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ABSTRACT

In manifest variable models, Bayesian methods for mediation analysis can have better statis-
tical properties than commonly used frequentist methods. However, with latent variables,
Bayesian mediation analysis with diffuse priors can yield worse statistical properties than fre-
quentist methods, and no study to date has evaluated the impact of informative priors on
statistical properties of point and interval summaries of the mediated effect. This article
describes the first examination of using fully conjugate and informative (accurate and
inaccurate) priors in Bayesian mediation analysis with latent variables. Results suggest that
fully conjugate priors and informative priors with the same relative prior sample sizes have
notably different effects at N=200 and 400, than at N=50 and 100. Consequences of a
small amount of inaccuracy in priors for loadings can be alleviated by making the prior less
informative, whereas the same is not always true of inaccuracy in priors for structural paths.
Finally, the consequences of using informative priors depend on the inferential goals of the
analysis: inaccurate priors are more detrimental for accurately estimating the mediated
effect than for evaluating whether the mediated effect is nonzero. Recommendations are
provided about when to gainfully employ Bayesian mediation analysis with latent variables.
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Introduction

Mediation analysis is used to study intermediate varia-
bles that transmit the effect of an independent vari-
able to a dependent variable. Notable developments in
mediation analysis in the past decades consisted of
identifying optimal ways for testing the significance of
the mediated effect (MacKinnon, Lockwood, Hoffman,
West, & Sheets, 2002; MacKinnon, Lockwood, &
Williams, 2004; Shrout & Bolger, 2002), the extension
of mediation analysis to more complex models (Finch,
West, & MacKinnon, 1997; Krull & MacKinnon, 1999;
Preacher, Rucker, & Hayes, 2007), the definition of
conditions for causal inferences in mediation analysis
(Coffman & Zhong, 2012; Imai, Keele, & Tingley,
2010; Jo, Stuart, MacKinnon, & Vinokur, 2011;
Maxwell & Cole, 2007; Valeri & VanderWeele, 2013),
and the description and implementation of mediation
analysis in the Bayesian framework (Enders, Fairchild,
& MacKinnon, 2013; Yuan & MacKinnon, 2009).
Bayesian methods with informative priors may be
used to increase power to detect the mediated effect in

models with manifest variables (Miocevi¢, MacKinnon,
& Levy, 2017; Yuan & MacKinnon, 2009). In the
absence of relevant prior information, posterior sum-
maries of the mediated effect obtained using Bayesian
methods with diffuse priors have comparable or better
(Koopman, Howe, Hollenbeck, & Sin, 2015; Miocevi¢
et al., 2017) statistical properties than commonly used
frequentist methods, but have the advantage of prob-
abilistic interpretations (Little, 2006). More specifically,
diffuse (noninformative) prior distributions are used
to communicate ignorance about the sign and magni-
tude of coefficients in the mediation model; the most
common choice for diffuse priors for coefficients in
mediation analysis are normal distributions centered at
zero with a large variance (Koopman et al, 2015;
Miocevi¢ et al., 2017; Yuan & MacKinnon, 2009).
Bayesian methods with diffuse prior distributions have
higher power than normal theory confidence limits
because they do not require any assumptions about the
distribution of the mediated effect, and normal theory
confidence limits assume that the distribution of the
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Figure 1. Single mediator model with latent variables and
three manifest indicators per latent variable.

mediated effect is symmetric, which is often not the
case for the distribution of the product (Craig, 1936;
Lomnicki, 1967; Springer & Thompson, 1966).
Furthermore, Bayesian methods with diffuse priors do
not encounter as many instances of Type I error rates
as the bias-corrected bootstrap (Koopman et al., 2015),
which is another commonly used frequentist method,
despite the clear warnings in the literature about when
bias-corrected bootstrap confidence limits for the
mediated effect have excessive Type I error rates (Fritz,
Taylor, & MacKinnon, 2012).

Bayesian mediation analysis has been extensively
studied for manifest variable models (Chen, Choi,
Weiss, & Stapleton, 2014; Enders et al., 2013; Miocevic
et al., 2017; Yuan & MacKinnon, 2009), and the exam-
ination of Bayesian methods with diffuse priors for
latent variable mediation models has just begun (Chen,
Choi, Weiss, & Stapleton, 2014; van Erp, Mulder, &
Oberski, 2018). This article contains simulation studies
evaluating the following two questions related to
Bayesian mediation analysis with latent variables: (1)
What are the statistical properties of Bayesian point and
interval summaries of the mediated effect when the
researcher selects priors that communicate ignorance
about the sign and magnitude of the structural paths
and loadings?; 2) Can the negative impact of inaccurate
priors for loadings and structural paths be alleviated by
making the prior less informative, and are the effects
the same on statistical properties of point and interval
summaries of the mediated effect? The results of the
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simulation studies in this article present a more
nuanced picture of the effects that different assumptions
and levels of informativeness encoded in prior distribu-
tions have on statistical properties of the mediated effect
in the single mediator model with latent variables. The
following sections describe the single mediator model
with latent variables, mention considerations when fit-
ting this model in the Bayesian framework, offer a
description of conjugate priors for model parameters in
Bayesian structural equation modeling (SEM), and con-
clude with guiding questions for the simulation studies.

Single mediator model with latent variables

The single mediator model with latent variables and
three indicators per latent variable, as described by Finch
et al. (1997), consists of a measurement model for each
latent variable, and a structural model for the independ-
ent variable, mediator, and outcome (Figure 1).

The model is described using Equations (1-3):
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The mediated effect is computed as the product of
structural paths y,,,;. There are at least two possible
inferential goals' in mediation analysis: to estimate
the value of the indirect (mediated) effect and to
evaluate whether the indirect effect is different from
zero. The first inferential goal deals with the point
estimate/summary of the mediated effect and the
second inferential goal may be accomplished by evalu-
ating whether the interval estimate/summary of the
mediated effect includes zero. Previous studies of the
statistical properties of the point and interval esti-
mates of the mediated effect in latent variable models
found that ML point estimates of the indirect and dir-
ect effects have less than 10% relative bias for sample
sizes of 150, 250, 500, and 1000 (Finch et al., 1997).

'There are other inferential goals of mediation analysis, e.g., researchers
could be interested if the direct effect is zero or not, thus evaluating
whether the effect is “fully” or “partially” mediated. In this manuscript,
the two inferential goals we mention in the main text are the only goals
of interest for this study.
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Out of 11 estimators of the mediated effect in latent
variable models, the likelihood-based confidence inter-
vals, the percentile bootstrap, and the distribution of
the product method emerged as best methods based
on power, Type I error rates, and 95% coverage for
sample sizes of 100, 200, and 500 (Falk & Biesanz,
2015). Recently, methodologists started examining the
statistical properties of Bayesian methods for the sin-
gle mediator model with latent variables estimated as
a Bayesian SEM with continuous (Chen et al., 2014)
and ordinal (Chen, Zhang, & Choi, 2015) indicators.
Chen et al. (2014) examined the bias of the posterior
mean and coverage of equal-tail credibility intervals
for the mediated effect obtained using diffuse uniform
priors for loadings and structural paths in the single
mediator model with latent variables, continuous indi-
cators, and complete mediation at N=50, 100, and
400. Findings indicate that ML can encounter non-
convergence issues at N=50 and 100. However, in
combinations where ML converged, the posterior
mean had more instances of relative bias above 10%
than the ML estimate. In general, the posterior mean
had higher relative bias and was more efficient (ie.,
had lower root mean-squared error (RMSE) values)
than the ML estimate, and equal-tail credibility inter-
vals had more instances of miscoverage (coverage
both above and below the nominal level) than bias-
corrected bootstrap confidence limits. Thus, even
though Bayesian methods offer a solution when ML
does not converge, the posterior mean obtained with
uninformative nonconjugate priors for structural paths
and loadings is generally more biased than the ML
point estimate at sample sizes up to 100.

Fitting the single mediator model with latent
variables as a Bayesian SEM

For the sake of brevity, this section covers only the
considerations specific to fitting a single mediator
model with latent variables in the Bayesian SEM
framework. For details on how to fit this model dem-
onstrated through an empirical example, see Miocevié
(2019). For a general introduction to Bayesian meth-
ods for social sciences, see papers by van de Schoot
et al. (2014) and van de Schoot and Depaoli (2014).
For introductions to Bayesian SEM see chapters by
Kaplan and Depaoli (2012) and Levy and Choi (2013).
For information on Bayesian mediation analysis with
manifest variables see papers by Yuan and
MacKinnon (2009), Enders et al. (2013), and Miocevié
et al. (2017).

Fitting the single mediator model with latent varia-
bles as a Bayesian SEM requires specifying prior dis-
tributions for all unknown parameters. In manifest
variable mediation models, priors can be specified for
paths between the independent variable, mediator,
and outcome and the residual variances (Yuan &
MacKinnon, 2009), or for the covariance matrix of
the independent variable, mediator, and outcome
(Enders et al., 2013). The method of covariances has
the advantage that the degrees of freedom hyperpara-
meter of the inverse-Wishart prior can be interpreted
as the sample size of the prior sample. However, the
method of coefficients allows for a more intuitive way
of thinking about the priors specified for the parame-
ters, e.g., it is much easier to formulate prior expecta-
tions about the path between the independent variable
and mediator than about the covariance and variance
terms needed to compute this path. For this reason,
we use the method of coefficients for Bayesian SEM,
and not the method of covariances.

As in the frequentist framework, the scale of the
latent variables needs to be set, and the options are
either fixing one loading per latent variable to a con-
stant (often 1), fixing the average of the loadings of
the same latent variable to a constant (often 1), or fix-
ing the variances of latent variables to 1 (Little,
Slegers, & Card, 2006). In the Bayesian framework,
setting one loading to 1 is the most common choice
(Kaplan & Depaoli, 2012). Setting the variance of a
latent variable to 1 imposes the restriction that the
sum of squared loadings and residual variances of
manifest indicators must equal the variance of the
manifest indicator (MacCallum, Edwards, & Cai,
2012), which is not always easy to consider when
specifying priors for loadings and residual variances.
Setting the average of all loadings of the same latent
variable to a constant also requires careful consider-
ation when selecting hyperparameters of univariate
priors for the loadings. For this reason, the simulation
studies in this article use the marker-variable method.

The first step of a Bayesian analysis is the specifica-
tion of a prior distribution. Note that prior distribu-
tions can have various levels of informativeness that
exist on a spectrum but are often labeled as either
noninformative (also referred to as vague or diffuse)
or informative. It is also possible to specify so-called
weakly informative priors, which contain more infor-
mation than diffuse priors, but do not reflect the
actual amount of prior knowledge/intuition the
researcher possesses. One possible noninformative
prior specification is the so-called unit information
prior, which carries the amount of prior information



equivalent to what can be obtained from a prior sam-
ple size of 1 (Kass & Wasserman, 1995); this is the
definition of uninformativeness for the priors for the
variance parameters in this study. In general, priors
are labeled as diffuse to indicate that they carry no
information, and that we expect such priors to yield
Bayesian point summaries that are numerically identi-
cal to results from a frequentist analysis. However,
whether a prior can be considered diffuse or unin-
formative depends on the amount of information car-
ried by the data; an inverse-gamma prior with both
hyperparameters close to 0 (e.g., equal to 0.001) for a
variance parameter can be considered uninformative
in some settings, but as Gelman (2006) showed, this
prior is not uninformative for a level-2 variance par-
ameter in a multilevel model with only 8 clusters. For
more on different kinds of diffuse priors in Bayesian
SEM and the statistical properties of the indirect effect
obtained using such priors, see van Erp et al. (2018).

Conjugate prior distributions lead to posterior dis-
tributions of the same parametric form (Gelman et al.,
2013). We distinguish between two kinds of conjugate
priors: conditionally conjugate, and fully conjugate. In
the conditionally conjugate prior specification, normal
distributions are specified for loadings and structural
paths in SEM (Kaplan & Depaoli, 2012). The condi-
tionally conjugate priors in this study were normal
priors for loadings and structural paths centered at 0
with variance hyperparameters that do not depend on
the corresponding residual variance (i.e., 1000 and
100); these priors are referred to as “diffuse generic
priors” in the remainder of the study.

A fully conjugate prior density for the mean and
variance parameters of a normal distribution has the
product form p(c®)p(u|o®) for which the marginal
distribution of 62 is a scaled inverse-y* (which is a
special case of the inverse-gamma with hyperpara-
meters o=v/2 and f=a,°v/2, where v denotes the
degrees of freedom parameter of the inverse-y* and
60> denotes the scale of ¢2) and the conditional distri-
bution of p given ¢? is normal (Gelman et al., 2013).

Recall that the conjugate prior for the variance is
an inverse-gamma distribution (Gelman et al., 2013).
Thus, the fully conjugate priors for loading and struc-
tural paths are normal distributions conditional on
the corresponding residual variances, which are
assigned inverse-gamma priors. The fully conjugate
priors specified in this project were normal priors for
loadings and structural paths centered at zero with a
variance hyperparameter equal to the corresponding
residual variance, and inverse-gamma priors with
hyperparameters o= f=0.5 for measurement error
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variances of manifest indicators, residual variances of
endogenous latent variables, and the variances of the
exogenous latent variable. Unlike normal distributions
where the informativeness of the prior is determined
by the variance hyperparameter, inverse-gamma distri-
butions allow for encoding the desired weight of the
prior information in terms of prior sample size. Given
the relationship between the scaled inverse-chi-square
distribution and the inverse-gamma distribution, the
shape (o) hyperparameter of the inverse-gamma prior
can be thought of as half of the prior sample size, and
scale (f) hyperparameter can be thought of as the
product of half of the prior sample size and
the observed value of the corresponding variance in
the prior sample (Gelman et al, 2013). Thus, the
inverse-gamma priors with both hyperparameters
equal to 0.5 encode the assumption that the best guess
for the prior variance is 1, and that the best guess car-
ries the weight of one observation. When the variance
parameter being conditioned on is large, the fully con-
jugate specification will lead to a diffuse prior.
However, this was not the case in the simulation stud-
ies in this article because both the measurement error
variances and the residual variances of latent variables
are generated to be smaller than 1, thus leading to
informative priors when the variance hyperparameter
of normal priors is set equal to either the measure-
ment error variance or the residual variance of either
N, or 1, (i.e., the latent mediator and latent outcome
variables from Equation (2), respectively). Note that
both fully conjugate and diffuse generic priors in this
study encode that the researcher’s best guess about
each freely estimated loading and structural path is
zero. Thus, both of these priors allow the researcher
to avoid making any guesses about the signs of these
parameters; however, in the simulation studies for this
article, fully conjugate priors are notably more
informative than diffuse generic priors.

The second step of a Bayesian analysis is to update
the prior with the observed data. Since latent variable
models do not have analytical solutions (Aitkin &
Aitkin, 2005), this is done by using Markov chain
Monte Carlo (MCMC) methods to approximate the
posterior distribution. For an introduction to MCMC
estimation, see the paper by Brooks (1998), and for
accessible guidelines on how to diagnose convergence
of MCMC see the paper by Sinharay (2004). The
mediated effect is computed as the product of paths
y11P21 at each MCMC iteration, thus yielding an
approximation of the marginal posterior of the medi-
ated effect. The posterior for the mediated effect can
be summarized using the mean, median, and mode as
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Table 1. Parameter combinations for the Monte Carlo studies.

Combination Y11 Bn Y2

1 0.60 0.20 0.12
2 0.30 0.40 0.12
3 0.30 0.40 0.36
4 0 0.40 0.12
5 0.40 0 0.12
6 0 0 0.12

point summaries, and equal-tail and highest posterior
density (HPD) intervals as interval summaries. HPD
intervals have the property that no value outside of
the interval has higher probability than values inside
of the interval (Gelman et al., 2013). The distribution
of the product of two normal variates is often asym-
metric (Craig, 1936; Lomnicki, 1967; Springer &
Thompson, 1966) and methods that take this distribu-
tion into account or make no distributional assump-
tions yield intervals for the mediated effect with better
statistical properties than normal theory confidence
intervals (Cheung, 2007, 2009; MacKinnon, Fritz,
Williams, & Lockwood, 2007; MacKinnon et al., 2002;
2004; Shrout & Bolger, 2002; Tofighi & MacKinnon,
2011; Valente, Gonzalez, Miocevi¢, & MacKinnon,
2016). In the frequentist framework, the distribution
of the product confidence limits, obtained analytically
using critical values from the distribution of the prod-
uct of two normal variates, are among the best inter-
val estimators for the mediated effect. This simulation
study uses the distribution of the product confidence
limits as the frequentist interval estimator and uses
only HPD intervals as a Bayesian interval estimator of
the mediated effect because HPD intervals are better
suited for representing the most probable values in
nonsymmetrical posterior distributions.

Goals of the Monte Carlo studies

It is still unclear whether researchers should opt for
Bayesian methods with conjugate priors in the absence
of prior information about the model parameters.
Furthermore, no study to date has evaluated the statis-
tical properties of the point summaries of the indirect
effect obtained using fully conjugate priors, and there
has not been any research done about the impact of
informative priors on the results of Bayesian analyses of
the latent variable mediation model.

The Monte Carlo studies in this article were
designed to answer the following sets of questions:

Study 1. When there is no prior information on the
sign of structural paths and loadings, should
researchers use Bayesian methods with fully conju-
gate priors, Bayesian methods with diffuse generic

priors, or ML estimation and the distribution of the
product to compute point and interval estimates/
summaries of the mediated effect? In other words,
how well do Bayesian methods with diffuse generic
priors and fully conjugate priors perform in terms of
evaluating the magnitude of the indirect effect and
assessing if the indirect effect is zero relative to ML
point estimates and distribution of the product con-
fidence intervals with sample sizes of 50, 100, 200,
and 400?

Study 2. Accurate informative priors will improve
statistical properties of point and interval summaries
of the mediated effect, whereas inaccurate priors will
make the statistical properties worse. However, the
consequences of inaccuracy in one’s prior beliefs
about a parameter can sometimes be alleviated by
making the prior less informative (Depaoli, 2014).
Study 2 evaluated 1) the amount of improvement in
statistical properties that can be achieved with accur-
ate priors that carry 1/ and !4 of the weight of the
likelihood function at N=50, 100, 200, and 400 rela-
tive to results obtained using ML estimation and the
distribution of the product, and 2) whether the nega-
tive consequences of inaccuracy in the priors for
loadings and structural paths can be alleviated by
making the prior carry /4 instead of 1/, of the weight
of the likelihood function.

Methods

The Monte Carlo studies were carried out using
WinBUGS (Lunn, Thomas, Best, & Spiegelhalter, 2000),
R (R Core Team, 2014), and R packages lavaan
(Rosseel, 2012), RMediation (Tofighi & MacKinnon,
2011), R2ZWinBUGS (Sturtz, Ligges, & Gelman, 2005),
and coda (Plummer, Best, Cowles, & Vines, 2006).> A
program was written to draw and store 500 samples
from the six populations based on parameter values in
Combinations 1-6 (Table 1). The parameter values for
structural parameters in Combinations 1-3 were mod-
eled after parameter values in the paper by Finch et al.
(1997). Combinations 4-6 were created to evaluate the
Type I error rates of methods under examination.

Data were simulated following Equations (1) and
(2) for the measurement model, and Equation (3) for
the structural model. The disturbances of endogenous

Note that the manuscript discusses normal distributions for parameters
and variables using the variance parametrization, however, the software
used in the simulation study uses the precision (i.e., inverse of the
variance) parametrization. Thus, in the syntax for the simulation, the
second parameter in normal priors is the precision, and the (residual)
precision parameters in the model are assigned gamma instead of
inverse-gamma priors.
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Table 2. Prior specifications for Bayesian methods in Study 1.

Diffuse generic priors

Fully conjugate priors

N=50 A ~ N (0, 100)

Y11, B2r, 721 ~ N (0, 100)

Dy, Y1, Yoo 652, 6.2~ 1G (0.5, 0.5)
N=100 A ~ N (0, 100)

Y11 Bars 21 ~ N (0, 100)

Dy, Y11, Yoo 65, 6.2~ 1G (0.5, 0.5)
N=200 A ~ N (0, 1000)

7110 Bars 21 ~ N (0, 1000)

Oy, Y1, Yoz 055 0.2~ 1G (0.001, 0.001)
N =400 A; ~ N (0, 1000)

Y11, Ba1s y21 ~ N (0, 1000)

@11, Y11, Y2, 05° 02~ IG (0.001, 0.001)

Ji~ N, ¢

Y11~ N (0, 1), Baryar ~ N (0, ¥r22)
D11, Yo, Y2z 055 07~ 1G (5, .5)
Ji~ N 6)

P11~ N0, i) Baryar ~ N (0, 22)
Dyq, Yy, Y22 652, 0.2~ 1G (0.5, 0.5)
Zi~ N (0, 6.7)

P11~ N0 Yaa) Baryar ~ N (0, 122)
Doy, Yoy, Yoz 652, 6,2~ 1G (0.5, 0.5)
4~ N0, 77)

P11~ N0, i) Baryar ~ N (0, 22)
Dy, Y1, Yoo, 05°, 67~ 1G (0.5, 0.5)

Note. This table contains specifications of diffuse generic and fully conjugate prior distributions for measurement and
structural model parameters in Study 1. The first hyperparameter in the normal priors is the mean, and the second

hyperparameter is the variance.

variables {; and {, were simulated to follow normal
distributions with a mean of 0 and variances equal to
Yu=1-yy> and Yy =1~ (> +29Burn +
By1%), so all latent variables have variances equal to 1.
In all 6 parameter combinations, all loadings were
simulated to equal 1, and reliability of 0.7 for each
manifest indicator was obtained by simulating the
measurement errors of manifest indicators to follow
normal distributions with a mean of 0 and variances
equal to 0.4286.

The sample sizes of the observed (focal) sample
examined in this study were N=50, 100, 200, and
400. In frequentist analyses ML estimation imple-
mented in the R package lavaan (Rosseel, 2012) was
used for point estimation, and the distribution of the
product confidence limits were obtained using ML
estimates of paths y,; and f,;, and their standard
errors that were entered into the medci function in
the R package RMediation (Tofighi & MacKinnon,
2011). In the Bayesian analyses the mean, median,
and mode of the posterior for the mediated effect
were used as point summaries, and HPD intervals
were used as interval summaries. The software, sample
sizes, parameter values in Combinations 1-6, and
Bayesian and frequentist point and interval summa-
ries/estimates were the same in all simulation studies.
Each Bayesian analysis featured 1500 burn-in itera-
tions, 3 chains, and 5000 total iterations per chain
(3500 iterations post burn-in, thus leading to posteri-
ors based on 10,500 iterations). Criteria used to diag-
nose convergence were values of the potential scale
reduction factor (PSRF; Brooks & Gelman, 1998),
where values <1.1 were considered evidence of

convergence, and trace plots (good mixing of the
three chains was considered evidence of convergence).
The thinning period was set to 1 (i.e., no thinning),
following the recommendations by Link and Eaton
(2012). Subsequent sections only contain information
relevant to each specific simulation study.

Study 1

The first study compares frequentist methods to
Bayesian methods with diffuse generic priors and fully
conjugate priors that had the same mean hyperpara-
meters (i.e., zero) as the diffuse generic priors but dif-
ferent variance hyperparameters (i.e., for loadings the
variance hyperparameter was equal to the measure-
ment error variance of the indicator, and for struc-
tural paths the variance hyperparameter was equal to
the residual variance of the corresponding endogenous
latent variable).

A preliminary analysis of a single simulated data
set with diffuse generic priors showed that for sample
sizes of 200 and 400, the chains converged by 1500
iterations. For sample sizes of 50 and 100, the chains
in the analysis with diffuse generic priors did not con-
verge by 1500 iterations like they did for larger sample
sizes, and empirical testing showed that the chains did
not even converge after 500,000 iterations. The lack of
convergence after this many draws suggested that the
priors were too diffuse, and thus for N=50 and 100
the diffuse generic priors were made more inform-
ative. The best guess for each parameter was still the
same as in the diffuse generic priors for N=200 and
400, however, the variance hyperparameter of the
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normal priors for loadings and structural paths was
decreased from 1000 to 100 (thus making the prior 10
times more informative), and for variance and
residual variance parameters the best guess was
assigned the weight of 1 observation for N=50 and
100 as opposed to 0.002 “observations” for N =200
and 400. The priors for all classes of parameters in
Study 1 are shown in Table 2.

All Bayesian analyses in studies 1-3 featured 3
chains, 1500 burn-in iterations, and 3500 iterations
post burn-in, thus leading to posteriors based on
10,500 iterations.

Study 2

The second study evaluates the impact of informative
(accurate and inaccurate) priors for loadings and
structural paths, examines whether the negative conse-
quences of inaccurate priors can be alleviated by mak-
ing the prior 50% less informative, and reports on the
extent to which inaccuracy is detrimental for point
summaries versus interval summaries of the indir-
ect effect.

Accurate and inaccurate priors were designed to
carry 25% and 50% of the information carried by the
likelihood function of this study. The choice to have
this percentage be below 100% was made to emulate a
scenario where the researcher either only has access to
published findings from a prior study that had a lower
sample size than this study, or the researcher herself
chooses not to weigh the published findings from the
previous study more heavily than the likelihood func-
tion from this study. In this study, all priors for vari-
ance (and residual) variance parameters were accurate
and had the same level of informativeness as the pri-
ors for all other parameters in a given condition. The
hyperparameters for the accurate priors for variance
parameters were computed analytically by plugging in
the true value of the variance term and the size of the
prior sample into the formulas for the parameters of
the inverse-gamma distribution. For example, the true
measurement error variance for indicator x; is equal
to 0.4286, and the hyperparameters of the inverse-
gamma prior for this measurement error variance at
Nprior = 100 were computed as follows:

051 ~ IG(192, 1900.4286) = 1G(50,21.43).

Unlike the inverse-gamma distribution, the normal
distribution does not have a spread parameter with a
direct interpretation in terms of sample size. Normal
priors for structural paths and loadings that carry
Norior Worth of information were obtained using a ser-

p
ies of steps. First, one sample of size N Was drawn

from the population, and the Bollen and Stine (1992)
transformation was used to transform the sample
covariance matrix into the population (i.e., simulated)
covariance matrix. The true model was then estimated
using ML and the population covariance matrix as
input. The standard errors of the structural parame-
ters and loadings from the ML results were then used
to compute the spread hyperparameters of the priors
for the corresponding parameters, i.e., the value of the
standard error was used as the standard deviation for
the corresponding normal prior, so the variance
hyperparameter for the prior being constructed was
computed as the squared standard error from the ML
results. Mean hyperparameters of accurate priors for
structural paths were set equal to the population (i.e.,
simulated) value of the corresponding structural path.
The study examined four different amounts of
inaccuracy in the priors for structural paths: 0.5sd,
1sd, 2sd, and 3sd. The desired amount of inaccuracy
in the mean hyperparameters of normal priors for
structural paths was obtained either by adding
(Combinations 4-6) or by subtracting (Combinations
1-3) the appropriate number of standard deviations
to/from the true value of the corresponding structural
path. For example, the inaccurate prior with 2sd of
inaccuracy for f,; at Npsor=>50 in Combination 1
was obtained by subtracting 21/0.044 (two times the
square root of the empirically obtained variance at
Nprior = 50) from the true value 0.20, thus yielding 0.20 —
24/0.044 = 0.20 — 2(0.21) = 0.20 — 0.42 = —0.22  as
the mean hyperparameter of the prior for f,;. In con-
ditions with inaccurate priors for structural paths, the
priors for loadings and variance parameters (i.e.,
measurement error variances, the variances of the
exogenous latent variable, and the residual variances
of the endogenous latent variables) remained accurate.

Since composite reliability and its standard error
are not obtained in ML estimation of the model, the
distribution of composite reliability at Nyior = 25, 50,
100, and 200 had to be approximated to compute the
standard deviation. This was done by simulating 1000
values of the two freely estimated loadings, the vari-
ance of the latent variable, and measurement error
variances from their true distributions based on Npyior
= 25, 50, 100, and 200, and plugging the values into
Raykov’s (1997) formula for composite reliability of

(Z/4)* Var(n)
(Z)* Var(n)+20,
is the composite reliability, 4; are the loadings of the
indicators for a given latent variable (i= 1-3 in this
model), Var(n) is the variance of the latent variable,
and X0, is the sum of the measurement error variances
for the three indicators of a given latent variable. The

congeneric measures, pyy = , where pyx



Table 3. Prior specifications for Bayesian methods with .5sd
inaccuracy in the prior expectations for loadings and structural
parameters.

Inaccurate loadings Inaccurate structural
Combination 1 (y;7 =0.60, 51 =0.20, y,; =0.12)
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Table 3. Continued.

Inaccurate loadings

Inaccurate structural

Nprior:25 ;Li ~ N (1.19, 0047)
711 ~ N (0.40, 0.051)

B ~ N (0, 0.064)

Nprior =25 X ~ N (0.84, 0.047) Ji ~ N (1, 0.047)

711 ~ N (0.60, 0.050) 711 ~ N (0.49, 0.050)

Ba1 ~ N (0.20, 0.088) Bar ~ N (0.05, 0.088)

721 ~ N (0.12, 0.087) 721 ~ N (—0.03, 0.087)
Nprior =50 X ~ N (0.88, 0.024) Ji ~ N (1, 0.024)

711 ~ N (0.60, 0.025) 711 ~ N (052, 0.025)

Ba1 ~ N (0.20, 0.044) Bar ~ N (0.09, 0.044)

21 ~ N (0.12, 0.044) 721 ~ N (0.01, 0.044)
Nprior = 100 X ~ N (091, 0.012) Ji~ N(1,0012)

711 ~ N (0.6, 0.012) 711 ~ N (0.54, 0.012)

Bar ~ N (0.2, 0.022) P21 ~ N (0.13, 0.022)

21 ~ N (0.12, 0.022) 721 ~ N (0.05, 0.022)
Nprior = 200 X ~ N (0.93, 0.006) i ~ N (1, 0.006)

711 ~ N (0.6, 0.006) 711 ~ N (0.56, 0.006)

Bar ~ N (0.2, 0.011) P21 ~ N (0.15, 0.011)

21 ~ N (12, .011) 721 ~ N (0.07, 0.011)

Combination 2 (y;; =0.30, ;7 =0.40, y,; =0.12)
Nprior = 25 A ~ N (0.84, 0.047) Ji ~ N (1, 0.047)

711 ~ N (030, 0.052) 711 ~ N (0.19, 0.052)

Bar ~ N (0.40, 0.055) P21 ~ N (0.28, 0.055)

Y21 ~ N (0.12, 0.050) y21 ~ N (0.01, 0.050)
Nprior = 50 A ~ N (0.88, 0.024) Ji ~ N (1, 0.024)

711 ~ N (030, 0.026) 711 ~ N (0.2, 0.026)

Bar ~ N (040, 0.027) P21 ~ N (032, 0.027)

721 ~ N (0.12, 0.025) 721 ~ N (0.04, 0.025)
Nprior = 100 A ~ N (091, 0.012) Ji~ N(1,0012)

711 ~ N (0.3, 0.013) 711 ~ N (0.24, 0.013)

Bar ~ N (0.4, 0.014) Bar ~ N (034, 0.014)

721 ~ N (0.12, 0.012) 721 ~ N (0.06, 0.012)
Nprior = 200 7 ~ N (0.93, 0.006) % ~ N (1, 0.006)

711 ~ N (0.3, 0.006) 711 ~ N (0.26, 0.006)

Bar ~ N (0.4, 0.007) Ba1 ~ N (0.36, 0.007)

721 ~ N (0.12, 0.006) 721 ~ N (0.08, 0.006)

Combination 3 (y1; =0.30, 5 = 0.40, 5, = 0.36)
Norior = 25 Ji ~ N (0.84, 0.047) T ~ N (1,0.047)

711 ~ N (030, 0.052) 711 ~ N (0.18, 0.052)

Bar ~ N (0.40, 0.047) Bar ~ N (0.29, 0.047)

721 ~ N (0.36, 0.046) 21 ~ N (0.25, 0.046)
Norior = 50 Ji ~ N (0.88, 0.024) Ji ~ N (1, 0.024)

711 ~ N (030, 0.026) 711 ~ N (0.2, 0.026)

Bar ~ N (40, .023) Bar ~ N (0.32, 0.023)

21 ~ N (0.36, 0.023) 91 ~ N (0.28, 0.023)
Nprior = 100 J~ N (091, 0.012) Ji~ N (1,0012)

711 ~ N (0.3, 0.013) 711 ~ N (0.24, 0.013)

Bar ~ N (0.4, 0.012) Bar ~ N (0.35, 0.012)

721 ~ N (036, 0.011) 721 ~ N (031, 0.011)
Nprior = 200 X ~ N (0.93, 0.006) 2 ~ N (1, 0.006)

711 ~ N (0.3, 0.006) 711 ~ N (0.26, 0.006)

Bar ~ N (4, .006) Ba1 ~ N (0.36, 0.006)

721 ~ N (036, 0.006) 721 ~ N (0.32, 0.006)

Combination 4 (y;; =0, 57 =0.40, y,; =0.12)
Nprior = 25 A ~ N (1.19, 0.047) Ji ~ N (1, 0.047)

711 ~ N (0, 0.052) 711 ~ N (0.11, 0.052)

B2 ~ N (0.40, 0.051) Bor ~ N (0.51, 0.051)

721 ~ N (0.12, 0.046) 721 ~ N (0.23, 0.046)
Nprior = 50 A~ N (1.11, 0.024) Ji ~ N (1, 0.024)

y11 ~ N (0, 0.026) y11 ~ N (0.08, 0.026)

Bar ~ N (0.40, 0.025) Bor ~ N (0.48, 0.025)

721 ~ N (0.12, 0.023) 721 ~ N (0.20, 0.023)
Nprior = 100 A ~ N (1.06, 0.012) Ji~ N(1,0012)

y11 ~ N (0, 0.013) y11 ~ N (0.06, 0.013)

B ~ N (0.4, 0.013) Bor ~ N (0.46, 0.013)

721 ~ N (0.12, 0.011) 721 ~ N (0.17, 0.011)
Nprior = 200 A ~ N (1.04, 0.006) i ~ N (1, 0.006)

y11 ~ N (0, 0.006)
B2 ~ N (0.40, 0.006)
721 ~ N (0.12, 0.006)

711 ~ N (0.04, 0.006)
Bar ~ N (0.44, 0.006)
721 ~ N (0.16, 0.006)

Combination 5 (y;7 =0.40, 51 =0, y; =0.12)

Nprior =50

Norior= 100

Norior =200

Nprior =25

Nprior =50

Nprior =100

Nprior =200

721 ~ N (0.12, 0.065)
Ji ~ N (1.11, 0.024)
711 ~ N (0.40, 0.026)
Bar ~ N (0, 0.032)
21 ~ N (0.13, 0.032)
i ~ N (1.06, 0.012)
711 ~ N (0.40, 0.013)
Ba1 ~ N (0, 0.016)
721 ~ N (0.12, 0.016)
i ~ N (1.04, 0.006)
911 ~ N (0.40, 0.006)
Bar ~ N (0, 0.008)
721 ~ N (0.12, 0.008)

i ~ N (1, 0.047)

911 ~ N (0.51, 0.051)
B ~ N (0.13, 0.064)
721 ~ N (0.25, 0.065)
i~ N (1, 0.024)

911 ~ N (0.48, 0.026)
Bar ~ N (0.09, 0.032)
721 ~ N (0.21, 0.032)
i~ N (1,0012)

911 ~ N (0.46, 0.013)
Bar ~ N (0.06, 0.016)
721 ~ N (0.18, 0.016)
Ji ~ N (1, 0.006)

11 ~ N (0.4, 0.006)
Ba1 ~ N (0.04, 0.008)
721 ~ N (0.16, 0.008)

Combination 6 (y;; =0, 5, =0, y,; =0.12)

Ji ~ N (1.19, 0.047)
y11 ~ N (0, 0.052)
Ba1 ~ N (0, 0.052)
21 ~ N (.12, 0.052)
Ji ~ N (1.11, 0.024)
y11 ~ N (0, 0.026)
Ba1 ~ N (0, 0.026)
y21 ~ N (0.12, 0.026)
Ji ~ N (1.06, 0.012)
11 ~ N (0, 0.013)
Ba1 ~ N (0, 0.013)
21 ~ N (0.12, 0.013)
Ji ~ N (1.04, 0.006)
711 ~ N (0, 0.006)
Ba1 ~ N (0, 0.006)
721 ~ N (0.12, 0.006)

s~ N (1,0.047)

711 ~ N (0.11, 0.052)
Bar ~ N (0.1, 0.052)
721 ~ N (0.23, 0.052)
Ji~ N (1,0.024)

y17 ~ N (0.08, 0.026)
Bar ~ N (0.08, 0.026)
721 ~ N (0.20, 0.026)
Ji~N(1,0012)

y17 ~ N (0.06, 0.013)
Bar ~ N (0.06, 0.013)
Y21 ~ N (0.17, 0.013)
i ~ N (1, 0.006)

y11 ~ N (0.04, 0.006)
Bar ~ N (0.04, 0.006)
Y21 ~ N (0.16, 0.006)

(Continued)

Note. This table contains specifications of informative inaccurate prior dis-
tributions for measurement and structural model parameters in Study 2.
The first hyperparameter in the normal priors is the mean, and the
second hyperparameter is the variance. Measurement error variances,
and (residual) variances of latent variables were assigned accurate priors
that have the weight of Ny

standard deviation of this empirical distribution of
composite reliability was used as the standard deviation
for the informative priors based on Ny, = 25, 50,
100, and 200. Once the standard deviation of composite
reliability was computed, the mean hyperparameters for
inaccurate priors for loadings were created by adding/
subtracting 0.5sd from the true composite reliability
(0.87) and calculating the values of loadings that would
produce this value of composite reliability. The inaccur-
acy of 0.5sd was chosen because it is possible to induce
at the level of composite reliability without exceeding
the upper bound of this quantity (i.e, 1). Larger
amounts of inaccuracy (e.g., 2sd) could be induced for
structural paths, but not for composite reliability. In
conditions with inaccurate priors for loadings, the pri-
ors for structural paths and variance parameters (i.e.,
measurement error variances, the variances of the
exogenous latent variable, and the residual variances of
the endogenous latent variables) remained accurate.

In conditions where both loadings and structural
paths had inaccurate priors with 0.5sd of bias in the
mean hyperparameter, the direction (sign) of the
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inaccuracy was the same for the measurement model
and the structural model. For conditions 1-3 where
the mediated effect y;,6,; > 0, the bias in mean
hyperparameter of the inaccurate priors was negative,
whereas in conditions 4-6 where 7;,$,; =0 the bias
was positive. This way the simulation study answers
questions about changes in power with negatively
biased expectations in inaccurate priors for combina-
tions where y,16,; > 0, and changes in Type I error
rates with positively biased expectations in inaccurate
priors for combinations where y,,,, =0. Table 3 dis-
plays hyperparameters for inaccurate priors for load-
ings and structural paths with 0.5sd of inaccuracy, and
Table 4 displays inaccurate priors for structural paths
with 1, 2, and 3sd of inaccuracy in the mean
hyperparameters.

Convergence diagnostics were performed using the
PSRF and trace plots using the same criteria outlined
in the general methods section.

Dependent variables in the simulation studies

The statistical properties used to assess point estimates
and summaries of the mediated effect are bias, relative
bias (for y,,f,,7# 0), efficiency (conceptualized both as
the standard error of the ML estimate and standard
deviation of the posterior, and as the standard devi-
ation of the point estimate/summary of y,,f,, over
500 replications), mean-squared error (MSE) com-
puted as the sum of the variance and the bias squared
of an estimator, MSE = var + bias®>, and RMSE com-
puted as v/ MSE. Relative bias above 10% was consid-
ered problematic (Kaplan, 1988). Values of MSE were
very small and unhelpful in distinguishing between
methods being compared, so they are included in the
tables of results but not discussed in the
results section.

The interval estimators of the mediated effect were
evaluated in terms of Type I error rate, power, cover-
age, and interval width. Type I error rate and coverage
were assessed according to Bradley’s robustness criter-
ion (1978). Type I error rates between 0.025 and
0.075 were deemed reasonably close to the nominal
level of 0.05, and values above 0.075 were considered
excessive. Coverage between 0.925 and 0.975 was con-
sidered close enough to the nominal level of 0.95, and
coverage below 0.925 was deemed problematic.
Imbalance is a measure of whether a method system-
atically overestimates or underestimates the value of
the mediated effect, and it was computed as the differ-
ence in the number of times the true value fell above
the upper interval limit versus below the lower

interval limit. Values of imbalance closer to zero indi-
cated less systematic over- and underestimation.

Results

Study 1: Bayesian methods with diffuse generic
and fully conjugate priors versus ML and
distribution of the product

This study compared point and interval summaries
obtained using Bayesian methods with diffuse generic
and fully conjugate priors to ML point estimates and
interval estimates obtained using the distribution of
the product. The results for point summaries/esti-
mates will be described first, followed by the results
for the interval summaries/estimates. In this section,
the posterior summaries obtained using diffuse gen-
eric priors will have the subscript DG (e.g., the poster-
ior mean obtained using diffuse generic priors is
denoted meanpg), and the posterior summaries
obtained using fully conjugate priors will have the
subscript FC (e.g., the posterior mode obtained using
fully conjugate priors is denoted moderc). We con-
sider the posterior mode, median, and mean, and
make recommendations based on their performance
using a given set of priors. Complete tables of results
for Monte Carlo studies 1-2 are available at https://
doi.org/10.6084/m9.figshare.9784403.v1

A comparison of point estimates and summaries of
the mediated effect indicated that meanpg had the
highest RMSE values, followed by the medianpg in
parameter combinations with a positive mediated
effect, and followed by the ML point estimate in par-
ameter combinations with a zero mediated -effect
(Figure 2). The differences between point summaries
and the ML point estimates became smaller as sample
size increased, however, the meanpg had notably
higher RMSE than other point summaries and the ML
estimate even at N=200 for Combination 4 and at
N=400 for Combinations 1, 3, and 4. An inspection
of values of efficiency (defined as the standard devi-
ation over 500 replications) for the 7 point estimators
showed that the medianpg, meanpg, and the ML
point estimate emerged as the least efficient point esti-
mators, and the modepg and modegc emerged as the
point estimators with the highest efficiency (i.e., the
lowest standard deviation over replications). However,
the modepg and modegc also had more than 10%
relative bias in Combinations 1-3 where the indirect
effect was positive, and the mediangc followed closely
(Figure 3).

At N=50 and 100, HPD credibility intervals
obtained using fully conjugate and diffuse generic
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Table 4. Prior specifications for Bayesi i i
. yesian methods with accurate priors and inaccurate pri i i i
the prior expectations for the structural parameters. P © priors with 1, 2:d, and 3sd naceuracy n

Accurate

Inaccurate 1sd

Inaccurate 2sd

Inaccurate 3sd

Noior = 25
Norior = 50
Norior = 100
Norior = 200
Norior = 25
Nrior = 50
Nerior = 100
Nrior = 200
Norior = 25
Norior = 50
Nrior = 100
Nerior = 200
Norior = 25
Nrior = 50
Norior = 100
Nrior = 200
Noior = 25
Norior = 50
Nprior = 100
Norior = 200
Norior = 25
Npior = 50

Combination 1 (y;; =0.60, 557 =0.20, y,; =0.12)

y11 ~ N (0.60, 0.050)
Bar ~ N (0.20, 0.088)
721 ~ N (0.12, 0.087)
y11 ~ N (0.60, 0.025)
fa1 ~ N (0.20, 0.044)
721 ~ N (0.12, 0.044)
y11 ~ N (0.60, 0.012)
Bar ~ N (020, 0.022)
791 ~ N (0.12, 0.022)
711 ~ N (0.60, 0.006)
P21 ~ N (0.20, 0.011)
21 ~ N (0.12, 0.011)

711 ~ N (0.38, 0.050)
Bar ~ N (=0.10, 0.088)
Y21 ~ N (—0.18, 0.087)
711 ~ N (0.4, 0.025)
Bar ~ N (—0.01, 0.044)
721 ~ N (—0.09, 0.044)
711 ~ N (0.49, 0.012)
Ba1 ~ N (0.05, 0.022)
921 ~ N (—0.03, 0.022)
711 ~ N (0.52, 0.006)
Bar ~ N (0.09, 0.011)
921 ~ N (0.02, 0.011)

Combination 2 (y;; =0.30, f5; =0.40, y,; =0.12)

711 ~ N (0.30, 0.052)
Bar ~ N (0.40, 0.055)
21 ~ N (0.12, 0.050)
y11 ~ N (0.30, 0.026)
Bar ~ N (0.40, 0.027)
21 ~ N (0.12, 0.025)
711 ~ N (0.30, 0.013)
[521 ~ N (0.40, 0.014)
21 ~ N (0.12, 0.012)
y11 ~ N (0.30, 0.006)
Ba1 ~ N (0.40, 0.007)
y21 ~ N (0.12, 0.006)

911 ~ N (0.07, 0.052)
Bar ~ N (0.17, 0.055)
721 ~ N (—0.10, 0.050)
711 ~ N (0.14, 0.026)
Bar ~ N (0.23, 0.027)
Y21 ~ N (—0.04, 0.025)
711 ~ N (0.18, 0.013)
Bar ~ N (0.28, 0.014)
721 ~ N (0.01, 0.012)
711 ~ N (0.27, 0.006)
Bar ~ N (032, 0.007)
Y21 ~ N (0.04, 0.006)

Combination 3 (y;; =0.30, ;7 =0.40, y,; =0.36)

711 ~ N (0.30, 0.052)
Ba1 ~ N (0.40, 0.047)
y21 ~ N (0.36, 0.046)
711 ~ N (0.30, 0.026)
Bar ~ N (0.40, 0.023)
721 ~ N (0.36, 0.023)
y11 ~ N (0.30, 0.013)
Bar ~ N (040, 0.012)
21 ~ N (0.36, 0.017)
711 ~ N (0.30, 0.006)
P21 ~ N (0.40, 0.006)
721 ~ N (0.36, 0.006)

Combination 4 (y;, =0, S5

711 ~ N (0, 0.052)
By ~ N (0.40, 0.051)
721 ~ N (0.12, 0.046)
y11 ~ N (0, 0.026)
Ba1 ~ N (0.40, 0.025)
y21 ~ N (0.12, 0.023)
711 ~ N (0, 0.013)
Boy ~ N (040, 0.013)
91 ~ N (012, 0.011)
711 ~ N (0, 0.006)
Bar ~ N (0.40, 0.006)
y21 ~ N (0.12, 0.006)

y11 ~ N (0.07, 0.052)
Ba1 ~ N (0.18, 0.047)
721 ~ N (0.15, 0.046)
17 ~ N (0.14, 0.026)
Bar ~ N (0.25, 0.023)
921 ~ N (0.21, 0.023)
711 ~ N (0.19, 0.013)
Bar ~ N (029, 0.012)
921 ~ N (0.25, 0.077)
11 ~ N (0.21, 0.006)
Bar ~ N (0.32, 0.006)
921 ~ N (0.28, 0.006)

=040, 7, =0.12)

717 ~ N (0.23, 0.052)
B21 ~ N (0.63, 0.051)
721 ~ N (0.33, 0.046)
y17 ~ N (0.16, 0.026)
Bar ~ N (056, 0.025)
721 ~ N (0.27, 0.023)
711 ~ N (0.1, 0.013)
Bar ~ N (051, 0.013)
721 ~ N (0.23, 0.011)
711 ~ N (0.08, 0.006)
Bar ~ N (048, 0.006)
721 ~ N (0.20, 0.006)

Combination 5 (y;1 =0.40, 51 =0, y,; =0.12)

y11 ~ N (0.40, 0.051)
Bar ~ N (0, 0.064)
y21 ~ N (0.12, 0.065)
711 ~ N (0.40, 0.026)
Bar ~ N (0, 0.032)
721 ~ N (0.13, 0.032)
711 ~ N (0.40, 0.013)
Bar ~ N (0, 0.016)
21 ~ N (0.12, 0.016)
711 ~ N (0.40, 0.006)
Bar ~ N (0, 0.008)
721 ~ N (0.12, 0.008)

711 ~ N (0.63, 0.051)
Bar ~ N (0.25, 0.064)
Y27 ~ N (0.37, 0.065)
11 ~ N (0.56, 0.026)
Bar ~ N (0.18, 0.032)
721 ~ N (0.30, 0.032)
711 ~ N (051, 0.013)
Ba1 ~ N (0.13, 0.016)
Y21 ~ N (0.25, 0.016)
11 ~ N (0.48, 0.006)
Bar ~ N (0.09, 0.008)
921 ~ N (0.21, 0.008)

Combination 6 (y;; =0, /7=0, y2;=0.12)

711 ~ N (0, 0.052)
Bar ~ N (0, 0.052)
921 ~ N (0.12, 0.052)
y11 ~ N (0, 0.026)

11 ~ N (023, 0.052)
P21 ~ N (0.23, 0.052)
7o ~ N (0.35, 0.052)
Y17 ~ N (0.16, 0.026)

711 ~ N (0.15, 0.050)
Bar ~ N (—0.39, 0.088)
721 ~ N (—0.47, 0.087)
711 ~ N (0.28, 0.025)
Bar ~ N (—0.22, 0.044)
721 ~ N (—0.30, 0.044)
y11 ~ N (0.38, 0.012)
Bar ~ N (=0.10, 0.022)

Y21 ~ N (—0.18, 0.022)
711 ~ N (0.44, 0.006)

P ~ N (—0.01, 0.011)
721 ~ N (=0.09, 0.011)
711 ~ N (=0.15, 0.052)
P21 ~ N (—0.07, 0.055)

(-

(-

721 ~ N (—0.33, 0.050)
Y17 ~ N (=0.02, 0.026)
Bar ~ N (0.07, 0.027)
Y217 ~ N (—0.20, 0.025)
711 ~ N (0.07, 0.013)
B ~ N (0.16, 0.014)
y21 ~ N (—0.10, 0.012)
11 ~ N (0.140, v.006)

Bar ~ N (0.23, 0.007)
721 ~ N (—0.04, 0.006)
711 ~ N (—=0.15, 0.052)
Bar ~ N (—0.03, 0.047)
721 ~ N (—0.07, 0.046)
911 ~ N (—0.02, 0.026)
Bar ~ N (0.09, v.023)
921 ~ N (0.06, 0.023)
711 ~ N (0.07, 0.013)

Bar ~ N (0.18, 0.012)
721 ~ N (0.15, 0.071)
711 ~ N (0.13, 0.006)
Bar ~ N (0.25, 0.006)
721 ~ N (0.21, 0.006)

11 ~ N (0.46, 0.052)
P21 ~ N (0.85, 0.051)
y21 ~ N (0.55, 0.046)
y17 ~ N (0.32, 0.026)
Bar ~ N (0.72, 0.025)
91 ~ N (0.42, 0.023)
711 ~ N (0.23, 0.013)
B ~ N (63, .013)

721 ~ N (0.33, 0.011)
711 ~ N (0.16, 0.006)
Bar ~ N (056, 0.006)
Y21 ~ N (0.27, 0.006)

711 ~ N (0.85, v.051)
Bar ~ N (051, v.064)
721 ~ N (0.63, 0.065)
711 ~ N (0.72, 0.026)
B2 ~ N (0.36, 0.032)
721 ~ N (0.48, 0.032)
Y17 ~ N (0.63, 0.013)
Bar ~ N (025, 0.016)
721 ~ N (0.37, 0.016)
711 ~ N (0.56, 0.006)
Bar ~ N (0.18, 0.008)
721 ~ N (0.30, 0.008)

711 ~ N (0.46, 0.052)
Bar ~ N (0.45, 0.052)
71 ~ N (0.58, 0.052)
y17 ~ N (0.32, 0.026)

711 ~ N (—0.07, 0.050)
Bar ~ N (=0.70, 0.088)
Y21 ~ N (—0.77, 0.087)
711 ~ N (0.12, 0.025)

Bar ~ N (—0.43, 0.044)
921 ~ N (=0.51, 0.044)
711 ~ N (0.26, 0.012)

Bar ~ N (—0.24, 0.022)
921 ~ N (=0.32, 0.022)
711 ~ N (0.36, 0.006)

Bar ~ N (—0.12, 0.011)
721 ~ N (—0.19, 0.011)

0.38, 0.052)
0.30, 0.055)
Y21 ~ N (—0.55, 0.050)
911 ~ N (—0.18, 0.026)

i1~ N (=
(—
(—
(—
Bar ~ N (—0.10, 0.027)
(—
(—
(

Bar ~N

Y21 ~ N (—0.35, 0.025)
1 ~ N (~0.04, 0.013)
Bar ~ N (0.05, 0.014)
y21 ~ N (—0.22, 0.012)
711 ~ N (0.06, 0.006)

Bar ~ N (0.15, 0.007)
721 ~ N (—0.12, 0.006)
711 ~ N (—0.38, 0.052)
Bar ~ N (—0.25, 0.047)
Y21 ~ N (—0.28, 0.046)
711 ~ N (—0.18, 0.026)
Bar ~ N (—0.06, 0.023)
721 ~ N (—0.09, 0.023)
717 ~ N (—0.04, 0.013)
Bar ~ N (0.07, 0.012)

721 ~ N (0.04, 0.077)
711 ~ N (0.06, 0.006)
Ba1 ~ N (0.17, 0.006)
721 ~ N (0.13, 0.006)

11 ~ N (0.69, 0.052)
By ~ N (1.08, 0.051)
y21 ~ N (0.76, 0.046)
y17 ~ N (0.48, 0.026)
Bar ~ N (0.88, 0.025)
Y21 ~ N (0.57, 0.023)
1 ~ N (034, 0.013)
oy ~ N (74, 013)

1 ~ N (044, 0.011)
11 ~ N (0.24, 0.006)
Bar ~ N (0.64, 0.006)
721 ~ N (0.35, 0.006)

711 ~ N (1.08, 0.051)
Bar ~ N (0.76, 0.064)
721 ~ N (0.88, 0.065)
711 ~ N (0.88, 0.026)
Bar ~ N (0.54, 0.032)
721 ~ N (0.66, 0.032)
911 ~ N (0.74, v.013)
Bar ~ N (038, 0.016)
Y21 ~ N (0.50, 0.016)
11 ~ N (0.64, 0.006)
Bar ~ N (0.27, 0.008)
921 ~ N (0.39, 0.008)

711 ~ N (069, 0.052)
P21 ~ N (0.68, 0.052)
7o ~ N (0.81, 0.052)
y11 ~ N (0.48, 0.026)

(Continued)
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Table 4. Continued.

Accurate

Inaccurate 1sd

Inaccurate 2sd

Inaccurate 3sd

f1 ~ N (0, 0.026)
721 ~ N (0.12, 0.026)

P21 ~ N (0.16, 0.026)
y21 ~ N (0.28, 0.026)
)

Norior =100 y11 ~ N (0, 0.013) 711 ~ N (0.11, 0.013
Ba1 ~ N (0, 0.013) P21 ~ N (0.11, 0.013)
21 ~ N (0.12, 0.013) 21 ~ N (0.23, 0.013)
Norior =200 y11 ~ N (0, 0.006) 711 ~ N (0.08, 0.006)

B ~ N (0, 0.006)
721 ~ N (0.12, 0.006)

B ~ N (0.08, 0.006)
y21 ~ N (0.20, 0.006)

B2 ~ N (0.32, 0.026)
721 ~ N (0.44, 0.026)
y11 ~ N (0.23, 0.013)
Bar ~ N (0.23, 0.013)
721 ~ N (0.35, 0.013)
711 ~ N (0.16, 0.006)
Ba1 ~ N (0.16, 0.006)
721 ~ N (0.28, 0.006)

Ba1 ~ N (0.48, 0.026)
721 ~ N (0.60, 0.026)
711 ~ N (034, 0.013)
Bar ~ N (034, 0.013)
y21 ~ N (0.46, 0.013)
711 ~ N (0.24, 0.006)
Ba1 ~ N (0.24, 0.006)
721 ~ N (0.36, 0.006)

Note. This table contains specifications of informative accurate and inaccurate prior distributions for structural paths in Study 2. The first hyperparameter
in the normal priors is the mean, and the second hyperparameter is the variance. In these conditions, the loadings, measurement error variances, and
(residual) variances of latent variables were assigned accurate priors that have the weight of Nyq.

priors had slightly lower power and lower Type I
error rates compared to interval estimates using the
distribution of the product. At N=200 and 400, the
three interval estimators have almost identical power.
Power and Type I error rates were higher for credibil-
ity intervals obtained using fully conjugate priors than
for credibility intervals obtained using diffuse generic
priors (Figure 4). The Type I error rates of HPD
intervals obtained using fully conjugate priors still
remained below the lower bound of Bradley’s robust-
ness criterion and were thus not problematic.
Coverage for the distribution of the product confi-
dence intervals and Bayesian credibility intervals with
diffuse generic and fully conjugate priors was within
the bounds of Bradley’s (1978) robustness criterion
when the mediated effect was nonzero. In combina-
tions with the true mediated effect equal to 0 and at
N=50 and 100, HPD intervals had coverage above
0.975. When y;; = f§,; =0 all three interval estimators
had coverage above 0.975. At N=50 and 100, cred-
ibility intervals obtained using diffuse generic priors
had higher interval width than credibility intervals
obtained using fully conjugate priors and the distribu-
tion of the product confidence limits. At N=200 and
400 the differences in interval width of the three esti-
mators became negligible. The three interval estima-
tors had comparable levels of imbalance, and
imbalance was close to zero in all parameter combina-
tions and for all sample sizes.

Study 2: Bayesian methods with accurate and
inaccurate informative priors versus ML and
distribution of the product

The first part of this section describes the statistical
properties of point summaries of the mediated effect
with accurate priors, point summaries with inaccurate
priors for loadings and structural paths that carry
0.5sd of inaccuracy in the prior expectation for the
parameter, and point summaries with inaccurate pri-
ors for structural paths that carry 1, 2, and 3sd of

inaccuracy in the prior expectation. The second part
of this section describes the statistical properties of
interval summaries of the mediated effect with accur-
ate priors, inaccurate priors for loadings and struc-
tural paths with 0.5sd of inaccuracy, and inaccurate
priors for structural paths with 1, 2, and 3sd of
inaccuracy in the prior expectation.

Results for point summaries of the mediated effect
Accurate priors. ML point estimates had higher
RMSE values than all point summaries obtained using
accurate priors with N0, =50% and 25%. A closer
look at bias and efficiency indicated that higher values
of RMSE of the ML point estimates are due to the
lower efficiency of ML point estimates relative to
Bayesian point summaries in this situation. In fact,
the pattern of RMSE values was almost identical to
the pattern of standard deviations over replications
for the ML point estimates and the posterior mean,
median, and mode obtained using accurate priors that
carried 50% and 25% of the weight of the likelihood
function. A closer look at bias of the ML point esti-
mates and Bayesian point summaries revealed that
when the mediated effect was positive and the priors
were accurate, the posterior mean and median had
slightly lower bias than the ML estimate, whereas the
mode had the highest relative bias and was the only
point summary to have more than 10% relative bias
when the priors carried 50% of the weight of the like-
lihood function and N=50. The mode remained the
most biased point summary at other sample sizes;
however, relative bias did not exceed 10% at any other
sample size. When the mediated effect was zero, there
were almost no differences in bias between the point
summaries, and in most combinations of parameter
values and sample size all point summaries obtained
using accurate priors had lower absolute bias than the
ML estimate.

Inaccurate priors (0.5sd). For the sake of brevity, in
the following paragraphs, the posterior summaries
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Figure 2. Values of RMSE for ML point estimates and the posterior mean, median, and mode obtained using diffuse generic and

fully conjugate priors at N= 50, 100, 200, and 400.

with inaccurate priors that carry 0.5sd of bias in the
prior expectations for structural paths will have a sub-
script STR (e.g., the posterior mean obtained using
inaccurate priors for structural paths will be denoted
meangrr), and the posterior summaries with inaccur-
ate priors that carry .5sd of bias in the prior expecta-
tions for loadings will have a subscript MEAS (e.g.,
the posterior median with inaccurate priors for the
measurement model parameters will be
denoted medianygag).

A given point summary (mean, median, or mode)
obtained using more informative priors (those carry-
ing 50% of the weight of the likelihood function as
opposed to only 25%), had lower values of RMSE,
thus suggesting that decreasing the weight of the prior
led to increases in RMSE. A closer inspection revealed
that the pattern of values for efficiency closely mir-
rored the pattern for RMSE, i.e., higher Ny o led to
higher efficiency even though the prior expectations
were inaccurate. The results for bias indicated that on
average, decreasing the weight of the inaccurate prior
led to a reduction in bias for a given point summary,
but the reduction in bias was not sufficient to “bring”
the relative bias of the modegrr below 10% at N=50
and 100. The meangrr had problematic relative bias at

N=50 with Npyior=50%, but not with Npyor =25%.
Also, the mediangrg had problematic relative bias at
N=50 and 100 with Ny, =50%, but the relative
bias was no longer above 10% when Npor=25%.
When the inaccurate priors for loadings carry 50% of
the weight of the likelihood function, the relative bias
is above 10% for the modeygpas, and when inaccurate
priors for loadings carry 25% of the weight of the
likelihood function, none of the point summaries have
absolute relative bias above 10% for any of the sample
sizes. Thus, even though inaccurate priors for loadings
still lead to suboptimal statistical properties for at least
one of the point summaries of the indirect effect, the
consequences of the inaccuracy in the expectation of
the normal prior can be alleviated by making the
prior 2 times less informative. On the other hand,
even though reducing the weight of the inaccurate
prior for the meangrr and mediangrr yielded levels of
relative bias below 10% at all sample sizes, the
modegry still had instances of relative bias above 10%
at N=50. Thus, the excessive bias due to inaccurate
priors for structural paths can be alleviated by making
the prior half as informative at N=100, 200, and 400,
but not for all point summaries of the posterior
at N=50.



32 M. MIOCEVIC ET AL.

Combination 1

Combination 2

Combination 3

0.104 0.104 0.10

0.054 0.054 0.054
[
S 0.004 o Sescscs 0.004 0.004
o ,

-0.054 -0.054 -0.054

-0.10 -0.104 -0.104

50 100 200 400 50 100 200 400 50 100 200 400
Sample size Sample size Sample size
Combination 4 Combination 5 Combination 6

0.104 0.104 0.104

0.054 0.054 0.054
w
S 0004 *‘P‘-.————-‘* 0.00 4 ‘*——*\-ﬂ 0004  H-l——8
fis]

-0.054 -0.054 -0.054

-0.104 -0.10 -0.104

50 100 200 400 50 100 200 400 50 100 200 400
Sample size Sample size Sample size
- mean_dg -= median_dg -®- ML —- mode_fc
method i o -
-+ mean_fc —+ median_fc -%- mode_dg

Figure 3. Values of bias for ML point estimates and the posterior mean, median, and mode obtained using diffuse generic and
fully conjugate priors at N=150, 100, 200, and 400. The shaded area in plots of combinations 1-3 indicates the area of 10% or
less relative bias. Combinations 4—6 do not have values of relative bias because the true mediated effect is 0.

Inaccurate priors (1, 2, 3sd). With inaccurate priors,
there was no point summary/estimate that consistently
had the lowest RMSE, and the only reoccurring find-
ing in this situation is that the posterior mean had the
highest RMSE out of the three point summaries for a
given value of prior inaccuracy when the true medi-
ated effect is zero. For a fixed amount of inaccuracy
in the prior (1, 2, or 3sd), the mean was the least
biased point summary and the mode was the most
biased point summary when the true mediated effect
was positive. Conversely, when the true mediated
effect was zero, for a fixed amount of inaccuracy, the
mode was the least biased point summary and the
mean was the most biased point summary. The pos-
terior mean, median, and mode were more efficient
than the ML estimates when the true mediated effect
was positive, and had comparable efficiency to
Bayesian point summaries with accurate and inaccur-
ate priors when the true mediated effect was zero.
More inaccuracy in the prior corresponded with
higher efficiency when the true mediated effect was
positive and with lower efficiency when the true medi-
ated effect was zero. Reducing the weight of the prior
distribution from 50% to 25% of the weight of the

likelihood function did not lead to point summaries
of the mediated effect with relative bias below 10% at
any of the sample sizes. This finding suggests that
negative effects of inaccuracy of at least 1sd in the
mean hyperparameters of priors for structural paths
on the bias of point summaries of the mediated can-
not be alleviated by reducing the informativeness of
the prior by 50%.

Results for interval summaries of the

mediated effect

Accurate priors. As expected, in most parameter com-
binations, Bayesian HPD intervals obtained using
accurate priors had more power, lower Type I error
rates, higher coverage, lower interval width, and less
imbalance than distribution of the product confidence
intervals. The maximum increase in power with
accurate priors was 61%, however, accurate priors led
to credibility intervals with less power than the distri-
bution of the product confidence limits in parameter
Combination 1 where 7,;,=0.6 and f,;=0.2 at
N=50 and 100. Credibility intervals with accurate
priors had coverage closer to 1 and more instances of



Combination 1

Combination 2

MULTIVARIATE BEHAVIORAL RESEARCH 33

Combination 3

1.004 1.004 /,/A 1.004 /._'_...,...__——‘
0.75+ 0754 075+ "
2 050 0.50 2 050
o o
0.254 0.254 0.254
0.004 0.004 0.004
50 100 200 400 50 100 200 400 50 100 200 400
Sample size Sample size Sample size

Combination 4

Combination 5

Combination 6

0.064 0.064 0.061
QL
i
2 0.044 0.044
()]
[0]
s
F 0.024 0.024
0.00+ 0.00+
50 100 200 400 50 100 200 400 50 100 200 400
Sample size Sample size Sample size

method —— DG -+- DP -=- FC

Figure 4. Power and Type | error rates for the distribution of the product confidence limits (DP) and the highest posterior density
(HPD) credibility intervals obtained using diffuse generic (DG) and fully conjugate (FC) priors.
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Figure 5. Power for the distribution of the product confidence limits and the highest posterior density (HPD) credibility intervals
obtained using informative priors that carry 50% and 25% of the weight of the likelihood function with expectations about struc-
tural parameters that were 1sd away from the true value (inacc_1sd_nprior50 and inacc_1sd_nprior25), 2sd away from the true
value (inacc_2sd_nprior50 and inacc_2sd_nprior25), and 3sd away from the true value (inacc_3sd_nprior50 and inacc_3sd_np-

rior25). The horizontal line denotes power of 0.8.
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Figure 6. Type | error rates for the distribution of the product confidence limits and the highest posterior density (HPD) credibility
intervals obtained using informative priors that carry 50% and 25% of the weight of the likelihood function with expectations
about structural parameters that were 1sd away from the true value (inacc_1sd_nprior50 and inacc_1sd_nprior25), 2sd away from
the true value (inacc_2sd_nprior50 and inacc_2sd_nprior25), and 3sd away from the true value (inacc_3sd_nprior50 and
inacc_3sd_nprior25). The gray band denotes the nominal value of Type | error rates according to Bradley's (1978) robust-

ness criterion.

coverage above 0.975 than distribution of the product
confidence limits.

Inaccurate priors (0.5sd). With 0.5sd of inaccuracy in
the prior expectations, credibility intervals obtained
using inaccurate priors for both loadings and struc-
tural paths led to power above 0.8 to detect the indir-
ect effect at all sample sizes except at N= 50, although
at N=50 the power of HPD intervals obtained using
inaccurate priors for both loadings and structural
paths was equal to or greater than the power of the
distribution of the product confidence limits examined
in Study 1. Power was lower when the inaccurate pri-
ors for both loadings and structural paths carried 25%
instead of 50% of the weight of the likelihood func-
tion, thus suggesting that even somewhat inaccurate
informative priors can lead to increases in power to
detect the mediated effect. Also, inaccurate priors with
0.5sd of inaccuracy in the prior expectation for load-
ings and structural paths yielded intervals with lower
Type I error rates when the weight of the prior was
equal to 50% of the focal sample size than when the
weight of the prior was equal to 25% of the size of
the focal sample size. Coverage was often above 0.975
with inaccurate priors with 0.5sd of inaccuracy; reduc-
ing the weight of the inaccurate prior for structural
paths from 50% to 25% of the size of the focal sample

would often reduce coverage to values within the
bounds of Bradley’s robustness criterion, whereas
coverage above 0.975 remained frequent with inaccur-
ate priors for loadings even when the informativeness
of the prior was reduced by half.

Inaccurate priors (1, 2, 3sd). Inaccurate priors in
Combinations 1-3 had negatively biased prior expect-
ations, and the maximum decrease in power with
inaccurate priors for structural paths was 99%. The
decrease in power with the use of inaccurate prior
information was larger for parameter Combination 1
(where y,,=0.6 and f,,;=0.2) than for parameter com-
binations where y;; and f,; were nonzero and com-
parable in size (Combinations 2 and 3). Also, despite
the ratios of weight carried by the prior and the likeli-
hood function being the same at all sample sizes (25%
and 50%), at N=200 and 400, inaccurate priors did
not consistently decrease power and the decreases in
power with higher levels of inaccuracy were notably
lower than at N=50 and 100. Also, contrary to the
expectations based on theory, at N=200 and 400,
even with 1sd of inaccuracy in the priors that encoded
the assumption that the structural paths were lower
than the true values, HPD intervals had more power
than the distribution of the product confidence limits
in the majority of parameter combinations (Figure 5).



Inaccurate priors for Combinations 4-6 encoded the
assumption that the structural parameters are higher
than the true values and findings indicate that the
resulting Type I error rates exceed 0.075 only with 2sd
and 3sd of inaccuracy in the priors (Figure 6).
Coverage was consistently below the lower bound of
Bradley’s robustness criterion if there was 3sd of
inaccuracy and in most parameter combinations with
2sd of inaccuracy. When the inaccurate priors with
3sd of inaccuracy carried half of the weight of the
likelihood function, coverage was below 50% in
Combinations 2 and 3. Even 1sd of inaccuracy tended
to produce credibility intervals that had more than
twice the absolute value of imbalance of distribution
of the product confidence limits. In parameter combi-
nations with a nonzero mediated effect, distribution of
the product confidence limits have higher interval
width than credibility intervals, and the more inaccur-
ate the prior, the lower the interval width of the cred-
ibility intervals. In parameter combinations with a
zero mediated effect, higher inaccuracy in the prior
was predictive of a higher interval width, however, the
distribution of the product still had higher interval
width than credibility intervals obtained using
inaccurate priors with 1sd of inaccuracy.

For a fixed level of inaccuracy, reducing the weight
of the prior distribution from 50% to 25% of the
weight of the likelihood function led to lower power
and lower Type I error rates (but still not within
the bounds of Bradley’s robustness criterion if the
inaccuracy was at least 2sd and f,; > 0, and if the
inaccuracy was 3sd and y;; > 0). The same reduction
in the weight of the prior was sufficient to increase
coverage above the lower bound of Bradley’s robust-
ness criterion and to notably reduce the imbalance
when y;; > f,; > 0, but not in other parameter com-
binations where inaccuracy led to coverage below
0.925. Reducing the weight of informative priors, even
inaccurate ones, led to increases in interval width.

Discussion

This project set out to examine the statistical proper-
ties of the point and interval estimates/summaries of
the mediated effect in the latent variable mediation
model obtained using common frequentist methods
and Bayesian methods with priors that encode no
prior knowledge about the parameters, as well as
(accurate and inaccurate) informative priors. Results
of Study 1 made it clear that diffuse generic priors
yield relatively worse statistical properties for both
point and interval summaries and should thus be
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avoided. These findings are consistent with the previ-
ous literature on Bayesian mediation analysis with
latent variables and uninformative priors (Chen et al,
2014; van Erp et al., 2018), and with overall findings
regarding Bayesian SEM with small samples and unin-
formative prior distributions (Smid, McNeish,
Miocevié, & van de Schoot, 2019). ML estimates had
less bias and were less efficient than point summaries
obtained using fully conjugate priors at smaller sample
sizes. Thus if the goal of analysis is to accurately
approximate the value of the mediated effect, ML
point estimation is preferred over Bayesian methods
with both diffuse generic and fully conjugate priors.
The decline in statistical properties of interval summa-
ries obtained using Bayesian methods with fully con-
jugate priors relative to distribution of the product
confidence limits is slight. Thus if the probabilistic
interpretation of results is important for the research
question and there is no relevant prior information
available, we recommend researchers use Bayesian
methods with diffuse conjugate priors. For example,
in the Bayesian framework, it is possible to compute
the probability that the indirect effect is greater than a
meaningful value (e.g., 0), and that the indirect effect
lies within a certain interval (e.g., —0.01 to 0.01; as
illustrated by Miocevi¢ et al. (2017) for the mediated
effect in manifest variable models).

Findings of Study 2 suggest that 0.5sd of inaccuracy
is more detrimental for approximating the population
value of the indirect effect than it is for power, Type I
error rates, and coverage of credibility intervals.
Furthermore, the excess relative bias can be reduced
by making the prior carry half of the weight (by
reducing Ny, from 50% to 25% of the weight of the
likelihood function) at all sample sizes for 0.5sd of
bias in the prior expectation if the inaccurate priors
are assigned to loadings, but not at N=50 if the
inaccurate priors are assigned to structural paths. On
the other hand, reducing the weight of the prior, even
though it is inaccurate, tended to reduce the power,
increase Type I error rates (but never above the nom-
inal level of 0.05), and keep coverage above 0.975.
When the priors for structural paths had more than
0.5sd of bias in the prior expectations, informative
priors led to point summaries that were more efficient
but also more biased than the ML point estimate. If
there was at least 1sd of bias in the prior, all point
summaries had problematic levels of relative bias that
could not be lowered below 10% by reducing the
weight of the prior. The comparison of statistical
properties of distribution of the product confidence
limits and credibility intervals obtained using
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Figure 7. Induced accurate and inaccurate priors for the medi-
ated effect in parameter combination 1 at Ny, = 100. The ver-
tical line represents the true value of the indirect effect
111821 =0.12. Induced priors on the mediated effect were com-
puted from 1000 simulated draws from accurate and inaccur-
ate priors for paths y;; and f3,;. The black line represents the
accurate prior, the darkest gray line is the inaccurate prior with
1sd of inaccuracy in the prior expectation, the next lighter gray
line is the inaccurate prior with 2sd of inaccuracy in the prior
expectation, and the lightest gray line is the inaccurate prior
with 3sd of inaccuracy in the prior expectation.

inaccurate priors indicated that statistical properties
do not always deteriorate with inaccurate priors (e.g.,
inaccurate priors can yield intervals with more
power), however, the risks of using informative priors
are not negligible, especially when N < 200.

As one of the reviewers pointed out, there is still
room for improvement over frequentist methods at
any sample size by using Bayesian methods with a
prior that is increasingly concentrated at the true
value. In the limit, a prior that places the point mass
at the true value of a given parameter would maxi-
mize accuracy. However, we did not examine these
scenarios in the simulation study because it is one
that researchers in applied settings are less likely to
encounter. It also became apparent that the label
“inaccurate prior” ought to be interpreted with respect
to the goals of the analysis. The inaccurate priors in
this study were inaccurate with respect to the true val-
ues of the parameters, but not always with respect to
the sign of the true parameter. Thus, in some cases
these inaccurate priors created bias in the posterior
summaries of the mediated effect, but they did not
lead to credibility intervals with lower power. These
findings suggest that inaccurate mean hyperpara-
meters in normal priors for structural paths have dif-
ferent consequences depending on the inferential
goals of mediation analysis. The goals of the point
summaries were to give an accurate representation of

the parameter, which was made more difficult by
specifying informative priors with mean hyperpara-
meters that are different from the true value of the
parameter. The interval summaries were used to con-
clude that the parameter is not 0 if 0 is outside of the
credibility interval. Some of the “inaccurate priors” in
Study 2 were inaccurate for the purposes of estimating
the value of the mediated effect without bias, but not
for the purposes of testing whether the credibility
interval for the mediated effect contains 0. In Study 2
for Combination 1 at N0, = 100, the expectations for
y11 and f,; with 1sd of inaccuracy still induced a prior
distribution with the bulk of its density above 0 on
the indirect effect (Figure 7). Even though the poster-
ior mean, median, and mode of this distribution were
further away from the true value of y,,f,, =0.12 (ver-
tical line in Figure 7), this prior still shifted the pos-
terior density away from 0 and toward positive values,
thus yielding higher power. On the other hand, with
2sd of inaccuracy, the induced prior to the mediated
effect has approximately half of its density below 0,
thus no longer favoring positive values of the indir-
ect effect.

When looking at the statistical properties of the
mediated effect with accurate and inaccurate priors
holding condition and N, constant, it seems that
certain statistical properties, such as efficiency for
point estimates/summaries and power and interval
width for interval estimates/summaries, are not as
influenced by the accuracy of the priors (at least up to
a certain degree) as they are influenced by their
informativeness. Imbalance, on the other hand,
appears to be more dependent on the (in)accuracy in
the hyperparameters for normal priors, and Type I
error rates and coverage seem to be influenced by
both accuracy and informativeness. It is important to
emphasize that all conclusions from the Monte Carlo
studies hold only for the parameter values and prior
specifications used in this study. Furthermore, the
statistical properties of posterior summaries produced
with a given inaccuracy in the prior are dependent on
the informativeness and size of the focal sample, and
the statistical properties of posterior summaries pro-
duced with a given informativeness in the prior are
dependent on the accuracy and size of the focal sam-
ple. In other words, accuracy and informativeness
were considered separately when constructing the pri-
ors, however, their impact on the statistical properties
of the posterior summaries cannot be disentangled.
When using informative priors, especially for small
sample sizes such as N=50 and 100, researchers are
advised to put little trust in the point summaries and



Table 5. Recommendations for applied researchers.

1. Are there pros and cons in terms of statistical properties of using
Bayesian estimation for the latent variable mediation model in the
absence of prior information?

The cons of using Bayesian methods are slightly more bias in the point
summaries than the ML point estimate, and slightly less power than
the distribution of the product limits at N=50 and 100. The pros of
using Bayesian instead of frequentist methods in the absence of prior
information are primarily interpretational, i.e., one can compute the
probability that the mediated effect lies within a certain range and
that it is above/below a certain cutoff value. If the probabilistic
interpretation of the findings is important for the research question, it
is better to use fully conjugate over diffuse generic priors.

2. What kind of prior distribution should be used when there is no

relevant prior information?

the absence of prior information, fully conjugate priors are preferred

over diffuse generic priors, but researchers should be mindful that the

informativeness of these priors depends on the scales of the indicators
in their study.

3. Are informative priors recommended for Bayesian mediation analysis
with latent variables?

At smaller sample sizes (N =150 and 100), informative priors have the
potential for causing more damage to statistical properties of the
indirect effect if the prior information is inaccurate than for improving
the statistical properties of the point and interval summaries of the
indirect effect if the prior information is accurate. Researchers should
be aware that an informative prior has more potential for yielding
inaccurate results at smaller sample sizes, and so should take more
care in specifying an informative prior in those cases, possibly also
conducting additional analyses (e.g., prior predictive checks and
sensitivity analyses). Note that point summaries using informative
priors at small sample sizes often have more than 10% relative bias,
and if at all possible, we recommend interpreting only the interval
summaries of the mediated effect when the sample size is small and
abandoning the goal of accurately computing the value of the indirect
effect. At more typical sample sizes for SEM (N =200 and 400),
informative priors can still cause excessive bias and Type | error rates
but are less detrimental to power.

5

to only use the credibility intervals for making infer-
ences about the mediated effect.

Another notable finding from Study 2 is that even
though the ratios of weight allocated to the prior rela-
tive to the likelihood function remained the same at all
sample sizes (25% and 50%), inaccurate priors had
more detrimental effects at N=50 and 100 than at
N=200 and 400. The results suggest that using
informative priors at sample sizes of 50 and 100 seems
to be very risky given that applied researchers have no
way of knowing the amount of bias in their prior
expectations. Researchers can engage in several activ-
ities that may alert them to the possibility of heavily
biased prior expectations. First, a researcher may solicit
a prior from other experts. If those yield meaningfully
different priors that could signal that the researcher’s
prior may be missing key ideas. Second, a researcher
may evaluate the match between the prior and the
data via prior predictive checks (Box, 1980). Third,
researchers could plot the implied plausible parameter
space that stems from the set of chosen prior specifica-
tions (for instructions and an example of how to do
so, see the chapter by Van de Schoot, Veen, Smeets,
Winter, & Depaoli, 2020). Fourth, researchers can
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conduct a sensitivity analysis to examine whether dif-
ferent plausible prior specifications yield similar pos-
terior distributions for the indirect effect; obtaining
different results with other plausible prior distributions
is a reason to rethink the chosen prior. Fifth, the
researcher can ask herself whether the data from the
previous study can be considered additional observa-
tions from this study, i.e., are the previous and these
studies exchangeable or do they differ on any relevant
characteristics with respect to the research question?
The less exchangeable the previous and this study, the
higher the risk that the prior distribution based on the
previous study will form an inaccurate prior to this
study. For one of the first descriptions of exchangeabil-
ity, see De Finetti (1974), and for more on exchange-
ability in social sciences research, see the chapter by
Miocevi¢, Levy, and Savord (2020). However, none of
these approaches unambiguously signals that the prior
is highly biased, and in applied settings the researchers
have no way of knowing whether the chosen prior or
the data set (or neither) provide a more accurate rep-
resentation of the true effect. We provide a set of rec-
ommendations for applied researchers interested in
fitting the single mediator model with latent variables
as a Bayesian SEM based on the results of the three
simulation studies. These recommendations are sum-
marized in Table 5.

Limitations

As with all simulation studies, generalizations beyond
the conditions examined may not be warranted.
Importantly for our focus, due to the way data were
simulated in this study, the findings for the conjugate
priors can be generalized to other settings where the
latent variables are standardized (i.e., have variances
equal to 1), but not to cases where the scale of the ref-
erence indicator coupled with the choice of unit load-
ing identification lead to different (residual) variances
of the latent variables. We do not discourage research-
ers who choose to use Bayesian methods and lack
knowledge about how to select a variance hyperpara-
meter from using fully conjugate priors, but they
should keep in mind that the informativeness of such
priors depends on the scales of the indicators and
latent variables in their study.

Future directions

Some future directions for this line of research are to
examine statistical properties of Bayesian methods for
SEM with nonnormal data, building on the work of
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Falk (2018), Lai (2018), and Pituch and Stapleton
(2008) who compared various frequentist methods in
this situation. Future studies should also explore ways
of creating accurate informative prior distributions
that allow for obtaining the benefits of Bayesian ana-
lysis in the single mediator model with latent variables
at smaller sample sizes.
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