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ABSTRACT

Many of the differential item functioning (DIF) detection methods rely on a principle of test-
ing for DIF item by item, while considering the rest of the items or at least some of them
being DIF-free. Computational algorithms of these DIF detection methods involve the selec-
tion of DIF-free items in an iterative procedure called item purification. Another aspect is the
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need to correct for multiple comparisons, which can be done with a number of existing
multiple comparison adjustment methods. In this article, we demonstrate that implementa-
tion of these two controlling procedures together may have an impact on which items are
detected as DIF items. We propose an iterative algorithm combining item purification and
adjustment for multiple comparisons. Pleasant properties of the newly proposed algorithm
are shown with a simulation study. The method is demonstrated on a real data example.

Introduction

The Differential Item Functioning (DIF) is a well-
known phenomenon that can arise in various contexts
of multi-item scales, including psychological and edu-
cational measurement, admission tests, or health-
related inventories (Martinkova et al., 2017; Osterlind
& Everson, 2009; Penfield & Camilli, 2007). An item
is said to function differently (or, in short, to be a
DIF item) when test takers from different subgroups
of the target population, comparable on their level of
ability or other underlying latent trait, have different
probabilities of answering an item correctly or endors-
ing the item. DIF is a potential threat to fairness and
validity of measurement and DIF analysis should,
therefore, be a routine part of test validation. Many
detection methods were developed to flag DIF items,
using either score-based techniques or Item Response
Theory (IRT) modeling, and these as well as new
methods are still being studied intensively (Belzak,
2020; Berger & Tutz, 2016; Cho et al, 2016;
Drabinova &  Martinkovd, 2017; Hladkd &
Martinkova, 2020; Magis et al, 2010; Maij-de Meij
et al, 2010; Martinkova & Hladka, 2023; Penfield
et al., 2009; Schneider et al., 2021).

Most traditional DIF detection methods rely on the
basic principle of testing for DIF one item after another,
with the remaining items being considered as anchor
(DIF-free) items. This process is known to have at least
two drawbacks. First, when DIF items are truly present
in the data, gradual DIF testing implies that DIF items
are included in the matching variable (for instance the
test score), which is known to be a source for a poten-
tially serious bias and misidentification of DIF and non-
DIF items (Jodoin & Gierl, 2001; Kopf et al., 2015a,
2015b; Woods, 2009). Second, testing each item one
after another usually yields inflated type I error rates
(i.e., proportion of falsely detected items) because trad-
itional methods do not adjust for multiple comparisons
involved in this repeated, item-by-item process.

Each issue was to some extent addressed in the
DIF literature in different ways. To correctly identify
a set of anchor items and to reduce the impact of DIF
items on the matching variable, an item purification
process was proposed (Lord, 1980); first suggested by
Marco (1977) and later extended and improved by
many authors including Candell and Drasgow (1988),
Clauser et al. (1993), and French and Maller (2007).
Item purification consists of the iterative removal of
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items flagged as DIF from the set of anchor items
Candell and Drasgow (1988). This algorithm was
shown to improve the results of most DIF detection
methods (Clauser et al., 1993; French & Maller, 2007;
Navas-Ara & Gémez-Benito, 2002; Wang & Su, 2004),
with the notable exception of Angoff's delta plot
method (Magis & Facon, 2013). The other issue,
inflated type I error rates due to multiple comparisons
can, on the other hand, be accurately controlled with
adequate multiple comparison adjustment procedures.
Adjustments for multiple comparisons are easy to
implement, non-iterative, and were also shown to
improve the accuracy of DIF identification (i.e., non-
inflated type I errors and larger power; see Kim &
Oshima, 2013).

Though conceptually different and with different
purposes, both item purification and adjustments for
multiple comparisons share the same objective, that is,
improvement for the classification of items into DIF
and non-DIF groups. While both controlling proce-
dures are still being studied intensively (Chen & Hwu,
2018; Fikis & Oshima, 2017; Khalid & Glas, 2014;
Kim & Oshima, 2013), surprisingly, to the best of our
knowledge, performance of these approaches has not
yet been jointly evaluated in a comprehensive study,
and, moreover, the various combinations have not yet
been fully explored. This represents a potential gap in
DIF literature, as both approaches have been shown
to improve DIF detection to a certain extent.

In this work we propose an iterative combination of
item purification and multiple comparison adjustment,
and we evaluate their properties in a simulation study
under various scenarios for three selected DIF detection
methods: The Mantel-Haenszel test Mantel and
Haenszel (1959), the logistic regression method
Swaminathan and Rogers (1990), and the Simultaneous
Item Bias Test (SIBTEST) method Shealy and Stout
(1993). We finally offer a practical illustration using a
real dataset from lower secondary education. The gen-
eral goal of this paper is to assess the effect of control-
ling procedures in the improvement of DIF
identification which includes the task of best identifying
anchor (DIF-free) items and items truly affected by DIF.

The paper proceeds as follows: Section “Methods”
introduces the proposed method and design of the
simulation study, including the data generation pro-
cess, the considered DIF detection methods and set-
tings, and simulation evaluation. It also describes the
real data example and the implementation of
the methods in R. Section “Results” contains results of
the simulation study separately for the three DIF
detection methods considered, and provides results of
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the real data analysis. Section “Discussion” offers dis-
cussion and concluding remarks.

Methods
Controlling procedures in DIF detection

Item purification

DIF analysis is based upon the principle of comparing
item performance of the test takers being matched by
their ability. Therefore, defining an appropriate match-
ing criterion is mandatory. For non-IRT DIF detection
methods such as the Mantel-Haenszel test (Holland &
Thayer, 1988; Mantel & Haenszel, 1959), the logistic
regression method (Swaminathan & Rogers, 1990), or
the SIBTEST method (Shealy & Stout, 1993), the total
test score, i.e., the number of correct responses, is often
used as the matching criterion. For IRT-based techni-
ques such as the Lord’s test Lord (1980), an estimate of
their latent ability level is used instead.

The danger of computing this matching criterion for
the set of administered items is that the inclusion of
DIF items could seriously impact the results of the
identification process. It is then of primary importance
to ensure that anchor (i.e., DIF-free) items are available
for proper computation of this matching variable. For
non-IRT methods, the matching criterion (observed
ability) should be computed by using only anchor
items. For IRT-based methods, linking the two scales
(one for the reference group and one for the focal
group) should be based upon only these anchor items.

Because it is oftentimes impossible to predict which
items will function differently, Candell and Drasgow
(1988) proposed an iterative process that is currently
referred to as item purification. In test-score-based DIF
detection methods, item purification begins with one
run of the DIF detection method per item, all other
items being considered as anchor items. All items
flagged as DIF are then removed from the set of anchor
items, and the method is re-run using this reduced
anchor set. These two steps (running DIF analysis and
removing flagged items from the anchor set) are
repeated until two successive runs yield the same set of
items identified as functioning differently (Figure 1A).

To illustrate the item purification algorithm, let’s
assume an artificial test consisting of 10 items and an
arbitrary non-IRT DIF detection method (Table 1). At
the initial step, the total test score was calculated based
upon all 10 items. Using a DIF detection method and
the total test score, items 1, 7, and 8 were detected as
DIF items. In the first step of item purification, these
items were removed from the calculation of the total
score and a DIF detection procedure was then applied
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Figure 1. Scheme of (A) Item purification, (B) Simple combination of item purification and multiple comparison adjustment (MCA),

(C) Iterative combination of item purification and MCA.

Table 1. lllustration of the item purification algorithm.

Matching criterion Z}L Vi Yunas Vi Ywpe Vi Dinas Vi
Item Step 1 Step 2 Step 3 Step 4

1 DIF DIF DIF DIF

2 NON-DIF  NON-DIF DIF DIF

3 NON-DIF  NON-DIF NON-DIF NON-DIF
4 NON-DIF  NON-DIF NON-DIF NON-DIF
5 NON-DIF  NON-DIF NON-DIF NON-DIF
6 NON-DIF  NON-DIF NON-DIF NON-DIF
7 DIF NON-DIF NON-DIF NON-DIF
8 DIF DIF DIF DIF

9 NON-DIF  NON-DIF NON-DIF NON-DIF
10 NON-DIF  NON-DIF NON-DIF NON-DIF

using this new matching criterion (total test score with-
out items 1, 7, and 8). In the second step, only items 1
and 8 were detected as functioning differently. The set of

DIF items was not the same as in the previous iteration
and thus the matching criterion (total test score without
items 1 and 8) was recalculated and the DIF detection
procedure was run again. In the third step, items 1, 2,
and 8 were detected as DIF. Again, current and previous
sets of DIF items were not the same and the matching
criterion needed to be calculated was once more the total
test score without items 1, 2, and 8. Finally, in the fourth
step, items 1, 2, and 8 were detected as in the previous
iteration and the algorithm stopped.

Item purification is an approach which is intui-
tively appealing and simple to implement. Though
item purification can be done efficiently in most cases,
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Table 2. lllustration of the Holm’s and BH adjustments for multiple comparisons in DIF detection in comparison with standard

decision not using adjustment for multiple comparisons.

[tem Rank p-value Standard decision Holm'’s boundary Holm'’s decision BH boundary BH decision
5 1 0.0014 DIF 0.0050 DIF 0.0050 DIF

10 2 0.0039 DIF 0.0056 DIF 0.0100 DIF

9 3 0.0111 DIF 0.0062 NON-DIF 0.0150 DIF

8 4 0.0182 DIF 0.0071 NON-DIF 0.0200 DIF

3 5 0.0209 DIF 0.0083 NON-DIF 0.0250 DIF

6 6 0.0306 DIF 0.0100 NON-DIF 0.0300 NON-DIF
2 7 0.0388 DIF 0.0125 NON-DIF 0.0350 NON-DIF
4 8 0.2430 NON-DIF 0.0167 NON-DIF 0.0400 NON-DIF
7 9 0.3623 NON-DIF 0.0250 NON-DIF 0.0450 NON-DIF
1 10 0.7826 NON-DIF 0.0500 NON-DIF 0.0500 NON-DIF

it can sometimes become time consuming (especially
for IRT-based methods), and there is no guarantee
that the iterative process will converge (i.e., will pro-
vide two successive identical sets of DIF items).

Multiple comparisons adjustments
Another potentially problematic issue, often present in
DIF detection though less often investigated, is that
each item is being tested individually, while all other
items are considered free of DIF. This implies that
multiple comparisons among all test items will arise,
which is without adjustment to the significance level
known to lead to inflated type I error rates. In the
DIF framework, Kim and Oshima (2013) compared
different methods of adjustment for multiple compari-
sons. Two such adjustment procedures were shown to
be superior in the DIF context: Holm’s procedure
Holm (1979) and Benjamini-Hochberg (BH) proced-
ure Benjamini and Hochberg (1995). Holm’s proced-
ure Holm (1979) is an improvement to Bonferroni’s
procedure which was shown to be more powerful
Holland and Copenhaver (1988). It is intended to
control family-wise error, that is, the probability of
making one or more type I errors (in a DIF context,
the type I error means flagging a non-DIF item as
DIF). BH procedure controls the false discovery rate,
that is, the expected proportion of type I errors
Benjamini and Hochberg (1995). Procedures to con-
trol the false discovery rate have greater power at the
cost of increased type I error rates (Shaffer, 1995).
These two adjustment methods can be schematic-
ally described as follows: First, for each tested item i
(say from 1 to I), let p; be the corresponding p-value
for the DIF detection method (obtained when all
other items are set as anchor items), and let p(y), ...,
Py be the I values sorted in increasing order. Then,
for a given global significance level «, the index k is
defined as

1. the minimal index that satisfies py > oo/(I +1 —
k) for Holm’s procedure,

2. the maximal index that satisfies p() < ak/I for
BH procedure.

Eventually, items with corresponding ordered p-
values p(1) to p_1) (for Holm’s procedure) or to p(
(for BH procedure) are flagged as DIF, while the
remaining items are considered non-DIF.

These methods are illustrated using an artificial
example of ten items, highlighting how the choice of
an adjustment method has a straightforward impact
upon which item is detected as a DIF item (Table 2).
The Holm’s and BH boundaries were calculated by
formulae in (1) and (2), and then compared with
ordered p-values. With Holm’s procedure, index k
was equal to three; therefore only the first two listed
items (i.e., items 5 and 10) were eventually flagged as
DIF. This is a considerable reduction when compared
to the original classification (without Holm’s adjust-
ment) which led to flagging seven out of the ten items
as DIF. With BH procedure, k index was equal to five;
therefore the first five items (according to their classi-
fication in an increased order of p-values) were
flagged as DIF, compared to seven items when no
adjustment was considered.

Simple and iterative combination of controlling
procedures

We will introduce two different settings for applying
both methods together, item purification and multiple
comparisons adjustments. We consider first a simple
combination of both approaches, containing the full
item purification process followed by a single multiple
comparison adjustment (Figure 1B). This combination
of controlling procedures is easily applicable using
software providing DIF analysis with an implemented
item purification algorithm.

We then propose an iterative algorithm which per-
forms item purification followed by an adjustment for
a multiple comparison after each run of item purifica-
tion (Figure 1C). We expect that this algorithm may
be more precise and also less time consuming thanks
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to effectively lowering the number of DIF items by a
computationally undemanding adjustment procedure,
already present in the initial run.

Simulation study

Data generation

Six design factors were manipulated to generate the
data: (a) sample size, (b) test length, (c) amount of
DIF items, (d) type of DIF, (e) size of DIF effect, and
(f) distribution of ability for the focal group. The total
sample sizes 250 (125 per group), 500 (250 per
group), 1,000 (500 per groups), and 2,000 (1,000 per
group) were selected, while test lengths of 20, 40, and
80 items were considered. Four different proportions
of DIF items (0%, 5%, 15%, and 30%) were consid-
ered. Parameters of DIF items were chosen to incorp-
orate both types of DIF (uniform and non-uniform)
in two different sizes of DIF effect (0.4 and 0.8) quan-
tified by the area between the characteristic curves
(Raju, 1988). DIF effect sizes correspond to small and
large DIF magnitudes and were selected following
Swaminathan and Rogers (1990) and Narayanan and
Swaminathan (1996).

The item responses were generated under a true
underlying three-parameter logistic IRT model. In all
scenarios, the ability of the reference group was drawn
from the standard normal distribution. For the focal
group we considered three options for determining
ability levels. First, ability levels were the same as
those for the reference group—drawn from a standard
normal distribution. Second, ability levels for the focal
group were drawn from a normal distribution with a
mean equal to 1 but with the same standard deviation
as used for the reference group. Third, the standard
deviation for a normal distribution for the focal group
was manipulated and set to 1.5.

Parameters of non-DIF items were selected from
problem solving of the Graduate Management
Admission Test (Kingston et al., 1985, see Table at p.
47 for parameters according to 3PL IRT model for all
80 non-DIF items) to reflect realistic values. When
tests of 20 or 40 items were considered, only the set
of parameters for the first 20 or 40 items were used.

The DIF item parameters creation was inspired by
Narayanan and Swaminathan (1996). The c-parameter
was fixed at a value of 0 for all DIF items. The selec-
tion of discrimination and difficulty parameter values
depends upon the type of DIF effect generated. For
uniform DIF, discrimination parameter a was fixed
for both groups, and difficulty parameter b varied to
gain the desired DIF effect size (either small 0.4, or

large 0.8). 24 uniform DIF items were simulated with
varying values of b parameter—b = — 1, b=0, or
b=1 for the reference group, and an appropriate shift
for the focal group—either 0.4 or 0.8 to perform
either a small or large DIF effect size; and varying val-
ues of a parameter—from a=0.25 to a=2.25.
Table Al summarizes all of these options and high-
lights which non-DIF item(s) were replaced by those
parameter values.

For non-uniform DIF items, difficulty parameter b
was fixed for both groups, and discrimination param-
eter a varied to gain the desired DIF effect size. 24
non-uniform DIF items were simulated with varying
values of the common b parameter—low (b = — 1),
medium (b=0), and high (b=1) and varying values
of a parameter—from a=10.50 to a =0.85 for the ref-
erence group, and an appropriate shift for the focal
group—from 0.20 to 0.82 to perform either a small or
large DIF effect size. These combinations are also
listed in Table Al.

This simulation design yields 36 settings in the
absence of DIF (four sample sizes, three test lengths,
and three ability distributions) and 432 settings in the
presence of DIF (in addition, three proportions of
DIF, two DIF sizes, and two types of DIF effect), thus
468 design settings in total. 1,000 datasets were gener-
ated for each setting. Note that given the fact that
some DIF detection methods may yield convergence
issues, no results were obtained for items in which the
algorithm failed to converge and thusly no conclusion
about DIF detection could be drawn. To overcome
this problem, runs with convergence issues were
excluded, and simulations were re-run until 1,000 rep-
lications without convergence failures were obtained.

DIF detection
Three non-IRT DIF detection methods were selected:
the Mantel-Haenszel test (Holland & Thayer, 1988;
Mantel & Haenszel, 1959), the logistic regression pro-
cedure (Swaminathan & Rogers, 1990) with the likeli-
hood ratio test accounting for both types of DIF (i.e.,
uniform and non-uniform), and the SIBTEST (Shealy
& Stout, 1993). These three methods were chosen
because they are the most commonly used non-IRT
procedures for identifying DIF. Moreover, they might
benefit the most from multiple comparison adjust-
ments and their combinations since DIF detection is
done item by item in contrast to IRT-based methods.
All three DIF detection methods were employed for
each generated dataset, together with eight possible
procedures to control type I error: (a) item purifica-
tion, (b) Holm’s adjustment method, (c) BH



adjustment method, (d) simple combination of item
purification with Holm’s adjustment, (e) simple com-
bination of item purification with BH adjustment, (f)
iterative algorithm with Holm’s adjustment, (g) itera-
tive algorithm with BH adjustment, and (h) no con-
trolling procedure (i.e., the DIF detection method
performed without any further controlling procedure;
for bench-marking purposes). 24 combinations of DIF
detection methods and type I error controlling proce-
dures were applied for each dataset. In a case of using
item purification, either alone or in combination with
an adjustment method, a maximal number of itera-
tions was set to 50. The significance value was set
to 5%.

Summary statistics and simulation evaluation
Three summary statistics (type I error rate, rejection
rate, and power rate) were computed across the 1,000
generated datasets per study design, and separately for
each of the 24 combinations of DIF detection method
and controlling procedures. A type I error rate was
estimated as the proportion of falsely detected items
when none of the items were generated as DIF. The
rejection rate was calculated as the proportion of
falsely detected items among all non-DIF items (in
the cases when DIF items were present in the simula-
tion scenario). The power rate was calculated as the
proportion of correctly detected DIF items among all
truly DIF items.

The results were interpreted with respect to the fol-
lowing research questions:

1. Are the DIF detection methods able to control for
type I error (ie., type I error and rejection rates
close to the 5% significant level) with sufficient
power (i.e., over 80%) even without any control-
ling procedure?

2. How do the studied controlling procedures (item
purification, Holm’s adjustment, and BH adjust-
ment) and their combinations (simple combin-
ation of item purification with Holm’s
adjustment, simple combination of item purifica-
tion with BH adjustment, iterative algorithm with
Holm’s adjustment, iterative algorithm with BH
adjustment) compare in different scenarios in
terms of power?

3. Which design factors have significant impact on
type I error rate, rejection rates, and power rates?

The first question has been investigated by many
authors (see, e.g., van de Water, 2014). In the context
of this simulation study, the answer to the first
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question could help to set the bench-marking values
to which other methods are being compared.

To get an initial idea, summarizing figures with
observed type I error, rejection rates, and power rates
were produced. For simplicity, presented values were
averaged by scenarios with the same level of a given
factor. Type I error and rejection rates were consid-
ered as suitable if they were close to the 5% signifi-
cance level. Power rates considered as
satisfactory if they achieved a value of at least 80%.

To test for significance in the differences between

controlling procedures and an effect of other study

were

factors, beta regression models for type I error, rejec-
tion rates, and power rates were fitted with a logit
link to cover all values between 0 and 1. All possible
double interactions between factors were included
into the models. Note that since the beta regression
model cannot handle extreme values (i.e., 0 or 1),
such type I error rates, rejection rates, and power
rates were replaced by values 10° higher or lower.
Interpretation of the parameter effects in the beta
regression model is the same as in logistic regression
(e.g., Agresti, 2002). It should be noted that interpret-
ation of the results was made primarily with focus on
controlling procedures and their possible interactions
with other factors (see research questions above).
interested in the differences
between DIF detection methods in this study, three
separate models were fitted, one for each method.

Since we were not

Real data example

To demonstrate the impact of the choice for the con-
trolling procedures on DIF detection in practice, we
analyze data from the Czech Longitudinal Study in
Education (CLoSE) (Greger et al, 2022; Martinkova
et al.,, 2020). We focused on the results in a test of
reading skills taken in the 6 grade. Two versions of
the same test were distributed. We have considered
here only version B.

A total of 2,634 students participated in this test,
including 1,310 girls and 1,324 boys. The test was
comprised of 19 items, some of which were multiple-
choice and some were open answer questions. For
purpose of this paper, the item responses were dicho-
tomized: 1 point was awarded if the answer was fully
correct and 0 if it was not. DIF was investigated
across gender using three DIF detection methods and
eight scenarios of controlling procedures compared in
the simulation study.
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Practical implementation

For all analyses, software R, version 3.6 (R Core
Team, 2019) was used. All DIF detection methods and
controlling procedures were fitted using the difR
package (Magis et al., 2010). The proposed iterative
combination of item purification and multiple com-
parison adjustment was implemented as an extension
to difMHY(), difLogistic(), and difSIBTEST() functions.
Functionalities of the extended functions may also be
interactive application of the
ShinyltemAnalysis package, version 1.5.0
(Martinkova & Drabinova, 2018; Martinkova &
Hladka, 2023); see also Figure Al. Beta regression
models for summary statistics in the simulation study
were fitted using the betareg package (Cribari-Neto &
Zeileis, 2010). The selected R codes for browsing the
results of the simulation study and for the real-data
analysis together with the datasets are provided in the
electronic supplemental files available at https://osf.io/

jng7yl/.

explored in an

Results
Simulation study

Mantel-Haenszel test

Empirical rates. For small sample sizes, the Mantel-
Haenszel test was able to control type I error and
rejection rates under all choices of the controlling
procedures and in almost all scenarios (Figure 2, top
and middle panels). It is a common phenomenon that
with an increasing sample size the rejection rate
increases which could also be observed for the
Mantel-Haenszel test here. When using item purifica-
tion, the proportion of cases when rejection rate
exceeded a significance level of 0.05 was lower than
when using no controlling procedure and, moreover,
the mean rejection rate remained near the significance
level even for large sample sizes (Figure 2, middle
panel). On the other hand, as expected, item purifica-
tion had no effect on type I error rate (Figure 2, top
panel). The multiple comparison adjustments and
their combinations with item purification yielded
rejection rates under the significance level in most of
the scenarios. However, when using only the multiple
comparison adjustments (without item purification),
there was an increase in the proportion of scenarios
with rejection rates exceeding 0.15 more often than in
scenarios with item purification only. In such cases,
BH adjustment yielded an even larger mean rejection
rate than item purification (Figure 2, middle panel).

For small sample sizes, there was only a small pro-
portion of scenarios when power was sufficient and
mean power of the Mantel-Haenszel using any of the
options for controlling procedures remained at a low
level. However, power rates were generally increasing
with an increasing sample size. While the multiple
comparison adjustments and their combinations with
item purification gained lower power rates than item
purification alone or when using no controlling pro-
cedure, this difference was somehow softened when
the sample size was large. Item purification seemed to
gain the largest power, followed by a scenario of using
no controlling procedure and then by the simple com-
bination of BH adjustment and item purification
(Figure 2, bottom panel).

Using item purification alone, the mean number of
iterations of item purification was decreasing with the
increasing sample size and increasing with a larger
proportion of DIF items. The mean number of itera-
tions varied from 5.95 to 18.94. As expected, the itera-
tive combinations of item purification and the
adjustments for multiple comparison generally yielded
a lower mean number of iterations (varied from 0.21
to 2.82 for Holm’s adjustment and from 0.39 to 4.33
for BH adjustment). While the effect of increasing the
proportion of DIF items was similar to that for item
purification, the number of iterations increased with
the increasing sample size.

Beta regression model. A beta regression model con-
firmed increasing rejection and power rates with the
increasing sample size. While there was no significant
effect of item purification in the power with the
increasing sample size, this method significantly
improved control of rejection rates compared to the
scenario using no correction. The finding was also
suggested by the empirical rates (displayed in Figure
2, middle panel, and discussed above). Furthermore,
item purification improved control of rejection rates
when there were a large amount of DIF items and
when the underlying DIF magnitude was large. When
there was a large proportion of DIF items, item purifi-
cation also significantly, but only slightly, increased
power rate. Generally, using a multiple comparison
adjustment led to a substantial decrease in power
which significantly improved with an increased sam-
ple size. This was also accompanied by a significant
decrease in rejection rates, which was somehow soft-
ened by an increased sample size when using BH mul-
tiple comparison adjustment alone. All multiple
comparison adjustments and their combinations with
item purification yielded lower values in all three
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Figure 2. Empirical type | error rates, empirical rejection rates, and empirical power rates for the Mantel-Haenszel test. Plot shows
proportions (among 1,000 data sets) of 4 levels of type | error, rejection, or power rates within given controlling procedure and

sample size. Values below the bars indicate mean rates.

summary statistics (type I error, rejection rate, and
power) when considering a test consisting of 40 or 80
items (Figure 3, Table A2).

Logistic regression method

Empirical rates. When using no controlling procedure
or item purification alone, there was a large propor-
tion of scenarios slightly exceeding the significance
level of 0.05, i.e., type I error and rejection rates var-
ied mostly between 0.05 and 0.1. In both cases, a pro-
portion of severe overrun of the significance level
increased for large sample sizes. Also a mean value of
type I error and rejection rates exceeded the signifi-
cance level of 0.05 especially for large sample sizes
(Figure 4, top and middle panels). Item purification
exhibited lower control of type I error especially for
larger sample sizes which resulted in slightly increased

rejection rates compared to a case of using no con-
trolling procedure (Figure 4, top panel). This was also
the case in presence of DIF items. However, item
purification yielded a larger proportion of scenarios
with good control of the rejection rate at the same
time (Figure 4, middle panel). All multiple compari-
son adjustments and their combinations with item
purification were able to control for type I error.
However, both simple combinations showed increased
proportions of severe overrun for a large sample size
and thus increased mean type I error and rejection
rates (Figure 4, top and middle panel).

None of the controlling procedures were able to
gain sufficient power for small sample sizes. However,
power rates were increasing with the increasing sam-
ple size, while item purification yielded the largest
proportion of scenarios with sufficient power (i.e., at
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Figure 3. Beta regression coefficients for controlling procedures (in rows) and their interaction with other factors (in columns) on
type | error, rejection, and power rates for the Mantel-Haenszel test.
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Figure 4. Empirical type | error rates, empirical rejection rates, and empirical power rates for the logistic regression method. Plot
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and sample size. Values below the bars indicate mean rates.

least 80%), followed by a setting with no controlling The mean number of iterations for item purifica-
procedure and both combinations of BH adjustment  tion was increasing with the increasing sample size
and item purification (Figure 4, bottom panel). and with the increasing proportion of DIF items in all



settings of controlling procedures. However, as
expected, item purification alone (and its simple com-
binations) yielded a larger mean number of iterations
(varied from 2.46 to 9.41) than the proposed iterative
combination with multiple comparison adjustments
(varied from 0.23 to 2.77 for Holm’s adjustment and
from 0.36 to 5.72 for BH adjustment).

Beta regression model. Similarly to the Mantel-
Haenszel test, item purification in the logistic regres-
sion method improved rejection rate control in the
case of a large DIF effect size and a large proportion
of DIF items. However, unlike in the Mantel-Haenszel
test, the power of the logistic regression DIF detection
method increased when the sample size increased. On
the other hand, the power decreased slightly when the
DIF was non-uniform and control of rejection rates
worsened when the latent trait of focal groups was
drawn from a normal distribution with a different
mean and variance. Multiple comparison adjustments
and their combinations with item purification gener-
ally indicated lower rejection and power rates. While
there were no crucial differences between the control-
ling procedures in terms of power and their interac-
tions with other factors, their control for rejection
rates differed. Especially, the iterative combination of
item purification with multiple comparison adjust-
ments, either BH or Holm’s, demonstrated better con-
trol when the sample size increased (Figure 5,
Table A3).

SIBTEST

Empirical rates. All controlling procedures improved
or at least did not worsen their control of type I error
and rejection rates, even in the case of a large sample
size, when increased values were observed using no
controlling procedure. While item purification and
BH adjustment itself slightly overran the significance
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level, all four combinations of multiple comparison
adjustments and item purification kept rejection rates
under the significance level for almost all scenarios
(Figure 6, top and middle panels).

Sufficient power was gained only for larger sample
sizes regardless of whatever controlling procedure was
used. In these cases, item purification performed
slightly better than other procedures, followed by a
scenario using no controlling procedure and then by
both combinations, either simple or iterative, of BH
multiple comparison adjustment and item purification
(Figure 6, bottom panel).

Similar to the logistic regression method, the mean
number of iterations for item purification in the
SIBTEST method was increasing with the increasing
sample size and with the increasing proportion of DIF
items in all settings of controlling procedures. Item
purification alone (and its simple combinations)
yielded again, as expected, a larger mean number of
iterations (varied from 8.67 to 25.42) than the pro-
posed iterative combination of item purification and
the multiple comparison adjustments (varied between
0.24 and 6.67 for Holm’s adjustment and between
0.38 and 9.91 for BH adjustment).

Beta regression model. Analogously to previous DIF
detection methods, the SIBTEST also showed increas-
ing power with the increasing sample size. However,
it seemed that the SIBTEST struggled when a number
of items increased, since the power and rejection rates
decreased rapidly. Moreover, it was somehow more
difficult to identify DIF when a larger proportion of
DIF items were present. It was slightly better when
the proposed combination of item purification with
BH multiple comparison adjustment (either simple or
iterative) was applied. Item purification once again
demonstrated better control of the rejection rate in
the case of a large proportion of DIF items, large DIF
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Figure 5. Beta regression coefficients for controlling procedures (in rows)

nd their interaction with other factors (in columns) on

type | error, rejection, and power rates for the logistic regression method.
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Table 3. Items from the CLoSE dataset flagged as DIF items by at least one DIF detection method.

Item 1 3 4 10 1 13 14
Mantel-Haenszel test
None DIF DIF DIF DIF DIF DIF DIF DIF 42%
Purification DIF DIF DIF DIF DIF DIF DIF NON-DIF 37%
Holm DIF DIF DIF NON-DIF DIF DIF DIF NON-DIF 32%
BH DIF DIF DIF DIF DIF DIF DIF DIF 42%
Pur. + Holm (simple) DIF NON-DIF DIF DIF NON-DIF DIF DIF NON-DIF 26%
Pur. + BH (simple) DIF DIF DIF DIF DIF DIF DIF NON-DIF 37%
Pur. 4+ Holm (iterative) DIF NON-DIF DIF DIF NON-DIF DIF NON-DIF NON-DIF 21%
Pur. + BH (iterative) DIF DIF DIF DIF DIF DIF DIF NON-DIF 37%
Logistic regression method
None DIF DIF DIF DIF DIF DIF DIF DIF 42%
Purification DIF DIF DIF DIF DIF DIF DIF NON-DIF 37%
Holm DIF NON-DIF DIF DIF NON-DIF DIF DIF NON-DIF 26%
BH DIF DIF DIF DIF DIF DIF DIF NON-DIF 37%
Pur. + Holm (simple) DIF NON-DIF DIF DIF NON-DIF DIF DIF NON-DIF 26%
Pur. 4+ BH (simple) DIF NON-DIF DIF DIF NON-DIF DIF DIF NON-DIF 26%
Pur. + Holm (iterative) DIF NON-DIF DIF DIF NON-DIF DIF NON-DIF NON-DIF 21%
Pur. + BH (iterative) DIF NON-DIF DIF DIF NON-DIF DIF DIF NON-DIF 26%
SIBTEST
None DIF DIF DIF DIF DIF DIF DIF DIF 42%
Purification DIF DIF DIF DIF DIF DIF DIF NON-DIF 37%
Holm DIF DIF DIF NON-DIF NON-DIF DIF DIF NON-DIF 26%
BH DIF DIF DIF DIF DIF DIF DIF NON-DIF 37%
Pur. + Holm (simple) DIF NON-DIF DIF DIF NON-DIF DIF NON-DIF NON-DIF 21%
Pur. 4+ BH (simple) DIF DIF DIF DIF NON-DIF DIF DIF NON-DIF 32%
Pur. + Holm (iterative) DIF NON-DIF DIF DIF NON-DIF DIF NON-DIF NON-DIF 21%
Pur. + BH (iterative) DIF NON-DIF DIF DIF NON-DIF DIF NON-DIF NON-DIF 21%
Perc. DIF 100% 58% 100% 92% 50% 100% 79% 17%

effect size, and increased sample size. However, its
effect on power was limited (Figure 7, Table A4).

In summary, all three considered DIF detection
methods when applied without adjustment for mul-
tiple comparisons led to rejection rates somewhat
exceeding the nominal significance level, especially in
scenarios with large sample sizes. Adjustments for
multiple comparisons helped to reduce both the rejec-
tion and the type I error rates and in some scenarios,
the algorithms combining multiple comparison adjust-
ments and item purification were even more success-
ful in this reduction.

However, the reduction of rejection and type I
error rates achieved by the multiple comparison
adjustments were also accompanied by a decrease in
power, which was especially visible in small sample
sizes. In some scenarios and especially for the logistic
regression DIF detection method, the algorithms com-
bining multiple comparison adjustments and item
purification led to higher power rates than multiple
comparison adjustments alone.

The proposed iterative combination of item purifi-
cation and the multiple comparison adjustments
required a smaller mean number of iterations than
item purification alone. This was partly due to mul-
tiple comparison adjustments lowering the number of
detected DIF items, thus increasing the number of
cases when no DIF item was identified in the ini-
tial run.

Real data example

In the CLoSE reading dataset, items 1, 3, 4, 8, 10, 11,
13, and 14 were flagged as DIF with respect to gender
of the respondents by at least one DIF detection
method (Table 3). Based upon results of the logistic
regression method, boys were favored in items 1 and 4
where guessing was possible (Figure A2a), while girls
were favored in items 3, 10, 13, and 14, where students
were supposed to demonstrate reasoning or to describe
their feelings. Items 8 and 11 displayed a non-uniform
DIF. Item 8 favored boys with lower levels of ability
and girls with higher levels of ability, contrarily, item
11 favored girls with lower levels of ability and boys
with higher levels of ability (Figure A2b).

While items 1, 4, and 11 were flagged by all DIF
detection methods with any or no controlling proced-
ure applied, many were flagged under only some of
the scenarios: For example, item 14 was only flagged
when no controlling procedure was applied and any
DIF detection method was used, or by the Mantel-
Haenszel test with BH adjustment.

For all three DIF detection methods, the propor-
tion of items flagged as DIF was the highest when
no controlling procedure was applied, followed by
BH adjustment, and then by item purification only.
In the case of this dataset and for all three DIF
detection methods, item purification yielded very
similar results to a case where no controlling
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Figure 6. Empirical type | error rates, empirical rejection rates, and empirical power rates for the SIBTEST method. Plot shows pro-
portions (among 1,000 data sets) of 4 levels of type | error, rejection, or power rates within given controlling procedure and sam-
ple size. Values below the bars indicate mean rates.
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Figure 7. Beta regression coefficients for controlling procedures (in rows) and their interaction with other factors (in columns) on

type | error, rejection, and power rates for the SIBTEST.

procedure was applied; the only difference could be
seen in item 14, whereby DIF was not detected with
item purification.

The effect of some choices for controlling proce-
dures (none, item purification, and the simple com-
bination of item purification and Holm’s adjustment)
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was consistent across all DIF detection methods, how-
ever, this was not the case when other choices for
controlling procedures were considered. Especially,
when using Holm’s adjustment and either the simple
or iterative combination of item purification and BH
adjustment led to different items being flagged as DIF
when applying different DIF detection methods. For
example, with Holm’s adjustment, items 8 and 14
were not flagged by the Mantel-Haenszel test, and the
SIBTEST method did not flag item 10. On the other
hand, the logistic regression method flagged item 3,
but not item 10.

As expected, the real data example demonstrates
that a choice in controlling procedures has an impact
on which items are detected as DIF items. Some
trends observed in the real data example are consist-
ent with the results provided by the simulation study,
however, we are reminded that in a case using real
data examples, we can only speculate which control-
ling procedure provides the most precise DIF detec-
tion, since the real item parameters are not known.

Discussion

This work studied controlling procedures for DIF
detection in cases where DIF is being analyzed item
by item, namely item purification and adjustments for
multiple comparisons. We proposed an iterative pro-
cedure in which adjustment for multiple comparisons
was applied after each step of item purification. With
empirical examples, we confirmed that, depending
upon the controlling procedures applied, DIF detec-
tion may provide differing results. We performed a
complex simulation study designed to evaluate the
impact of controlling procedures on three DIF detec-
tion procedures (the Mantel-Haenszel test, the logistic
regression method, and the SIBTEST method), specif-
ically for their type I error, rejection, and power rates.
To evaluate results of the simulation study, we used
summary statistics and beta regression models.

In general, the results suggested that all three DIF
detection methods, when applied item by item and
without any adjustment for multiple comparisons,
lead to rejection rates which somewhat exceeded the
nominal significance level in some scenarios, espe-
cially those with large sample sizes. This issue has
already been noted by many authors including
DeMars (2009), Giler and Penfield (2009), and
Herrera and Goémez (2008). Adjustments helped to
reduce both the rejection rates and the type I error,
however, this reduction was also accompanied by a
decrease in power. Kim and Oshima (2013) previously

noted that these adjustments caused a decrease in
power to some extent, but this study established that
in some scenarios the power rates are no longer suffi-
cient. This means, in general, fewer items are detected
as DIF, and some potentially unfair items may remain
undetected.

The effect of item purification has been formerly
researched by many authors including Candell and
Drasgow (1988), Navas-Ara and Goémez-Benito
(2002), and Wang and Su (2004). In our study, we
confirmed some improvement in DIF detection when
using item purification, primarily in the Mantel-
Haenszel test and the SIBTEST method. Generally, we
observed an improvement in DIF detection when a
larger proportion of DIF items were present which
was also shown for example by French and Maller
(2007). However, item purification yielded increased
type I error and rejection rates when applied within
the logistic regression method, especially when a large
sample size was considered, meaning that more items
are detected as DIF and need to be assessed by con-
tent experts, which may give a false impression of sus-
picious test items behavior.

Benefits of the iterative algorithm combining item
purification and multiple comparison adjustments
were considerable in several scenarios and aspects. In
most scenarios, and for all DIF detection methods,
both the simple and iterative combination of item
purification and multiple adjustments improved con-
trol of type I error and rejection rates, often to a
greater extent than when applying the adjustment
methods alone. The newly proposed iterative algo-
rithm was superior to the simple combination of item
purification and adjustment methods found in the
logistic regression DIF detection method. This was
especially visible in large sample sizes. Multiple com-
parisons adjustments generally decreased the power of
all studied DIF detection methods, however, this
appeared to be to a lesser amount when applied in
combination with item purification. Moreover, the
proposed iterative combination algorithm considerably
lowered a number of iteration steps when compared
to item purification alone. In spite of the demon-
strated benefit of using the iterative algorithm, when
creating an anchor item set, a greater concern might
be a type II error (identifying an item as non-DIF
when it is actually a DIF item; see, e.g., Edelen et al.,
2006). Therefore, it might feel more comfortable being
on the safe side by using the simple combination,
since it uses an appropriate anchor item set to calcu-
late the matching criterion.



By using a real data example from the CLoSE study,
possible differences in DIF detection when applying dif-
ferent controlling procedures were demonstrated. This
real data set analysis seems to confirm results of the
simulation study by detecting the highest percentage of
DIF items when no controlling procedure is applied,
followed by item purification, and BH adjustment.
These three choices of controlling procedures also
yielded the largest rejection rate and the first two also
provided the largest power rate in almost all scenarios.
However, the precision of the different controlling pro-
cedures cannot be inferred from a real data example,
since the true item parameters remain unknown.

There are some limitations to this simulation study
which need to be considered. First, only a limited num-
ber of DIF detection methods were used. We decided
to include classical methods in which DIF detection is
traditionally done item by item, a method which we
believed would benefit most from suggested controlling
procedures. A simulation study showed that various
choices for controlling procedures have different effects
on DIF detection methods, thus conclusions need to be
made with respect to only those used in this work. It
might be interesting to extend this study by incorporat-
ing IRT-based methods such as Lord’s chi-square test
Lord (1980), likelihood ratio test Thissen et al. (1988),
or differential functioning of items and tests framework
Raju et al. (1995) and see if there is any significant
impact upon controlling procedures in these alternate
frameworks. Further studies are needed to explore the
effect of item purification, multiple correction adjust-
ments, and their combinations in those mentioned
above and with other DIF detection approaches.

Second, in our simulation study we determined the
significance of simulation factors via beta regression
models, where only double interactions were consid-
ered. However, increasing the complexity of the study
design goes hand in hand with an increased complex-
ity of the results. Thus any further extension to the
study design may complicate interpretability and thus
lower readability of the results.

Third, we considered all of the DIF items to be
harder, or more discriminating for the focal group,
which resulted in the worst-case scenario where the
DIF was extremely unbalanced. While this was done
to illustrate benefits of the controlling procedures,
such a scenario would probably not be realistic in real
data examples. A natural extension of our present
research is to measure and compare the efficiency of
our approach in the case of balanced DIF, i.e., with
some items being easier and other items being more
difficult for the reference group.
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Our study covers the current gap in DIF literature
as it allows for a joint evaluation of the properties of
item purification and adjustments for multiple com-
parisons. While some of the simulation settings were
inspired by previous studies to allow for comparing
the results, our study is more complex and its design
goes beyond previous studies, including Kim and
Oshima (2013), by also incorporating non-uniform
DIF, a larger variety of sample sizes, and various dis-
tributions of ability levels for the focal group.
Moreover, we newly proposed and implemented the
iterative combination of item purification and adjust-
ments for multiple comparisons which, to our best
knowledge, have not yet been explored in literature,
but appears to be a promising tool. As such, this
study offers an innovative algorithm, a detailed assess-
ment of controlling procedures in DIF detection, and
a deeper insight which may be helpful to researchers
and practitioners when testing for DIF.
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