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ABSTRACT

Bias-adjusted three-step latent class (LC) analysis is a popular technique for estimating the
relationship between LC membership and distal outcomes. Since it is impossible to random-
ize LC membership, causal inference techniques are needed to estimate causal effects lever-
aging observational data. This paper proposes two novel strategies that make use of
propensity scores to estimate the causal effect of LC membership on a distal outcome vari-
able. Both strategies modify the bias-adjusted three-step approach by using propensity
scores in the last step to control for confounding. The first strategy utilizes inverse propen-
sity weighting (IPW), whereas the second strategy includes the propensity scores as control
variables. Classification errors are accounted for using the BCH or ML corrections. We evalu-
ate the performance of these methods in a simulation study by comparing it with three
existing approaches that also use propensity scores in a stepwise LC analysis. Both of our
newly proposed methods return essentially unbiased parameter estimates outperforming
previously proposed methods. However, for smaller sample sizes our IPW based approach
shows large variability in the estimates and can be prone to non-convergence. Furthermore,
the use of these newly proposed methods is illustrated using data from the LISS panel.

Introduction analysis consists of 1) estimating a standard LC model
without covariates, 2) assigning subjects to classes
using proportional or modal assignment, and 3) esti-
mating the structural relations between latent classes,
covariates, and distal outcomes while accounting for
classification errors using the BCH or ML correction
(Bakk et al., 2013).

LC modeling is commonly used for clustering indi-
viduals and investigating the relationship between the
latent classes and distal outcomes. For instance, LC

Latent class (LC) analysis is a statistical technique
used to classify individuals into unknown groups
based on their responses to a set of observed indica-
tors (Goodman, 1974; Lazarsfeld & Henry, 1968;
Vermunt & Magidson, 2004). It is widely adopted in
the social and behavioral sciences, and recently,
becoming more and more popular in medical
research, as many constructs of interest in these fields
cannot be observed directly. Furthermore, researchers

are often interested in investigating how class mem-
bership is related to external variables. i.e., covariates
can be used to predict class membership or, in turn,
class membership can be used to predict distal out-
comes. Different methods have been developed to
facilitate these types of research questions: a one-step
approach (Bandeen-Roche et al., 1997; Dayton &
Macready, 1988; Kamakura et al., 1994; Yamaguchi,
2000), a two-step approach (Bakk & Kuha, 2018), and
a three-step approach (Bakk et al., 2013; Bolck et al,
2004; Vermunt, 2010). Here, we will focus on the
three-step approach. Bias-adjusted three-step LC

analysis has been used to investigate the effect of rea-
sons for alcohol use classes on later problem alcohol
use (Bray et al., 2019), identify profiles of substance
use disorders and investigate their effect on criminal
recidivism (Schmitter et al,, 2021), or investigate the
effect of comorbid pattern classes on breast cancer
risk (Dalmartello et al., 2022). However, identifying
causal relationships between latent classes and distal
outcomes is challenging. Since the classes are by def-
inition unobserved, it is impossible to randomize indi-
viduals into the latent classes and observational data
needs to be leveraged to identify causal effects. As a
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result, individuals in different classes might differ sys-
tematically from each other on baseline characteristics
resulting in individuals from these classes to be non-
exchangeable and the latent class—distal outcome
relationship to be confounded (for a discussion on
exchangeability in observational data, see Hernan and
Robins (2006)). Several causal inference techniques
have been proposed to adjust for confounders and
estimate causal effects with observational data.
Particularly the use of inverse propensity weighting
(IPW) (Austin, 2011; Imbens, 2004; Robins et al.,
1994) has been proposed for estimating causal effects
of latent classes on distal outcomes (Bray et al., 2019;
Schuler et al., 2014; Yamaguchi, 2015).

IPW solves the issue of confounding in two steps.
First, the propensity scores are estimated and weights
based on the inverse of the propensity scores are con-
structed. Second, the effect of exposure on the out-
come is estimated using the weights from the first
step in the estimation procedure (Austin, 2011).
Propensity scores reflect each individual’s probability
of exposure conditional on that individual’s values on
the confounding variables. As such, the propensity
score reduces each individual’s set of covariates to a
single score (Robins et al., 2000; Rosenbaum & Rubin,
1983). The propensity score can be estimated using,
e.g., logistic regression. Next, each individual can be
weighted with an individual weight based on the
inverse of the propensity score (Austin, 2011; Imbens,
2004). As such, an individual with a low probability
of exposure that actually was exposed (hence, a com-
bination that is rather uncommon in the data) will be
up-weighted while an individual with a high probabil-
ity of exposure that actually was exposed (hence, a
common combination) will be down-weighted. The
average treatment effect (ATE) on the distal outcome
can then be estimated in a weighted analysis. Here,
we consider the ATE as the average difference in the
distal outcome when the entire population is moved
from receiving the treatment to not receiving it
(Austin, 2011; Imbens, 2004). However, different defi-
nitions for the causal effect such as the average treat-
ment effect on the treated (ATT) are possible
resulting in different formalizations of the weights
(Austin, 2011; Imbens, 2004). Regardless of the
definition of the causal effect, IPW has a conceptual
advantage over other adjustment methods because it
separates the confounding adjustment from the causal
effect estimation. For instance, this allows for assess-
ing the correct specification of the propensity score
model independently from the causal effect estimation
(Austin, 2011).
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Using IPW to estimate the ATE of latent class
membership on a distal outcome has been attempted
before (Bray et al., 2019; Schuler et al, 2014;
Yamaguchi, 2015). All of these approaches use step-
wise LC analysis to include the IPW as fixed weights
when estimating the ATE. However, they differ in the
estimation methods for the IPW and the ATE.
Schuler et al. (2014) first proposed a framework, in
which the propensity scores are obtained from a
standard three-step LC analysis with the confounders
as covariates. Then, the IPW are included as fixed
weights in the final step to estimate the ATE. In both
steps however, the authors did not consider that clas-
sification errors need to be accounted for when using
stepwise LC analysis. Essentially, estimated class mem-
bership was used here as true class membership, with-
out accounting for the probability of classification
errors which results in biased estimates for the ATE.
Yamaguchi (2015) obtained the propensity scores
from a one-step LC analysis instead and used the
three-step method for estimating the ATE. However,
also here the classification errors are not accounted
for in the last step. In both approaches, the propensity
scores are class-specific, that is, each individual
receives a propensity score for each class. This is a
relevant difference to cases where the exposure is also
multi-categorical but observed as then only one
weight corresponding to the realized exposure cat-
egory is assigned (Imbens, 2004; McCaffrey et al,
2013). In contrast, latent class membership does not
reflect a hard partitioning of exposure categories.
Recently, Bray et al. (2019) proposed an approach that
takes the classification errors into account. In both of
the steps to estimate the propensity scores and the
ATE, classification errors were accounted for using
the BCH correction (Bolck et al., 2004; Vermunt,
2010). However, each individual was assigned only
one propensity score (and thus, one weight), which is
the weighted average of the propensity scores for all
classes.

In this paper, we propose two novel approaches to
include propensity scores in an LC analysis with distal
outcomes by modifying the last step of the bias-
adjusted three-step approach (Bakk et al, 2013;
Vermunt, 2010). That is, 1) estimating the LC model
of interest without the outcome or control variables,
2) assigning subjects to classes using proportional or
modal assignment, and 3) estimating the ATE with
either class-specific IPW as weights or propensity
scores as control variables while accounting for classi-
fication errors using the BCH correction. The third
step involves obtaining the propensity scores from an
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additional bias-adjusted three-step LC analysis with
the confounders used as covariates. While our IPW
strategy build upon previous work using a similar
strategy, our proposal for using propensity scores as
controls in a bias-adjusted three-step LC analysis is
completely new. The paper is structured as follows:
first, we present a review of the existing methods;
second, our alternative approaches are described step
by step in detail; third, a simulation study is con-
ducted to evaluate their performance in comparison
with the other methods; fourth, we illustrate our
newly proposed methods on data from the LISS
(Longitudinal Internet studies for the Social Sciences)
panel; last, the paper is ended with a discussion and
recommendations section.

A General model to include IPW in LC analysis
with a distal outcome

This section reviews the different approaches to
include IPW in an LC analysis with distal outcomes
and proposes our alternative strategy using class-spe-
cific IPW with the BCH correction method. The three
existing methods reviewed in this section can be sum-
marized into a general three-step model as follows:

1. Estimate an LC model based on the indicator var-
iables Y;. This first step might be done including
the confounders C; as covariates as in Yamaguchi
(2015):

T
P(Y{|Ci) = > P(X = t|C)P(Y,|X =),

t=1

or excluding the confounders as in Schuler et al.
(2014) and Bray et al. (2019):

ZP

T being the realization of the latent

P(Yi|X =1),

with t =1, ...,
classes X.

2. Assign to each subject i class-assignment weights
wis, with s =1,..., T being the realization of class
assignment W. Using modal assignment, w;, is 1

if P(X =s|Y;) is largest and O otherwise. Using
proportional  assignment, w; is equivalent
to P(X = s|Y;).

3. Estimate the effect of class memberships on the
distal outcome with IPW as fixed weights to con-
trol for confounding.

a. When confounders were not included in Step
1, estimate the propensity scores as the class
membership probabilities conditional on the

set of confounders: 7;; = P(X = t|C;) making
use of the class assignments W.

b. Compute the weights ipw, as the inverse
of the propensity scores; that
is, ipw, = 1/P(X = t|C;).

c. Estimate the ATE of class membership on the
distal outcome Z; with ipw,, as fixed weights.

Correcting for classification errors in Step 3 (a),
involves estimating this model using the class assign-
ments W':

P(W =s|C) =

t

P(X =t|C;)P
1

T
=s|X=1t). (1)

Regardless of the ML correction or the BCH cor-
rection being used, Step 3 (a) and (c) rely on obtain-
ing the classification error probabilities as follows
(Bakk et al., 2013):

N
#Zi:1P<X = t‘Y,')W,‘S
PX=t)

P(W=sX=t)= (1)

The BCH correction uses the elements of the
inverse of the matrix with elements P(W = s|X = )
(also referred to as the D™! matrix) as weights, which
we denote by d;. Representing the class-specific dens-
ity of the outcome variable by f(Z;|X = t), in Step 3
(c), the ATE can be estimated by maximizing the fol-
lowing pseudo-log-likelihood function:

logLipw = ZZzpw” (stt W,S> log f(Zi|X =1t)

i=1 t=

N T
=3 Sipw,w), log f(ZiIX = 1)

—1 t=1

N
SO wy log f(ZiIX =t) (3)
i=1 t=1

where w}, is the class-specify weight used in the stand-
ard BCH estimation. When multiplying this weight by
ipw, we get a new weight wj". So, in fact, using [IPW
in a 3-step LC analysis simply involves using a modi-
fied set of weights. The ATE is obtained by comparing
the estimated expected value of Z; across latent
classes.

As summarized in Table 1, the IPW based methods
proposed so far differ in (1) the class assignment rule,
(2) the correction for classification errors, and 3) the
way propensity scores are obtained and used to con-
struct IPW; that is, in the definition of wj, dy, and
ipw,,. More specifically, Schuler et al. (2014) estimate
the LC model including only the response indicators
and assign individuals to classes using modal

—
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assignment. Hence, w;; is 1 for the class with the high-
est posterior membership probability and 0 for the
other classes. Their class-specific propensity scores ;s
are obtained in Step 3 (a) using a naive 3-step LC
analysis with covariates, in which classification errors
are not accounted for. Hence, the propensity scores
are in fact estimated using the assigned class member-
ship W instead of true class membership X (Figure
1.1) resulting in ipw, = 1/7;. In Step 3 (c), the ATE
is estimated with ipw,; as fixed weights, without taking
into account the classification errors. Thus, d;; is an
element of the identity matrix.

In Yamaguchi (2015), the propensity scores are
obtained directly from Step 1 since the LC model is
estimated using both the response variables and the
confounders (Figure 1.2). Thus, @t;; is estimated from
a one-step instead of a three-step approach. In Step 2,
proportional assignment is used instead of modal
assignment, so w; is the posterior membership proba-
bilities retained from Step 1. As in Schuler et al.
(2014), classification errors are not accounted for
implying that the dy are the elements of the identity
matrix.

Bray et al. (2019) address the issue of not account-
ing for classification errors in Schuler et al. (2014)
and Yamaguchi (2015). Step 1 and 2 are similar to
Schuler et al. (2014), that is, the LC model is esti-
mated using only the response indicators and modal
assignment is used, so w; is either 1 or 0. The differ-
ence in their method lies in Step 3. In Step 3 (a), the
propensity score is obtained from a bias-adjusted
three-step LC analysis with confounders serving as
covariates using the BCH method to account for the
classification errors (Figure 1.3). A generalized for-
mula to estimate the propensity score was proposed as
follows':
= t|C;))P(X = t]Y;). (4)

Here, the propensity score is the weighted average
of P(X =t|C;) over all classes, with the posterior
membership probability retained from Step 1 as
weights. Each subject is then only assigned one pro-
pensity score 7;, and thus, one weight ipw, = 1/7;,
which contrary to Schuler et al. (2014) and
Yamaguchi (2015) is no longer class-specific. In Step

'Note that Bray and colleagues report Equation (4) as #; =
ST, P(X = t|C))P(X = t]Y;,C;). Thus, they propose that the posterior
class membership probabilities that are used to weight the propensity
scores need to be updated in light of the covariates. However, in the
provided computer code the authors use P(X =t|Y;) instead of
P(X = t|Y;,C;) which seems to be a more reasonable approach.

3 (c), ipw, is included as weights to estimate the ATE,
taking into account the classification errors using the
BCH method. Hence, d,; is an element of the D!
matrix.

A New bias-adjusted three-step LC analysis
using IPW

Upon reviewing the three existing methods, this paper
proposes a new strategy. Here, we modify the final
step of the bias-adjusted three-step LC analysis with a
distal outcome proposed by Bakk et al. (2013) by
including the ipw, as fixed weights. It can also be
seen as a combination of the strengths of the other
methods: we keep the ipw,, class-specific as in Schuler
et al. (2014) and Yamaguchi (2015) (though with dif-
ferent model specifications for estimating the propen-
sity score), while accounting for classification errors
in both Step 3 (a) (obtaining propensity score) and
Step 3 (c) (estimating the ATE) using the BCH cor-
rection method as in Bray et al. (2019). Visually, our
new method can be depicted identically to Figure 1.3.
This section describes our strategy in detailed steps.

In Step 1, an LC model is estimated based on the
observed indicators without confounders. In Step 2,
subjects are assigned to classes using either propor-
tional or modal assignment. In Step 3 (a), the propen-
sity score is obtained from a bias-adjusted three-step
LC analysis with covariates, using the ML correction
method. Here, unlike in Bray et al. (2019), the ML
method is used since it has been shown to be more
efficient than the BCH method when the third step
involves covariates (Vermunt, 2010). Thus, the pro-
pensity scores can be estimated by maximizing the
following log-likelihood:

log Ly = Zwalog ZP =t|C;)P

i=1 s=

=s|X =1t).

(5)

Finally, these class-specific ipw, are used as fixed
weights when estimating the ATE by maximizing the
pseudo log-likelihood function in Equation 3. Similar
to Bray et al. (2019), the BCH correction is used to
account for the classification errors, hence, d; is the
element of the D™! matrix. Note that robust standard
errors should be used here for the BCH method (or
when using proportional assignment regardless of the
correction methods).

There is a particular reason for the choice of the
BCH correction method in our final step. The BCH
method transforms the data to represent the true

classes by wusing weights (the inverse of the
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(a)
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@-—»Y Y —W (c)

Wp— Z

Step 1: Estimate an LC model Step 2: Assign individuals to Step 3 (a): Estimate the
with indicator variables Y. classes based on the propensity scores using
posterior probabilities from naive LC analysis.
Step 1. Step 3 (c): Estimate the ATE
using IPW in a naive LC
analysis.

Figure 1.1. LC analysis using IPW as proposed by Schuler et al. (2014). Note that Step 3 (b): Constructing class-specific weights for
each individual based on the inverse of the propensity scores is not shown.

C (©

W

v
N

Y C Y

Step 1: Estimate an LC model Step 2: Assign individuals to Step 3 (c): Estimate the ATE
with indicator variables ¥ and classes based on the using IPW in a naive LC
confounders C. Propensity posterior probabilities from analysis.

scores are obtained from this Step 1.

model.

Figure 1.2. LC analysis using IPW as proposed by Yamaguchi (2015). Note that Step 3 (b): Constructing class-specific weights for
each individual based on the inverse of the propensity scores is not shown.

(a)

®—>Y Y — W W

W

Step 1: Estimate an LC model Step 2: Assign individuals to Step 3 (a): Estimate the

with indicator variables Y. classes based on the propensity scores using
posterior probabilities from three step LC analysis with
Step 1. W as single indicator.

Step 3 (c): Estimate the ATE
using IPW in the three step
LC analysis with W as single
indicator.

Figure 1.3. LC analysis using IPW as proposed by Bray et al. (2019). Note that Step 3 (b): Constructing single weights for each
individual based on the inverse of the propensity scores is not shown.
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classification errors), resulting in an expanded data set
with T records per subject with classes ¢ and weights
Wi, = ZST:1 ds-wis (for a detailed explanation, see Bakk
et al. (2013)). This expanded data set allows to link
the class-specific ipw,, to class membership in the cor-
rect manner. This is not possible with the ML method
where the LC model is estimated with the assigned
class membership W as the single indicator and
probabilities P(W =s|X =1).
Furthermore, while the previous steps could be esti-
mated using the two-step method by Bakk and Kuha
(2018), this last step of including class specific ipw,, is
not possible in the second step of this approach.

known error

A New bias-adjusted three-step LC analysis using
the propensity score as covariate

As an alternative strategy to IPW, the propensity
scores can also be included directly as control varia-
bles in the regression model for the outcome variable.
After obtaining the class-specific propensity scores 7
in Step 3 (a), the final step of estimating the ATE can
be done by maximizing the following log-likelihood
function:

N T
logLBCH = ZZW; lng(Z,‘X = taﬁ:it> (6)

i=1 t=1

using the BCH correction (recommended for continu-
ous outcome) or:

N T T

logLy = Y > wi log) P(X = O)f (Zi|X = t,7)P(W = s|X = 1)
i=1 s=1 t=1

(7)

using the ML correction (recommended for categor-
ical outcome). It is important to note that this method
requires a correct specification of the relationship
between the distal outcome and the propensity scores.
We recommend using a flexible regression model with
quadratic and interaction terms or splines for the pro-
pensity scores. Furthermore, as specified in Equations
6 and 7, we assume homogeneity of the ATE across
strata of the propensity scores. This assumption could
be relaxed by including interaction terms between
exposure classes and the propensity scores. It is
important to realize that the propensity scores 7t;; for
each individual sum up to one over all classes.
Therefore, propensity scores for only t—1 classes
need to be included in the model. The ATE is
obtained by comparing the estimated marginal
expected value of Z; across latent classes.

Simulation study
Design

A simulation study was conducted to evaluate the per-
formance of our proposed strategy in comparison
with the existing ones on three types of performance
measures: bias of the ATE, bias of the standard errors
(SE) of the ATE, and variation of the ATE.

The population model used is a latent class model
with three classes for six dichotomous response indi-
cators, an outcome variable Z, and two categorical
confounders C; (—0.5; 0.5) and C, (—2; 1; 0; 1; 2).
We investigated the methods’ performances for two
types of the outcome variable: Z is binary and Z is
continuous with normal distribution. Adopting the
same setup from Vermunt (2010), Class 1 is most
likely to score high on all six indicators, Class 2 scores
high on the first three and low on the last three indi-
cators, and Class 3 scores low on all indicators.

When the outcome variable is binary, the BCH
method can run into a problem when there are
negative cell frequencies in the X-Z frequency table.
This prevents the results from converging. It was
first reported in the simulation study by Bakk et al.
(2013), where the authors decided to delete the rep-
lications with the negative cell frequencies in the
subsequent analyses. In this study, we chose to treat
the binary outcome as continuous in the final step
of estimating the ATE. This is possible because the
ATE will be the same (the difference in means of Z
or proportions of scoring “1” between two given
classes). Furthermore, the SEs will be identical since
we used robust SEs. The advantage of this option is
that we will have results for all of the replications
without convergence problems. The downside is that
some of the replications will the have out-of-range
estimated values for one of class-specific means of
Z (below 0 or above 1), which we will report in
the Result section.

We varied four factors in the simulation study:
class separation level, sample size, confounding
effect size, and treatment effect size. Class separation
level and sample size have been shown to affect the
performance of the bias-adjusted three-step LC ana-
lysis with an external variable (Bakk et al, 2013;
Vermunt, 2010). Class separation was manipulated
via the probabilities for the most likely response.
We chose two levels of 0.80 and 0.90, correspond-
ing to a moderate (entropy R-square of 0.65) and a
good (entropy R-square of 0.90) separation condi-
tion, respectively. A good class separation is always
ideal for the three-step approaches. The moderate



separation condition can be perceived as the most
common situation but also poses some challenges
for the three-step methods. There is no added value
to investigate the low class separation (e.g., response
probability of 0.70 yielding entropy R-square of
0.36) since the three-step methods perform poorly
in this condition (Bakk et al, 2013; Vermunt,
2010). The sample size is varied at three levels: 500,
1000, and 2500. The set up to manipulate the effect
size and confounding strength was taken from
Clouth et al. (2022). The effect of the confounders
on the classes was modeled using the following
logistic regression:

logit(X|C,Cy) = 5+ 1% Cr+ 9% G, (8)

with Class 1 as the reference group. The confounding
effect was manipulated by varying the size of y =
[1,2,3] for Class 3. For Class 2, y was kept constant at
1. Note that one could also manipulate the strength of
confounding through the relation between the con-
founders and the distal outcome Z.

For the binary outcome variable Z, the effect of the
classes and the confounders on the outcome variable
was modeled using logistic regression as follows

logit(Z|X,C1,C) =04+ 1% Cr+1xCo+ 15X+ f+ X5
)

with Class 1 as the reference group. X, and X; are
two dummy variables denoting class membership in
Class 2 and 3, respectively. The causal effect was
manipulated by varying the size of f =[1,2,3]. For
the continuous outcome variable Z, the effect of the
classes and the confounders on the outcome variable
was modeled as follows

E(Z|X,C1,C2) :0+1*C1+1*C2+1*X2+B*X3
(10)

The residual variance of Z was fixed at 10. The
ATEs are defined as the average difference in means
(continuous variable) or proportion of scoring “1”
(binary variable) of Z in Class 2 and Class 3 com-
pared to Class 1 averaged over all possible values of
C, and G,. In total, 2 (continuous and binary Z) x
2 (class separation levels) x 3 (effect sizes) x 3
(confounding sizes) x 3 (sample sizes) = 108 com-
binations of conditions were used to simulate data,
with 500 replications per condition. The ATEs
resulting from this setup are presented in Table 2.

A minor change was made to the Bray et al. (2019)
method: in Step 3 (a) (the propensity score model),
we used the ML correction method with proportional
assignment instead of BCH method with modal
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Table 2. ATEs of the population model for varying effect
sizes f3.

Binary Z Continuous Z
Class 2 Class 3 Class 2 Class 3
p=1 0.164 0.164 1 1
p=2 0.164 0.304 1 2
p=3 0.164 0.402 1 3

assignment.2 As explained above, the ML method is
preferred to the BCH method for covariates.’

The simulation setup as described above results in
equal sample sizes for all three classes. However, mod-
els with unequal class sizes are encountered frequently
in practice as well. Therefore, additional scenarios
with class sizes of (1) 45%, 45%, and 10% and (2)
80%, 10%, and 10% were investigated. Results for
these scenarios are reported in the appendix.

All of the steps were conducted in LatentGOLD 6.1
(Vermunt & Magidson, 2021) and results were
imported to R (RCoreTeam, 2022) to produce tables
and figures. Three new options were implemented in
LatentGOLD 6.1 to facilitate the procedure of the
bias-adjusted three-step LC analysis with IPW. First,
the Bray et al. (2019) method can now be easily car-
ried out by specifying the option ‘bray’ in ‘step 3'.
Second, the ‘propensity=(....)" option was added to
include the inverse of the estimated propensity scores
as fixed weights in the last step. Third, an option was
added to help speed up the simulation process in
batch mode. Detailed code is available on GitHub
(https://github.com/trale97/LCAdistaloutcomelPW).

Results

Results of all simulation scenarios can be explored
interactively using the R shiny app https://trale.shi-
nyapps.io/lcasim/. As results are very similar for Class
2 and Class 3, we will only be reporting results for
Class 3. Furthermore, we will only be reporting results
for moderate class separation as this corresponds to a
more realistic scenario. Results for good class separ-
ation are reported in Appendix 1. Figures 2 and 3 dis-
play the bias of the ATE estimates for the binary and
continuous outcome variables averaged across 500
replications. Larger confounding and larger effect size
seem to slightly increase bias. For sample size, there is

2According to their provided computer codes, it appeared that the ML
method was used instead of the BCH method (option ‘AUXILIARY =
(R3STEP)" in Mplus).

3Furthermore, we tested the Bray et al. (2019) method with both the
proportional and modal assignment in the final step. However, there is
almost no difference in all three performance measures and modal
assignment will be the focus for reporting results.
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Figure 2. Results for the bias of the ATE for the binary distal outcome variable and moderate class separation. The bias is pre-
sented for varying levels of effect size, strength of the confounding effect, and sample size. Results are averaged over 500

replications.

no general pattern observable. For the binary outcome
variable, both of our newly proposed methods as well
as the method by Bray et al. (2019) perform well with
the new IPW method slightly overestimating the ATE
and the new propensity scores as covariates method
and Bray et al. (2019) method slightly underestimating
the ATE. Unsurprisingly, the methods by Schuler
et al. (2014) and Yamaguchi (2015) are consistently
more biased. For the continuous outcome variable, we
observe essentially similar results. However, for a large
sample size of N = 2500, both of our newly proposed
methods show almost no bias clearly outperforming
the other methods.

Figures 4 and 5 present the SD of the estimated
ATE for the binary and continuous outcome variables,
respectively. Increasing confounding seems to slightly
increase the SD but effect size does not seem to affect
the SD. For both, binary and continuous outcome var-
iables, our newly proposed 3-Step IPW method is
consistently outperformed.

Figures Al and A2 (see Appendix) present the bias
of SE for the binary and continuous outcome variable,
respectively. None of the methods clearly outperforms
the other methods in terms of bias of SE. For both,
binary and continuous outcomes, the bias of SE
decreases for larger sample sizes.

For some conditions with moderate class separation,
our new 3-Step IPW method did not converge in all
replications. Replications for which this was the case
were not considered for summarizing the results.
Tables Al and A2 in the Appendix summarize the
number of replications per condition for which the
3-Step IPW method did not converge. As can be seen,
the condition with a strong confounding effect in com-
bination with a small sample size is most problematic.

Real-Life example using data from the LISS
panel

In this section, we illustrate our two newly proposed
methods to investigate the relationship between mental
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Figure 3. Results for the bias of the ATE for the continuous distal outcome variable and moderate class separation. The bias is
presented for varying levels of effect size, strength of the confounding effect, and sample size. Results are averaged over 500

replications.

health and unemployment. Poor mental health and
depression are leading contributors to the global burden
of disease (Lépine & Briley, 2011) and key factors of
economical productivity (Layard, 2013). Furthermore,
poor mental health has been linked to lower levels of
economic activity, lower earnings, more difficulties in
both finding and retaining employment, and reduced
financial security (Bubonya et al.,, 2019).

Data

In this paper we make use of data of the LISS
(Longitudinal Internet studies for the Social Sciences)
panel administered by Centerdata (Tilburg University,
The Netherlands). The LISS panel is a representative
sample of Dutch individuals who participate in
monthly internet surveys. The panel is based on a
true probability sample of households drawn from the
population register. Households that could not other-
wise participate are provided with a computer and

internet connection. A longitudinal survey is fielded
in the panel every year, covering a large variety of
domains including health, work, education, income,
housing, time use, political views, values and personal-
ity. More information about the LISS panel can be
found at: www.lissdata.nl.

We used data from the 2021 wave of the LISS core
study and excluded participants outside the labor force,
that is, attending an educational program or being
retired, resulting in a sample of 3567 participants. For
some of the participants, the data contained missing
values. While missing values on the indicators are
addressed in LCA by using full-information maximum
likelihood estimation, missing values on the confounders
need to be imputed, preferably by multiple imputation.
As this example data analysis serves an illustrative pur-
pose, we decided to perform a single set of imputation
using MICE (Van Buuren & Groothuis-Oudshoorn,
2011) and treating the data as fully observed for our
analysis.
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Figure 4. Results for the standard deviation (SD) of the ATE for the binary distal outcome variable and moderate class separation.
The bias is presented for varying levels of effect size, strength of the confounding effect, and sample size. Results are averaged

over 500 replications.

Measures

Outcome

The outcome in our study is employment status.
“Being employed” is defined as conducting work for
pay, either as an employee, self-employed professional,
or assisting in a family business. “Being unemployed”
is further defined as not conducting work for pay.
This includes participants who performed unpaid
(voluntary) work or care. Participants who were too
young to perform any work for pay or who attended
an educational program and individuals who reached
retirement were excluded from the sample.

Exposure
Here, we consider “mental health” as exposure.
Specifically, mental health is defined as the latent
classes that are identified in the first step of the LC
analysis based on the observed indicators “I felt very

anxious”, “I felt so down that nothing could cheer me
up”, “I felt calm and peaceful”, “I felt depressed and

gloomy”, and “I felt happy”. All items were scored on
a six point Likert scale ranging from “never” to
“continuously”.

Confounders
Furthermore, we identified the variables age, gender,
subjective general physical health, household status,
gross household income, education, and origin as
confounders of the mental health—employment
relationship.

Results

Step 1: Measurement model

Based on the Bayesian Information Criterium (BIC),
Akaike Information Criterium (AIC), and maximum
bivariate residual (BVR; Table 3), we selected a LC
model with three classes. Note that with large sample
sizes, these information criteria tend to decrease even
for large numbers of classes. Here, we deemed the
reduction in BIC, AIC, and BVR to not be substantial
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Figure 5. Results for the standard deviation (SD) of the ATE for the continuous distal outcome variable and moderate class separ-
ation. The bias is presented for varying levels of effect size, strength of the confounding effect, and sample size. Results are aver-

aged over 500 replications.

Table 3. Goodness of Fit statistics. Log-likelihood values,
Bayesian Information Criterium (BIC), Akaike Information
Criterium (AIC), and maximum bivariate residual (BVR) values
are presented for models with 1 - 5 classes. The selected
solution is highlighted.

Log-likelihood BIC AlC Max. BVR
1 Class —23860.0 47944.4 47789.9 3656.9
2 Classes —20842.6 41938.8 417472 5745
3 Classes —19984.3 40271.3 40042.6 214.5
4 Classes —19699.8 397514 39485.7 149.0
5 Classes —19555.3 39511.4 39208.6 102.9

enough for justifying four classes. Class 1 (44.4%) is
characterized by slightly elevated levels on all indica-
tors and is labeled “slightly elevated mental health
problems” (Figure 6). Class 2 (36.9%) is characterized
by good to very good values on all indicators and is
labeled “good mental health”. Note that for the indica-
tors “feel calm” and “feel happy”, the scales are
inverted so that low scores correspond to good values.
Class 3 (18.7%) is characterized by high values on all

indicators and is labeled as “poor mental health”. In
all three states, scores on the items “feel calm” and
“feel happy” were slightly elevated.

Step 3 (a): IPW diagnostics

One important assumption for identifying the
ATE when using IPW is positivity. Positivity refers to
individuals in the different exposure groups having
non-zero probabilities of membership in the other
exposure groups (Hernan & Robins, 2006). When
using propensity score methods, this assumption can
be assessed by inspecting the overlap of propensity
scores of the different exposure groups (Austin, 2011).
Here, the exposure groups refer to the latent classes
identified in Step I. As can be seen in Figure 7, there
is sufficient overlap of propensity scores in the LISS
data. Furthermore, to identify the ATE, exchangeabil-
ity is required. While there is no possibility of assess-
ing exchangeability, we can check if our propensity
score model correctly adjusts for the measured
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Figure 7. Overlap of the propensity scores for the three latent classes (exposure groups).

confounders. This can be investigated by assessing  Step 3 (c): ATE

balance on the confounders between the exposure  Table 5 shows the estimated probabilities of employ-
groups after weighting (Austin, 2011). As presented in ~ ment status for the three latent classes. As can be
Table 4, there are no significant differences in the  seen, both the IPW and the propensity score as cova-

confounders between the three latent classes indicat-  riate method estimate only minor differences in
ing sufficient balance. employment status between the classes. In detalil,



Table 4. Descriptive statistics for the confounders used to estimate the propensity scores after

weighting. Unless otherwise specified, marginal differences in probabilities/means [CI] are presented.

Class 2

Class 3

Job

Unemployed

Employed
Gender

Female

Male

Age
Household Status

0.033 [-0.057; 0.122]
—0.033 [-0.122; 0.057]

0.010 [—0.064; 0.084]
—0.010 [—0.084; 0.064]
—2.117 [-4.485; 0.250]

—0.016 [-0.090; 0.057]
0.016 [—0.057; 0.090]

0.013 [-0.081; 0.106]
—0.013 [-0.106; 0.081]
—1.392 [-4.073; 1.289]
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Never been married 0.043 [—0.037; 0.124] —0.048 [—0.125; 0.028]
Married —0.050 [—0.124; 0.025] 0.020 [-0.074; 0.113]
Separated 0.009 [-0.010; 0.028] 0.004 [—0.004; 0.013]
Divorced 0.003 [—0.056; 0.062] 0.004 [—0.047; 0.056]
Widowed —0.006 [—0.022; 0.010] 0.020 [—0.031; 0.071]
Household Income —6907.4 [—16384.2; 2569.4] —6926.5 [—15590.2; 1737.2]
Education
Primary school 0.014 [-0.025; 0.054] —0.008 [—0.030; 0.014]
Vmbo 0.012 [—0.058; 0.082] —0.002 [-0.070; 0.065]
Havo/Vwo —0.017 [-0.044; 0.010] —0.014 [-0.069; 0.042]
Mbo —0.009 [—0.072; 0.055] 0.040 [—0.047; 0.127]
Hbo —0.004 [-0.073; 0.066] —0.010 [—0.099; 0.080]
Wo 0.003 [-0.047; 0.052] —0.006 [-0.071; 0.058]
Origin
Dutch —0.026 [—0.115; 0.063] —0.009 [—0.080; 0.062]
First Gen. non-West 0.019 [—0.052; 0.090] 0.002 [—0.048; 0.051]
First Gen. West —0.005 [—0.039; 0.028] —0.001 [—0.032; 0.030]
Second Gen. non-West 0.001 [—0.041; 0.043] —0.006 [—0.028; 0.016]
Second Gen. West 0.011 [-0.047; 0.070] 0.015 [—0.025; 0.054]
Health —0.106 [-0.321; 0.110] 0.142 [-0.083; 0.366]

Table 5. Probabilities of employment status conditional on class membership. Estimates for the naive approach without adjust-
ment, our newly proposed IPW method, and the propensity score as covariate method are presented.

Naive approach IPW PS as covariate
Unemployed Employed Unemployed Employed Unemployed Employed
Class 1 0.222 0.778 0.263 0.737 0.249 0.751
Class 2 0.221 0.779 0313 0.687 0.250 0.750
Class 3 0.377 0.623 0.254 0.746 0.256 0.744

according to the IPW method, individuals in class 2
have a 5.0% higher probability (CI = [—4.0%; 14.0%])
and individuals in class 3 have a 0.9% lower probabil-
ity (CI = [-8.3%; 6.5%]) of being unemployed com-
pared to individuals in class 1. According to the
propensity score as covariate method, individuals in
class 2 have a 0.03% higher probability (CI = [-3.5%;
3.5%]) and individuals in class 3 have a 0.7%
higher probability (CI = [-3.8%; 5.1%]) of being
unemployed compared to individuals in class 1. In
contrast, the naive approach that does not account for
confounding shows a significant effect of class mem-
bership in class 3 on employment status. Individuals
in class 2 have a 0.05% lower probability (CI =
[—3.5%; 3.4%]) and individuals in class 3 have a
15.5% higher probability (CI = [10.8%; 20.3%]) of
being unemployed compared to individuals in class 1.

Discussion

In this paper, we presented two novel approaches utiliz-
ing propensity scores for three-step bias adjusted LC

analysis with distal outcomes. In the first approach,
class-specific weights based on the inverse of the pro-
pensity scores are included in the estimation of the
third step of three-step bias adjusted LC analysis. In the
second approach, the propensity scores are used directly
as covariates in the third step. Specifically the first
approach solves some of the shortcomings of previously
proposed methods by Schuler et al. (2014), Yamaguchi
(2015), and Bray et al. (2019) by allowing class-specific
weights while accounting for classification errors. In a
simulation study, we showed that both Schuler et al.
(2014) and Yamaguchi (2015) estimate the ATE with
substantial bias. This is not surprising since for both
methods, classification errors were not accounted for in
the third step. In contrast, Bray et al. (2019) and our
two newly proposed methods estimate the ATE without
substantial bias. However, our IPW based approach has
substantially larger standard errors. While IPW is
known for producing larger standard errors in some
occasions, it seems like implementing IPW in the third
step of three-step bias adjusted LC analysis intensifies
the problem. The propensity score as covariate methods
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does not have this problem, however, it is considerably
less flexible than the IPW method. That is, while in the
IPW method, the ATE can be estimated by simply
including the latent classes and the weights in the third
step, the propensity score as covariate method requires
the correct specification of this third step. lLe., one
might need to include quadratic terms of the propensity
scores or splines to estimate the ATE without bias.
Furthermore, the propensity score as covariate method
assumes homogeneity of the treatment effect across
strata of the propensity scores. This assumption might
be unreasonable in practice and can be relaxed by
including interaction terms between the treatment vari-
able and the class-specific propensity scores in the
model. Whether the flexibility of the IPW approach in
comparison to the propensity score as covariate
approach outweighs its relative inefficiency can not be
determined generally but depends on the individual use
case, for instance, available sample size.

An additional problem with the IPW approach can
arise when there are extreme weights. Extreme weights
are a well known problem of IPW based methods.
However, our newly proposed three-step method using
the BCH correction amplifies this problem as, for some
individuals, extreme IPW weights are multiplied with
extreme BCH weights. In some cases, these new
weights can become so extreme that they cause conver-
gence problems. Especially with increasing numbers of
classes, propensity scores might become extremely small
as class membership in some of the more extreme
classes is very wunlikely for some individuals.
Intentionally or not, Bray et al. (2019) solve this issue
by averaging the IPW weights over all classes for each
individual. However, this is not a common approach
and it has not been investigated how this approach per-
forms, e.g., regarding its balancing properties. More
traditionally, this problem is addressed by truncating
the IPW weights (or propensity scores) (Cole &
Herndn, 2008). For instance, individuals with weights
larger than the 99% percentile might be assigned the
weight of the 99% percentile. An alternative approach
to truncating would be the use of Bayesian shrinkage
priors on the multinomial logistic regression coefficients
in the third step. Such priors force positivity on the
class definitions by preventing the posterior class mem-
bership probabilities to take on values close to zero.
While both, truncating and utilizing shrinkage priors
might solve the convergence problems, they come at
the cost of worsening balance. To this point, it remains
an open question how feasible it is to achieve sufficient
balance with larger numbers of classes, as in this case,
weights might need to be truncated to a larger degree.

As has been shown in this study, the use of IPW
weights for exposures that are latent requires a
stepwise analysis approach. All methods presented,
Schuler et al. (2014), Yamaguchi (2015), Bray et al.
(2019), as well as our two newly proposed methods
utilize a three-step approach of (1) estimating a meas-
urement model, (2) classifying individuals, and (3)
estimating structural models for propensity scores and
ATEs. While these models vary in their specifications
of the propensity scores and the correction methods
used in the third step, they all follow this general
framework. However, there is an alternative stepwise
approach for relating auxiliary variables to the latent
classes, the two-step method (Bakk & Kuha, 2018).
Similar to the three-step method, in the first step, a
measurement model including only the indicator vari-
ables is estimated. However, the structural model is
then estimated in a second step where a full model is
specified including indicator variables and covariates
or distal outcomes. Crucially, in this structural model,
parameters for the item response probabilities are
fixed to the values that were estimated in the first
step. As such, the two-step method does not require a
classification step and, as a consequence, a correction
for misclassifications. Generally, the two-step method
can be used whenever the three-step method is appro-
priate. However, for the IPW method proposed in this
study, we exploit the fact that the BCH correction
extends the dataset with one record per class per
observation facilitating the use of multiple weights per
observation. This procedure is only possible with the
BCH correction and the two-step approach can there-
fore not be utilized. For our second method of using
the propensity score directly as covariates in the struc-
tural model, the two-step approach could be used.

The identification of the ATE relies on the assump-
tion of positivity. Using IPW based methods, this is
usually checked by assessing overlap of the propensity
scores between the exposure groups. Here, this would
mean assessing overlap of the propensity scores
between the assigned classes. However, this seems to
be unreasonable considering that there might not be
any hard partitioning and every individual is receiving
multiple propensity scores. In this study, we presented
the overlap of all propensity scores for all individuals
to assess balance. However, one might argue that posi-
tivity is already violated if a single individual has a
close to zero probability of class membership in any
class. Again, this becomes increasingly likely with
increasing number of classes. To this point, it remains
an open question how to best assess the assumption of
positivity when using bias-adjusted three-step LC



analysis. Furthermore, the identification of the ATE
relies on the assumption of exchangeability or no
unmeasured confounding. While it is impossible to
show that no unmeasured confounding is present, it is
possible to investigate if confounding due to measured
confounders is accounted for correctly. Le., the correct
specification of the propensity score model can be
assessed by checking balance between the latent classes
after weighting. However, using bias-adjusted three-
step LC analysis, this is not a straightforward task. As
balance needs to be assessed for true class membership
X rather than assigned class membership W, this can-
not be done as usual, for instance, using the survey or
tableone packages in R. Rather, an additional third step
of bias-adjusted three-step LC analysis needs to be esti-
mated with all measured confounders as distal out-
comes of the latent classes using the BCH correction.
Then, balance is achieved if the parameter estimates of
this model are non-significant.

More generally, considering latent variables as expo-
sures in causal inference is not without criticism. For
instance, VanderWeele (2022) questions the causal effi-
cacy of latent variables. He argues that the potential
outcomes under the different exposures are not well-
defined as latent variables almost never resemble a
unidimensional exposure. That is, class membership in
one of the mental health classes as identified in this
study might reflect different sets of scores on the
underlying indicator variables. Class membership
therefore does not reflect exactly the same version of
this exposure resulting in a less well defined estimand
for the causal effect. To account for this, VanderWeele
(2022) proposes a new model of measurement based
on the theory for causal inference under multiple ver-
sions of treatment. It remains a topic for future
research how bias-adjusted three-step LC analysis can
be implemented in this framework. However, this issue
is not exclusive for latent variables but for most expo-
sures in the social sciences. Careful consideration
about loosening the definition of the same version of
exposure and accepting less precisely defined causal
effects is warranted (Kaufman, 2019).

Conclusion

Bias-adjusted three step LC analysis is a popular tool
for estimating the effect of class membership on distal
outcomes. Here, we proposed two extensions based on
the propensity score to adjust for confounding and
estimate the ATE, i.e., bias-adjusted three step LC ana-
lysis using IPW and bias-adjusted three step LC ana-
lysis using the propensity scores as covariates. While
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both methods perform well in terms of bias, the IPW
approach is less efficient and can run into convergence
issues when the distal outcome is discrete. We recom-
mend the use of bias-adjusted three step LC analysis
with IPW for continuous distal outcomes with larger
sample sizes and the use of bias-adjusted three step LC
analysis with the propensity scores as covariates for
discrete distal outcomes. Both options are implemented
in the statistical software program LatentGOLD 6.1.
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Figure A1. Results for the bias of the standard error (SE) of the ATE for the binary distal outcome variable and moderate class sep-
aration. The bias is presented for varying levels of effect size, strength of the confounding effect, and sample size. Results are aver-
aged over 500 replications.
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Figure A2. Results for the bias of the standard error (SE) of the ATE for the continuous distal outcome variable and moderate class

separation. The bias is presented for varying levels of effect size, strength of the confounding effect, and sample size. Results are
averaged over 500 replications.
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Figure A3. Results for the bias of the ATE for the binary distal outcome variable and good class separation. The bias is presented
for varying levels of effect size, strength of the confounding effect, and sample size. Results are averaged over 500 replications.
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Figure A4. Results for the bias of the ATE for the continuous distal outcome variable and good class separation. The bias is presented
for varying levels of effect size, strength of the confounding effect, and sample size. Results are averaged over 500 replications.
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Figure A5. Results for the standard deviation (SD) of the ATE for the binary distal outcome variable and good class separation.
The bias is presented for varying levels of effect size, strength of the confounding effect, and sample size. Results are averaged
over 500 replications.
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Figure A6. Results for the standard deviation (SD) of the ATE for the continuous distal outcome variable and good class
separation. The bias is presented for varying levels of effect size, strength of the confounding effect, and sample size. Results are
averaged over 500 replications.
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Figure A7. Results for the bias of the standard error (SE) of the ATE for the binary distal outcome variable and good class
separation. The bias is presented for varying levels of effect size, strength of the confounding effect, and sample size. Results are
averaged over 500 replications.
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Figure A8. Results for the bias of the standard error (SE) of the ATE for the continuous distal outcome variable and good class
separation. The bias is presented for varying levels of effect size, strength of the confounding effect, and sample size. Results are
averaged over 500 replications.
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Figure A9. Results for the bias of the ATE for the binary distal outcome variable and good class separation. The bias is presented

for varying levels of class size difference, strength of the confounding effect, and sample size. Results are averaged over 500
replications.
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Figure A10. Results for the bias of the ATE for the continuous distal outcome variable and good class separation. The bias is pre-

sented for varying levels of class size difference, strength of the confounding effect, and sample size. Results are averaged over
500 replications.
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Figure A11. Results for the standard deviation (SD) of the ATE for the binary distal outcome variable and good class separation. The

bias is presented for varying levels of class size difference, strength of the confounding effect, and sample size. Results are averaged
over 500 replications.
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Figure A12. Results for the standard deviation (SD) of the ATE for the continuous distal outcome variable and good class
separation. The bias is presented for varying levels of class size difference, strength of the confounding effect, and sample

Results are averaged over 500 replications.

size.
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Figure A13. Results for the bias of the standard error (SE) of the ATE for the binary distal outcome variable and good class

separation. The bias is presented for varying levels of class size difference, strength of the confounding effect, and sample

Results are averaged over 500 replications.

size.
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Figure A14. Results for the bias of the standard error (SE) of the ATE for the continuous distal outcome variable and good class
separation. The bias is presented for varying levels of class size difference, strength of the confounding effect, and sample size.
Results are averaged over 500 replications.

Table A1. Number of replications in the moderate class separ-  Table A2. Number of replications in the moderate class separ-

ation condition with a binary outcome for which the new 3- ation condition with a continuous outcome for which the new
Step IPW method did not converge. 3-Step IPW method did not converge.
Sample Size Confounding Strength Effect Size Number of Replications Sample size  Confounding strength  Effect size  Number of replications
500 1 1 4 500 1 1 7
500 1 2 8 500 1 2 3
500 1 3 2 500 1 3 4
500 2 1 7 500 2 1 7
500 2 2 6 500 2 2 10
500 2 3 8 500 2 3 8
500 3 1 13 500 3 1 18
500 3 2 15 500 3 2 9
500 3 3 16 500 3 3 21
1000 1 2 1 1000 1 3 1
1000 1 3 1 1000 2 3 1
1000 2 3 1 1000 3 1 3
1000 3 2 2 1000 3 2 1
1000 3 3 3 1000 3 3 3
2500 3 3 1
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