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ABSTRACT

The social relations model (SRM) is a linear random-effects model applied to examine
dyadic round-robin data within social networks. Such data have a unique multilevel struc-
ture in that dyads are cross-classified within individuals who may be nested within differ-
ent social networks. The SRM decomposes perceptual or behavioral measures into
multiple components: case-level random effects (in-coming and out-going effects) and
dyad-level residuals (relationship effects), the associations among which are often of sub-
stantive interest. Multivariate SRM analyses are increasingly common, requiring more
sophisticated estimation algorithms. This article evaluates Markov chain Monte Carlo
(MCMQ) estimation of multivariate-SRM parameters, compares MCMC to maximum-likeli-
hood estimation, and introduces two methods to reduce bias in MCMC point estimates
using empirical-Bayes priors. Four simulation studies are presented, two of which reveal
dependency of small-group results on priors by manipulating location and precision
hyperparameters, respectively. The third simulation study explores the impact of sampling
more small groups on prior sensitivity. The fourth simulation study explores how Bayesian
model averaging might compensate for underestimated variance due to empirical-Bayes
priors. Finally, recommendations for future research are made and extensions of the SRM
are discussed.

Introduction member participates in 1y — 1 dyads, resulting in Ny =

The social relations model (SRM) is a linear random- "¢ % (ng — 1) interactions per group, and Ny X G inter-

effects model applied to examine dyadic data within
social networks. Dyadic network data occur when per-

actions overall, given equal n, across groups. Hence,
every interaction within a dyad {ij} yields two observa-

ceptual or behavioral ratings are available for multiple
pairs (or dyads) in a sample and each individual partici-
pates in more than one pair. The round-robin design
(Gleason & Halperin, 1975), a common dyadic design
(Kenny et al., 2006, Chapters 8, 9, & 11), is typically a
multiple-group reciprocal approach wherein a partici-
pant i interacts with or provides perceptual ratings of
every other member j of their group g (where i #j €
l,...,n, and g € 1,...,G). In a group of size ny, each

tions—i’s perception of or behavior toward j and vice

versa—stored in a vector y;, = B ﬂ When there is
no meaningful difference between dyad members—for
example, on the basis of sex or age—dyads in a group
are considered to be indistinguishable (e.g., same-sex
group members are not distinguishable based on sex).
We use braces {ij} to indicate that the distinction
between persons i and j is arbitrary.
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Dyadic data have a complex nesting structure as an
observation yy;;) is cross-classified within data from all
dyads of which i is a member and data from all dyads of
which j is a member. Multivariate data from dyadic
designs enable quantifying the degree to which the total
(co)variance in dyadic variables—for example, perceptual
measures of liking or behavioral ratings of social mimicry
during an interaction—is due to case-level differences
among participants (such as their individual tendency to
like [or be liked by] others), unique dyad-level character-
istics (such as whether i particularly mimics [or is mim-
icked by] j beyond their individual tendencies to mimic
[or be mimicked by] others), and group-level variation in
the interactions (Kenny et al., 2006, p. 186-187).

ANOVA-based method-of-moments (Warner et al.,
1979), restricted maximum likelihood (REML; Nestler,
2016), and full-information maximum likelihood (FIML;
Nestler, 2018) estimators have been proposed to estimate
the decomposed (co)variances of SRM components.
Markov chain Monte Carlo (MCMC) estimation has also
been proposed (Liidtke et al., 2013), which enables
Bayesian inference and incorporation of prior informa-
tion. However, MCMC has only been explored for uni-
variate and bivariate SRM, mainly to accommodate
regressing SRM components on explanatory covariates
(e.g., Jorgensen et al, 2018; Koster & Leckie, 2014;
Liidtke et al., 2018). Although Bayesian estimation can
avoid some computational difficulties associated with
frequentist estimation (e.g., analytic derivation of SEs),
the accuracy of MCMC estimates can depend heavily
on the specified prior distributions per parameter
(McElreath, 2018, p. 31). This is particularly the case with
small-samples, which are common in SRM research.

Our goal with this article is to demonstrate the
impact of manipulating the location (i.e., accuracy) and
scale (i.e., precision) of MCMC prior distributions on
estimates of multivariate SRM (co)variance compo-
nents. We also explore two methods to obtain empiric-
ally informed hyperparameters for MCMC priors of
SRM (co)variances—specifically, choosing hyperpara-
meters based on ANOVA-based method-of-moments
or FIML estimates of SRM parameters. We begin with a
brief overview of the SRM and its estimators. Then, we
present the results of four simulation studies evaluating
various MCMC prior specifications. We conclude with
some considerations when conducting (Bayesian) SRM
analyses and provide suggestions for future research.

Social relations models

Perceptual or behavioral ratings for a dyad {ij} in a
group ¢ may be decomposed in the following ran-
dom-effects model (Warner et al., 1979):
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_ | Yeii | _ Egi + Ag + Ry
Yg{l]} - |:ygji:| - 'ug+ |:Eg] +Agi+joi ’ (1)

where (i, is the mean of the dyadic variable (e.g., aver-
age social mimicry) in a group g. Usually, group-level
differences are not of primary interest in social rela-
tions analyses. In this paper, we therefore only con-
sider group-mean centered data, so p, need not be
included in the SRM:
i] _ [Ei+A+R;
w=lp)=lsidin)l @

Jorgensen et al. (2024) provided more details about
the multivariate SRM with group-level random effects
and (co)variance components.

The case level in most SRM applications is typically
the person level, but SRM can also be applied to net-
works of households (Koster & Leckie, 2014) or coun-
tries (Dorff & Ward, 2013). Measurements y,;, are
composed of ego (E) and alter (A) effects (also called
actor and partner effects, perceiver and target effects,
or sender and receiver effects) at the case level. An
ego effect E; is an out-going effect, interpreted as per-
son 7’s the general perception of or behavior toward
others. A person i’s ego effect of liking, for instance,
represents how much they generally like others.
Likewise, A; is an in-coming effect indicative of
others’ general perception of or behavior toward per-
son i. A person i’s alter effect of liking is then repre-
sentative of how much they are generally liked by
others. At the dyad level (also known as the relation-
ship level), the relationship effects Ryj; are residual
effects composed of measurement error and i and j’s
unique perceptions of or behavior toward one another
beyond their case-level tendencies. In the context of
the liking example, relationship effects indicate the
extent to which a pair i and j like one another beyond
their individual tendencies to like (and be liked by)
others.

Case-level effects are uncorrelated across individu-
als, but a particular i’s ego effect E; and alter effect A;
are assumed to be bivariate normally distributed with
location 0 and a covariance matrix Xg4:

E; 0 2
5] - s =[]}

where 0% and ¢ are ego and alter variances, and op4
is a generalized covariance (generalized reciprocity
ppa when standardized) of the ego and alter effects
for case i (Kenny et al., 2006, ch. 8). A positive g4
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implies that individuals with a greater ego effect also
have a greater alter effect—that is, individuals who
like others more are also generally liked more by
others. A negative gp4 means that individuals with a
greater ego effect have a lower alter effect—that is,
individuals who like others more are generally liked
less by others.

Similarly, relationship effects R;; and Rj; at the dyad
level are also considered to be bivariate normally dis-
tributed:

R;; _Jo | o
| (= o] == [ o))

where the relationship variances aig and G%zj,- are con-
strained to equality (o3 = o}, = o%) when dyads are
indistinguishable. The R;; and Rj; effects are assumed
to be uncorrelated between dyads, but the correlation
between R; and R; per dyad is labeled the dyadic
reciprocity pp (Kenny et al.,, 2006, ch. 8). A positive
pr indicates that, within a dyad {ij}, an increase in ’s
rating of or behavior toward j is associated with an
increase in j’s rating of or behavior toward i. For
example, if i particularly likes j, then j also particularly
likes i, beyond their case-level tendencies to like (or
be liked by) others. A negative p means that an
increase in i’s rating of or behavior toward j is associ-
ated in a decrease in j’s rating of or behavior toward
i. That is, if i particularly likes j, then j likes i particu-
larly less than their individual-level tendencies to like
others and be liked by others.

Multivariate SRM

The SRM may also be used when multiple dyadic var-
iables are measured. In a trivariate case, for example,
the vector of SRM equations expands as follows:

YLij Ey,; Ay ] Ry,
Y1ji Ey; Ay Ry ji
Y1 (i)

D | i | | Ba Azj Ry,
zz’{?} Y2,ji Eyj - Az - Ryji |’
3417} V3,ij Es; Asj Rs ;i

V3.ji E; | Az | Rs ji
(5)
where y, 1, Yo and  ys g,  are  variables

measured with a round-robin design—such as reports
of liking at first impression, behavioral ratings of
mimicry during an interaction, and subsequently

reported post-interaction liking (Salazar Kampf et al,
2018).

As with the univariate SRM, case-level effects for
an individual i are assumed to be multivariate nor-
mally distributed:

2

Eyi 0 9, )
Ay 0 OALE  Og
Eyi B 0 OE,E,  OF,A o}

s . . E2s Ey 2, Ay E;
A, ~ MYN| gy = 0 s Zpa = o ot R

2 AnEl OAyA, OAvE A ,
Es; 0 OF,E,  OFE,A, OE,E OE,A,  Op

2

As,i 0 OAnEr OAydy OAsE, OAs A, OAyE Oy

(6)

In Equation 6, the covariances between the case-
level effects of the three variables can be estimated.
For example, 64, p, is an ego-alter covariance that
can be used to investigate whether individuals who
generally like others more at first impression are also
mimicked more during a subsequent interaction.
Likewise, op, g, is an ego-ego covariance that esti-
mates whether individuals who mimic others more
during a social interaction subsequently display a
greater liking toward others post-interaction. Alter-
alter covariances (e.g., g4, 4,) can be interpreted in a
similar manner.

The equality constraints at the dyad level extend to
the multivariate case, following from the assumption
that dyad members are indistinguishable:

Ry, 0 T,
2 2
Ry,ji 0 (TR,{)R, U}f’ 5
Ry 0 gitia | ginter
L ij - Rl Ry R R,
Rl MVYN| g = 0 JZR = ginter' gintra’ 2 o2
2,ji ReRi TRy Rz‘pRz ks N
8 it inter’  intra inter
Rsjj 0 ”R;l,Ry kat.k, ’TR3‘>R; (IR‘ 2‘% N
: inter intra' inter intra
Ry ji 0 ORR  ORuRi  ORuR,  ORyR, ORPR, Ok

(7)
In Equation 7, a}gtf;l is termed an intrapersonal
covariance and indicates whether, in dyad {ij}, i’s
rating of j on the first dyadic variable y; is associated
with #’s rating of j on the second dyadic variable y,.
That is, it may be hypothesized that i’s unique first-
impression liking of j is associated with i’s subse-
quent mimicry of j during an interaction. An inter-
personal covariance o}f'% indicates whether i’s rating
of j on the first dyadic variable y; is associated with
j’s rating of i on the third dyadic variable y;. In the
context of the liking-mimicry example, it is possible
to estimate the extent to which #’s unique first-
impression liking of j is associated with s post-inter-
action liking of i.

Given that dyadic observations are cross-classified
within each case/individual, the multivariate SRM
decomposes the covariance matrix of dyadic observa-
tions X, into case- and dyad-level components (see
appendix of Ten Hove et al.,, 2025, for derivations):

Zy =2pa + Zap + Zp, (8)



where X,p is simply a rearrangement of the Xg, dis-
played in Equation 6, with the order of components
as [A1,E1, Az, Ey, ...]. Jorgensen et al., (2024, Equation
23) provided a decomposition that includes group-
level (co)variances.

Estimation of multivariate SRMs

The ANOVA-based method-of-moments estimator
(Warner et al., 1979) uses the sample mean and mean-
square estimated components of scores on a dyadic vari-
able to compute SRM (co)variances. The method is
adequate to estimate SRM (co)variances for complete
round-robin designs (i.e., when all group members rate
all others). However, existing software—SOREMO
(Kenny, 2013) and the R package TripleR (Schonbrodt
et al., 2012, 2022)—has only been implemented for uni-
variate and bivariate SRMs. Estimating multivariate-SRM
parameters using existing software would require model-
ing multiple bivariate analyses, which is time-consuming
and computationally intensive when many round-robin
variables are investigated. Additionally, inadmissible sol-
utions are produced when true values of (co)variances
are near their border—e.g., near-zero variances and cor-
relations near +1 (Kenny et al, 2006, p. 212-213)—or
when the number of round-robin groups G and group
sizes ny are small (Ludtke et al., 2013).

FIML estimation (Nestler, 2018; Nestler et al., 2020),
implemented in the R package srm (Nestler, Robitzsch,
et al., 2022b), is also available to estimate multivariate-
SRM parameters. Nestler et al. (2020) apply a Fisher-
scoring algorithm to derive SRM-(co)variance point
and SE estimates, which is applicable with unbalanced
or incomplete normally distributed data, overcoming
some limitations of the method-of-moments estimator
above. However, the accuracy of FIML generally
depends on sample size (Bhangale & Jorgensen, 2024;
Hoff, 2005) and the shape of the SRM variance compo-
nents’ sampling distributions (Liidtke et al., 2013).

MCMC estimators, for example Gibbs sampling (Gill
& Swartz, 2001; Hoff, 2005; Liidtke et al., 2013) and
Hamiltonian Monte Carlo (HMC; Jorgensen et al,
2018, 2024), provide some practical advantages. These
approaches handle unbalanced and incomplete designs
(Gill & Swartz, 2001) and can incorporate model uncer-
tainty well. Additionally, MCMC estimators possess the
added benefit of estimating complex models that might
be computationally intractable for FIML. The possibility
to specify prior distributions informed by expectations
and previous knowledge may result in more accurate
estimates of SRM parameters. The mean (expected a
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posteriori; EAP), median (50th percentile), or mode
(maximum a posteriori; MAP) of the empirical poster-
ior distribution may be selected as the point estimate(s)
of the SRM parameters. Although EAPs and MAPs pro-
vide similar estimates given non-negligible true values
of SRM (co)variances (Bhangale & Jorgensen, 2024),
MAP estimates can be less biased than EAP estimates
when the distribution of a parameter is skewed (i.e., in
boundary conditions such as near-zero variances) and
less information is available from the sample to estimate
parameters (Lidtke et al., 2013). Thus, EAP and MAP
estimates will diverge when variances are expected to be
near-zero in, for example, small-group conditions
unless informative prior distributions are specified
(Ludtke et al., 2013; Ten Hove et al., 2020).

Recently, Jorgensen et al. (2024) proposed using
the No-U-Turn Sampler (NUTS; Hoffman & Gelman,
2014), a modified HMC algorithm, to estimate SRM
(co)variances. NUTS is available in the Bayesian mod-
eling R package rstan (Stan Development Team,
2023) and has been adapted for the SRM in the R
package lavaan.srm (Jorgensen, 2023). Whereas
Gibbs sampling updates posterior point estimates
sequentially, NUTS samples a complete vector of all
unknown point estimates simultaneously from the
posterior distribution. In addition, NUTS does not
require conjugate prior distributions, resulting in
greater flexibility for prior specification.

The unknown parameters to be estimated via
MCMC in the lavaan.srm package include the
level-specific random effects, and SDs of and correla-
tions among the random effects, as well as means
when not analyzing group-mean-centered variables.
Jorgensen et al. (2024) provide exhaustive technical
details about the MCMC algorithm and its applica-
tion, and we provide details relevant to our current
studies when describing Simulation Study 1. The
accuracy and efficiency of NUTS to estimate SRM
parameters has been previously investigated by
Bhangale and Jorgensen (2024), who found that speci-
fying software-default (diffuse) priors for SDs and cor-
relations results in biased point estimates compared to
FIML. This is consistent with Smid et al.’s (2020) sys-
tematic review, which revealed that Bayesian estimates
based on software-default priors display more bias
than frequentist estimates in the small samples that
are common in SRM research. Smid et al. (2020)
instead recommended the use of thoughtful (i.e., the-
oretically informed) and data-dependent priors to
derive more accurate estimates. Given that thoughtful
and data-dependent priors are yet to be explored in
the context of the SRM, in this article, we conducted
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four simulation studies to explore sensitivity of results
to various MCMC prior specifications.

In sufficiently large samples, estimated posterior
distributions are influenced almost exclusively by
information provided in the data (likelihood), yielding
results that are less dependent on the specified priors.
However, the intensive nature of round-robin data
collection frequently motivates research designs that
sample from (multiple) small groups. Thus, all our
simulations explore a range of small and large round-
robin group sizes typically encountered in SRM appli-
cations. The article is organized such that the design
of each subsequent simulation reflects our learning
from the previous results and addresses the questions
that arise from them. We summarize the goals of each
simulation here, before detailed reports are provided
in subsequent sections. First, we ascertained the effect
of manipulating the magnitude of prior information
for highly accurate priors. Second, for a given magni-
tude of prior information, we compared theoretically
versus empirically informed prior locations. We then
sampled larger numbers of small groups, to explore
whether this can stabilize estimation of SRM compo-
nents or minimize prior sensitivity. Finally, we
explored Bayesian model averaging as a potential solu-
tion for the “double-dipping” problems inherent in
using the same data to determine priors as are used to
update the priors when estimating posterior distribu-
tions (i.e., underestimated uncertainty; Carlin & Louis,
2000b, p. 1287; Zitzmann et al., 2024, p. 3).

Simulation study 1: Prior precision

All of our simulation studies involve the trivariate SRM
described in Equations 5, 6, and 7, using parameters
described in the following section. We first compared
FIML estimation to MCMC using (a) diffuse (current
software-default) prior distributions or (b) accurately
located priors with expected values equal to the popula-
tion values. Although the latter are unrealistic because
parameters are unknown in practice, it is informative
to learn about the quality of MCMC estimates in the
“worst-case” (diffuse) and “best-case” scenarios (i.e.,
accurately located priors supplement minimal informa-
tion from data). Because the discrepancy between a
prior location and a true parameter can introduce bias'
in the posterior estimate (e.g., EAP or MAP)—

particularly when proportionally less information is
avaijlable from the data—we designed two simulations
to separately investigate the effects of prior precision
(using accurate prior locations in Simulation 1) and of
prior
Simulation 2).

We describe in the Method how we manipulated
the precision of the prior information in the best-case
scenario (accurately located priors). We refer to the
accurately located priors as prophetic priors, to
acknowledge the need for an uncanny ability to know
the unknowable in order to specify such a perfectly

accuracy (by varying prior locations in

accurate prior location.

Method

We used the population values specified by (Nestler
et al., 2020, see https://osf.io/9twkm/) to derive the
population correlations and SDs in Tables 1 and 2.
Nestler et al. (2020) chose population values based on
previous SRM research such that the majority of a
dyadic variable’s variance is in the relationship com-
ponent (compare the SD columns of Tables 1 and 2),
and that ego effects have greater variance than alter
effects (compare odd rows to even rows in Table 2).

Prior distributions
Priors distributions for random effects and residuals
are the multivariate normal distributions shown in
Equations 6 and 7, respectively. Because the hyper-
parameters Xp4 and Xy are unknown, they are also
estimated from the data® using hyperprior distribu-
tions for the SDs and correlations. We describe diffuse
priors below, which are the default settings in the
lavaan.srm package. More informative prior con-
ditions in each study are described in later sections.
Hyperprior distributions for SDs in Table 1 were
specified as a t distribution (left-truncated at 0) with
v = 4 degrees of freedom:

c>0~tv=4u5), )

which has been shown to work well for variance-
decomposition models in past simulation research
(e.g., Ten Hove et al, 2020) and is the default prior
for scale parameters in the R package brms (Biirkner,
2017). A location parameter y can be specified to shift
the t distribution’s mean, and a scaling parameter ¢

'Prior-induced bias can be compensated by the reduction in sampling
variability offered by the informative prior, thus yielding a lower overall
mean-squared error (MSE), which combines both (squared) bias and
sampling variance. This trade-off between accuracy and precision is well
documented (see, e.g., Zitzmann et al., 2021).

*This has also been referred to as a fully Bayesian variety of empirical-
Bayes estimation—"Bayes empirical Bayes” (Carlin & Louis, 2000b, p.
1286)—which is distinct from the variety we propose and evaluate in
Simulation Study 2. Gelman et al. (2013) refer to this variety instead as
“hierarchical Bayes” (ch. 5, section 5.2).



Table 1. Dyad-level population SD and correlation values for
Simulations 1-4.

SRM component 1 2 3 4 5 6 SD
1. Ry, - 0.949
2. Ruji 167 - 0.949
3. Ry i 538 135 - 0.940
4. Raji 135 538 222 - 0.940
5. R3, ;i 705 176 569 142 - 1.255
6. Rs ji 176 705 142 569 .060 - 1.255

Table 2. Case-level population SD and correlation values for
Simulations 1-4.

SRM component 1 2 3 4 5 6 SD
1. Ey,i - 0.775
2. A]y,‘ 236 - 0.548
3. Eyi 703 124 - 0.881
4, Ay 093 528 .099 - 0.415
5. Es, 574 102 606 .080 - 0.629
6. Asi 093 528 099 419 195 - 0415

can vary its spread. The lavaan.srm package speci-
fies diffuse priors by default (as elaborated by
Jorgensen et al,, 2024), setting both u and ¢ as the
sample’ SD, which is the maximum value that any
SRM component can have.

Hyperprior distributions for correlations were
specified as a Beta(x, a = 1.5, = 1.5) distribution,
which has an expected value M =.5 and SD = .25.
During MCMC estimation, parameters sampled from
a Beta distribution lie in the range {0,1}, which are
rescaled to the {—1, + 1} range using the transform-
ation (2x —1), so the rescaled-Beta(1.5, 1.5) prior
implies correlations vary with M =0 and SD = .5.
This is equivalent to placing a prior on transformed
correlations:

1
%N Beta(x = 1.5, f = 1.5), (10)
which is the same method employed by the R package
blavaan (Merkle & Rosseel, 2018) for structural
equation models.

Simulation conditions

To specify prophetic priors, we centered each SRM
parameter’s prior distribution at its population value.
For each SD, the population parameter was specified
as the location hyperparameter p of the prophetic ¢
distribution, whose scaling hyperparameters were
specified as either ¢ =0.05 (Pr-0.05), ¢ =0.10 (Pr-
0.1), or ¢ = 0.20 (Pr-0.2). For prophetic Beta priors of

3This constitutes using the data twice—to specify the prior, which is then
updated using the same data—which generally results in posterior
distributions  with  underestimated variance (i.e., underestimated
uncertainty; Carlin & Louis 2000b, p. 1287; Zitzmann et al. 2024, p. 3).
However, diffuse priors lack sufficient information to substantially impact
estimated posteriors (Schuurman et al., 2016).
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SRM correlations, an optimization algorithm4 was
used to identify the o and S hyperparameters that
yielded expected values equal to population correlations
and prior SD equal to 0.05, 0.1, or 0.2. The optimization
algorithm simply minimized the sum of two squared
discrepancies: (a) the difference between the population
correlation and expected value’ of the rescaled Beta dis-
tribution, and (b) the difference between the intended
prior SD and the expected® SD of the rescaled Beta dis-
tribution. We provide an example in Figure 1 of four
different rescaled-Beta priors for p, p = .236 (see
Table 2) with hyperparameters o and f chosen to yield
the same location (M) but different prior SDs for
Pa, - Prior distributions for the other correlation
parameters may be visualized in a similar manner.

The prior SD reflects the degree of uncertainty about
the prior expectation. For example, narrow priors (i.e.,
smaller prior SD) imply more precision and, thus, more
certainty about the prior expectation. Figure 1 shows
that the diffuse prior (the dotted-line distribution)
reflects considering any positive or negative correlation
to be nearly equally likely, except the most extreme val-
ues near *=1. Informative priors are more restrictive, to
varying degrees. The Pr-0.1 prior reflects high certainty
that the correlation is positive, with 95% of probability
density between 0.036-0.436, whereas the Pr-0.2 prior
does not rule out large or even small negative correla-
tions (—.164-0.636). The Pr-0.05 prior, on the other
hand, reflects greater certainty that the correlation is in
the small-to-medium range (0.136-0.336). Thus, it is
logical to expect that Pr-0.05 priors (the solid-line dis-
tribution in Figure 1) will provide more accurate esti-
mates with lower sampling variability than Pr-0.1
priors (the dashed-line distribution in Figure 1), which
will in turn provide more accurate estimates with lower
sampling variability than Pr-0.2 priors (the dash-dotted
line distribution in Figure 1) which will furthermore
provide more accurate estimates with lower sampling
variability than the diffuse priors.

Posterior point estimates (EAPs) of the prophetic
and diffuse priors were compared with FIML point
estimates, yielding five estimator conditions. We also

“The code for the optimization algorithm used to compute o and f
hyperparameters for this and subsequent simulations can be found in our
supplementary material on the Open Science Framework (OSF): https://
osf.io/ju4fd/.

The expectation of a Beta(c, p)-distributed random variable is X = ﬁﬁ,
which is transformed using the function 2x — 1 to obtain the expected
value of the rescaled Beta distribution.

5The variance of a Beta(a, §)-distributed random variable s

e o
Var(x)_(Hﬁ)z(Hﬁ“), so the SD of the rescaled Beta distribution

is \/2 x Var(x).
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L Hyperparameters of the rescaled beta distributions:
Pr-0.05 prior: o« = 232.806, = 143.902 (M = 236, SD = .05)
Pr-0.1 prior: a = 57.762, p = 35.707 (M = .236, SD = .1)

-~ Pr-0.2 prior: & = 13.972, = 8.636 (M = .236, SD = .2)
] - Diffuse prior: a = 1.500, f = 1.500 (M = 0, SD = .5)

Prior density
15

10

Range of possible correlation values

Figure 1. Figure depicting the impact of manipulating prior
information (i.e,, width of the prior distribution) for a fixed
prior location on the shape of the rescaled Beta distribution
for correlations. The solid line shows the Pr-0.05 prior, the
dashed line shows the Pr-0.1 prior, the dash-dotted line shows
the Pr-0.2 prior, and finally, the dotted line shows a diffuse
prior (i.e., the current software default).

manipulated the number of round-robin groups (G =
10 or 25) and the size of each group (1, = 6, 8, 10, or
20 per group). For these 5 (estimator/priors)
x4 (ng) x 2 (G) = 40 simulation conditions, we gen-
erated R = 1000 replications per condition.

Analysis plan

All analyses were conducted in R (R Core Team,
2023). A total of 33 unique correlations and SDs were
estimated across the case (6 SDs and 15 correlations)
and dyad (3 SDs and 9 correlations) levels.

FIML estimates were obtained using the srm package
(version 0.5-1). The srm package assumes SRM compo-
nents to be multivariate normally distributed with a
mean vector y and covariance matrix X, and can accom-
modate structural relations between SRM components.
However, we fit a saturated model at the case and dyad
levels—equivalent to fitting a multivariate SRM—to
derive (co)variance estimates between SRM components.
Group effects were not treated as fixed in the srm pack-
age. This is because the algorithm fails to converge for
the specified model if group effects are fixed. We do not
expect that this limitation will greatly affect our results,
as we generated data such that the mean of each variable
per group is zero. Furthermore, the srm package produ-
ces only unstandardized output (i.e., variances and cova-
riances). We calculated the SRM SDs, correlations,
associated SEs, and confidence intervals using the delta
method, provided in the car package (Fox & Weisberg,
2019). The delta method relies on Taylor series approxi-
mation to provide an approximate asymptotic variance—
and, by extension, SE—of a non-linear transformation of
one or more random variables when the expected values

of the Taylor polynomial are known up to a certain order
of derivatives (provided that the random variables are
themselves asymptotically normal). Although higher-
order approximations provide more accurate estimates,
first-order Taylor approximations are deemed sufficient
for sufficiently large samples in psychological research.
Note that the deltaMethod () function in the car
package provides only the first-order asymptotic variance
approximation of the Taylor polynomial. The srm pack-
age results were saved and the delta method was applied
only if an internal diagnostic tool indicated convergence.
MCMC estimates were obtained from the lav-
aan.srm package (version 0.1-0.0044), using the
mvsrm () function to estimate a multivariate SRM
with priors described in the previous section. For all
MCMC analyses, we initialized four Markov chains
with random starting values and ran each for 2000 iter-
ations, discarding the first 1000 as burn-in, which
yielded 4000 posterior samples to estimate the joint
posterior distribution of the SRM parameters. All varia-
bles were group-mean centered to remove any group
differences due to sampling error. We monitored the
multivariate potential scale-reduction factor (mPSRF;
Brooks & Gelman, 1998), using values > 1.05 as an
indication that the four chains had not yet converged
on the same posterior space, in which case the MCMC
estimation was then repeated with double the initial
number of iterations (i.e., discarding 2000 as burn-in
retaining 2000 samples per chain). We also calculated
each parameter’s effective sample size (ESS) and poten-
tial scale-reduction factor (PSRF or R; Gelman &
Rubin, 1992) to make a more informed decision about
convergence. ESS =100 and R ~ 1.02—which is
equivalent to ESS = 100 when four MCMC chains are
run (see Equation 13, Kwon et al., 2025)—were applied
as cutoff values. Because any poorly sampled parameter
could call convergence into question, a sample was
flagged and removed from the final analysis if either
ESS < 100 or R > 1.02 for any correlation or SD esti-
mate. If ESS > 100 and R < 1.02 for all correlations
and SDs, we included that sample’s EAP estimates of
SRM correlations, SDs, and (co)variances for analysis7.

’Kwon et al. (2025) and Zitzmann and Hecht (2019) recommend using
ESS = 400—equivalent to R ~ 1.005 with four MCMC chains—as a cutoff
value to minimize the impact of Monte Carlo error. However, doing so
resulted in zero samples eligible for final analysis in the n; =6
conditions (with G =10 or 25 groups) with diffuse priors. Furthermore,
the resulting plots differed only negligibly between criteria
(ESS =100/R ~ 1.02 vs. ESS =400/R =~ 1.005), leading to the same
conclusions about the general patterns of results. Thus, we chose to
retain ESS =100 and R = 1.02 as our cutoff values in order to display
these patterns across all simulated conditions. Interested readers can find
a side-by-side comparison of these plots in our OSF project.



Outcome variables

We inspected the robust bias (RB) of point estimates,
the bias in SE estimates, coverage rate (CR) of interval
estimates and the root mean-squared error (RMSE) to
assess the accuracy and efficiency of the different
prior types and FIML.

The RB of an estimate was computed as the differ-
ence between (a) the median of all estimates (ér,
where r € 1,...,R) per condition and (b) the true par-
ameter (0).

The SE bias per simulation condition was com-
puted as the difference between (a) the mean esti-
mated SE and (b) the empirically observed SE (ie.,
the SD of point estimates across replications).

CRs of interval estimates were computed as the
percentage of samples for which the true value of a
parameter was captured by the interval. The lav-
aan.srm package provides central 95% Bayesian
credible intervals (BCI) for the MCMC estimates by
default. For FIML estimates of (co)variance parame-
ters, we constructed a normal-theory 95% confidence
interval (CI) for the transformed parameter (SDs and
correlations) using delta-method SEs.

Finally, consistent with Nestler et al. (2020), the
RMSE was computed as the sum of the squared
robust bias and the squared median absolute deviation
(MAD), which is a robust estimate of the true sam-
pling variability (RMSE = v/bias?® + MAD?). The
MAD was computed as g x Med(0, — Med(0,)) where
g = 1.4826 (Talloen et al., 2019).

Results

One FIML sample in the smallest sample-size condi-
tion (n, = 6, G = 10) did not converge. In addition, a
total of 108 FIML samples, mostly from the n, =6,
G =10 condition were not considered in the final
analysis, given that they produced inadmissible solu-
tions (namely, correlation estimates with absolute
value > 1). Table Al in Appendix A shows the num-
ber of converged samples for all MCMC prior types
and for FIML.

The results for all 24 correlations and 9 SDs are
visually summarized in plots. All other results can be
found on our OSF page.

For this, and subsequent simulations, we structure
our results by Monte Carlo outcome, beginning with
accuracy (of point, SE, and interval estimates) and
then efficiency (using RMSE, which combines both
sampling error and bias). The results are presented in
multifaceted line plots with error bars that display the
range (minimum and maximum) per condition. Each
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panel displays results for a particular sample-size con-
dition, the prior type (or FIML) appear along the x-
axis, and the y-axis contains a scale of values for the
outcome variable. Each panel contains two lines—dot-
ted for the case level and solid for the dyad level—
with the median displayed using different symbols per
level (e for the dyad level and A for the case level).
For the SE bias plots, additional ribbons displaying
the range of the empirically observed SEs per level
have been included. For CR plots, a solid horizontal
line at 95% to indicate nominal coverage and a dashed
horizontal line at 90% to indicate minimally accept-
able coverage are added. Readers interested in viewing
plots containing the results of individual parameters
can find these in our supplementary material on
the OSF.

Robust bias
RB results across all simulation conditions are pre-
sented in Figure 2.

We found that the diffuse—i.e., software-default—
priors could lead to highly biased estimates at the case
level, which is consistent with Smid et al.’s (2020)
conclusions that software-default MCMC estimates
display greater bias than frequentist estimates in small
samples. We found that this was particularly the case
in the small-group conditions (n; = 6 or 8), wherein
information from only n, x G = 60, 80, 150, or 200
people is available when estimating the parameters.
However, the distribution of bias was closer to 0 with
G = 10 groups of n, = 10, despite the total number
of cases ng x G =100 being smaller than G =25
groups of ng, =6 (ny x G = 150), for which distribu-
tion of bias was more negative. This finding reinforces
results from Nestler (2018) and Liidtke et al. (2013),
who concluded that group size n, was more important
than the number of groups G to accurately estimate
SRM parameters. Larger groups imply more interac-
tions per person and, by extension, more information
about each case.

Diffuse priors yielded much lower bias in dyad-
level estimates. Even in the n, =6 conditions,
maximum absolute bias value did not exceed approxi-
mately 0.5 units. This is due to estimating relation-
ship-level parameters with more dyads (1, x ngT_l x G)
than cases (ng x G). Therefore, dyad-level parameters
tend to be more accurately and precisely estimated.

Comparing the prophetic-prior conditions reveals
the effect of prior information. Estimates of the Pr-0.2
priors were, as expected, more accurate than those of
the diffuse priors. However, these estimates yielded the
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Figure 2. Plot depicting the robust bias for Simulation-1 SRM correlation and SD estimates. The estimation methods compared in
this simulation are presented in the x-axis and the y-axis contains the robust bias values. Each facet presents the results for a sep-
arate {ng, G} combination. The symbols A (case level) and e (dyad level) represent the median robust bias across all estimates
per level, whereas the error bars extend to the minimum and maximum robust bias per level. Solid lines are used for the dyad

level and dotted lines are used for the case level.

most variability in bias around 0 out of the three pro-
phetic prior conditions, at both levels and across all
sample sizes. The Pr-0.05 prior estimates had the least
variability in bias around 0. Bias still tended to be dis-
tributed around 0 at the dyad level, but case-level bias
seemed to be distributed more negatively with less
prior information (i.e., Pr-0.2 performed worse than
Pr-0.1). This result suggests that even if accurately
located priors are specified, sufficient prior information
(i.e., a sufficiently small prior SD) would be required to
prevent bias of posterior point estimates.

Finally, FIML produced relatively unbiased esti-
mates at both levels, parallel to results in Nestler
(2018); Nestler et al. (2020); Nestler, Liidtke, et al.,
2022a). The distribution of bias was spread very little
around 0, even in samples of a few small groups
(ng = 6,G = 10). Note, however, that FIML produced
98 samples with at least one out-of-bounds correlation
estimate in the n, = 6, G = 10 condition, which were
excluded from the results.

Standard-error bias

The SE bias is illustrated in Figure 3, wherein the rib-
bons display the range of empirical SEs (i.e., the SDs
of each parameter’s estimate). As evident Figure 3, the
empirical SEs for FIML were higher than for any prior
condition when n, < 10, implying that even with dif-
fuse priors, MCMC can be more efficient than FIML

in small samples. Diffuse priors have a similar spread
of efficiency as FIML when n, > 10.

The median SE bias for diffuse priors was close to
zero, implying that the median bias in SEs was small
relative to the actual sampling variability, even in the
small-group conditions. However, SEs for some
parameters at the case level were overestimated in the
n, = 6 condition, leading to the error bar for SE bias
in these conditions to be positively skewed. As with
point estimates, SE bias at the dyad level was also
minimal.

The median SE bias for the prophetic priors was
also, on average, close to zero across all sample-size
conditions. However, note that the Pr-0.2 priors over-
estimated the SEs for some parameters at the case
level in the n, = 6 conditions. This is because a lower
prior precision (i.e., larger prior SD) allows for more
variability in sampled estimates, resulting in higher
posterior variance than the actual variability in esti-
mated parameters.

For all MCMC conditions, across all n, at the case
level, the overestimation of SEs reduces as G increases
from 10 to 25. This is because collecting data from a
greater number of groups per sample decreases the
amount of sampling variability in the estimated
parameters.

The SEs of FIML estimates displayed low to min-
imal bias across all conditions, even in the n, =6
conditions. note that the

However, empirically
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Figure 3. Plot depicting the SE bias for Simulation-1 SRM correlation and SD estimates. The estimation methods compared in this
simulation are presented in the x-axis and the y-axis contains the SE bias values. Each facet presents the results for a separate
{ng,G} combination. The symbols A (case level) and e (dyad level) represent the median SE bias across all parameters per level,
whereas the error bars extend to the minimum and maximum SE bias per level. The ribbons show the range of the empirically
observed SEs across all parameters per level. Solid lines are used for the dyad level and dotted lines are used for the case level.

observed SEs for FIML are the greatest of the methods
compared in this simulation, implying that the esti-
mated SEs are also large. In addition, out of the 98
samples with at least one out-of-bounds correlation
estimate in the n, = 6,G = 10 condition, most had
unrealistically high associated SEs—for example, the
associated SE for an out-of-bounds estimate p,, p, =
—53.426 (which is impossible for a correlation esti-
mate) was as high as 187,344.504. These samples were
excluded from the final analysis.

Coverage rates
The CRs per level and condition are presented in
Figure 4.

In the diffuse-prior conditions, case-level interval
estimates had coverage rates that were lower than
nominal in small-to-moderate samples. This shows
how greatly case-level parameters were underesti-
mated, given that their overestimated sampling vari-
ability (high SE bias) would make the interval
estimates too wide. Coverage at the dyad level was
much better, but not always nominal (e.g., between 80
and 90% when n, = 6 or 8).

Out of the three prophetic-prior conditions, Pr-
0.05 priors capture the true value of the parameter
almost 100% of the time, whereas Pr-0.1 and Pr-0.2
priors had lower CRs. This is to be expected, given
that not only do Pr-0.1 and Pr-0.2 estimates display a
greater magnitude of bias than Pr-0.05 estimates, but

also larger sampling variability. Whereas the width of
the Pr-0.05 prior is narrower with greater probability
density concentrated at the expected value, Pr-0.1 and
Pr-0.2 are wider priors allowing for estimation of a
diverse set of values (see Figure 1), which affects their
estimated posterior distributions and, by extension,
their CRs.

FIML estimates had nominal coverage at both lev-
els, even in small groups. This follows from the lack
of bias in point and SE estimates.

RMSE

The previous outcomes were used to compare accur-
acy of point, SE, and interval estimates, but even in
the absence of bias, estimates can be inaccurate
(unequal to their population parameter) due to sam-
pling error. RMSE incorporates (in)efficiency, mak-
ing it possible to compare a less biased but less
efficient estimator to one that is more efficient but
more biased. Our results so far have shown FIML
to be quite accurate (even in small samples), but
less efficient than MCMC in small samples (even
with diffuse priors). The RMSE results presented in
Figure 5 allow us to compare MCMC (with varying
prior information) to FIML in a way that accounts
for the accuracy-precision tradeoff: lower RMSE
indicates that estimates are closer to population
values.
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Figure 4. Plot depicting the coverage rate for Simulation-1 SRM correlation and SD estimates. The estimation methods compared
in this simulation are presented in the x-axis and the y-axis contains the coverage rates. Each facet presents the results for a separ-
ate {ng, G} combination. The symbols A (case level) and e (dyad level) represent the median coverage rate across all estimates
per level, whereas the error bars extend to the minimum and maximum coverage rate per level. Solid lines are used for the dyad
level and dotted lines are used for the case level. A solid horizontal line indicates the nominal 95% confidence level, and a dashed

horizontal line indicates a minimally acceptable 90% coverage.
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Figure 5. Plot depicting the RMSE for Simulation-1 SRM correlation and SD estimates. The estimation methods compared in this
simulation are presented in the x-axis and the y-axis contains the RMSE values. Each facet presents the results for a separate
{ng,G} combination. The symbols A (case level) and e (dyad level) represent the median RMSE across all estimates per level,

whereas the error bars extend to the minimum and maximum
lines are used for the case level.

On average, across both levels, all approaches are
asymptotically comparable, given that both bias and
sampling variability decrease as the sample size
increases. Dyad-level RMSE was quite low across all
sample sizes and estimators. Differences in case-level

RMSE per level. Solid lines are used for the dyad level and dotted

RMSE were more apparent, particularly in smaller
groups with less prior information. Even weakly
informative priors—which were not informative
enough to minimize bias—yielded notably lower
RMSE than FIML or diffuse priors. As expected, the



Pr-0.05 priors had lowest RMSE values compared to
the Pr-0.1 and Pr-0.2 priors, owing to the low esti-
mate bias and MAD values.

Discussion

These results show that even with accurately located
priors, the accuracy of posterior point, SE, and interval
estimates of multivariate SRM parameters can depend
on prior precision (i.e., the SD of the prior distribu-
tion). Naturally, more informative priors yielded more
efficient estimates, minimizing RMSE due to the priors
being accurately located. However, informative priors
can overwhelm the data in small samples, and the
highest level of precision we considered (Pr-0.05) might
not be representative of how confident researchers are
likely to be about their expectations (if any) when esti-
mating SRM parameters with MCMC.

Researchers in substantive settings do not have
knowledge of the true values of parameters they esti-
mate with MCMC. In the next simulation, we explore
the use of less accurate priors—based on theory or
data, rather than prophetically knowing the true
parameters. We therefore manipulate prior locations,
but we hold the magnitude of prior information
constant.

Simulation study 2: Prior location

Whereas Simulation 1 investigated the effects of prior
precision under the condition of unrealistically accur-
ate location, Simulation 2 compares practical methods
to specify priors with approximately accurate loca-
tions. Reasonably accurate prior locations can be
specified based on theoretical expectations—perhaps
also informed by previous research findings—which
Smid et al. (2020) referred to as thoughtful priors. In
the context of analyzing round-robin data, thoughtful
priors would incorporate researchers’ prior know-
ledge—for example, from previous studies—about the
strength of relations between SRM components (cor-
relations) and the relative contributions of case- and
dyad-level components (often expressed as propor-
tions of the total variance).

It is also possible to choose hyperparameters based
on preliminary (frequentist) analyses of the round-
robin sample data. These are called empirical Bayes
(EB) priors, of which we consider two types to deter-
mine approximate prior locations of SRM SDs and
correlations: method-of-moments estimation (EB-
MOM prior) and FIML estimation (EB-FIML prior).

MULTIVARIATE BEHAVIORAL RESEARCH 941

We designed Simulation 2 to compare thoughtful pri-
ors to the two EB prior types.

Simulation conditions

The main difference from Simulation Study 1 is our
manipulation of prior locations for SD and correlation
parameters, which we describe in detail here.

Thoughtful priors were designed to simulate a real-
istic situation wherein a researcher specifies hyper-
parameters based on expert knowledge. In this case,
we assume the researcher would correctly expect all
correlations at both levels to be positive, but to have
less confidence about how large the correlations
would be. Thus, we specified a Beta (« = 58.500, f =
31.500) prior, which after rescaling has an expected
value of M = .30 (i.e., most likely to be a “medium”
correlation; Cohen, 2013) with SD = .1. We consider
this reasonably located and weakly informative, as
approximately 95% of the prior probability mass is
located within *=.2 of the specified location. That is,
the prior is not so informative as to rule out small
(0.1) or large (0.5) correlations as being reasonably
likely—a range which covers most of the correlations
in Tables 1 and 2. The default location of the prior ¢
distributions were retained for SDs in the thoughtful
condition as the location hyperparameters (u) are
chosen based on the total sample SD.

The EB-MOM and EB-FIML prior locations were
chosen in two steps. In the first step, a univariate
SRM was conducted for each round-robin variable
using frequentist estimation (method-of-moments or
FIML) to obtain point estimates of SDs and correla-
tions (reciprocities). A bivariate SRM was conducted
for each pair of round-robin variables to obtain point
estimates of between-variable correlations among SRM
components. The following section provides more
detail about frequentist estimation.

After obtaining point estimates, EB priors were
specified with hyperparameters that
expected value equal to the point estimate in the
second step. For SD parameters, this was simply the
location parameter, y, of the prior ¢ distributions. For

implied an

correlation parameters, an optimization algorithm was
used to find hyperparameters of the rescaled-Beta pri-
ors that yielded expected values equal to the frequent-
ist correlation estimates. As with thoughtful priors,
priors ¢ distributions were specified with scaling
hyperparameter ¢ = 0.1, and rescaled Beta distribu-
tions had a prior SD = .1.

The EB priors described above involve using the
same data both to determine prior hyperparameters,
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then updating the prior with the same data to esti-
mated the posterior distribution. This is a contentious
practice in Bayesian literature—sometimes called
“double dipping”—both philosophically (due to being
“not particularly Bayesian” Carlin & Louis, 2000b, p.
1287)
Especially in small samples, informative (narrow) pri-
ors may overwhelm the data to exert greater impact
on the estimated posterior’s location (Darnieder,
2011). A data-informed prior location will be consist-
ent with the data (re)used in the likelihood, resulting

and due to its empirical consequences.

in a similarly located posterior; however, greater prior
precision will lead to more precisely estimated poster-
ior. Because the precision is illusory (i.e., prior infor-
mation is borrowed from the data, ignoring sampling
error), uncertainty intervals will be too narrow, lead-
ing to lower-than-nominal coverage (documented in,
e.g., Kass & Steffey, 1989; Schuurman et al, 2016).
Our simulation results clearly demonstrate this prob-
lem in the SRM context, and we explore a potential
solution in Simulation 4.

As in Simulation Study 1, we specified the size of
round-robin groups n, = 6, 8, 10, or 20 and the num-
ber of round-robin groups G = 10 or 25, resulting in
3 (priors) x4 (ng) x 2 (G) =24 simulation condi-
tions. We generated R = 1000 samples per condition,
saving EAP estimates and calculating the same out-
come variables as for Simulation Study 1.

Frequentist analyses for EB priors

The first step of specifying the EB-MOM priors was
to fit univariate and bivariate SRMs in the TripleR
package (version 1.5.4). TripleR estimates group-
wise variances and covariances for (pairs of) SRM
components, the weighted means of which are the
resulting method-of-moments estimates. However, the
method-of-moments estimator sometimes produces
Heywood cases (i.e., negative variances) which are
also considered in the weighted mean by default.
Following Ludtke et al. (2013), we assumed group-
wise negative variance estimates were an outcome of
negligible variances and rescaled these to 0 before
computing the weighted mean. The square-roots of
the weighted-mean variances were then set as the u
hyperparameters for the prior ¢
TripleR follows a similar procedure for covariance
parameters, wherein the weighted mean of the covari-
ance among SRM component pairs is computed. We
standardized the weighted means and fixed correlation
estimates > .9 to .9. The correlation values were then

distributions.

passed through the optimization algorithm, resulting
in unique a and f hyperparameters per SRM correl-
ation parameter in each sample.

To specify the EB-FIML priors, we first fit univari-
ate and bivariate SRMs in the srm package. FIML
may produce negative variance estimates given near-
zero population variances and small sample sizes. In
such cases, the u of the t-prior was set to 0. When
computing a correlation Pxy between SRM compo-
nents x and y, covariances were standardized only if
both ¢ > 0 and o} > 0. Large correlations were fixed
to 0.9 and the o and f hyperparameters were chosen
based on the FIML estimates. Similar to Simulation 1,
an optimization algorithm computed o and f values
that minimized the sum of two squared discrepan-
cies—(a) the difference between the FIML correlation
estimate and the expectation M of the rescaled Beta
distribution, and (b) the difference between the
intended prior SD and the expected SD of the rescaled
Beta distribution, the code for which can be found in
our supplementary materials. If 63 < 0 or ¢} <0, the
o and S hyperparameters for that correlation were
fixed to the default value of 1.5. Although it is pos-
sible to fit multivariate models in srm, we performed
all above computations using univariate model esti-
mates for SDs and bivariate model estimates for corre-
lations. This is because Simulation 1 revealed
convergence issues that led to unstable or unrealistic
estimates when fitting multivariate models in the srm
package. Fitting bivariate SRMs minimized conver-
gence problems.

Results

As with Simulation 1, MCMC samples were not con-
sidered in the final analysis if ESS < 100 or R > 1.02
for any estimated correlation or SD parameter. Table
Al in Appendix A shows the number of converged
samples for thoughtful, EB-MOM, and EB-FIML pri-
ors per sample-size condition. We include FIML and
Pr-0.1 estimates from Simulation Study 1 as bench-
marks for comparison with Simulation-2 results.

Robust bias
Figure 6 presents the (range of) robust bias for the
thoughtful, EB-MOM, and EB-FIML priors per level.
Although the median bias in thoughtful-prior esti-
mates lies close to 0, the distribution of the outcome
is wide, indicating that thoughtful priors poorly esti-
mate some parameters. As expected, parameters with
true values > .3 were underestimated, whereas those
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Figure 6. Plot depicting the robust bias for Simulation-2 SRM correlation and SD estimates. The estimation methods compared in
this simulation are presented in the x-axis and the y-axis contains the robust bias values. Each facet presents the results for a sep-
arate {ng, G} combination. The symbols A (case level) and e (dyad level) represent the median robust bias across all estimates
per level, whereas the error bars extend to the minimum and maximum robust bias per level. Solid lines are used for the dyad

level and dotted lines are used for the case level.

with true values < .3 were overestimated (interested
readers can find figures displaying aggregate results
per parameter on our OSF project). Although the
magnitude of the bias diminishes in larger groups, the
pattern of over/underestimation persists. The overall
bias at the dyad level is much lower, but parameters
still appear to be over/underestimated in the small-
group conditions.

Both the EB priors generally display a near-zero
median bias at both the case and dyad levels for all
sample-size conditions. Further, the range of bias val-
ues is also lower for these prior types. This is sensible,
since the frequentist estimates used as the location for
the prior distributions are presumably much closer to
the true value of the parameter than a fixed location
of .3. There does not appear to be a substantial differ-
ence between the bias of EB-MOM and EB-FIML
prior locations.

Standard-error bias

The SE bias is presented in Figure 7. As indicated by
the shaded ribbons, both EB priors are as (in)efficient
as FIML?, but the SE estimates (i.e., posterior SDs) are
more biased for the EB priors than FIML. That is, EB
priors expect less variability than is actually observed,
consistent with past research on EB priors (Carlin &
Louis, 2000b; Schuurman et al., 2016).

8A plot containing the estimated SFs for both EB priors and FIML can be
found on our OSF page.

The SEs for thoughtful priors are only slightly over-
estimated. The bias is greatest in the smallest condi-
tion, with a maximum of approximately 0.06 units,
but reduces as sample size increases. Also note that,
across all n,, SE bias reduces from G = 10 to 25 since
the sampling variability of estimates reduces when
more information is available.

Most evident for the case level, SEs for the EB pri-
ors are underestimated. This implies that, in reality,
there is greater variability in estimated values across
samples than approximated by the posterior SD. As
mentioned in Simulation Study 1, the underestimation
of sampling variance due to “double dipping” is a
common problem when using EB priors (Carlin &
Louis, 2000b). We derived estimates for our EB priors
by using the complete dataset twice for a hierarchical
process: first deriving frequentist estimates of the
desired model parameters, then using these as hyper-
parameters (or computing hyperparameters based on
these) before proceeding with Bayesian estimation as
if the hyperparameters were known (or believed) a
priori (Carlin & Louis, 2000a, ch. 3). Thus, to more
accurately estimate sampling variability, it is necessary
to account for uncertainty from two sources: (a) the
uncertainty in the frequentist estimation of the hyper-
parameters, and (b) the uncertainty in the Bayesian
estimation of SRM parameters. Our EB priors fail to
adjust for the uncertainty in the frequentist process
used to choose hyperparameters, which leads to
underestimating the true sampling variance. However,



944 A. M. BHANGALE AND T. D. JORGENSEN

ng=6,G=10 ng=8,G=10 ng=10,G=10 ng=20,G =10
02
e — kT = > - e (| e
0.0T—=—3 o - = — —_—
3 r s H
4 2 Level
< ng=6,G =25 ng=8,G=25 ng=10,G=25 ng=20,G=25 —= Dyad level
% -+ Case level
02
I < = = = = e
v L x 2 s - & 1)' e
+ 4
-02
& S & W F EE
W& o& S < RO LR R & & < oF o (& ¢ <
N %\0\‘ & & c§$ 2 & & & @O“ & & $ »"‘0\ & Q¢
&‘\o‘ & & &\\c\} & & ’\@)’ & /\‘\o"' & &
Method

Figure 7. Plot depicting the SE bias for Simulation-2 SRM correlation and SD estimates. The estimation methods compared in this
simulation are presented in the x-axis and the y-axis contains the SE bias values. Each facet presents the results for a separate
{ng,G} combination. The symbols A (case level) and e (dyad level) represent the median SE bias across all parameters per level,
whereas the error bars extend to the minimum and maximum SE bias per level. The ribbons show the range of the empirically
observed SEs across all parameters per level. Solid lines are used for the dyad level and dotted lines are used for the case level.

the SE bias is negligible for dyad-level estimates, and
even SE bias of case-level estimates is attenuated by
more data, reducing in conditions with more (G) or
larger (ng) groups.

We conduct 2 additional small-scale simulations, first
to explore the effect of sampling more small groups
(ng = 6 and 8) in Simulation 3. Because sampling small
round-robin groups is so common (to minimize the
burden of data collection), it is valuable to discover
whether unbiased results for EB priors can be obtained
from small groups when G is large. In Simulation 4, we
explore a potential solution to double dipping by using
only some data to estimate hyperparameters.

Coverage rates
The CR for each analysis type and sample-size condi-
tion is presented in Figure 8.

Across all sample-size conditions, thoughtful priors
display very low CRs due to their inaccurate point
estimates. Figure 6 shows that parameters are either
greatly overestimated or greatly underestimated by the
thoughtful priors. The BCIs fail to capture the true
value of the parameters at nominal levels. This implies
inflated Type I error rates when using BCIs to apply
traditional null-hypothesis significance tests.

CRs for the EB priors are also (but to a lesser
degree than thoughtful priors) below nominal in
small-sample conditions, but CRs slightly improve as
n, or G increase (i.e., when data overwhelm the
prior). Given that the EB priors underestimate SEs,

their BCIs are too narrow, which yields low coverage
even when point estimates are unbiased—the same
consequence of double dipping observed for SE bias.

RMSE

The ranges of RMSE values for the thoughtful priors
and EB priors were, for the most part, comparable.
Figure 9 shows the EB priors also had comparable
RMSE values to FIML, indicating a similar accuracy-
precision tradeoff. In line with Nestler et al. (2020)
results, we also found that FIML more efficiently esti-
mates case-level parameters with fewer large groups
(e.g., ng x G =20 x 10 = 200) than with many small
groups (e.g., 8 x 25 = 200), given the same number of
cases (200).

Discussion

Simulation 2 shows how the accuracy of weakly
informative prior locations can impact quality of esti-
mation. We found that while the EB priors provided
relatively accurate estimates of parameters, they
underestimated their sampling variability—especially
of case-level estimates in smaller samples. This is due
to double dipping, which involves a hierarchical pro-
cess in computing EB-prior estimates: first obtaining
frequentist estimates of hyperparameters, then treating
those EB-hyperparameters as a priori knowledge.
Posterior SDs estimate sampling variability expected if
the same model were fitted to new data. But priors
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Figure 8. Plot depicting the coverage rate for Simulation-2 SRM correlation and SD estimates. The estimation methods compared
in this simulation are presented in the x-axis and the y-axis contains the coverage rates. Each facet presents the results for a separ-
ate {ng, G} combination. The symbols A (case level) and e (dyad level) represent the median coverage rate across all estimates
per level, whereas the error bars extend to the minimum and maximum coverage rate per level. Solid lines are used for the dyad

level and dotted lines are used for the case level.
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Figure 9. Plot depicting the RMSE for Simulation-2 SRM correl

ation and SD estimates. The estimation methods compared in this

simulation are presented in the x-axis and the y-axis contains the RMSE values. Each facet presents the results for a separate
{ng,G} combination. The symbols A (case level) and e (dyad level) represent the median RMSE across all estimates per level,

whereas the error bars extend to the minimum and maximum
lines are used for the case level.

are part of the model, and EB priors cause the model
to fluctuate from sample to sample. That additional
“model variability” is not captured by a single MCMC
estimation. In Simulation 4, we explore BMA as a
solution to the underestimated-variance problem of

EB priors.
We also found that EB-MOM and EB-FIML
yielded comparable point and SE estimates.

RMSE per level. Solid lines are used for the dyad level and dotted

Thoughtful priors produced biased estimates even in
the large-sample conditions, indicating that the accur-
acy of a posterior estimate is highly dependent on
how accurate the expected value of the prior distribu-
tion is. In our thoughtful-prior conditions, we speci-
fied the same prior location for all correlations. In
practice, a researcher with expert knowledge might be
able to specify more accurate thoughtful prior
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locations that depend on the correlation—for example,
generalized and dyadic reciprocities are likely to be
the largest correlations, and one might reasonably
expect intrapersonal correlations to be larger than
interpersonal correlations (as in Table 1). In such
cases, the performance of thoughtful priors might
more closely resemble that of EB priors, which vary
across correlations by taking the data into account, so
our simulation merely shows how poorly thoughtful
priors might perform if they are not well informed.

Simulation study 3: More small groups

Simulation Studies 1 and 2 showed that MCMC esti-
mation of SRM effects is inaccurate in small-group
(ng = 6 or 8) conditions. For a given group size n,,
sampling more groups reduces the range of estimation
bias when using diffuse or thoughtful priors. The EB
priors yielded relatively unbiased point estimates in
small-group conditions, but they produced biased SEs
when fewer groups were sampled for a given n,. The
goal of this simulation is to determine whether sub-
stantially larger G would yield sufficiently unbiased
point estimates for diffuse or thoughtful priors, or suf-
ficiently less biased SEs for EB priors.

Simulation conditions

Data with G = 50 and 100 groups of size n, = 6 as
well as G = 50 groups of size ny = 8 were generated
and analyzed for this simulation. We compared the
software-default diffuse priors with thoughtful and
EB-FIML priors. The population values (see Tables 1
and 2) and prior specifications from Simulations 1
and 2 were retained. EB-MOM priors were not speci-
fied in this simulation, given that we found EB-FIML
and EB-MOM priors perform similarly (see
Simulation 2’s Results). We simulated R = 1000 repli-
cations in each of these new conditions.

Results

As in Simulations 1 and 2, only converged samples
(using criteria ESS = 100 and R = 1.02) were consid-
ered for the final analysis (see Table A2 in Appendix
A). We include plots for n, = 6 and 8 with G = 10
and 25 (from Simulations 1 and 2) in the figures for
comparison. Readers interested in viewing plots based
on stricter convergence criteria (ESS =400 and

R =1.005) can find these in our supplementary
materials.

We present results for only RB and SE bias, to
evaluate whether sampling more G reduces point esti-
mate bias for diffuse and thoughtful priors and
reduces SE bias for EB-FIML priors.

Robust bias
Figure 10 displays the results for robust bias.

The median bias of diffuse-prior estimates for the
n, = 6 conditions at the case level remain consistent
as G increases from 10 to 100. Increasing G for a
given n, decreases the sampling variability of esti-
mates, but smaller groups still yield biased estimates.
Thus, the inaccurate results are more precise, which
yields even worse coverage (see our supplementary
materials on the OSF). For the n, = 8 condition, both
the median bias and range of bias remain consistent
across the various G. At the dyad level, there is a sub-
stantial increase in accuracy of estimation from G =
25 to G = 50 for both n, = 6 and 8.

For both n, = 6 and 8 in the thoughtful-prior con-
ditions, the median bias is approximately constant
across all G conditions. The distribution of bias
around the median value becomes tighter as G
increases. This same pattern persists at the dyad level.

Bias for EB-FIML priors remains stable across G
for both levels.

Standard-error bias
SE bias is presented in Figure 11.

For both levels, the SE bias for diffuse prior esti-
mates greatly improves when G is increased from 25
to 50. This is sensible, given that information from
more groups is available to estimate parameters,
thereby reducing the overall sampling variability.

There appears to be no substantial difference in the
median SE bias and range of (consistently low) SE
bias values for thoughtful priors at either the case or
dyad level.

EB priors greatly underestimated case-level SEs of
estimated parameters when n, =6. However, the
magnitude  of underestimation appeared (in
Simulation 2) to reduce when G increased from 10 to
25. Following this pattern, the SE bias reduced further
when G increased to 50 and then 100. The n, = 8
conditions display a similar pattern. This overall
improvement in estimation of SEs follows from the
prior exerting less relative influence on the posterior
when more information is available from data to esti-
mate the parameters.

Despite the improvement in SE bias as G increases,
the CR for some parameters remains quite low. The
CR plot can be found in our supplementary material.
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Figure 10. Plot depicting the robust bias for Simulation-3 SRM correlation and SD estimates. The estimation methods compared in
this simulation are presented in the x-axis and the y-axis contains the robust bias values. Each facet presents the results for a sep-
arate {ngy, G} combination. The symbols A (case level) and e (dyad level) represent the median robust bias across all estimates
per level, whereas the error bars extend to the minimum and maximum robust bias per level. Solid lines are used for the dyad
level and dotted lines are used for the case level.
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Figure 11. Plot depicting the SE bias for Simulation-3 SRM correlation and SD estimates. The estimation methods compared in
this simulation are presented in the x-axis and the y-axis contains the SE bias values. Each facet presents the results for a separate
{ng,G} combination. The symbols A (case level) and e (dyad level) represent the median SE bias across all parameters per level,
whereas the error bars extend to the minimum and maximum SE bias per level. The ribbons show the range of the empirically
observed SEs across all parameters per level. Solid lines are used for the dyad level and dotted lines are used for the case level.

Discussion to sample 100 or even 50 round-robin groups in

Simulation 3 shows that sampling many groups is applied SRM settings.

insufficient to compensate for the lack of information

due to small groups, specifically at the case level, Simulation 4: Bayesian model averaging

when considering point-estimate bias for diffuse and
thoughtful priors. Although bias in SEs for EB-FIML
priors improves with greater G, it is often impractical

For the additional sampling variability induced by
using data-dependent priors to be captured by the
posterior, we adapted a method for a similar problem:
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capturing uncertainty due to incomplete data. When
missing data are imputed multiple times, MCMC esti-
mation can be applied to each completed data set.
Given satisfactory convergence criteria per imputed
data set, inference can proceed by mixing the poster-
ior samples from all imputations (Gelman et al. 2013,
p. 452; Zhou & Reiter 2010).

Similarly, we used FIML to estimate SRM parame-
ters with subsets of round-robin groups, to specify EB
priors with different location parameters. The degree
to which the estimated posterior distribution varied
across these subsets should reflect the uncertainty
about the estimates used as location hyperparameters.
Because priors are part of the model, merging the sep-
arate posterior samples in this scenario is a form of
Bayesian model averaging (BMA), although BMA is
usually applied when models differ in their covariates
or estimated parameters (see Hinne et al., 2020;
Wasserman, 2000, for an introduction). We label this
prior type as the “BMA-FIML” prior to reflect the two
components involved.

Simulation conditions

Adequately investigating this BMA method would
warrant its own paper (to review the BMA literature,
motivating design factors to manipulate), so this
small-scale simulation study serves only as a proof of
concept, both to assess its effectiveness in addressing
the underestimated posterior variance issue and to
determine the computational feasibility of such a
method in the SRM context. For this reason, we
focused only on a single small-sample condition: n, =
6 with G = 10. We compared point and SE estimates
of FIML and EB-FIML priors to those computed
using BMA-FIML priors. As with Simulation 3, we
used the same population values and prior specifica-
tions detailed previously and simulated R = 1000
replications.

Bayesian model averaging

We first created five subsets—containing six groups
each—per dataset, resulting in 36 cases and 90 dyads
(15 dyads per group) in each subset. EB-FIML priors
were constructed for each of the five subsets (see
Simulation 2’s Method for the procedure). Similar to
previous simulations, we specified weakly informative
priors and fixed precision to 0.1. Posterior samples
were then generated for each of the five subsets.

For each MCMC analysis, we initialized two
Markov chains with random starting values and ran

each for 2000 iterations, discarding 1000 as burn-in
(which returned 2000 posterior samples per subset).
This resulted in five separate sets of posterior samples,
corresponding to each subset. Then, we computed the
mPSRF—using values mPSRF > 1.05 as an indication
that the algorithm had not yet converged—for each
subset posterior. If mPSRF > 1.05 for any of the five
subsets, we repeated the MCMC estimation for all
subsets with 10,000 iterations, discarding 5000 as
burn-in (i.e., 10,000 posterior samples per subset).
Subsets for which mPSRF remained > 1.05 after the
second round of MCMC were discarded before
merging9 the remaining posterior samples to estimate
the joint posterior distribution of the SRM parame-
ters. EAP estimates of the SRM correlations, SDs and
(co)variances were saved from this pooled posterior
distribution.

Results and discussion

A total of 802 samples were considered for the final
analysis in the BMA-FIML condition (see Table A3 in
Appendix A). That is, at least two subsets converged
with mPSRF < 1.05 for each of these samples.'’ Plots
of FIML (from Simulation 1) and EB-FIML (from
Simulation 2) are included for comparison.

We evaluate the robust bias, SE bias, and coverage
rates below. Plots for all three outcome variables can
be found in Figure 12. The plot for robust RMSE can
be found in our supplementary material.

The left panel in Figure 12 presents the robust bias
comparisons for EB-FIML priors, BMA-FIML priors,
and FIML. Estimates at the dyad level are comparable
across priors, but at the case level, BMA-FIML priors
displayed slightly greater absolute median bias than
EB-FIML estimates; however, this difference is negli-
gible (approximately 0.02 units). This slight increase
in absolute median bias is likely due to the fewer
number of cases per subset for BMA-FIML priors (36
cases) compared to EB-FIML priors (60 cases). That
is, for BMA-FIML priors, data from only 36 cases is
used to estimate FIML estimates of case-level parame-
ters and subsequently compute the final posterior dis-
tribution per subset, in contrast to the 60 cases used
for EB-FIML priors.

fMerging separate chains invalidates the standard calculation of ESS and
R because additional between-chain variance is expected, not due to lack
of convergence, but due to conditioning on different priors (based on
different subsets of data). Arguably, the ESS for the merged posterior
could be calculated as the sum of the estimated ESS per subset, but
exploring that issue is beyond the scope of this article.

%We did not consider samples for which only one subset converged with
mPSRF < 1.05, as these samples did not undergo mixing of chains from
multiple subsets (thus, no model averaging was involved).
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Figure 12. Plot depicting the robust bias (left panel), SE bias (center panel), and coverage rate (right panel) for Simulation-4 SRM
correlation and SD estimates. The estimation methods compared in this simulation are presented in the x-axis and the y-axis con-
tains the outcome variable values. In all three panels, the symbols A (case level) and e (dyad level) represent the median value
across all estimates per level, whereas the error bars extend to the minimum and maximum per level. Solid lines are used for the
dyad level and dotted lines are used for the case level. In the center panel, the ribbons show the range of the empirically

observed SEs across all parameters per level.

The range of SE bias values is presented in the cen-
ter panel of Figure 12. The range of SE bias is already
minimal at the dyad level, but is improved with BMA.
BMA more noticeably improves case-level SE bias,
although some bias still remains. The practical impact
of the remaining SE bias is clear from the range of
low CR, displayed in the right panel of Figure 12.

Overall, the results of Simulation 4 show that
merging posterior samples from multiple subsets of
data attenuates, but does not completely eliminate, SE
bias. More work is needed to explore whether a more
optimal implementation of BMA (e.g., larger or more
subsets) can further reduce SE bias.

General discussion

In this article, we explored MCMC estimation of the
multivariate SRM, comparing it to FIML across a
range of commonly employed round-robin design
conditions. Bayesian inference for SRM parameters
has several theoretical and practical advantages, as
demonstrated in several developments and applica-
tions for univariate round-robin outcomes (e.g.,
Jorgensen et al., 2018; Koster & Leckie, 2014; Liidtke
et al., 2013, 2018). An increased demand for multi-
variate modeling of round-robin data has led to recent
developments using FIML estimation (Nestler, 2018;
Nestler et al., 2020), and Jorgensen et al. (2024) dem-
onstrated the practical utility of MCMC estimation,

acknowledging the need for Monte Carlo research to
establish best practices, as well as reveal conditions
that warrant caution (e.g., small samples). To this end,
we presented four simulation studies. The first three
simulations explored the impact of manipulating (a)
the precision of prior distributions for a fixed prior
location, (b) the accuracy of prior locations for a fixed
prior precision, and (c) the number of groups sampled
when information from only a few participants per
group is available. For (b), we explored two methods
for specifying more accurate EB priors to better
estimate SRM correlations and SDs. The fourth simu-
lation study applied BMA to attenuate a well-docu-
mented problem with EB priors.

In Simulation 1, we found that even for “prophetic”
prior locations, the accuracy of point estimates
depends on prior precision, with more precise priors
yielding more accurate posterior estimates (see Figure
5). However, as prophetic prior locations are an
unrealistic scenario, we fixed the prior precision in
Simulation 2, manipulating prior locations to compare
thoughtful and EB priors.

Of the MCMC priors considered in Simulation 2
(diffuse, thoughtful, EB-FIML and EB-ANOVA), the
EB priors (which performed comparably) had lower
point-estimate bias but higher SE bias, resulting in
lower but similar RMSE than our minimally thought-
ful priors (see Figure 9)—the familiar bias-variance
tradeoff. The accuracy of diffuse priors was quite



950 A. M. BHANGALE AND T. D. JORGENSEN

poor, but improved as n, increased. Thoughtful priors
over/underestimated the SRM parameters depending
on whether the true value of the parameter was
greater/lesser than the chosen expected value of the
rescaled Beta distribution (M = .30). We selected a
single expected value for all correlations across both
levels. In practice, researchers may select separate
thoughtful-prior locations for different parameters
informed by theory or previous research which may
improve the accuracy of the estimation. Though the
EB priors displayed low bias, they underestimated
sampling variability, leading to low coverage in small
groups since the algorithms failed to account for the
uncertainty in estimating the Beta hyperparameters.

In Simulation 3, we considered conditions wherein
a greater number of small groups are sampled to
assess whether (a) point-estimate bias for diffuse and
thoughtful priors improves and (b) SEs are more
accurately estimated for EB-FIML priors. Case-level
point-estimate bias for diffuse and thoughtful priors
did not show substantial improvement as more groups
were sampled. Instead, in the smallest-group condi-
tion, bias increased with more groups due to more
precision for inaccurate estimates. Dyad-level esti-
mates appeared to improve as G increased from 25 to
50. Additionally, the underestimation of SEs for EB-
FIML priors improved as more groups were sampled.
However, sampling many small round-robin groups
may be costly or burdensome; thus, this may not be a
practical solution in applied settings.

Use of the same data twice—first to specify prior
distributions, and again for the MCMC estimation—
can be problematic and results in underestimated pos-
terior variability (Carlin & Louis, 2000b). Simulation 2
demonstrated this issue in the SRM context. In
Simulation 4, we attempted to address this issue by
merging posterior samples obtained from multiple
subsets of the same data, using priors we termed
BMA-FIML priors. We found that the SEs for BMA-
FIML priors were more accurately estimated than
those for EB-FIML priors, making the combination of
EB priors and BMA a promising topic for future
exploration.

Our findings are largely consistent with prior
research on univariate SRM with MCMC estimation
(Ludtke et al., 2013) and multivariate SRM with FIML
estimation (Nestler, 2018). Generally speaking, dyad-
level parameters are more accurately and efficiently
estimated than case-level parameters, particularly in
small groups. Measuring a participant’s multiple inter-
actions within larger groups (i.e., greater ng) results in
more accurate estimates of SRM correlations and SDs

than smaller groups. Furthermore, increasing G for a
given n, did not substantially improve the estimation
of SRM parameters. Thus, if researchers must consider
a tradeoff between 1, and G, it is preferable to collect
data from fewer large groups than many small groups
(Kenny et al., 2006, p. 215). Our third simulation
study showed that even 100 small groups (perhaps not
even practical) does not substantially reduce the bias
of point estimates, and their decreased sampling vari-
ability makes BCI coverage even worse.

Recommendations for future research

In Simulation 4, we explored only a single subset con-
dition—specifically, we created five subsets of six
groups each for n, =6,G = 10 data. This combin-
ation barely yielded more observations than parame-
ters, given that data from 36 cases were available to
estimate 21 parameters at the case level. When more
parameters are to be estimated, the number of subsets,
size of subsets, or size of groups may have to be
increased. It is necessary to reveal the extent to which
these factors impact estimates of posterior variability.

In the present simulations, we saved both EAP and
MAP posterior estimates of SRM correlations and
SDs, but found that these negligibly differed. These
posterior summary estimates have been previously
found to differ for boundary conditions (i.e., near-
zero variances or large correlations) in small samples
(Ludtke et al., 2013; Ten Hove et al., 2020). It is inter-
esting for future research to explore whether these
estimates differ based on the magnitude of SRM SDs
and sample size.

Finally, Jorgensen et al. (2024) demonstrated how
social-relations structural equation model (SR-SEM)
parameters can be estimated, using as input data the
level-specific covariances matrices calculated from the
correlations and SDs estimated with MCMC in this
paper. SR-SEMs enable researchers to test measure-
ment and structural hypotheses about round-robin
variables, and Nestler et al. (2020) evaluated FIML
estimation of SR-SEM parameters. The two-stage
method proposed by Jorgensen et al. (2024) remains
to be evaluated.

Advice for applied researchers

Our simulations show that informative prior distribu-
tions are not a substitute for sufficient data and that
larger groups are preferable to derive more accurate
estimates. However, we recognize the impracticality of
collecting round-robin data from larger groups, which



involve many interactions (e.g., 190 dyads in a group
of 20). Researchers may have difficulties setting up
studies of this kind, and participants are likely to find
it burdensome to interact with or rate many other
individuals. In such cases, researchers can plan n, and
G sizes based on their specific hypotheses. For
example, if researchers are interested in testing only
dyad-level hypotheses, it may be acceptable to collect
data from smaller groups, but if they are interested in
case-level SRM correlations and SDs, collecting data
from fewer large groups may be more suitable. It is
necessary to note that we provide these recommenda-
tions in the context of our analysis of a trivariate
SRM. A potentially useful extension in this context
may be to explore unequal 7, in the same sample—
for instance, whether sampling many small groups in
combination with a few large groups may partly solve
the issues with accuracy and variability. Another solu-
tion could be planned missing-data designs, wherein
each of 20 subjects only interacts with (or responds
about) a subset of partners (Brunson et al, 2016;
Qverup et al., 2021).

Furthermore, our results showed that the choice of
prior is highly influential in parameter estimation;
hence, it may also be useful—especially in small-group
conditions—to conduct a prior sensitivity analysis to
evaluate the robustness of estimates across varying
prior location and precision. If this reveals results to
be sensitive to prior specification, then confidence in
any results would be undermined by lacking sufficient
data.

Finally, we used ESS, R, and mPSRF to specify con-
vergence criteria in our simulations, which is more
feasible than inspecting visual diagnostics (e.g., trace-
plots) for 1000 samples per condition. In practice,
researchers are advised to use more informative visual
diagnostics to evaluate whether the algorithm has con-
verged. Cowles and Carlin (1996) and Roy (2020) pro-
vide an overview of convergence diagnostic tools for
MCMC. Kwon et al. (2025) and Zitzmann and Hecht
(2019) use simulations to compare various conver-
gence criteria.

Conclusion

In summary, the present article explored the impact
of manipulating the location and scale of MCMC pri-
ors of SRM parameter estimates. We compared
MCMC to FIML and found that although FIML pro-
duced less biased estimates, they were less efficient
than MCMC estimates in small samples. However,
MCMC estimates were biased in small samples
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without prior information, which can be improved
using EB priors. RMSE indicated the efficiency gain
can outweigh the bias, making MCMC more accurate
overall, although the biased estimates of sampling
variability led to low coverage, threatening validity of
inferences based on interval estimates, particularly in
small samples. Thus, MCMC estimation has distinct
advantages over FIML estimation of multivariate SRM
parameters, but depending on the researcher’s priority
on valid inference (e.g., nominal BCI coverage), those
may be outweighed by bias in small groups. For less
biased, more efficient results with either estimator,
researchers should prioritize designs with (fewer) large
groups rather than (many) small groups.
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Appendix A: Converged samples across all

conditions per simulation

Table A1. Number of converged samples (out of 1000) per
condition in simulations 1 and 2.

Simulation condition

G=10 G =25

Study Prior type 6 8 10 20 6 8 10 20

1 Default priors 121 385 747 1000 94 594 983 1000
1 Pr-0.05 priors 998 1000 1000 1000 1000 1000 1000 902
1 Pr-0.1 priors 981 993 1000 1000 991 1000 1000 986
1 Pr-0.2 priors 678 907 980 1000 667 967 1000 1000
1 None (FIML) 901 994 999 1000 997 1000 1000 1000
2 Thoughtful priors 991 995 999 1000 961 993 999 1000
2 EB-MOM priors 734 932 994 999 917 997 1000 989
2 EB-FIML priors 648 910 980 1000 889 994 1000 990

Table A2. Number of converged samples (out of 1000) per
condition in simulation 3.

Simulation condition

G=150 G =100
Analysis type 6 8 6
Default priors 48 849 24
Thoughtful priors 879 999 813
EB-FIML priors 946 1000 931

Table A3. Number of samples in simulation 4 that merged
converged posterior samples from 2-5 subsets of data.

Converged subsets

Number of samples

2 270
3 252
4 200
5 80
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