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ABSTRACT

Latent classes are a useful tool in developmental research, however there are challenges
associated with embedding them within a counterfactual mediation model. We develop and
test a new method “updated pseudo class draws (UPCD)” to examine the association
between a latent class exposure and distal outcome that could easily be extended to allow
the use of any counterfactual mediation method. UPCD extends an existing group of meth-
ods (based on pseudo class draws) that assume that the true values of the latent class vari-
able are missing, and need to be multiply imputed using class membership probabilities.
We simulate data based on the Avon Longitudinal Study of Parents and Children, examine
performance for existing techniques to relate a latent class exposure to a distal outcome
(“one-step,” “bias-adjusted three-step,” “modal class assignment,” “non-inclusive pseudo class
draws,” and “inclusive pseudo class draws”) and compare bias in parameter estimates and
their precision to uPCD when estimating counterfactual mediation effects. We found that
uPCD shows minimal bias when estimating counterfactual mediation effects across all levels
of entropy. UPCD performs similarly to recommended methods (one-step and bias-adjusted
three-step), but provides greater flexibility and scope for incorporating the latent grouping
within any commonly-used counterfactual mediation approach.

Introduction accessible  introductions to mixture modeling.
Research questions often focus on the association
between a latent class exposure and a distal outcome
(for example, the association between developmental
trajectories of childhood conduct problems and later
alcohol problems (Bevilacqua et al., 2018)). A natural
extension to this research question is to ask what
mechanisms may be on the causal pathway between

the latent class exposure and distal outcome, however

Mixture models are a useful and commonly used tool
in developmental research, where they are used to
identify unobserved groups (“latent classes”) that
group individuals so that those within a latent class
are more similar to each other than those in other
classes. Mixture models can take many forms includ-
ing cross-sectional models such as latent class and

latent profile analysis and longitudinal models such as
growth mixture models or longitudinal latent class
analysis. They all consist of a measurement model
(the relationship between the indicator variables and
the underlying latent variable) and often also a struc-
tural model (the distribution of the latent variable and
relationship with auxiliary variables), see (Berlin,
Parra et al., 2014; Berlin, Williams et al.,, 2014) for

there are challenges associated with embedding latent
classes within a broader statistical model.

All mediation models consist of an exposure X,
outcome Y, and one or more mediators M which lie
on the causal pathway between X and Y. The struc-
tural equation modeling (SEM) framework would per-
mit exposure X to take the form of a nominal latent
grouping and indirect effects via M could be
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estimated using traditional mediation methods, e.g.,
the product of coefficients strategy (MacKinnon et al.,
2002). This approach is often used to examine medi-
ation models in developmental research, e.g., (Baskin-
Sommers & Baskin, 2016; Murphy et al.,, 2014; Sacks
et al., 2017). However, these studies used the class
assignment probabilities to assign individuals to their
most likely class, e.g., modal class assignment
(Vermunt, 2010) before estimating the mediation
model. This multi-step approach is computationally
simpler, however it means that the uncertainty in
latent class assignment is not taken into account
which can attenuate parameter estimates and standard
errors (SE), particularly when the class separation
(entropy) is poor (Bakk et al, 2013; Heron et al.,
2015; Vermunt, 2010).

Estimating the measurement model for the latent
class exposure at the same time as estimating the
mediation model (e.g., using a “one-step” model;
(Bandeen-Roche et al., 1997) prevents the bias seen in
parameter estimates and SE when treating the latent
classes as an observed variable. However, a one-step
model will treat the mediator and outcome as add-
itional indicators of the latent class variable meaning
that the number, composition, and meaning of the
latent classes can shift across models with and without
the distal outcomes if the additional assumptions
being made (e.g., regarding the within-class distribu-
tion of the distal outcome) are violated (Bakk et al.,
2013; Nylund-Gibson et al., 2019). Additionally, the
complexity of a model that simultaneously estimates
the latent classes alongside the mediation model can
increase the risk of model non-convergence
(Vermunt, 2010). These limitations of the one-step
model, led to the development of several “bias-
adjusted three-step” methods which aim to estimate
the associations between latent classes and distal out-
comes without bias by maintaining the latent nature
of X, but also preserving the latent class distribution
from the unconditional model (Vermunt, 2010). One
commonly used bias-adjusted method is the modified
Bolck, Croon and Hagenaars (BCH) three-step
approach (Bolck et al., 2004). This method uses a
weighted multiple group analysis, where the groups
correspond to the latent classes and the weights reflect
the measurement error of the latent class variable.
Therefore, this method accounts for the uncertainty in
latent class assignment but usually prevents the shift
in the number, composition, or meaning of the classes
that can happen when including distal outcomes using
the one-step method (Bakk et al, 2013; Bakk &
Vermunt, 2016; Vermunt, 2010).
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Another group of methods exist to relate a latent
class exposure to a distal outcome, which treat the
latent classes as missing data, rather than a problem
of misclassification (as with the bias-adjusted three-
step approaches) (Bakk & Kuha, 2021). These meth-
ods (known as multiple pseudo class draws; PCD),
assume that the true values of the latent class variable
X are missing, and therefore need to be multiply
imputed using the class membership probabilities
(Bakk & Kuha, 2021; Bray et al, 2015; Wang et al,,
2005). This approach was initially shown to result in
biased parameter estimates and SE (similar or worse
than modal class assignment) because the imputation
of the latent classes was only conditional on the latent
class indicators and not the external variables in the
analysis model (Bray et al, 2015), resulting in
“omitted outcome” bias which is well-known in the
multiple imputation literature (Collins et al., 2001).
This led to the development of “inclusive PCD”
(referred to hereafter as incPCD) which includes all
analysis variables as covariates when deriving the
latent classes and imputes class membership using the
probabilities exported from this conditional latent
class model (Bray et al, 2015). Simulation studies
have shown that this method prevents the bias seen
with “non-inclusive PCD” (referred to hereafter as
nPCD), assuming model assumptions are met (Bray
et al., 2015; Dziak et al., 2016); however, it is subject
to similar limitations as the one-step model (e.g., a
complex class derivation model which can lead to esti-
mation problems and risk of distorting the classes)
(Bakk & Kuha, 2021; Dziak et al., 2016). For a recent,
comprehensive review on existing methods to relate
latent classes to a distal outcome and their strengths
and limitations see (Nylund-Gibson et al., 2019).

In recent years, there has been a paradigm shift in
the approach to mediation modeling with the advan-
tages of using a counterfactual framework being high-
lighted. Specifically, the counterfactual framework
provides a general definition of mediation effects using
non-parametric causal effect definitions (such as the
average difference between two potential outcomes) and
explicitly outlines the formal assumptions required (see
Supplement 1) to enable causal inference (VanderWeele,
2015, 2016; Vanderweele & Vansteelandt, 2009). This
framework holds advantages over the traditional
approach to mediation analysis, for example, assump-
tions regarding linear effects can be relaxed, meaning
that exposure-mediator interactions and non-continuous
mediators and outcomes can be incorporated.
Additionally, more recent methodological developments
incorporate SEM within a counterfactual framework
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giving maximum flexibility for mediation analyses (De
Stavola et al, 2015; Muthén, 2011; Muthén &
Asparouhov, 2015). For comprehensive descriptions on
counterfactual mediation, including the definition of
causal effects and assumptions required see (De Stavola
et al, 2015; Muthén, 2011; Muthén & Asparouhov,
2015; VanderWeele, 2015, 2016; Vanderweele &
Vansteelandt, 2009).

Currently the only established methods for incor-
porating latent classes (a nominal latent variable) into
counterfactual mediation models include using the
regression-based approach to counterfactual mediation
(Hsiao et al., 2021; Valeri & VanderWeele, 2013), or
direct application of the mediation formula
(McLarnon & O’Neill, 2018; Muthén, 2011; Muthén
et al, 2017; Muthén & Asparouhov, 2015; Pearl,
2012), both implemented within a SEM framework.
These counterfactual mediation methods are limited
by reliance on a continuous or rare binary outcome
(regression-based approach), deliver conditional effects
when adjusting for confounders, and difficulty incor-
porating multiple mediators or intermediate con-
founders. They can also be complex to implement
manually, and the user-friendly packages that exist
(e.g., paramed in Stata and model indirect in Mplus)
cannot be used with a latent class X. (Hsiao et al.,
2021) provide a simulation study and empirical dem-
onstration comparing one-step and bias-adjusted
three-step methods to estimate counterfactual medi-
ation effects using the regression-based approach with
a latent class mediator and outcome. (McLarnon &
O’Neill, 2018) provide an accessible and comprehen-
sive tutorial on estimating counterfactual mediation
effects with a latent class variable using bias-adjusted
three-step methods and the mediation approach out-
lined in (Muthén, 2011; Muthén et al., 2017; Muthén
& Asparouhov, 2015).

Alternative counterfactual mediation methods exist
that can overcome the limitations of the regression-
based approach and direct application of the mediation
formula, for example methods using inverse probability
weighting or Monte Carlo simulation (Daniel et al,
2011; De Stavola et al.,, 2015; VanderWeele et al., 2014;
VanderWeele & Vansteelandt, 2014). Combining these
mediation methods with either a one-step or bias-
adjusted three-step approach to incorporate a latent
class X would be difficult, either because the methods
have not been developed, or because they would involve
multiple steps (where the number, composition, or
meaning of the latent classes could change across each
step). With a one-step model, the latent class X is con-
tinually being recreated in every step of the analysis

meaning that it cannot be meaningfully compared
across analysis steps (Bakk & Kuha, 2021). Additionally,
using a one-step or bias-adjusted three-step approach to
incorporate a latent class X prevents the use of many
ready-made counterfactual mediation packages, for
example in Stata (paramed; medeff; gformula) and R
(mediation; medflex).

Here we introduce and test a new method, which
we refer to as “updated pseudo class draws” (uPCD),
to examine the association between a latent class
exposure and distal outcome that could easily be
extended to allow the use of any counterfactual medi-
ation method. This method extends an established
approach to relate a latent class exposure to a distal
outcome (nPCD) that is known to result in biased
parameter estimates and SE (Bray et al., 2015). Similar
to nPCD, our updated approach only requires an
unconditional latent class model to be performed in
an initial step; however, the class assignment probabil-
ities are derived in a second step using not only the
latent indicators and parameters from the uncondi-
tional model, but also information from all external
variables in the analysis model. This should reduce
bias in parameter estimates as the new class assign-
ment probabilities are conditioned on individuals’
responses to the external variables as well as the latent
class indicators (Bray et al., 2015). The idea behind
uPCD is very closely based on the existing incPCD
approach developed by Bray et al. (2015) where the
bias in parameter estimates is eliminated through
including all external variables from the analysis
model as covariates in the initial model when the
latent classes are derived. The difference between
incPCD and uPCD is when and how the class mem-
bership probabilities are derived. In contrast to
incPCD, our updated approach does not require all
external variables from the analysis model to be
included in the initial model where the latent classes
are derived, preventing the risk of distorting the
classes and any estimation problems from a complex
class derivation model. Another advantage of uPCD is
that the uncertainty in class assignment probabilities
can be taken into account through perturbing the par-
ameter estimates (from the unconditional latent class
model and from the regression models for the medi-
ator and outcome) before deriving the assignment
probabilities (further detail is given in Supplement 3).
This step is important to prevent underestimated SE
which have been shown in simulation studies when
the uncertainty in the class assignment probabilities is
not accounted for in the final analysis model (Bakk
et al., 2013; Vermunt, 2010).



The aim of the study is to perform a simulation
study (using a four-class latent class exposure with
binary indicators, binary mediator, and binary out-
come) as a proof-of-concept, and compare mediation
effects estimated using uPCD to effects estimated
using existing methods that are either frequently used
in practice (one-step, modal class assignment), cur-
rently recommended (bias-adjusted three-step), or no
longer used in practice, but closely related to uPCD
(nPCD, incPCD). We hypothesize that uPCD will esti-
mate mediation effects (and their SE) without bias
across scenarios with high, medium, and low class
separation (entropy). We will also use an applied
example to show the application and performance of
uPCD (alongside existing methods) when using real
data from the Avon Longitudinal Study of Parents
and Children (ALSPAC) on developmental trajectories
of childhood conduct problems (Barker & Maughan,
2009), illegal drug wuse, and high internalizing
symptoms.

Simulation study
Methods

Based on recommendations detailed in Morris et al.
(2019) for planning and reporting simulation studies,
we have used a structured approach “ADEMP” which
involves defining aims, data-generating mechanisms,
estimands, methods, and performance measures.

Aims

We aim to offer a proof-of-concept, by evaluating the
performance of uPCD in estimating counterfactual
mediation effects in three simple settings with a four-
class latent class exposure, binary mediator, and bin-
ary outcome, which differ according to levels of latent
class separation. We will compare bias (in parameter
estimates for mediation effects and their model SE),
precision, and coverage of confidence intervals to five
existing methods to relate a latent class exposure to a
distal outcome.

Data generating mechanisms

Given that the purpose of this simulation study is to
offer a proof-of-concept, we only consider three data
generating mechanisms. For all three, data are simu-
lated on n,,s = 5,000 which represents the approxi-
mate sample size in commonly-used cohort studies.
We also perform a sensitivity analysis, simulating data
on nMyps = 2,000. The three data generating mecha-
nisms differ only based on entropy, a measure of sep-
aration between latent classes (ranging from 0 to 1)
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with higher values denoting better class separation
(Ramaswamy et al., 1993). Latent class separation was
varied to produce models with (a) good (~0.90), (b)
medium (~0.80), and (c) poor (~0.70) levels of
entropy as has been used previously to define meas-
urement quality (Dziak et al., 2016). The Monte Carlo
routine in Mplus version 8.4 (Muthén & Muthén,
2017) was used to simulate the data with an input
seed of 3454367. Supplementary Table 1 shows the
classification probabilities for the most likely latent
class membership by latent class, highlighting that the
poorest separation of classes is seen when comparing
the “Adolescent Onset” and “Childhood Limited”
classes to the “Low” class. It is important to consider
the pairwise class separation in addition to overall
entropy, given that not all class comparisons will have
the same degree of accuracy (Heron et al., 2015).
These classification matrices were taken from three
large simulated datasets (1,55 = 1,000,000) with poor,
medium, and good entropy, given the difficulty of
averaging these matrices across 500 simulated datasets
from each entropy level.

Data were simulated under a mediation model with
a four-class latent class exposure. The simulated
model is shown in Figure 1. The interest is in how a
child’s trajectory of conduct problems (exposure X)
may lead to problematic alcohol use in late adoles-
cence (outcome Y), and the extent to which this may
be explained through associating with deviant peers in
the intervening period (mediator M). Furthermore,
the magnitude of association between childhood con-
duct problems (X) and later alcohol problems (Y) is
moderated by peer deviance (M). Here, we chose to
simulate a mediation model including an XM inter-
action, given that the importance of considering the
potential for an XM interaction within a counterfac-
tual mediation model has been highlighted to prevent
any bias in the estimation of the indirect effect
(VanderWeele, 2015).

Here we use the ALSPAC birth cohort and previ-
ous ALSPAC research to inform various model
parameters. Variable distributions are in keeping with
previous publications however the associations them-
selves are merely plausible and not based on any
empirical data.

Nominal (latent) exposure X. Developmental trajecto-
ries of conduct problems (CP) have been described
previously (Barker & Maughan, 2009). Repeated bin-
ary measurements spanning the ages 4-13years were
derived from the ‘Conduct Problem’ subscale of the
Strengths and Difficulties Questionnaire (Goodman,
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Figure 1. Simulated mediation model; U, = binary latent class indicators; X = latent class exposure; M = binary manifest medi-

ator; Y = binary manifest outcome.

Table 1. Data used for simulation (sample = 5,000).

Hazardous alcohol use (Y)

Conduct Peer

trajectory (X)  deviance (M) 0: No 1: Yes % Y=1 Total

1: EOP 0: No 150 120 44.4% 270
2: AO 200 125 38.5% 325
3:CL 295 180 37.9% 475
4: Low 1950 980 33.4% 2930
1: EOP 1: Yes 50 80 61.5% 130
2: AO 75 100 57.1% 175
3:CL 65 60 48.0% 125
4: Low 325 245 43.0% 570

EOP: Early-Onset Persistent; AO: Adolescent Onset; CL: Childhood Limited.

2001). Longitudinal mixture modeling of these data
yielded the classic cat’s-cradle or soldier’s-bed (Sher
et al., 2011) set of four trajectories which were termed
“Low,” “Childhood Limited” (i.e., probability of con-
duct problems decreasing with age) “Adolescent
Onset” (i.e., probability of conduct problems increas-
ing with age) and “Early-Onset Persistent” (i.e., prob-
ability of conduct problems persistently high
throughout). In the current study we simulate the
essence of these findings using five binary class-indi-
cators and Longitudinal Latent Class Analysis. Class
distribution was defined as follows: Early-Onset
Persistent (EOP; 8%), Adolescent Onset (AQ; 10%),
Childhood Limited (CL; 12%), and Low (70%).

Binary (manifest) outcome Y. Hazardous alcohol use
was defined by a score on the Alcohol Use Disorders
Identification Test (AUDIT; (Babor et al., 2001)) of 8
or greater. A prevalence of 38% reflects data from
ALSPAC collected at age 16 years.

Binary (manifest) mediator M. Associating with devi-
ant peers during mid-adolescence was defined by
whether young person has a friend that has commit-
ted a serious crime in the last year. A prevalence of
20% reflects self-report ALSPAC data at age 15 years.
Supplementary Figure 1 shows the trajectory shapes
across each data generating mechanism (good,
medium and poor entropy levels). Table 1 shows the

Table 2. Values for direct and indirect effects based on simu-

lated data in Table 1.

Estimate (log RR) RR

EOP vs Low

Total Effect (TE) 0.3567 1.4286
Total Natural Indirect Effect (TNIE) 0.0570 1.0587
Pure Natural Direct effect (PNDE) 0.2996 1.3494
AO vs Low

Total Effect (TE) 0.2513 1.2857
Total Natural Indirect Effect (TNIE) 0.0809 1.0842
Pure Natural Direct effect (PNDE) 0.1704 1.1858
CL vs Low

Total Effect (TE) 0.1335 1.1429
Total Natural Indirect Effect (TNIE) 0.0116 1.0116
Pure Natural Direct effect (PNDE) 0.1220 1.1297

EOP: Early-Onset Persistent; AO: Adolescent Onset; CL: Childhood Limited;
RR: Risk Ratio.

cross-tabulation which was used to define the model
parameters (across all levels of entropy). Table 1 led
to the following measures of association between the
various variables:

i. Effect of exposure X on mediator M. All three
conduct problem classes (EOP, AO and CL versus
Low) increase the odds of peer deviance: EOP
(odds ratio = 2.48), AO (odds ratio = 2.77), CL
(odds ratio = 1.35), Low (reference).

ii. Effect of mediator M on outcome Y stratified by
X. Conduct problem trajectories moderate the
effect of peer deviance on hazardous alcohol use:
EOP (odds ratio =2.00), AO (odds ratio =2.13),
CL (odds ratio =1.51), Low (odds ratio =1.50).

Table 2 shows the mediation effects of the conduct
problem trajectories (EOP, AO and CL versus Low)
on hazardous alcohol use implied by these values. We
present associations between X, M, and Y as odds
ratios (as these are estimated using logistic regression
models). However, mediation effects are derived from
potential outcome probabilities, which can be used to
calculate the odds ratio, risk ratio, or risk difference.
Here, we present risk ratios given the ease of inter-
pretation compared to odds ratios.



Estimands

Our estimands are mediation effects, including the
total natural indirect effect (TNIE), the pure natural
direct effect (PNDE), and the total effect (TE).
Mediation effects were estimated in a SEM framework
based on two logistic regression models. Equation (1)
involves binary observed outcome Y (hazardous alco-
hol use), binary observed mediator M (associating
with deviant peers), and nominal latent exposure X
(four development trajectories of conduct problems),
where X;, X, and X; are three dummy variables for
the latent exposure X:

P(Y =1 | X,M)
= expit(fy + fiM + X1 + B3 X, (1
+B4 Xz + BsXaM + BsXoM + B, X3M)

Equation (2) involves binary observed mediator M,
and nominal latent exposure X:

P(M =1 | X) = expit(fxo + a1 X; + X, + OC3X3)
)

Here, we compare three “risk” classes (EOP, AO,
CL) to a reference class (Low); however, there are
other parameters which could be derived which com-
pare pairs of non-reference classes (e.g., AO versus
CL). Mediation effects were derived using direct appli-
cation of the mediation formula (Muthén, 2011; Pearl,
2012). Further detail is given in Supplement 1.
Throughout the manuscript, we refer to the estimate
(e.g., log risk ratio for the TE of EOP versus Low con-
duct problems) as an approximation of the estimand
(the quantity of interest).

Methods

Each simulated dataset was analyzed using six different
techniques to relate a latent class exposure to a distal
outcome including: (i) “one-step” estimation (latent
nominal exposure with multiple binary indicators), (ii)
“bias-adjusted three-step” (here we used the modified
Bolck, Croon and Hagenaars (BCH) approach (Bolck
et al., 2004), (iii) “modal class assignment” (manifest
nominal exposure), (iv) “non-inclusive PCD” (nPCD;
imputed manifest nominal exposure), (v) “inclusive
PCD” (incPCD; imputed manifest nominal exposure),
and (vi) “updated PCD” (uPCD; imputed manifest
nominal exposure). In all scenarios, there would usually
be an initial step of class enumeration; however, we
will not consider this step here, and assume that the
presence of a four-class solution is known. Supplemen-
tary Figure 2 shows path diagrams for each of the six
methods. We use X to denote the underlying nominal
latent class variable with categories x=1, ..., k, and
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W for the observed nominal variable generated using
an individual’s class assignment probabilities. Latent
class indicators are denoted by U which is a vector of p
observed binary manifest variables which we assume to
be mutually independent, conditional on X.

Latent class analysis (LCA) consists of a structural
model and a measurement model. In an uncondi-
tional LCA, the structural model relates to the
unconditional probability of belonging to latent class
x, P(X = x). The measurement model relates to the
class-specific probability of a pattern of responses to
the latent class indicators, P(U] | X = x), where
Uj,j = 1,...,p represents the responses for the latent
class indicators. Class assignment probabilities,
P(X=x | U,..Uy), are a function of these two
types of probabilities, which provide the probability
of class membership for each individual in the sam-
ple (in the interest of clarity, we have not used i to
represent the individual). All individuals with the
same pattern of observed data (latent class indica-
tors) have the same within-class probabilities and the
same class-assignment probabilities. In the structural
model of a conditional LCA, the latent class variable,
X, can be related to covariates and/or distal out-
comes, as in Equations (1) and (2) above.

One-step. In the one-step approach, we estimated the
model used in the simulation. Here, a single model is
used to simultaneously estimate the relationships
between the latent class variable, X, and the observed
latent class indicators, U, as well as the class-specific
distal outcome distributions for the mediator, M, and
outcome, Y (Vermunt, 2010). In other words, the
mediation effects of the latent class exposure on the
outcome were estimated by incorporating the medi-
ator and outcome in the original mixture model. This
approach treats the distal outcomes as additional indi-
cators of the latent class variable. This method would
be expected to be unbiased across all three levels of
class separation (good, medium, and poor entropy).

Bias-adjusted three-step. In bias-adjusted three-step
methods, an unconditional LCA is performed (step 1)
and participants are assigned to their most likely class
to create the nominal observed variable W (step 2).
When modal assignment is used, participants are
assigned to the class for which they have the highest
probability of belonging, according to the class assign-
ment probabilities, P(X = x |Ui,...U,). In step 3, the
structural model is estimated using the nominal vari-
able, W, as the exposure in place of the latent class vari-
able X, but allowing for the misclassification error
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introduced in step 2. This is given by the conditional
probabilities for an assigned class membership w, given
the true latent class membership x: P(W = w |X = x).

We used the modified BCH approach which uses a
weighted multiple group analysis, where the groups
correspond to the latent classes and the weights corres-
pond to the inverse logits of the classification errors,
P(W =w |X =x), for each individual, reflecting the
measurement error of the latent class variable. For fur-
ther detail on this method see (Bakk et al., 2013; Bakk
& Vermunt, 2016; Vermunt, 2010). This method would
be expected to be unbiased across all three levels of class
separation examined here (scenario a, b and c), but may
show bias when class separation is poorer than scenario
¢, particularly if the uncertainty in the weights for latent
class assignment is not taken into account (Bakk et al.,
2014; Bakk & Kuha, 2021).

Modal class assignment. Also referred to as classify-
analyze (Bray et al., 2015; Nylund-Gibson et al., 2019)
and standard three-step approach (Bakk et al., 2013;
Vermunt, 2010). In modal class assignment, step 1
(unconditional LCA) and step 2 (modal assignment)
are identical to the bias-adjusted three-step approach
above, but in step 3, the misclassification error intro-
duced in step 2 is not taken into account. After per-
forming the unconditional LCA, we assigned each
participant to their most likely class to create the
nominal variable W, and used this as the exposure in
the mediation model in place of the latent class vari-
able X. This method would only be expected to be
unbiased for good entropy and we would expect esti-
mates to be biased and overly precise, particularly
with poor entropy. This is due to individuals being
forced into their most likely class, and then treating
this as an observed variable, rather than taking into
account the uncertainty of the classification, as is
done in the bias-adjusted three-step approaches.

The three final methods (iv, v, and vi) are all based
on multiple PCD, meaning that individuals are ran-
domly classified into latent classes multiple times based
on their class assignment probabilities. For incPCD and
nPCD we generated 40 imputed datasets, whereas for
uPCD, we generated 80 imputed datasets. To decide on
the number of datasets to impute, we calculated the
Monte Carlo error for each parameter in the regression
model for Y and the regression model for M (between
imputation variance divided by the number of imputed
datasets, square rooted), and then calculated the per-
centage of the SE for the same regression parameter,
e.g., (Monte Carlo error/SE) x 100 (see Supplement 2).
The number of datasets to impute was chosen to

achieve Monte Carlo errors that were no more than
10% of the SE for each parameter in the regression
models (White et al., 2011). For all three methods, the
mediation model was estimated within each imputed
dataset and results were pooled using Rubin’s rules for
multiple imputation (Rubin, 1987).

Non-inclusive pseudo class draws (nPCD). In nPCD,
an unconditional LCA is performed (as in modal class
assignment) but instead of using the class assignment
probabilities to assign participants to their most likely
class, these are used instead to multiply impute class
membership by taking random draws from the multi-
nomial distribution defined by the class assignment
probabilities (Bray et al., 2015; Nylund-Gibson et al.,
2019; Wang et al, 2005). Here, we use the class
assignment probabilities, P(X = x |Uj,...U,), from
the unconditional LCA to randomly assign each par-
ticipant to a class W=1, ..., k, 40 times to generate
40 imputed values of W to use in the subsequent
mediation model. This method would only be
expected to be unbiased for good entropy (scenario a)
and we would expect estimates to be biased and
overly-precise, particularly with poor entropy (scen-
ario c), due to using class assignment probabilities
from an unconditional LCA (Bray et al., 2015; Collier
& Leite, 2017).

Inclusive pseudo class draws (incPCD). In incPCD, a
conditional LCA is performed with all variables from
the subsequent analysis model included as covariates
predicting latent class membership. The calculation
of the class assignment probabilities is then condi-
tioned on an individual’s vector of responses to the
covariates, in addition to the latent class indicators
(Bray et al., 2015). Here, we estimated a conditional
LCA with the binary mediator M and outcome Y as
covariates predicting latent class membership, and
exported class assignment probabilities from this con-
ditional model, P(X =x|Y =y,M =m,U), along
with additional (auxiliary) variables required for sub-
sequent analyses. These class assignment probabilities
were used to randomly assign each participant to a
class W=1, ..., k, 40 times to generate 40 imputed
values of W to use in the subsequent mediation
model. This method was developed to address the
bias in the nPCD model that was due to excluding
the analysis variables when deriving the latent classes.
IncPCD has been shown to perform well provided
model assumptions are met (Bray et al, 2015).
Therefore, we would expect incPCD to be unbiased
across all three levels of class separation examined



here. However, some bias may be introduced given
that it will not be possible to include the exposure-
mediator interaction as a covariate in the latent class
derivation model, meaning that it will be incompat-
ible with the analysis model.

Updated pseudo class draws (uPCD). In uPCD, rather
than estimating a conditional LCA (with the distal out-
comes, e.g., M and Y, as covariates) and exporting the
class assignment probabilities from this model, an
unconditional LCA was used and the class assignment
probabilities, P(X =x|Y=y, M=m, U),
derived in a second step. This brings two advantages
over incPCD. First, it prevents the need for a complex
class measurement model which can lead to estimation
problems and distorted latent classes. Second, it allows
the uncertainty in the class assignment probabilities to
be taken into account in the final analysis model.
Assuming the class assignment probabilities are known
(which is standard practice in methods which use the
assignment probabilities) can result in underestimated
standard errors, particularly with a small sample size
and poorly separated latent classes (Bakk et al., 2013;
Vermunt, 2010). The class assignment probabilities,
P(X =x|Y =yM=m,U), were derived using the
latent class indicators, parameters from the uncondi-
tional LCA (latent class intercepts and within-class
thresholds), and also the parameters (a,f) from
Equations (1) and (2) above (representing the relation-
ship between the latent classes with the mediator and
outcome). Since a, f is unknown, the procedure needs
to be iterated and in doing so, estimates of a, f and the
latent class parameters can be perturbed based on their
sampling distribution to prevent underestimated stand-
ard errors. The steps involved are outlined briefly
below, with further detail provided in Supplement 3,
and a schematic for the iterative procedure provided in
Supplement 3 Figure 1.

were

e Step 0: an unconditional LCA was performed and
the latent class intercepts, within-class thresholds,
and their (co)variance matrix were saved to use in
step 2 below.

e Step 1: a logistic regression model was performed
for Y [Equation (1) above] but with all B except
for By, B; set to zero and a logistic regression
model was performed for M [Equation (2) above]
but with all & except for oy set to zero. Estimates
of By, B, and oy from the logistic regression models
were perturbed with Gaussian noise of mean zero
and values from the variance-covariance matrix of
these parameter estimates.
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e Step 2: the latent class intercepts and within-class
thresholds from the unconditional LCA (step 0)
were perturbed and combined with the previous
values of a,f to calculate the class assignment
probabilities, P(X =x|Y,M,U) for x=1, ..., k
for each participant.

e Step 3: the class assignment probabilities were used
to randomly assign each participant to a class
W=1, ..., k, and the logistic regression models
for P(Y=1|W,M) and for P(M =1|W) were
performed, using W in the place of the latent class
exposure X. Estimates of a,f from the logistic
regression models were perturbed.

e Step 4: steps 2 and 3 were repeated until conver-
gence of a, B. As a result of perturbation, we did
not expect convergence to a single value, but to a
stable distribution.

o Step 5: after 20 cycles of iterations (and an initial
burn in of 100 iterations), the last imputed values
of W were stored and the process started again
from step 2. This process was repeated to generate
80 imputed values of W to use in the subsequent
mediation model.

This method would be expected to be unbiased
across all three levels of class separation examined
here (scenario a, b and c), with precision similar to
the one-step model given that the uncertainty in the
class assignment probabilities is taken into account.

Performance measures

We assessed bias, percentage bias, coverage, bias-elim-
inated coverage, empirical and model-based SE for the
estimators. Bias quantifies whether the estimator tar-
gets the true value 0 on average and is calculated as
the mean difference between the true value 0 and the
estimated value 0. Percentage bias is calculated as the
bias divided by the true value and multiplied by 100.
Coverage is the probability that a 95% confidence
interval contains the true value 0. Under coverage can
be a result of bias, a model SE smaller than the empir-
ical SE, a non-normal distribution for [), or the esti-
mated variance of 0; for the i replication being too
variable. Bias-eliminated coverage accounts for the
role of bias in the coverage by evaluating whether
95% confidence intervals include the average estimate
0. The empirical SE of 0 is the standard deviation of
0 over the replications. The model based SE is the
average of the estimated SE for each replication.
Supplement 4 presents a comparison of estimates and
estimated SE across all simulated datasets. The model
based SE targets the empirical SE (Morris et al., 2019).
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Potential non-convergence for uPCD was determined
by examining the trace plots for model parameters and
cell sizes from cross-tabulations of the exposure, mediator
and outcome across all iterations within each simulated
dataset. Non-convergence in the trace plots was found for
simulated datasets which had a large SE for one or more
within-class thresholds in the unconditional latent class
model. Therefore, simulated datasets were excluded from
the dataset of the estimates when the largest SE for a
within-class threshold (representing the class-specific prob-
ability for a latent class indicator) from the unconditional
latent class model was greater than twice the average of
the largest within-class threshold SE across the simulated
datasets. The same rule was applied to the within-class
threshold SE in the one-step latent class model. Although
all methods (apart from one-step) start with running the
unconditional model, it is only uPCD that takes account
of the uncertainty in the parameters from the uncondi-
tional model in subsequent analysis steps.

Bias is our key performance measure of interest, and
based on an initial pilot simulation run, we assumed
that SD(@) < 0.1 for all 0, meaning that Var(@) <
0.01. Therefore, simulating 400 datasets for each data
generating mechanism will give a Monte Carlo SE
(MCSE) for the bias of 0.005 which we consider to be
acceptable (Morris et al., 2019). Given the potential risk
of non-convergence, we simulated 500 datasets for each
data-generating mechanism. After exclusions were made
based on non-convergence (see results section for
details), we confirmed that the MCSE for the bias was
below 0.005 for all estimators. After data were simu-
lated, all subsequent analyses were performed in R (ver-
sion 4.1.1; (R Core Team, 2021). The R package
MplusAutomation (Hallquist & Wiley, 2018) was used
to analyze simulated datasets and the R package rsim-
sum (Gasparini, 2018) was used to analyze the resulting
dataset of the estimates. For further detail on using the
R package rsimsum, including creating plots, see the
vignette by Gasparini, 2022 (https://cran.r-project.org/
web/packages/rsimsum/vignettes/). For all other packages
used (including version number) see the annotated ana-
lysis scripts using R and Mplus, available here https://
github.com/gemmahammerton/latentclass-mediation.
Additionally, the Supplementary webpage (upcd-for-
sim1-poor-entropy) provides code and output for uPCD
using the first simulated dataset with poor entropy.

Results
Convergence

Whilst no estimates or SE were missing, we excluded
some simulated datasets due to very large SE for some

within-class thresholds (representing within-class
probability for a latent class indicator) in either the
unconditional latent class model or the one-step
model. When this was the case, the simulated dataset
was excluded across all six methods. Nine percent of
simulated datasets with good entropy (n=16 for
unconditional latent class model, n =23 for one-step
model, n=4 for both), 13% with medium entropy
(n=232 for unconditional latent class model, n=26
for one-step model, n=8 for both), and 15% with
poor entropy (n=35 for unconditional latent class
model, n=33 for one-step model, n=8 for both)
were excluded.

Exploration of raw results

Scatter plots of estimates versus SE for each method
(one-step, bias-adjusted three-step, modal class assign-
ment, nPCD, incPCD, uPCD), data generating mech-
anism (good, medium, poor entropy), estimand (TE,
TNIE, PNDE), and latent class comparison (EOP ver-
sus low, AO versus low, CL versus low) are shown in
Supplement 4. Simulated datasets that were excluded
based on convergence criteria are shown with a light
blue dot, whereas all other datasets are shown with a
dark blue dot. The plots show that many of the out-
liers correspond to datasets that are excluded based
on the convergence criteria (light blue dots), particu-
larly for uPCD. However, a few outliers remain when
there is poor entropy (across almost all estimands and
class comparisons), particularly for the one-step
method. This is likely a consequence of using the one-
step method to estimate a complex analysis model,
which can result in non-convergence (Vermunt,
2010).

Performance measures

Figure 2 shows the bias and 95% confidence intervals
(based on MCSE) by method, data generating mech-
anism, and latent class comparison, after excluding
datasets based on convergence criteria above. Figure
2a shows the bias in the TE, Figure 2b plots the bias
in the TNIE, and Figure 2c plots the bias in the
PNDE. As shown in the Figures, uPCD shows min-
imal bias which is comparable to one-step and bias-
adjusted three-step models across all entropy levels,
estimands, and class comparisons. Additionally,
incPCD shows minimal bias with the exception of the
TNIE of AO versus Low conduct problems where
there is bias toward the null. The greatest bias is for
nPCD, followed by modal class assignment, with bias
toward the null, particularly when the entropy is poor.
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Figure 2. (a) Bias (and 95% confidence intervals based on Monte Carlo standard errors) in the total effect (TE) by method,
data generating mechanism, and latent class comparison; N =457 simulated datasets with good entropy (0.9), N =434 simu-
lated datasets with medium entropy (0.8), N=424 simulated datasets with poor entropy (0.7); Methods = one-step, bias-
adjusted three-step (bch), modal class assignment (modal), non-inclusive PCD (npcd), inclusive PCD (incpcd), and updated
PCD (upcd); data-generating mechanisms =good, medium and poor entropy levels; latent class comparisons = Early-Onset
Persistent (1.eop) versus Low: true value = 0.357, Adolescent Onset (2.a0) versus Low: true value = 0.251; Childhood
Limited (3.cl) versus Low: true value = 0.134). (b) Bias (and 95% confidence intervals based on Monte Carlo standard errors)
in the total natural indirect effect (TNIE) by method, data generating mechanism, and latent class comparison; N =457 simu-
lated datasets with good entropy (0.9), N=434 simulated datasets with medium entropy (0.8), N=424 simulated datasets
with poor entropy (0.7); Methods = one-step, bias-adjusted three-step (bch), modal class assignment (modal), non-inclusive
PCD (npcd), inclusive PCD (incpcd), and updated PCD (upcd); data-generating mechanisms =good, medium and poor
entropy levels; latent class comparisons = Early-Onset Persistent (1.eop) versus Low: true value = 0.057, Adolescent Onset
(2.a0) versus Low: true value = 0.081; Childhood Limited (3.cl) versus Low: true value = 0.012). (c) Bias (and 95% confi-
dence intervals based on Monte Carlo standard errors) in the pure natural direct effect (PNDE) by method, data generating
mechanism, and latent class comparison; N =457 simulated datasets with good entropy (0.9), N=434 simulated datasets
with medium entropy (0.8), N=424 simulated datasets with poor entropy (0.7); Methods = one-step, bias-adjusted three-
step (bch), modal class assignment (modal), non-inclusive PCD (npcd), inclusive PCD (incpcd), and updated PCD (upcd);
data-generating mechanisms =good, medium and poor entropy levels; latent class comparisons =Early-Onset Persistent
(1.eop) versus Low: true value = 0.300, Adolescent Onset (2.a0) versus Low: true value = 0.170; Childhood Limited (3.cl)
versus Low: true value = 0.122).
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The only exception to this is when the effect size is
close to zero (TNIE of CL versus Low conduct prob-
lems; true effect = 0.012), and all methods have min-
imal bias across all entropy levels.

Supplement 5 shows the bias and 95% confidence
intervals (based on MCSE) by method, data generat-
ing mechanism, and latent class comparison before
exclusions (e.g., based on all 500 simulated datasets),
and shows that the pattern of bias was very similar.

All performance measures (and MCSE) for each
method, data generating mechanism, and estimand
(after excluding datasets based on convergence criteria
above) are shown in Table 3-5 below for the effects
of EOP versus Low conduct problems. In Table 3-5
we only focus on one class comparison (EOP versus
Low conduct problems) for clarity. However,

onestep bch modal npcd incpcd upcd onestep bch modal npcd incped upcd

Method

performance measures (and MCSE) for each method
and data generating mechanism for the TE of AO ver-
sus Low conduct problems are shown in
Supplementary Table 2 and results for the TE of CL
versus Low conduct problems are shown in
Supplementary Table 3.

Table 3 shows performance measures for the TE of
EOP versus Low conduct problems. As shown in
Table 3, modal class assignment and nPCD have the
largest percentage bias across all entropy levels (21%
and 29% respectively, for the poor entropy model).
Bias-adjusted three-step (<3%), incPCD (<2%) and
uPCD (<3%) have small levels of percentage bias
across all entropy levels, which are similar to the lev-
els of percentage bias for the one-step model (<2%).
Decreasing entropy increases uncertainty, and this is
reflected in the empirical SE which show decreasing
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precision with decreasing entropy for all methods,
except for modal class assignment and nPCD which
are overly precise at all entropy levels and also fail to
capture the increasing uncertainty. The empirical SE
also show that bias-adjusted three-step is slightly less
efficient compared with other methods. Model-based
SE are close to empirical SE with exception of nPCD
(where model-based SE are overestimated by 35% for
the poor entropy model) and incPCD (where model-
based SE are underestimated by 18% for the poor
entropy model). The coverage of nominal 95%
confidence intervals is close to 95% for one-step, bias-
adjusted three-step, and uPCD across all entropy
levels, but there is under-coverage for modal class
assignment, nPCD, and incPCD, particularly with
poor entropy (modal class assignment = 73%, nPCD

onestep bch modal npcd incpcd upcd  onestep bch modal nped incped upcd  onestep bch modal nped incped upced

Method

= 73%, incPCD = 90%). This is driven by bias for
modal class assignment and nPCD, with the bias-elim-
inated coverage showing over-coverage for nPCD
(99% for poor entropy model) which is a result of a
model SE greater than the empirical SE. For incPCD,
there is still under coverage after accounting for bias
in the poor entropy model (90%), which is a result of
a model SE smaller than the empirical SE.

Table 4 shows performance measures for the TNIE
of EOP versus Low conduct problems. The pattern of
results is similar to the TE, with modal class assign-
ment and nPCD having the largest bias particularly
for medium and poor entropy models. Bias-adjusted
three-step (<3%), incPCD (<6%) and uPCD (<1%)
have small levels of percentage bias across all entropy
levels, which is similar to the levels of percentage bias
for the one-step model (<4%). The empirical SE show
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Table 5. Performance measures (Monte Carlo standard errors) for each method and data generating mechanism for pure natural direct effect (PNDE) of Early-Onset Persistent ver-

424 simulated

434 simulated datasets with medium entropy (0.8), N=

457 simulated datasets with good entropy (0.9), N=

sus Low conduct problems (true value = 0.300); N

datasets with poor entropy (0.7).
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that modal class assignment, nPCD, and incPCD are
overly precise. Again, model-based SE are close to
empirical SE with exception of nPCD (where model-
based SE are overestimated by 41% for the poor
entropy model) and incPCD (where model-based SE
are overestimated by 26% for the poor entropy
model). This is in contrast to results for the TE
(where model-based SE were overly precise for
incPCD). Additionally, model-based SE in the poor
entropy model are slightly overestimated for one-step
(10%) and uPCD (20%). The coverage of nominal
95% confidence intervals is acceptable for all methods,
across all entropy levels with the exception of modal
class assignment and nPCD where there is under-
coverage, particularly with poor entropy (modal class
assignment = 88%, nPCD = 92%). This is partly
driven by bias, with the bias-eliminated coverage
showing over-coverage for nPCD (98% for poor
entropy model). There is also slight under-coverage
for bias-adjusted three-step in the poor entropy model
(coverage = 93%, bias-eliminated coverage = 92%).

Table 5 shows performance measures for the
PNDE of EOP versus Low conduct problems. Again,
the pattern of results is similar, with modal class
assignment and nPCD having the largest bias, and
bias-adjusted three-step (<4%), incPCD (<£2%) and
uPCD (<3%) showing small levels of percentage bias,
which are similar to the one-step model (<1%). The
empirical SE show that bias-adjusted three-step is
slightly less efficient compared with other methods,
whereas modal class assignment and nPCD are overly
precise. Again, model-based SE are close to empirical
SE with exception of nPCD (where model-based SE
are overestimated by 41% for the poor entropy
model). Additionally, model-based SE in the poor
entropy model are slightly overestimated for one-step
(11%) and uPCD (13%), and slightly underestimated
for incPCD (11%). The coverage of nominal 95%
confidence intervals is close to 95% for one-step, bias-
adjusted three-step, and uPCD across all entropy
levels, but there is under-coverage for modal class
assignment, nPCD, and incPCD, particularly with
poor entropy (modal class assignment = 81%, nPCD
= 85%, incPCD = 91%). This is driven by bias for
modal class assignment and nPCD, with the bias-elim-
inated coverage showing over-coverage for nPCD
(99% for poor entropy model).

Supplement 6 shows that performance measures
using the reduced sample size of n,,, = 2,000 were
similar to the results using n,,, = 5,000 for each
method, data generating mechanism, and estimand.
There were similar levels of non-convergence due to a
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very large SE for some within-class thresholds across
Hops = 2,000 and n,,; = 5,000; however, when using
Nops = 2,000, an additional 3% of datasets with poor
entropy were excluded because there was an imputed
latent class with a prevalence of zero in at least one of
the iterations when running uPCD. With n, =
2,000, there was slightly greater bias across all entropy
levels and methods and slightly more under-coverage
for bias-adjusted three step, modal class assignment,
and incPCD with the smaller sample size.
Additionally, the model-based standard errors showed
more over-estimation with the smaller sample size,
particularly for the one-step model with poor entropy.

Applied example
Methods

Sample

ALSPAC is an ongoing birth cohort which was set up
to examine genetic and environmental determinants
of health and development (Boyd et al, 2013).
ALSPAC recruited pregnant women resident in Avon,
UK with expected dates of delivery between 1st April
1991 and 31st December 1992. Of the 14,541 initial
pregnancies, there was a total of 14,676 fetuses, result-
ing in 14,062 live births and 13,988 children who
were alive at 1year of age (of which 179 were twins).
Parents and children have been followed up regularly
since recruitment via questionnaire and clinic assess-
ments. In the current study, data were used from fol-
low-ups with mothers and young people up to age
18 years. We included those with complete data on
the outcome, mediator, confounders and at least one
latent class indicator for the exposure (N=3,039).
Further details on the sample characteristics and
methodology have been described previously (Boyd
et al., 2013; Fraser et al., 2013), and detailed informa-
tion about ALSPAC can be found on the study web-
site (http://www.bristol.ac.uk/alspac). For information
on all available ALSPAC data see the fully searchable
data  dictionary  (http://www.bristol.ac.uk/alspac/
researchers/our-data/). Written, informed consent was
obtained from all mothers who entered the ALSPAC
study, and ethical approval for the study was obtained

from the ALSPAC Ethics and Law committee
(IRB00003312) and the Local Research Ethics
Committees. The ethics committee specifically

approved the questionnaires and the clinic testing
protocols including the methods of gaining consent.

Measures

Here the exposure is developmental trajectories of
childhood conduct problems from age 4 to 13years,
the mediator is any illicit drug use up to age 18 years,
and the outcome is the presence (versus absence) of
current internalizing symptoms (depression or gener-
alized anxiety) at age 18years. Sex and a sociodemo-
graphic cumulative risk score are confounders. An
exposure-mediator  interaction is  hypothesized.
Mediation analyses make assumptions about the
causal ordering of the exposure, mediator and out-
come which are easier to justify when there is also a
temporal ordering of these variables. In our applied
example, the mediator and outcome are both assessed
at age 18 years, but we make the assumption that life-
time illicit drug use up to age 18 years is likely to pre-
cede current internalizing symptoms at age 18.

Nominal (latent) exposure X. Here we use the devel-
opmental trajectories of conduct problems (CP) from
age 4 to 13years derived previously (Barker &
Maughan, 2009). Entropy for this model was 0.71 and
class distribution was as follows: Early-Onset
Persistent (EOP; 9%), Adolescent Onset (AO; 5%),
Childhood Limited (CL; 21%), and Low (65%).

Binary (manifest) outcome Y. Symptoms of depres-
sion or generalized anxiety disorder (GAD) were
assessed at a focus clinic with the young people at
approximately age 18 years using a computerized ver-
sion of the Clinical Interview Schedule Revised (CIS-
R; (Lewis et al., 1992)). The CIS-R is a computerized
interview that derives a diagnosis of depression and
GAD according to ICD-10 criteria (World Health
Organisation, 1993). A binary variable indicating the
presence of an internalizing disorder (depression or
GAD) or subthreshold symptoms was taken as the
outcome measure (prevalence = 13%).

Binary (manifest) mediator M. Illicit drug use was
assessed during the same focus clinic at age 18 years.
The young people were asked about their lifetime use
of cannabis, cocaine, amphetamine-type stimulants,
inhalants, hallucinogens, opioids and other injected
illegal drugs. A binary variable was created represent-
ing the lifetime use of any illegal drug (prevalence
= 41%).

Confounders. Data on sociodemographic factors were
collected during pregnancy and perinatal assessments
with mothers and included maternal age (< 20 years/
> 20years), low maternal education (yes/no; referring



to qualified up to certificate of secondary qualification
level, vs. qualified to at least vocational level, O-level
or A-level), marital status (single mother/with part-
ner), three or more siblings (yes/no) and family
income (lowest quintile/second-fifth quintiles). The
cumulative number of sociodemographic risk factors
was summed, up to five, for each child as has been
done previously (Murray et al., 2015).

Statistical analysis

For the applied example, we contrasted the perform-
ance of the same techniques to relate a latent class
exposure to a distal outcome including: (i) “one-step”
estimation, (ii) “bias-adjusted three-step,” (iii) “modal
class assignment,” (iv) “nPCD,” (v) “incPCD,” and (vi)
“uPCD.” Again, mediation models were estimated with
all six approaches using a SEM framework based on
two logistic regression models involving outcome Y,
exposure X (latent classes), and mediator M [Equations
(1) and (2) above]. Mediation effects (including TE,
TNIE, and PNDE) were then derived using direct
application of the mediation formula (Muthén, 2011;
Pearl, 2012) as described in Supplement 1. Annotated
analysis scripts for the applied example using R and
Mplus are available here https://github.com/gemma-
hammerton/latentclass-mediation.

For incPCD and nPCD we generated 40 imputed
datasets, and for uPCD, we generated 60 imputed
datasets. The number of imputed datasets for uPCD
differed from the simulated data, given that it was
chosen to ensure that Monte Carlo errors were no
more than 10% of the SE for the parameters in the
regression model for Y and the regression model for
M (see Supplement 2). This could reflect the relation-
ship between the latent class indicators and the under-
lying latent class variable (with stronger auxiliary data
meaning that fewer imputed datasets are required
(Madley-Dowd et al., 2019). Supplement 3 provides
further details on uPCD, including the method used
to incorporate baseline confounders.

Results

Figure 3 shows log-risk ratios (and 95% confidence
intervals) for the mediation effects by method (one-
step, bias-adjusted three-step, modal class assignment,
nPCD, incPCD, and uPCD) and latent class compari-
son (EOP, AO, and CL versus Low conduct prob-
lems). Figure 3a shows the TE, Figure 3b shows the
TNIE, and Figure 3c shows the PNDE. As shown in
the Figures, effect estimates and SE are broadly similar
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for one-step and uPCD. For the TE and PNDE, effect
estimates, and SE are underestimated (compared to
one-step) for modal class assignment and nPCD, and
SE are underestimated for incPCD. The TNIE is close
to zero for all class comparisons, and effect sizes and
SE are similar across methods.

Discussion

Using a limited set of simulations as a proof-of-con-
cept and an applied example utilizing data from a
large UK population-based birth cohort (ALSPAC) we
have compared mediation effects (and their SE) esti-
mated using a new method (uPCD) to mediation
effects estimated using existing methods that are
either frequently used in practice (one-step, modal
class
adjusted three-step), or no longer used in practice, but
closely related to uPCD (nPCD, incPCD). We simu-
lated a latent class exposure, binary mediator, and
binary outcome across three levels of latent class sep-
aration (high, medium, and low entropy levels). We
found that uPCD showed minimal levels of bias across
all entropy levels, estimands, and class comparisons,
which was comparable to recommended methods
(one-step and bias-adjusted three-step). The precision
was also similar for uPCD and the one-step method;
however, both methods overestimated the model-
based SE when estimating the indirect and direct
effects in the poor entropy model. This is likely to be
a consequence of the complexity of the model, given
the sample size and class separation. Additionally, it is
only the one-step and uPCD methods that account for
the uncertainty in the parameters in the measurement
(class derivation) model, when estimating the struc-
tural (mediation) model, meaning that uncertainty in
the latent class parameters is carried through to the
mediation effects. These results support a previous
simulation study that found that the one-step method
can overestimate parameter uncertainty in conditions
with low entropy (Bakk et al., 2013).

In the applied example, we compared mediation
effects (and their SE) across all six methods using
developmental trajectories of childhood conduct prob-
lems as the latent class exposure, illegal drug use as
the mediator, and high internalizing symptoms as the

assignment), currently recommended (bias-

outcome. We found that uPCD showed similar results
to existing methods that are known to estimate associ-
ations between a latent class exposure and binary dis-
tal outcome without bias (one-step and bias-adjusted
three-step).
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Figure 3. (a) Total effects (TE) for the applied example by method and class comparison; (b) Total natural indirect effects (TNIE) for
the applied example by method and class comparison; (c) Pure natural direct effects (PNDE) for the applied example by method and
class comparison; Effect estimates shown are log-risk ratios and 95% confidence intervals for each latent class (Early-Onset Persistent,
Adolescent Onset, and Childhood Limited) versus the Low class, N = 3,039; Methods = one-step, bias-adjusted threestep (bch), modal
class assignment (modal), non-inclusive PCDs (npcd), inclusive PCDs (incpcd), and updated PCDs (upcd); latent class
comparisons = Early-Onset Persistent (eop) versus Low, Adolescent Onset (ao) versus Low; Childhood Limited (cl) versus Low.

Comparison with existing literature

Our findings for the methods that are no longer rec-
ommended (modal class assignment and nPCD) were
consistent with previous simulation studies (Bakk
et al., 2013; Bray et al., 2015; Vermunt, 2010). The
greatest bias was found for nPCD, followed by modal
class assignment, with bias toward the null, particularly
when the entropy was poor. These methods were also
overly precise, with smaller empirical SE compared to

other methods, particularly with poor entropy. Even at
medium (0.8) and high (0.9) entropy levels and with a
reasonably large sample size (1,5, = 5,000), mediation
effects were attenuated with 15% and 19% bias for
modal class assignment and nPCD, respectively, when
estimating direct effects with medium levels of entropy.
The only exception to this was when the effect size was
close to zero (which was the case for the TNIE of CL
versus Low conduct problems), and all methods
showed minimal bias across all entropy levels (as has



been shown previously, Bray et al, 2015). This is an
important finding, given that many researchers still use
a cut point of 0.8 on entropy to justify exporting latent
classes and treating them as an observed variable in
subsequent analyses. As discussed previously (Bray
et al, 2015; Dziak et al., 2016), attenuation in param-
eter estimates for these methods is due to a mismatch
between the class derivation and analysis model, result-
ing in “omitted outcome” bias which is well-known in
the multiple imputation literature (Collins et al., 2001).
This bias is addressed through the use of either
incPCD or uPCD.

For incPCD, we found minimal bias across nearly
all entropy levels, estimands, and class comparisons,
which supports previous simulation studies examining
the performance of incPCD with a binary distal out-
come (Bray et al,, 2015; Dziak et al.,, 2016). However,
this method did show bias toward the null for one spe-
cific estimand—the TNIE for AO versus Low conduct
problems. The bias specifically for the TNIE could be
because it was not possible to include the exposure-
mediator interaction as a covariate in the class deriv-
ation model, meaning that the measurement model was
not compatible with the analysis model. This bias may
have been present only for the AO class given that this
class had the strongest effect size for the TNIE, and
also has poorer class separation from the Low class
compared to the EOP class. We also found under-
coverage for incPCD in the poor entropy model for the
TE and PNDE which could be due to underestimated
model-based SE. This supports a previous simulation
study (Dziak et al., 2016) and may be due to the distal
outcomes forming part of the measurement model and
this additional model flexibility causing overfitting. The
opposite pattern was found for the TNIE, with slight
over-coverage in the poor entropy model reflecting the
over-estimated model-based SE. Again, this could be
due to omitting the exposure-mediator interaction as a
covariate in the class derivation model. Although
incPCD performs well in certain situations, previous
studies have shown that it performs poorly when
model assumptions are not met. For example, incPCD
assumes homoscedastic normality of the distal outcome
(Dziak et al., 2016) and will result in bias when the
variances of the distal outcome are not equal across
latent classes, unless a quadratic term is included as a
covariate in the class derivation model alongside a lin-
ear term for the numeric distal outcome (Dziak et al.,
2016). There are also limitations associated with a com-
plex class derivation model, such as estimation prob-
lems, risk of latent classes being distorted, and lack of
transportability of the latent class model across studies
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(Vermunt, 2010). Additionally, incPCD requires distal
outcomes to be treated as covariates in the class deriv-
ation model, and the default (at least in Mplus) is to
drop all individuals with missing data on covariates
from the analysis model (rather than employing full
information maximum likelihood (FIML) to address
missing data, as is the default strategy with distal
outcomes).

Some of these limitations can be addressed by
uPCD, given that it avoids the need for a complex
class derivation model that is required for one-step
and incPCD. UPCD uses an unconditional latent class
model, thereby avoiding the problems of the one-step
model such as distorted classes and lack of conver-
gence with more complex models, particularly when
sample size decreases (Bakk & Vermunt, 2016). Using
an unconditional latent class model also means that
the distal outcomes cannot contribute to the definition
of the classes which can create a circularity problem
with the one-step model (Bakk & Kuha, 2021; Bakk &
Vermunt, 2016).

In a simple analysis model (e.g., with a latent class
exposure, confounders, and a distal outcome), existing
bias-adjusted three-step methods have been shown to
perform well and the advantages of using uPCD
would not outweigh the disadvantages of the added
complexity of the method. However, uPCD has a
much greater advantage when the goal is to estimate a
more complex model. Bias-adjusted three-step meth-
ods can become unwieldy in more complex models
(Bakk & Kuha, 2021) and there is the possibility that
the distribution of the latent classes can change across
analysis models including different external variables
which is problematic for any subsequent analysis
which involves multiple steps. Additionally, using
bias-adjusted three step methods prevents the use of
many of the ready-made packages for performing
complex methods such as counterfactual mediation
(e.g., paramed or gformula in Stata) meaning that any
code needs to be manually written and implemented
which can be a barrier for applied researchers.

Our new method (uPCD) can address these limita-
tions, as the latent classes can be treated as a manifest
nominal variable in any subsequent analyses meaning
that a researcher has complete flexibility in which ana-
lysis model to use, and does not need to be constrained
to methods or packages which allow latent classes to be
incorporated (which are currently limited for counter-
factual mediation). This also opens up additional soft-
ware options, which is useful as bias-adjusted three
step methods are only currently implemented in pro-
grammes such as Mplus and Latent Gold (which both
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involve subscription costs). Treating the latent classes
as a manifest variable also means that researchers do
not need to be concerned about the distribution of the
latent classes changing across each step of the subse-
quent analysis. UPCD shares the advantages of meth-
ods that use an unconditional class derivation model
(e.g., bias-adjusted three-step methods, modal class
assignment, nPCD), and also shares the advantages of
methods that can treat the latent classes as an observed
variable in the analysis model (e.g., modal class assign-
ment, methods using PCD), but without the bias asso-
ciated with the methods that use both (e.g., modal class
assignment, nPCD). Finally, uPCD involves perturbing
the parameters from the latent class derivation model
which is important to correct SE in the mediation
model for the uncertainty in the parameters from the
unconditional latent class model. This becomes particu-
larly important as the sample size decreases (Bakk
et al., 2013; Vermunt, 2010).

Limitations of the study

The findings need to be interpreted in the context of
several limitations of the study. First, in both the
simulation study and applied example, we have
focused on a specific scenario with a four-class latent
class exposure, binary mediator, and binary outcome
and further simulation studies will be needed to test
whether uPCD can be used in a broader range of sit-
uations. Here we focused on a binary outcome
because many disease-related outcomes are binary,
and one-step methods usually work better with binary
rather than continuous distal outcomes allowing us to
compare results across methods. However, an impor-
tant extension will be to examine how uPCD performs
with a numeric mediator or outcome. Additionally,
we have not examined how uPCD performs in com-
parison to other methods when the assumptions of
the latent class model are violated (e.g., independence
of the indicators conditional on latent class, or inde-
pendence of the indicators and any external variables
conditional on latent class). This is a topic for future
research. It is also possible that our conclusions
depend on the class sizes for the simulated latent
classes, with one large class (70%) and three much
smaller classes (12%, 10% and 8%). Researchers often
use a criterion of smallest class greater or equal to 5%
to aid decisions in the class enumeration step, there-
fore, it is useful to show how uPCD performs with
small class sizes; however, future research could inves-
tigate the impact of varying class sizes.

Second, in our simulation study, we used a reason-
ably large sample size for this type of analysis (1,55 =
5,000). When we re-ran the simulation study using 7,
= 2,000 as a sensitivity analysis, results were similar to
Nops = 5,000, although all methods performed worse
with a smaller sample size, as has been shown previ-
ously (Bray et al., 2015). A sample size smaller than
Ngps =2,000 would be feasible (across all methods) with
a simpler model (e.g., a regression model with a latent
class exposure or outcome); however, it is likely to be
problematic for estimating a complex mediation model
(particularly using the one-step method on which the
simulation is based). The data-generating mechanism
used in the simulation included a four-category expos-
ure where two of the categories were rare (10% or
less), and a mediation model with an interaction
between the four-category exposure and a binary medi-
ator. Model complexity would need to be reduced if
only a smaller sample was available (regardless of the
method used to relate the latent classes to distal out-
comes). Additionally, with a larger sample but very low
entropy, only the one-step method is recommended
(Bakk et al., 2013; Vermunt, 2010).

Third, there is evidence that PCD results in more
bias than modal class assignment when using both the
non-inclusive and inclusive approaches (Asparouhov &
Muthén, 2014; Bray et al,, 2015); however, using modal
class assignment rather than PCD was not feasible with
our updated method so these approaches could not be
compared. There is another alternative to modal class
assignment known as proportional assignment, where
an individual’s class assignment probabilities are used
as regression weights (Bakk & Vermunt, 2016) rather
than using them to impute class membership (as in
methods based on PCD). Previous simulation studies
have shown that when bias-adjusted three step-methods
are used with proportional rather than model assign-
ment, parameter estimates are closer to the true value
(Bakk et al., 2014; Heron et al., 2015). Future research
could investigate whether there is any advantage to
combining uPCD with proportional assignment.
Fourth, given the time taken to run the analyses, we
have not used bootstrapping to estimate SE and confi-
dence intervals for mediation effects in the simulation
study or applied example. Various options exist to
combine bootstrapping with multiple imputation
(Schomaker & Heumann, 2018), or alternatively, the R
package RMediation (Tofighi & MacKinnon, 2011)
could be used to compute the 95% Monte Carlo confi-
dence interval for the mediation effects.

Finally, in our applied example we used FIML in the
class derivation model to permit the inclusion of partial



respondents on the latent class indicators based on the
missing-at-random assumption. Although this allows a
larger, more representative starting sample, it can lead
to a lower entropy due to additional uncertainty
around the incomplete observations for the latent class
indicators (Heron et al., 2015). We restricted the ana-
lysis sample to those with complete data on the con-
founders, mediator and outcome, which resulted in a
sample size of just over 3,000 (approximately 20% of
the original ALSPAC sample) meaning our estimates
may not generalize to the original sample enrolled and
may also be biased due to selection.

Challenges of uPCD and recommendations for use

Despite the advantages of uPCD, there are some add-
itional challenges which will need to be investigated in
future research. We found that even with a sample
size of 5,000, there were occasionally zero cells in the
cross-tabulations for the exposure, mediator and out-
come within some iterations for simulated datasets
with poor entropy, and this became more common
when the sample size was reduced to 2,000. Zero cells
can result in perfect prediction in the regression
model for the outcome or mediator. If perfect predic-
tion is detected, we recommend using firth logistic
regression (Heinze & Schemper, 2002) or Bayesian
logistic regression instead of standard logistic regres-
sion. If there is more than one zero cell, it is impor-
tant to consider whether the model is too complex
given the sample size. One option here would be to
reduce complexity, for example, through removing an
exposure-mediator interaction. However, if there is an
exposure-mediator interaction, and this is not
included in the mediation model, indirect effects can
be biased (VanderWeele, 2015).

Additionally, for some simulated datasets (particu-
larly those with poor entropy) there was a lot of
uncertainty around the within-class probability for
certain latent class indicators in the class derivation
model. Again, this issue became greater with a
smaller sample size for the simulated dataset.
Outside of the one-step model, these large SE would
not normally affect the analysis model given that the
uncertainty in the parameters from the class deriv-
ation model is usually not taken into account.
However, we found that these large SE could lead to
non-convergence for uPCD due to the parameters
from the class derivation model being perturbed
based on their (co)variance matrix. This non-conver-
gence can be detected by examining a trace plot of
parameters and cell sizes across iterations. We chose
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to exclude simulated datasets when the largest
within-class threshold SE from the unconditional
latent class model was greater than twice the average
of the largest within-class threshold SE across the
simulated datasets. If this occurred in an applied
example, one option would be to abandon the latent
class model and conclude that there is too much
uncertainty in the model parameters to conduct sub-
sequent analyses using classes. Alternatively, uPCD
could be used but the perturbation for problematic
parameters could be somehow controlled, or an alter-
native method could be considered that doesn’t take
into account the uncertainty from the class derivation
model. However, taking this uncertainty into account is
particularly important when the entropy is low or
when the sample size is small (Bakk & Kuha, 2021).

Future directions and extensions to uPCD
approach

In this simulation study offering a proof-of-concept,
uPCD performed similarly to recommended methods
(one-step and bias-adjusted three-step) to relate a latent
class exposure to a binary outcome, and showed min-
imal bias for mediation effects across various levels of
latent class separation. Before uPCD can be adopted by
applied researchers to address questions requiring
counterfactual mediation with a latent class exposure, it
will need to be tested in a broader range of scenarios.
Further simulation studies are needed to understand
how uPCD performs with a numeric mediator and/or
outcome, with multiple mediators or intermediate con-
founders, with a latent class mediator or outcome, and
how it can be combined with multiple imputation for
missing data. Further work is also needed to better
understand the issues with non-convergence and the
specific situations when uPCD should and should not
be used.
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