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ABSTRACT 
Bias-adjusted three-step latent class (LC) analysis is a popular technique for estimating the 
relationship between LC membership and distal outcomes. Since it is impossible to random
ize LC membership, causal inference techniques are needed to estimate causal effects lever
aging observational data. This paper proposes two novel strategies that make use of 
propensity scores to estimate the causal effect of LC membership on a distal outcome vari
able. Both strategies modify the bias-adjusted three-step approach by using propensity 
scores in the last step to control for confounding. The first strategy utilizes inverse propen
sity weighting (IPW), whereas the second strategy includes the propensity scores as control 
variables. Classification errors are accounted for using the BCH or ML corrections. We evalu
ate the performance of these methods in a simulation study by comparing it with three 
existing approaches that also use propensity scores in a stepwise LC analysis. Both of our 
newly proposed methods return essentially unbiased parameter estimates outperforming 
previously proposed methods. However, for smaller sample sizes our IPW based approach 
shows large variability in the estimates and can be prone to non-convergence. Furthermore, 
the use of these newly proposed methods is illustrated using data from the LISS panel.
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Introduction

Latent class (LC) analysis is a statistical technique 
used to classify individuals into unknown groups 
based on their responses to a set of observed indica
tors (Goodman, 1974; Lazarsfeld & Henry, 1968; 
Vermunt & Magidson, 2004). It is widely adopted in 
the social and behavioral sciences, and recently, 
becoming more and more popular in medical 
research, as many constructs of interest in these fields 
cannot be observed directly. Furthermore, researchers 
are often interested in investigating how class mem
bership is related to external variables. i.e., covariates 
can be used to predict class membership or, in turn, 
class membership can be used to predict distal out
comes. Different methods have been developed to 
facilitate these types of research questions: a one-step 
approach (Bandeen-Roche et al., 1997; Dayton & 
Macready, 1988; Kamakura et al., 1994; Yamaguchi, 
2000), a two-step approach (Bakk & Kuha, 2018), and 
a three-step approach (Bakk et al., 2013; Bolck et al., 
2004; Vermunt, 2010). Here, we will focus on the 
three-step approach. Bias-adjusted three-step LC 

analysis consists of 1) estimating a standard LC model 
without covariates, 2) assigning subjects to classes 
using proportional or modal assignment, and 3) esti
mating the structural relations between latent classes, 
covariates, and distal outcomes while accounting for 
classification errors using the BCH or ML correction 
(Bakk et al., 2013).

LC modeling is commonly used for clustering indi
viduals and investigating the relationship between the 
latent classes and distal outcomes. For instance, LC 
analysis has been used to investigate the effect of rea
sons for alcohol use classes on later problem alcohol 
use (Bray et al., 2019), identify profiles of substance 
use disorders and investigate their effect on criminal 
recidivism (Schmitter et al., 2021), or investigate the 
effect of comorbid pattern classes on breast cancer 
risk (Dalmartello et al., 2022). However, identifying 
causal relationships between latent classes and distal 
outcomes is challenging. Since the classes are by def
inition unobserved, it is impossible to randomize indi
viduals into the latent classes and observational data 
needs to be leveraged to identify causal effects. As a 
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result, individuals in different classes might differ sys
tematically from each other on baseline characteristics 
resulting in individuals from these classes to be non- 
exchangeable and the latent class—distal outcome 
relationship to be confounded (for a discussion on 
exchangeability in observational data, see Hern�an and 
Robins (2006)). Several causal inference techniques 
have been proposed to adjust for confounders and 
estimate causal effects with observational data. 
Particularly the use of inverse propensity weighting 
(IPW) (Austin, 2011; Imbens, 2004; Robins et al., 
1994) has been proposed for estimating causal effects 
of latent classes on distal outcomes (Bray et al., 2019; 
Schuler et al., 2014; Yamaguchi, 2015).

IPW solves the issue of confounding in two steps. 
First, the propensity scores are estimated and weights 
based on the inverse of the propensity scores are con
structed. Second, the effect of exposure on the out
come is estimated using the weights from the first 
step in the estimation procedure (Austin, 2011). 
Propensity scores reflect each individual’s probability 
of exposure conditional on that individual’s values on 
the confounding variables. As such, the propensity 
score reduces each individual’s set of covariates to a 
single score (Robins et al., 2000; Rosenbaum & Rubin, 
1983). The propensity score can be estimated using, 
e.g., logistic regression. Next, each individual can be 
weighted with an individual weight based on the 
inverse of the propensity score (Austin, 2011; Imbens, 
2004). As such, an individual with a low probability 
of exposure that actually was exposed (hence, a com
bination that is rather uncommon in the data) will be 
up-weighted while an individual with a high probabil
ity of exposure that actually was exposed (hence, a 
common combination) will be down-weighted. The 
average treatment effect (ATE) on the distal outcome 
can then be estimated in a weighted analysis. Here, 
we consider the ATE as the average difference in the 
distal outcome when the entire population is moved 
from receiving the treatment to not receiving it 
(Austin, 2011; Imbens, 2004). However, different defi
nitions for the causal effect such as the average treat
ment effect on the treated (ATT) are possible 
resulting in different formalizations of the weights 
(Austin, 2011; Imbens, 2004). Regardless of the 
definition of the causal effect, IPW has a conceptual 
advantage over other adjustment methods because it 
separates the confounding adjustment from the causal 
effect estimation. For instance, this allows for assess
ing the correct specification of the propensity score 
model independently from the causal effect estimation 
(Austin, 2011).

Using IPW to estimate the ATE of latent class 
membership on a distal outcome has been attempted 
before (Bray et al., 2019; Schuler et al., 2014; 
Yamaguchi, 2015). All of these approaches use step
wise LC analysis to include the IPW as fixed weights 
when estimating the ATE. However, they differ in the 
estimation methods for the IPW and the ATE. 
Schuler et al. (2014) first proposed a framework, in 
which the propensity scores are obtained from a 
standard three-step LC analysis with the confounders 
as covariates. Then, the IPW are included as fixed 
weights in the final step to estimate the ATE. In both 
steps however, the authors did not consider that clas
sification errors need to be accounted for when using 
stepwise LC analysis. Essentially, estimated class mem
bership was used here as true class membership, with
out accounting for the probability of classification 
errors which results in biased estimates for the ATE. 
Yamaguchi (2015) obtained the propensity scores 
from a one-step LC analysis instead and used the 
three-step method for estimating the ATE. However, 
also here the classification errors are not accounted 
for in the last step. In both approaches, the propensity 
scores are class-specific, that is, each individual 
receives a propensity score for each class. This is a 
relevant difference to cases where the exposure is also 
multi-categorical but observed as then only one 
weight corresponding to the realized exposure cat
egory is assigned (Imbens, 2004; McCaffrey et al., 
2013). In contrast, latent class membership does not 
reflect a hard partitioning of exposure categories. 
Recently, Bray et al. (2019) proposed an approach that 
takes the classification errors into account. In both of 
the steps to estimate the propensity scores and the 
ATE, classification errors were accounted for using 
the BCH correction (Bolck et al., 2004; Vermunt, 
2010). However, each individual was assigned only 
one propensity score (and thus, one weight), which is 
the weighted average of the propensity scores for all 
classes.

In this paper, we propose two novel approaches to 
include propensity scores in an LC analysis with distal 
outcomes by modifying the last step of the bias- 
adjusted three-step approach (Bakk et al., 2013; 
Vermunt, 2010). That is, 1) estimating the LC model 
of interest without the outcome or control variables, 
2) assigning subjects to classes using proportional or 
modal assignment, and 3) estimating the ATE with 
either class-specific IPW as weights or propensity 
scores as control variables while accounting for classi
fication errors using the BCH correction. The third 
step involves obtaining the propensity scores from an 
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additional bias-adjusted three-step LC analysis with 
the confounders used as covariates. While our IPW 
strategy build upon previous work using a similar 
strategy, our proposal for using propensity scores as 
controls in a bias-adjusted three-step LC analysis is 
completely new. The paper is structured as follows: 
first, we present a review of the existing methods; 
second, our alternative approaches are described step 
by step in detail; third, a simulation study is con
ducted to evaluate their performance in comparison 
with the other methods; fourth, we illustrate our 
newly proposed methods on data from the LISS 
(Longitudinal Internet studies for the Social Sciences) 
panel; last, the paper is ended with a discussion and 
recommendations section.

A General model to include IPW in LC analysis 
with a distal outcome

This section reviews the different approaches to 
include IPW in an LC analysis with distal outcomes 
and proposes our alternative strategy using class-spe
cific IPW with the BCH correction method. The three 
existing methods reviewed in this section can be sum
marized into a general three-step model as follows:

1. Estimate an LC model based on the indicator var
iables Y i: This first step might be done including 
the confounders Ci as covariates as in Yamaguchi 
(2015):

P Y ijCið Þ ¼
XT

t¼1
P X ¼ tjCið ÞP Y ijX ¼ tð Þ, 

or excluding the confounders as in Schuler et al. 
(2014) and Bray et al. (2019):

P Y ið Þ ¼
XT

t¼1
P X ¼ tð ÞP Y ijX ¼ tð Þ, 

with t ¼ 1, :::, T being the realization of the latent 
classes X:

2. Assign to each subject i class-assignment weights 
wis, with s ¼ 1, :::, T being the realization of class 
assignment W: Using modal assignment, wis is 1 
if P X ¼ sjY ið Þ is largest and 0 otherwise. Using 
proportional assignment, wis is equivalent 
to P X ¼ sjY ið Þ:

3. Estimate the effect of class memberships on the 
distal outcome with IPW as fixed weights to con
trol for confounding.
a. When confounders were not included in Step 

1, estimate the propensity scores as the class 
membership probabilities conditional on the 

set of confounders: p̂it ¼ P X ¼ tjCið Þ making 
use of the class assignments W:

b. Compute the weights ipwit as the inverse 
of the propensity scores; that 
is, ipwit ¼ 1=P X ¼ tjCið Þ:

c. Estimate the ATE of class membership on the 
distal outcome Zi with ipwit as fixed weights.

Correcting for classification errors in Step 3 (a), 
involves estimating this model using the class assign
ments W :

P W ¼ sjCið Þ ¼
XT

t¼1
P X ¼ tjCið ÞP W ¼ sjX ¼ tð Þ: (1) 

Regardless of the ML correction or the BCH cor
rection being used, Step 3 (a) and (c) rely on obtain
ing the classification error probabilities as follows 
(Bakk et al., 2013):

P W ¼ sjX ¼ tð Þ ¼

1
N
PN

i¼1P X ¼ tjY ið Þwis

P X ¼ tð Þ
: (1) 

The BCH correction uses the elements of the 
inverse of the matrix with elements P W ¼ sjX ¼ tð Þ

(also referred to as the D−1 matrix) as weights, which 
we denote by dst: Representing the class-specific dens
ity of the outcome variable by f ZijX ¼ tð Þ, in Step 3 
(c), the ATE can be estimated by maximizing the fol
lowing pseudo-log-likelihood function:

logLIPW ¼
XN

i¼1

XT

t¼1
ipwit

XT

s¼1
dst∙wis

 !

log f ZijX ¼ tð Þ

¼
XN

i¼1

XT

t¼1
ipwit ∙w

�
it log f ZijX ¼ tð Þ

¼
XN

i¼1

XT

t¼1
w��it log f ZijX ¼ tð Þ (3) 

where w�it is the class-specify weight used in the stand
ard BCH estimation. When multiplying this weight by 
ipwit we get a new weight w��it : So, in fact, using IPW 
in a 3-step LC analysis simply involves using a modi
fied set of weights. The ATE is obtained by comparing 
the estimated expected value of Zi across latent 
classes.

As summarized in Table 1, the IPW based methods 
proposed so far differ in (1) the class assignment rule, 
(2) the correction for classification errors, and 3) the 
way propensity scores are obtained and used to con
struct IPW; that is, in the definition of wis, dst , and 
ipwit: More specifically, Schuler et al. (2014) estimate 
the LC model including only the response indicators 
and assign individuals to classes using modal 
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assignment. Hence, wis is 1 for the class with the high
est posterior membership probability and 0 for the 
other classes. Their class-specific propensity scores p̂is 
are obtained in Step 3 (a) using a naive 3-step LC 
analysis with covariates, in which classification errors 
are not accounted for. Hence, the propensity scores 
are in fact estimated using the assigned class member
ship W instead of true class membership X (Figure 
1.1) resulting in ipwis ¼ 1=p̂is: In Step 3 (c), the ATE 
is estimated with ipwis as fixed weights, without taking 
into account the classification errors. Thus, dst is an 
element of the identity matrix.

In Yamaguchi (2015), the propensity scores are 
obtained directly from Step 1 since the LC model is 
estimated using both the response variables and the 
confounders (Figure 1.2). Thus, p̂it is estimated from 
a one-step instead of a three-step approach. In Step 2, 
proportional assignment is used instead of modal 
assignment, so wis is the posterior membership proba
bilities retained from Step 1. As in Schuler et al. 
(2014), classification errors are not accounted for 
implying that the dst are the elements of the identity 
matrix.

Bray et al. (2019) address the issue of not account
ing for classification errors in Schuler et al. (2014) 
and Yamaguchi (2015). Step 1 and 2 are similar to 
Schuler et al. (2014), that is, the LC model is esti
mated using only the response indicators and modal 
assignment is used, so wis is either 1 or 0. The differ
ence in their method lies in Step 3. In Step 3 (a), the 
propensity score is obtained from a bias-adjusted 
three-step LC analysis with confounders serving as 
covariates using the BCH method to account for the 
classification errors (Figure 1.3). A generalized for
mula to estimate the propensity score was proposed as 
follows1:

p̂i ¼
XT

t¼1
P X ¼ tjCið ÞP X ¼ tjY ið Þ: (4) 

Here, the propensity score is the weighted average 
of P X ¼ tjCið Þ over all classes, with the posterior 
membership probability retained from Step 1 as 
weights. Each subject is then only assigned one pro
pensity score p̂i, and thus, one weight ipwi ¼ 1=p̂i, 
which contrary to Schuler et al. (2014) and 
Yamaguchi (2015) is no longer class-specific. In Step 

3 (c), ipwi is included as weights to estimate the ATE, 
taking into account the classification errors using the 
BCH method. Hence, dst is an element of the D−1 

matrix.

A New bias-adjusted three-step LC analysis 
using IPW

Upon reviewing the three existing methods, this paper 
proposes a new strategy. Here, we modify the final 
step of the bias-adjusted three-step LC analysis with a 
distal outcome proposed by Bakk et al. (2013) by 
including the ipwit as fixed weights. It can also be 
seen as a combination of the strengths of the other 
methods: we keep the ipwit class-specific as in Schuler 
et al. (2014) and Yamaguchi (2015) (though with dif
ferent model specifications for estimating the propen
sity score), while accounting for classification errors 
in both Step 3 (a) (obtaining propensity score) and 
Step 3 (c) (estimating the ATE) using the BCH cor
rection method as in Bray et al. (2019). Visually, our 
new method can be depicted identically to Figure 1.3. 
This section describes our strategy in detailed steps.

In Step 1, an LC model is estimated based on the 
observed indicators without confounders. In Step 2, 
subjects are assigned to classes using either propor
tional or modal assignment. In Step 3 (a), the propen
sity score is obtained from a bias-adjusted three-step 
LC analysis with covariates, using the ML correction 
method. Here, unlike in Bray et al. (2019), the ML 
method is used since it has been shown to be more 
efficient than the BCH method when the third step 
involves covariates (Vermunt, 2010). Thus, the pro
pensity scores can be estimated by maximizing the 
following log-likelihood:

log LML ¼
XN

i¼1

XT

s¼1
wislog

XT

t¼1
P X ¼ tjCið ÞP W ¼ sjX ¼ tð Þ:

(5) 

Finally, these class-specific ipwit are used as fixed 
weights when estimating the ATE by maximizing the 
pseudo log-likelihood function in Equation 3. Similar 
to Bray et al. (2019), the BCH correction is used to 
account for the classification errors, hence, dst is the 
element of the D−1 matrix. Note that robust standard 
errors should be used here for the BCH method (or 
when using proportional assignment regardless of the 
correction methods).

There is a particular reason for the choice of the 
BCH correction method in our final step. The BCH 
method transforms the data to represent the true 
classes by using weights (the inverse of the 

1Note that Bray and colleagues report Equation (4) as p̂ i ¼PT
t¼1 P X ¼ tjCið ÞP X ¼ tjY i , Cið Þ: Thus, they propose that the posterior 

class membership probabilities that are used to weight the propensity 
scores need to be updated in light of the covariates. However, in the 
provided computer code the authors use P X ¼ tjY ið Þ instead of 
P X ¼ tjY i , Cið Þ which seems to be a more reasonable approach.
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Figure 1.1. LC analysis using IPW as proposed by Schuler et al. (2014). Note that Step 3 (b): Constructing class-specific weights for 
each individual based on the inverse of the propensity scores is not shown.

Figure 1.2. LC analysis using IPW as proposed by Yamaguchi (2015). Note that Step 3 (b): Constructing class-specific weights for 
each individual based on the inverse of the propensity scores is not shown. 

Figure 1.3. LC analysis using IPW as proposed by Bray et al. (2019). Note that Step 3 (b): Constructing single weights for each 
individual based on the inverse of the propensity scores is not shown.
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classification errors), resulting in an expanded data set 
with T records per subject with classes t and weights 
w�it ¼

PT
s¼1 dst ∙wis (for a detailed explanation, see Bakk 

et al. (2013)). This expanded data set allows to link 
the class-specific ipwit to class membership in the cor
rect manner. This is not possible with the ML method 
where the LC model is estimated with the assigned 
class membership W as the single indicator and 
known error probabilities PðW ¼ sjX ¼ tÞ:
Furthermore, while the previous steps could be esti
mated using the two-step method by Bakk and Kuha 
(2018), this last step of including class specific ipwit is 
not possible in the second step of this approach.

A New bias-adjusted three-step LC analysis using 
the propensity score as covariate

As an alternative strategy to IPW, the propensity 
scores can also be included directly as control varia
bles in the regression model for the outcome variable. 
After obtaining the class-specific propensity scores p̂it 
in Step 3 (a), the final step of estimating the ATE can 
be done by maximizing the following log-likelihood 
function:

log LBCH ¼
XN

i¼1

XT

t¼1
w�it logf ZijX ¼ t, p̂itð Þ (6) 

using the BCH correction (recommended for continu
ous outcome) or:

log LML ¼
XN

i¼1

XT

s¼1
wis log

XT

t¼1
P X ¼ tð Þf ZijX ¼ t, p̂itð ÞPðW ¼ sjX ¼ tÞ

(7) 

using the ML correction (recommended for categor
ical outcome). It is important to note that this method 
requires a correct specification of the relationship 
between the distal outcome and the propensity scores. 
We recommend using a flexible regression model with 
quadratic and interaction terms or splines for the pro
pensity scores. Furthermore, as specified in Equations 
6 and 7, we assume homogeneity of the ATE across 
strata of the propensity scores. This assumption could 
be relaxed by including interaction terms between 
exposure classes and the propensity scores. It is 
important to realize that the propensity scores p̂it for 
each individual sum up to one over all classes. 
Therefore, propensity scores for only t − 1 classes 
need to be included in the model. The ATE is 
obtained by comparing the estimated marginal 
expected value of Zi across latent classes.

Simulation study

Design

A simulation study was conducted to evaluate the per
formance of our proposed strategy in comparison 
with the existing ones on three types of performance 
measures: bias of the ATE, bias of the standard errors 
(SE) of the ATE, and variation of the ATE.

The population model used is a latent class model 
with three classes for six dichotomous response indi
cators, an outcome variable Z, and two categorical 
confounders C1 (−0.5; 0.5) and C2 (−2; 1; 0; 1; 2). 
We investigated the methods’ performances for two 
types of the outcome variable: Z is binary and Z is 
continuous with normal distribution. Adopting the 
same setup from Vermunt (2010), Class 1 is most 
likely to score high on all six indicators, Class 2 scores 
high on the first three and low on the last three indi
cators, and Class 3 scores low on all indicators.

When the outcome variable is binary, the BCH 
method can run into a problem when there are 
negative cell frequencies in the X-Z frequency table. 
This prevents the results from converging. It was 
first reported in the simulation study by Bakk et al. 
(2013), where the authors decided to delete the rep
lications with the negative cell frequencies in the 
subsequent analyses. In this study, we chose to treat 
the binary outcome as continuous in the final step 
of estimating the ATE. This is possible because the 
ATE will be the same (the difference in means of Z 
or proportions of scoring “1” between two given 
classes). Furthermore, the SEs will be identical since 
we used robust SEs. The advantage of this option is 
that we will have results for all of the replications 
without convergence problems. The downside is that 
some of the replications will the have out-of-range 
estimated values for one of class-specific means of 
Z (below 0 or above 1), which we will report in 
the Result section.

We varied four factors in the simulation study: 
class separation level, sample size, confounding 
effect size, and treatment effect size. Class separation 
level and sample size have been shown to affect the 
performance of the bias-adjusted three-step LC ana
lysis with an external variable (Bakk et al., 2013; 
Vermunt, 2010). Class separation was manipulated 
via the probabilities for the most likely response. 
We chose two levels of 0.80 and 0.90, correspond
ing to a moderate (entropy R-square of 0.65) and a 
good (entropy R-square of 0.90) separation condi
tion, respectively. A good class separation is always 
ideal for the three-step approaches. The moderate 
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separation condition can be perceived as the most 
common situation but also poses some challenges 
for the three-step methods. There is no added value 
to investigate the low class separation (e.g., response 
probability of 0.70 yielding entropy R-square of 
0.36) since the three-step methods perform poorly 
in this condition (Bakk et al., 2013; Vermunt, 
2010). The sample size is varied at three levels: 500, 
1000, and 2500. The set up to manipulate the effect 
size and confounding strength was taken from 
Clouth et al. (2022). The effect of the confounders 
on the classes was modeled using the following 
logistic regression:

logit XjC1, C2ð Þ ¼ :5þ 1 � C1 þ c � C2 (8) 

with Class 1 as the reference group. The confounding 
effect was manipulated by varying the size of c ¼

½1, 2, 3� for Class 3. For Class 2, c was kept constant at 
1. Note that one could also manipulate the strength of 
confounding through the relation between the con
founders and the distal outcome Z:

For the binary outcome variable Z, the effect of the 
classes and the confounders on the outcome variable 
was modeled using logistic regression as follows

logit ZjX, C1, C2ð Þ ¼ 0þ 1 � C1 þ 1 � C2 þ 1 � X2 þ b � X3

(9) 

with Class 1 as the reference group. X2 and X3 are 
two dummy variables denoting class membership in 
Class 2 and 3, respectively. The causal effect was 
manipulated by varying the size of b ¼ ½1, 2, 3�: For 
the continuous outcome variable Z, the effect of the 
classes and the confounders on the outcome variable 
was modeled as follows

E ZjX, C1, C2ð Þ ¼ 0þ 1 � C1 þ 1 � C2 þ 1 � X2 þ b � X3:

(10) 

The residual variance of Z was fixed at 10. The 
ATEs are defined as the average difference in means 
(continuous variable) or proportion of scoring “1” 
(binary variable) of Z in Class 2 and Class 3 com
pared to Class 1 averaged over all possible values of 
C1 and C2: In total, 2 (continuous and binary Z) x 
2 (class separation levels) x 3 (effect sizes) x 3 
(confounding sizes) x 3 (sample sizes) ¼ 108 com
binations of conditions were used to simulate data, 
with 500 replications per condition. The ATEs 
resulting from this setup are presented in Table 2.

A minor change was made to the Bray et al. (2019) 
method: in Step 3 (a) (the propensity score model), 
we used the ML correction method with proportional 
assignment instead of BCH method with modal 

assignment.2 As explained above, the ML method is 
preferred to the BCH method for covariates.3

The simulation setup as described above results in 
equal sample sizes for all three classes. However, mod
els with unequal class sizes are encountered frequently 
in practice as well. Therefore, additional scenarios 
with class sizes of (1) 45%, 45%, and 10% and (2) 
80%, 10%, and 10% were investigated. Results for 
these scenarios are reported in the appendix.

All of the steps were conducted in LatentGOLD 6.1 
(Vermunt & Magidson, 2021) and results were 
imported to R (RCoreTeam, 2022) to produce tables 
and figures. Three new options were implemented in 
LatentGOLD 6.1 to facilitate the procedure of the 
bias-adjusted three-step LC analysis with IPW. First, 
the Bray et al. (2019) method can now be easily car
ried out by specifying the option ‘bray’ in ‘step 30. 
Second, the ‘propensity¼( … .)’ option was added to 
include the inverse of the estimated propensity scores 
as fixed weights in the last step. Third, an option was 
added to help speed up the simulation process in 
batch mode. Detailed code is available on GitHub 
(https://github.com/trale97/LCAdistaloutcomeIPW).

Results

Results of all simulation scenarios can be explored 
interactively using the R shiny app https://trale.shi
nyapps.io/lcasim/. As results are very similar for Class 
2 and Class 3, we will only be reporting results for 
Class 3. Furthermore, we will only be reporting results 
for moderate class separation as this corresponds to a 
more realistic scenario. Results for good class separ
ation are reported in Appendix 1. Figures 2 and 3 dis
play the bias of the ATE estimates for the binary and 
continuous outcome variables averaged across 500 
replications. Larger confounding and larger effect size 
seem to slightly increase bias. For sample size, there is 

Table 2. ATEs of the population model for varying effect 
sizes b:

Binary Z Continuous Z

Class 2 Class 3 Class 2 Class 3

b ¼ 1 0.164 0.164 1 1
b ¼ 2 0.164 0.304 1 2
b ¼ 3 0.164 0.402 1 3

2According to their provided computer codes, it appeared that the ML 
method was used instead of the BCH method (option ‘AUXILIARY ¼
(R3STEP)’ in Mplus).
3Furthermore, we tested the Bray et al. (2019) method with both the 
proportional and modal assignment in the final step. However, there is 
almost no difference in all three performance measures and modal 
assignment will be the focus for reporting results.
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no general pattern observable. For the binary outcome 
variable, both of our newly proposed methods as well 
as the method by Bray et al. (2019) perform well with 
the new IPW method slightly overestimating the ATE 
and the new propensity scores as covariates method 
and Bray et al. (2019) method slightly underestimating 
the ATE. Unsurprisingly, the methods by Schuler 
et al. (2014) and Yamaguchi (2015) are consistently 
more biased. For the continuous outcome variable, we 
observe essentially similar results. However, for a large 
sample size of N ¼ 2500, both of our newly proposed 
methods show almost no bias clearly outperforming 
the other methods.

Figures 4 and 5 present the SD of the estimated 
ATE for the binary and continuous outcome variables, 
respectively. Increasing confounding seems to slightly 
increase the SD but effect size does not seem to affect 
the SD. For both, binary and continuous outcome var
iables, our newly proposed 3-Step IPW method is 
consistently outperformed.

Figures A1 and A2 (see Appendix) present the bias 
of SE for the binary and continuous outcome variable, 
respectively. None of the methods clearly outperforms 
the other methods in terms of bias of SE. For both, 
binary and continuous outcomes, the bias of SE 
decreases for larger sample sizes.

For some conditions with moderate class separation, 
our new 3-Step IPW method did not converge in all 
replications. Replications for which this was the case 
were not considered for summarizing the results. 
Tables A1 and A2 in the Appendix summarize the 
number of replications per condition for which the 
3-Step IPW method did not converge. As can be seen, 
the condition with a strong confounding effect in com
bination with a small sample size is most problematic.

Real-Life example using data from the LISS 
panel

In this section, we illustrate our two newly proposed 
methods to investigate the relationship between mental 

Figure 2. Results for the bias of the ATE for the binary distal outcome variable and moderate class separation. The bias is pre
sented for varying levels of effect size, strength of the confounding effect, and sample size. Results are averaged over 500 
replications.
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health and unemployment. Poor mental health and 
depression are leading contributors to the global burden 
of disease (L�epine & Briley, 2011) and key factors of 
economical productivity (Layard, 2013). Furthermore, 
poor mental health has been linked to lower levels of 
economic activity, lower earnings, more difficulties in 
both finding and retaining employment, and reduced 
financial security (Bubonya et al., 2019).

Data

In this paper we make use of data of the LISS 
(Longitudinal Internet studies for the Social Sciences) 
panel administered by Centerdata (Tilburg University, 
The Netherlands). The LISS panel is a representative 
sample of Dutch individuals who participate in 
monthly internet surveys. The panel is based on a 
true probability sample of households drawn from the 
population register. Households that could not other
wise participate are provided with a computer and 

internet connection. A longitudinal survey is fielded 
in the panel every year, covering a large variety of 
domains including health, work, education, income, 
housing, time use, political views, values and personal
ity. More information about the LISS panel can be 
found at: www.lissdata.nl.

We used data from the 2021 wave of the LISS core 
study and excluded participants outside the labor force, 
that is, attending an educational program or being 
retired, resulting in a sample of 3567 participants. For 
some of the participants, the data contained missing 
values. While missing values on the indicators are 
addressed in LCA by using full-information maximum 
likelihood estimation, missing values on the confounders 
need to be imputed, preferably by multiple imputation. 
As this example data analysis serves an illustrative pur
pose, we decided to perform a single set of imputation 
using MICE (Van Buuren & Groothuis-Oudshoorn, 
2011) and treating the data as fully observed for our 
analysis.

Figure 3. Results for the bias of the ATE for the continuous distal outcome variable and moderate class separation. The bias is 
presented for varying levels of effect size, strength of the confounding effect, and sample size. Results are averaged over 500 
replications.
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Measures

Outcome
The outcome in our study is employment status. 
“Being employed” is defined as conducting work for 
pay, either as an employee, self-employed professional, 
or assisting in a family business. “Being unemployed” 
is further defined as not conducting work for pay. 
This includes participants who performed unpaid 
(voluntary) work or care. Participants who were too 
young to perform any work for pay or who attended 
an educational program and individuals who reached 
retirement were excluded from the sample.

Exposure
Here, we consider “mental health” as exposure. 
Specifically, mental health is defined as the latent 
classes that are identified in the first step of the LC 
analysis based on the observed indicators “I felt very 
anxious”, “I felt so down that nothing could cheer me 
up”, “I felt calm and peaceful”, “I felt depressed and 

gloomy”, and “I felt happy”. All items were scored on 
a six point Likert scale ranging from “never” to 
“continuously”.

Confounders
Furthermore, we identified the variables age, gender, 
subjective general physical health, household status, 
gross household income, education, and origin as 
confounders of the mental health—employment 
relationship.

Results

Step 1: Measurement model
Based on the Bayesian Information Criterium (BIC), 
Akaike Information Criterium (AIC), and maximum 
bivariate residual (BVR; Table 3), we selected a LC 
model with three classes. Note that with large sample 
sizes, these information criteria tend to decrease even 
for large numbers of classes. Here, we deemed the 
reduction in BIC, AIC, and BVR to not be substantial 

Figure 4. Results for the standard deviation (SD) of the ATE for the binary distal outcome variable and moderate class separation. 
The bias is presented for varying levels of effect size, strength of the confounding effect, and sample size. Results are averaged 
over 500 replications.
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enough for justifying four classes. Class 1 (44.4%) is 
characterized by slightly elevated levels on all indica
tors and is labeled “slightly elevated mental health 
problems” (Figure 6). Class 2 (36.9%) is characterized 
by good to very good values on all indicators and is 
labeled “good mental health”. Note that for the indica
tors “feel calm” and “feel happy”, the scales are 
inverted so that low scores correspond to good values. 
Class 3 (18.7%) is characterized by high values on all 

indicators and is labeled as “poor mental health”. In 
all three states, scores on the items “feel calm” and 
“feel happy” were slightly elevated.

Step 3 (a): IPW diagnostics
One important assumption for identifying the 
ATE when using IPW is positivity. Positivity refers to 
individuals in the different exposure groups having 
non-zero probabilities of membership in the other 
exposure groups (Hern�an & Robins, 2006). When 
using propensity score methods, this assumption can 
be assessed by inspecting the overlap of propensity 
scores of the different exposure groups (Austin, 2011). 
Here, the exposure groups refer to the latent classes 
identified in Step 1. As can be seen in Figure 7, there 
is sufficient overlap of propensity scores in the LISS 
data. Furthermore, to identify the ATE, exchangeabil
ity is required. While there is no possibility of assess
ing exchangeability, we can check if our propensity 
score model correctly adjusts for the measured 

Figure 5. Results for the standard deviation (SD) of the ATE for the continuous distal outcome variable and moderate class separ
ation. The bias is presented for varying levels of effect size, strength of the confounding effect, and sample size. Results are aver
aged over 500 replications.

Table 3. Goodness of Fit statistics. Log-likelihood values, 
Bayesian Information Criterium (BIC), Akaike Information 
Criterium (AIC), and maximum bivariate residual (BVR) values 
are presented for models with 1 – 5 classes. The selected 
solution is highlighted.

Log-likelihood BIC AIC Max. BVR

1 Class −23860.0 47944.4 47789.9 3656.9
2 Classes −20842.6 41938.8 41747.2 574.5
3 Classes 219984.3 40271.3 40042.6 214.5
4 Classes −19699.8 39751.4 39485.7 149.0
5 Classes −19555.3 39511.4 39208.6 102.9

MULTIVARIATE BEHAVIORAL RESEARCH 41



confounders. This can be investigated by assessing 
balance on the confounders between the exposure 
groups after weighting (Austin, 2011). As presented in 
Table 4, there are no significant differences in the 
confounders between the three latent classes indicat
ing sufficient balance.

Step 3 (c): ATE
Table 5 shows the estimated probabilities of employ
ment status for the three latent classes. As can be 
seen, both the IPW and the propensity score as cova
riate method estimate only minor differences in 
employment status between the classes. In detail, 

Figure 6. Composition of the latent classes as estimated in the Step 1 of the bias-adjusted three step LC analysis. Class specific 
average scores are presented for all five observed indicators.

Figure 7. Overlap of the propensity scores for the three latent classes (exposure groups).
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according to the IPW method, individuals in class 2 
have a 5.0% higher probability (CI ¼ [−4.0%; 14.0%]) 
and individuals in class 3 have a 0.9% lower probabil
ity (CI ¼ [−8.3%; 6.5%]) of being unemployed com
pared to individuals in class 1. According to the 
propensity score as covariate method, individuals in 
class 2 have a 0.03% higher probability (CI ¼ [−3.5%; 
3.5%]) and individuals in class 3 have a 0.7% 
higher probability (CI ¼ [−3.8%; 5.1%]) of being 
unemployed compared to individuals in class 1. In 
contrast, the naive approach that does not account for 
confounding shows a significant effect of class mem
bership in class 3 on employment status. Individuals 
in class 2 have a 0.05% lower probability (CI ¼
[−3.5%; 3.4%]) and individuals in class 3 have a 
15.5% higher probability (CI ¼ [10.8%; 20.3%]) of 
being unemployed compared to individuals in class 1.

Discussion

In this paper, we presented two novel approaches utiliz
ing propensity scores for three-step bias adjusted LC 

analysis with distal outcomes. In the first approach, 
class-specific weights based on the inverse of the pro
pensity scores are included in the estimation of the 
third step of three-step bias adjusted LC analysis. In the 
second approach, the propensity scores are used directly 
as covariates in the third step. Specifically the first 
approach solves some of the shortcomings of previously 
proposed methods by Schuler et al. (2014), Yamaguchi 
(2015), and Bray et al. (2019) by allowing class-specific 
weights while accounting for classification errors. In a 
simulation study, we showed that both Schuler et al. 
(2014) and Yamaguchi (2015) estimate the ATE with 
substantial bias. This is not surprising since for both 
methods, classification errors were not accounted for in 
the third step. In contrast, Bray et al. (2019) and our 
two newly proposed methods estimate the ATE without 
substantial bias. However, our IPW based approach has 
substantially larger standard errors. While IPW is 
known for producing larger standard errors in some 
occasions, it seems like implementing IPW in the third 
step of three-step bias adjusted LC analysis intensifies 
the problem. The propensity score as covariate methods 

Table 4. Descriptive statistics for the confounders used to estimate the propensity scores after 
weighting. Unless otherwise specified, marginal differences in probabilities/means [CI] are presented.

Class 2 Class 3

Job
Unemployed 0.033 [−0.057; 0.122] −0.016 [−0.090; 0.057]
Employed −0.033 [−0.122; 0.057] 0.016 [−0.057; 0.090]

Gender
Female 0.010 [−0.064; 0.084] 0.013 [−0.081; 0.106]
Male −0.010 [−0.084; 0.064] −0.013 [−0.106; 0.081]
Age −2.117 [−4.485; 0.250] −1.392 [−4.073; 1.289]

Household Status
Never been married 0.043 [−0.037; 0.124] −0.048 [−0.125; 0.028]
Married −0.050 [−0.124; 0.025] 0.020 [−0.074; 0.113]
Separated 0.009 [−0.010; 0.028] 0.004 [−0.004; 0.013]
Divorced 0.003 [−0.056; 0.062] 0.004 [−0.047; 0.056]
Widowed −0.006 [−0.022; 0.010] 0.020 [−0.031; 0.071]

Household Income −6907.4 [−16384.2; 2569.4] −6926.5 [−15590.2; 1737.2]
Education

Primary school 0.014 [−0.025; 0.054] −0.008 [−0.030; 0.014]
Vmbo 0.012 [−0.058; 0.082] −0.002 [−0.070; 0.065]
Havo/Vwo −0.017 [−0.044; 0.010] −0.014 [−0.069; 0.042]
Mbo −0.009 [−0.072; 0.055] 0.040 [−0.047; 0.127]
Hbo −0.004 [−0.073; 0.066] −0.010 [−0.099; 0.080]
Wo 0.003 [−0.047; 0.052] −0.006 [−0.071; 0.058]

Origin
Dutch −0.026 [−0.115; 0.063] −0.009 [−0.080; 0.062]
First Gen. non-West 0.019 [−0.052; 0.090] 0.002 [−0.048; 0.051]
First Gen. West −0.005 [−0.039; 0.028] −0.001 [−0.032; 0.030]
Second Gen. non-West 0.001 [−0.041; 0.043] −0.006 [−0.028; 0.016]
Second Gen. West 0.011 [−0.047; 0.070] 0.015 [−0.025; 0.054]

Health −0.106 [−0.321; 0.110] 0.142 [−0.083; 0.366]

Table 5. Probabilities of employment status conditional on class membership. Estimates for the naive approach without adjust
ment, our newly proposed IPW method, and the propensity score as covariate method are presented.

Naive approach IPW PS as covariate
Unemployed Employed Unemployed Employed Unemployed Employed

Class 1 0.222 0.778 0.263 0.737 0.249 0.751
Class 2 0.221 0.779 0.313 0.687 0.250 0.750
Class 3 0.377 0.623 0.254 0.746 0.256 0.744

MULTIVARIATE BEHAVIORAL RESEARCH 43



does not have this problem, however, it is considerably 
less flexible than the IPW method. That is, while in the 
IPW method, the ATE can be estimated by simply 
including the latent classes and the weights in the third 
step, the propensity score as covariate method requires 
the correct specification of this third step. I.e., one 
might need to include quadratic terms of the propensity 
scores or splines to estimate the ATE without bias. 
Furthermore, the propensity score as covariate method 
assumes homogeneity of the treatment effect across 
strata of the propensity scores. This assumption might 
be unreasonable in practice and can be relaxed by 
including interaction terms between the treatment vari
able and the class-specific propensity scores in the 
model. Whether the flexibility of the IPW approach in 
comparison to the propensity score as covariate 
approach outweighs its relative inefficiency can not be 
determined generally but depends on the individual use 
case, for instance, available sample size.

An additional problem with the IPW approach can 
arise when there are extreme weights. Extreme weights 
are a well known problem of IPW based methods. 
However, our newly proposed three-step method using 
the BCH correction amplifies this problem as, for some 
individuals, extreme IPW weights are multiplied with 
extreme BCH weights. In some cases, these new 
weights can become so extreme that they cause conver
gence problems. Especially with increasing numbers of 
classes, propensity scores might become extremely small 
as class membership in some of the more extreme 
classes is very unlikely for some individuals. 
Intentionally or not, Bray et al. (2019) solve this issue 
by averaging the IPW weights over all classes for each 
individual. However, this is not a common approach 
and it has not been investigated how this approach per
forms, e.g., regarding its balancing properties. More 
traditionally, this problem is addressed by truncating 
the IPW weights (or propensity scores) (Cole & 
Hern�an, 2008). For instance, individuals with weights 
larger than the 99% percentile might be assigned the 
weight of the 99% percentile. An alternative approach 
to truncating would be the use of Bayesian shrinkage 
priors on the multinomial logistic regression coefficients 
in the third step. Such priors force positivity on the 
class definitions by preventing the posterior class mem
bership probabilities to take on values close to zero. 
While both, truncating and utilizing shrinkage priors 
might solve the convergence problems, they come at 
the cost of worsening balance. To this point, it remains 
an open question how feasible it is to achieve sufficient 
balance with larger numbers of classes, as in this case, 
weights might need to be truncated to a larger degree.

As has been shown in this study, the use of IPW 
weights for exposures that are latent requires a 
stepwise analysis approach. All methods presented, 
Schuler et al. (2014), Yamaguchi (2015), Bray et al. 
(2019), as well as our two newly proposed methods 
utilize a three-step approach of (1) estimating a meas
urement model, (2) classifying individuals, and (3) 
estimating structural models for propensity scores and 
ATEs. While these models vary in their specifications 
of the propensity scores and the correction methods 
used in the third step, they all follow this general 
framework. However, there is an alternative stepwise 
approach for relating auxiliary variables to the latent 
classes, the two-step method (Bakk & Kuha, 2018). 
Similar to the three-step method, in the first step, a 
measurement model including only the indicator vari
ables is estimated. However, the structural model is 
then estimated in a second step where a full model is 
specified including indicator variables and covariates 
or distal outcomes. Crucially, in this structural model, 
parameters for the item response probabilities are 
fixed to the values that were estimated in the first 
step. As such, the two-step method does not require a 
classification step and, as a consequence, a correction 
for misclassifications. Generally, the two-step method 
can be used whenever the three-step method is appro
priate. However, for the IPW method proposed in this 
study, we exploit the fact that the BCH correction 
extends the dataset with one record per class per 
observation facilitating the use of multiple weights per 
observation. This procedure is only possible with the 
BCH correction and the two-step approach can there
fore not be utilized. For our second method of using 
the propensity score directly as covariates in the struc
tural model, the two-step approach could be used.

The identification of the ATE relies on the assump
tion of positivity. Using IPW based methods, this is 
usually checked by assessing overlap of the propensity 
scores between the exposure groups. Here, this would 
mean assessing overlap of the propensity scores 
between the assigned classes. However, this seems to 
be unreasonable considering that there might not be 
any hard partitioning and every individual is receiving 
multiple propensity scores. In this study, we presented 
the overlap of all propensity scores for all individuals 
to assess balance. However, one might argue that posi
tivity is already violated if a single individual has a 
close to zero probability of class membership in any 
class. Again, this becomes increasingly likely with 
increasing number of classes. To this point, it remains 
an open question how to best assess the assumption of 
positivity when using bias-adjusted three-step LC 
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analysis. Furthermore, the identification of the ATE 
relies on the assumption of exchangeability or no 
unmeasured confounding. While it is impossible to 
show that no unmeasured confounding is present, it is 
possible to investigate if confounding due to measured 
confounders is accounted for correctly. I.e., the correct 
specification of the propensity score model can be 
assessed by checking balance between the latent classes 
after weighting. However, using bias-adjusted three- 
step LC analysis, this is not a straightforward task. As 
balance needs to be assessed for true class membership 
X rather than assigned class membership W, this can
not be done as usual, for instance, using the survey or 
tableone packages in R. Rather, an additional third step 
of bias-adjusted three-step LC analysis needs to be esti
mated with all measured confounders as distal out
comes of the latent classes using the BCH correction. 
Then, balance is achieved if the parameter estimates of 
this model are non-significant.

More generally, considering latent variables as expo
sures in causal inference is not without criticism. For 
instance, VanderWeele (2022) questions the causal effi
cacy of latent variables. He argues that the potential 
outcomes under the different exposures are not well- 
defined as latent variables almost never resemble a 
unidimensional exposure. That is, class membership in 
one of the mental health classes as identified in this 
study might reflect different sets of scores on the 
underlying indicator variables. Class membership 
therefore does not reflect exactly the same version of 
this exposure resulting in a less well defined estimand 
for the causal effect. To account for this, VanderWeele 
(2022) proposes a new model of measurement based 
on the theory for causal inference under multiple ver
sions of treatment. It remains a topic for future 
research how bias-adjusted three-step LC analysis can 
be implemented in this framework. However, this issue 
is not exclusive for latent variables but for most expo
sures in the social sciences. Careful consideration 
about loosening the definition of the same version of 
exposure and accepting less precisely defined causal 
effects is warranted (Kaufman, 2019).

Conclusion

Bias-adjusted three step LC analysis is a popular tool 
for estimating the effect of class membership on distal 
outcomes. Here, we proposed two extensions based on 
the propensity score to adjust for confounding and 
estimate the ATE, i.e., bias-adjusted three step LC ana
lysis using IPW and bias-adjusted three step LC ana
lysis using the propensity scores as covariates. While 

both methods perform well in terms of bias, the IPW 
approach is less efficient and can run into convergence 
issues when the distal outcome is discrete. We recom
mend the use of bias-adjusted three step LC analysis 
with IPW for continuous distal outcomes with larger 
sample sizes and the use of bias-adjusted three step LC 
analysis with the propensity scores as covariates for 
discrete distal outcomes. Both options are implemented 
in the statistical software program LatentGOLD 6.1.

Article Information

Conflict of interest disclosures: Each author signed a form 
for disclosure of potential conflicts of interest. No authors 
reported any financial or other conflicts of interest in rela
tion to the work described.

Ethical principles: The authors affirm having followed pro
fessional ethical guidelines in preparing this work. These 
guidelines include obtaining informed consent from human 
participants, maintaining ethical treatment and respect for 
the rights of human or animal participants, and ensuring 
the privacy of participants and their data, such as ensuring 
that individual participants cannot be identified in reported 
results or from publicly available original or archival data.

Funding: This work was supported by Grant 628.001.030 
from The Netherlands Organisation for Scientific 
Research (NWO).

Role of the funders/sponsors: None of the funders or 
sponsors of this research had any role in the design and 
conduct of the study; collection, management, analysis, and 
interpretation of data; preparation, review, or approval of 
the manuscript; or decision to submit the manuscript for 
publication.

References

Austin, P. C. (2011). An introduction to propensity score 
methods for reducing the effects of confounding in obser
vational studies. Multivariate Behavioral Research, 46(3), 
399–424. https://doi.org/10.1080/00273171.2011.568786

Bakk, Z., & Kuha, J. (2018). Two-step estimation of models 
between latent classes and external variables. 
Psychometrika, 83(4), 871–892. https://doi.org/10.1007/ 
s11336-017-9592-7

MULTIVARIATE BEHAVIORAL RESEARCH 45



Bakk, Z., Tekle, F. B., & Vermunt, J. K. (2013). Estimating 
the association between latent class membership and 
external variables using bias-adjusted three-step 
approaches. Sociological Methodology, 43(1), 272–311. 
https://doi.org/10.1177/0081175012470644

Bandeen-Roche, K., Miglioretti, D. L., Zeger, S. L., & 
Rathouz, P. J. (1997). Latent variable regression for mul
tiple discrete outcomes. Journal of the American 
Statistical Association, 92(440), 1375–1386. https://doi. 
org/10.1080/01621459.1997.10473658

Bolck, A., Croon, M., & Hagenaars, J. (2004). Estimating 
latent structure models with categorical variables: One- 
step versus three-step estimators. Political Analysis, 12(1), 
3–27. https://doi.org/10.1093/pan/mph001

Bray, B. C., Dziak, J. J., Patrick, M. E., & Lanza, S. T. 
(2019). Inverse propensity score weighting with a latent 
class exposure: Estimating the causal effect of reported 
reasons for alcohol use on problem alcohol use 16 years 
later. Prevention Science: The Official Journal of the 
Society for Prevention Research, 20(3), 394–406. https:// 
doi.org/10.1007/s11121-018-0883-8

Bubonya, M., Cobb-Clark, D. A., & Ribar, D. C. (2019). 
The reciprocal relationship between depressive symptoms 
and employment status. Economics and Human Biology, 
35, 96–106. https://doi.org/10.1016/j.ehb.2019.05.002

Clouth, F. J., Pauws, S., Mols, F., & Vermunt, J. K. (2022). 
A new three-step method for using inverse propensity 
weighting with latent class analysis. Advances in Data 
Analysis and Classification, 16(2), 351–371. https://doi. 
org/10.1007/s11634-021-00456-5

Cole, S. R., & Hern�an, M. A. (2008). Constructing inverse 
probability weights for marginal structural models. 
American Journal of Epidemiology, 168(6), 656–664. 
https://doi.org/10.1093/aje/kwn164

Dalmartello, M., Vermunt, J., Parazzini, F., Serraino, D., 
Giacosa, A., Crispo, A., Negri, E., Levi, F., Pelucchi, C., & 
La Vecchia, C. (2022). Comorbidity patterns, family his
tory and breast cancer risk: A latent class analysis. 
Journal of Epidemiology and Community Health, 76(10), 
867–872. https://doi.org/10.1136/jech-2022-219279

Dayton, C. M., & Macready, G. B. (1988). Concomitant- 
variable latent-class models. Journal of the American 
Statistical Association, 83(401), 173–178. https://doi.org/ 
10.1080/01621459.1988.10478584

Goodman, L. A. (1974). Exploratory latent structure analysis 
using both identifiable and unidentifiable models. 
Biometrika, 61(2), 215–231. https://doi.org/10.1093/bio
met/61.2.215

Hern�an, M. A., & Robins, J. M. (2006). Estimating causal 
effects from epidemiological data. Journal of Epidemiology 
and Community Health, 60(7), 578–586. https://doi.org/ 
10.1136/jech.2004.029496

Imbens, G. W. (2004). Nonparametric estimation of average 
treatment effects under exogeneity: A review. Review of 
Economics and Statistics, 86(1), 4–29. https://doi.org/10. 
1162/003465304323023651

Kamakura, W. A., Wedel, M., & Agrawal, J. (1994). 
Concomitant variable latent class models for the external 
analysis of choice data. International Journal of Marketing 
Research, 11(5), 451–464. https://doi.org/10.1016/0167- 
8116(94)00004-2

Kaufman, J. S. (2019). Commentary: Causal inference for social 
exposures. Annual Review of Public Health, 40(1), 7–21. 
https://doi.org/10.1146/annurev-publhealth-040218-043735

Layard, R. (2013). Mental health: The new frontier for 
labour economics. IZA Journal of Labor Policy, 2(1), 
1–16. https://doi.org/10.1186/2193-9004-2-2

Lazarsfeld, P. F., & Henry, N. W. (1968). Latent structure 
analysis. Houghton Mill.

L�epine, J.-P., & Briley, M. (2011). The increasing burden of 
depression. Neuropsychiatric Disease and Treatment, 
7(Suppl 1), 3–7. https://doi.org/10.2147/NDT.S19617

McCaffrey, D. F., Griffin, B. A., Almirall, D., Slaughter, 
M. E., Ramchand, R., & Burgette, L. F. (2013). A tutorial 
on propensity score estimation for multiple treatments 
using generalized boosted models. Statistics in Medicine, 
32(19), 3388–3414. https://doi.org/10.1002/sim.5753

RCoreTeam (2022). R: A language and environment for stat
istical computing. RFoundation for Statistical Computing. 
https://www.r-project.org/.

Robins, J. M., Hern�an, M., & Brumback, B. (2000). 
Marginal structural models and causal Inference in epi
demiology. Epidemiology , 11(5), 550–560. https://doi.org/ 
10.1097/00001648-200009000-00011

Robins, J. M., Rotnitzky, A., & Zhao, L. P. (1994). 
Estimation of regression coefficients when some regres
sors are not always observed. Journal of the American 
Statistical Association, 89(427), 846–866. https://doi.org/ 
10.1080/01621459.1994.10476818

Rosenbaum, P. R., & Rubin, D. B. (1983). The central role 
of the propensity score in observational studies for causal 
effects. Biometrika, 70(1), 41–55. https://doi.org/10.1093/ 
biomet/70.1.41

Schmitter, M., Vermunt, J., Blaauw, E., & Bogaerts, S. 
(2021). Risk classes of patients diagnosed with substance 
use disorders in Dutch forensic psychiatric centers. The 
Journal of Forensic Practice, 23(1), 39–52. https://doi.org/ 
10.1108/JFP-08-2020-0036

Schuler, M. S., Leoutsakos, J. S., & Stuart, E. A. (2014). 
Addressing confounding when estimating the effects of 
latent classes on a distal outcome. Health Services & 
Outcomes Research Methodology, 14(4), 232–254. https:// 
doi.org/10.1007/s10742-014-0122-0

Van Buuren, S., & Groothuis-Oudshoorn, K. (2011). Mice: 
multivariate imputation by chained equations in R. 
Journal of Statistical Software, 45(3), 1–67. http://www. 
jstatsoft.org/ https://doi.org/10.18637/jss.v045.i03

VanderWeele, T. J. (2022). Constructed measures and causal 
inference: Towards a new model of measurement for psy
chosocial constructs. Epidemiology, 33(1), 141–151. 
https://doi.org/10.1097/EDE.0000000000001434

Vermunt, J. K. (2010). Latent class modeling with covariates: 
Two improved three-step approaches. Political Analysis, 
18(4), 450–469. https://doi.org/10.1093/pan/mpq025

Vermunt, J. K., & Magidson, J. (2004). Latent class analysis. 
In D. Kaplan (Ed.), The Sage Handbook of Quantitative 
Methodology for the Social Sciences. (pp. 175–198) Sage 
Publications.

Vermunt, J. K., Magidson, J. (2021). LG-Syntax User’s 
Guide: Manual for Latent GOLD Syntax Module Version 
6.0. http://www.statisticalinnovations.com

46 T. T. LÊ ET AL.



Yamaguchi, K. (2000). Multinomial logit latent-class regres
sion models: An analysis of the predictors of gender-role 
attitudes among Japanese women. American Journal 
of Sociology, 105(6), 1702–1740. https://doi.org/10.1086/ 
210470

Yamaguchi, K. (2015). Extensions of Rubin’s Causal Model 
for a Latent-Class Treatment Variable: An analysis of the 
effects of employers’ work-life balance policies on women’s 
income attainment in Japan. (RIETI Discussion Paper 
Series 15–E090 Issue.

Appendix

Figure A1. Results for the bias of the standard error (SE) of the ATE for the binary distal outcome variable and moderate class sep
aration. The bias is presented for varying levels of effect size, strength of the confounding effect, and sample size. Results are aver
aged over 500 replications.
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Figure A2. Results for the bias of the standard error (SE) of the ATE for the continuous distal outcome variable and moderate class 
separation. The bias is presented for varying levels of effect size, strength of the confounding effect, and sample size. Results are 
averaged over 500 replications.
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Figure A3. Results for the bias of the ATE for the binary distal outcome variable and good class separation. The bias is presented 
for varying levels of effect size, strength of the confounding effect, and sample size. Results are averaged over 500 replications.
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Figure A4. Results for the bias of the ATE for the continuous distal outcome variable and good class separation. The bias is presented 
for varying levels of effect size, strength of the confounding effect, and sample size. Results are averaged over 500 replications.
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Figure A5. Results for the standard deviation (SD) of the ATE for the binary distal outcome variable and good class separation. 
The bias is presented for varying levels of effect size, strength of the confounding effect, and sample size. Results are averaged 
over 500 replications.
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Figure A6. Results for the standard deviation (SD) of the ATE for the continuous distal outcome variable and good class 
separation. The bias is presented for varying levels of effect size, strength of the confounding effect, and sample size. Results are 
averaged over 500 replications.
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Figure A7. Results for the bias of the standard error (SE) of the ATE for the binary distal outcome variable and good class 
separation. The bias is presented for varying levels of effect size, strength of the confounding effect, and sample size. Results are 
averaged over 500 replications.
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Figure A8. Results for the bias of the standard error (SE) of the ATE for the continuous distal outcome variable and good class 
separation. The bias is presented for varying levels of effect size, strength of the confounding effect, and sample size. Results are 
averaged over 500 replications.
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Figure A9. Results for the bias of the ATE for the binary distal outcome variable and good class separation. The bias is presented 
for varying levels of class size difference, strength of the confounding effect, and sample size. Results are averaged over 500 
replications.
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Figure A10. Results for the bias of the ATE for the continuous distal outcome variable and good class separation. The bias is pre
sented for varying levels of class size difference, strength of the confounding effect, and sample size. Results are averaged over 
500 replications.
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Figure A11. Results for the standard deviation (SD) of the ATE for the binary distal outcome variable and good class separation. The 
bias is presented for varying levels of class size difference, strength of the confounding effect, and sample size. Results are averaged 
over 500 replications.
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Figure A12. Results for the standard deviation (SD) of the ATE for the continuous distal outcome variable and good class 
separation. The bias is presented for varying levels of class size difference, strength of the confounding effect, and sample size. 
Results are averaged over 500 replications.
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Figure A13. Results for the bias of the standard error (SE) of the ATE for the binary distal outcome variable and good class 
separation. The bias is presented for varying levels of class size difference, strength of the confounding effect, and sample size. 
Results are averaged over 500 replications.
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Figure A14. Results for the bias of the standard error (SE) of the ATE for the continuous distal outcome variable and good class 
separation. The bias is presented for varying levels of class size difference, strength of the confounding effect, and sample size. 
Results are averaged over 500 replications.

Table A1. Number of replications in the moderate class separ
ation condition with a binary outcome for which the new 3- 
Step IPW method did not converge.
Sample Size Confounding Strength Effect Size Number of Replications

500 1 1 4
500 1 2 8
500 1 3 2
500 2 1 7
500 2 2 6
500 2 3 8
500 3 1 13
500 3 2 15
500 3 3 16
1000 1 2 1
1000 1 3 1
1000 2 3 1
1000 3 2 2
1000 3 3 3

Table A2. Number of replications in the moderate class separ
ation condition with a continuous outcome for which the new 
3-Step IPW method did not converge.
Sample size Confounding strength Effect size Number of replications

500 1 1 7
500 1 2 3
500 1 3 4
500 2 1 7
500 2 2 10
500 2 3 8
500 3 1 18
500 3 2 9
500 3 3 21
1000 1 3 1
1000 2 3 1
1000 3 1 3
1000 3 2 1
1000 3 3 3
2500 3 3 1
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