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ABSTRACT 
There is a growing interest of researchers in meta-analytic methods for comparing variances 
as a means to answer questions on between-group differences in variability. When measure
ments are fallible, however, the variance of an outcome reflects both the variance of the true 
scores and the error variance. Consequently, effect sizes based on variances, such as the log 
variability ratio (lnVR) or the log coefficient of variation ratio (lnCVR), may thus not only reflect 
between-group differences in the true-score variances but also differences in measurement 
reliability. In this article, we derive formulas to correct the lnVR and lnCVR and their sampling 
variances for between-group differences in reliability and evaluate their performance in simu
lation studies. We find that when the goal is to meta-analyze differences between the true- 
score variances and reliability differs between groups, our proposed corrections lead to accur
ate estimates of effect sizes and sampling variances in single studies, accurate estimates of 
the average effect and the between-study variance in random-effects meta-analysis, and 
adequate type I error rates for the significance test of the average effect. We discuss how to 
deal with problems arising from missing or imprecise group-specific reliability estimates in 
meta-analytic data sets and identify questions for further methodological research.
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Introduction

Meta-analysis is typically used to summarize the avail
able evidence on the difference between the average 
outcomes of two (or more) groups. Conducting such 
a meta-analysis usually entails calculating effect sizes, 
such as mean differences, standardized mean differen
ces, or ratios of means (Borenstein et al., 2021, 
Chapter 4) for each study. These effect sizes are then 
summarized across all available studies to evaluate (1) 
whether the average outcome of the two groups differs 
in an average study, and if so, to what extent, and (2) 
whether there is between-study variability in the dif
ferences between the groups’ average outcomes, and if 
so, whether this variability can be explained by certain 
moderators. Such a meta-analysis of means is often 
used to evaluate the efficacy of a treatment (e.g., of 
psychotherapy, e.g., see Althobaiti et al., 2020; Cristea 
et al., 2017; Cuijpers et al., 2011), or to investigate 
mean differences between naturally occurring groups 
(e.g., differences in executive functioning in bilingual 
vs. non-bilingual children, Gunnerud et al., 2020, or 

gender differences in scholastic achievement, Voyer & 
Voyer, 2014).

In recent years, the focus in the behavioral sciences 
and other disciplines has shifted from examining average 
outcomes to also examining the variability of outcomes. 
In clinical psychology and medicine, for example, inter- 
individual differences in treatment effects are investi
gated by comparing the variances of the treatment and 
control group outcomes at post-treatment (Imbens & 
Rubin, 2015; Mills et al., 2021; Salditt et al., 2024). 
Similarly, a higher variability of a certain characteristic 
in patients compared to healthy controls may indicate 
the existence of different patient subtypes that may 
respond differently to treatment (e.g., Brugger et al., 
2020; Osimo et al., 2020). Questions related to between- 
group differences in variability also arise in research on 
personality and individual differences, and concern, for 
example, age or gender differences in the inter-individ
ual variability of personality traits (e.g., M~ottus et al., 
2016) or cognitive ability (e.g., Taylor & Barbot, 2021). 
There are various different approaches to test for 
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variability differences in a single study. Comprehensive 
reviews of these approaches, their data requirements, 
and assumptions were provided by Mills et al. (2021) 
and Nestler and Salditt (2024). Because the power of 
these tests is low unless sample sizes are large (i.e., 250 
subjects per group; Nestler & Salditt, 2024), it is of inter
est to examine variability differences meta-analytically to 
enhance power. This can be achieved by using effect 
sizes that are based on variances instead of on means, 
such as the lnVR and the lnCVR (Nakagawa et al., 
2015; Senior et al., 2020). As in a meta-analysis of 
means, these effect sizes can be employed to test (1) 
whether groups differ in terms of their variability in an 
average study and if so, to what extent, and (2), whether 
group differences in variability vary between studies and 
if so, whether this between-study variability can be 
explained by certain moderators. Such a meta-analysis of 
variances was, for example, used to summarize gender 
differences in the variability of academic grades (O’Dea 
et al., 2018) or divergent thinking (Abdulla Alabbasi 
et al., 2025; Taylor et al., 2024), variability differences 
between patients with schizophrenia and healthy con
trols in terms of their striatal dopaminergic function 
(Brugger et al., 2020), and heterogeneity of treatment 
effects in pharmacological and psychological treatments 
of depression (Kaiser et al., 2022; Pl€oderl & Hengartner, 
2019), post-traumatic stress disorder (Herzog & Kaiser, 
2022), and borderline personality disorder (Kaiser & 
Herzog, 2023).

In meta-analyses, the effect sizes that are summar
ized are calculated based on the observed values of the 
outcomes. These values are affected by measurement 
error and this unreliability can distort meta-analytic 
results. This was shown in particular for meta-analysis 
of correlation coefficients, leading to the development 
of several methods to correct correlation coefficients 
for unreliability (see, e.g. Ke & Tong, 2023; Raju 
et al., 1991; Schmidt & Hunter, 2015). Extending this 
research, we demonstrate here that if the outcome 
measure on which variability is compared between 
groups is less reliable in one group than in the other, 
the estimates of the lnVR and the lnCVR may also be 
contaminated by differences in measurement error 
variability. Thus, when researchers are interested in 
variability differences of the true scores, between- 
group differences in reliability may lead to erroneous 
conclusions in a meta-analysis of variances if these 
reliability differences are not accounted for. We there
fore propose corrections for the estimators of the 
lnVR and the lnCVR and their sampling variances 
which address this issue, and we evaluate the pro
posed formulas in two simulation studies.

Our proposed corrections require that group-spe
cific reliability estimates are available for each individ
ual study. This is often not the case in meta-analytic 
data sets since primary studies fail to report group- 
specific reliabilities. Even if they do, reliability esti
mates may be based on sample sizes that are too small 
to achieve an acceptable precision. We therefore sug
gest to use representative reliability estimates from 
external sources, such as large confirmatory factor 
analysis (CFA) studies when correcting the lnVR or 
the lnCVR for unreliability. A similar approach was 
used previously by Ke and Tong (2023) who examined 
unreliability corrections for correlation coefficients. 
We elaborate on alternative approaches in the 
discussion.

The remainder of this article is structured as fol
lows: In the following section, we first describe how 
the lnVR and the lnCVR and their sampling variances 
are estimated, second, how estimation may be affected 
by between-group differences in reliability, and finally, 
how to correct for these reliability differences. In the 
subsequent section, we describe two Monte Carlo 
simulation studies that we conducted to evaluate the 
proposed corrections. Then, we show an application 
of our method to an illustrative example. In the final 
section, we discuss the theoretical and practical impli
cations of our results, and elaborate on avenues for 
future research.

Meta-analysis of variances: effect sizes and 
reliability

In the following, we assume that we have observed an 
outcome in two independent groups, where X1 is the 
observed outcome in group 1 and X2 is the observed 
outcome in group 2. We further assume that both 
outcomes are normally distributed with means l1 and 
l2 and standard deviations r1 and r2; respectively. 
On a population level, we define the lnVR as

lnVR ¼ ln
r1

r2

� �

, (1) 

and the lnCVR as

lnCVR ¼ ln
r1=l1
r2=l2

� �

: (2) 

Note that lnCVR can be written as lnCVR ¼
lnVR − lnRR; where lnRR is the log response ratio 
(i.e., lnRR ¼ ln ðl1=l2Þ). Nakagawa et al. (2015) pro
posed to estimate the lnVR by

dlnVR ¼ ln
s1

s2

� �

þ
1
2

1
n1 − 1

−
1

n2 − 1

� �

, (3) 
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where s1 (s2) is the observed standard deviation in 
group 1 (group 2), and n1 (n2) are the respective sam
ple sizes. The second term in Equation (3) is a bias 
correction, whose influence is strongest when the 
sample sizes in the two groups are small and dissimi
lar. To estimate lnCVR, Senior et al. (2020) proposed 
to use

dlnCVR ¼ ln
s1=�x1

s2=�x2

� �

þ
1
2

1
n1 − 1

−
1

n2 − 1

� �

þ
1
2

s2
2

n2�x2
2

−
s2

1
n1�x2

1

 !

, (4) 

where �x1 and �x2 denote the sample means. The 
second term of Equation (4) is the bias correction for 
the lnVR and the third term is a bias correction for 
the lnRR. The estimators of lnVR and lnRR are 
asymptotically normally distributed (cf. Hedges et al., 
1999; Raudenbush & Bryk, 1987), which follows from 
applying the Delta method. Since the difference of 
two normally distributed variables also follows a nor
mal distribution, dlnCVR is asymptotically normally 
distributed, too.

By dividing each group’s standard deviation by its 
mean, the lnCVR allows to control for a mean-vari
ance relationship. In particular, it is suited for situa
tions in which variability is expected to increase as 
the mean increases because it allows to examine 
whether there are between-group differences in vari
ability beyond those that arise from a between-group 
difference in means. Such a mean-variance relation
ship can arise, for example, in variables that are 
bounded from below. If the variance is unrelated to 
the mean, the lnVR should be preferred over the 
lnCVR because the latter would spuriously correct for 
differences in means. Finally, using the lnCVR 
requires that the outcome being examined can take 
only positive values, whereas using the lnVR does not.

For the sampling variances of lnVR and lnCVR, 
Senior et al. (2020) proposed the estimators

s2ðdlnVRÞ ¼
1
2

1
n1 − 1

þ
1

ðn1 − 1Þ2
þ

1
n2 − 1

þ
1

ðn2 − 1Þ2
� �

¼
1
2

n1

ðn1 − 1Þ2
þ

n2

ðn2 − 1Þ2
� �

(5) 

and

s2ð dlnCVRÞ ¼
s2

1
n1�x2

1
þ

s4
1

2n2
1�x4

1
þ

n1

2ðn1 − 1Þ2
þ

s2
2

n2�x2
2

þ
s4

2
2n2

2�x4
2
þ

n2

2ðn2 − 1Þ2
, (6) 

both of which are based on a second-order Taylor 
expansion and were found to be more accurate than 
estimators based on the first-order Taylor expansion 
(Senior et al., 2020).

Consequences of ignoring unreliability

When defining the estimators for the lnVR and the 
lnCVR in Equations (3) and (4), it is implicitly 
assumed that X1 and X2 are not affected by measure
ment error. However, this assumption is unlikely to 
hold in practice (Carroll et al., 2006; Hernan & 
Robins, 2024; McDonald, 1999). To examine how 
measurement error affects lnVR and lnCVR, we pre
sume an additive measurement error model (Carroll 
et al., 2006; Lord & Novick, 1968) for the values in 
group 1,

X1 ¼ T1 þ e1, (7) 

where T1 are the true scores and e1 the error terms. 
In group 2, the values are given by

X2 ¼ T2 þ e2, (8) 

where T2 and e2 are the true scores and the error 
terms, respectively. From these definitions, it follows 
that

VarðX1Þ ¼ r2
1 þ r2

e1
¼

r2
1

r2
1=ðr

2
1 þ r2

e1
Þ
¼

r2
1

RelðX1Þ
, (9) 

and

VarðX2Þ ¼ r2
2 þ r2

e2
¼

r2
2

r2
2=ðr

2
2 þ r2

e2
Þ
¼

r2
2

RelðX2Þ
:

(10) 

Here, r2
1 (r2

2) is the variance of the true scores in 
group 1 (group 2), r2

e1 
(r2

e2
) denotes the variance of 

the error terms, and RelðX1Þ (RelðX2Þ) is the reliability 
of the observed variable in group 1 (group 2).

Equations (9) and (10) imply that when researchers 
are interested in lnVR and lnCVR of the true-score var
iables, as they typically are when they conduct a meta- 
analysis of variances, the effect size should be based on 
the standard deviations of the true-score variables r1 ¼

SDðX1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RelðX1Þ

p
and r2 ¼ SDðX2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RelðX2Þ

p
: Thus, 

the lnVR of the true-score variables is

lnVRT ¼ ln
SDðX1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RelðX1Þ

p

SDðX2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RelðX2Þ

p

 !

¼ ln
SDðX1Þ

SDðX2Þ

� �

þ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RelðX1Þ

RelðX2Þ

s0

@

1

A,
(11) 
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where for the sake of uniqueness, we define the solu
tion of the square root to be positive. Similarly, since 
lnCVR ¼ lnVR − lnRR; the lnCVR for the true-score 
variables is

lnCVRT ¼ ln
SDðX1Þ

SDðX2Þ

� �

þ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RelðX1Þ

RelðX2Þ

s0

@

1

A

− ln
l1
l2

� �

, (12) 

where we used that the lnRR is unaffected by unreli
ability because the expected value of the observed 
variable equals that of the true-score variable.

Between-group differences in reliability

Equations (11) and (12) show that when RelðX1Þ ¼

RelðX2Þ; lnVR and lnCVR of the true-score variables 
equal lnVR and lnCVR, respectively, of the observed 
variables (cf. Equations (1) and (2)). However, when 
RelðX1Þ > RelðX2Þ; the effect sizes based on the true- 
score variables are larger than those based on the 
observed variables, and when RelðX1Þ < RelðX2Þ; the 
effect sizes based on the true-score variables are smaller 
than those based on the observed variables. Thus, con
clusions on between-group differences in variability 
may be erroneous when the lnVR or the lnCVR are 
calculated based on the observed outcomes, at least 
when the two groups differ in their reliability.

How likely is it that there are between-group differ
ences in reliability? Research on the psychometric 
properties of several psychological scales revealed that 
the internal consistency of the scales varies consider
ably (Aslan et al., 2022; Badenes-Ribera et al., 2023; 
Cabedo-Peris et al., 2021; Cerri et al., 2023; Demir 
et al., 2024; Esparza-Reig et al., 2021; Gisbert-P�erez 
et al., 2022; Yin & Fan, 2000) and that part of this 
heterogeneity can be attributed to differences in sam
ple characteristics, such as age (Aslan et al., 2022; 
Bru-Luna et al., 2021). Furthermore, in the clinical 
setting, research on the Beck Depression Inventory-II 
(BDI-II) showed that internal consistency is larger for 
patients under remission as compared to acutely 
depressive patients (K€uhner et al., 2007) and that the 
internal consistency of the BDI-II at admission to a 
psychiatric hospital and at discharge is also different 
(Keller et al., 2022).1 In summary, then, between- 

group differences in reliability may exist in some con
texts in which meta-analyses of variances are carried 
out, and these differences should be taken into 
account to reach valid conclusions.

Correcting for between-group differences in 
reliability

Equations (11) and (12) imply that a simple way to 
correct the effect sizes for between-group differences 
in reliability is to add ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RelðX1Þ=RelðX2

p
Þ

� �

to the 
formulas to compute lnVR and lnCVR, respectively, 
and replace the population reliabilities by their esti
mated counterparts. Specifically, the corrected estimat
ing equations are

dlnVRT ¼ ln
s1

s2

� �

þ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cRelðX1Þ

cRelðX2Þ

v
u
u
t

0

B
@

1

C
A

þ
1
2

1
n1 − 1

−
1

n2 − 1

� �

: (13) 

and

dlnCVRT ¼ ln
s1=�x1

s2=�x2

� �

þ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cRelðX1Þ

cRelðX2Þ

v
u
u
t

0

B
@

1

C
A

þ
1
2

1
n1 − 1

−
1

n2 − 1

� �

þ
1
2

s2
2

n2�x2
2

−
s2

1
n1�x2

1

 !

, (14) 

where cRelðX1Þ and cRelðX2Þ denote estimators of the 
reliabilities of X1 and X2; respectively. In addition, the 
estimators of the sampling variances have to be 
adapted by accounting for the additional 
uncertainty that arises from the estimation of 

ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cRelðX1Þ=cRelðX2Þ

q� �

: Using the Delta method, we 

obtain

Var ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cRelðX1Þ

cRelðX2Þ

v
u
u
t

0

B
@

1

C
A �

VarðcRelðX1ÞÞ

4n1, RcRelðX1Þ
2

þ
VarðcRelðX2ÞÞ

4n2, RcRelðX2Þ
2

, (15) 

where n1, R and n2, R are the sample sizes that the reli
ability estimates in group 1 and group 2 are based on, 
respectively. In applications, the samples that are used 
to calculate the group-specific reliability coefficients 
and their standard errors may differ from those which 
are used to obtain the effect size estimates that will be 
summarized in the meta-analysis because if a study 

1Here, we use internal consistency as a term for reliability, which is 
consistent with the use of this term in the cited papers. However, strictly 
speaking, internal consistency (e.g., Cronbach’s alpha) is only a valid 
measure of reliability when the assumptions of an essentially tau- 
equivalent measurement model hold in the sample.
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fails to report reliability estimates, it can be necessary 
to impute them from external sources (see below). 
Therefore, the sample sizes in Equation (15) may dif
fer from those in the preceding equations. The sam
pling variances of the two groups’ reliabilities in 
Equation (15) can be estimated based on the Delta 
method (for a derivation of a sampling variance esti
mator for Cronbach’s alpha, see van Zyl et al., 2000).

Taking into account the variance of 

ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cRelðX1Þ=cRelðX2Þ

q� �

; the sampling variances of 

the corrected dlnVRT and dlnCVRT can be estimated 
with

s2ðdlnVRTÞ ¼
1
2

n1

ðn1 − 1Þ2
þ

n2

ðn2 − 1Þ2
� �

þ
VarðcRelðX1ÞÞ

4n1, RcRelðX1Þ
2
þ

VarðcRelðX2ÞÞ

4n2, RcRelðX2Þ
2

(16) 

and

s2ð dlnCVRTÞ ¼
s2

1
n1�x2

1
þ

s4
1

2n2
1�x4

1
þ

n1

2ðn1 − 1Þ2
þ

s2
2

n2�x2
2   

þ
s4

2
2n2

2�x4
2
þ

n2

2ðn2 − 1Þ2
þ

VarðcRelðX1ÞÞ

4n1, RcRelðX1Þ
2   

þ
VarðcRelðX2ÞÞ

4n2, RcRelðX2Þ
2
: (17) 

Obtaining estimates of the group-specific 
reliability coefficients and dealing with missing or 
imprecise values

The application of Equations (13) and (14) requires 
that estimates of the reliability and their standard 
errors are available for both groups. All possible reli
ability coefficients can be included in the formulas, 
such as internal consistency coefficients (e.g., 
Cronbach’s alpha or x; see McDonald, 1999), test- 
retest reliability coefficients, or parallel test reliability 
coefficients (Lord & Novick, 1968). The choice of the 
type of reliability coefficient should depend on the 
psychometric properties of the scale. This is particu
larly relevant because different reliability coefficients 
make different assumptions regarding the measure
ment model, and if these assumptions do not hold, 
reliability estimates can be biased (Graham, 2006; 
Green & Yang, 2009). We are not aware of any meta- 
analyses of variances that have gathered information 
on reliability from primary studies. However, research 
on corrections for unreliability in meta-analysis of 

correlations and standardized mean differences 
showed that studies most often report Cronbach’s 
alpha (Wiernik & Dahlke, 2020; Zhang, 2024), which 
requires that an essentially tau-equivalent measure
ment model holds. If primary studies report group- 
specific correlation (or covariance) matrices at the 
item level, these can be used to compute reliability 
estimates using a CFA approach.

In a meta-analytic context, estimates of the group- 
specific reliability coefficients and their standard 
errors would have to be obtained for each individual 
study. This will often not be possible, as group-spe
cific reliability coefficients or correlation matrices are 
seldom reported in primary studies. The meta-analytic 
estimate of the pooled lnVR corrected for between- 
group differences in reliability is

l̂ðlnVRÞ ¼
Xk

i¼1
w�i dlnVRTi, (18) 

where k is the number of studies, w�i ¼ wi=ð
Pk

i¼1 wiÞ

with wi ¼ 1=ðs2ðdlnVRTiÞ þ ŝ2Þ (assuming we conduct 
a random-effects meta-analysis where ŝ2 is an estimate 
of the between-study variance) and dlnVRTi is the esti
mated (and corrected) lnVR obtained from the ith 
study. Based on Equation (13), we can rewrite formula 
(18) as

l̂ðlnVRÞ ¼
Xk

i¼1
w�i dlnVRi

þ
Xk

i¼1
w�i ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cReliðX1Þ=cReliðX2Þ

q� �

,

(19) 

where dlnVRi is the uncorrected estimate of the lnVR 
obtained from the ith study. The second part of 
Equation (19) is a weighted average of the study-spe
cific estimates of the log-square root reliability ratio. 
If reliability estimates from a considerable number of 
studies are missing, one option is to replace the 
study-specific reliability estimates by representative 
estimates obtained from external sources. If it is not 
possible to obtain reliability estimates either from the 
primary studies included in the meta-analysis or from 
external sources, we suggest to conduct an additional 
CFA study before conducting the meta-analysis, as 
was suggested in the context of correcting 
correlation coefficients for unreliability (see Ke & 
Tong, 2023).

Even if group-specific reliability estimates are avail
able from all studies, such estimates, and in particular 
their standard errors, may be imprecise when sample 
sizes are small (Kline, 2016; Wolf et al., 2013). This 
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applies irrespective of whether reliability estimates 
were directly reported or obtained from group-specific 
correlation matrices, and can distort the estimation of 
the average effect. Furthermore, the standard error of 

the average effect, which is estimated by 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pk

i¼1 wi

q

;

depends not only on the precision of the study-spe
cific estimates of lnVR but also on the precision of 
the log-square root reliability ratios (cf. Equation 
(16)). Therefore, relying on imprecise reliability esti
mates will reduce the precision of the average effect 
and result in a low power. We therefore suggest to 
give preference to reliability estimates from external 
sources (that were obtained in larger samples) in this 
situation, too. These considerations apply analogously 
to meta-analysis of the lnCVR.

Monte Carlo simulations

We conducted two simulation studies to investigate 
the performance of the suggested corrections, because, 
to the best of our knowledge, their performance has 
not yet been examined. In the first simulation, we 
evaluated the performance of our formulas with 
respect to the estimation of the study-specific effect 
size and sampling variance in a single study. This pre- 
study was conducted to complement the findings by 
Senior et al. (2020) on the performance of different 
estimators for the uncorrected lnCVR and its sam
pling variance in a setting with perfect reliability. In 
the second, main simulation, we examined the per
formance of the estimators for the corrected lnVR 
and lnCVR in a meta-analytic setting.

Both simulation studies were conducted in R (R 
Core Team, 2022) using the metafor package 
(Viechtbauer, 2010) for effect size calculation and for 
conducting the meta-analyses. Note that the effect size 
and sampling variance estimators that are imple
mented in metafor are based on a first-order Taylor 
expansion as suggested by Nakagawa et al. (2015). 
Since Senior et al. (2020) recommended to use the 
estimators based on the second-order Taylor expan
sion, we added the respective terms to the estimates 
obtained from metafor where necessary. In both 
simulation studies, group-specific reliability estimates 
along with their standard errors were obtained from 
an external CFA rather than from the individual pri
mary studies. The CFA was conducted using the 
lavaan package (Rosseel, 2012). The first simulation 
was run on the high-performance computing cluster 
PALMA II (https://www.uni-muenster.de/ZIV/ 
Technik/Server/HPC.html) at the University of 
M€unster.

Pre-study: single-study setting

In our pre-study, we compared the performance of 
the corrected estimators for lnVRT and lnCVRT to 
that of the uncorrected estimators. In our simulation, 
reliability estimates were not obtained from the simu
lated primary studies themselves, but from an external 
CFA study that was simulated in addition to the pri
mary study data. This procedure was chosen to mirror 
the realistic scenario that group-specific reliability esti
mates will often be unavailable in primary studies or 
that primary studies are often too small to estimate 
group-specific reliabilities with sufficient precision. 
Across simulation conditions, we varied the sample 
size of the CFA study and evaluated whether larger 
sample sizes were associated with a better 
performance.

In addition to the performance of the effect size 
estimators, we evaluated the performance of the 
corrected sampling variance estimators. Using 
Equations (16) and (17) requires that standard 
errors of the reliability coefficients have been 
obtained for both groups. However, since these esti
mates may not always be available, e.g., when using 
reliability estimates from preexisting CFA studies, 
we also examined under which conditions it is safe 
to use the uncorrected sampling variances (see 
Equations (5) and (6)) together with the corrected 
effect size estimators.

Figure 1. CFA model from which the group-specific data were 
generated in the simulation study with equal factor loadings 
of 1 for all three variables V1–V3; equal error variances r2

e ; and 
factor variance r2:
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Data generation
In each replication of a simulation condition, the data 
for the two groups were each simulated from a one- 
factor model with three items (see Figure 1). Each 
item had a factor loading of 1 and the error variance 
r2

e of each item was set in such a way that the sum 
score of the three items reached a pre-specified reli
ability. Specifically, the error variance of a single item 
can be computed with r2

e ¼ r2 � ð1 − RelðVÞÞ=RelðVÞ;
where RelðVÞ is the reliability of a single item which 
can be obtained using the Spearman-Brown formula 
(see Lord & Novick, 1968). For group 2, the reliability 
of the sum score composed of the three items was set 
to Rel2 ¼ 0:9 in all simulation conditions. Also, the 
mean of the latent variable was set to l2 ¼ 50 and the 
standard deviation to r2 ¼ 10: The values for l1 and 
r1 were obtained from l1 ¼ l2 � exp ðlnRRÞ and r1 ¼

r2 � exp ðlnVRTÞ: The values of lnRR and lnVR, as 
well as the sample sizes, depended on the simulation 
condition (see Table 1). The values of these parame
ters were chosen to be similar to those used in the 
simulation study by Senior et al. (2020) to facilitate 
comparison with their results. Specifically, we consid
ered the same values for the sample sizes (8, 16, 42) 
and similar ranges for the lnVR and the lnRR (−0:5 
to 0.5, respectively). In addition, we varied the reli
ability of the outcome in group 1 (see Table 1 again) 
with values ranging from 0.70 to 0.90. These values 
were chosen because a reliability below 0.7 is usually 
deemed unacceptable in applied research; hence, reli
abilities of scales used in primary studies will typically 
exceed this value. As Equations (11) and (12) indicate, 
lnVR and lnCVR are distorted by the ratio of reliabil
ities. By setting reliability to a high value in group 2 
(i.e., 0.9) and considering only lower or comparable 
values for group 1, our simulation conditions there
fore cover a large range of reliability ratios (0.78 to 1). 
Because the (square root of the) reliability ratio enters 
Equations (11) and (12) on the log scale, swapping 
the reliabilities of the two groups only affects the sign. 
Hence, it is not necessary to also consider conditions 
with a lower reliability in group 2. Data were gener
ated by sampling observations from a multivariate 
normal distribution with expectations and variance- 
covariance matrix as implied by the model shown in 

Figure 1. In all conditions, we generated balanced 
sample sizes, that is, we set n1 ¼ n2:

2 Finally, means 
and standard deviations that were needed for calculat
ing effect sizes and sampling variances in a replication 
were obtained by calculating the mean and standard 
deviation of the sum scores for each group.

We used a CFA approach to obtain group-specific 
reliability estimates and their standard errors. To this 
end, we used the same approach as for the individual 
studies to generate CFA data in each simulation repli
cation, but with a larger sample size. Specifically, we 
drew a sample of 100, 250, or 500 persons per group, 
fitted the respective CFA model to the data (see 
Figure 1), and used the CFA results to compute 
group-specific reliability estimates and their standard 
errors. A sample size of 100 persons is minimal to 
obtain reliable estimates (see Kline, 2016; Wolf et al., 
2013), while 500 is almost optimal in this respect.

In sum, simulation conditions were determined by 
fully crossing all parameter values, resulting in a total 
number of 5� 5� 3� 5� 3 ¼ 1, 125 simulation 
conditions in the pre-study. In each condition, we 
generated 100,000 simulation replications.

Performance measures
We used the bias of the estimates to evaluate the per
formance of the effect size estimators. Bias was calcu
lated as ĥr − h; where ĥr is the estimate obtained for 
the r-th simulation replication (r ¼ 1, :::, 100, 000) and 
h is the true value of the respective effect size (i.e., 
lnVRT or lnCVRT). We used the relative bias to 
evaluate the performance of the estimators for the 
sampling variances:

biasðs2
r ðĥÞÞ ¼

s2
r ðĥÞ − dVarðĥÞ
dVarðĥÞ

, (20) 

where s2
r ðĥÞ is an estimate of the sampling variance 

obtained for the estimator ĥ for the r-th simulation 
replication and dVarðĥÞ is the empirical variance of the 
corrected effect size estimator (i.e., dlnVRT or dlnCVRT) 
across simulation replications. Relative bias was com
puted separately for uncorrected and corrected sam
pling variance estimates. With respect to relative bias 
of the sampling variances, we consider absolute biases 
of <5% as negligible, absolute biases between 5 and 
10% as moderate, and absolute biases of >10% as 
substantial.

Table 1. Values of the simulation parameters in the pre- 
study.
Parameter Values

lnVRT −0.5, −0.25, 0, 0.25, 0.5
lnRR −0.5, −0.25, 0, 0.25, 0.5
n2 8, 16, 42
Rel1 0.7, 0.75, 0.8, 0.85, 0.9

2We did not consider unbalanced sample sizes because we would not 
expect that imbalance would affect the simulation results. This is because 
the impact of the two groups’ sample sizes on the sampling variances is 
independent of each other (see Equations (5), (6), (16), and (17)).
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Main simulation: meta-analytic setting

The main simulation was done to evaluate the per
formance of the proposed corrections in a meta-ana
lytic setting. We compared three procedures: (a) 
Neither correcting effect size estimates nor sampling 
variances for unreliability (i.e., using Equations (3)
and (4) for effect size estimation and (5) and (6) for 
sampling variance estimation), (b) correcting only 
effect size estimates (i.e., using Equations (13) and 
(14) for effect size estimation and (5) and (6) for 
sampling variance estimation), and (c) correcting 
both effect size estimates and sampling variance esti
mates (i.e., using Equations (13) and (14) for effect 
size estimation and (16) and (17) for sampling vari
ance estimation). Based on the findings from the 
pre-study (see below), we would expect procedure (c) 
to perform best. We included procedure (b) to evalu
ate whether reasonably accurate results can be 
obtained when no information on the uncertainty of 
the reliability estimates used in the correction is 
available. We expect that this will often be the case 
because primary studies frequently fail to report this 
information (Kelley & Pornprasertmanit, 2016). For 
the estimation of the between-study variance s2; we 
used the restricted maximum likelihood estimator 
(Raudenbush, 2009; Viechtbauer, 2005). Standard 
errors were calculated using the Hartung-Knapp- 
Sidik-Jonkman method (Hartung & Knapp, 2001; 
Sidik & Jonkman, 2002).

Data generation
In each simulation replication, data for k studies were 
generated. The true lnVR for each study i, lnVRTi 
(i ¼ 1, :::, k) was drawn from a normal distribution 
with mean lðlnVRTÞ and variance s2ðlnVRTÞ: In add
ition, the true lnRR for each study, lnRRi was drawn 
from a normal distribution with mean 0 and variance 
s2ðlnRRÞ: Accordingly, the between-study variance of 
the lnCVR was s2ðlnCVRTÞ ¼ s2ðlnVRTÞ þ s2ðlnRRÞ:
We generated both lnVRTi and lnRRi from normal 
distributions because then, lnCVRTi is also normally 
distributed. Thus, all data were simulated in accord
ance with the assumptions of the random-effects 
meta-analysis model, avoiding model misspecification 
as a potential additional source of bias in the 
simulation.

For each individual study, we used the same data- 
generating model as in the pre-study (cf. Figure 1). 
That is, values for group 2 were l2 ¼ 50; r2 ¼ 10 and 
Rel2 ¼ 0:9 for all studies in all simulation conditions, 
and the mean and the standard deviation of the true- 
score variable in group 1 were obtained with l1i ¼

l2 � exp ðlnRRiÞ and r1i ¼ r2 � exp ðlnVRs, iÞ; respect
ively. For each study, the sample size of group 2 was 
drawn from a discrete uniform distribution with lower 
bound n2 − 5 and upper bound n2 þ 5: Again, the 
same sample size was used for group 1 of the respect
ive study.

Table 2 shows the levels of the factors that we 
varied in this simulation. The values for reliability in 
group 1, the sample size, and the average lnVR were 
selected based on the pre-study. We considered small 
and large numbers of studies (15 and 25, respect
ively). With regard to heterogeneity, we considered 
conditions with a between-study variance of zero or 
0.05 for both lnVR and lnRR. Using the same values 
for lnVR and lnRR facilitates comparing the influ
ence of heterogeneity in lnVR vs. lnRR on the esti
mation of lnCVR. We deem a between-study 
variance of 0.05 to be relatively large because a pre
diction interval for lnVR with s2 ¼ 0:05 spans a con
siderable range.3 Simulation conditions were obtained 
by fully crossing these factors, resulting in a total 
number of 2� 2� 2� 3� 2� 5 ¼ 240 simulation 
conditions. We generated 1,000 replications per 
condition.

Per simulation replication, one additional set of 
CFA data was simulated in the same way as an indi
vidual study, but with a sample size of 100 per group. 
From these data, reliability estimates and their stand
ard errors were obtained and then used to estimate 
the corrected lnVR, the corrected lnCVR, and their 
sampling variances in each of the k individual studies.

Performance measures
Performance was evaluated in terms of bias in the 
estimation of the average effect. It was calculated 
with l̂ðhÞr − lðhÞ for each effect size h (i.e., lnVRT 
and lnCVRT) and simulation replication r 
(r ¼ 1, :::, 1, 000). In addition, we evaluated the type I 

Table 2. Values of the simulation parameters in the main 
simulation.
Parameter Values

Number of studies k 15, 25
Heterogeneity of the lnVR s2ðlnVRTÞ 0, 0.05
Heterogeneity of the lnRR s2ðlnRRÞ 0, 0.05
Average lnVR lðlnVRTÞ −0.25, 0, 0.25
Sample size n2 (n1) 16, 42
Reliability in group 1 Rel1 0.7, 0.75, 0.8, 0.85, 0.9

3For a pooled lnVR of zero, the prediction interval (l61:96s; i.e., not 
taking into account the standard error) is approximately ð−0:44, 0:44Þ:
Exponentiating the bounds yields a prediction interval of ð0:65, 1:55Þ on 
the VR scale. In consequence, the prediction interval covers situations in 
which the standard deviation in group 1 is between two thirds of and 
one and a half times the standard deviation in group 2.
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error rate and the power of the average effect size test. 
The type I error rate was obtained as the percentage 
of replications in a simulation condition with lðhÞ ¼
0 in which the t-test indicated that the average effect 
was significantly different from zero. The power was 
calculated by computing the percentage of simulation 
replications in conditions with lðhÞ 6¼ 0 in which the 
t-test indicated that the average effect was significantly 
different from zero. Finally, we evaluated the perform
ance of the different estimators in terms of bias in the 
estimation of the between-study variance, calculated 
as ŝ2

r ðhÞ − s2ðhÞ: We use boxplots to visualize biases 
of l̂ðhÞ and ŝ2: Each boxplot depicts a single 
condition and therefore shows the distribution of 
bias for this particular condition across simulation 
replications.

Results of the simulation studies

Results of the pre-study

Bias of the effect size estimators
Bias of the effect size estimators was very similar 
across simulation conditions that differed in terms 
of lnRR, lnVRT ; or the sample size of the CFA 
study. In Figure 2, we therefore present the results 
for lnRR ¼ 0; lnVRT ¼ 0 and n2, R ¼ 100 to exem
plify these patterns. Figures for all remaining condi
tions are available at https://osf.io/nkbdm. Figure 2a
shows boxplots of the bias of the corrected and 
uncorrected estimators for lnVRT ; while Figure 2b
shows boxplots of the bias of the corrected and 
uncorrected estimators for lnCVRT : For both effect 
size measures, median bias of the uncorrected 

Figure 2. Bias of the effect size estimators in conditions with lnVRT ¼ 0 and lnRR ¼ 0 for a sample size in the CFA study 
of n2, R ¼ 100:
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estimators only depended on the magnitude of 

ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cRelðX1Þ=cRelðX2Þ

q� �

; and therefore, was largest 

for the conditions in which RelðX1Þ differed most 
from RelðX2Þ: As expected, median bias of the 
corrected estimators was virtually zero in all 
conditions.

Relative bias of the sampling variance estimators
Relative bias of the sampling variance estimators 
exhibited similar patterns across simulation conditions 
that differed in terms of lnRR and lnVRT : Figures 3
and 4 show the results for conditions with lnVRT ¼ 0 
and lnRR ¼ 0 to exemplify these patterns. Figures for 
all further conditions are available at the OSF 
repository.

For both effect size measures, the uncorrected esti
mators of the sampling variances tended to underesti
mate the sampling variance of dlnVRT and dlnCVRT 
more often as compared to the corrected estimators. 
Nevertheless, both the uncorrected and the corrected 
sampling variance estimator had a negligible bias for 
both effect size measures in most simulation conditions. 

Exceptions of this were conditions with a small sample 
size of the CFA study, large sample sizes within the 
studies, and large reliability differences between groups 
(cf. the lower left panels in Figures 3 and 4): In these 
conditions, bias of the uncorrected sampling variance 
estimator tended to be moderate. For the corrected 
sampling variance estimator of the lnVR, bias was close 
to zero in the vast majority of simulation replications 
for all simulation conditions, but in conditions with a 
smaller sample size for the CFA, there tended to be 
more replications in which the sampling variance was 
overestimated. Note that since the uncorrected sampling 
variance estimator of the lnVR is only based on the 
sample sizes within the studies (cf. Equation (5)), and 
as these were held constant across simulation replica
tions, there was no variability of bias across simulation 
replications. For the corrected sampling variance esti
mator of the lnCVR, bias was negligible in almost all 
simulation conditions, with exceptions only in very few 
extreme conditions (i.e., conditions with lnVRT ¼ 0:5;
lnRR ¼ −0:5; n2 ¼ 8; n2, R 2 f100, 250g; RelðX1Þ ¼

0:7; and lnVRT ¼ 0:5; lnRR ¼ −0:5; n2 ¼ 8;
n2, R ¼ 500; RelðX1Þ ¼ 0:85).

Figure 3. Relative bias of the sampling variance estimators for dlnVRT in conditions with lnVRT ¼ 0 and lnRR ¼ 0 for different 
study-specific sample sizes (vertical panels) and different sample sizes of the additional CFA study (horizontal panels).
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In summary, we have found that the correction for
mulas reduce bias, both in the effect sizes and in the 
sampling variances. These results indicate that the 
corrections should also work in the meta-analytic set
ting, and the main simulation was done to examine 
this.

Results of the main simulation

The general patterns found in the results of the main 
simulation study were similar for the two different 
effect size measures. Therefore, we focus on the results 
for lnVR in this section. Figures showing the results 
for lnCVR are available at the OSF repository.

Bias in the estimation of the average effect
Figure 5 illustrates the results with respect to bias in 
the estimation of lðlnVRTÞ when (a) neither correct
ing effect sizes estimates nor sampling variance esti
mates for differences in reliability, (b) correcting only 
effect size estimates, and (c) correcting both effect size 
estimates and sampling variance estimates. As the 
results were similar for different values of lðlnVRTÞ;

we only show the results for conditions 
with lðlnVRTÞ ¼ 0:

As expected, when neither correcting effect 
size estimates nor sampling variance estimates, 
bias depended on the magnitude of 

ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cRelðX1Þ=cRelðX2Þ

q� �

; and hence, was larger the 

more RelðX1Þ differed from RelðX2Þ: When the effect 
size estimates were corrected for reliability differences, 
median bias was virtually zero in all simulation condi
tions. It did not make a difference whether sampling 
variances were also corrected or not, which is a result 
of the unbiasedness of effect size estimation in the 
individual studies (cf. Figure 2).

Type I error rates
Figure 6 shows the empirical type I error rates for the 
test of the hypothesis lðlnVRTÞ 6¼ 0:

When using uncorrected estimators for both effect 
sizes and sampling variances, type I error rates were 
mainly driven by bias, and therefore increased as the 
between-group difference in reliabilities increased. In 
addition, there was a pronounced increase in the type 

Figure 4. Relative bias of the sampling variance estimators for dlnCVRT in conditions with lnVRT ¼ 0 and lnRR ¼ 0 for different 
study-specific sample sizes (vertical panels) and different sample sizes of the additional CFA study (horizontal panels).
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I error rates for larger sample sizes and larger num
bers of studies, as well as for smaller between-study 
variances. Type I error rates were similar for the two 
correction procedures. In general, they were consider
ably smaller than the type I error rates when not 
using a correction, but were slightly inflated for larger 
sample sizes, larger numbers of studies, smaller 
between-study variances, and larger reliability differ
ences. The increase in type I error rates for larger reli
ability differences and larger sample sizes can be 
explained by a larger downward bias of the sampling 
variances in this situation (cf. Figures 3 and 4 from 
the pre-study). The effect of this downward bias is 
greater for larger numbers of studies because the 
biases of the sampling variances add up in the estima
tion of the standard error of the average effect. We 
return to the issue of inflated type I error rates in the 
discussion.

Power
Figure 7 shows the empirical power for the test of the 
hypothesis lðlnVRTÞ 6¼ 0 for the three procedures. 
Here, we only show the results for lnVR ¼ −0:25;
because similar to type I error rates, power was 
mainly driven by bias when no correction was used. 

In the conditions considered in our simulation, there 
was an upward bias due to RelðX1Þ being smaller than 
RelðX2Þ; and hence it is trivial that power will be 
larger for the uncorrected procedure than when using 
corrections for lnVRT > 0:

The results depicted in Figure 7 show that power 
can be compromised to a considerable extent when 
neither correcting effect size estimates nor sampling 
variance estimates for differences in reliability. The 
low power mainly resulted from bias and was thus 
smaller for larger reliability differences. In addition, 
smaller sample sizes, smaller numbers of studies, and 
larger heterogeneity were associated with a lower 
power. Power of the two correction procedures was 
similar and was mainly driven by the sample size, the 
number of studies, and the between-study variance.

Bias in the estimation of the between-study 
variance
Figure 8 illustrates the results with respect to bias in 
the estimation of s2ðlnVRTÞ for the three procedures. 
As the results were similar for different values of 
lðlnVRTÞ; we only show the results for conditions 
with lðlnVRTÞ ¼ 0:

Figure 5. Bias in the estimation of the average effect lðlnVRTÞ in conditions with lðlnVRTÞ ¼ 0 for different numbers of studies 
and sample sizes (nested horizontal panels) and different levels of between-study heterogeneity (vertical panels).
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For all three procedures, bias was small for the 
majority of simulation replications for all simulation 
conditions. In conditions with s2ðlnVRTÞ ¼ 0; bias 
tended to be slightly smaller when both the effect size 
estimates and the sampling variances were corrected 
for differences in reliability, as compared to the two 
other procedures. In conditions with s2ðlnVRTÞ ¼

0:05; correcting both effect size estimates and sam
pling variances sometimes resulted in a small negative 
median bias, in particular when sample sizes within 
studies were small. For the two other procedures, 
median bias was virtually zero for all simulation 
conditions.

Illustrative example

We now show how to apply our method in practice 
by using it to reanalyze data from a meta-analysis by 
Kim et al. (2019). In their meta-analysis, they consid
ered differences in variability in self- and other- 
reports of personality. The full data from this meta- 
analysis are available at https://osf.io/snfjx/. The data 
and code used in our reanalysis are available in the 
OSF repository of this paper. Here, we use a subset of 

these data comprising studies which were published in 
peer-reviewed journals and in which other-reports 
were obtained from family members or friends. We 
further restricted our reanalysis to personality assess
ments of the Big Five (i.e., openness, conscientious
ness, extraversion, agreeableness or neuroticism), 
which were obtained with the Big Five Inventory 
(BFI), the Five-Factor Personality Inventory (FFPI), 
the International Personality Item Pool (IPIP), the 
IPIP-NEO, the NEO Five-Factor Inventory (NEO- 
FFI), the NEO Personality Inventory-Revised (NEO- 
PI-R), or the Ten Item Personality Inventory (TIPI). 
This selection was made with the intention of provid
ing a succinct example that still allows us to illustrate 
some considerations that are important when applying 
the correction for unreliability (see below). For each 
primary study, we tried to gather information on the 
reliability of self- and other-reports from its published 
manuscript. Those studies that reported reliabilities 
used Cronbach’s alpha as their reliability measure. 
Although this may be suboptimal for some personality 
scales, we used these values when applying the correc
tion because it was the only information on reliability 
available from the studies, and conducting an 

Figure 6. Type I error rates for the test of the hypothesis lðlnVRTÞ 6¼ 0 for different numbers of studies and sample sizes (nested 
horizontal panels) and different levels of between-study heterogeneity (vertical panels).
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additional CFA study to determine the best fitting 
measurement model for each scale would not have 
been feasible.

We conducted separate meta-analyses for each per
sonality trait. As an effect size, we used the lnVR 
because we did not expect standard deviations to 
increase with means. The proposed correction for 
unreliability (cf. Equation (13)) was applied using 
study-specific reliabilities if these were reported and 
the sample size was 100 or larger. When this was not 
the case, we imputed the log-square root reliability 
ratio required for the correction. We compared two 
approaches: In the first approach, we pooled the log- 
square root reliability ratios from the studies that 
reported reliabilities separately for each trait. The 
second approach was similar, but log-square root reli
ability ratios were pooled separately for each trait and 
personality scale. Because no study using the NEO- 
FFI reported reliabilities, the imputed log-square root 
reliability ratio for this scale was based on the reliabil
ities from studies using the NEO-PI-R. Before pooling, 
we adjusted these reliabilities for scale length using 
the inverse Spearman-Brown formula because the 
NEO-FFI is a short version of the NEO-PI-R. Pooled 
log-square root reliability ratios were obtained as a 

sample size-weighted average because information on 
sampling variability was unavailable. For the same rea
son, we only corrected effect sizes for unreliability, 
but not their sampling variances (i.e., we used proced
ure (b) from the main simulation). Self- and other- 
reports of personality are correlated, therefore we 
computed the sampling variance for the lnVR based 
on the formula for dependent samples (see Senior 
et al., 2020) using the correlations for self- and other- 
reports obtained from a large meta-analysis (Connolly 
et al., 2007, openness: 0.59, conscientiousness: 0.56, 
extraversion: 0.62, agreeableness: 0.46, neuroticism: 
0.51). Because some studies reported effect sizes for 
multiple samples, we conducted three-level meta-anal
yses. Table 3 contains the results of these meta-analy
ses per trait, along with information of the numbers 
of studies and samples that were included in the 
analysis.

The results illustrate that the correction mainly had 
an effect on the analyses comparing the variability of 
self- and other-reports of conscientiousness and agree
ableness. For these two traits, the estimated average 
lnVR was somewhat (although not much) smaller 
when accounting for unreliability. For all further 
traits, results were similar regardless of whether or 

Figure 7. Power of the test of the hypothesis lðlnVRTÞ 6¼ 0 in conditions with lðlnVRTÞ ¼ −0:25 for different numbers of studies 
and sample sizes (nested horizontal panels) and different levels of between-study heterogeneity (vertical panels).
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not unreliability was accounted for. Notably, results 
for the two imputation approaches (imputation per 
trait vs. imputation per trait and scale) were similar 
for all traits. This implies that it might not be neces
sary to impute scale-specific reliabilities in this 
example. We return to the issue of heterogeneous 
reliabilities in the discussion.

Discussion

Meta-analysis of variances is becoming increasingly 
popular, hence discussing the impact of measurement 
error on its results and conclusions is highly relevant. 
In this article, we demonstrated how between-group 
differences in reliability affect the estimation of the 
lnVR and the lnCVR, the two main effect sizes used 
in meta-analysis of variances. Specifically, we showed 
that the magnitude of bias of the estimators of lnVR 
and lnCVR depends on the ratio of the group-specific 
reliabilities. Based on this result, we proposed a simple 
correction for the estimators of lnVR and lnCVR that 
only requires that adequate estimates of the group- 
specific reliabilities are available.

Two simulations were done to examine the 
adequacy of the proposed corrections. As expected, we 
found that each correction removed bias caused by 
between-group differences in reliability in the study- 
specific effect size, enabled (almost) unbiased estima
tion of the average effect in meta-analysis of variances, 
and also led to more reliable statistical inferences. As 
each correction introduces additional uncertainty in 
the estimation of lnVR and lnCVR by relying on 
estimates of the group-specific reliabilities, we also 

Figure 8. Bias in the estimation of s2ðlnVRTÞ in conditions with lðlnVRTÞ ¼ 0 for different numbers of studies and sample sizes 
(nested horizontal panels) and different levels of between-study heterogeneity (vertical panels).

Table 3. Results of the meta-analyses for the illustrative 
example.
Trait c (k) Method crel l̂ 95% CI s

Openness 28 (20) No correction 0.00 [−0.04, 0.05] 0.07
Approach 1 13 0.01 [−0.04, 0.05] 0.08
Approach 2 1–5 0.01 [−0.03, 0.06] 0.08

Conscientiousness 20 (32) No correction −0.12 [−0.16, −0.09] 0.06
Approach 1 8 −0.15 [−0.18, −0.11] 0.06
Approach 2 1–2 −0.15 [−0.18, −0.11] 0.06

Extraversion 27 (19) No correction −0.02 [−0.05, 0.01] 0.04
Approach 1 8 −0.03 [−0.06, 0.00] 0.04
Approach 2 1–2 −0.03 [−0.07, 0.00] 0.05

Agreeableness 28 (20) No correction −0.17 [−0.22, −0.12] 0.09
Approach 1 8 −0.20 [−0.25, −0.15] 0.10
Approach 2 1–2 −0.21 [−0.26, −0.15] 0.10

Neuroticism 30 (21) No correction 0.03 [−0.02, 0.07] 0.09
Approach 1 10 0.02 [−0.02, 0.07] 0.09
Approach 2 1–2 0.03 [−0.02, 0.07] 0.08

c: number of comparisons/samples; k: number of studies; crel: number of 
samples on which the correction was based (Approach 1) or range of 
the number of samples on which the correction was based (Approach 
2, range across scales).
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examined whether it is necessary to account for this 
uncertainty in the estimation of the sampling varian
ces of lnVR and lnCVR. We found that accounting 
for the additional uncertainty indeed usually leads to 
more accurate sampling variance estimates in individ
ual studies. However, in meta-analysis, the estimation 
of the average effect, the type I error rate, and the 
power appeared to be almost unaffected by the add
itional consideration of the uncertainty. Hence, when 
reliability estimates from sufficiently large studies are 
available (as was the case in our simulation study), it 
seems to be sufficient to correct the effect size esti
mates for between-group differences in reliability and 
to use the (standard, uncorrected) formulas proposed 
by Senior et al. (2020) to estimate their sampling 
variances.

Simulation results regarding type I error rates 
revealed that failing to account for unreliability is 
more detrimental in situations without heterogeneity. 
A further exploration of our simulation results 
showed that the standard errors of the average effect 
were more biased in these conditions than in condi
tions with heterogeneity, probably because sampling 
variances of the individual studies were underesti
mated and the between-study variance was usually 
accurately estimated to be zero. Of note, when 
accounting for unreliability, type I errors were still 
notably inflated in conditions without heterogeneity 
when the between-group difference in reliabilities was 
large. The results from our pre-study indicate that this 
could be countered by imputing reliability estimates 
from a larger CFA study, because then, sampling var
iances will be less biased.

Recommendations

In our simulation studies, we presupposed that group- 
specific reliability estimates from an (external) CFA 
study with at least 100 subjects per group are avail
able. Our illustrative example shows how to apply the 
correction when some (sufficiently large) studies 
report reliabilities while some do not. If information 
on reliabilities is completely unavailable, researchers 
may consider making an informed guess on the reli
ability ratio, for instance, based on studies that exam
ine the reliabilities of similar outcome measures for 
the groups of interest, or from studies that examine 
the reliabilities of the outcome measure of interest in 
groups that are similar to those that shall be exam
ined. It may be advisable to carry out a sensitivity 
analysis using different reliability ratios in this situ
ation. If making an informed guess is not possible, a 

potential solution is to conduct an additional CFA 
study before the meta-analysis to obtain a reliable esti
mate of the reliability ratio (see Ke & Tong, 2023).

We also presupposed that the true reliabilities 
underlying the CFA data coincide with the true reli
abilities underlying the individual study data pooled 
in the meta-analysis. We underscore that imputing 
reliability estimates obtained from samples that are 
not truly representative of those included in the meta- 
analysis can induce bias. In practice, it is possible that 
the true reliabilities not only vary between groups, but 
also across studies, for example, because they used dif
ferent scales, assessed different populations, or applied 
different types of interventions. It is therefore impor
tant to consider whether different reliability estimates 
need to be imputed for different types of studies. In 
our illustrative example, we showcase how to assess 
whether accounting for the use of different scales has 
an impact on the correction. We found that imputing 
different reliabilities for different scales did not alter 
the results much, although we cannot rule out that 
other factors not considered by us would have had an 
impact. While not accounting for heterogeneous reli
abilities does not necessarily induce bias in the aver
age effect (given the imputed reliabilities are similar 
to the average reliabilities), it can lead to an overesti
mation of the between-study variance to the extent to 
which the (true) log-square root reliability ratio varies 
between studies. To this end, artifact distribution 
approaches (Hunter & Schmidt, 2004) might provide 
a further option to correct the average effect for unre
liability and simultaneously account for heterogeneous 
reliabilities. However, they require that a sufficiently 
large number of (large) studies report group-specific 
reliability estimates. In summary, these considerations 
underline the importance of research on between- 
group differences in reliability, as knowing the 
conditions under which they occur and being able to 
estimate their magnitude is a prerequisite for the suc
cessful application of reliability corrections, such as 
those we propose. Furthermore, they emphasize the 
importance of reporting group-specific reliability esti
mates in primary studies that are sufficiently large, as 
these can then be used in meta-analyses of variances.

The formulas that we proposed for correcting the 
estimators of lnVR and lnCVR for differences in reli
ability can also be applied when the groups are not 
independent, as shown in our illustrative example. 
However, accounting for the additional uncertainty 
arising from the estimation of the reliability ratio 
when estimating the sampling variances of lnVR and 
lnCVR would require that an estimate of the sampling 
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covariance of the group-specific reliabilities is avail
able. This will usually not be the case. In this respect, 
the finding from our simulation that correcting the 
sampling variance might not be necessary as long as 
the reliability estimates are based on sufficiently large 
sample sizes is reassuring.

Practical implications and future directions

In our simulation, we made the assumption that the 
outcomes are normally distributed. An interesting 
avenue for future research could be to examine the 
performance of the proposed correction formulas in 
non-normal data. In this case, the correlation between 
the logarithmized mean and logarithmized standard 
deviation has to be accounted for when estimating the 
sampling variance of the lnCVR (Nakagawa et al., 
2015). Further research is needed to evaluate whether 
it is required to correct this correlation for unreliabil
ity to accurately estimate the sampling variance of the 
lnCVR in non-normally distributed data.

Beyond that, we relied on meta-analytic methods 
which assume that effects are normally distributed 
between studies. We would like to emphasize that the 
proposed correction methods can be used in combin
ation with any estimator for the between-study vari
ance s2 (in particular, also with those that do not 
require the assumption of a normal distribution 
between studies), as well as together with meta-ana
lytic models that assume non-normal random-effects 
distributions (for an overview, see Panagiotopoulou 
et al., 2024). Because our proposed corrections yielded 
almost unbiased study-specific effect size estimates 
and sampling variances (as the results of the first 
simulation study showed), we would expect them to 
perform well in combination with these methods, too, 
given their assumptions hold.

Furthermore, we only evaluated our proposed for
mulas with regard to the estimation of the average 
effect and the between-study variance in a setting 
without moderators. As meta-analyses often include 
moderator analyses (Tipton et al., 2019), it would be 
interesting to consider in future studies how correct
ing for differences in unreliability affects the estima
tion of the coefficients in meta-regression.

Although several reliability generalization studies 
have revealed heterogeneity in reliability estimates 
(Aslan et al., 2022; Badenes-Ribera et al., 2023; 
Cabedo-Peris et al., 2021; Cerri et al., 2023; Demir 
et al., 2024; Esparza-Reig et al., 2021; Gisbert-P�erez 
et al., 2022; Yin & Fan, 2000), it remains largely 
unclear which factors affect the reliability of outcome 

measures. Therefore, it is impossible to state to what 
extent not accounting for differences in reliability may 
have affected the conclusions obtained in existing 
meta-analyses of variances. Future reliability general
ization studies should thus focus on moderator analy
ses to shed light on the magnitude of between-group 
differences in reliability. In addition, we recommend 
that primary studies that examine two or more groups 
report group-specific reliability estimates for their out
comes. This would enable the use of the formulas pro
posed here in future meta-analyses of variances.

In the present study, we focused on corrections for 
unreliability in meta-analysis. It should be noted that 
the corrected estimators that we proposed for the 
lnVR and lnCVR along with their sampling variances 
can also be used to construct tests for variability dif
ferences in a single study. We think that examining 
these but also alternative ways to account for unreli
ability in tests for variability differences (e.g., using 
multiple group structural equation modeling, cf. 
Tucker-Drob, 2011) is an interesting avenue for future 
research.

Conclusion

There is a growing interest in meta-analysis of varian
ces, also because they can be easily conducted by re- 
using existing data from meta-analyses of means. In 
this article, we have shown that the results obtained 
in meta-analysis of variances are sensitive to between- 
group differences in reliability. The results of our 
simulation studies underline the importance of gather
ing information on between-group differences in reli
ability before conducting a meta-analysis that uses the 
lnVR or lnCVR as an effect size. When such informa
tion is available, corrections for between-group differ
ences in reliability are easy to apply and lead to 
reliable meta-analytic results.
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