more realistic to expect that the effects of
level-1 covariates on the probability of treatment
assignment vary across clusters. A more general data-
generating model for the treatment is given by the
multilevel logistic model with random slopes:

8(mi) =70+ Xiyx + Vivz + X Vivxy + Uy + XUy
(30)

where Uj; is a vector of cluster-specific effects that
allow the effects of X;; to vary across clusters, and
X;jV; are the cross-level interactions between the level-
1 covariates X; and the observed and potentially
unobserved level-2 covariates V; The model for the
potential outcomes can also be extended to include

covariate-by-cluster interactions (see Equation (18)):
Yii(t) = Po,: + XiiBx: + ViBy,: + XiViBxv,: + U
+ Xilej,t + e,-j,t(t =0, 1),

(31)
where E(Uy;,) = 0, and E(Uy;,) = E(e;) = 0. The
random effects Up;, and Uy, are allowed to be corre-
lated with observed and unobserved covariates, while
the residuals e;;, have to be uncorrelated with covari-
ates. When the effects of the level-1 covariates vary
across clusters in the data-generating model for the
treatment assignment as well as the outcome, it can

be shown that the following balancing conditions
need to be fulfilled for the calibration estimators:

n nj
E i, caL Tij X = E i, caL(l — Tij) X
i=1 i=1

=3X; (=L..)) (2
i=1



nj n;
Z@zj,CALsz = Z@ij,CAL(l ~Tj) = Zl =
i=1 i1 -

G=1,.))

In Equation (32), it is specified that the distribution
of the level-1 covariates is balanced within each clus-
ter. This guarantees that the effects of the level-1
covariates, which vary by cluster in both the treatment
and the outcome equations, do not distort estimates
of the ATE. Equation (33) is identical to the random-
intercept scenario (see Equation (17)) and expects that
both the within-cluster sum of weights for treated
units and the within-cluster sum of weights for the
controls equal the cluster size. In Appendix C, it is
shown that the calibration estimators produce
unbiased estimates of the ATE when the ignorability
assumption holds and the Equations (32) and (33) are
fulfilled. However, large cluster sizes are likely to be
needed to obtain stable estimates of the ATE with cal-
ibrations estimators, particularly when the number of
covariates is not small. To the best of our knowledge,
the calibration estimators have not been studied in
scenarios ~ with  covariate  effects that vary
across clusters.

As was already mentioned, when estimating the
propensity scores from multilevel data, researchers
can select between an FE approach and a RE
approach. In the case of covariate-by-cluster interac-
tions, the FE approach is extended by including cova-
riate-by-cluster interaction terms in the logistic
regression model in Equation (8). However, estimating
separate slopes for each cluster requires that the clus-
ters be quite large, particularly with a larger number
of level-1 covariates. Alternatively, an RE model can
be specified by extending the multilevel logistic model
in Equation (9) to include random slopes and cross-
level interactions for the level-1 covariates. By adding
assumptions about the distribution of the random
slopes (i.e., random effects are normally distributed),
the RE approach is less “data-hungry” than FE.
However, as shown in Study 1, the RE approach
requires that all level-2 confounders be measured.

It should be emphasized that the balancing of cova-
riate distributions within clusters is only needed when
the covariate-by-cluster interactions (i.e., all interac-
tions of a covariate and cluster-indicator variables) are
present in the data-generating mechanism of both the
treatment assignment and the outcome. The reasoning
here is that potential confounders of a treatment effect
have to be associated with both the treatment and the
outcome. Thus, researchers can ignore covariate-by-
cluster interactions when modeling the treatment

(33)
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assignment, if the covariate effects are constant in the
outcome model.” This would also explain why some
previous simulation research found that ignoring vari-
ation of covariate effects across clusters in the propen-
sity score model did not substantially bias estimates of
the treatment effect (e.g., Leite et al, 2015). In the
next section, we evaluate propensity score weighting
approaches when random slopes are present in the
treatment as well as the outcome model.

Simulation study 3: random slopes in
treatment and outcome model

Study 3 has two aims. First, we evaluate the perform-
ance of the different weighting methods (IPW,
IPW-T, and OW weights) in the more general case of
level-1 covariate effects that vary across groups.
Importantly, we allow the level-1 covariate effects to
vary in the treatment assignment model as well as in
the outcome model. As previously pointed out, the
random slopes should only have a confounding effect
on the estimates of the ATE when they are present in
both the treatment and outcome data-generating
mechanisms. Second, we test the performance of the
two calibration estimators in scenarios with random
slopes for covariates. We expect that at least moderate
cluster sizes (i.e., n; > 30) are needed to provide sta-
ble estimates of the ATE when covariate-by-cluster
interactions are included.

Method

We specified the following data-generating equation
for treatment assignment:

T;; = o —+ OCXx,'j + O(sz + OCXZx,'ij + qu + ule,J =+ Sij
(34)

where X and Z are two independent, standard normal
covariates at level 1 and level 2, respectively. The ICC
of X was set .20. The level-2 residuals uy; and u,; are
bivariate normally distributed with mean zero, and ¢;
follows a logistic distribution. The residual ICC of the
treatment indicator was fixed to .2. The random
slopes and intercepts are perfectly correlated. We
manipulated the magnitude of the slope variation in
the treatment equation by setting Var(uy;) =
fsioVar(ug;), and investigated two conditions: with no
slope variation (ie., fy, = 0), and with half of the
variation of the random intercept (i.e., fy, = 0.5).

SHowever, it is still important that all relevant covariates are measured so
that the ignorability assumption is met (see Equation (2)).
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The equation for the outcome was a multilevel
model with a random slope for the covariate X:

Yij = Bo + tTy + PxXij + BZ; + By, XiiZ;
+V0j + Vleij + €jj (35)

where vy, vy; and e; are the normally distributed
residuals at level 2 and level 1. The residual ICC of
the outcome was fixed to .2. The treatment effect 1
(ATE) was set to .30, and regression intercepts in the
treatment and outcome equations were set to zero.
Again, we manipulated the magnitude of the slope
variation by setting Var(vy;) = fy,Var(vy;), and investi-
gated the two conditions f;, = 0 and fy, = 0.5. The
random slopes and the random intercept were
assumed to be uncorrelated. We set the effect of the
level-1 covariate X to be equal in the treatment and
outcome equations (ax = fx = .5), and manipulated
the effects of the level-2 covariate and the cross-level
interaction between X and Z in two conditions: zero
(az = Bz =0, and ax; = fxz = 0), and .5 (oz = B2
= .5, and axy; = fxz = .5). In the scenarios with ran-
dom slope variation, this resulted in the following
explained variation for the treatment assignment
model: R?, = .11 and R?, = .03, when the effects of Z
and XZ were assumed to be zero, and R%l = .14, and
R:, = .08, when the effects of Z and XZ were
assumed to be .5.° We set the number of clusters to
J=100 and manipulated the number of units per clus-
ter n; = 20, 30, 50, and 100.

For each of the 2 (no random slope variation vs.
random slope variation) x 2 (effect of Z and XZ vs.
no effect of Z and XZ) x 4 (number of units per clus-
ter) = 16 conditions, 1,000 simulated data sets were
generated. For each simulated data set, propensity
scores were estimated with four different models. We
specified two variants of a logistic regression model.
In the fixed-effects clustered (FEC) approach, we
included the level-1 covariate X, a set of J-1 cluster
indicators, and /-1 interaction terms between X and
the J-1 cluster indicators. We also studied the FE
approach from the previous two simulations, which
only included X and the J-1 cluster indicators.
Besides, we implemented two variants of the random-
effects approach. We specified a multilevel model that
included both covariates (i.e., X and Z) and their
cross-level interaction (i.e., XZ), but no random slopes
for X. This multilevel random-intercept model was

%When random slopes are included in the multilevel model, the explained
variation is calculated as follows: R% = [aZ(1 — ICCx) + ad, (1 — ICCx)+
(1 — ICGy)Var(uyy)] /Variotal, and R?, = [03ICCx + o2 + 02,ICCx
+ICCxVar(uyj)] /Vara, where  Vargg = ag+  of + a3+  Var(ug) +
Var(uy) + 7?/3 (Snijders & Bosker, 2012).

labeled RE(XZ). The second random-effects model is
a multilevel model that included random slopes
(REC(XZ)). The propensity scores were then used to
compute IPW, IPW-T, and OW weights. Thus, 4
(propensity score models) x 3 (type of weights) = 12
different estimators of the ATE were calculated.
Finally, we implemented the calibration estimators in
two variants: one version ignored covariate-by-cluster
interactions and was identical to the estimators that
we used in the previous simulations (CAL1 and
CAL2). The second variant included interaction terms
between the level-1 covariate X and the J-1 cluster
indicators in the design matrix (CALC1 and CALC2).
In total, 16 estimators of the ATE were compared (the
R code for the data-generating and analysis models is
provided in Supplements S10 and S11). Again, we
computed the relative bias and the relative RMSE to
evaluate the quality of the parameter estimates.

Results

In Table 4, bias and RMSE results for the different
weighting estimators when the data were generated
without random slopes (upper panel) and with ran-
dom slopes (lower panel) is shown. In the case of no
random slope variation, the results of the previous
simulation studies are confirmed: all the FE
approaches produced unbiased estimates of the ATE,
as do the RE approaches with the more stable IPW-T
and OW weights, and the CAL1 and CAL2 proce-
dures. In contrast, the weighting estimators that
wrongly assumed cluster-specific effects for the level-1
covariate in the propensity score model (i.e., FEC and
REC(XZ)), were substantially biased, mainly when
clusters are small. The FEC approach with IPW
weights yielded particularly unstable estimates of the
ATE with smaller cluster sizes, indicating that the
data did not provide enough information to estimate
cluster-specific covariate effects. This result suggests
that the random-effects approach RE(XZ) is preferable
with smaller cluster sizes. However, the difference was
less pronounced when the more stable IPW-T and
OW weights were used.

When the data were generated with random
slopes in the treatment and outcome equations
(lower panel in Table 4), all the methods that ignore
the varying effect of the level-1 covariate were sub-
stantially biased, regardless of the cluster size. The
methods that allowed for covariate-by-cluster inter-
actions in the propensity score model needed large
cluster sizes to achieve an acceptable performance.
This was also true for the two calibration



Table 4. Simulation study 3: relative bias and relative RMSE
for data generated without and with random slopes and
cross-level interactions as a function of cluster size.

Bias RMSE

Model Weight n; 20 30 50 100 20 30 50 100
Data generated without random slopes
FEC IPW 64 52 35 21 .67 55 .38 .23
FEC IPW-T 32 24 15 9 37 29 19 12
FEC ow 25 19 M 7 .30 23 .15 .10
CALC1 24 16 7 4 33 24 16 .10
CALC2 24 16 7 3 33 25 16 M
REC(XZ) IPW 16 14 10 7 27 25 18 14
REC(XZ)  IPW-T 6 4 1 1 21 Jd6 12 .09
REC(XZ) OW -5 -3 -3 - 18 1411 .07
FE IPW 2 1T -1 1 .28 25 .19 a3
FE IPW-T 0 1 0 0 22 16 12 .09
FE ow 0 1T -1 0 A7 13 .10 .07
CAL1 0 1 =1 0 20 .16 .13 .09
CAL2 0 1T =1 1 19 a5 11 .08
RE(XZ) IPW 13 13 9 7 .26 23 18 13
RE(XZ) IPW-T 6 5 1 1 21 Jd6 12 .09
RE(XZ) ow -5 -3 -3 - 18 1411 .07
Data generated with random slopes
FEC IPW 103 86 67 43 105 89 70 47
FEC IPW-T 40 26 16 8 44 30 .21 2
FEC ow 30 20 13 7 34 24 17 .10
CALC1 54 38 24 12 .60 44 30 .18
CALC2 39 27 17 8 47 35 25 .16
REC(XZ) IPW 47 43 37 31 .59 54 54 38
REC(XZ)  IPW-T 4 2 2 1 21 17 13 .09
REC(XZ) OW -8 -7 -3 -1 .20 Jd6 12 .08
FE IPW 80 80 81 80 .89 88 88 .85
FE IPW-T 84 84 86 83 .89 88 89 .86
FE ow 77 76 78 76 81 80 81 .78
CAL1 87 8 92 92 91 92 95 .94
CAL2 86 86 88 86 90 9 91 .89
RE(XZ) IPW 9 94 92 8 1.02 100 .97 .90
RE(XZ)  IPW-T 93 91 91 8 98 95 94 88
RE(XZ) ow 76 76 78 76 .80 79 81 .78

Note. n; = cluster size; FE = fixed-effects propensity scores; RE(XZ) = ran-
dom-effects propensity scores with covariates X and Z; FEC=fixed-
effects propensity scores with fixed effects for intercepts and slopes;
REC(XZ) = random-effects propensity scores with random slopes and
interaction effect; IPW =inverse probability weighting; IPW-T =inverse
probability ~ weighting  with  trimming; OW =overlap  weights;
CAL1 = calibration weights of Kim et al. (2017); CAL2 = calibration
weights of Yang (2018); CALC1 = calibration weights of Kim et al. (2017)
with covariate-by-cluster interactions; CALC2 = calibration weights of
Yang (2018) with covariate-by-cluster interactions. Relative biases
smaller than —5 or larger than 5 are printed in bold.

estimators, which were strongly biased unless clus-
ter sizes were large (n; > 50).

A key consideration that has not been suffi-
ciently emphasized in previous research is whether
random slopes are present in both the treatment
and outcome equations or only in one of these.
The performance of the methods that ignore vari-
ation in the level-1 covariate slopes only deterio-
rates if random slopes are present in the
population models for the treatment as well as the
outcome. This is clearly illustrated in Table 5,
which presents results for conditions in which ran-
dom slope variation was only included in the data-
generating model for the treatment (upper panel)
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Table 5. Simulation study 3: relative bias and relative RMSE
for conditions in which random slopes were only generated in
the propensity score model and conditions in which random
slopes were only generated in the outcome model.

Bias RMSE
Model Weight n; 30 50 100 30 50 100
Only random slopes in PS model
FEC IPW 66 53 38 .69 .56 4
FEC IPW-T 16 10 5 .23 16 10
FEC ow 12 8 4 .19 13 08
CALC1 22 15 9 .30 22 15
CALC2 22 14 8 .30 22 16
REC(XZ) IPW 36 33 26 46 42 43
REC(XZ) IPW-T 6 3 2 a7 a3 .09
REC(XZ) ow —4 -3 -1 15 | 07
FE IPW -10 -6 —4 .30 22 17
FE IPW-T 0 -1 0 18 a3 1
FE ow 0 0 0 14 .10 07
CALC1 0 -1 0 16 a3 09
CALC2 0 -1 0 15 12 08
RE(XZ) IPW 1 2 1 23 .18 15
RE(XZ) IPW-T 4 2 1 18 a3 n
RE(XZ) ow —4 -2 -1 14 .10 07
Only random slopes in outcome model
FEC IPW 62 46 27 66 .50 31
FEC IPW-T 26 16 8 31 21 13
FEC ow 20 13 7 24 a7 10
CALC1 22 15 6 31 24 14
CALC2 22 14 5 31 23 14
REC(XZ) IPW 16 16 10 34 27 21
REC(XZ) IPW-T 4 2 1 20 15 10
REC(XZ) ow —4 -2 -1 16 12 08
FE IPW 2 4 0 37 30 24
FE IPW-T 2 1 0 21 16 n
FE ow 1 1 0 16 12 09
CALC1 0 1 0 23 .19 14
CALC1 1 1 0 20 a7 12
RE(XZ) IPW 14 14 9 35 .29 22
RE(XZ) IPW-T 5 3 1 .21 .16 1
RE(XZ) ow -3 -2 -1 .16 a3 .09

Note. n; = cluster size; FE = fixed-effects propensity scores; RE(XZ) = ran-
dom-effects propensity scores with covariates X and Z; FEC=fixed-
effects propensity scores with fixed effects for intercepts and slopes;
REC(XZ) = random-effects propensity scores with random slopes and
interaction effect; IPW =inverse probability weighting; IPW-T =inverse
probability ~ weighting with trimming; OW =overlap  weights;
CALT = calibration weights of Kim et al. (2017); CAL2 = calibration
weights of Yang (2018); CALC1 = calibration weights of Kim et al. (2017)
with covariate-by-cluster interactions; CALC2 = calibration weights of
Yang (2018) with covariate-by-cluster interactions. Relative biases
smaller than —5 or larger than 5 are printed in bold.

or the outcome (lower panel).7 The methods with-
out covariate-by-cluster interactions in the estimation
of the propensity model (i.e., FE and RE(XZ)), and the
calibration procedures CAL1 and CAL2 produced
approximately unbiased estimates of the ATE.

Summary and discussion

The main findings of the simulation can be summar-
ized as follows. First, when covariate random slopes

"For these simulations, the same data generating parameters were used
as in the main study, with the only exception that no slope variation was
simulated in either the treatment or the outcome model.
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Figure 4. Relative RMSE of the different estimators of the treatment effect as a function of the strength of random slope variabil-
ity for moderate cluster sizes n; = 30 (left panel), and large cluster sizes n; = 100 (right panel). RE(XZ) = random-effects propen-
sity scores with covariates X and Z; REC(XZ) = random-effects propensity scores with random slopes and interaction effect;
IPW =inverse probability weighting; IPW-T = inverse probability weighting with trimming; CAL2 = calibration weights of Yang
(2018); CALC2 = calibration weights of Yang (2018) with covariate-by-cluster interactions.

were not present in the data-generating mechanism,
most of the methods that assumed random slopes
showed severe bias unless clusters were large. The
only exceptions were the weighting estimators com-
puted with RE propensities and stabilized through
either IPW-T or OW weights, which were able to
recover the treatment effect even in the n; = 20 con-
dition. In this case, the distributional assumption
made in the RE model was advantageous, since it
shrinks the slopes closer to the truth of no variation.
Second, when random slopes are present in both the
population treatment and outcome equations, all esti-
mates that do not account for them are severely
biased, regardless of cluster size. Third, again under a
data-generating model with random slopes, among the
estimators that assume varying slopes, only the
weighting estimators of the RE approach with IPW-T
or OW weights were able to recover the ATE across
all cluster size conditions. The calibration estimators
and the FE approach with IPW-T and OW weights
could only recover the ATE with acceptable bias in
conditions with large cluster sizes (ie, n; > 50).
However, in this simulation study we assumed no
unobserved level-2 confounders (i.e., the level-2 cova-
riate Z was observed) and homogeneous treatment
effects (e.g., no treatment-covariate interactions).The
presence of unobserved confounders at level 2 would

result in biased estimates of the treatment effect for
the RE approaches. In addition, as demonstrated in
Simulation Study 2, under heterogeneous treatment
effects the IPW-T and OW weights would not recover
the ATE as they focus on a different target population
(i.e., subpopulation that had nontrivial probabilities for
both being among treated and controls).

To further investigate how slope variation affects
the performance of the different estimators, we con-
ducted an additional simulation, in which we manip-
ulated the magnitude of the slope variation. More
specifically, we varied the strength of the cross-level
interaction, i.e., axz; = fxz = .55, and the slope vari-
ation, i.e., Var(u;;) = Var(vyj)) = .5, in the treat-
ment as well as the outcome model by setting s=0,
.2, 4, .6, .8, and 1. Figure 4 shows the performance
of a subset of the weighting estimators in terms of
RMSE as a function of the simulated slope variation
and the cluster size (left panel: n; = 30, right panel:
n; = 100). As the figure shows, strong random slope
variation (s > .5) needs to be present in order to
deteriorate the estimates of the calibration estimator
CALC2 that takes into account covariate-by-cluster-
interactions (see Supplement S12 for detailed
results). Since REC(XZ) assumes all relevant level-2
covariates are measured, the CALC2 estimator that
only requires that all level-1 confounders be



measured is attractive, particularly in data constella-
tions with only moderate slope variation.®

Inclusion of survey weights

Complex survey data, like the Programme for
International Student Assessment (PISA; OECD,
2018), employ a complex, stratified cluster sampling.
In these studies, level-1 units and level-2 units are
typically accommodated with sampling weights at the
respective levels. These sampling weights also have to
be included in the estimation of treatment effects (see
Leite, 2016). Each cluster j possesses a level-2 sam-
pling weight w; that reflects the probability that the
cluster is sampled in the study. Each student i within
a cluster j possesses a level-1 sampling weight wy;.
Moreover, for analyses at the total population level,
students also receive a total sampling weight w;,.
Stapleton (2013) provides an accessible review of
using different weights in international large-scale
assessment studies. In the following, we show how the
propensity score weighting estimators have to be
modified for accommodating sampling weights (Dong
et al., 2020; Ridgeway et al., 2015).

First, sampling weights have to be included in the
propensity score model. As the fixed-effects logistic
model is a single-level model, total sampling weights
wij have to be used. In the random-effects model,
level-2 sampling weights w; and level-1 sampling
weights w;; must be applied. The predicted probabil-
ities 7;; are then used to calculate weights @;; like in
the case without sampling weights (see Equation (12)).
However, sampling weights have to be included in the
weighted treatment effect estimate:

T S wiy Ty Yy
]]‘:1 > wij@;; T
1 i widy(1 — Ty) Yy
T iy Wity (1 = Ty)

In the computation of calibration weights, the bal-
ancing conditions now also include sampling weights.
Equations (15) and (17) are modified to

%:

(36)

8However, it needs to be pointed out that we assumed the treatment
effect is constant (i.e., no treatment effect heterogeneity) in the data-
generating model of Simulation Study 3. It can be expected that
including heterogeneous treatment effects would even further increase
the cluster sizes that are needed to produce stable estimates with the
calibration estimators because treatment effect heterogeneity can be
expected to introduce further uncertainty in the estimation of the ATE.
Thus, it is an important topic for future research to develop more stable
versions of the calibration estimators, and investigate their performance
under scenarios with heterogeneous treatment effects as well covariate-
by-cluster interactions (Kranker et al., 2020; Soriano et al., 2021).
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In addition, sampling weights are also included in the
definition of the calibration weights. The calibration
weights of Yang (2018) are given as

w,»jwj;- exp {Xﬂl }

(Z:’Zl whj> . : - for T;j =1
. hzlwhjwthhj exp {thll }
Wij,CAL2 = o {X i } >
w; o, exp iko
(Z:’Zl whj) " Ux J i - for T =0
h:]whjwhj(l — Thj) exp {thlo}
(39)

The calibration weights of Kim et al. (2017) are simi-
larly modified.

Example: effect of migration background on
reading outcomes

In this section, we apply the various propensity
weighting estimators to data from the German sample
of the 2015 PISA study. We are interested in the effect
of a student’s migration background on his or her
reading score. Our binary treatment variable (immig)
pools together students who are first or second gener-
ation immigrants (immig = 1), to compare their read-
ing performance with that of students who did not
report having such backgrounds (immig = 0). As
immigrant status is not manipulable (Holland, 1986),
the main goal was to make a controlled descriptive
comparison (see Li et al., 2013) between immigrant
and nonimmigrant students’ reading scores. To this
end, we controlled for a small set of level-1 covariates
representing the student’s socioeconomic background-
home possessions, index of highest parental occupa-
tional status, and index of highest parental education
in years of schooling-as these are likely to have differ-
ent distributions among immigrants and natives, and
are also strongly associated with educational outcomes
(OECD, 2018). We additionally consider the school-
level aggregates of these three socioeconomic variables
(i.e., cluster means of the level-1 covariates), since the
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Table 6. Point estimates and standard errors for the effect of
migration background on reading scores in the German sam-
ple of PISA 2015.

Table 7. Differences of the estimators under M3b.

Method Weight Naive FE RE CAL1
IPW  IPW-TOW IPW  [PW-T OW

M1 M2a M2b M3a M3b

Model Weight 7 SE. t SE t© SE © SE 1 SE

FE IPW -26.7 45 -254 50 -256 5.0 -248 6.1 -252 6.1
IPW-T -23.7 41 -185 3.8 -17.8 35 -182 4.0 -18.1 46
ow -195 29 -178 28 -178 27 -174 28 -176 27
RE IPW -248 41 -215 43 -213 43 -214 47 -210 46
IPW-T  -181 3.8 -115 39 -115 39 -125 40 -127 4.1
ow -178 35 -154 36 -155 3.6 -150 3.7 -15.1 3.6
CALT  -214 42 -198 46 -195 46 -222 52 -22.1 50
CAL2 226 42 -21.1 44 -207 43 -22.7 48 -224 46

Note. FE =fixed-effects propensity scores; RE =random-effects propensity
scores; IPW =inverse probability weighting; IPW-T =inverse probability
weighting with trimming; OW =overlap weights; CAL1 = calibration
weights of Kim et al. (2017); CAL2 = calibration weights of Yang (2018).
M1 =main effects only; M2a =main effects, all two-way interactions of
level-1 variables, all squares of level-1 variables; M3a=M2a plus all
cross-level interactions; M2b and M3b include main effects and only the
higher-order terms deemed important by a likelihood-ratio criterion
(Imbens & Rubin, 2015).

composition of schools has also been shown to have
an effect on academic performance (OECD, 2018).

The German sample of PISA 2015 consists of 6,504
students from 256 schools, where an average of 25.4
students per school was tested (standard deviation of
6.0), including an average of 3.8 immigrant students
per school (standard deviation of 3.9). After listwise
deletion of cases with missing data on at least one
covariate and the removal of 56 schools in which no
students with a migration background were present,
the sample reduced to 4,188 students nested in 199
schools. Multiple imputation could have been used to
deal with incomplete covariate data (Leyrat et al,
2019; see also Cham & West, 2016). On average,
schools in this reduced sample have 3.7 immigrant
students (range = 1 to 15) and 17.4 native students
(range = 1 to 28).

We applied the propensity weighting
approaches with different covariate specifications. In
the first model M1, we only controlled for the main
effects of the covariates, that is: the model for the FE
propensities (see Equation (8)) only included the
main effects of the level-1 covariates; the model for
the RE propensities (see Equation (9)) only included
the main effects of the level-1 and level-2 covariates;
and in the procedure for computing the calibration
weights, only the main effects of the level-1 covariates
were included. In model M2a, we additionally consid-
ered all squares and two-way interactions of the level-
1 covariates. In model M3a, we also included all
cross-level interactions, that is, all interactions of the
three level-1 covariates with the three level-2 aggre-
gates (i.e., school means). Finally, model M2b and
M3b correspond to specifications where higher-order

score

FE IPW  —28.7%**
IPW-T —35.9%** 7.2
OW —364*** —77 —05
RE IPW  —33.0%** —42 29 34
IPW-T —41.3%** —125% —54 —4.9% —83%*
OW —38.9%F* —102* —3.0 —2.5 —59*% 24
CAL1T —31.5%* —28 44 49 14 97%* 74%
CAL2 —319%** 32 40 45 1.0 94** 70* —04

Note. Differences are estimator of the column minus estimator of the row.
Naive = unadjusted mean difference; FE=fixed-effects propensity
scores; RE =random-effects propensity scores; IPW =inverse probability
weighting; IPW-T=inverse probability weighting with trimming;
OW = overlap weights; CAL1 = calibration weights of Kim et al. (2017);
CAL2 = calibration weights of Yang (2018). *p < .05. **p < .01.
kD < 001,

terms (i.e., squares and interactions of level-1 covari-
ates, and cross-level interactions) were only included
if they were deemed significant by a likelihood-ratio
procedure recommended in Imbens and Rubin (2015).
For the German PISA sample, this procedure deter-
mined that the squares of all level-1 covariates should
be included, as well as the interactions of home pos-
sessions and parental education with their respective
level-2 aggregates, but none of the other cross-level
interactions and none of the level-1 two-way interac-
tions. The analysis used the ten plausible values for
the reading score, as well as the sampling weights
(i.e., school weights and cluster-normalized student
weights for the RE propensity score model, and total
student weights for the FE propensity score model
and the ATE weighting estimator) of the PISA data-
set, as outlined in the previous section on survey
weights. Standard errors were calculated using the
balanced repeated replication (BRR) weights (see
OECD, 2009).

The main results are as follows (see Table 6). First,
across all covariate specifications, the estimates
obtained by weighting with FE propensities see
migrants at a larger disadvantage than do the esti-
mates from RE propensity scores, though not all the
differences are statistically significant (see Table 7 for
statistical significance results on the differences of
M3b). This pattern suggests that the estimates based
on the FE propensity scores are controlling for unob-
served level-2 confounders that the RE propensity
scores overlook. Second, although the differences are
not all statistically significant, estimates based on IPW
are larger in absolute value than estimates that use the
IPW-T and OW weights. This could indicate that the
effect of migration background is heterogeneous, that
is, that the reading achievement gap between migrants
and natives is different when comparing students at
the low, mid, or high socioeconomic ranges. Lastly,



the estimates produced by the calibration weights
remain relatively stable across covariate specifications
and lie, for the most part, somewhere between IPW
and IPW-T with the FE approach. However, most of
the differences were not statistically significant.

Concluding remarks

This paper examined several propensity score weight-
ing approaches and their ability to estimate the effect
of a binary level-1 treatment with multilevel, observa-
tional data. We confirmed previous findings from the
literature that propensity score weighting based on a
propensity score model with fixed effects outperforms
a model with random effects (Arpino & Mealli, 2011;
Li et al., 2013). Furthermore, in contrast to the ran-
dom-effects model, the fixed-effects model automatic-
ally controls for the effects of unmeasured level-2
confounders. We also found that the IPW estimator
with a correctly specified propensity score model pro-
vided unbiased but highly variable estimates, particu-
larly in the case of small clusters or strong
confounding. We confirmed that trimming IPW
weights has the potential to reduce the variance of the
estimates, though bias can be introduced in the case
of treatment effect heterogeneity (Crump et al., 2009).
Overlap weights produced the estimates with the
smallest variance. However, these estimates can be
severely biased as estimates for the ATE because they
upweigh observations in the center of the area of
overlap. Alternatively, one could argue that the over-
lap estimator is targeting an estimand that is different
from the ATE and that focuses on a population for
whom there is equipoise (Zhou et al., 2020). Thus, the
application of overlap weights may be particularly
attractive when the assessment of treatment effects is
most relevant for observations in the area of overlap.
We showed analytically and in the simulation stud-
ies that calibration weights produce unbiased esti-
mates of the treatment effect when all relevant level-1
covariates are taken into account. Similar to the
weighting estimators based on fixed-effects propensity
scores, calibration estimators controlled for unmeas-
ured level-2 confounders and provided estimates with
smaller variance than IPW and its trimmed version.
However, in the case of random slopes in the propen-
sity score and outcome models, covariate-by-cluster
interactions have to be included in the calculation of
the calibration weights. Thus, sufficiently large clusters
are needed to obtain accurate estimates of the treat-
ment effect. In constellations with small to moderate
cluster sizes (n; < 30), the weighting methods based
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on random-effects propensity scores may provide
more accurate estimates, but require that researchers
are certain that all level-2 confounders are accounted
for. Improving the performance of calibration weights
in the presence of random slopes and small cluster
sizes is an important topic for future research.
Multilevel latent class logit models (Kim et al., 2016)
and cluster analysis (Lee et al, 2019) have been
proposed to deal with small cluster size issues when
estimating treatment effects in scenarios with covari-
ate-by-cluster interactions (see also Rickles & Seltzer,
2014, for a propensity score matching strategy).

In practical applications of propensity score weight-
ing, the selection of covariates and the correct specifica-
tion of their effects (e.g., interactions and quadratic
effects) can be challenging. In the present article, we
assumed that all relevant level-1 covariates were
observed (i.e., no unmeasured confounders at level 1).
Without specific knowledge about the assignment pro-
cess, this assumption is often hard to justify (Imbens &
Rubin, 2015), and it has been argued that in real appli-
cations, the estimation of treatment effects should be
accompanied by a sensitivity analysis that tests how sen-
sitive the conclusions are to unmeasured confounding
(e.g., VanderWeele, 2019). Furthermore, our simulations
were limited to only one level-1 and one level-2 covari-
ate with only linear effects. Efficient algorithms would
be needed to select relevant covariate effects in the pro-
pensity model (McCaffrey et al., 2004; Suk et al., 2019)
and to compute calibration weights (Ning et al., 2020)
when the set of covariates is large. It would also be
interesting to study propensity score weighting
approaches for multivalued treatments (e.g., Leite et al.,
2019), and continuous treatments (Imai & van Dyk,
2004; Schuler et al, 2016), as well as more complex
multilevel structures (e.g., three-level or cross-classified
data; Suk et al., 2019).
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Appendix A: Estimation equations for the
weights of calibration estimator of Kim et
al. (2017)

In Appendix A, we further explain the equations for esti-
mating the weights @ caL1 (see Equation (23)) in the cali-
bration estimator of Kim et al. (2017). Kim et al. (2017)
derived the estimating equations for the calibration weights
®jj,can1 = Wjj,car1(4) that depend on a parameter vector 4.
Let ng =Y., (1-Ty) and m;= S7, T; denote the
number of control and treated units in cluster j, respect-
ively. The estimating equation (see Equation (15) in Kim et
al, 2017) for 4 can be rewritten as (set ¢, = —J in the
notation of Kim et al. 2017, and also use Equations (13)
and (14) in Kim et al., 2017)

i i r exp (X,-jj)
mE ) e (i)
i eXP(_Xijj‘)
jzzl ; ( ]) nl] ZZ]:I(l _ Thj)exp(—xhjj,)

(A1)

Calibration weights are then computed as

exp {X,-ji}
1+ noj — - for Tj =1
R Zh:1T”j exp {th}.}
Mjj,CAL1T = p{ X 1} >
€X —Ajj
L+ myj— d — for T;; =0
ey (1 — Tij) exp {—thl}
(A2)

Appendix B: Estimation equations for the
weights of calibration estimator of
Yang (2018)

In Appendix B, we show how the estimation equation for
the weights @ car2 (see Equation (24)) is obtained. Yang

(2018) starts from an initial vector of weights w;;
Calibration weights wj; car2 are constructed by minimizing

the Kullback-Leibler information

JoM

Wij, CAL2
> ocanlog -, (B1)

=1 i=1 ij

subject to calibration conditions defined by Equations (15)
and (17) as side conditions. Using the Lagrange multipliers
technique (Yang, 2018), the calibration weights @ car2 =
ojj,car2(Ao, A1) are given as (see Equation (10) in Yang,

2018)
@j;exp {Xijil}
nj— ~ for Tjj=1
7 *
X thlThjwhj,O exp {th/h}
Wi, CAL2 = « >
@} exp {X,»jlo}
= - for T;;=0
V(1= Ty)oygexp {Xiho }
(B2)

where 10 and 21 are vectors of coefficients of level-1 covari-
ates that fulfill the estimating equations (applying simple
algebra to Equation (11) in Yang, 2018)

J

Zng cara( /'lo, X = ZZXU (B3)

=1 i j=1 i=1
]

I
Z Z Wi, CALZ AO» z] Xl] Z th] (B4)
j=1

i=1 j=1i

For p covariates Xj;, the vectors io and j.l are both of
length p, and there are 2p nonlinear equations in Equations
(B3) and (B4). Note that Equations (B3) and (B4) can be
independently solved for 4y and 4, because wjjcar2(40,41)
is only a function of Al in Equation (B3) and
oy, CALz(loJ ) is only a function of 4o in Equation (B4).



Appendix C: Unbiasedness of calibration
estimators with covariate-by-cluster
interactions

We show that unbiased estimates can be obtained for the
calibration estimators in condition with random slopes. By
using the data generating model defined in Equation (31),
the population ATE 1= E(ﬁ Z]]':1 Z?]:l{Yij(l) - Y;(0)}
is given as

1 J "
©=fo1 — Poo T E NZZXU (ﬁx,l - ﬁx,o)
j=1 i=1

1 ]
+E NZ”jVj (ﬂV,l *ﬂv,o)
=
1 J nj
+E N VjZXz’j (Bxv.1 — Bxv.0)
= =
1 / nj
+E| = Xii(Uy,1 — Uyjo) (Cn
=1 =
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We now consider the first term in ¢, and obtain by using
balancing conditions (32) and (33):

E[ ,’:1 Z:l/:l j,caLTi YU}
= E{Zjlzl S Gy calTy Yi;(l)}
= E[EL] > @y, caL Ty (,BU,I + XiiBx.1

+ViBy,1 +XiViBxv,1 + Ugii + XUy +e1)]

J n
=E {ijl Zi:l @i, caL Ty (ﬂo,l +XiiBx,1 + ViBy,1 + XiViPxv,1 + XUUlj,l)]

= NBy, + E[Z}’:‘ ST Kibxoy + Viby, + Xy ViByy,s + x,,Uw)] (2
Similarly, we get for the second term in Tcay :
E[ o i Dea(l - Ti‘)Yij}
= E[X] T dyen(l = T)¥(0)]
= NP0 + E[ 11:1 S (XiiBx,0 + ViBv,o + XiiViBxv,o
+X;U15,0)] (C3)

Hence, by using Equations (C2) and (C3), the expected
value of Tcar equals the population quantity t that is given
by Equation (C1).
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