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ABSTRACT
Configurational comparative methods (CCMs) and logic regression methods (LRMs) are two
families of exploratory methods that employ very different techniques to analyze data gen-
erated by causal structures featuring conjunctural causation and equifinality. Aiming for the
same by different means carries a substantive synergy potential, which, however, remains
untapped so far because representatives of the two frameworks know little of each other.
The purpose of this article is to change that. We first level the field for readers from both
backgrounds by providing brief introductions to the basic ideas behind CCMs and LRMs.
Then, we carve out the strengths and weaknesses of the two method families by bench-
marking their performance when applied to binary data under a variety of different discov-
ery contexts. It turns out that CCMs and LRMs have complementary strengths and
weaknesses. This creates various promising avenues for cross-validation.
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Many disciplines investigate causal structures with one
or both of the following features:

a. Causes are arranged in complex bundles that only
become operative when all of their components
are properly co-instantiated, each of which in iso-
lation is ineffective or leads to different outcomes.

b. Outcomes can be brought about along alternative
causal routes such that, when one route is sup-
pressed, the outcome may still be produced via
another one.

For example, of a given set of implementation
strategies available to hospitals some strategies yield a
desired outcome (e.g., high vaccination uptake or
shorter hospitalization times) in combination with
certain other strategies, whereas in other combinations
the same strategies may have opposite effects; and the
same outcome can be obtained via different bundles
of strategies (e.g., Yakovchenko et al., 2020). Or, a
variation in a phenotype only occurs if many single-
nucleotide polymorphisms interact, and various such
interactions can independently induce the same
phenotype (e.g., Culverhouse et al., 2002). Different
labels are used for features (a) and (b): “component

causation,” “conjunctural causation,” “alternative cau-
sation,” “equifinality,” etc. For uniformity’s sake, we
will subsequently refer to (a) as conjunctivity and to
(b) as disjunctivity of causation, reflecting the fact that
causes form conjunctions and disjunctions, that is,
Boolean AND- and OR-connections.

Causal structures featuring conjunctivity and dis-
junctivity pose severe challenges for exploratory meth-
ods of causal learning that aim to discover the causal
structures underlying analyzed data.1 Because many
theories of causation entail that it is necessary (though
not sufficient) for X to be a cause of Y that there be
some kind of dependence (e.g., probabilistic or coun-
terfactual) between X and Y, standard learning meth-
ods—most notably Bayesian network methods (Spirtes
et al., 2000)—infer that X is not a cause of Y if X and
Y are not pairwise dependent (i.e., correlated).
However, structures displaying conjunctivity and dis-
junctivity often do not exhibit such pairwise depend-
encies. As an illustration, consider the interplay
between a person’s skills to perform an activity, the
challenges posed by that activity, and the actor’s auto-
telic experience of complete involvement with the
activity called flow (Csikszentmihalyi, 1975). A simpli-
fied (binary) model of this interplay involves the
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factors S, with values 0/1 representing low/high skills,
C, with 0/1 standing for low/high challenges, and F,
with 0/1 representing the absence/presence of flow.
According to Csikszentmihalyi’s flow theory, flow is
triggered by skills and challenges being either both
high or both low, meaning that F¼ 1 has two alterna-
tive causes “S¼1 AND C¼1” and “S¼0 AND C¼0:” If
the flow theory is true, ideal (i.e., unbiased, non-con-
founded, noise-free) data on this structure feature the
four configurations c1 to c4 in Table 1(a), and no
others. As can easily be seen from the corresponding
correlation matrix in Table 1(b), there are no pairwise
dependencies. In consequence, Bayesian network
methods and standard regression methods will strug-
gle to find the flow model. Although there exist vari-
ous protocols for tracing interaction effects, these
interaction calculations face tight computational com-
plexity restrictions when more than two or three
exogenous factors are involved and quickly run into
multicollinearity issues (Brambor et al., 2006).
Standard methods of causal learning are simply not
designed to group causes conjunctively and disjunct-
ively—rather, their main aim is to quantify
effect sizes.

Discovering causal structures exhibiting conjunc-
tivity and disjunctivity calls for methods that track
causation as defined by a theory not treating pair-
wise dependencies as necessary for causation and
that embed individual factors in complex Boolean
AND- and OR-functions, fitting those functions as a
whole to the data. The problem, however, is that the
space of possible Boolean functions over even a
handful of factors is vast. For n binary factors there
exist 22

n
possible Boolean functions, and if we also

include factors with more than two values that num-
ber grows even more exponentially. That means

methods capable of discovering causal structures with
conjunctivity and disjunctivity must, in addition to
relying on a suitable theory of causation, find ways
to efficiently navigate in that vast space of
possibilities.

The methods explicitly built for this purpose are
the so-called configurational comparative methods
(CCMs; Baumgartner & Amb€uhl, 2020; Ragin, 1987;
Rihoux & Ragin, 2009; Table S1 in the Supplemental
Online Material provides expansions for all acronyms
used in this paper). They rely on tools from Boolean
algebra, take data on binary, multi-value or continu-
ous (fuzzy-set) factors as input, and infer causal struc-
tures as defined by the so-called INUS or MINUS
theory (Baumgartner & Falk, 2019; Mackie, 1974),2

which spells out causation in terms of redundancy-
free Boolean dependency structures. One of the dis-
tinctive features of this account is that it does not
imply that causes and their outcomes are pair-
wise dependent.

CCMs, whose main base is in the social sciences,
are not the only methods designed for learning
structures with conjunctivity and disjunctivity from
data. In biostatistics, the problems posed by such
structures have led to the development of logic
regression methods (LRMs; Ruczinski et al., 2003;
Schwender & Ickstadt, 2008). LRMs are primarily
used to model higher-order interactions in genetic
association studies, to which end they express binary
outcomes as Boolean functions, which they fit to
data by embedding them in a generalized regression
framework. Contrary to CCMs, the primary target of
LRMs is not causation but prediction. Accordingly,
LRMs are not expressly linked to the (M)INUS the-
ory and their models have a non-standarized syntax
that may contain redundant elements prohibiting a
causal interpretation. Still, as this paper will show,
the redundancies in LRM models can be eliminated
and their syntax transformed into the form of
(M)INUS models by suitable post-processing. That is,
although employing very different techniques, LRMs
can be tweaked to discover the same types of struc-
tures as CCMs. Targeting the same by different
means creates a substantial potential for synergies. It
is the main goal of this paper to bring that potential
to light, as it remains entirely untapped so far

Table 1. Ideal data for the flow model.
(a)

# S C F

c1 1 1 1
c2 0 0 1
c3 1 0 0
c4 0 1 0

(b)

S C F

S 1.00 0.00 0.00
C 0.00 1.00 0.00
F 0.00 0.00 1.00

Table (a) contains ideal data generated from Csikszentmihalyi’s (1975)
flow model, with S representing skills, C challenges, and F the outcome
flow. The rows stand for types of configurations of these factors, for
example, c1 represents subjects with high skills, facing high challenges
and experiencing flow. Table (b) is the correlation matrix corresponding
to table (a).

2The acronym “INUS” refers to Insufficient but Non-redundant parts of
Unnecessary but Sufficient conditions (Mackie, 1974, p. 62). As there are
more elegant ways to capture the idea expressed by that expansion,
“INUS” is often used as a mere name for a theoretical framework today—
void of its original meaning. Accordingly, “MINUS” is a name, without an
expansion, locating the corresponding theory in the INUS tradition.
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because representatives of the two frameworks know
little of each other.3

To level the field for readers from different back-
grounds, the first part provides brief introductions to
the (M)INUS theory of causation and to the basic
ideas behind CCMs and LRMs. In the second part, we
then benchmark CCMs and LRMs under a variety of
different data scenarios simulated from causal struc-
tures analyzable by both methods, that is, structures
over binary factors featuring one outcome and up to 9
interacting causes (structures only processable by one
of the two methods include multi-outcome structures,
structures generating mutli-value or continuous data,
and structures with 50 and more exogenous factors).
It turns out that CCMs and LRMs have complemen-
tary strengths and weaknesses, which yields a consid-
erable potential for cross-validation.

(M)INUS causation

Philosophical background

Even though causation is everywhere in human inter-
action with the world, it is not pre-theoretically clear
what causation is. Is it an objective feature of our
world or is it something we, as observers, project onto
the world? Does it govern what occurs around us or
is it a concept that merely facilitates theorizing about
those occurrences? Is it a matter of regularities or of
counterfactual dependence or of probability raising, of
production, mechanisms, or powers? Theories of caus-
ation answer these questions by providing explicit def-
initions of causation. But as there are good arguments
for conflicting answers to these questions, there exist
many conflicting theories. As the purpose of this
paper is not to contribute to the theoretical literature
on causation but to compare two methods discovering
structures featuring conjunctivity and disjunctivity, we
can confine ourselves to reviewing the core tenets of
the theory custom-built to account for these
features, the (M)INUS theory, without thereby claim-
ing to be presenting the only or ultimate truth
about causation.

The (M)INUS theory belongs to the family of so-
called regularity theories,4 according to which causal

relations are nothing over and above specific forms of
regular or lawlike behavior patterns. The (M)INUS
theory stipulates that general causation, that is, causal
relations between types of events or properties, as in
“High skills combined with high challenges cause
flow,” are conceptually prior to relations of singular
causation among token events, as in “Peter’s high
skills combined with the high challenges of his tasks
cause Peter’s flow on day x.” In other words, there is
nothing in a sequence of token events that would
make it causal; rather, a causal relation between two
token events is a matter of them properly instantiating
causally related event types. Event types or properties
are modeled using factors (or variables or predictors)5

taking specific values. Hence, the (M)INUS theory
provides a definition of what it means for a factor A
taking some value a (i.e., A¼a) to be causally relevant
for another factor B taking a value b (i.e., B¼b),
where “causal relevance” designates the relation of
“… is a type-level cause of … .”

Defining causal relevance

For A¼a to be causally relevant for B¼b,A¼a must
be a difference-maker of B¼b, meaning that there
exists a context in which other causes take constant
values and a change from A 6¼a to A¼a is associated
with a change from B 6¼b to B¼b: Factors in
(M)INUS structures can either be crisp-set (binary),
taking two possible values 0 and 1, fuzzy-set, taking
continuous values from the unit interval ½0, 1�, or
multi-value, taking an open (but finite) number of
non-negative integers as possible values. For simplicity
of exposition, we subsequently focus on crisp-set fac-
tors, which allows for conveniently abbreviating the
“Factor¼value” notation. As is conventional in
Boolean algebra, we will use “A” as shorthand for
A¼ 1 and “a” for A¼ 0.6 The (M)INUS theory

3Of the 1381 CCM articles currently listed in the bibliography data base
of the COMPASSS network (compasss.org), which is dedicated to CCM
research, only one article mentions logic regression (in passing), namely
Clarke (2020). Google Scholar, which has 11,500 records for CCMs and
4070 for LRMs (in March 2021), additionally finds Rohwer (2011), who is
concerned with CCMs and refers to logic regression in a footnote.
4Through much of the 20th century, regularity theories, which have roots
going back to Hume (1999 (1748)) and Mill (1843), were widely criticized
(see e.g., Armstrong, 1983; Hausman, 1998), but the groundbreaking work

of Mackie (1974) has revived that theoretical framework and has led to
the development of modern regularity theories that can deal with
classical objections (see Baumgartner & Falk, 2019; Graßhoff & May,
2001). Regularity theories belong to the family of difference-making
theories of causation, which must be distinguished from so-called
production theories (Hall, 2004).
5As the methods discussed in this paper have emerged from different
disciplines with different terminologies, the corresponding literatures use
different terms with identical (or easily translatable) meanings.
Throughout the paper, we will hence indicate terminological variations
in brackets.
6While this notation significantly simplifies the syntax of causal models, it
introduces a risk of misinterpretation, for it yields that the factor A and
its taking on the value 1 are both expressed by “A.” Disambiguation must
hence be facilitated by the concrete context in which “A” appears.
Therefore, whenever we do not explicitly characterize italicized Roman
letters as “factors,” we use them in terms of the shorthand notation.
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borrows much of the formal machinery from Boolean
algebra, in particular, the operations of negation, :A
(expressing “NOT A¼1”), conjunction, A�B (“A¼1
AND B¼1”), disjunction, AþB (“A¼1 OR B¼ 1”),
implication, A ! B (“IF A¼1, THEN B¼1”), and
equivalence A $ B (“A¼ 1 IF, AND ONLY IF, B¼ 1”).7 In
case of crisp-set factors, Boolean operations are given
a rendering in classical logic, which we do not reiter-
ate here (see e.g., Lemmon, 1965, Chapter 1).

Based on the implication operator the notions of
sufficiency and necessity are defined, which are the
two core Boolean dependence relations exploited by
the (M)INUS theory: A�C�E is sufficient for B iff
(i.e., if, and only if) A�C�E ! B (i.e., whenever A
AND C AND E are true, B is true); AþCþ E is neces-
sary for B iff B ! Aþ C þ E (i.e., whenever B is true,
A OR C OR E is true). Many of these relations, how-
ever, have nothing to do with causation. To use a
standard (oversimplified) example, the sinking of a
barometer in combination with high temperatures and
blue skies is sufficient for weather changes, but it does
not cause the weather; or whenever there is an elec-
tion, votes are cast or public speeches are made, so
casting votes or making public speeches is necessary
for an election, but it does not cause it. Still, some
Boolean dependencies are in fact due to underlying
causal dependencies: long-term exposure to an active
virus combined with lacking immunity is both suffi-
cient and causally relevant for infection; striking a
match or exposing it to heat or to flammable chemi-
cals is both necessary and causally relevant for the
match to catch fire.

That means in order to define causal relevance in
terms of Boolean dependencies, those relations of suf-
ficiency and necessity that are due to underlying
causal dependencies must be filtered out. The main
reason why most sufficiency and necessity relations
do not reflect causal relevance is that they either con-
tain redundancies or are themselves redundant to
account for the behavior of the outcome, whereas
causal conditions do not feature redundant elements
and are themselves indispensable to account for the
outcome in at least one context. Accordingly, to filter
out the causally interpretable Boolean dependencies,
they need to be freed of redundancies. In Mackie’s
(1974) words, a cause “is an insufficient but non-

redundant part of an unnecessary but sufficient con-
dition,” thus the acronym INUS (p. 62).

While Mackie’s INUS theory only requires that suf-
ficient conditions be freed of redundancies, he himself
formulates a problem for that theory, the Manchester
Factory Hooters problem (Mackie, 1974, pp. 81–87),
which Graßhoff and May (2001) solve by eliminating
redundancies also from necessary conditions.
Accordingly, modern versions of the INUS theory
stipulate that whatever can be removed from sufficient
or necessary conditions without affecting their suffi-
ciency and necessity is not a difference-maker and,
hence, not a cause. The causally interesting sufficient
and necessary conditions are minimal in the sense
that they do not contain sufficient and necessary
proper parts. Minimally sufficient and minimally
necessary conditions can be combined in MINUS-for-
mulas (Beirlaen et al., 2018):

MINUS-formula. A MINUS-formula of an outcome B
is a minimally necessary disjunction of minimally suf-
ficient conditions of B, in disjunctive normal form.8

The following is a simple example:

A�eþ C�d $ B (1)

(1) being a MINUS-formula of B entails that A�e and
C�d, but neither A, e, C, nor d alone, are sufficient for
B and that A�eþ C�d, but neither A�e nor C�d
alone, are necessary for B. If this holds, it follows that
for each factor value in (1) there exists a difference-
making pair, meaning a pair of cases (or units of obser-
vation) such that a change in that factor value alone
accounts for a change in the outcome (Baumgartner &
Falk, p. 9). For example, A being part of the MINUS-
formula (1) entails that there are two cases ri and rj
such that e is given and C�d is not given in both ri
and rj while A and B are present in ri and absent in
rj. Only if such a difference-making pair hri, rji exists
is A indispensable to account for B.

For an adequate definition of causal relevance an
additional constraint is needed because not all MINUS-
formulas faithfully represent causation. Complete
redundancy elimination is relative to the set of ana-
lyzed factors F, meaning that factor values contained in
MINUS-formulas relative to some F may fail to be part
of a MINUS-formulas relative to supersets of F
(Baumgartner & Falk, 2019). In other words, by adding
factors to the analysis, factor values that originally
appeared to be non-redundant to account for an

7Note that “�” and “þ” are used as in Boolean algebra here, which
means, in particular, that they do not represent the linear algebraic
(arithmetic) operations of multiplication and addition (notational variants
of Boolean “�” and “þ” are “� ” and “�”). For a standard introduction to
Boolean algebra see Bowran (1965). Note also that by “implication” we
always mean Boolean implication in this paper, which is also known as
material implication (or material conditional).

8An expression is in disjunctive normal form iff it is a disjunction of one
or more conjunctions of one or more factor values (Bowran, 1965, p. 13).
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outcome can turn out to be redundant after all. Hence,
a permanence constraint needs to be imposed: only fac-
tor values that are permanently non-redundant, mean-
ing that cannot be rendered redundant by expanding
factor sets, are causally relevant. These considerations
yield the following definition of causal relevance:

Causal relevance (MINUS). A is causally relevant to
B iff (I) A is part of a MINUS-formula of B relative to
a factor set F and (II) A remains part of a MINUS-
formula of B across all expansions of F.9

Two features of the (MINUS) definition make it
particularly well suited for the analysis of structures
affected by conjunctivity and disjunctivity. First,
(MINUS) does not require that causes and effects are
pairwise dependent. The following is a well-formed
MINUS-formula expressing the flow model from the
introduction: S�C þ s�c $ F: As shown in Table 1,
ideal data generated from that model feature no pair-
wise dependencies. Nonetheless, if, say, high skills are
permanently non-redundant to account for flow in
combination with high challenges, they are causally
relevant for flow subject to (MINUS), despite being
uncorrelated with flow. Second, MINUS-formulas
whose elements satisfy the permanence constraint not
only identify causally relevant factor values but also
place a Boolean ordering over these causes, such that
conjunctivity and disjunctivity can be directly read off
their syntax.

Discovering causal relevance

Discovering causal relevance as defined in (MINUS)
faces various challenges. First, as it is possible that
data d produced by a MINUS structure only feature
dependencies between complex Boolean expressions of
exogenous factors and a corresponding outcome, d
cannot be analyzed by searching for cause-effect pairs
and then combining them to complex structures.
Rather, analyzing d calls for fitting expressions of
Boolean functions as a whole to d. But, as we have
seen in the introduction, the space of Boolean func-
tions over more than five factors is so vast that it can-
not be exhaustively scanned. Hence, algorithmic
strategies are needed to purposefully narrow down
the search.

Second, condition (MINUS.II) is not comprehen-
sively testable. Once a MINUS-formula of an outcome
B containing a factor value A has been inferred from
data d, the question arises whether the non-redun-
dancy of A in accounting for B is an artifact of d,
due, for example, to the uncontrolled variation of con-
founders, or whether it is genuine and persists when
further factors are considered. But in practice,
expanding the set of factors is only feasible within
narrow confines. To make up for the impossibility to
test (MINUS.II), data d should be collected in such a
way that Boolean dependencies in d are not induced
by an uncontrolled variation of latent causes but by
the measured factors themselves. If the dependencies
in d are not artifacts of latent causes, they cannot be
neutralized by factor set expansions, meaning they are
permanent and, hence, causal. It follows that in order
for it to be guaranteed that causal inferences drawn
from d are error-free, d must meet very high quality
standards. In particular, the uncontrolled causal back-
ground of d must be homogenous, meaning that latent
causes not connected to the outcome on causal
paths10 via the measured exogenous factors (so-called
off-path causes) take constant values (i.e., do not vary)
in the cases recorded in d (Baumgartner & Amb€uhl,
2020, Appendix).

However, third, real-life data often do not meet
very high quality standards. To make this concrete,
consider Table 2 featuring a simple small-n data set
over the set of factors F1¼fA,C,D, E,Bg simulated
from the MINUS structure in expression (1)—to
which we will henceforth refer as the ground truth.
Each row in that table represents a configuration of

Table 2. Simulated example data.
Conf. A C D E B n.obs

r1 1 1 1 1 0 6
r2 0 1 1 1 0 1
r3 1 0 1 1 0 2
r4 0 0 1 1 0 2
r5 1 1 0 1 1 3
r6 1 0 0 1 0 2
r7 0 0 0 1 0 1
r8 1 1 1 0 1 4
r9 0 1 1 0 0 5
r10 1 0 1 0 1 6
r11 0 0 1 0 0 2
r12 1 1 0 0 1 3
r13 1 0 0 0 1 1
r14 0 0 0 0 0 3
r15 1 1 1 0 0 2
r16 0 0 1 0 1 2

Example data with a total of 45 units of observation (cases) instantiating
16 configurations r1 to r16 with “n.obs” indicating how many cases
instantiate a particular configuration. The data have been simulated
from the MINUS structure in expression (1). B is endogenous, the other
factors are exogenous.

9Note that both the definition of a MINUS-formula and of causal
relevance are simplified to suit the purposes of this paper. For a more
complete exposition of the MINUS theory see Baumgartner and
Falk (2019).

10By a causal path we mean an ordered n-tuple h/1, :::,/ni, where /i is
either a factor value or a conjunction of factor values, such that each /i
is a direct cause of /iþ1, relative to the analyzed set of factors.
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the factors in F1, and the column “n.obs” indicates
how many cases instantiate a particular configuration.
Those data have been simulated such that they feature
various imperfections typical for real-life data. They
are fragmented, meaning they do not comprise all
configurations that can be generated by the ground
truth. A causal structure with n mutually independent
exogenous factors, each of which can take y values,
can generate yn possible configurations of those
exogenous factors. If some of these possible configura-
tions are unobserved (e.g., because they are rare), the
resulting data are fragmented. Given that the behavior
of the factors in F1 is regulated by (1), we should be
able to observe the configuration a�C�d�e�B, which,
however, is not contained in Table 2. Furthermore,
those data contain noise—by which we mean configu-
rations that are incompatible with the ground truth.
Such incompatibilities can, for example, be induced
by measurement error or confounding. In r15, A�e is
combined with b, even though A�e is sufficient for B
according to (1); or, in r16 B is given without any of
its causes in (1)—hence, its occurrence must be due
to latent causes.11 As a result, Table 2 does not feature
relations of strict Boolean sufficiency or necessity. In
such cases, methods for the discovery of MINUS caus-
ation can only approximate strict MINUS structures
by fitting their models more or less closely to the data
using suitable parameters of model fit. Moreover, the
fact that the instances of B in r16 must be due to
latent causes indicates that the unmeasured back-
ground of Table 2 is not (entirely) homogeneous,
which, in turn, entails that causal inferences drawn
from that table are not guaranteed to be error-free. In
order to nonetheless distill some causal information
from such data, strategies for estimating the error risk
and the reliability of issued models are needed.

The following two sections review how these prob-
lems are addressed by configurational comparative
methods (CCMs) and logic regression methods
(LRMs), respectively.

Configurational comparative methods

The best known CCM is Qualitative Comparative
Analysis (QCA; Ragin, 1987, 2008); a more recent

addition to the family of CCMs is Coincidence
Analysis (CNA; Baumgartner, 2009; Baumgartner &
Amb€uhl, 2020). Both QCA and CNA have been devel-
oped with a focus on the analysis of data with low
noise levels and no more than 15 to 20 exogenous fac-
tors. They aim to build all data-fitting models within
user-defined complexity constraints.

Their core parameters of model fit are consistency
and coverage (Ragin, 2008, Chapter 3). In crisp-set
and multi-value data d, consistency (con) and cover-
age (cov) of a Boolean dependence / ! w are defined
as follows:

conð/ ! wÞ :¼ /�wj jd
/j jd

covð/ ! wÞ :¼ /�wj jd
wj jd

(2)

where / and w stand for expressions of Boolean func-
tions of the factors in d and j:::jd for the number of
cases in d instantiating the enclosed expression. What
counts as acceptable scores on these fit parameters is
defined in thresholds set by the analyst prior to the
application of QCA or CNA. These thresholds deter-
mine how close a dependence in the data must
approximate a strict Boolean dependence in order to
pass as one of sufficiency or necessity. By convention,
thresholds should be set to some value between 0.75
and 1 (Schneider & Wagemann, 2012, Section 5.2), the
latter of which corresponds to strict Boolean depend-
ence. For instance, if the consistency threshold is set to
0.8, A does not count as sufficient condition for B in
Table 2 because conðA ! BÞ¼17=29¼0:59, whereas
A�e does count as sufficient for B—despite the two
cases instantiating configuration r15, which features A�e
without B—because conðA�e ! BÞ¼14=16¼0:88:

QCA infers MINUS-formulas from data as in Table
2 by means of Quine-McCluskey optimization from
switching circuit theory (McCluskey, 1965). It con-
ducts a top-down search that first assembles maximal
conjunctions of exogenous factor values that meet the
chosen consistency threshold, and thus count as suffi-
cient, in a so-called truth-table; then it successively
eliminates redundant conjuncts, and finally it com-
bines minimally sufficient conjunctions to minimally
necessary disjunctions. While this approach works
fine for ideal data, it faces two problems when applied
to non-ideal data. First, when data are fragmented it
tends to require the introduction of unobserved con-
figurations as simplifying assumptions. If these
assumptions are unwarranted, complete redundancy
elimination is blocked (Schneider & Wagemann, 2012,
Section 8.2). Second, a top-down search may abort the
minimization prematurely because finding redun-
dancy-free Boolean predictors is not always possible

11Table 2 was more specifically simulated from (1) by, first, assembling all
configurations compatible with (1), each instantiated by one case (with 4
mutually independent exogenous factors that yields 24¼16
configurations), second, introducing noise by randomly adding 10% of
cases incompatible with (1), and third, randomly multiplying some cases
and deleting others in order to introduce fragmentation (see the
replication script in the Supplemental Online Material for a stepwise
generation of Table 2).
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via successive factor elimination but may require elim-
inating multiple factor values at the same time
(Baumgartner & Amb€uhl, Section 3.1).

CNA, by contrast, infers MINUS-formulas by
means of an algorithm custom-built for causal model-
ing that adopts a bottom-up search strategy bypassing
truth-tables and is not affected by either of QCA’s
problems when processing fragmented and noisy data.
As a result, CNA is more successful than QCA at
avoiding redundancies and, because redundancy-free-
ness is crucial for MINUS causation, at inferring cor-
rect MINUS-formulas from non-ideal data. We will
therefore use CNA as our CCM of choice in the
remainder of this paper.

The CNA algorithm, which is implemented in the
cna() function of the cna R package (Amb€uhl &
Baumgartner, 2021), takes as inputs a data set d with
crisp-set, fuzzy-set or multi-value factors, consistency
and coverage thresholds con and cov, an upper
bound maxstep for the complexity of the models
to be built, and an optional ordering parameter
specifying candidate outcomes in d. The algorithm
then starts by searching for all atomic MINUS-for-
mulas—single-outcome models—that meet con and
cov in d within the confines of maxstep for all
candidate outcomes in the ordering. To this end,
it tests, for all candidate outcomes, whether the con-
sistency scores of the values of single exogenous fac-
tors in d meet con; if that is not the case,
conjunctions of two factor values are tested, then
conjunctions of three, and so on, until maxstep is
reached. Whenever a conjunction meets con, it is a
minimally sufficient condition. Next, single minimally
sufficient conditions are checked for compliance with
cov; if that check is negative, disjunctions of two
are tested, then disjunctions of three, and so on,
until maxstep is reached. Whenever a disjunction
meets con and cov, it is a minimally necessary dis-
junction of minimally sufficient conditions, that is,
an atomic MINUS-formula. Finally, CNA combines
atomic models to complex MINUS-formulas—multi-
outcome models—representing the entire causal
structure underlying d. But to maintain comparability
with LRMs, which analyze structures with single out-
comes only, we will not further discuss multi-out-
come models here and, instead, illustrate and
benchmark CNA’s performance by focusing on sin-
gle-outcome structures only.

If CNA is run on Table 2 with a conventional
threshold setting of con¼cov¼ 0.8, a maxstep

restricting model complexity to no more than 9
exogenous factor values (or leaves in LRM jargon),

and an ordering specifying B as only candidate
outcome, it returns the following two models with
corresponding consistency and coverage scores:

A�eþ C�d $ B con¼0:895; cov¼0:895 (3)

A�eþ c�D�e $ B con¼0:800; cov¼0:840 (4)

These are all the MINUS-formulas inferable from
Table 2 satisfying the chosen tuning parameters. An
output consisting of multiple models is common for
CNA—just as for many other methods. It means that
the data underdetermine their own causal modeling at
the chosen tuning parameters. Accordingly, the above
CNA output is to be interpreted disjunctively, entail-
ing that the ground truth is either (3) or (4).

Model (3), for example, identifies two alternative
causal paths to B, one featuring A and e as parts of a
complex cause and another one with C and d as parts
of a complex cause. CNA models are to be interpreted
relative to the data from which they have been
inferred and to the threshold settings chosen for that
inference. That means, in particular, that they do not
purport to be complete representations of underlying
causal structures. Rather, they only detail those caus-
ally relevant factor values along with those conjunctive
and disjunctive groupings for which the data contain
evidence at the chosen threshold settings. Thus, even
though (3) and (4) do not ascribe causal relevance to
E, they must not be interpreted to exclude that E is
causally relevant for B. Or put differently, models (3)
and (4) must be interpreted to be open for expan-
sions, which Mackie (1974, pp. 66–68) expresses with
placeholders X and Y for further conjunctions and
disjunctions, respectively:

A�e�X1 þ C�d�X2 þ Y $ B (3*)

A�e�X1 þ c�D�e�X2 þ Y $ B (4*)

For simplicity, we will abstain from including such
placeholders in MINUS-formulas models in this
paper, but we ask the reader to keep in mind that,
given the frequent fragmentation of data processed by
CCMs, their models only entail claims about causal
relevance, not about causal irrelevance.

Another feature of CCM models that deserves
emphasis is that they are sensitive to changes in tun-
ing parameters. CCMs track difference-making rela-
tions on the level of individual cases in the data (and
not marginal effect sizes on the population level), and
what counts as difference-making evidence changes
with changes in tuning parameters, meaning that
resulting models change as well. For instance, if we
increase the coverage threshold to cov¼ 0.95, CNA
returns model (5) for Table 2.
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A�e þ C�d þ c�D�e $ B con¼0:826; cov¼1:00 (5)

Or, if we lower the consistency and coverage thresholds
to con¼cov¼0.7, models (6), (7), and (8) are issued.

A�e $ B con¼0:875; cov¼0:737 (6)

C�d þ c�D�e $ B con¼0:875; cov¼0:737 (7)

A�d þ c�D�e $ B con¼0:789; cov¼0:789 (8)

While sensitivity to tuning settings is problematic
from the perspective of methods quantifying effect
sizes on the population level because varying effect
sizes cannot be given a consistent causal interpret-
ation, a lot of variance in CCM models merely reflects
varying amounts of inferentially exploited difference-
making evidence without implying any inconsistent
causal conclusions. Two different models inferred
with different tuning parameters do not contradict
one another if the causal claims entailed by them
stand in a subset relation, that is, if one of them is a
submodel of the other.

Submodel. A model mi is a submodel of another
model mj iff all causal relevance ascriptions as well as
conjunctive and disjunctive groupings entailed by mi

are also entailed by mj:

For example, (6) ascribes causal relevance to A and e
and it places the two causes on the same path. This
(and more) also follows from (3), meaning that (6) is
a submodel of (3)—which makes (3) a supermodel of
(6). A submodel does not conflict with its supermodel
but merely makes less (or the same) causal claims.

But not all models inferable from Table 2 are
mutually compatible. Model (8), for example, places A
and d on the same path, whereas (3) places them on
different ones. And even if two models are compat-
ible, it does not follow that they both correctly reflect
an underlying data-generating structure. Hence, crite-
ria are needed to select among all the models inferable
from data. A straightforward selection criterion is
overall model fit, which can be defined as the product
of a model’s consistency and coverage scores. Based
on that criterion, (3), which is the ground truth
behind the data in Table 2, is preferable over (4), (6),
(7), and (8). However, model (5) has an even higher
fit and it entails that not only A�e and C�d are causes
of B but also c�D�e, which is false. (5) thus increases
the fit at the cost of entailing false positives, meaning
it is overfitted. This illustrates a common problem of
CCMs: in noisy discovery contexts, the best fitting
models often overfit the data (Arel-Bundock, 2019).
Hence, additional selection criteria are needed to
counterbalance overall fit.

Parkkinen and Baumgartner (2021) propose a
robustness criterion, tailor-made for CCMs, to reduce
the overfitting risk. According to that proposal, the
robustness of a model mi is measured in terms of the
degree to which mi’s causal attributions overlap with
the causal attributions of all other models obtained
from a series of data re-analyses under systematically
varied con and cov thresholds. More specifically, the
robustness of mi corresponds to the number of sub-
and supermodels mi has among all the models
inferred in such a re-analysis series. For example, if
we re-analyze Table 2 at all con and cov settings in
the interval ½0:65, 0:95�, varied at increments of 0.1, it
turns out that model (6) has 21 sub- and supermodels
among all the resulting models, which is the highest
number of all models and, thus, yields a normalized
robustness score of 1. (3) has 16 sub- and supermo-
dels, while (5) has 15, resulting in robustness scores of
0.76 and 0.71, respectively (see the replication script
for details). That means the most robust model identi-
fies A�e as a conjunctive cause of B, which is true
according to the ground truth and, hence, does not
overfit the data. But (6) avoids overfitting at the cost
of not completely recovering the ground truth, as it
misses the causal relevance of C�d: Model (3), which
not only correctly but also completely represents the
ground truth, has significantly better fit than (6), yet
significantly lower robustness. Moreover, (3) is slightly
more robust than (5), yet fits the data slightly worse.
In practice, the final model choice is a matter of
weighing up these scores. In this particular case, the
marginal gain in fit coupled with a loss in robustness
and an increase in model complexity disqualifies
model (5), whereas the choice between (6) and (3) is
undetermined—but whichever of these two models
ends up selected, only correct causal inferences will
be drawn.

Logic regression

The first and best known LRM is Logic Regression
(LR; Ruczinski et al., 2003). There exist various exten-
sions of LR, for example, Monte Carlo Logic
Regression (Kooperberg & Ruczinski, 2005), Logic
Feature Selection (Schwender & Ickstadt, 2008), or,
very recently, Bayesian Logic Regression (Hubin et al.,
2020).12 Apart from differences in the underlying
algorithms, especially in the fitting and model selec-
tion protocols, and in the processed data types, the
main difference between these methods concerns the

12An overview over LR and its main extensions is provided in Schwender
and Ruczinski (2010).
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logical form of their Boolean outputs. While LR out-
puts complete Boolean models furnishing sufficient
and necessary conditions for the outcome, though in
no standardized syntax (i.e., in no normal form) and
without systematic minimization, the other LRMs out-
put lists of best fitting sufficient conditions of the out-
come, each of which syntactically standardized to a
conjunction of factor values, but without combining
them to a complete and minimized model that also
furnishes a necessary condition. In light of our previ-
ous discussion of the MINUS theory, it is clear that
neither of these outputs lends itself to a causal inter-
pretation—which would require minimized necessary
disjunctions of sufficient conditions in disjunctive
normal form.

LRMs are not designed for causal discovery—in
fact, no reference to the INUS or MINUS theory (or
to any other theory of causation) appears anywhere in
the LRM literature. Instead of tracing causation,
LRMs search for association patterns that allow for
prediction, or, as Ruczinski et al. (2003) put it:

we attempt to find decision rules such as ‘if X1, X2,
X3, and X4 are true,’ or ‘X5 or X6 but not X7 are true,’
then the response is more likely to be in class 0. In
other words, we try to find Boolean statements
involving the binary predictors that enhance the
prediction for the response. In the near future, one
such example could arise from SNP microarray data
(… ), where one is interested in finding an
association between variations in DNA sequences and
a disease outcome such as cancer. (p. 476)

Correspondingly, the main field of application of
LRMs is the study of genetic associations where
higher order interactions among single nucleotide
polymorphisms (SNPs) are investigated for their asso-
ciations with variations in phenotype, for example, in
disease risk.

Still, as we shall see below, the Boolean models of
LR can be minimized and brought into the standar-
dized syntax of MINUS-formulas by means of suitable
post-processing, without thereby changing the truth
conditions, the predictive content, or the fit of these
models. Such post-processing is possible because LR
models not only provide sufficient but also necessary
conditions for the outcome. As the other LRMs
abstain from issuing necessary conditions, their out-
puts cannot be analogously post-processed without
changing the content or fit of these outputs, meaning
without diverting the methods from their intended
use. For that reason, we will subsequently focus on LR
and its models only.

LR can efficiently analyze high-dimensional, large-n
data (tens of thousands of cases) with high noise

levels (30% and more), but it is devised for binary
(crisp-set) outcomes only. The LogicReg R package
(Kooperberg & Ruczinski, 2019), which implements
LR, can process data with up to 1000 factors and
build models with up to 128 exogenous factor values.
No CCM can process such data and construct models
of that complexity. But while CNA returns all data-fit-
ting models within user-defined complexity bounds,
including models with multiple outcomes, LR issues
one best fitting model with one outcome only. To this
end, it embeds Boolean expressions in a generalized
linear regression model of the following form:

gðE Y½ �Þ¼b0 þ
Xt

j¼1
bjLj, (9)

where E½Y� is the expected value of the outcome Y, g
is a link function, and Lj are Boolean expressions, for
example, Lj¼X2�x4�X7 (Ruczinski et al., 2003, p.
479).13 Models are fit to the data using standard scor-
ing functions from regression analysis. In the linear
case, the most common score is the residual sum of
squares, meaning that LR searches for models of form
(9) such that Lj and the estimated parameters minim-
ize the residual sum of squares.

LR represents Boolean expressions as logic trees
where factor values appear as leaves connected via
branches through the operators AND and OR (Ruczinski
et al., 2003, p. 478). The search for best fitting models
(standardly) implements a simulated annealing algo-
rithm (Otten & van Ginneken, 1989) that starts from
the empty or null model and proceeds by iteratively
performing tree transformations. These transforma-
tions are, in each iteration, randomly selected from a
set of six possible moves consisting in addition, dele-
tion, and alternation of operators or of leaves
(Ruczinski et al., 2003, p. 481). After each move, the
fit of the new tree is contrasted with the fit of the old
tree. If the fit is equal or better, the move is always
accepted and the next transformation is performed; if
the fit is worse, the move is accepted with the follow-
ing probability:

aðmo,mn,TÞ¼minf1,expðð�ðmoÞ��ðmnÞÞ=TÞg, (10)

where �ðmoÞ is the fit of the old tree, �ðmnÞ is the fit
of the new tree and T is a parameter called

13In order to avoid confusion with arithmetic operations, disjunction is
commonly symbolized by “�, ” conjunction by “� , ” and negation by a
superscripted “c” in the LRM literature. For reasons of compatibility with
the CCM notation, we cannot follow this convention here. Hence, the
sign “�” in Lj is to be interpreted in terms of conjunction, not
multiplication, yet “þ” in (9) stands for addition, not disjunction.
Everywhere else in this paper (and in the replication script), “þ”
represents disjunction, not addition.
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temperature that decreases with the progression of the
algorithm as specified in a simulated annealing cool-
ing scheme. Equation (10) entails that, in the early
stages of the search, new trees with worse fit than old
trees are accepted with high probability, whereas that
acceptance probability tends toward zero in later
stages. The rationale behind initially accepting trees
with decreased fit is to allow the algorithm to scan
large portions of the search space without getting
stuck in mere local optima.

As anticipated above, the models resulting from
this procedure often are not causally interpretable—
for three main reasons. First, no syntactic constraints
are imposed on the tree transformations, meaning
that the ultimately selected tree may have any non-
standardized syntactic form. However, to interpret a
Boolean model in terms of causal conjunctivity and
disjunctivity, it must have disjunctive normal form.
Second, LR’s set of possible moves allows for the
introduction of logically redundant elements into the
trees. For instance, if aþ B is the old tree, one pos-
sible move is to add a conjunct as follows: aþ A�B:
This transformation, however, adds nothing whatso-
ever to the content of the model because the new
tree is logically equivalent to the old one and, hence,
induces the same fit. As tree transformations with
equal fit are always accepted, that new tree is
accepted despite its redundant leaf. But, of course,
the logically redundant A does not make a difference
to the outcome and, hence, is not a cause. Third, LR
can embed multiple trees in one and the same
regression model. Yet, multiple tress cannot be inter-
preted in terms of one causal structure; causal struc-
tures with conjunctivity and disjunctivity are
represented by single Boolean models, that is, by sin-
gle trees.

This third obstacle to a causal interpretation of
LR models is easily overcome. The logreg() func-
tion, which implements LR in the package LogicReg,
provides an argument ntrees by means of which
LR can be constrained to build models with no
more than one embedded tree. Removing the first
two obstacles is more intricate. It requires a post-
processing of the Boolean expressions (trees) in LR
models that standardizes their syntax and minimizes
them by eliminating redundancies. Transforming a
non-standardized Boolean expression into a mini-
mized disjunctive normal form is known as Boolean
minimization and there exist various algorithms for
this task. But as the task is NP-complete, the run-
ning time of all these algorithms grows exponentially
with the number of factors in the Boolean

expressions, such that applying them to LR models
caps the maximal complexity of these models some-
where between 20 and 30 factors. Moreover, most
algorithms for Boolean minimization are not tailored
toward causal data analysis but toward simplicity and
cost-reduction (e.g., in electrical engineering). As a
consequence, they only output one minimized
expression, even though there often exist multiple
equivalent ones, any of which might correspond to
the data-generating causal structure (Baumgartner &
Thiem, 2017). An exception is the ereduce algorithm
as implemented in the ereduce() function of the
cnaOpt package (Amb€uhl & Baumgartner, 2020),
which tackles Boolean minimization against the back-
ground of causal data analysis and returns all equiva-
lent minimized disjunctive normal forms.14 In what
follows, we therefore render the Boolean expressions
output by LR causally interpretable by post-process-
ing them with ereduce().

Such post-processing yields that, despite its original
focus on prediction, LR can be used to search for the
same causal target as CNA and its models can be
interpreted in the same way as CNA models: they
entail causal relevancies as defined by the MINUS the-
ory but no irrelevancies, submodels do not conflict
with supermodels, and if post-processing by ere-

duce() yields multiple causal models, they are to be
interpreted disjunctively. The main remaining differ-
ence between LR and CNA then is that the latter pur-
posefully builds all data-fitting models within given
complexity bounds, whereas the former randomly
moves through the search space, honing in on one, or
(after post-processing) a small number of best fitting
models. One upshot of this difference is that the out-
put of CNA does not vary between re-analyses of the
data using the same tuning parameters, whereas the
model(s) issued by LR may vary from re-analysis to
re-analysis. Two central tuning parameters controlling
the LR output are the number (iter) of iterated tree
transformations and the maximum number
(nleaves) of leaves (exogenous factor values) in the
fitted tree. Repeatedly re-running LR on the data in
Table 2 at iter¼25, 000, setting the same complex-
ity upper bound as in our previous CNA application,
namely nleaves¼9, and post-processing the result-
ing trees by ereduce(), yields a wide array of
Boolean models. Here are the models with frequencies

14In a nutshell, ereduce(x) searches for minimal hitting sets in the
Boolean expression x that prevent x from being false in the data.
Another more well-known approach to find all minimalized disjunctive
normal forms is Petrick’s method (Roth & Kinney, 2010, Section 6.3), but
there does not exist a ready-made implementation of that approach in R.
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n and fit scores � resulting from one particular series
of 100 re-runs15:

A�C�dþA�eþ c�D�e$ B n¼70 �¼0:277 (11)

A�C�dþA�e$ B n¼8 �¼0:291 (12)

A�eþ c�D�eþ C�d�E$ B n¼5 �¼0:277 (13)

A�eþ C�d�E$ B n¼2 �¼0:291 (14)

A�eþ C�dþ c�D�e$ B n¼9 �¼0:277 (15)

A�eþ C�d$ B n¼6 �¼0:291 (16)

To recall, the data in Table 2 are simulated from the
MINUS structure in expression (1), which corresponds
to (16) in the above list and, hence, is only returned in
6 of the 100 re-runs. In the vast majority of re-runs,
LR outputs an overly complex model entailing false
causal relevancies and, hence, overfitting the data.

This illustrates that LR also faces a severe overfitting
risk, just as do CCMs (or statistical methods). To
reduce that risk, LR provides various instruments,
among which there is a penalty parameter punishing
model complexity, analogous to the Akaike Information
Criterion (AIC), and a permutation test randomly per-
muting the outcome and checking whether the best
model fit obtainable from the permuted data is equal or
even better than the best fit obtained from the original
data. The model inferred from the original data should
only be interpreted to reflect an actual signal in the
data if that check is negative in most permutations. If
we repeat the above re-analysis series of Table 2 (with
the same replication seed as before) setting penalty¼
2 (which, according to Kooperberg & Ruczinski, 2019,
corresponds to AIC) and performing the permutation
test, overfitting disappears entirely, as all 100 re-runs
yield the same MINUS-formula:

A�e $ B n¼100 �¼0:459 (17)

Equation (17) is a submodel of the ground truth (1)
and, as such, only makes true causal claims. Of course,
it has worse fit than models (11) to (16) and it does
not completely reflect the ground truth. But without
re-introducing an excessive overfitting risk the com-
plete ground truth cannot be recovered by LR from
Table 2. In particular, increasing iter has no effect
on the output and reducing penalty to 1, again,
yields an overfitted model in the majority of re-runs.
This is essentially due to the data’s small sample size of
only 45 cases, which is a size way below LR’s ordinary
domain of application. Nevertheless, when its models

are suitably post-processed and complexity sufficiently
penalized, LR consistently infers the very same model
from Table 2 that is also the most robust CNA model.

In sum, both CNA and LR can be tuned to cor-
rectly analyze the MINUS structure used to simulate
the data in Table 2. Of course, showing that these
methods successfully detect MINUS causation in one
specific example serves mere illustration purposes.
The next section therefore performs systematic bench-
mark tests on a broad array of examples.

Benchmarking

To benchmark the performance of CNA and LR in a
variety of discovery contexts, we set up a series of
inverse search trials, first, randomly generating data-
generating structures (or ground truths), second, sim-
ulating different types of data from those structures,
and third, processing that data with CNA and LR to
measure the degree to which their outputs comply
with various benchmark criteria. This section first
explains the details of the test setups and benchmark
criteria and then discusses the test results and the
ensuing synergy potential.

Test setup and data simulation

To ensure the comparability of CNA and LR, the tri-
als must be confined to data dimensions and data-
generating structures analyzable by both methods,
meaning that important features of both methods can-
not be tested in the following. As CNA is more
restricted in regard to the dimensionality of the data,
we confine the trials to a set F¼fA,B,C,D,E, F,G,Hg
of 8 factors and to sample sizes of no more than 1000
cases, and because LR can only treat one factor in F
as outcome, which moreover must be binary, we
restrict F to binary factors and randomly generate
ground truths D from F with a single outcome and
between 1 and 9 causes (leaves) each.16 To get a statis-
tically significant performance assessment, we generate
a total of 1000 ground truths D.17

The performance of CNA and LR is influenced by
the sample size of the data, by the level of noise, and

15The lower �, the better the fit. Note that � does not express the fit of
the Boolean expression alone but of its embedding in a linear regression
model of form (9), which we do not reproduce here. � is calculated via
the residual sum of squares as spelled out by Ruczinski (2000, pp. 31, 47).

16Note that a cause is a factor taking a value (not a factor). As multiple
values of the same factor can be causes, it is possible to draw structures
with more causes than there are factors in F. Examples are (11) or (13).
17The number of ground truths determines the number of trials in each
test type. 1000 trials were chosen because the means of the resulting
benchmark scores calculated from different samples of that size were
found to stabilize with standard errors of the means between 0.0004 and
0.015 (see Figure S2 in the Supplemental Online Material). In other words,
we can have high confidence that trials on a sample of 1000 ground
truths drawn from F are representative of the population of all ground
truths that can be built from F.
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by the data’s fragmentation (i.e., the ratio of unob-
served configurations to all possible configurations).
The higher the sample size and the lower the noise
level and fragmentation, the better the performance of
CNA and LR. In order to limit the computational
demand of our test series, we vary only sample size
and noise level in a systematic and controlled manner
while randomizing fragmentation. To this end, we
first produce ideal data did for every D comprising
one case per configuration of the factors in F compat-
ible with D. Then, a randomly drawn percentage of
configurations, between 0% and 50%, is removed
from every did to yield fragmented data sets dfr with
fragmentations anywhere between 0% and 50%. Next,
samples of 60, 200, and 1000 cases are drawn from
each dfr, with replacement and equal selection prob-
ability for each case in dfr. This results in small-sized
data sets dfr60, intermediate-sized data dfr200, and large-
sized data dfr1000: Finally, from each dfr60, d

fr
200, and

dfr1000, four noisy data sets are created by substituting,
respectively, 5%, 15%, 25%, and 35% of the cases
compatible with D by randomly drawn cases incom-
patible with D—which incompatibilities can be
thought of as resulting from measurement error or
confounding. Cases are drawn with replacement and
each case compatible with D has equal probability of
being substituted by an incompatible case and each
incompatible case has equal probability of being
drawn, meaning that noise is unbiased. The result of
this procedure are 12 data types comprising 1000 data
sets each, d5%60 , d

15%
60 , :::, d15%200 , d

25%
200 , :::, d

25%
1000, d

35%
1000, where

subscripts indicate the sample sizes and superscripts
the noise levels.

Next, each of these 12,000 data sets is analyzed by
CNA and LR. CNA is run with a robustness check
systematically re-analyzing each data set at all con

and cov settings in the interval [0.6, 1], varied at
increments of 0.1, and retaining the models in the
95th percentile of robustness scores. The complexity
of models to be built is limited to 9 factor values. LR
is induced to fit exactly one logic tree to the data with
the same upper complexity bound of 9 leaves; it is
run with penalty ¼2, iter ¼25, 000, and a per-
mutation test checking for signal in the data. The
logic tree output by LR is then post-processed by
ereduce() in order to generate all MINUS-formu-
las corresponding to that tree.

Criteria for evaluation: benchmarks

The sets of MINUS-formulas S output by CNA and
LR are tested against three increasingly stringent
benchmark criteria, measuring first, whether they are

error-free, second, whether they contain a correct
model, and third, to what degree correct models in S
completely reflect the ground truth. A set S is error-
free iff it does not entail a causal claim that is false of
the ground truth D (i.e., no false positive). That can
be satisfied in two ways:

a. Either S is empty, meaning no causal inferences
are drawn (e.g., because CNA’s fit thresholds can-
not be met or because LR’s permutation test
is negative).

b. Or, S contains at least one18 model mi that is cor-
rect of the ground truth D, which is the case iff
mi is a submodel of D.

So, S satisfies the first benchmark criterion iff it satis-
fies conditions (a) or (b).19

The second benchmark focuses on non-empty sets S
only and checks whether condition (b) is satisfied,
meaning whether S actually contains at least one model
mi that is a submodel of D, and thus correct. That is,
an empty set S does not pass the second benchmark.
Finally, the third criterion assesses the informativeness
of correct models. Of two different correct models one
can be more complex than the other and, hence, reveal
D more completely. The completeness benchmark,
therefore, measures the degree to which the correct
models in S exhaustively reveal D. More specifically,
completeness amounts to the ratio of the complexity of
the most complex correct model in S to the complexity
of D, where complexity of a model mi is understood
(as is standard for both CNA and LR) as the number
of factor values (leaves) in mi: That is, contrary to the
first and second benchmarks, which can only be passed
or not, the third benchmark can be passed by degree,
but when S is empty or does not contain a correct
model, completeness is 0 by default.20

18Recall that an output containing multiple models is to be interpreted
disjunctively; and a disjunction of models is true iff at least one model
is true.
19The reader may wonder why we test a benchmark that can be passed
by a trivial method producing empty outputs by default. The reason is
that such a method would be entirely uninformative, which would be
visible in its failing the second and third benchmarks, correctness and
completeness; but an empty output produced by a method that does not
fail on the other benchmarks is a valuable piece of information entailing
that the data do not warrant any causal conclusions. The capacity to
abstain from drawing causal inferences when no such inferences are
warranted is a crucial methodological asset that deserves to be
benchmarked.
20Unlike completeness, we do not quantify correctness because there
currently does not exist a satisfactory quantitative correctness measure for
MINUS models. It is not trivial to meaningfully quantify the seriousness of
errors. For some more details on this problem see Parkkinen and
Baumgartner (2021).
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Results

The results are presented in the bar-charts of Figure
1. The x-axes break them down by the noise levels,
the columns by the sample sizes, and the rows by the
benchmark criteria. The error-freeness and correctness
scores represent the ratios of CNA and LR analyses
that produce outputs complying with error-freeness
and correctness, respectively. For example, CNA’s
score of 0.99 in the first bar of the top panel in the
left column means that CNA’s output is error-free in
99% of the trials run on the 1000 data sets of type
d5%60 : By contrast, the completeness scores represent
the degrees to which correct models completely
exhibit the ground truths averaged over all 1000 anal-
yses of a corresponding data type. For example, LR’s
score of 0.39 in the last bar of the bottom panel in
the right column means that LR recovers 39% of the
ground truth, on average, in 1000 trials performed on
data of type d35%1000:

The overall finding is that CNA and LR have
strengths and weaknesses in different benchmarks.
LR has advantages in error-freeness, CNA in correct-
ness, and the completeness scores are in favor of
CNA in small-sized data and in favor of LR in large-
sized data. More specifically, when averaged over all
data types, LR avoids erroneous inferences in 86% of
the trials, finds a correct model in 64%, and recovers
39% of the ground truth complexity, whereas CNA’s
output is error-free in 82%, contains a correct model
in 75% of the trials, and recovers 44% of the ground
truths. Further differentiation shows that CNA out-
performs LR in both error-freeness and correctness
in low noise data, committing almost no false posi-
tives and finding a correct model in at least 90% of
the trials. But those scores plummet when CNA is
applied to high noise data, independently of the sam-
ple size. At 35% noise, CNA issues a correct model
in only 34% of the trials, drawing an erroneous
inference in more than half of the trials when the
data have small or intermediate size. Contrary to its
correctness scores, CNA’s error-freeness scores in
high noise data increase with increasing sample sizes,
but only reach an acceptable value (i.e., 0.73)
if n¼ 1000.

LR, by contrast, maintains a constant score on
error-freeness independently of the noise. Remarkably
though, scores in large-n trials are roughly 20 percent-
age points lower than the corresponding scores in
small-n trials. This finding requires explanation. LR
successfully avoids false positives in trials on high
noise data with small sample sizes because it mostly
outputs no models at all—which can be read off the

huge differences between LR’s error-freeness and cor-
rectness scores in those trials (the only way to avoid
false positives without actually recovering correct
models is by issuing no model). Whereas LR is right
to mostly abstain from drawing inferences from data
of types d35%60 and d35%200 , data of type d25%60 would allow
for finding a correct model in 65% of the trials, which
is CNA’s correctness score in those trials. Hence, LR
is overly cautious in drawing inferences from small-n
data with no more than 25% noise. At the same time,
LR avoids erroneous inferences equally frequently as
CNA in the high noise trials on large-n data and out-
puts significantly more correct models.

That is, LR’s permutation test effectively induces
LR to abstain from drawing an inference when none
is warranted (e.g., in d35%60 and d35%200 ). But when LR
actually draws an inference that inference tends to be
less frequently correct than CNA’s, except for the high
noise trials on large-n data. By contrast, running CNA
with a robustness check in the threshold interval
½0:6, 1� very reliably leads to the recovery of a correct
model, but it does not prevent CNA from too fre-
quently committing false positives when analyzing
small- and intermediate-sized data with high
noise levels.

The cautiousness of LR when processing small-
sized data yields that it recovers the ground truths
only half as completely when n¼ 60 as does CNA; but
both methods find only fractions of the complete
ground truths, namely 17% (LR) and 36% (CNA), on
average. These low completeness scores are due to the
fact that small-n data have high fragmentation. It fol-
lows that a lot of information about the possible
behavior patterns of the analyzed factors and, thus,
about the underlying causal structure is missing. As is
to be expected, the completeness scores of both meth-
ods increase with increasing sample sizes—despite all
data types in our test series being fragmented to some
(randomized) degree. Averaged over all noise levels,
CNA recovers 50% of the ground truths from large-n
data and LR 59% (see Figure S1 in the Supplemental
Online Material for more details).

These findings must be further contextualized by
relativizing them to the number of models output.
Averaged over all trials of the series, CNA’s exhaustive
model search over a large interval of threshold set-
tings results in an output comprising 5.4 models,
whereas LR’s search heuristic coupled with its fre-
quent abstinence to draw a causal inference yields an
average of only 0.78 models. That means, in return,
that in the vast majority of trials in which LR draws
an inference that inference (after post-processing) is
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unambiguous, featuring exactly one model, whereas
when CNA draws an inference it mostly issues mul-
tiple models scoring equally on fit and robustness.
The difference in model numbers is particularly large
in the trials on high noise data of small to intermedi-
ate sizes. On the one hand, an analyst is unlikely to
draw determinate causal conclusions when she is pre-
sented with more than a handful of models, which
reduces the risk of drawing false conclusions from
high noise data, but on the other hand, it means that
the edge CNA has over LR as regards the correctness
of its output comes at the price of a significantly
higher ambiguity ratio. In other words, although there
mostly exists a multitude of equally well fitting
MINUS models, LR’s average correctness score of 0.64
shows that its simulated annealing algorithm coupled

with a complexity penalty, a permutation test, and
suitable post-processing is remarkably successful at
honing in on one model that is actually true of the
ground truth.

This finding, again, needs contextualization. First,
in those trials in which LR issues a (non-empty)
model, that model has a mean complexity of 3.3
leaves, whereas CNA’s models have a mean complex-
ity of 4.1. The less complex a model, the fewer causal
ascriptions it makes, and the more likely it is that no
false ascriptions are made. It follows that it is less dif-
ficult to find at least one correct model at LR’s mean
output complexity than at CNA’s. Second, LR’s per-
mutation test and the need to post-process its models
come at a significant cost to computing times. When
our test series is run, in parallel, on a computer with

Figure 1. Bar-plots displaying mean scores of Coincidence Analysis (CNA; in black) and Logic Regression (LR; in gray) in error-free-
ness (i.e., ratio of trials without false positive), correctness (i.e., ratio of trials in which a correct model is recovered), and complete-
ness (i.e., ratio of the ground truth complexity recovered), averaged over 1000 trials in each test type, broken down by noise
levels (on x-axis) and sample sizes (from left to right). These means have standard errors between 0.0004 and 0.015.
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16 EPYC cores, 3 GHz and 32GB RAM, LR needs
0.15 seconds, on average, to analyze a data set without
a permutation test and post-processing, but adding
such a test and post-processing increases the average
execution time to 4.8 seconds—in which time, to
repeat, LR does not produce all MINUS models com-
plying with the tuning settings. By contrast, it takes
0.88 seconds, on average, for CNA to find all models
meeting the tuning settings. Additionally checking the
robustness of these models increases execution times
to 2.7 seconds, on average.

Synergy potential

We have seen that CNA and LR can both be used to
search for MINUS causation. The fact that the two
methods conduct this search by means of very differ-
ent techniques creates an ideal setting for synergies.
On the one hand, exhibiting a performance difference
in a particular discovery context gives the underper-
forming method a clear indication of possible
improvements. For example, our results demonstrate
that CNA needs to be complemented by a procedure
for assessing signal strength in the data, analogous to
LR’s permutation test. Such a procedure will prevent
CNA from misfiring so frequently in high noise data;
at the same time, judging by LR’s template, it can be
expected to increase CNA’s computation times con-
siderably. Our results also show that LR’s permutation
test is too cautious and the complexity penalty
approximating AIC too restrictive when analyzing low
noise data. There might be a way to relax those con-
straints and, thereby, increase LR’s correctness and
completeness scores without falling back into the
overfitting pitfall.

On the other hand, the complementarity of the two
methods’ strengths and weaknesses opens the way for
cross-validation studies applying both methods to the
same data. To make this concrete, we identified those
trials in our benchmark experiment in which CNA
and LR output at least one identical model (which
also obtains if both return the empty model). The
ratios of those trials are plotted in Figure 2, along
with the error-freeness, correctness, and completeness
scores reached by those identical models. CNA and
LR issue an identical model in one fourth of the trials,
on average. Independently of the noise or sample
sizes, these identical models very rarely induce a false
positive, as they reach a mean error-freeness score of
0.95, which is significantly higher than either of the
methods’ individual scores. Averaged over all trials,
there is a correct model among 89% of identical mod-
els. When only looking at the data types for which
both CNA and LR typically output a non-empty
model, namely all data types except for d25%60 , d35%60 ,
and d35%200 , there is a correct model among 95% of
identical models. Comparing these scores to the mean
correctness scores in the population of CNA models
(0.75) and LR models (0.64) renders the potential of
cross-validation palpable. An identical output of both
methods is significantly more likely to be true of the
data-generating structure than one that is not
cross-validated.

What is more, the increase in correctness scores is
not due to the fact that identical models would be less
informative (and thus more likely to be correct).
Though models returned by both methods are some-
what less complete than CNA’s models in small-n
data, they reach higher completeness scores than CNA
and LR individually in the trials with intermediate-n

Figure 2. Black bars represent the ratios of trials in which Coincidence Analysis (CNA) and Logic Regression (LR) produce an identi-
cal model. Increasingly lighter shades of gray represent the error-freeness, correctness, and completeness scores reached by the
subpopulation of identical models.
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and large-n data. In particular when analyzing data
with n¼ 1000, a cross-validation study finding identi-
cal models reveals 80% of the ground truths, on aver-
age—independently of the noise. In sum, although it
only happens in one fourth of the trials that CNA and
LR produce the exact same models, when it happens,
the corresponding models receive a validation boost
in error-freeness and correctness without compromis-
ing on completeness.

While it is not very frequent that CNA’s and LR’s
outputs contain identical models, it happens in 70%
of the trials that a CNA model and an LR model are
related by the submodel relation. In trials in which LR
does not mostly abstain from returning a model (i.e.,
in all trials except for the ones on d25%60 , d35%60 , and
d35%200 ), it holds in 85% of the analyses, on average, that
at least one of the CNA models is a submodel of one
of the LR models, or vice versa. That is, CNA and LR
often output closely related models that differ only in
the degree of detail with which they represent the
underlying causal structures. The bar-charts in
Figure 3 depict the ratios of trials in which the two
methods output models related by the submodel rela-
tion, along with the error-freeness, correctness, and
completeness scores in the population of those related
models. As in case of identical models, submodels
reach a very solid mean error-freeness score of 0.96.
Because being identical is a special case of being
related by the submodel relation, most submodels are
less complex than their supermodels; and because
making fewer causal claims correlates with making
fewer mistaken claims, the mean correctness score
over all trials among the submodels is even higher
than among the identical models, namely 0.92. For
the same reason, however, the mean completeness

score among submodels is only 0.39 and, thus, lower
than among identical models and CNA models taken
separately. That means if CNA models are submodels
of LR models, or vice versa, those submodels receive a
validation boost in correctness at the price of reduced
completeness.

Discussion

Limitations

Before we conclude, we want to highlight the relevant
limitations of our analysis. Our test series only simu-
lates a proper subset of possible discovery scenarios.
For instance, it does not analyze the effects of varying
latent causes on the performance of CNA and LR. We
simulate data from the complete data-generating
structures, meaning there are no unmeasured causes
in our tests. As long as latent causes are homogenized
in the unmeasured causal background of the data,
they do not confound the data and, hence, do not
constitute a problem for CNA or LR (see
Baumgartner & Amb€uhl, 2020). But if unmeasured
causes, in particular common causes of two (or more)
measured factors, vary in an uncontrolled manner,
they negatively affect the performance of any causal
discovery method. It would be an important topic for
a follow-up study to determine whether or not the
performances of CNA and LR are differently affected
by uncontrolled variation in latent (common) causes.

Furthermore, our analysis introduces fragmentation
and noise at random. Yet of course, such data defi-
ciencies may be nonrandom in real-life data. Certain
configurations may be more likely than others to be
unobserved, certain factors may be more easily

Figure 3. Black bars represent the ratios of trials in which some models of Coincidence Analysis (CNA) and Logic Regression (LR)
are related by the submodel relation. Increasingly lighter shades of gray represent the error-freeness, correctness, and complete-
ness scores reached by the subpopulation of models related by the submodel relation.
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affected by measurement error, or certain types of
measurement error may be more frequent than others.
If fragmentation or noise are biased, they tend to
induce stronger spurious dependencies than if they
are unbiased; and stronger spurious dependencies are
more likely to be mistaken for causal dependencies.
An important question we cannot answer with our
analysis, hence, is whether there are relevant differen-
ces in how CNA and LR handle nonrandom fragmen-
tation and noise and whether the cross-validation
potential is similar under these circumstances.

Finally, it should be reiterated that our benchmark
experiments only scrutinize parts of the inferential
power of CNA and LR. To ensure comparability of
the results, we restrict our tests to data processable by
both of them. CNA can also process multi-value and
fuzzy-set data as well as data generated by multi-out-
come structures. But the dimensionality of the data
CNA can handle in reasonable time is limited to
about 20 exogenous factors. Without permutation test
and model post-processing, LR, by contrast, quickly
finds models for data featuring a couple hundred
exogenous factors. But the applicability of LR is
restricted to binary outcomes and it cannot process
data generated by structures with multiple outcomes.

Conclusions

Within the scope limitations of our analysis, we find a
substantive cross-validation potential. Any study ana-
lyzing data processable by both methods can expect to
profit, in one way or another, from such cross-valid-
ation. In case of low noise data, CNA should be the
primary tool of analysis. But CNA often outputs more
than one equally fitting model, leaving the analyst
with the task of model selection. Our results suggest
that also finding one of those model candidates or a
submodel of it by LR provides a strong incentive to
select that model, because a cross-validated (sub)mo-
del has a roughly 90% chance of being true of the
data-generating structure. That is, in low noise set-
tings, cross-validation is an instrument for ambiguity
reduction. When analyzing data with intermediate
noise levels, cross-validation serves the purpose of
enhancing the correctness of the inference. A non-
empty model returned by both methods is about 20%
more likely to be correct than a model that is only
returned by one of them. In high noise settings, LR—
with permutation test and post-processing—should be
the primary tool of analysis. If LR abstains from issu-
ing a model, any model CNA might infer from the
same data should be met with skepticism. But if LR

draws an inference from high noise data that can be
cross-validated with CNA, our results suggest that
that model may be causally interpreted despite the
noisy discovery context. As the mean correctness of
cross-validated models that are related by the submo-
del relation is roughly 75% in high noise contexts, it
is even justified to give preference to the CNA model
in that case, if it is a supermodel of the LR model.

Moreover, our results provide no reason to con-
clude that this synergy potential is restricted to data
processable by both methods. Rather, we expect CNA
and LR to be implementable sequentially as data pre-
processing tools for one another as well. If an
analyzed process is hypothesized to involve multiple
outcomes, a preliminary CNA analysis might partition
the data into batches pertaining to the separate out-
comes, each of which could then also be processed by
LR. Or, if data dimensionality is beyond CNA’s limi-
tations, LR might be employed to build a preliminary
model identifying a limited group of relevant factors,
based on which the data could then be subsetted to a
dimensionality manageable by CNA, which, in turn,
would render the data amenable to a cross-validation
study as described in the previous paragraph. Of
course, these suggestions are tentative. Properly flesh-
ing them out will require separate studies. But in light
of the promising results obtained in the restricted
scope of our analysis, we conclude that such follow-
up studies are worthwhile at any rate.

This paper aimed to bridge the gap between meth-
odological communities with very little mutual
exchange by showcasing two methods that can be
used to uncover causal structures featuring conjunc-
tivity and disjunctivity. Configurational comparative
methods as exemplified by CNA and logic regression
methods as LR apply very different techniques for that
purpose and have complementary strengths and weak-
nesses. While the former have correctness and com-
pleteness advantages, the latter have advantages in
error- and ambiguity-freeness. In light of that comple-
mentarity, the potential for cross-validation is consid-
erable. So far, however, it remains entirely untapped.
We have made a first attempt at paving the way for
the future exploitation of that potential.
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