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ABSTRACT

There is a growing interest of researchers in meta-analytic methods for comparing variances
as a means to answer questions on between-group differences in variability. When measure-
ments are fallible, however, the variance of an outcome reflects both the variance of the true
scores and the error variance. Consequently, effect sizes based on variances, such as the log
variability ratio (InVR) or the log coefficient of variation ratio (InCVR), may thus not only reflect
between-group differences in the true-score variances but also differences in measurement
reliability. In this article, we derive formulas to correct the InVR and InCVR and their sampling
variances for between-group differences in reliability and evaluate their performance in simu-
lation studies. We find that when the goal is to meta-analyze differences between the true-
score variances and reliability differs between groups, our proposed corrections lead to accur-
ate estimates of effect sizes and sampling variances in single studies, accurate estimates of
the average effect and the between-study variance in random-effects meta-analysis, and
adequate type | error rates for the significance test of the average effect. We discuss how to
deal with problems arising from missing or imprecise group-specific reliability estimates in
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meta-analytic data sets and identify questions for further methodological research.

Introduction

Meta-analysis is typically used to summarize the avail-
able evidence on the difference between the average
outcomes of two (or more) groups. Conducting such
a meta-analysis usually entails calculating effect sizes,
such as mean differences, standardized mean differen-
ces, or ratios of means (Borenstein et al, 2021,
Chapter 4) for each study. These effect sizes are then
summarized across all available studies to evaluate (1)
whether the average outcome of the two groups differs
in an average study, and if so, to what extent, and (2)
whether there is between-study variability in the dif-
ferences between the groups’ average outcomes, and if
so, whether this variability can be explained by certain
moderators. Such a meta-analysis of means is often
used to evaluate the efficacy of a treatment (e.g., of
psychotherapy, e.g., see Althobaiti et al., 2020; Cristea
et al., 2017; Cuijpers et al,, 2011), or to investigate
mean differences between naturally occurring groups
(e.g., differences in executive functioning in bilingual
vs. non-bilingual children, Gunnerud et al., 2020, or

gender differences in scholastic achievement, Voyer &
Voyer, 2014).

In recent years, the focus in the behavioral sciences
and other disciplines has shifted from examining average
outcomes to also examining the variability of outcomes.
In clinical psychology and medicine, for example, inter-
individual differences in treatment effects are investi-
gated by comparing the variances of the treatment and
control group outcomes at post-treatment (Imbens &
Rubin, 2015 Mills et al, 2021; Salditt et al, 2024).
Similarly, a higher variability of a certain characteristic
in patients compared to healthy controls may indicate
the existence of different patient subtypes that may
respond differently to treatment (e.g., Brugger et al,
2020; Osimo et al., 2020). Questions related to between-
group differences in variability also arise in research on
personality and individual differences, and concern, for
example, age or gender differences in the inter-individ-
ual variability of personality traits (e.g., Mottus et al.,
2016) or cognitive ability (e.g., Taylor & Barbot, 2021).
There are various different approaches to test for
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variability differences in a single study. Comprehensive
reviews of these approaches, their data requirements,
and assumptions were provided by Mills et al. (2021)
and Nestler and Salditt (2024). Because the power of
these tests is low unless sample sizes are large (i.e., 250
subjects per group; Nestler & Salditt, 2024), it is of inter-
est to examine variability differences meta-analytically to
enhance power. This can be achieved by using effect
sizes that are based on variances instead of on means,
such as the InVR and the InCVR (Nakagawa et al,
2015; Senior et al, 2020). As in a meta-analysis of
means, these effect sizes can be employed to test (1)
whether groups differ in terms of their variability in an
average study and if so, to what extent, and (2), whether
group differences in variability vary between studies and
if so, whether this between-study variability can be
explained by certain moderators. Such a meta-analysis of
variances was, for example, used to summarize gender
differences in the variability of academic grades (O’Dea
et al, 2018) or divergent thinking (Abdulla Alabbasi
et al, 2025; Taylor et al, 2024), variability differences
between patients with schizophrenia and healthy con-
trols in terms of their striatal dopaminergic function
(Brugger et al, 2020), and heterogeneity of treatment
effects in pharmacological and psychological treatments
of depression (Kaiser et al., 2022; Ploder] & Hengartner,
2019), post-traumatic stress disorder (Herzog & Kaiser,
2022), and borderline personality disorder (Kaiser &
Herzog, 2023).

In meta-analyses, the effect sizes that are summar-
ized are calculated based on the observed values of the
outcomes. These values are affected by measurement
error and this unreliability can distort meta-analytic
results. This was shown in particular for meta-analysis
of correlation coefficients, leading to the development
of several methods to correct correlation coefficients
for unreliability (see, e.g. Ke & Tong, 2023; Raju
et al,, 1991; Schmidt & Hunter, 2015). Extending this
research, we demonstrate here that if the outcome
measure on which variability is compared between
groups is less reliable in one group than in the other,
the estimates of the InVR and the InCVR may also be
contaminated by differences in measurement error
variability. Thus, when researchers are interested in
variability differences of the true scores, between-
group differences in reliability may lead to erroneous
conclusions in a meta-analysis of variances if these
reliability differences are not accounted for. We there-
fore propose corrections for the estimators of the
InVR and the InCVR and their sampling variances
which address this issue, and we evaluate the pro-
posed formulas in two simulation studies.

Our proposed corrections require that group-spe-
cific reliability estimates are available for each individ-
ual study. This is often not the case in meta-analytic
data sets since primary studies fail to report group-
specific reliabilities. Even if they do, reliability esti-
mates may be based on sample sizes that are too small
to achieve an acceptable precision. We therefore sug-
gest to use representative reliability estimates from
external sources, such as large confirmatory factor
analysis (CFA) studies when correcting the InVR or
the InCVR for unreliability. A similar approach was
used previously by Ke and Tong (2023) who examined
unreliability corrections for correlation coefficients.
We elaborate on alternative approaches in the
discussion.

The remainder of this article is structured as fol-
lows: In the following section, we first describe how
the InVR and the InCVR and their sampling variances
are estimated, second, how estimation may be affected
by between-group differences in reliability, and finally,
how to correct for these reliability differences. In the
subsequent section, we describe two Monte Carlo
simulation studies that we conducted to evaluate the
proposed corrections. Then, we show an application
of our method to an illustrative example. In the final
section, we discuss the theoretical and practical impli-
cations of our results, and elaborate on avenues for
future research.

Meta-analysis of variances: effect sizes and
reliability

In the following, we assume that we have observed an
outcome in two independent groups, where X; is the
observed outcome in group 1 and X, is the observed
outcome in group 2. We further assume that both
outcomes are normally distributed with means p; and
U, and standard deviations ¢; and o,, respectively.
On a population level, we define the InVR as

InVR = In (ﬁ> 1)
02
and the InCVR as
InCVR = In (ﬁ) @)
o2/ 1y

Note that InCVR can be written as InCVR =
InVR — InRR, where InRR is the log response ratio
(i.e., InRR = In (u,/1,)). Nakagawa et al. (2015) pro-
posed to estimate the InVR by
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where s; (sp) is the observed standard deviation in
group 1 (group 2), and n; (n,) are the respective sam-
ple sizes. The second term in Equation (3) is a bias
correction, whose influence is strongest when the
sample sizes in the two groups are small and dissimi-
lar. To estimate InCVR, Senior et al. (2020) proposed
to use
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where x; and X, denote the sample means. The
second term of Equation (4) is the bias correction for
the InVR and the third term is a bias correction for
the InRR. The estimators of InVR and InRR are
asymptotically normally distributed (cf. Hedges et al.,
1999; Raudenbush & Bryk, 1987), which follows from
applying the Delta method. Since the difference of
two normally distributed variables also follows a nor-
mal distribution, InCVR 1is asymptotically normally
distributed, too.

By dividing each group’s standard deviation by its
mean, the InCVR allows to control for a mean-vari-
ance relationship. In particular, it is suited for situa-
tions in which variability is expected to increase as
the mean increases because it allows to examine
whether there are between-group differences in vari-
ability beyond those that arise from a between-group
difference in means. Such a mean-variance relation-
ship can arise, for example, in variables that are
bounded from below. If the variance is unrelated to
the mean, the InVR should be preferred over the
InCVR because the latter would spuriously correct for
differences in means. Finally, using the InCVR
requires that the outcome being examined can take
only positive values, whereas using the InVR does not.

For the sampling variances of InVR and InCVR,
Senior et al. (2020) proposed the estimators
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both of which are based on a second-order Taylor
expansion and were found to be more accurate than
estimators based on the first-order Taylor expansion
(Senior et al., 2020).

Consequences of ignoring unreliability

When defining the estimators for the InVR and the
InCVR in Equations (3) and (4), it is implicitly
assumed that X; and X, are not affected by measure-
ment error. However, this assumption is unlikely to
hold in practice (Carroll et al., 2006; Hernan &
Robins, 2024; McDonald, 1999). To examine how
measurement error affects InVR and InCVR, we pre-
sume an additive measurement error model (Carroll
et al., 2006; Lord & Novick, 1968) for the values in
group 1,

Xy =T + e, (7)
where T) are the true scores and &; the error terms.
In group 2, the values are given by

Xo =T, + &, (8)

where T, and ¢, are the true scores and the error
terms, respectively. From these definitions, it follows
that

V (X) 2_|_ 2 6% 0% (9)
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Here, 2 (03) is the variance of the true scores in
group 1 (group 2), o; (o;) denotes the variance of
the error terms, and Rel(X;) (Rel(X;)) is the reliability
of the observed variable in group 1 (group 2).

Equations (9) and (10) imply that when researchers
are interested in InVR and InCVR of the true-score var-
iables, as they typically are when they conduct a meta-
analysis of variances, the effect size should be based on
the standard deviations of the true-score variables ; =
SD(X;)y/Rel(X;) and ¢, = SD(X;)+/Rel(X;). Thus,

the InVR of the true-score variables is

InVRy = In SD(Xy) - /Rel(X1)
T SD(X,) - \/Rel(X;)

(200, "

Rel(X;)
Rel(Xz)
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where for the sake of uniqueness, we define the solu-
tion of the square root to be positive. Similarly, since
InCVR = InVR — InRR, the InCVR for the true-score
variables is

Rel (X1 )
Rel (Xz)

D(X
InCVRr = In (S ( 1)) + In

SD(X;)

—In (ﬂ) (12)
M

where we used that the InRR is unaffected by unreli-
ability because the expected value of the observed
variable equals that of the true-score variable.

Between-group differences in reliability

Equations (11) and (12) show that when Rel(X;) =
Rel(X;), InVR and InCVR of the true-score variables
equal InVR and InCVR, respectively, of the observed
variables (cf. Equations (1) and (2)). However, when
Rel(X;) > Rel(X3), the effect sizes based on the true-
score variables are larger than those based on the
observed variables, and when Rel(X;) < Rel(X3), the
effect sizes based on the true-score variables are smaller
than those based on the observed variables. Thus, con-
clusions on between-group differences in variability
may be erroneous when the InVR or the InCVR are
calculated based on the observed outcomes, at least
when the two groups differ in their reliability.

How likely is it that there are between-group differ-
ences in reliability? Research on the psychometric
properties of several psychological scales revealed that
the internal consistency of the scales varies consider-
ably (Aslan et al., 2022; Badenes-Ribera et al.,, 2023;
Cabedo-Peris et al., 2021; Cerri et al.,, 2023; Demir
et al, 2024; Esparza-Reig et al., 2021; Gisbert-Pérez
et al,, 2022; Yin & Fan, 2000) and that part of this
heterogeneity can be attributed to differences in sam-
ple characteristics, such as age (Aslan et al., 2022;
Bru-Luna et al., 2021). Furthermore, in the clinical
setting, research on the Beck Depression Inventory-II
(BDI-II) showed that internal consistency is larger for
patients under remission as compared to acutely
depressive patients (Kithner et al., 2007) and that the
internal consistency of the BDI-II at admission to a
psychiatric hospital and at discharge is also different
(Keller et al, 2022)." In summary, then, between-

"Here, we use internal consistency as a term for reliability, which is
consistent with the use of this term in the cited papers. However, strictly
speaking, internal consistency (e.g., Cronbach’s alpha) is only a valid
measure of reliability when the assumptions of an essentially tau-
equivalent measurement model hold in the sample.

group differences in reliability may exist in some con-
texts in which meta-analyses of variances are carried
out, and these differences should be taken into
account to reach valid conclusions.

Correcting for between-group differences in
reliability

Equations (11) and (12) imply that a simple way to
correct the effect sizes for between-group differences
in reliability is to add ln( Rel(X;)/ Rel(Xz)) to the

formulas to compute InVR and InCVR, respectively,
and replace the population reliabilities by their esti-
mated counterparts. Specifically, the corrected estimat-
ing equations are

$2

—I—l ! ! (13)
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where ﬁgl(Xl) and }igl(Xz) denote estimators of the
reliabilities of X; and X, respectively. In addition, the
estimators of the sampling variances have to be
adapted by accounting for the additional
uncertainty that arises from the estimation of

In < ﬁgl(Xl) / IEEI(XZ)) Using the Delta method, we

obtain

Rel(X)) | _ Var(Rel(X;))
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where 7y, g and n, g are the sample sizes that the reli-
ability estimates in group 1 and group 2 are based on,
respectively. In applications, the samples that are used
to calculate the group-specific reliability coefficients
and their standard errors may differ from those which
are used to obtain the effect size estimates that will be
summarized in the meta-analysis because if a study



fails to report reliability estimates, it can be necessary
to impute them from external sources (see below).
Therefore, the sample sizes in Equation (15) may dif-
fer from those in the preceding equations. The sam-
pling variances of the two groups’ reliabilities in
Equation (15) can be estimated based on the Delta
method (for a derivation of a sampling variance esti-
mator for Cronbach’s alpha, see van Zyl et al., 2000).
Taking into  account the  variance of

ln< ﬁgl(Xl)/ﬁgl(X2)>, the sampling variances of

the corrected ln/V\RT and lnEvRT can be estimated
with

S(InVRy) = % <<n1"_1 T (mn_z 1)2)

Var(Rel (X Var(Rel (X
4}’11,RR61 (Xl) 47’12,RR€1 (Xz)
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Obtaining estimates of the group-specific
reliability coefficients and dealing with missing or
imprecise values

The application of Equations (13) and (14) requires
that estimates of the reliability and their standard
errors are available for both groups. All possible reli-
ability coefficients can be included in the formulas,
such as internal consistency coefficients (e.g.,
Cronbach’s alpha or w; see McDonald, 1999), test-
retest reliability coefficients, or parallel test reliability
coefficients (Lord & Novick, 1968). The choice of the
type of reliability coefficient should depend on the
psychometric properties of the scale. This is particu-
larly relevant because different reliability coefficients
make different assumptions regarding the measure-
ment model, and if these assumptions do not hold,
reliability estimates can be biased (Graham, 2006;
Green & Yang, 2009). We are not aware of any meta-
analyses of variances that have gathered information
on reliability from primary studies. However, research
on corrections for unreliability in meta-analysis of
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correlations and standardized mean differences
showed that studies most often report Cronbach’s
alpha (Wiernik & Dahlke, 2020; Zhang, 2024), which
requires that an essentially tau-equivalent measure-
ment model holds. If primary studies report group-
specific correlation (or covariance) matrices at the
item level, these can be used to compute reliability
estimates using a CFA approach.

In a meta-analytic context, estimates of the group-
specific reliability coefficients and their standard
errors would have to be obtained for each individual
study. This will often not be possible, as group-spe-
cific reliability coefficients or correlation matrices are
seldom reported in primary studies. The meta-analytic
estimate of the pooled InVR corrected for between-
group differences in reliability is

it(InVR) Z w'InVR g3, (18)

where k is the number of studles, wi = wi/ (35 wy)
with w; = 1/(s (anRT,) + %) (assumlng we conduct
a random-effects meta-analysis where /%i is an estimate
of the between-study variance) and InVRy; is the esti-
mated (and corrected) InVR obtained from the ith
study. Based on Equation (13), we can rewrite formula
(18) as

A(InVR) =

Zw InVR;
4 ; W In (\/ Rel;(X,) /1@(}@)),

(19)

where InVE R; is the uncorrected estimate of the InVR
obtained from the ith study. The second part of
Equation (19) is a weighted average of the study-spe-
cific estimates of the log-square root reliability ratio.
If reliability estimates from a considerable number of
studies are missing, one option is to replace the
study-specific reliability estimates by representative
estimates obtained from external sources. If it is not
possible to obtain reliability estimates either from the
primary studies included in the meta-analysis or from
external sources, we suggest to conduct an additional
CFA study before conducting the meta-analysis, as
was suggested in the context of correcting
correlation coefficients for unreliability (see Ke &
Tong, 2023).

Even if group-specific reliability estimates are avail-
able from all studies, such estimates, and in particular
their standard errors, may be imprecise when sample
sizes are small (Kline, 2016; Wolf et al., 2013). This
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applies irrespective of whether reliability estimates
were directly reported or obtained from group-specific
correlation matrices, and can distort the estimation of
the average effect. Furthermore, the standard error of

the average effect, which is estimated by 1/ Zf;l Wi,

depends not only on the precision of the study-spe-
cific estimates of InVR but also on the precision of
the log-square root reliability ratios (cf. Equation
(16)). Therefore, relying on imprecise reliability esti-
mates will reduce the precision of the average effect
and result in a low power. We therefore suggest to
give preference to reliability estimates from external
sources (that were obtained in larger samples) in this
situation, too. These considerations apply analogously
to meta-analysis of the InCVR.

Monte Carlo simulations

We conducted two simulation studies to investigate
the performance of the suggested corrections, because,
to the best of our knowledge, their performance has
not yet been examined. In the first simulation, we
evaluated the performance of our formulas with
respect to the estimation of the study-specific effect
size and sampling variance in a single study. This pre-
study was conducted to complement the findings by
Senior et al. (2020) on the performance of different
estimators for the uncorrected InCVR and its sam-
pling variance in a setting with perfect reliability. In
the second, main simulation, we examined the per-
formance of the estimators for the corrected InVR
and InCVR in a meta-analytic setting.

Both simulation studies were conducted in R (R
Core Team, 2022) using the metafor package
(Viechtbauer, 2010) for effect size calculation and for
conducting the meta-analyses. Note that the effect size
and sampling variance estimators that are imple-
mented in metafor are based on a first-order Taylor
expansion as suggested by Nakagawa et al. (2015).
Since Senior et al. (2020) recommended to use the
estimators based on the second-order Taylor expan-
sion, we added the respective terms to the estimates
obtained from metafor where necessary. In both
simulation studies, group-specific reliability estimates
along with their standard errors were obtained from
an external CFA rather than from the individual pri-
mary studies. The CFA was conducted using the
lavaan package (Rosseel, 2012). The first simulation
was run on the high-performance computing cluster
PALMA I (https://www.uni-muenster.de/ZIV/
Technik/Server/HPC.html) at the University of
Miunster.

Pre-study: single-study setting

In our pre-study, we compared the performance of
the corrected estimators for InVRr and InCVRr to
that of the uncorrected estimators. In our simulation,
reliability estimates were not obtained from the simu-
lated primary studies themselves, but from an external
CFA study that was simulated in addition to the pri-
mary study data. This procedure was chosen to mirror
the realistic scenario that group-specific reliability esti-
mates will often be unavailable in primary studies or
that primary studies are often too small to estimate
group-specific reliabilities with sufficient precision.
Across simulation conditions, we varied the sample
size of the CFA study and evaluated whether larger
sample sizes were associated with a better
performance.

In addition to the performance of the effect size
estimators, we evaluated the performance of the
corrected sampling variance estimators. Using
Equations (16) and (17) requires that standard
errors of the reliability coefficients have been
obtained for both groups. However, since these esti-
mates may not always be available, e.g., when using
reliability estimates from preexisting CFA studies,
we also examined under which conditions it is safe
to use the uncorrected sampling variances (see
Equations (5) and (6)) together with the corrected
effect size estimators.

Figure 1. CFA model from which the group-specific data were
generated in the simulation study with equal factor loadings
of 1 for all three variables V;-V3, equal error variances ag, and
factor variance ¢”.



Table 1. Values of the simulation parameters in the pre-

study.

Parameter Values

InVRr -0.5, —=0.25, 0, 0.25, 0.5
InRR —0.5, —0.25, 0, 0.25, 0.5
n 8, 16, 42

Rel; 0.7, 0.75, 0.8, 0.85, 0.9

Data generation

In each replication of a simulation condition, the data
for the two groups were each simulated from a one-
factor model with three items (see Figure 1). Each
item had a factor loading of 1 and the error variance
o2 of each item was set in such a way that the sum
score of the three items reached a pre-specified reli-
ability. Specifically, the error variance of a single item
can be computed with 62 = ¢* - (1 — Rel(V))/Rel(V),
where Rel(V) is the reliability of a single item which
can be obtained using the Spearman-Brown formula
(see Lord & Novick, 1968). For group 2, the reliability
of the sum score composed of the three items was set
to Rel, = 0.9 in all simulation conditions. Also, the
mean of the latent variable was set to u, = 50 and the
standard deviation to g, = 10. The values for u; and
o1 were obtained from u; = w, - exp (InRR) and o, =
o, - exp (InVRy). The values of InRR and InVR, as
well as the sample sizes, depended on the simulation
condition (see Table 1). The values of these parame-
ters were chosen to be similar to those used in the
simulation study by Senior et al. (2020) to facilitate
comparison with their results. Specifically, we consid-
ered the same values for the sample sizes (8, 16, 42)
and similar ranges for the InVR and the InRR (-0.5
to 0.5, respectively). In addition, we varied the reli-
ability of the outcome in group 1 (see Table 1 again)
with values ranging from 0.70 to 0.90. These values
were chosen because a reliability below 0.7 is usually
deemed unacceptable in applied research; hence, reli-
abilities of scales used in primary studies will typically
exceed this value. As Equations (11) and (12) indicate,
InVR and InCVR are distorted by the ratio of reliabil-
ities. By setting reliability to a high value in group 2
(i.e., 0.9) and considering only lower or comparable
values for group 1, our simulation conditions there-
fore cover a large range of reliability ratios (0.78 to 1).
Because the (square root of the) reliability ratio enters
Equations (11) and (12) on the log scale, swapping
the reliabilities of the two groups only affects the sign.
Hence, it is not necessary to also consider conditions
with a lower reliability in group 2. Data were gener-
ated by sampling observations from a multivariate
normal distribution with expectations and variance-
covariance matrix as implied by the model shown in
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Figure 1. In all conditions, we generated balanced
sample sizes, that is, we set n; = .2 Finally, means
and standard deviations that were needed for calculat-
ing effect sizes and sampling variances in a replication
were obtained by calculating the mean and standard
deviation of the sum scores for each group.

We used a CFA approach to obtain group-specific
reliability estimates and their standard errors. To this
end, we used the same approach as for the individual
studies to generate CFA data in each simulation repli-
cation, but with a larger sample size. Specifically, we
drew a sample of 100, 250, or 500 persons per group,
fitted the respective CFA model to the data (see
Figure 1), and used the CFA results to compute
group-specific reliability estimates and their standard
errors. A sample size of 100 persons is minimal to
obtain reliable estimates (see Kline, 2016; Wolf et al.,
2013), while 500 is almost optimal in this respect.

In sum, simulation conditions were determined by
fully crossing all parameter values, resulting in a total
number of 5x5x3x5x3=1,125
conditions in the pre-study. In each condition, we
generated 100,000 simulation replications.

simulation

Performance measures

We used the bias of the estimates to evaluate the per-
formance of the effect size estimators. Bias was calcu-
lated as 0, — 0, where (A)r is the estimate obtained for
the r-th simulation replication (r = 1,...,100,000) and
0 is the true value of the respective effect size (i.e.,
InVR; or InCVRy). We used the relative bias to
evaluate the performance of the estimators for the
sampling variances:

$2(0) - Var(0)

bias(s2(0)) = V) (20)

where sf(@) is an estimate of the sampling variance
obtained for the estimator ) for the r-th simulation
replication and \//a\r(@) is the empirical variance of the
corrected effect size estimator (i.e., InVRr or InCVR7)
across simulation replications. Relative bias was com-
puted separately for uncorrected and corrected sam-
pling variance estimates. With respect to relative bias
of the sampling variances, we consider absolute biases
of <5% as negligible, absolute biases between 5 and
10% as moderate, and absolute biases of >10% as
substantial.

2We did not consider unbalanced sample sizes because we would not
expect that imbalance would affect the simulation results. This is because
the impact of the two groups’ sample sizes on the sampling variances is
independent of each other (see Equations (5), (6), (16), and (17)).
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Main simulation: meta-analytic setting

The main simulation was done to evaluate the per-
formance of the proposed corrections in a meta-ana-
lytic setting. We compared three procedures: (a)
Neither correcting effect size estimates nor sampling
variances for unreliability (i.e., using Equations (3)
and (4) for effect size estimation and (5) and (6) for
sampling variance estimation), (b) correcting only
effect size estimates (i.e., using Equations (13) and
(14) for effect size estimation and (5) and (6) for
sampling variance estimation), and (c) correcting
both effect size estimates and sampling variance esti-
mates (i.e., using Equations (13) and (14) for effect
size estimation and (16) and (17) for sampling vari-
ance estimation). Based on the findings from the
pre-study (see below), we would expect procedure (c)
to perform best. We included procedure (b) to evalu-
ate whether reasonably accurate results can be
obtained when no information on the uncertainty of
the reliability estimates used in the correction is
available. We expect that this will often be the case
because primary studies frequently fail to report this
information (Kelley & Pornprasertmanit, 2016). For
the estimation of the between-study variance 2, we
used the restricted maximum likelihood estimator
(Raudenbush, 2009; Viechtbauer, 2005). Standard
errors were calculated using the Hartung-Knapp-
Sidik-Jonkman method (Hartung & Knapp, 2001;
Sidik & Jonkman, 2002).

Data generation

In each simulation replication, data for k studies were
generated. The true InVR for each study i, InVRy;
(i=1,..,k) was drawn from a normal distribution
with mean u(InVRy) and variance 72(InVRr). In add-
ition, the true InRR for each study, InRR; was drawn
from a normal distribution with mean 0 and variance
72(InRR). Accordingly, the between-study variance of
the InCVR was t*(InCVRy) = ©?(InVRy) + 7?(InRR).
We generated both InVRy; and InRR; from normal
distributions because then, InCVRy; is also normally
distributed. Thus, all data were simulated in accord-
ance with the assumptions of the random-effects
meta-analysis model, avoiding model misspecification
as a potential additional source of bias in the
simulation.

For each individual study, we used the same data-
generating model as in the pre-study (cf. Figure 1).
That is, values for group 2 were u, = 50, 0, = 10 and
Rel, = 0.9 for all studies in all simulation conditions,
and the mean and the standard deviation of the true-
score variable in group 1 were obtained with p,; =

Table 2. Values of the simulation parameters in the main
simulation.

Parameter Values
Number of studies k 15, 25
Heterogeneity of the InVR 7(InVRr) 0, 0.05
Heterogeneity of the InRR 72(InRR) 0, 0.05
Average InVR u(InVRr) —-0.25, 0, 0.25
Sample size n; () 16, 42

Reliability in group 1 Rel 0.7, 0.75, 0.8, 0.85, 0.9

U, - exp (InRR;) and o6,; = g, - exp (InVR, ;), respect-
ively. For each study, the sample size of group 2 was
drawn from a discrete uniform distribution with lower
bound n, —5 and upper bound n, + 5. Again, the
same sample size was used for group 1 of the respect-
ive study.

Table 2 shows the levels of the factors that we
varied in this simulation. The values for reliability in
group 1, the sample size, and the average InVR were
selected based on the pre-study. We considered small
and large numbers of studies (15 and 25, respect-
ively). With regard to heterogeneity, we considered
conditions with a between-study variance of zero or
0.05 for both InVR and InRR. Using the same values
for InVR and InRR facilitates comparing the influ-
ence of heterogeneity in InVR vs. InRR on the esti-
mation of InCVR. We deem a between-study
variance of 0.05 to be relatively large because a pre-
diction interval for InVR with 7> = 0.05 spans a con-
siderable range.” Simulation conditions were obtained
by fully crossing these factors, resulting in a total
number of 2x2Xx2x3x2x5=240 simulation
conditions. We generated 1,000 replications per
condition.

Per simulation replication, one additional set of
CFA data was simulated in the same way as an indi-
vidual study, but with a sample size of 100 per group.
From these data, reliability estimates and their stand-
ard errors were obtained and then used to estimate
the corrected InVR, the corrected InCVR, and their
sampling variances in each of the k individual studies.

Performance measures

Performance was evaluated in terms of bias in the
estimation of the average effect. It was calculated
with fi(0), — u(0) for each effect size 0 (ie., InVRy
and InCVRy) and simulation replication r
(r=1,...,1,000). In addition, we evaluated the type I

3For a pooled InVR of zero, the prediction interval (u*1.967, i.e, not
taking into account the standard error) is approximately (—0.44,0.44).
Exponentiating the bounds yields a prediction interval of (0.65,1.55) on
the VR scale. In consequence, the prediction interval covers situations in
which the standard deviation in group 1 is between two thirds of and
one and a half times the standard deviation in group 2.



error rate and the power of the average effect size test.
The type I error rate was obtained as the percentage
of replications in a simulation condition with u(6) =
0 in which the t-test indicated that the average effect
was significantly different from zero. The power was
calculated by computing the percentage of simulation
replications in conditions with u(60) # 0 in which the
t-test indicated that the average effect was significantly
different from zero. Finally, we evaluated the perform-
ance of the different estimators in terms of bias in the
estimation of the between-study variance, calculated
as t2(0) — t>(0). We use boxplots to visualize biases
of () and %*. Each boxplot depicts a single
condition and therefore shows the distribution of
bias for this particular condition across simulation
replications.
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Results of the simulation studies
Results of the pre-study

Bias of the effect size estimators

Bias of the effect size estimators was very similar
across simulation conditions that differed in terms
of InRR, InVRy, or the sample size of the CFA
study. In Figure 2, we therefore present the results
for InRR =0, InVRy =0 and #n, g = 100 to exem-
plify these patterns. Figures for all remaining condi-
tions are available at https://osf.io/nkbdm. Figure 2a
shows boxplots of the bias of the corrected and
uncorrected estimators for InVRy, while Figure 2b
shows boxplots of the bias of the corrected and
uncorrected estimators for InCVRy. For both effect
size measures, median bias of the uncorrected
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(b) Bias of the Estimators for InCVRp

Figure 2. Bias of the effect size estimators in conditions with InVR; =0 and InRR =0 for a sample size in the CFA study

of Nyp = 100.



720 K. JANSEN AND S. NESTLER

correction only effect size E effect size and sampling variance
n, g = 100 Ny R = 250 Ny g = 500
20 +
04 4
"""""" Tl T T .
0 ;2 x T . = x = = = = = = = = =
_______________________________________________________________________________________________________ ©
.10-
;\2-20-
S 2049 .
=
o i i
S 10
= | (S 1) USSR 5| 'R FONSISIPN SIS PN |[F e SR TRS—, S F—— WS | WV T WENSTSO. S, N, DI -
5 5
a P = = _!_ — — 1 - — — — — — "
[ )R IS NN AN S NS S | S N S——— —— S— SN ! AU I [— —— —— I o
1)
S 10+
m
2
= -20
K
& 204
10 l:
________________________ - SR F——| SRV PRPEPSIE SRV SIS NS ——— SRS S, ERPE I SISt SRS S—— =
0 r‘-\ - _!. 1 [ i B 4 _e_ 4 -+ £ = 'T|
= &
....................................................................................................... ¥
-10 =
-20 =
T T T T T T T T T T T T T T T
0.7 0.75 0.8 0.85 0.9 0.7 0.75 0.8 0.85 0.9 0.7 0.75 0.8 0.85 0.9
Rel4

Figure 3. Relative bias of the sampling variance estimators for In/VET in conditions with InVR; =0 and InRR = 0 for different
study-specific sample sizes (vertical panels) and different sample sizes of the additional CFA study (horizontal panels).

estimators only depended on the magnitude of

In (\/ﬁgl(Xl)/ﬁ;l(Xz)>, and therefore, was largest

for the conditions in which Rel(X;) differed most
from Rel(X;). As expected, median bias of the
corrected estimators was virtually zero in all
conditions.

Relative bias of the sampling variance estimators
Relative bias of the sampling variance estimators
exhibited similar patterns across simulation conditions
that differed in terms of InRR and InVRry. Figures 3
and 4 show the results for conditions with InVRy = 0
and InRR = 0 to exemplify these patterns. Figures for
all further conditions are available at the OSF
repository.

For both effect size measures, the uncorrected esti-
mators of the sampling variances tended to underesti-
mate the sampling variance of InVRy and InCVRrp
more often as compared to the corrected estimators.
Nevertheless, both the uncorrected and the corrected
sampling variance estimator had a negligible bias for
both effect size measures in most simulation conditions.

Exceptions of this were conditions with a small sample
size of the CFA study, large sample sizes within the
studies, and large reliability differences between groups
(cf. the lower left panels in Figures 3 and 4): In these
conditions, bias of the uncorrected sampling variance
estimator tended to be moderate. For the corrected
sampling variance estimator of the InVR, bias was close
to zero in the vast majority of simulation replications
for all simulation conditions, but in conditions with a
smaller sample size for the CFA, there tended to be
more replications in which the sampling variance was
overestimated. Note that since the uncorrected sampling
variance estimator of the InVR is only based on the
sample sizes within the studies (cf. Equation (5)), and
as these were held constant across simulation replica-
tions, there was no variability of bias across simulation
replications. For the corrected sampling variance esti-
mator of the InCVR, bias was negligible in almost all
simulation conditions, with exceptions only in very few
extreme conditions (i.e., conditions with InVRy = 0.5,
InRR = —-0.5, n, =8, mypr¢c {100, 250}, Rel(Xl) =
0.7, and InVRy =0.5, InRR=-0.5, #n,=28,
ny,r = 500, Rel(X;) = 0.85).
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Figure 4. Relative bias of the sampling variance estimators for Inf\ﬂ%r in conditions with InVR; =0 and InRR = 0 for different
study-specific sample sizes (vertical panels) and different sample sizes of the additional CFA study (horizontal panels).

In summary, we have found that the correction for-
mulas reduce bias, both in the effect sizes and in the
sampling variances. These results indicate that the
corrections should also work in the meta-analytic set-
ting, and the main simulation was done to examine
this.

Results of the main simulation

The general patterns found in the results of the main
simulation study were similar for the two different
effect size measures. Therefore, we focus on the results
for InVR in this section. Figures showing the results
for InCVR are available at the OSF repository.

Bias in the estimation of the average effect

Figure 5 illustrates the results with respect to bias in
the estimation of p(InVRy) when (a) neither correct-
ing effect sizes estimates nor sampling variance esti-
mates for differences in reliability, (b) correcting only
effect size estimates, and (c) correcting both effect size
estimates and sampling variance estimates. As the
results were similar for different values of u(InVRr),

we only show the results for conditions
with u(InVRy) = 0.

As expected, when neither correcting effect
size estimates nor sampling variance estimates,

bias  depended on  the  magnitude  of

ln< }igl(Xl) /}igl(Xz)>, and hence, was larger the

more Rel(X;) differed from Rel(X;). When the effect
size estimates were corrected for reliability differences,
median bias was virtually zero in all simulation condi-
tions. It did not make a difference whether sampling
variances were also corrected or not, which is a result
of the unbiasedness of effect size estimation in the
individual studies (cf. Figure 2).

Type I error rates
Figure 6 shows the empirical type I error rates for the
test of the hypothesis u(InVRr) # 0.

When using uncorrected estimators for both effect
sizes and sampling variances, type I error rates were
mainly driven by bias, and therefore increased as the
between-group difference in reliabilities increased. In
addition, there was a pronounced increase in the type
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Figure 5. Bias in the estimation of the average effect u(InVRr) in conditions with p(InVR;) = 0 for different numbers of studies
and sample sizes (nested horizontal panels) and different levels of between-study heterogeneity (vertical panels).

I error rates for larger sample sizes and larger num-
bers of studies, as well as for smaller between-study
variances. Type I error rates were similar for the two
correction procedures. In general, they were consider-
ably smaller than the type I error rates when not
using a correction, but were slightly inflated for larger
sample sizes, larger numbers of studies, smaller
between-study variances, and larger reliability differ-
ences. The increase in type I error rates for larger reli-
ability differences and larger sample sizes can be
explained by a larger downward bias of the sampling
variances in this situation (cf. Figures 3 and 4 from
the pre-study). The effect of this downward bias is
greater for larger numbers of studies because the
biases of the sampling variances add up in the estima-
tion of the standard error of the average effect. We
return to the issue of inflated type I error rates in the
discussion.

Power

Figure 7 shows the empirical power for the test of the
hypothesis u(InVRy) # 0 for the three procedures.
Here, we only show the results for InVR = —0.25,
because similar to type I error rates, power was
mainly driven by bias when no correction was used.

In the conditions considered in our simulation, there
was an upward bias due to Rel(X;) being smaller than
Rel(X;), and hence it is trivial that power will be
larger for the uncorrected procedure than when using
corrections for InVRy > 0.

The results depicted in Figure 7 show that power
can be compromised to a considerable extent when
neither correcting effect size estimates nor sampling
variance estimates for differences in reliability. The
low power mainly resulted from bias and was thus
smaller for larger reliability differences. In addition,
smaller sample sizes, smaller numbers of studies, and
larger heterogeneity were associated with a lower
power. Power of the two correction procedures was
similar and was mainly driven by the sample size, the
number of studies, and the between-study variance.

Bias in the estimation of the between-study
variance

Figure 8 illustrates the results with respect to bias in
the estimation of t*(InVRy) for the three procedures.
As the results were similar for different values of
u(InVRr), we only show the results for conditions
with p(InVRy) = 0.
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Figure 6. Type | error rates for the test of the hypothesis p(InVRr) # 0 for different numbers of studies and sample sizes (nested
horizontal panels) and different levels of between-study heterogeneity (vertical panels).

For all three procedures, bias was small for the
majority of simulation replications for all simulation
conditions. In conditions with t*(InVRy) =0, bias
tended to be slightly smaller when both the effect size
estimates and the sampling variances were corrected
for differences in reliability, as compared to the two
other procedures. In conditions with t*(InVRy) =
0.05, correcting both effect size estimates and sam-
pling variances sometimes resulted in a small negative
median bias, in particular when sample sizes within
studies were small. For the two other procedures,
median bias was virtually zero for all simulation
conditions.

lllustrative example

We now show how to apply our method in practice
by using it to reanalyze data from a meta-analysis by
Kim et al. (2019). In their meta-analysis, they consid-
ered differences in variability in self- and other-
reports of personality. The full data from this meta-
analysis are available at https://osf.io/snfjx/. The data
and code used in our reanalysis are available in the
OSF repository of this paper. Here, we use a subset of

these data comprising studies which were published in
peer-reviewed journals and in which other-reports
were obtained from family members or friends. We
further restricted our reanalysis to personality assess-
ments of the Big Five (i.e., openness, conscientious-
ness, extraversion, agreeableness or neuroticism),
which were obtained with the Big Five Inventory
(BFI), the Five-Factor Personality Inventory (FFPI),
the International Personality Item Pool (IPIP), the
IPIP-NEO, the NEO Five-Factor Inventory (NEO-
FFI), the NEO Personality Inventory-Revised (NEO-
PI-R), or the Ten Item Personality Inventory (TIPI).
This selection was made with the intention of provid-
ing a succinct example that still allows us to illustrate
some considerations that are important when applying
the correction for unreliability (see below). For each
primary study, we tried to gather information on the
reliability of self- and other-reports from its published
manuscript. Those studies that reported reliabilities
used Cronbach’s alpha as their reliability measure.
Although this may be suboptimal for some personality
scales, we used these values when applying the correc-
tion because it was the only information on reliability
available from the studies, and conducting an
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Figure 7. Power of the test of the hypothesis p(InVRr) # 0 in conditions with u(InVRy) = —0.25 for different numbers of studies
and sample sizes (nested horizontal panels) and different levels of between-study heterogeneity (vertical panels).

additional CFA study to determine the best fitting
measurement model for each scale would not have
been feasible.

We conducted separate meta-analyses for each per-
sonality trait. As an effect size, we used the InVR
because we did not expect standard deviations to
increase with means. The proposed correction for
unreliability (cf. Equation (13)) was applied using
study-specific reliabilities if these were reported and
the sample size was 100 or larger. When this was not
the case, we imputed the log-square root reliability
ratio required for the correction. We compared two
approaches: In the first approach, we pooled the log-
square root reliability ratios from the studies that
reported reliabilities separately for each trait. The
second approach was similar, but log-square root reli-
ability ratios were pooled separately for each trait and
personality scale. Because no study using the NEO-
FFI reported reliabilities, the imputed log-square root
reliability ratio for this scale was based on the reliabil-
ities from studies using the NEO-PI-R. Before pooling,
we adjusted these reliabilities for scale length using
the inverse Spearman-Brown formula because the
NEO-FFI is a short version of the NEO-PI-R. Pooled
log-square root reliability ratios were obtained as a

sample size-weighted average because information on
sampling variability was unavailable. For the same rea-
son, we only corrected effect sizes for unreliability,
but not their sampling variances (i.e., we used proced-
ure (b) from the main simulation). Self- and other-
reports of personality are correlated, therefore we
computed the sampling variance for the InVR based
on the formula for dependent samples (see Senior
et al., 2020) using the correlations for self- and other-
reports obtained from a large meta-analysis (Connolly
et al, 2007, openness: 0.59, conscientiousness: 0.56,
extraversion: 0.62, agreeableness: 0.46, neuroticism:
0.51). Because some studies reported effect sizes for
multiple samples, we conducted three-level meta-anal-
yses. Table 3 contains the results of these meta-analy-
ses per trait, along with information of the numbers
of studies and samples that were included in the
analysis.

The results illustrate that the correction mainly had
an effect on the analyses comparing the variability of
self- and other-reports of conscientiousness and agree-
ableness. For these two traits, the estimated average
InVR was somewhat (although not much) smaller
when accounting for unreliability. For all further
traits, results were similar regardless of whether or
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Figure 8. Bias in the estimation of t2(InVR;) in conditions with p(InVR;) = 0 for different numbers of studies and sample sizes
(nested horizontal panels) and different levels of between-study heterogeneity (vertical panels).

Table 3. Results of the meta-analyses for the illustrative

example.
Trait c (k) Method el [t 95% Cl T
Openness 28 (20) No correction 0.00 [-0.04, 0.05] 0.07
Approach 1 13 0.01 [-0.04, 0.05] 0.08
Approach 2 1-5 0.01 [-0.03, 0.06] 0.08
Conscientiousness 20 (32) No correction —0.12 [-0.16, —0.09] 0.06
Approach 1 8 —0.15 [-0.18, —0.11] 0.06
Approach 2 1-2 —-0.15 [-0.18, —0.11] 0.06
Extraversion 27 (19) No correction —0.02 [-0.05, 0.01] 0.04
Approach 1 8 —0.03 [-0.06, 0.00] 0.04
Approach 2 1-2 —0.03 [-0.07, 0.00] 0.05
Agreeableness 28 (20) No correction —-0.17 [-0.22, —0.12] 0.09
Approach 1 8 —0.20 [-0.25, —0.15] 0.10
Approach 2 1-2 —0.21 [-0.26, —0.15] 0.10
Neuroticism 30 (21) No correction 0.03 [-0.02, 0.07] 0.09
Approach 1 10 0.02 [-0.02, 0.07] 0.09
Approach 2 1-2 0.03 [-0.02, 0.07] 0.08

¢: number of comparisons/samples; k: number of studies; c: number of
samples on which the correction was based (Approach 1) or range of
the number of samples on which the correction was based (Approach
2, range across scales).

not unreliability was accounted for. Notably, results
for the two imputation approaches (imputation per
trait vs. imputation per trait and scale) were similar
for all traits. This implies that it might not be neces-
sary to impute scale-specific reliabilities in this
example. We return to the issue of heterogeneous
reliabilities in the discussion.

Discussion

Meta-analysis of variances is becoming increasingly
popular, hence discussing the impact of measurement
error on its results and conclusions is highly relevant.
In this article, we demonstrated how between-group
differences in reliability affect the estimation of the
InVR and the InCVR, the two main effect sizes used
in meta-analysis of variances. Specifically, we showed
that the magnitude of bias of the estimators of InVR
and InCVR depends on the ratio of the group-specific
reliabilities. Based on this result, we proposed a simple
correction for the estimators of InVR and InCVR that
only requires that adequate estimates of the group-
specific reliabilities are available.

Two simulations were done to examine the
adequacy of the proposed corrections. As expected, we
found that each correction removed bias caused by
between-group differences in reliability in the study-
specific effect size, enabled (almost) unbiased estima-
tion of the average effect in meta-analysis of variances,
and also led to more reliable statistical inferences. As
each correction introduces additional uncertainty in
the estimation of InVR and InCVR by relying on
estimates of the group-specific reliabilities, we also
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examined whether it is necessary to account for this
uncertainty in the estimation of the sampling varian-
ces of InVR and InCVR. We found that accounting
for the additional uncertainty indeed usually leads to
more accurate sampling variance estimates in individ-
ual studies. However, in meta-analysis, the estimation
of the average effect, the type I error rate, and the
power appeared to be almost unaffected by the add-
itional consideration of the uncertainty. Hence, when
reliability estimates from sufficiently large studies are
available (as was the case in our simulation study), it
seems to be sufficient to correct the effect size esti-
mates for between-group differences in reliability and
to use the (standard, uncorrected) formulas proposed
by Senior et al. (2020) to estimate their sampling
variances.

Simulation results regarding type I error rates
revealed that failing to account for unreliability is
more detrimental in situations without heterogeneity.
A further exploration of our simulation results
showed that the standard errors of the average effect
were more biased in these conditions than in condi-
tions with heterogeneity, probably because sampling
variances of the individual studies were underesti-
mated and the between-study variance was usually
accurately estimated to be zero. Of note, when
accounting for unreliability, type I errors were still
notably inflated in conditions without heterogeneity
when the between-group difference in reliabilities was
large. The results from our pre-study indicate that this
could be countered by imputing reliability estimates
from a larger CFA study, because then, sampling var-
iances will be less biased.

Recommendations

In our simulation studies, we presupposed that group-
specific reliability estimates from an (external) CFA
study with at least 100 subjects per group are avail-
able. Our illustrative example shows how to apply the
correction when some (sufficiently large) studies
report reliabilities while some do not. If information
on reliabilities is completely unavailable, researchers
may consider making an informed guess on the reli-
ability ratio, for instance, based on studies that exam-
ine the reliabilities of similar outcome measures for
the groups of interest, or from studies that examine
the reliabilities of the outcome measure of interest in
groups that are similar to those that shall be exam-
ined. It may be advisable to carry out a sensitivity
analysis using different reliability ratios in this situ-
ation. If making an informed guess is not possible, a

potential solution is to conduct an additional CFA
study before the meta-analysis to obtain a reliable esti-
mate of the reliability ratio (see Ke & Tong, 2023).
We also presupposed that the true reliabilities
underlying the CFA data coincide with the true reli-
abilities underlying the individual study data pooled
in the meta-analysis. We underscore that imputing
reliability estimates obtained from samples that are
not truly representative of those included in the meta-
analysis can induce bias. In practice, it is possible that
the true reliabilities not only vary between groups, but
also across studies, for example, because they used dif-
ferent scales, assessed different populations, or applied
different types of interventions. It is therefore impor-
tant to consider whether different reliability estimates
need to be imputed for different types of studies. In
our illustrative example, we showcase how to assess
whether accounting for the use of different scales has
an impact on the correction. We found that imputing
different reliabilities for different scales did not alter
the results much, although we cannot rule out that
other factors not considered by us would have had an
impact. While not accounting for heterogeneous reli-
abilities does not necessarily induce bias in the aver-
age effect (given the imputed reliabilities are similar
to the average reliabilities), it can lead to an overesti-
mation of the between-study variance to the extent to
which the (true) log-square root reliability ratio varies
between studies. To this end, artifact distribution
approaches (Hunter & Schmidt, 2004) might provide
a further option to correct the average effect for unre-
liability and simultaneously account for heterogeneous
reliabilities. However, they require that a sufficiently
large number of (large) studies report group-specific
reliability estimates. In summary, these considerations
underline the importance of research on between-
group differences in reliability, as knowing the
conditions under which they occur and being able to
estimate their magnitude is a prerequisite for the suc-
cessful application of reliability corrections, such as
those we propose. Furthermore, they emphasize the
importance of reporting group-specific reliability esti-
mates in primary studies that are sufficiently large, as
these can then be used in meta-analyses of variances.
The formulas that we proposed for correcting the
estimators of InVR and InCVR for differences in reli-
ability can also be applied when the groups are not
independent, as shown in our illustrative example.
However, accounting for the additional uncertainty
arising from the estimation of the reliability ratio
when estimating the sampling variances of InVR and
InCVR would require that an estimate of the sampling



covariance of the group-specific reliabilities is avail-
able. This will usually not be the case. In this respect,
the finding from our simulation that correcting the
sampling variance might not be necessary as long as
the reliability estimates are based on sufficiently large
sample sizes is reassuring.

Practical implications and future directions

In our simulation, we made the assumption that the
outcomes are normally distributed. An interesting
avenue for future research could be to examine the
performance of the proposed correction formulas in
non-normal data. In this case, the correlation between
the logarithmized mean and logarithmized standard
deviation has to be accounted for when estimating the
sampling variance of the InCVR (Nakagawa et al,
2015). Further research is needed to evaluate whether
it is required to correct this correlation for unreliabil-
ity to accurately estimate the sampling variance of the
InCVR in non-normally distributed data.

Beyond that, we relied on meta-analytic methods
which assume that effects are normally distributed
between studies. We would like to emphasize that the
proposed correction methods can be used in combin-
ation with any estimator for the between-study vari-
ance 72 (in particular, also with those that do not
require the assumption of a normal distribution
between studies), as well as together with meta-ana-
lytic models that assume non-normal random-effects
distributions (for an overview, see Panagiotopoulou
et al., 2024). Because our proposed corrections yielded
almost unbiased study-specific effect size estimates
and sampling variances (as the results of the first
simulation study showed), we would expect them to
perform well in combination with these methods, too,
given their assumptions hold.

Furthermore, we only evaluated our proposed for-
mulas with regard to the estimation of the average
effect and the between-study variance in a setting
without moderators. As meta-analyses often include
moderator analyses (Tipton et al., 2019), it would be
interesting to consider in future studies how correct-
ing for differences in unreliability affects the estima-
tion of the coefficients in meta-regression.

Although several reliability generalization studies
have revealed heterogeneity in reliability estimates
(Aslan et al, 2022; Badenes-Ribera et al., 2023;
Cabedo-Peris et al., 2021; Cerri et al, 2023; Demir
et al,, 2024; Esparza-Reig et al., 2021; Gisbert-Pérez
et al, 2022; Yin & Fan, 2000), it remains largely
unclear which factors affect the reliability of outcome
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measures. Therefore, it is impossible to state to what
extent not accounting for differences in reliability may
have affected the conclusions obtained in existing
meta-analyses of variances. Future reliability general-
ization studies should thus focus on moderator analy-
ses to shed light on the magnitude of between-group
differences in reliability. In addition, we recommend
that primary studies that examine two or more groups
report group-specific reliability estimates for their out-
comes. This would enable the use of the formulas pro-
posed here in future meta-analyses of variances.

In the present study, we focused on corrections for
unreliability in meta-analysis. It should be noted that
the corrected estimators that we proposed for the
InVR and InCVR along with their sampling variances
can also be used to construct tests for variability dif-
ferences in a single study. We think that examining
these but also alternative ways to account for unreli-
ability in tests for variability differences (e.g., using
multiple group structural equation modeling, cf.
Tucker-Drob, 2011) is an interesting avenue for future
research.

Conclusion

There is a growing interest in meta-analysis of varian-
ces, also because they can be easily conducted by re-
using existing data from meta-analyses of means. In
this article, we have shown that the results obtained
in meta-analysis of variances are sensitive to between-
group differences in reliability. The results of our
simulation studies underline the importance of gather-
ing information on between-group differences in reli-
ability before conducting a meta-analysis that uses the
InVR or InCVR as an effect size. When such informa-
tion is available, corrections for between-group differ-
ences in reliability are easy to apply and lead to
reliable meta-analytic results.
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