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ABSTRACT
In a cluster randomized trial clusters of persons, for instance, schools or health centers, are
assigned to treatments, and all persons in the same cluster get the same treatment.
Although less powerful than individual randomization, cluster randomization is a good alter-
native if individual randomization is impossible or leads to severe treatment contamination
(carry-over). Focusing on cluster randomized trials with a pretest and post-test of a quantita-
tive outcome, this paper shows the equivalence of four methods of analysis: a three-level
mixed (multilevel) regression for repeated measures with as levels cluster, person, and time,
and allowing for unstructured between-cluster and within-cluster covariance matrices; a two-
level mixed regression with as levels cluster and person, using change from baseline as out-
come; a two-level mixed regression with as levels cluster and time, using cluster means as
data; a one-level analysis of cluster means of change from baseline. Subsequently, similar
equivalences are shown between a constrained mixed model and methods using the pretest
as covariate. All methods are also compared on a cluster randomized trial on mental health
in children. From these equivalences follows a simple method to calculate the sample size for
a cluster randomized trial with baseline measurement, which is demonstrated step-by-step.
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Introduction

The effect of a new treatment on some quantitative
health or educational outcome, for instance, the total
score on a clinical questionnaire for depression or on
a mathematical skills test, is usually evaluated with a
“pretest-posttest control group design.” So, the out-
come is measured before and after treatment on each
participant in the treated group and in the control
group. Randomized treatment assignment, also known
as the randomized clinical trial (RCT), is seen as the
golden standard for causal inference, but it is not
always feasible. For instance, to compare different
methods of classroom teaching, classes, but not indi-
vidual students, can be randomized. Similarly, the
effect of a health promotion program for smoking
prevention or healthy food can be assessed by ran-
domizing communities (towns, schools), but usually
not individuals. Further, even if individual randomiza-
tion is possible, it may lead to treatment contamin-
ation, that is, to carry-over of treatment components

into the control group, by communication between
treated and controls. A similar contamination risk
exists when comparing two psychotherapies and ran-
domizing individual patients instead of therapists or
health centers. For these reasons, cluster randomized
trials (Donner & Klar, 2000; Hayes & Moulton, 2009),
also known as group randomized trials (Murray,
1998), are frequently encountered in psychology, edu-
cation, and health research. In such trials, a large
number of natural groups or clusters, such as schools,
communities, and health centers, are randomly
assigned to treatment or control, and all persons in
the same cluster get the same treatment. Recent clus-
ter randomized trials (CRTs) in psychology are found
in, among others, the Journal of Consulting and
Clinical Psychology (Conner et al., 2019; Crane et al.,
2019; Felder et al., 2017; Haug et al., 2017; Morgan
et al., 2018; Valente et al., 2018), the Journal of
Educational Psychology (Herman et al., 2022; Olive
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et al., 2019; Savage et al., 2013), and Health Pychology
(Donenberg et al., 2018; Ho et al., 2020).

A CRT is less powerful than an RCT due to out-
come variation between clusters as expressed by the
intraclass correlation (ICC), the proportion of the total
(unexplained by predictors) outcome variance that is
between as opposed to within clusters. Even a small
ICC can make the sampling variance of the treatment
effect twice as large as in an RCT, and this effect of
the ICC is known as the design effect. On the other
hand, treatment contamination in an RCT with indi-
vidual randomization reduces the treatment effect and
thereby also the power of the trial (for technical
details and a discussion of when to prefer a CRT to
an RCT, see e.g., Hemming et al., 2021; Moerbeek,
2005; Torgerson, 2001). Further, in most CRTs as in
most RCTs, the outcome of interest is measured not
only after treatment (posttest), but also before treat-
ment (pretest, baseline). This further complicates the
analysis and the sample size calculation of a CRT. The
aim of this paper is therefore two-fold. The first aim
is to show the equivalence of the state-of-the-art
method of analyzing a CRT with a baseline measure-
ment, which is a three-level mixed regression analysis,
to some simple methods with respect to treatment
effect estimation and testing in case of an equal sam-
ple size per cluster. The second aim is to show the
practical implications of that equivalence for sample
size calculation. Achieving these aims will also help
researchers to understand (a) when a three-level
mixed regression analysis is needed and when a sim-
ple method is acceptable, and (b) which specification
of the random part of a mixed model (i.e., the varian-
ces and correlations) is safe and which specification
can lead to underpowered studies and Type I errors,
and (c) what the difference is between using the base-
line as a repeated measure and using it as a covariate.

Throughout this paper we assume a CRT with two
treatment arms and we label these as treated and con-
trol (where control may either be no treatment or
treatment as usual), and a quantitative outcome that
is measured before (baseline, pretest) and after (postt-
est) treatment. We initially assume an equal sample
size per cluster, but this assumption is relaxed later.

Concerning the equivalence between new and old
methods of treatment effect testing, analyzing a CRT
without baseline measurement with a two-level mixed
model (with as levels cluster and person) gives the
same results as first computing the outcome mean per
cluster and then analyzing cluster means with the two-
sample t-test if the sample size is the same in each
cluster (Moerbeek et al., 2003; Searle et al., 2006, p. 53,

p. 415–416; Searle & Pukelsheim, 1986). Further, treat-
ment effect testing in an RCT without nesting but with
a baseline measurement, with a two-level mixed regres-
sion model with person and measurement as levels,
and treatment, time, and their interaction as predic-
tors, and an unstructured covariance matrix for the
repeated measures, is equivalent to a two-sample t-test
on the change from baseline (CHANGE¼ posttest
minus pretest) (Van Breukelen, 2013). Finally, treat-
ment effect testing with a constrained mixed model
that assumes absence of a pretest group difference is
equivalent to analysis of covariance with the posttest as
dependent variable and the pretest as covariate
(ANCOVA) with respect to the treatment effect, and
nearly so with respect to its sampling variance (Liang
& Zeger, 2000; Liu et al., 2009; Van Breukelen, 2013).
The present paper shows similar equivalences for a
CRT with baseline measurement, which gives rise to
three-, two-, and one-level methods of analysis.

Concerning sample size calculation, Van Breukelen
and Candel (2012a) presented a simple formula for
sample size calculation for a CRT without baseline
measurement. Sample size formulae for CHANGE
and ANCOVA in an classical RCT without nesting
but with baseline follow from a combination of the
sample size formula for the two-sample t-test (Cohen,
1988; Julious, 2010) with published equations for the
sampling variance of the treatment effect when using
CHANGE or ANCOVA instead of just the posttest
(Porter & Raudenbush, 1987; Rausch et al., 2003;
Senn, 1989). The present paper extends upon that
work by presenting a sample size calculation method
for CRTs with a baseline measurement that draws on
the equivalences of the various methods of analysis
for such a trial. There is more literature about sample
size calculation for CRTs. Raudenbush (1997), and
Moerbeek et al. (2000) derived optimal designs for
cluster randomized trials, taking into account the
study budget and the study cost per cluster and per
person, but limited to trials without baseline measure-
ment. Further, Heo and Leon (2009), Heo et al.
(2013), and Teerenstra et al. (2012) presented sample
size methods for CRTs with a baseline measurement,
but their statistical models will be seen to be more
restrictive than the model in this paper. Finally,
Cunningham and Johnson (2016), Fazzari et al.
(2014), Hedges and Borenstein (2014), Heo and Leon
(2008), and Teerenstra et al. (2008) present sample
size methods for two-, three-, and four-level CRTs
without repeated measures, assuming a variance com-
ponents model that is a special case of the model in
the present paper. The present paper will show how
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the equivalences between complex and simple meth-
ods of treatment effect testing in a CRT with baseline
measurement lead to a simple sample size calculation
under weaker assumptions than any of the above
papers.

The outline of this paper is as follows. The next
section introduces a published CRT in mental health
among primary school children (Kraag et al., 2009), of
which the data will be reanalyzed after the theoretical
part of the paper as an illustration of the theory.
Subsequently, a general three-level regression model is
presented for the analysis of a CRT with a baseline
measurement and a quantitative outcome. It will be
shown that this model includes as special cases vari-
ous mixed models used in practice, specifically a vari-
ance components model and some random slope
models. It is then shown that estimating and testing
the treatment effect with the general model gives the
same results as three more simple methods that
reduce the model to a two- or even one-level model
by aggregating repeated measures within persons to
change scores, or aggregating person data to cluster
means, or both. What then follows is the equivalence
of a constrained three-level model that assumes
absence of a treatment group difference at baseline
with three more simple methods that reduce the
model to a two- or even one-level model by treating
the baseline as a covariate, or by aggregating person
data to cluster means, or both. All methods are illus-
trated not only with simulated data, but also on the
CRT in mental health. After that, it is shown how the
aforementioned equivalences lead to a simple method
for computing the sample size needed for a CRT with
a baseline measurement. This method is then applied
to the CRT on mental health and compared with the
sample size according to the calculators Optimal
Design Plus version 3.01 (Raudenbush et al., 2011;
Spybrook et al., 2011) and Power and Precision ver-
sion 4 (Borenstein et al., 2011), and an online calcula-
tor from the National Institutes of Health (Research
Methods Resources: National Institutes of Health,
2023). The last section summarizes all results, points
out study limitations that may inspire future research,
and gives recommendations for sample size planning
and data analysis.

A cluster randomized trial in mental health

Kraag et al. (2009) reported a CRT to evaluate the
effects of a stress management program on stress,
coping, anxiety, and depression in school children
with age 9-11 years at baseline. In total, 52 primary

schools in the south-east of the Netherlands were ran-
domly assigned to the program (26 schools) or control
(26 schools), with one or two classes per school par-
ticipating in the trial, but 3 schools (1 program, 2
control) withdrew before treatment. The program was
implemented by the classroom teachers within a
month after the pretest and consisted of lessons,
booster sessions, homework assignments, daily exer-
cises, and a teacher manual. The outcome variables of
interest were measured before and after treatment,
with a time interval of 7months. The average number
of responding children was about 28 per school. The
data were analyzed with a three-level mixed linear
regression model with school, child, and measurement
as levels; treatment, time, and a treatment by time
interaction as predictors; a random school effect; and
an unstructured within-school covariance matrix for
the repeated measures. This model was subsequently
extended with covariates such as sex and ethnicity. A
significant and beneficial though small effect was
found on coping, but not on stress, depression, or
anxiety. Two outcome variables of this trial will be
reanalyzed later in this paper to illustrate the theory.

Three-level mixed model for a cluster
randomized trial with baseline

To analyze a quantitative outcome variable Y meas-
ured before and after treatment in a CRT with k clus-
ters of n persons each, the following model is
assumed:

Yijt ¼ b0 þ b1Gj þ b2Tt þ b3GjTt þ ujt þ eijt , (1)

with subscript i¼ 1,2,… .n for person, j¼ 1,2,… k for
cluster, and t¼ 1,2 for time point. Here, G indicates
the treatment arm (0 for control, 1 for treated), and T
indicates the time point (0 for baseline, 1 for posttest).
Further, ujt is a random cluster effect with mean zero,
and eijt is a residual with mean zero to capture a per-
son effect and measurement error, at time point t.

Given this predictor coding, the fixed model part
can be interpreted as follows: b0 is the expected out-
come at baseline in the control arm; b1 is the
expected outcome difference at baseline between both
treatment arms (which is zero in a CRT and in an
RCT, and will be constrained to zero in a later sec-
tion); b2 is the expected change from baseline in the
control arm; b3 is the expected difference between
both arms with respect to change from baseline,
which is the parameter of interest for evaluating the
treatment effect.

The random model part consists of a random clus-
ter effect ujt and a residual eijt capturing a person
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effect and measurement error, per time point t. The
random effects uj1 and uj2 are assumed to be bivariate
normal with zero mean and 2�2 between-cluster
covariance matrix Xu for all j¼ 1,2,… .k. The random
effects of different clusters are assumed to be inde-
pendent, that is, ujt and uj0t0 are independent for all
j 6¼ j’ irrespective t ¼ t’ or t 6¼ t’. Likewise, the resid-
uals eij1 and eij2 are assumed to be bivariate normal
with zero mean and 2�2 within-cluster covariance
matrix Xe for all i¼ 1,2,… .n and independent for all
i 6¼ i’ irrespective j, j’, t, t’. The resulting covariance
matrix for the two repeated measures of person i, Yij1

and Yij2, is then Xy ¼ Xu þ Xe, the sum of the
between-cluster and within-cluster covariance matri-
ces. For the sequel, it is useful to identify the elements
of each covariance matrix, and the following notation
will be used for that:

Xy ¼
r2y1 ry1y2
ry2y1 r2y2

 !
, Xu ¼ r2u1 ru1u2

ru2u1 r2u2

� �
,

Xe ¼ r2e1 re1e2
re2e1 r2e2

� �
: (2)

The intraclass correlation (ICC) at time point t is
defined as:

qt ¼
r2ut

r2ut þ r2et
, (3)

which is the correlation between the outcomes Yijt

and Yi0jt for any two different persons in the same
cluster j at the same time point t. In its present gen-
eral form in Equation (2), this mixed model can han-
dle any kind of random effects model that preserves
homogeneity of Xu and of Xe between treatment arms
(heterogeneity is briefly discussed in the last section
before the discussion). In particular, the following
models are special cases of Equation (2):

1. the variance component or random intercept model,
with a random cluster effect with variance r2c , ran-
dom person effect with variance r2p, and measure-

ment error with variance r2m: This is equivalent to:

Xu ¼ r2c r2c
r2c r2c

� �
, Xe ¼

r2p þ r2m r2p
r2p r2p þ r2m

 !
:

2. the random slope model, with a random cluster
effect, random person effect, and random time
effect b2i to allow individual differences in

change. This gives Xu as in model 1, and Xe ¼

r2p r2p þ rpt
r2p þ rpt r2p þ 2rpt þ r2t

 !
, where r2t is the

variance of the time effect, and rpt is the covari-
ance between the person and time effects.

3. the random slope model, with a random cluster
effect, random person effect, measurement error,
and random time effect b2j to allow differences in

change between clusters in the same arm. This

gives Xu ¼ r2c r2c þ rcb
r2c þ rcb r2c þ 2rcb þ r2b

� �
, and

Xe as in model 1, where r2b is the between-cluster
variance of the time effect, and rcb is the covari-
ance between the cluster and time effects.

4. the random slope model, with a random cluster
effect, random person effect, and random time
effect b2ij to allow differences in change between
clusters and between persons. This gives Xu as in
model 3 and Xe as in model 2. However, model 4
has as many parameters as Equation (2) and
comes down to a reparametrization of it.

Of these four models, the random intercept model
1 was used to derive sample sizes by Heo and Leon
(2009), and model 2 was used by Heo et al. (2013),
assuming rpt ¼ 0: The random slope model 4 was
used for sample size planning by Teerenstra et al.
(2012), assuming rcb ¼ 0 and rpt ¼ 0: Note that
restricting the covariances to zero in the random slope
models is not innocuous, as it obstructs fitting data
where the pretest variance is larger than the posttest
variance, unless the time coding is reversed or the
software allows negative variances. Further, combining
measurement error (as in model 1) with individual
differences in change (as in model 2) gives an uniden-
tifiable model if there are only two repeated measures.
Model 2 is more flexible than model 1 by allowing for
heterogeneity of variance between time points, but
allowing the measurement error variance in model 1
to be time-dependent gives the same flexibility.
Finally, the random intercept model 1 was also used
for sample size planning in three-level designs without
repeated measures by Cunningham and Johnson
(2016), Fazzari et al. (2014), Hedges and Borenstein
(2014), Heo and Leon (2008), Moerbeek et al. (2000),
and Teerenstra et al. (2008).

Three-, two-, and one-level analyses of change
from baseline

Theory and method

A quantitative outcome measured before and after
treatment in a CRT with two treatment arms can be
analyzed with mixed linear regression using the
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unconstrained model in Equations (1) and (2), or any
of its special cases as listed in the previous section.
This paper focuses on the general model, which can
either be seen as a bivariate two-level model, involving
as levels cluster and person, and as variables the pre-
test and posttest measurements, or as a three-level
model, with the measurements as the first level. While
the model of Equations (1) and (2) can be fitted to
the raw data with standard software for mixed (multi-
level) regression, the analysis can be simplified by
summarizing data across persons per time point. For
a CRT without baseline measurement and with an
equal sample size per cluster it has been shown that
two-level mixed regression of the individual data is
equivalent to first aggregating the outcome to cluster
means and then performing a two-sample t-test on
the cluster means (Moerbeek et al., 2003; Searle et al.,
2006, p. 53, p. 415–416; Searle & Pukelsheim, 1986).
This equivalence extends to the CRT with a baseline
measurement. Specifically, aggregating the individual
baseline measurements to cluster means, and likewise
aggregating the posttest measurements, we end up
with a two-level (repeated measures) design with as
levels cluster and time, which can be analyzed with
the following two-level mixed regression model for
repeated measures:

Y jt ¼ b0 þ b1Gj þ b2Tt þ b3GjTt þ ujt þ ejt , (4)

with as covariance matrix Xy ¼
r2y1 ry1y2
ry1y2 r2y2

 !
,

where:

r2y1 ¼ r2u1 þ
r2e1
n

, r2y2 ¼ r2u2 þ
r2e2
n

,

ry1y2 ¼ ru1u2 þ re1e2
n

,
(5)

and n is the number of persons sampled per cluster.
An alternative approach to simplification of the

three-level analysis is to summarize data not across
persons, but across time points. As said before, the
parameter of interest is b3 in Equation (1), which is
the difference between both arms with respect to
change from baseline. This parameter can be esti-
mated as follows. First, compute per person a sum-
mary measure called CHANGE, and defined as
Yij2 � Yij1, the difference between the person’s posttest
and pretest (baseline) value on the outcome of
interest. Then, submit that summary measure to a
two-level mixed regression, with as levels cluster and
person, as the only predictor the treatment indicator
Gj of Equation (1), and as random effects a cluster
effect uj ¼ u2j � u1j and a person effect eij ¼ e2ij � ei1j:

Changeij ¼ b2 þ b3Gj þ uj þ eij (6)

from which the intercept b0 and the expected baseline
group difference b1 have canceled out, and in which
b2 is as in Equation (1) the expected change from
baseline in the control arm, and b3 is as in Equation
(1) the expected difference between both arms with
respect to change from baseline. Further, the random
effects have the following variances and ICC, where
the subscript cha means CHANGE:

r2cha ¼ r2u þ r2e , (7a)

r2u ¼ r2u1 þ r2u2� 2ru1u2, (7b)

r2e ¼ r2e1 þ r2e2� 2re1e2, (7c)

qcha ¼
r2u

r2u þ r2e
: (7d)

For RCTs, the CHANGE summary method has
already been shown to be equivalent to mixed regres-
sion of the repeated measures obtained before and
after treatment (Van Breukelen, 2013), and the same
equivalence will be seen to hold for CRTs. An
example of this method of analysis is Olive et al.
(2019, p. 1336).

Finally, by summarizing data both across time
points and across persons, we end up with a one-level
(single outcome) analysis using the two-sample t-test
for cluster means of CHANGE, or equivalently, fixed
effects regression with the following model:

Changej ¼ b2 þ b3Gj þ ej, (8)

where ej ¼ uj þ ej with variance r2
cha

¼ r2u þ r2e=n
� �

,
and the sampling variance of the treatment effect esti-
mator is simply

Var b̂3

� �
¼

2r2
cha

k=2
¼ 4r2cha

nk
n� 1ð Þqcha þ 1

� 	
: (9)

Here, r2u and r2e are again cluster-level and person-
level variance of CHANGE, as before, and r2cha is the
total variance of CHANGE for an arbitrary person
from an arbitrary cluster, and k is the total number of
clusters. The factor n� 1ð Þqcha þ 1

� 	
in Equation (9) is

known as the design effect (DE, here DEcha) and indi-
cates the inflation of the sampling variance of the treat-
ment effect due to the clustering. In the absence of a
cluster effect, we have qcha ¼ 0 and DEcha¼ 1, and
Equation (9) then reduces to the sampling variance of
the treatment effect estimator based on CHANGE in a
classical RCT with a total sample size of nK persons.

The four methods of analysis, a three-level analysis
of the measurements per person per time point using
Equations (1) and (2), a two-level analysis of cluster

210 G. J. P. VAN BREUKELEN



means per time point using Equation (4), a two
analysis of individual change scores using Equation
(6), and a one-level analysis of cluster mean change
scores using Equation (8), are shown in Figure 1.

Illustration by simulation

The four methods will now be compared on five
simulated CRTs of k¼ 40 clusters of n¼ 50 persons

each to illustrate the equivalences shown by math in
the preceding section with real numbers obtained by
statistical data analysis. Only one replication is
reported per parameter setting to show that the equiv-
alences hold per replication and not just on the aver-
age across replications. The data are generated with
Equations (1) and (2), with asfixed effects b0 ¼ 100,
b1 ¼ 0, b2 ¼ 20 and b3 ¼ 10, implying a baseline
outcome mean of 100 in both treatment arms, an
average change from baseline of 20 in the control
group, and an average change of 30 in the treated
group, see Equation (1). Note, however, that the
covariance matrix of fixed effects estimators in a lin-
ear mixed model does not depend on the true fixed
effects (Verbeke & Molenberghs, 2000), and so the
choice of fixed effects can be done without loss of
generality. The first three simulations assumed an out-
come variance of 10 at the cluster level and of 100 at
the person level at each time point (r2e1 ¼ r2e2 ¼ 100,
r2u1 ¼ r2u2 ¼ 10), implying an ICC of 0.09 at both time
points, well within the range of ICCs found in health
and educational research (Adams et al., 2004; Hedges
& Hedberg, 2007). The three simulations differed in
the pre-post correlations, however. The last two simula-
tions allowed the outcome variance components and
the ICC at posttest to differ from those at pretest at
each design level (cluster, person). Details of the par-
ameter choices and the results for all methods of ana-
lysis in all simulations are given in Table 1. All
analyses were done with SPSS version 27. The SPSS

Table 1. Treatment effect estimate (SE) and variance component estimates from four methods of analysis of a CRT with a base-
line measurement: Mixed regression for repeated measures on individual data and on cluster means, and CHANGE on individual
data and on cluster means (k¼ 40 clusters, n¼ 50 persons per cluster, treatment effect ¼10). The treatment effect and its SE are
the same for all four methods.

Simulation nr

qu1u2
r2u1
r2u2

qe1e2
r2e1
r2e2

b̂3 (SE) for
all methods

3-level mixed regression
(individual data)

2-level mixed regression
(cluster means)

2-level change
(individual data)

1-level change
(cluster means)

1 .50
10
10

.50
100
100

8.47
(1.02) X̂u ¼ 9:80

5:77 10:27

� �

X̂e ¼ 97:63
51:16 102:54

� � X̂�y ¼ 11:75
6:79 12:32

� �
r̂2
u ¼ 8:53

r̂2
e ¼ 97:84

r̂2
�cha ¼ 10:49

2 .30
10
10

.70
100
100

9.36
(1.33) X̂u ¼ 8:38

2:14 12:35

� �

X̂e ¼ 98:54
71:39 102:94

� � X̂�y ¼ 10:35
3:56 14:41

� �
r̂2
u ¼ 16:46

r̂2
e ¼ 58:70

r̂2
�cha ¼ 17:63

3 .70
10
10

.30
100
100

8.81
(0.86) X̂u ¼ 10:25

7:64 9:71

� �

X̂e ¼ 97:17
31:01 101:83

� � X̂�y ¼ 12:19
8:26 11:75

� �
r̂2
u ¼ 4:68

r̂2
e ¼ 136:97

r̂2
�cha ¼ 7:42

4 .50
20
10

.50
100
200

10.93
(1.55) X̂u ¼ 18:22

5:90 14:52

� �

X̂e ¼ 100:70
73:15 196:89

� � X̂�y ¼ 20:23
7:36 18:46

� �
r̂2
u ¼ 20:93

r̂2
e ¼ 151:28

r̂2
�cha ¼ 23:96

5 .50
10
20

.50
200
100

11.84
(1.56) X̂u ¼ 7:88

6:76 26:97

� �

X̂e ¼ 195:26
72:36 102:54

� � X̂�y ¼ 11:79
8:20 29:02

� �
r̂2
u ¼ 21:34

r̂2
e ¼ 153:08

r̂2
�cha ¼ 24:40

3-level mixed regression for
repeated measures of persons
in clusters, see Equa�on (1)

2-level mixed regression for
repeated measures of cluster
means, see Equa�on (4)

2-level mixed regression for
change scores of persons in
clusters, see Equa�on (6)

1-level fixed regression for
cluster mean change
scores, see Equa�on (8)

average across
persons per

compute
change score

compute change
score per cluster

average across
persons per cluster

Figure 1. Four equivalent methods to analyze a cluster random-
ized trial with a quantitative outcome and a baseline measure-
ment when the sample size is the same in each cluster.
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syntaxes for one simulation are available as online sup-
plement, with one syntax for all analyses of individual
data, and one syntax for all analyses of cluster means.
The other simulations differed in syntax from these
two files only with respect to the parameter values as
specified in step 1 of the syntax for individual data.

Within a simulation all four methods give the same
treatment effect estimate and SE, which is therefore
reported only once per simulation in Table 1. Between
simulations the effect estimate varies due to sampling
error as each simulation involved a new sample. The
variance estimates are related as follows: Those of the
two-level analysis of cluster means are obtained from
those of the three-level analysis with Equation (5) and
n¼ 50. Those of the two-level CHANGE analysis fol-
low from the three-level analysis with Equation (7).
The variance estimate of the one-level CHANGE ana-
lysis follows from Equations (5) and (7).

Three-, two-, and one-level analyses of
covariance

Theory and method

The preceding section showed the equivalence of a
three-level mixed linear regression of a CRT with pre-
and posttest outcome measurements to a two-level
analysis of individual change from baseline scores,
and to a one-level analysis of cluster means of change
from baseline, as far as treatment effect estimation
and testing is concerned. However, a baseline (pretest)
measurement can also be included into the analysis as
a covariate by regressing the posttest measurement on
treatment and pretest (or, equivalently as far as the
treatment effect is concerned, by regressing change
from baseline on treatment and pretest, Laird, 1983;
Liu et al., 2009). This again reduces the three-level
analysis to a single measurement two-level analysis
with as levels cluster and person. That analysis in turn
can be reduced to a single measurement one-level
analysis by aggregating individual data of both the
outcome (posttest) and the covariate (pretest), and
then regressing the posttest cluster mean on the treat-
ment and on the pretest cluster mean. Further, in the
context of a classical RCT without clustering, it has
been shown that, apart from a small difference in the
standard error of the treatment effect, analysis of
covariance (ANCOVA) regressing posttest on treat-
ment and pretest is equivalent to mixed linear regres-
sion following Eqs. (1) and (2) minus the cluster
effects (i.e., Xy ¼ Xe) and with the baseline group dif-
ference constrained to be zero, that is, b1 ¼ 0 (Liu
et al., 2009; Van Breukelen, 2013), which is a valid

constraint for an RCT. In the context of a CRT, the
same equivalence between ANCOVA and mixed
regression is obtained by noting that we can aggregate
individual data to cluster means per time point, and
then analyze these either with mixed linear regression
using Equation (1) with b1 ¼ 0 and the same 2�2
covariance matrix as in Equation (5), or with the
aforementioned one-level ANCOVA regressing the
posttest cluster mean on treatment and on the pretest
cluster mean. This section therefore compares four
methods:

� three-level analysis of individual data, using
Equation (1) with the constraint b1 ¼ 0, and
Equation (2);

� two-level analysis of cluster means per time point,
using Equation (1) with b1 ¼ 0, and a covariance
matrix of pretest and posttest cluster means follow-
ing Equation (5);

� two-level ANCOVA regressing the individual
posttest measure on treatment and on the individ-
ual pretest, taking clustering effects in posttest and
in pretest into account;

� one-level ANCOVA regressing the posttest cluster
mean on treatment and on the pretest cluster
mean.

Technical details of the last two methods will now
be given. From Equation (2) and the independence
between the cluster level random effects on the one
hand and the person level random effects on the other
hand it follows that regression of posttest on pretest
within treatment groups involves two regressions, one
at the cluster level (between-cluster regression), and
one at the person level (within-cluster regression).
Ignoring at first the fixed effects and focusing on the
random model part, we have for the between-cluster
regression of posttest on pretest:

uj2 ¼ buuj1 þ dj, bu ¼
ru1u2
r2u1

, dj ffi N 0, r2d
� �

,

(10a)

with r2d ¼ r2u2 � b2ur
2
u1 as unexplained posttest vari-

ance between clusters, and for the within-cluster
regression of posttest on pretest:

eij2 ¼ beeij1 þ rij, be ¼
re1e2
r2e1

, rij ffi N 0, r2r
� �

,

(10b)

with r2r ¼ r2e2 � b2er
2
e1 as unexplained posttest variance

within clusters.
Inserting this into Equation (1) with the constraint

b1 ¼ 0 gives as equation for posttest Yij2 :
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Yij2¼ b0þb2þb3Gjþbuuj1þbeeij1þ djþ rij: (11)

Replacing the unobservables uj1 and eij1 with
Y j1 � b0
� �

and Yij1 � Y j1
� �

respectively, gives the follow-
ing identifiable approximation (Grilli & Rampichini, 2011,
p. 124; Klar & Darlington, 2004, p. 2347; Shin &
Raudenbush, 2010, p. 29; Snijders & Bosker, 1999, p. 30):

Yij2 ¼ b�0 þ b3Gj þ buY j1 þ be Yij1 � Y j1
� �þ d0j þ r0ij,

(12)

with b�0 ¼ 1� buð Þb0 þ b2, which regresses the
posttest on treatment group, the pretest cluster mean
(a cluster level covariate), and the pretest individual
deviation from the cluster mean (a person level cova-
riate). Further, d0j ¼ dj and r0ij ¼ rij if either of two
conditions holds: Y j1 ¼ b0 þ uj1, or bu ¼ be: This
can be verified by plugging either condition into
Equation (12) and then rewriting into Equation (11).
The first condition holds approximately if the sample
size per cluster, n, is large (for details, see the appen-
dix). The second condition implies absence of a so-
called contextual effect (Grilli & Rampichini, 2011;
Shin & Raudenbush, 2010). Of importance for the
sequel are the following properties of the predictors in
Equation (12): Due to the cluster randomization, Y j1

is uncorrelated with treatment Gj if the number of
clusters k is large. Further, both between-cluster pre-
dictors, Y j1 and Gj, are uncorrelated with the within-
cluster predictor Yij1 � Y j1

� �
:

The theory above concerns the third method as
defined early in this section, that is, a two-level mixed
regression of individual posttest data on treatment
and pretest data, with a random cluster effect. This
method was used by Morgan et al. (2018, p. 637 and
Table 6) and Savage et al. (2013, p. 318–319), but
only the latter clearly allowed for a contexual effect.

Concerning now the fourth method, starting from
Equation (12) and then aggregating (averaging) across
individuals within the same cluster gives the following
one-level model for regressing the posttest cluster
mean on treatment and on the pretest cluster mean:

Y j2 ¼ b�0 þ b3Gj þ buY j1 þ d0j þ r 0j, (13)

from which Yij1 � Y j1
� �

has dropped out as it is by
definition on average zero in each cluster.

Illustration by simulation

The four methods presented in this section, that is,
(a) three-level analysis following Equation (1) with the
constraint b1 ¼ 0, (b) two-level analysis of cluster
means per time following Equation (4) with b1 ¼ 0,
(c) two-level regression of individual posttest on treat-
ment and pretest, and d) one-level regression of postt-
est cluster mean on treatment and pretest cluster
mean, were applied to the same simulated data as in
Table 1, and the results are given in Table 2. The pur-
pose of this is again to illustrate the equivalences

Table 2. Treatment effect estimate (SE) and variance component estimates from four methods of analysis of a CRT with a base-
line measurement: Mixed regression for repeated measures on individual data and on cluster means with the constraint of no
group difference at baseline, and ANCOVA on individual data and on cluster means (k¼ 40 clusters, n¼ 50 persons per cluster,
treatment effect ¼ 10).

Simulation
nr

qu1u2
r2u1
r2u2

qe1e2
r2e1
r2e2

b̂3
(SE mixed)
(SE ancova)

3-level mixed regression
(individual data)

2-level mixed regression
(cluster means)

2-level ancova
(individual data)
with/without

w-cluster covariate
1-level ancova
(cluster means)

1 .50
10
10

.50
100
100

8.61
(0.92)
(0.93)

X̂u ¼ 9:53
5:61 10:17

� �

X̂e ¼ 97:63
51:16 102:54

� � X̂�y ¼ 11:48
6:63 12:22

� �
r̂2
d0 ¼ 7:11=6:57

r̂2
r0 ¼ 75:76=102:54

r̂2
�y2: �y1 ¼ 8:62

2 .30
10
10

.70
100
100

9.74
(1.15)
(1.17)

X̂u ¼ 8:20
2:08 12:33

� �

X̂e ¼ 98:54
71:39 102:94

� � X̂�y ¼ 10:17
3:50 14:39

� �
r̂2
d0 ¼ 12:51=11:48

r̂2
r0 ¼ 51:25=102:94

r̂2
�y2: �y1 ¼ 13:54

3 .70
10
10

.30
100
100

8.78
(0.78)
(0.79)

X̂u ¼ 9:94
7:43 9:57

� �

X̂e ¼ 97:17
31:01 101:83

� � X̂�y ¼ 11:88
8:05 11:60

� �
r̂2
d0 ¼ 4:48=4:28

r̂2
r0 ¼ 91:98=101:83

r̂2
�y2: �y1 ¼ 6:32

4 .50
20
10

.50
100
200

10.44
(1.26)
(1.28)

X̂u ¼ 17:85
5:77 14:47

� �

X̂e ¼ 100:70
73:15 196:89

� � X̂�y ¼ 19:87
7:23 18:41

� �
r̂2
d0 ¼ 13:33=12:26

r̂2
r0 ¼ 143:82=196:89

r̂2
�y2: �y1 ¼ 16:20

5 .50
10
20

.50
200
100

11.61
(1.53)
(1.56)

X̂u ¼ 7:73
6:65 26:90

� �

X̂e ¼ 195:26
72:36 102:54

� � X̂�y ¼ 11:64
8:10 28:95

� �
r̂2
d0 ¼ 22:43=21:89

r̂2
r0 ¼ 75:76=102:54

r̂2
�y2: �y1 ¼ 23:94
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shown mathematically in the preceding section with
statistical data analysis on real numbers, and each row
in Table 2 corresponds to a single replication to show
that the equivalences hold per replication and not just
on the average across a large number of replications.

For method (c) based on Equation (12), two ver-
sions were applied: with and without the within-clus-
ter covariate Yij1 � Y j1

� �
: First and foremost, Table 2

shows that the four methods give the same results,
and they do so for each simulation, as expected given
the equivalence between analysis of individual data
and analysis of cluster means in a CRT with an equal
sample size per cluster (see also Moerbeek et al.,
2003), and given the equivalence between mixed
regression for repeated measures with a zero baseline
difference (b1 ¼ 0) and classical regression of the
posttest on treatment and the pretest (Van Breukelen,
2013). There is only a very small difference in SE
between the two mixed regressions on the one hand
and the two ANCOVA methods on the other hand.
This is due to a subtle difference between the two
methods that vanishes as the sample size, here the
number of clusters, increases in case of randomized
studies (for details, see Winkens et al., 2007, table 1).
A further result is that the two-level ANCOVA gives
the same standard error and thus precision with or
without the within-subject covariate. The explanation
for this is given in the appendix.

Just as in Table 1, the variance component esti-
mates of one method can be inferred from those of
another method. Specifically, those for the two-level
mixed model on cluster means follow from those for
the three-level mixed model on individual data by
Equation (5). Likewise, the only variance component
estimate for the one-level ANCOVA model in
Equation (13) for cluster means follows from the esti-
mates for the two-level ANCOVA model on individ-
ual data in Equation (12) by Equation (5), where the
variances are now residual posttest variances after
adjusting for the pretest. The relation between the
variance components of the three-level mixed model
on the one hand and the two-level ANCOVA model
on the other hand is more complicated, but follows
from Equation (10). Specifically, the estimated residual
person level posttest variance r̂2

r in the two-level
ANCOVA model (12) follows from the estimated per-
son level covariance matrix X̂e of the three-level
mixed model by Equation (10b). The residual cluster
level posttest variance r̂2

d0 in the two-level ANCOVA
model (12) follows from the cluster level covariance
matrix X̂u of the three-level mixed model by
Equation (10a), with a deviation of about 5%,

depending on the simulation and the ANCOVA
model (with versus without within-subject covariate).
As said before, the residuals in Equations (11) and
(12) slightly differ unless the sample size per cluster,
n, is so large that Yj1 ¼ b0 þ uj1:

As a last remark on Table 2, note that the SE of
the treatment effect in ANCOVA is smaller than in
Table 1 for CHANGE in each simulation except the
last, which only confirms the established fact that, in
randomized experiments, ANCOVA has at least as
much power and precision as CHANGE, and usually
more (Porter & Raudenbush, 1987; Rausch et al.,
2003; Senn, 1989; Van Breukelen, 2006, 2013). The
almost equal SE for CHANGE and ANCOVA in the
last simulation is due to the fact that, in terms of clus-
ter means, the posttest variance is larger than the pre-
test variance in that simulation. For details, see the
appendix.

Application to the cluster randomized trial in
mental health

The preceding two sections showed the equivalence of
four methods of change analysis, varying from a
three-level mixed regression to a two-sample t-test on
cluster means of CHANGE, and a similar equivalence
between four further methods, of which two are con-
strained mixed models for repeated measures and two
treat the pretest as a covariate (ANCOVA). This was
shown under the conditions of an equal sample size n
per cluster and absence of missing data. In practice,
these conditions will rarely be met and this will
induce some differences between the methods. A vary-
ing sample size per cluster induces heteroscedasticity
of cluster means, see Equation (5), and this calls for a
weighted analysis of cluster means (Searle &
Pukelsheim, 1986). Missingness of pretest or posttest
leads to exclusion of that person from the analysis
when analyzing change scores or when regressing the
posttest on the pretest (unless multiple imputation is
used or the pretest distribution is specified to allow
maximum likelihood estimation), but not when using
mixed regression for repeated measures. This induces
some difference between CHANGE and ANCOVA on
the one hand and mixed regression of repeated meas-
ures on the other hand. This section explores the
similarity of all methods on the CRT in mental health
among primary school children (Kraag et al., 2009)
that was introduced earlier in this paper, and in which
sample size variation and missing data did occur.

In the CRT, which served to evaluate the effects of
a stress management program on stress, coping,
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anxiety, and depression in primary school children, 52
primary schools were randomly assigned to the pro-
gram (26 schools) or control (26 schools), but 3
schools (1 program, 2 control) withdrew before treat-
ment. The average sample size per school was 28
pupils, but this sample size varied from 8 to 61 across
schools. The present analyses concern two outcomes,
emotion-focused coping and stress (for details, see
Kraag et al., 2009, p. 1188). The missingness rate was
about 4% for coping and about 2% for stress at each
time point in each treatment condition. The two out-
comes were first analyzed with all four methods from
the section on CHANGE analysis, and then with all
four methods from the ANCOVA section. The results
are shown in Tables 3 and 4. The last column of each

table shows two methods, one that weights cluster
means equally and one that weights them proportion-
ally to their sample size. Because weighting by the
inverse sampling variance of the cluster mean is opti-
mal (Searle & Pukelsheim, 1986), it follows from
Equation (5) that unweighted analysis is more appro-
priate for large sample sizes per clusters (because the
sampling variance of a cluster mean then approaches
r2u), and cluster size weighting is more appropriate if
the ICC is close to zero (because the sampling vari-
ance of a cluster mean then approaches r2e=n), with
the tipping point being an ICC of 1/(nþ 1).

Focusing on Table 3 first, all four methods show a
significant treatment effect on emotion-focused coping
(all p� 0.02), and no evidence for an effect on stress

Table 3. Treatment effect estimate (SE) and variance component estimates from four methods of analysis of the CRT in Kraag
et al. (2009). Sample size: treated: 25 schools, 645 pupils (per school: mean 25, SD 7), control: 24 schools, 719 pupils (per school:
mean 30, SD 12).

outcome
3-level mixed regression

(individual data)
2-level mixed regression

(cluster means)
2-level change
(individual data)

1-level change
(cluster means)

unweighted/weighted

Emotion-focused coping b̂3¼ 0.52
SE¼ 0.18

b̂3¼ 0.43
SE¼ 0.18

b̂3¼ 0.55
SE¼ 0.19

b̂3¼ 0.48 / 0.61
SE¼ 0.18 / 0.18

X̂u ¼ 0:16
0:09 0:21

� �

X̂e ¼ 4:63
2:11 5:46

� � X̂�y ¼ 0:35
0:19 0:42

� �
r̂2
u ¼ 0.19

r̂2
e ¼ 5.86

r̂2
�cha ¼ 0.41

Stress symptoms b̂3¼ 0.23
SE¼ 0.75

b̂3¼ 0.25
SE¼ 0.70

b̂3¼ 0.13
SE¼ 0.76

b̂3¼ 0.19 / 0.23
SE¼ 0.75 / 0.68

X̂u ¼ 5:51
5:81 6:13

� �
�

X̂e ¼ 102:46
6:74 96:61

� � X̂�y ¼ 8:18
5:53 8:81

� �
r̂2
u ¼ 0:00��

r̂2
e ¼ 186.57

r̂2
�cha ¼ 6.93

�Software warning of no convergence due to singularity of X̂u: Repeating the analysis with a random school effect (random intercept) instead of an
unstructured Xu gave convergence, and the same model fit, and the same treatment effect and SE.��Software warning of no convergence, random school effect variance estimate zero, in line with the 3-level analysis, since a random school effect (ran-
dom intercept) at post-test cancels against that at pretest when using change as outcome, see Equation (5).

Table 4. Treatment effect estimate (SE) and variance component estimates from four methods of analysis of the CRT in Kraag
et al. (2009) (the mixed regression models assume absence of a group difference at baseline). Sample size: treated 25 schools,
645 pupils (per school: mean 25, SD 7), control: 24 schools, 719 pupils (per school: mean 30, SD 12).

outcome

3-level mixed
regression

(individual data)

2-level mixed
regression

(cluster means)

2-level ancova
(individual data)
with/without

w-cluster covariate

1-level ancova
(cluster means)

unweighted/weighted
by cluster size

Emotion-focused coping b̂3¼ 0.46
SE¼ 0.16

b̂3¼ 0.39
SE¼ 0.16

b̂3¼ 0.48
SE¼ 0.17/0.18

b̂3¼ 0.40 / 0.51
SE¼ 0.16 / 0.16

X̂u ¼ 0:16
0:09 0:20

� �

X̂e ¼ 4:63
2:11 5:46

� � X̂�y ¼ 0:35
0:19 0:42

� �
r̂2
d0 ¼ 0.18/0.16

r̂2
r0 ¼ 4.51/5.45

r̂2
�y2: �y1 ¼ 0.32

Stress symptoms b̂3¼ 0.32
SE¼ 0.69

b̂3¼ 0.32
SE¼ 0.64

b̂3¼ 0.24
SE¼ 0.60

b̂3¼ 0.32 / 0.30
SE¼ 0.65 / 0.60

X̂u ¼ 5:32
5:68 6:07

� �
�

X̂e ¼ 102:48
6:75 96:62

� � X̂�y ¼ 8:02
5:43 8:74

� �
r̂2
d0 ¼ 0:59=0:59

r̂2
r0 ¼ 98.37/98.75

r̂2
�y2: �y1 ¼ 5.18

� Software warning of no convergence due to singularity of X̂u: Repeating the analysis with a random school effect (random intercept) instead of an
unstructured Xu gave convergence, and almost the same model fit, and almost the same treatment effect (0.33) and SE (0.67).
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(all p> 0.70), noting that df � 47 (nr of schools
minus 2) for all methods. There are some differences
in effect estimate and standard error between the
methods, but these are not substantial. Looking next
at Table 4, the four methods again agree in showing a
significant treatment effect on emotion-focused coping
(all p< 0.02), and no evidence for an effect on stress
(all p> 0.60). There are again small differences in
effect estimate and standard error between the
methods.

It might also be useful to compare the results in
terms of effect sizes. For a comparison between two
treatments on a quantitative outcome, Cohen’s d is a
logical candidate, and it is defined as the estimator of
d ¼ l1 � l2ð Þ=r, the ratio of the expected outcome
difference between both treatments to the within-
treatment outcome SD. Cohen’s d is obtained by
replacing each parameter in d with its sample counter-
part (Cohen, 1988, 1992). However, for a CRT with
pre- and posttest measurement, it is not that obvious
how to define d. The numerator is the treatment
effect, so parameter b3 in Equations (1) and (12). In
case of a CHANGE analysis, b3 is the expected differ-
ence between both treatments with respect to change
from baseline. The denominator should then be either
the square root of the unexplained variance of indi-
vidual change scores, r2cha ¼ r2u þ r2e , see Equation
(7), or the square root of the unexplained variance of
cluster mean change, r2

cha
¼ r2u þ r2e=n

� �
, see

Equation (9), depending on whether we analyze indi-
vidual change or cluster mean change. The second
definition corresponds to what is called the oper-
ational effect size by Hedges and Rhoads (2010, p.
441). Clearly, these two definitions give quite different
effect sizes even if the sample size is the same for all
clusters, see the last two columns of Table 1.
Similarly, with ANCOVA the denominator could
either be the square root of the total unexplained vari-
ance in Equation (12) for individual data, which is
r2d0 þ r2r0
� �1=2

, or the square root of the unexplained
variance in Equation (13) for cluster means, which is
r2d0 þ r2r0=n

� �� 	1=2
, and these two give quite different

effect sizes even if the sample size is the same for all
clusters, see the last two columns of Table 2. In the
CRT of Kraag et al., the sample size varied strongly
between clusters, leading to some difference between
methods with respect to the treatment effect estimate
b̂3, which is the numerator of the effect size estimate
d, on top of the aforementioned differences in denom-
inator. To give an impression: In Table 3, for emo-
tion-focused coping we find d¼ 0.55/�(0.19þ 5.86) ¼
0.22 based on individual change scores, but

d¼ 0.48/�0.41¼ 0.75 based on cluster mean change.
Reporting effect sizes for a CRT with pre- and posttest
is thus meaningful only if the effect size is defined
unequivocally in terms of the precise method of ana-
lysis and the underlying model parameters.
Depending on the choices made, a large or small
effect size can result. Psychologists may prefer the def-
inition in terms of individual change, here d¼ 0.22,
the more so as the definition in terms of cluster mean
change gives an effect size that depends on the sample
size per cluster. In fact, there are multiple ways to
define the effect size, depending on whether the
denominator is the square root of the total unex-
plained variance, or of the within-cluster variance
only, or of the between-cluster variance only (Hedges,
2007; Stapleton et al., 2015), and depending on
whether the residual variance is, or is not, adjusted
for covariates (Olejnik & Algina, 2000). However, a
full discussion of effect size definitions is beyond the
present scope. As an alternative to standardizing the
treatment effect by dividing it by the residual standard
deviation, one may also compare the treatment effect
with the scale range of the measurement instrument.
Emotion-focused coping ranged from 10 to 26, and
stress symptoms ranged from 20 to 77, in this study.
Compared to these ranges, the treatment effect esti-
mates in Tables 3 and 4, which are always well below
1, may seem small.

Sample size (power) calculation

Sampling variance of the treatment effect

In the section on CHANGE methods, it was shown
that three-level mixed regression of a quantitative out-
come in a cluster randomized trial with a baseline
recording and the same sample size per cluster is
equivalent to one-level analysis of CHANGE applied
to cluster means with respect to the treatment effect
estimate and its standard error. In the section on
ANCOVA methods, it was shown that three-level
mixed regression with the constraint of no baseline
group difference (due to randomization) is equivalent
to one-level ANCOVA (regressing posttest on treat-
ment and pretest) applied to cluster means with
respect to the treatment effect and almost with respect
to its standard error. A practical implication of these
results is that the sample size needed for a CRT with
baseline to have a pre-specified power and precision
for treatment effect testing and estimation can be
computed in a simple way based on analysis of cluster
means. This section explains and demonstrates sample
size calculation for CHANGE, assuming at first the

216 G. J. P. VAN BREUKELEN



same sample size per cluster and then correcting for
unequal sample sizes. Sample size calculation for
ANCOVA is a bit more complicated and is here briefly
discussed, with technical details in the appendix. Since
ANCOVA is more powerful than CHANGE (Porter &
Raudenbush, 1987; Rausch et al., 2003; Senn, 1989;
Van Breukelen, 2006, 2013), sample size calculation for
CHANGE is a safe, albeit conservative, method if com-
bined with data analysis using ANCOVA. Further, note
that sample size calculation for CRTs is not new, but
published work for CRTs with baseline measurement
assumes a more restrictive covariance structure than
this paper does. For details, see Equation (2) and the
references in that section. Moreover, presenting the
analysis of a CRT with repeated measures in terms of
CHANGE strongly simplifies the methodology for sam-
ple size calculation, as will be seen below.

Throughout this section it is assumed that the sam-
ple size per cluster is fixed at n, either based on prac-
tical constraints (such as the class size in schools, or
the typical size of a group in group therapy), or based
on what is known as optimal design. The latter means
that the sample size per cluster should be chosen as
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�qð Þs½ �= qc½ �

q
, where q is the ICC of the out-

come at hand (change from baseline, or posttest
adjusted for pretest) and c and s are, respectively, the
study cost per cluster and per study participant
(Moerbeek et al., 2000; Raudenbush, 1997). Given a
sample size n per cluster, the following equation holds
for the sampling variance of the treatment effect esti-
mator when using CHANGE of cluster means, as a
function of the total number of clusters, k:

Var b̂3

� �
¼ 4

k
r2
cha

� �
¼ 4

k
r2y1 þ r2y2 � 2ry1y2
� �

, (14)

Here, k is the total number of clusters in the CRT,
and all three variances and the covariance term con-
cern cluster means and are given in Equation (5).
Equation (14) is a rewriting of Equation (9), as may
be verified by using Equations (5) and (7).

Equation (14) is the same as for CHANGE analysis
of a classical RCT as presented in, among others,
Porter and Raudenbush (1987), Rausch et al. (2003),
Senn (1989), and Winkens et al. (2007), but now
applied to cluster means. Specifically, (14) is the sam-
pling variance of the mean difference between two
independent samples of k/2 units each when the
dependent variable is the average change per cluster.

Using Equations (5) and (7), Equation (14) can be
rewritten into Equation (9) to see how the sampling
variance of the treatment effect depends on the total
variance r2cha, and on the ICC qcha, of individual
change from baseline scores.

Sample size calculation

From Equations (14) and (9) it can be derived that
the total number of clusters needed for a power 1�cð Þ
to detect a treatment effect b3 when testing two-tailed
with a Type I error a and sample size n per cluster, is
(Julious, 2010; Van Breukelen & Candel, 2012a):

k¼4
DEcha
n

� �
z1�cþz1�a=2ð Þ2 1

d

� �2

, d¼ b3
rcha

: (15)

Here, DEcha is the design effect n� 1ð Þqcha þ 1
� 	

,
qcha is the ICC of change from baseline, see Equations
(7) and (9), and d is the standardized effect size (esti-
mated by Cohen’s d) applied to individual change
data. Further, z1�c is the 100(1-c)-th percentile of the
standard normal distribution (e.g., 1.28 for a power of
90%) and z1�a=2 is the 100(1-a/2)-th percentile (e.g.,
1.96 if a ¼ 0.05 two-tailed).

If there is no clustering effect, we have qcha ¼ 0,
DEcha ¼ 1, and Equation (15) then reduces to the
total number of persons needed for a classical RCT, as
may be verified by multiplying both sides of the equa-
tion by n. Stated differently, dividing the total sample
size N ¼ nk of a CRT by the design effect gives the
effective sample size, that is, the sample size needed
for a classical RCT to have the same power as the
CRT has. As the ICC qcha increases, so do the number
of clusters k and the total sample size N¼ nk that are
needed. Note that increasing the sample size per clus-
ter, n, increases the design effect, thereby canceling
part of the power gain obtained by increasing n. The
best way to increase the power and precision of a
CRT is therefore to increase the number of clusters k.
Figure 2 shows the total number of clusters needed
according to Equation (15) as a function of the sam-
ple size per cluster for three values of the ICC of
change, assuming two-tailed testing with a ¼ 5% and

Figure 2. Total number of clusters needed as a function of
the sample size per cluster and the intraclass correlation (effect
size d ¼ 0.50, a¼ 5% two-tailed, power ¼ 90%).
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a power of 90%. As Equation (15) shows, the number
of clusters needed also depends strongly on the effect
size. It is therefore important to choose an effect size
that is neither unrealistically large (leading to an
underpowered study), nor too small to be worthwile
detecting (leading to a very large and possibly infeas-
ible sample size). Further, the sample size as com-
puted with Equation (15) requires the application of
some correction factors to account for (a) the fact that
the test statistic used in the data analysis is a Student
t-test instead of a z-test, and (b) the sample size n will
usually vary between clusters in an unplanned way,
and (c) persons or clusters may drop out from the
study. The next subsection demonstrates sample size
calculation for the mental health trial with these cor-
rection factors.

Step-by-step example

As an example, the sample size for the CRT of Kraag
et al. (2009) will be reconstructed step-by-step, using
the information given in that publication. The authors
assumed the posttest outcome as dependent variable,
but here, change from baseline will be used instead.
The consequences of that for the effect size, ICC, and
power will be discussed after the example.

Step 1: Specification of the input parameters for
Equation (15)
The authors planned to test the treatment effect per
outcome with two-tailed a ¼ 0.01 instead of 0.05 to
adjust for multiple outcome testing, which gives z1�a=2

¼ 2.58. Further, they aimed at a power of 90%, so
z1�c ¼ 1.28, to detect a medium sized effect,
so d¼ 0.50.

The authors planned to have a sample size of
n¼ 30 pupils per school, which is roughly the average
class size in the Netherlands. Further, they expected
an ICC of 0.10, based on reviews of ICC values in
CRTs in primary care (Adams et al., 2004) and in
education (Hedges & Hedberg, 2007), lacking a simi-
lar review for mental health studies at that time. Note
that Table 3 gives an ICC below 0.05 for both out-
comes and for posttest as dependent variable as well
as for change.

Step 2: Calculation of the total number of clusters
needed
The choices and assumptions in step 1 give as design
effect:

DEcha ¼ n� 1ð Þqcha þ 1
� 	 ¼ 30� 1ð Þ�:10þ 1½ � ¼ 3:9

and Equation (15) then gives as the total number of
clusters needed:

k ¼ 4
DEcha
n

� �
z1�c þ z1�a=2ð Þ2 1

d

� �2

¼ 4
3:9
30

� �
1:28þ 2:58ð Þ2 1

:50

� �2

¼ 31

after rounding upward.

Step 3: Correction for the difference between a
z-test and a t-test
Equation (15) is based on a z-test for the difference
between two unpaired means, but the actual test will
be a t-test because the outcome variance r2cha is
unknown and the factor z1�c þ z1�a=2ð Þ2 should then
be replaced with t1�c þ t1�a=2ð Þ2, which is larger
because the Student t-distribution has thicker tails
than the standard normal distribution. As shown by
Lemme et al. (2015), the total number of clusters
must be increased with 2 if a ¼ 5% or with 4 if a ¼
1%, for a power of 80% as well as for a power op
90%. This gives k¼ 35 (instead of 31 as in step 2) in
our example, which agrees very well with the results
from two free power calculators for a CRT. Optimal
Design Plus V3.01 (Raudenbush et al., 2011; Spybrook
et al., 2011) gives a power of 90% for 35 clusters,
based on a¼ 1%, ICC¼ 0.10, and d¼ 0.50. Power and
Precision V4.10 (Borenstein et al., 2011) gives a power
of 0.895 for 34 clusters and a power of 0.916 for 36
clusters (it does not allow odd numbers). It also
agrees well with an online calculator (Research
Methods Resources: National Institutes of Health,
2023), which gives 18 clusters per treatment arm, so,
36 in total.

Step 4: Correction for sample size variation between
clusters
Equation (15) and published sample size equations
and software for CRTs assume that the sample size n
is the same for each cluster. In practice, this sample
size will vary between clusters, both because clusters
(e.g., schools, classes, health centers) differ in total
size and because not all cluster members may want to
participate in the CRT. Given a total sample size N ¼
kn, where n is the average sample size per cluster, the
power of a CRT decreases as the variation in n
between clusters increases. It has been shown (Van
Breukelen et al., 2007) that this power loss can be
compensated by multiplying the number of clusters k
with a correction factor 4= 4� cv2ð Þ, where cv is the
coefficient of variation (SD/mean) of the sample size
per cluster. This cv depends on the distribution of n,
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but will rarely exceed 1.0 and is at most 0.50 for a
normal distribution (to prevent negative cluster sizes)
and up to 0.70 or so for skewed distributions.
Assuming cv ¼ 0.70 gives as total number of clusters:
k ¼ 4= 4� ð0:70Þ2

� �
� 35 ¼ 40, starting from k¼ 35 as

obtained in step 3. The NIH online calculator gives
k¼ 46. No details of this part of the NIH calculator
could be found, but its result agrees with that given
by a conservative method in Van Breukelen and
Candel (2012b) which uses as correction factor
2þ cv2ð Þ=2, starting from k¼ 36 clusters as given by
the NIH calculator before correction.

Step 5: Correction for anticipated non-response and
drop-out
Finally, Kraag et al. (2009) increased the planned total
number of schools in their CRT to 50 to compensate
the power loss arising from 20% non-response or
drop-out, noting that non-response/drop-out of indi-
vidual children affects the power less than complete
school non-response/drop-out, so that k¼ 50 is a safe
correction. The actual sample size in the CRT was 52
schools (of which 3 dropped out before treatment)
with an average sample size of 28 pupils. This correc-
tion of course only accounts for power loss incurred
by non-response or drop-out that is at random, not
for bias in treatment effect estimation that may arise
when drop-out is related to unobserved variables.
However, that is beyond the scope of this paper.

To this step-by-step example, five remarks must be
added.

First, the effect size and the ICC, and thus also the
sample size needed, will depend on whether the postt-
est measurement or change from baseline (CHANGE)
is analyzed. The treatment effect itself is the same for
both dependent variables, that is, b3 in Equations (1)
and (15) is the expected difference between both treat-
ments at posttest because the expected pretest differ-
ence is zero due to the randomized treatment
assignment. However, rcha and qcha in Equation (15)
will usually differ from r2 and q2 as Equations (3)
and (7) show. One case in which rcha ¼ r2 and
qcha ¼ q2 both hold, is when the posttest variance is
equal to the pretest variance and the correlation
between pretest and posttest is 0.50, at the person
level and likewise at the cluster level. The effect size,
ICC and sample size needed, are then the same for
CHANGE as for posttest. If the pre-post correlation is
larger (smaller) than 0.50 at either or both design lev-
els, then change as dependent variable requires a
smaller (larger) sample size than posttest analysis
ignoring the pretest, at least if pre and post variance

are equal at the individual level and also at the cluster
level. If the pretest variance is larger (smaller) than
the posttest variance at either or both design levels,
then change requires a larger (smaller) sample size
than posttest analysis, at least if the pre-post correl-
ation is 0.50 at each design level. So, depending on
the configuration of the covariance parameters in
Equation (2) and (7), CHANGE analysis can require a
smaller or larger sample size than analyzing the postt-
est only. Lacking any prior knowledge from similar
trials, a safe default assumption in the design phase
may therefore be to assume that CHANGE and postt-
est analysis require the same sample size.

Secondly, and related to the first comment, the
data can also be analyzed with ANCOVA (posttest as
dependent, pretest as covariate). Equation (15) can
then still be applied, but rcha and qcha must be
replaced with the residual SD and residual ICC at
posttest, respectively, with d0j þ r0ij in Equation (12) as
the residual. Details of the sampling variance of the
treatment effect in ANCOVA are given in the appen-
dix, showing that the sample size needed is usually
smaller than that for CHANGE and posttest analysis.
In the step-by-step example above, assuming the same
outcome variance and ICC at pretest as at posttest,
and a pretest-posttest correlation of 0.50 at each
design level (cluster, person), CHANGE and posttest
analysis both require 36 clusters, ignoring cluster size
variation and drop-out (see step 3). In contrast,
ANCOVA requires only 28 clusters then, both accord-
ing to Equations (A.2) and (A.3) in the appendix and
according to the online NIH calculator, but ignoring
possible chance correlation between treatment indica-
tor and covariate as expressed by the Variance
Inflation Factor (VIF) in Equation (A.2). With a sam-
ple size of 28 clusters this chance correlation can
increase the sampling variance of the treatment effect
estimator of ANCOVA and the sample size needed
with up to 19%, thus almost nullifying the advantage
of ANCOVA compared to CHANGE. However, that
requires the treatment-covariate correlation to be two
standard errors away from zero (for details, see the
appendix). More realistic would be a treatment-covari-
ate correlation of one standard error, giving an
increase of the sampling variance with 4%, so that
ANCOVA would require 29 or 30 clusters in the
example. Further, the difference in sample size needed
by ANCOVA and CHANGE decreases as the covari-
ate’s regression weight approaches one, see Equations
(12) and (13), which occurs if the pretest-posttest cor-
relation is strong or if the posttest variance is much
larger than the pretest variance, see Equation (10).
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Whether the sample size is best calculated for
CHANGE, or ANCOVA, or posttest analysis ignoring
the pretest, also depends on the availability of covari-
ance parameter estimates from published trials. For
ANCOVA, we either need estimates of the same
parameters as for CHANGE minus that of the pretest
variance, or estimates of the residual posttest variance
at each design level (cluster, person) given the pretest
covariate (see appendix). This availability may depend
on the field of application (e.g., education or health).

Third, Equation (7) for CHANGE shows the risk of
assuming a simple random intercept model for the
school level as in models 1 and 2 below Equation (2),
either in the design phase as in Heo and Leon (2009),
or in the analysis phase as in Kraag et al. (2009) and
Escriva-Boulley et al. (2018). The random school effect
drops out from the change from baseline score and
thus from its sampling variance in Equation (9)
because qcha¼ 0 according to the model, leading to an
underpowered study in the design phase and an
underestimated standard error of the treatment in the
analysis phase if the random school effect is not stable
over time (i.e., if qcha 6¼ 0 in truth). A similar effect
occurs in ANCOVA where the random intercept
model implies a perfect pretest-posttest correlation at
the cluster level, leading to underestimation of the
sampling variance of the treatment effect (for details,
see Eqs. (A.2) and (A.3) in the appendix). Allowing
for an unstructured covariance matrix at each design
level as in Equation (2) safeguards against this while
still allowing model simplification if needed during
data analysis (as done in Tables 3 and 4 for stress
symptoms).

As a fourth remark to the stepwise example,
Equation (15) can also be used to compute the sample
size needed for a pre-specified width of the confidence
interval for the treatment effect, as follows: Assume a
power of 50% so that z1�c ¼ 0 in Equation (15), and
replace the true treatment effect b3 with half the pre-
specified confidence interval width. This follows from
the fact that half the confidence interval width is equal

to z1�a=2 Var b̂3

� �h i1=2
, which can be rewritten into

2 z1�a=2 rcha DEcha=nkð Þ1=2 by using Equation (9).
Last, we assumed homogeneity of the covariance

matrices Xu and Xe across treatment arms.
Heterogeneity does not alter the equivalences between
the four CHANGE methods, but the treatment effect
test must then use the Satterthwaite-Welch degrees of
freedom, and the sample size must be slightly larger
(Lemme et al., 2015). For the ANCOVA methods, het-
erogeneity of Xu and Xe usually gives heterogeneity

of the covariate’s regression weight and thus treatment
by covariate interaction, see Equation (10), which is
beyond our scope.

Discussion

This paper discussed the analysis of cluster random-
ized trials (CRTs) with a pretest and a posttest of a
quantitative outcome variable. CRTs are run to evalu-
ate the effects of an intervention administered at an
organizational (e.g., school, health center, community)
level, and they are frequently encountered in public
health (lifestyle interventions), mental health (preven-
tion of depression or bullying), family medicine
(patient counseling), and education (teaching meth-
ods). CRTs are typically analyzed with three-level
mixed regression of individual pre- and posttest data
as in Equation (1), taking clustering into account by
one of the special cases of the covariance structure in
Equation (2). These models range from a simple vari-
ance components model with a random cluster effect,
a random person effect, and a random measurement
effect, to the general model of Equation (2) itself.

In the section on CHANGE it was shown that,
with an equal sample size per cluster, treatment effect
estimation and testing with the general three-level
model is equivalent to, respectively, two-level mixed
regression of pretest and posttest cluster means, two-
level mixed regression of individual change (post-pre)
scores, and one-level fixed regression of cluster mean
change scores. In the section on ANCOVA, it was
shown that three-level mixed regression following
Equations (1) and (2) but with the constraint b1 ¼ 0
(implying absence of a baseline difference between
treated and controls) is equivalent to, respectively,
two-level mixed regression of pretest and posttest
cluster means with the same constraint b1 ¼ 0, two-
level mixed regression of individual posttest scores on
treatment and pretest scores (ANCOVA on individual
data), and one-level fixed regression of cluster mean
posttest scores on treatment and cluster mean pretest
scores (ANCOVA on cluster means). All methods
were furthermore applied to data from a CRT in men-
tal health by Kraag et al. (2009), suggesting that, even
under strong sample size variation between clusters,
the methods still give quite similar results.
Subsequently, it was shown how the number of clus-
ters needed for a CRT with baseline can be computed
in a simple way for the CHANGE methods in Table
1, given specification of the Type I error risk a,
power, effect size for change from baseline, ICC for
change from baseline, and sample size per cluster. The
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appendix shows how this method can be used for the
ANCOVA methods in Table 2.

Although the simulations used a fairly large sample
with 40 clusters and 50 persons per cluster, the equiv-
alences between the methods of analysis also hold for
smaller sample sizes provided that restricted max-
imum likelihood (REML) estimation is used in mixed
regression (for details on REML versus ML, see e.g.
Searle et al., 2006; Verbeke & Molenberghs, 2000).
However, the small difference in standard error of the
treatment effect between ANCOVA and the con-
strained mixed model, visible in Table 2, becomes a
bit larger if the number of clusters decreases (for
details, see Van Breukelen, 2013, p. 920).

The results in this paper have practical implications
for data analysis and sample size calculation for a
CRT with baseline measurement. First, both the
CHANGE and the ANCOVA methods are valid, but
the latter have more power. For RCTs this was already
known (Porter & Raudenbush, 1987; Rausch et al.,
2003; Senn, 1989). For CRTs it follows from the
equivalences shown in this paper between multilevel
analyses on the one hand and a simple CHANGE or
ANCOVA analysis of cluster means on the other
hand. It is also illustrated by the smaller standard
errors in Table 2 compared to Table 1. Secondly, if
the sample size is roughly the same in all clusters and
there are not many missing data, then a simple ana-
lysis of cluster means is a good alternative to multi-
level analysis for the purpose of treatment effect
estimation (but not for estimating effects of covariates
that vary within clusters). Third, the sample size for a
CRT with a baseline measurement can be computed
in a simple way without restrictive assumptions about
the covariance structure (as made in most publications
on sample size for CRTs), and without having to spe-
cify six different covariance parameters. Finally, the
CHANGE Equations (7) and (9) show that, in the
random intercept model for cluster effects used in
Heo and Leon (2009), Kraag et al. (2009), and
Escriva-Boulley et al. (2018), the random cluster effect
cancels out from the sampling variance of the treat-
ment effect, which leads to an increased Type I error
risk and undercoverage of confidence intervals if the
cluster effect is not stable over time. This model may
also have been used in some trials mentioned in the
introduction where the model was not reported in a
clear way (Conner et al., 2019; Felder et al., 2017;
Herman et al., 2022; Ho et al., 2020).

Just like any other paper, this one has its limita-
tions. Here, we mention five.

First, the equivalences between the various methods
only hold if the sample size is the same in all clusters
and there are no missing data. Sample size variation
between clusters increases the sampling variance of
the treatment effect in case of analysis of individual
data, and even more so in case of analysis of cluster
means, whether weighted by cluster size or
unweighted (Searle & Pukelsheim, 1986; Van
Breukelen et al., 2007). Missingness at pretest or at
posttest leads to a loss of power for all methods, but
also to a difference between mixed regression for
repeated measures, which can include all individuals
with at least one measurement, and CHANGE and
ANCOVA, which only include complete cases (unless
the bivariate distribution of pretest and posttest is
specified to allow multiple imputation or maximum
likelihood estimation including incomplete cases). For
these reasons, mixed regression of the individual pre-
test and posttest data remains the method of choice
unless the sample size variation between clusters and
the percentage of missingness are both small so that
analysis of cluster means is nearly equivalent to mixed
regression of individual data. However, as shown in
the previous section, the equivalences between meth-
ods in case of an equal sample size per cluster sim-
plify the sample size calculation for a CRT with
repeated measures, and that sample size is then easily
corrected for cluster size variation.

A second limitation is that effects of within-cluster
covariates such as the individual’s age or years of edu-
cation, are lost by aggregating individual data to clus-
ter means, as shown by Equations (12) and (13). By
categorizing covariates their effects can still be studied
after aggregation, albeit with a loss of information due
to the categorization. Specifically, the outcome mean
can be computed per cluster per covariate category
(e.g., separately for old and young individuals). The
main effect of the covariate can then be tested with a
paired t-test of old versus young persons, with clusters
as units of analysis. The treatment by covariate cross-
level interaction can be tested by the two-sample t-test
of treated versus control clusters, with as dependent
variable the mean outcome difference between old
and young persons within the cluster. However, the
problem that the outcome means are based on varying
sample sizes may then be more pronounced than for
testing the main effect of treatment because the cova-
riate distribution will not be exactly the same in each
cluster. It is therefore questionable whether aggrega-
tion is a viable alternative to the analysis of individual
data for the study of within-cluster covariate effects.
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Third, this paper is limited to CRTs with two
repeated outcome measures. CRTs may include a fol-
low-up measurement or an intermediate measurement
between pre- and posttest. Literature on classical
RCTs with more than two repeated measures suggests
various methods of analysis, including an extension of
Equation (1) with dummy indicators for all extra time
points and with their interactions with treatment, or
aggregation of repeated measures to a linear contrast
or an area under the curve summary measure, which
is then analyzed as a single measurement just like the
change score (Frison & Pocock, 1992, 1997; Senn
et al., 2000). For each of these methods, multilevel
analysis accounting for intraclass correlation and clus-
ter mean analysis can be expected to give the same
results if the sample size is equal across clusters, and
similar results if it varies mildly.

A fourth limitation of this paper is to quantitative
outcomes. Categorical, especially binary, outcomes can
occur in CRTs, for instance, smoking status in smok-
ing prevention trials. Binary data are typically ana-
lyzed with mixed logistic regression or generalized
estimating equations (GEE), but aggregation to the
cluster level gives quantitative data (proportions or
sums). This suggests various alternatives, among
others binomial and Poisson regression, but also
(weighted) linear regression with the log-odds
(ln p= 1� pð Þ� �

at cluster level as dependent variable,
where p is the proportion persons with outcome 1 in
that cluster. Further, sample size calculation is more
complicated for binary outcomes of a CRT as there
are no closed form equations for the sampling vari-
ance of the treatment effect (Moerbeek et al., 2001;
Teerenstra et al., 2010).

A last limitation to be mentioned is that to cluster
randomized trials. Nonrandomized comparisons
between two groups of clusters are abundant in psych-
ology and education, such as a comparison between
schools using textbook A and schools using textbook
B for math with respect to the end-of-year math
grades of their students, or a comparison between
therapists treating depression with cognitive-behav-
ioral therapy and therapists using interpersonal ther-
apy. It is known from the literature on
nonrandomized comparisons without clustering that
CHANGE and ANCOVA can give opposite results,
which is known as Lord’s paradox (see e.g., Maris,
1998; Van Breukelen, 2013). For nonrandomized com-
parisons, it thus first needs to be established which
method is valid for treatment effect inference under
which conditions (see e.g., Rubin, 2004, 2005; Schafer
& Kang, 2008) before a meaningful comparison can

be made between individual and aggregated data
methods, or a sample size procedure can be proposed.
The fact that CHANGE methods can only test treat-
ment effects under the strong assumption that, with-
out treatment, the two groups would have shown
parallel change, is probably well-known. The equiva-
lence between ANCOVA and a constrained mixed
model that assumes absence of a baseline group differ-
ence is much less known, but it should be a warning
against the use of ANCOVA for nonrandomized
group comparisons with a baseline difference, regard-
less of whether the groups consist of individuals or of
clusters.

In summary, based on the present work the follow-
ing recommendations can be given for the data ana-
lysis and the sample size planning of a cluster
randomized trial with a pretest and posttest of a
quantitative outcome. First, if the sample size is nearly
equal in all clusters and there are few missing data,
then an analysis of cluster means is a simple alterna-
tive to mixed regression of individual data. Else,
mixed regression of individual data is needed.
Secondly, in both cases, ANCOVA or the nearly
equivalent constrained mixed model can be expected
to have more power than CHANGE respectively the
unconstrained mixed model. However, the power gain
depends on the pretest-posttest correlation, the ratio
of pretest variance to posttest variance, and chance
correlation between treatment and pretest (for details,
see the Appendix). Third and last, sample size calcula-
tion is simplified by first assuming an equal sample
size per cluster and a simple data analysis of cluster
means with CHANGE or ANCOVA, and then cor-
recting the number of clusters for the power loss aris-
ing from cluster size variation as expressed by the
coefficient of variation of cluster size. These calcula-
tions can be done by hand with the present equations
which show how each input parameter affects the
sample size needed, or with the online NIH calculator
which is quite user friendly, or with both as a double
check. Whether the sample size calculation is based
on CHANGE or ANCOVA depends on the planned
method of data analysis and on the availability of
covariance parameter estimates from similar trials in
the field of application.
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Appendix: Cluster randomized trials with a
pretest and posttest

Section three-, two-, and one-level ANCOVA: theory
and methods
Application of Equation (9) to data leads to underestima-
tion of bu due to imperfect reliability of the pretest cluster
mean Y j1 as estimator of the true pretest cluster mean
b0 þ uj1. Specifically, for large number of clusters k the esti-
mator of bu, when applying Equation (9) to data, does not
converge to bu. Instead, for large k we have that (Grilli &
Rampichini, 2011, p. 124; Shin & Raudenbush, 2010, p. 29;
Snijders & Bosker, 1999, p. 30):

b̂u ! k1bu þ 1� k1ð Þbe, k1 ¼ nq1
1þ n� 1ð Þq1

, (A.1)

where q1 is the ICC at pretest, defined by Equation (3), n is
the sample size per cluster, and k1 is the reliability of the
pretest cluster mean as estimator of b0 þ uj1. Only if both k

and n are large does b̂u approach bu:
Three things are noteworthy about Equation (A.1). First,

k1 obeys the Spearman-Brown formula for the reliability of
a sum (or mean) score of n items as a function of the num-
ber of items and the reliability q1 of a single item. Here, the
items are persons and the true score is the true pretest clus-
ter mean. Second, if be ¼ 0, Equation (A.1) for b reduces
to the equation for the attenuation of a regression weight
by measurement error in the covariate (Cochran, 1968;
Fuller, 1995; Fuller & Hidiroglou, 1978; Raaijmakers &
Pieters, 1987). Of course, the case be ¼ 0 is unrealistic if we
measure the same individuals in the same clusters at both
time points, pretest and posttest, see Equation (7b). Third
and last, from (A.1) it follows that the regression weight of
Y j1 in Equation (9) is a weighted sum of the between- and
the within-cluster regression weights, and equal to the
between-cluster weight bu only if n ! 1 (large sample size
per cluster) so that k1 ! 1, or if bu ¼ be (no contextual
effect).

Despite the bias in the estimation of bu due to imperfect
reliability of Yj1 no bias results in the treatment effect esti-
mation, because the predictors in Equation (9) are uncorre-
lated (unconfounded) as explained in the main text. In fact,
due to this uncorrelatedness any value used for bu and for
be in Equation (9) gives the same treatment effect estimate
apart from sampling error. The merit of including covari-
ates into the analysis of a CRT are, just as in an RCT, a

gain in power and precision for treatment effect testing and
estimation by reducing unexplained outcome variance, at
least in linear models. Specifically, including Yj1 as covariate
reduces the unexplained between-cluster variance r2u2 to r2d
(or more precisely, r2d0 , see Equations (7a), (8), and (9)).

Likewise, including Yij1 � Y j1
� �

as covariate reduces the
unexplained within-cluster variance r2e2 to r2r (or more pre-

cisely, r2r0) . Now, Var b̂3

� �
for the model in Equation (9) is

an increasing function of both unexplained variances and
including both covariates would thus seem to reduce

Var b̂3

� �
and thereby increase the power and precision for

the treatment effect test and estimation. As explained in the
next section, however, omitting the within-cluster covariate
does not change the precision of treatment effect
estimation.

Section three-, two-, and one-level ANCOVA: illustra-
tion by simulation
Applying Equation (9) with or without the within-cluster
covariate Yij1 � Yj1

� �
gives the same standard error for the

treatment effect. At first glance, this is counterintuitive
because the covariate reduces the unexplained outcome
variance within clusters and thus also the SE of the treat-
ment effect, which is an increasing function of the within-
cluster variance as well as of the between-cluster variance.
The explanation for this can be seen in Table 2: Including
the within-cluster covariate into the model, while reducing
the estimated within-cluster variance r̂2

r0 with an amount

b̂
2
e r̂

2
e1 (see Equations (7)–(9)), also increases the estimated

between-cluster variance r̂2
d0 with an amount b̂

2
e r̂

2
e1=n (cf.

Snijders & Bosker, 1999, p 100). This is important because
the sampling variance (i.e. squared standard error) of the
treatment effect is proportional to r2d0 þ r2r0=n

� �
(see

Equation (11) and the section on sample size calculation),
and it will thus not change if the two variance components
change as indicated above.

The surprising increase of r̂2
d0 as a result of adding the

within-subject covariate can be understood in terms of
ANOVA variance component estimation. In a oneway
between-subject ANOVA with a random instead of a fixed
group factor (here: the clusters), E MSbetweenð Þ ¼ nr2b þ r2e
and E MSwithinð Þ ¼ r2e , where n is the sample size per clus-
ter, r2b is the variance of the random cluster effect, and r2e
is the residual (within-cluster) variance. So, r̂2

e ¼ MSwithin
and r̂2

b ¼ MSbetween �MSwithinð Þ=n. If adding a within-sub-
ject covariate reduces the MSwithin and thus also r̂2

e by an
amount x, this also increases r̂2

b by an amount x=n
because the MSbetween is unaffected by the within-subject
covariate. This increase becomes ignorably small if n is
large.

Section sample size (power) calculation

Analogously to equation (11) for the sampling variance of
the treatment effect when using CHANGE of cluster means,
the following equation applies when using ANCOVA:
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Var b̂3

� �
¼ 4

k
r2y2 1� q2y1y2
� �

1� R2
Gy1

� ��1
, (A.2)

where k is the total number of clusters in the CRT, and all
variances concern cluster means and are given in
Equations (4)–(6). Further, qy1y2 is the correlation between
pretest and posttest cluster means within the same treat-
ment condition, and R2

Gy1 in Equation (13) is the squared

correlation between the 0/1 treatment indicator and the

pretest cluster mean (Fox, 1997). The factor 1� R2
Gy1

� ��1

is known as Variance Inflation Factor (VIF) as it indicates
how much the sampling variance of the treatment effect
estimator is increased by correlation with the covariate
compared to the case of no such correlation (Fox, 1997).
Here, RGy1 is the correlation in the CRT at hand, as

Var b̂3

� �
is conditional on the design matrix (joint distri-

bution of treatment and covariate) of that CRT. As k
increases, R2

Gy1 goes to zero and the VIF goes to one due

to the cluster randomized treatment assignment. Equation
(A.2) then reduces to 4/k times the residual variance of the

posttest cluster means, which would be Var b̂3

� �
if the

covariate’s regression weight were known. Equation (A.2)
is the same as for a classical RCT (as in Porter &
Raudenbush, 1987; Rausch, Maxwell & Kelley, 2003; Senn,
1989; Winkens et al., 2007), but now applied to cluster
means. In the design stage of a CRT, R2

Gy1 is of course not

known yet and may be replaced for the purpose of sample
size calculation with an educated guess, for instance, that
it will not exceed 4/(k-3), where k is the total number of
clusters. This upper bound is based on the fact that the
Fisher transformed correlation is approximately normally
distributed with standard error 1=

ffiffiffiffiffiffiffiffiffiffiffi
k� 3

p
(Lachin, 1981)

and the fact that, for correlations from �0.50 to þ0.50,
the Fisher transformed and untransformed correlation are
almost equal. Alternatively, the expectation of the VIF
might be used for sample size planning, but its derivation
is complicated by the fact that it is a nonlinear function
of RGy1:

Using Equation (4), the correlation qy1y2 in Equation
(A.2) can be rewritten as:

qy1y2 ¼
ffiffiffiffiffiffiffiffiffi
k1k2

p
qu1u2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k1ð Þ 1� k2ð Þ

p
qe1e2, (A.3)

where k1 is the reliability of the pretest cluster mean as
defined in Equation (A.1), and k2 is likewise the reliability
of the posttest cluster mean. The proof of (A.3) is given at
the end of this section. If k1 ¼ k2, the correlation between
pre- and posttest cluster means is a weighted mean of the
between-cluster pre-post correlation qu1u2 and the within-
cluster pre-post correlation qe1e2, analogous to Equation
(A.1). Further, from Equation (A.2) with R2

Gy1 � 0 due to

randomization it follows that if r2y1 ¼ r2y2, then the ratio of

the sampling variances in Equations (11) and (A.2) is
2 1þ qy1y2
� ��1, implying that ANCOVA is more efficient

than CHANGE unless qy1y2 ¼ 1: In fact, ANCOVA is
always more efficient than CHANGE if qy1y2 < 1 and

R2
Gy1 ¼ 0: This can be verified by subtracting the expression

for Var b̂3

� �
in Equation (A.2) from that in Equation (11),

then dividing by 4
k r

2
y2 and rewriting into x�qð Þ2, where

x ¼ r2y1=r
2
y2. However, if the posttest variance is larger than

the pretest variance, the regression weight ry1y2=r2y1 for the

pretest cluster mean as predictor of the posttest cluster
mean in ANCOVA can approach one, making ANCOVA
close to CHANGE. Further, in small samples, R2

Gy1 > 0 can

occur due to sampling error, leading to a loss of efficiency
of ANCOVA.

To compute the sample size for ANCOVA on cluster
means or its equivalents in Table 2, replace in Equation
(15) rcha with the SD of the posttest residual d0j þ r0ij of

Equation (12), so, adjusted for the treatment and the pretest
covariate, and replace the ICC qcha used in the DE, see
Equation (9), with the ICC of the posttest residual.

Proof of Equation (A.3): Using Equation (4) gives

qy1y2 ¼ ru1u2
ry1ry2

þ
re1e2
n

� �
ry1ry2

¼ qu1u2ru1ru2
ry1ry2

þ
qe1e2re1re2

n

� �
ry1ry2

:

Taking Equations (A.1) and (3), and using
ffiffiffiffi
kt

p ¼ rut
ryt

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ktð Þp

¼ ret=
ffiffi
n

p
ryt

for t¼ 1,2, then gives

Equation (A.3).
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