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ABSTRACT 
The social relations model (SRM) is a linear random-effects model applied to examine 
dyadic round-robin data within social networks. Such data have a unique multilevel struc
ture in that dyads are cross-classified within individuals who may be nested within differ
ent social networks. The SRM decomposes perceptual or behavioral measures into 
multiple components: case-level random effects (in-coming and out-going effects) and 
dyad-level residuals (relationship effects), the associations among which are often of sub
stantive interest. Multivariate SRM analyses are increasingly common, requiring more 
sophisticated estimation algorithms. This article evaluates Markov chain Monte Carlo 
(MCMC) estimation of multivariate-SRM parameters, compares MCMC to maximum-likeli
hood estimation, and introduces two methods to reduce bias in MCMC point estimates 
using empirical-Bayes priors. Four simulation studies are presented, two of which reveal 
dependency of small-group results on priors by manipulating location and precision 
hyperparameters, respectively. The third simulation study explores the impact of sampling 
more small groups on prior sensitivity. The fourth simulation study explores how Bayesian 
model averaging might compensate for underestimated variance due to empirical-Bayes 
priors. Finally, recommendations for future research are made and extensions of the SRM 
are discussed.
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Introduction

The social relations model (SRM) is a linear random- 
effects model applied to examine dyadic data within 
social networks. Dyadic network data occur when per
ceptual or behavioral ratings are available for multiple 
pairs (or dyads) in a sample and each individual partici
pates in more than one pair. The round-robin design 
(Gleason & Halperin, 1975), a common dyadic design 
(Kenny et al., 2006, Chapters 8, 9, & 11), is typically a 
multiple-group reciprocal approach wherein a partici
pant i interacts with or provides perceptual ratings of 
every other member j of their group g (where i 6¼ j 2
1, :::, ng and g 2 1, :::, G). In a group of size ng ; each 

member participates in ng − 1 dyads, resulting in Ng ¼

ng � ðng − 1Þ interactions per group, and Ng � G inter
actions overall, given equal ng across groups. Hence, 
every interaction within a dyad fijg yields two observa
tions—i’s perception of or behavior toward j and vice 

versa—stored in a vector yfijg ¼
yij
yji

� �

: When there is 

no meaningful difference between dyad members—for 
example, on the basis of sex or age—dyads in a group 
are considered to be indistinguishable (e.g., same-sex 
group members are not distinguishable based on sex). 
We use braces fijg to indicate that the distinction 
between persons i and j is arbitrary.
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Dyadic data have a complex nesting structure as an 
observation yfijg is cross-classified within data from all 
dyads of which i is a member and data from all dyads of 
which j is a member. Multivariate data from dyadic 
designs enable quantifying the degree to which the total 
(co)variance in dyadic variables—for example, perceptual 
measures of liking or behavioral ratings of social mimicry 
during an interaction—is due to case-level differences 
among participants (such as their individual tendency to 
like [or be liked by] others), unique dyad-level character
istics (such as whether i particularly mimics [or is mim
icked by] j beyond their individual tendencies to mimic 
[or be mimicked by] others), and group-level variation in 
the interactions (Kenny et al., 2006, p. 186–187).

ANOVA-based method-of-moments (Warner et al., 
1979), restricted maximum likelihood (REML; Nestler, 
2016), and full-information maximum likelihood (FIML; 
Nestler, 2018) estimators have been proposed to estimate 
the decomposed (co)variances of SRM components. 
Markov chain Monte Carlo (MCMC) estimation has also 
been proposed (L€udtke et al., 2013), which enables 
Bayesian inference and incorporation of prior informa
tion. However, MCMC has only been explored for uni
variate and bivariate SRM, mainly to accommodate 
regressing SRM components on explanatory covariates 
(e.g., Jorgensen et al., 2018; Koster & Leckie, 2014; 
L€udtke et al., 2018). Although Bayesian estimation can 
avoid some computational difficulties associated with 
frequentist estimation (e.g., analytic derivation of SEs), 
the accuracy of MCMC estimates can depend heavily 
on the specified prior distributions per parameter 
(McElreath, 2018, p. 31). This is particularly the case with 
small-samples, which are common in SRM research.

Our goal with this article is to demonstrate the 
impact of manipulating the location (i.e., accuracy) and 
scale (i.e., precision) of MCMC prior distributions on 
estimates of multivariate SRM (co)variance compo
nents. We also explore two methods to obtain empiric
ally informed hyperparameters for MCMC priors of 
SRM (co)variances—specifically, choosing hyperpara
meters based on ANOVA-based method-of-moments 
or FIML estimates of SRM parameters. We begin with a 
brief overview of the SRM and its estimators. Then, we 
present the results of four simulation studies evaluating 
various MCMC prior specifications. We conclude with 
some considerations when conducting (Bayesian) SRM 
analyses and provide suggestions for future research.

Social relations models

Perceptual or behavioral ratings for a dyad fijg in a 
group g may be decomposed in the following ran
dom-effects model (Warner et al., 1979):

ygfijg ¼
ygij
ygji

� �

¼ lg þ
Egi þ Agj þ Rgij
Egj þ Agi þ Rgji

� �

, (1) 

where lg is the mean of the dyadic variable (e.g., aver
age social mimicry) in a group g. Usually, group-level 
differences are not of primary interest in social rela
tions analyses. In this paper, we therefore only con
sider group-mean centered data, so lg need not be 
included in the SRM:

yfijg ¼
yij
yji

� �

¼
Ei þ Aj þ Rij
Ej þ Ai þ Rji

� �

: (2) 

Jorgensen et al. (2024) provided more details about 
the multivariate SRM with group-level random effects 
and (co)variance components.

The case level in most SRM applications is typically 
the person level, but SRM can also be applied to net
works of households (Koster & Leckie, 2014) or coun
tries (Dorff & Ward, 2013). Measurements yfijg are 
composed of ego (E) and alter (A) effects (also called 
actor and partner effects, perceiver and target effects, 
or sender and receiver effects) at the case level. An 
ego effect Ei is an out-going effect, interpreted as per
son i’s the general perception of or behavior toward 
others. A person i’s ego effect of liking, for instance, 
represents how much they generally like others. 
Likewise, Ai is an in-coming effect indicative of 
others’ general perception of or behavior toward per
son i. A person i’s alter effect of liking is then repre
sentative of how much they are generally liked by 
others. At the dyad level (also known as the relation
ship level), the relationship effects Rfijg are residual 
effects composed of measurement error and i and j’s 
unique perceptions of or behavior toward one another 
beyond their case-level tendencies. In the context of 
the liking example, relationship effects indicate the 
extent to which a pair i and j like one another beyond 
their individual tendencies to like (and be liked by) 
others.

Case-level effects are uncorrelated across individu
als, but a particular i’s ego effect Ei and alter effect Ai 
are assumed to be bivariate normally distributed with 
location 0 and a covariance matrix REA:

Ei
Ai

� �

�MVN lEA ¼
0
0

� �

, REA ¼
r2

E
rEA r2

A

� �� �

,

(3) 

where r2
E and r2

A are ego and alter variances, and rEA 
is a generalized covariance (generalized reciprocity 
qEA when standardized) of the ego and alter effects 
for case i (Kenny et al., 2006, ch. 8). A positive rEA 
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implies that individuals with a greater ego effect also 
have a greater alter effect—that is, individuals who 
like others more are also generally liked more by 
others. A negative rEA means that individuals with a 
greater ego effect have a lower alter effect—that is, 
individuals who like others more are generally liked 
less by others.

Similarly, relationship effects Rij and Rji at the dyad 
level are also considered to be bivariate normally dis
tributed: 

Rij
Rji

� �

�MVN lR ¼
0
0

� �

, RR ¼
r2

R
r2

RqR r2
R

� �� �

,

(4) 

where the relationship variances r2
Rij 

and r2
Rji 

are con
strained to equality (r2

Rij 
¼ r2

Rji 
¼ r2

R) when dyads are 
indistinguishable. The Rij and Rji effects are assumed 
to be uncorrelated between dyads, but the correlation 
between Rij and Rji per dyad is labeled the dyadic 
reciprocity qR (Kenny et al., 2006, ch. 8). A positive 
qR indicates that, within a dyad fijg; an increase in i’s 
rating of or behavior toward j is associated with an 
increase in j’s rating of or behavior toward i. For 
example, if i particularly likes j, then j also particularly 
likes i, beyond their case-level tendencies to like (or 
be liked by) others. A negative qR means that an 
increase in i’s rating of or behavior toward j is associ
ated in a decrease in j’s rating of or behavior toward 
i. That is, if i particularly likes j, then j likes i particu
larly less than their individual-level tendencies to like 
others and be liked by others.

Multivariate SRM
The SRM may also be used when multiple dyadic var
iables are measured. In a trivariate case, for example, 
the vector of SRM equations expands as follows:

y1, fijg
y2, fijg
y3, fijg

2

6
4

3

7
5 ¼

y1, ij
y1, ji
y2, ij
y2, ji
y3, ij
y3, ji

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

¼

E1, i
E1, j
E2, i
E2, j
E3, i
E3, j

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

þ

A1, j
A1, i
A2, j
A2, i
A3, j
A3, i

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

þ

R1, ij
R1, ji
R2, ij
R2, ji
R3, ij
R3, ji

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

,

(5) 

where y1, fijg; y2, fijg; and y3, fijg are variables 
measured with a round-robin design—such as reports 
of liking at first impression, behavioral ratings of 
mimicry during an interaction, and subsequently 

reported post-interaction liking (Salazar K€ampf et al., 
2018).

As with the univariate SRM, case-level effects for 
an individual i are assumed to be multivariate nor
mally distributed:

E1, i
A1, i
E2, i
A2, i
E3, i
A3, i

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

�MVN lEA ¼

0
0
0
0
0
0

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

, REA ¼

r2
E1

rA1, E1 r2
A1

rE2, E1 rE2, A1 r2
E2

rA2, E1 rA2, A1 rA2, E2 r2
A2

rE3, E1 rE3, A1 rE3, E2 rE3, A2 r2
E3

rA3, E1 rA3, A1 rA3, E2 rA3, A2 rA3, E3 r2
A3

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

:

(6) 

In Equation 6, the covariances between the case- 
level effects of the three variables can be estimated. 
For example, rA2, E1 is an ego–alter covariance that 
can be used to investigate whether individuals who 
generally like others more at first impression are also 
mimicked more during a subsequent interaction. 
Likewise, rE3, E2 is an ego–ego covariance that esti
mates whether individuals who mimic others more 
during a social interaction subsequently display a 
greater liking toward others post-interaction. Alter– 
alter covariances (e.g., rA3, A1 ) can be interpreted in a 
similar manner.

The equality constraints at the dyad level extend to 
the multivariate case, following from the assumption 
that dyad members are indistinguishable:

R1, ij
R1, ji
R2, ij
R2, ji
R3, ij
R3, ji

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

�MVN lR ¼

0
0
0
0
0
0

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

, RR ¼

r2
R1

r2
R1

qR1
r2

R1

rintra
R2, R1

rinter
R2, R1

r2
R2

rinter
R2, R1

rintra
R2, R1

r2
R2

qR2
r2

R2

rintra
R3, R1

rinter
R3, R1

rintra
R3, R2

rinter
R3, R2

r2
R3

rinter
R3, R1

rintra
R3, R1

rinter
R3, R2

rintra
R3, R2

r2
R3

qR3
r2

R3

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

:

(7) 

In Equation 7, rintra
R2, R1 

is termed an intrapersonal 
covariance and indicates whether, in dyad fijg; i’s 
rating of j on the first dyadic variable y1 is associated 
with i’s rating of j on the second dyadic variable y2:

That is, it may be hypothesized that i’s unique first- 
impression liking of j is associated with i’s subse
quent mimicry of j during an interaction. An inter
personal covariance rinter

R3, R1 
indicates whether i’s rating 

of j on the first dyadic variable y1 is associated with 
j’s rating of i on the third dyadic variable y3: In the 
context of the liking–mimicry example, it is possible 
to estimate the extent to which i’s unique first- 
impression liking of j is associated with j’s post-inter
action liking of i.

Given that dyadic observations are cross-classified 
within each case/individual, the multivariate SRM 
decomposes the covariance matrix of dyadic observa
tions Ry into case- and dyad-level components (see 
appendix of Ten Hove et al., 2025, for derivations): 

Ry ¼ REA þ RAE þ RR, (8) 
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where RAE is simply a rearrangement of the REA dis
played in Equation 6, with the order of components 
as ½A1, E1, A2, E2, :::�: Jorgensen et al., (2024, Equation 
23) provided a decomposition that includes group- 
level (co)variances.

Estimation of multivariate SRMs

The ANOVA-based method-of-moments estimator 
(Warner et al., 1979) uses the sample mean and mean- 
square estimated components of scores on a dyadic vari
able to compute SRM (co)variances. The method is 
adequate to estimate SRM (co)variances for complete 
round-robin designs (i.e., when all group members rate 
all others). However, existing software—SOREMO 
(Kenny, 2013) and the R package TripleR (Sch€onbrodt 
et al., 2012, 2022)—has only been implemented for uni
variate and bivariate SRMs. Estimating multivariate-SRM 
parameters using existing software would require model
ing multiple bivariate analyses, which is time-consuming 
and computationally intensive when many round-robin 
variables are investigated. Additionally, inadmissible sol
utions are produced when true values of (co)variances 
are near their border—e.g., near-zero variances and cor
relations near ±1 (Kenny et al., 2006, p. 212–213)—or 
when the number of round-robin groups G and group 
sizes ng are small (L€udtke et al., 2013).

FIML estimation (Nestler, 2018; Nestler et al., 2020), 
implemented in the R package srm (Nestler, Robitzsch, 
et al., 2022b), is also available to estimate multivariate- 
SRM parameters. Nestler et al. (2020) apply a Fisher- 
scoring algorithm to derive SRM-(co)variance point 
and SE estimates, which is applicable with unbalanced 
or incomplete normally distributed data, overcoming 
some limitations of the method-of-moments estimator 
above. However, the accuracy of FIML generally 
depends on sample size (Bhangale & Jorgensen, 2024; 
Hoff, 2005) and the shape of the SRM variance compo
nents’ sampling distributions (L€udtke et al., 2013).

MCMC estimators, for example Gibbs sampling (Gill 
& Swartz, 2001; Hoff, 2005; L€udtke et al., 2013) and 
Hamiltonian Monte Carlo (HMC; Jorgensen et al., 
2018, 2024), provide some practical advantages. These 
approaches handle unbalanced and incomplete designs 
(Gill & Swartz, 2001) and can incorporate model uncer
tainty well. Additionally, MCMC estimators possess the 
added benefit of estimating complex models that might 
be computationally intractable for FIML. The possibility 
to specify prior distributions informed by expectations 
and previous knowledge may result in more accurate 
estimates of SRM parameters. The mean (expected a 

posteriori; EAP), median (50th percentile), or mode 
(maximum a posteriori; MAP) of the empirical poster
ior distribution may be selected as the point estimate(s) 
of the SRM parameters. Although EAPs and MAPs pro
vide similar estimates given non-negligible true values 
of SRM (co)variances (Bhangale & Jorgensen, 2024), 
MAP estimates can be less biased than EAP estimates 
when the distribution of a parameter is skewed (i.e., in 
boundary conditions such as near-zero variances) and 
less information is available from the sample to estimate 
parameters (L€udtke et al., 2013). Thus, EAP and MAP 
estimates will diverge when variances are expected to be 
near-zero in, for example, small-group conditions 
unless informative prior distributions are specified 
(L€udtke et al., 2013; Ten Hove et al., 2020).

Recently, Jorgensen et al. (2024) proposed using 
the No-U-Turn Sampler (NUTS; Hoffman & Gelman, 
2014), a modified HMC algorithm, to estimate SRM 
(co)variances. NUTS is available in the Bayesian mod
eling R package rstan (Stan Development Team, 
2023) and has been adapted for the SRM in the R 
package lavaan.srm (Jorgensen, 2023). Whereas 
Gibbs sampling updates posterior point estimates 
sequentially, NUTS samples a complete vector of all 
unknown point estimates simultaneously from the 
posterior distribution. In addition, NUTS does not 
require conjugate prior distributions, resulting in 
greater flexibility for prior specification.

The unknown parameters to be estimated via 
MCMC in the lavaan.srm package include the 
level-specific random effects, and SDs of and correla
tions among the random effects, as well as means 
when not analyzing group-mean-centered variables. 
Jorgensen et al. (2024) provide exhaustive technical 
details about the MCMC algorithm and its applica
tion, and we provide details relevant to our current 
studies when describing Simulation Study 1. The 
accuracy and efficiency of NUTS to estimate SRM 
parameters has been previously investigated by 
Bhangale and Jorgensen (2024), who found that speci
fying software-default (diffuse) priors for SDs and cor
relations results in biased point estimates compared to 
FIML. This is consistent with Smid et al.’s (2020) sys
tematic review, which revealed that Bayesian estimates 
based on software-default priors display more bias 
than frequentist estimates in the small samples that 
are common in SRM research. Smid et al. (2020) 
instead recommended the use of thoughtful (i.e., the
oretically informed) and data-dependent priors to 
derive more accurate estimates. Given that thoughtful 
and data-dependent priors are yet to be explored in 
the context of the SRM, in this article, we conducted 
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four simulation studies to explore sensitivity of results 
to various MCMC prior specifications.

In sufficiently large samples, estimated posterior 
distributions are influenced almost exclusively by 
information provided in the data (likelihood), yielding 
results that are less dependent on the specified priors. 
However, the intensive nature of round-robin data 
collection frequently motivates research designs that 
sample from (multiple) small groups. Thus, all our 
simulations explore a range of small and large round- 
robin group sizes typically encountered in SRM appli
cations. The article is organized such that the design 
of each subsequent simulation reflects our learning 
from the previous results and addresses the questions 
that arise from them. We summarize the goals of each 
simulation here, before detailed reports are provided 
in subsequent sections. First, we ascertained the effect 
of manipulating the magnitude of prior information 
for highly accurate priors. Second, for a given magni
tude of prior information, we compared theoretically 
versus empirically informed prior locations. We then 
sampled larger numbers of small groups, to explore 
whether this can stabilize estimation of SRM compo
nents or minimize prior sensitivity. Finally, we 
explored Bayesian model averaging as a potential solu
tion for the “double-dipping” problems inherent in 
using the same data to determine priors as are used to 
update the priors when estimating posterior distribu
tions (i.e., underestimated uncertainty; Carlin & Louis, 
2000b, p. 1287; Zitzmann et al., 2024, p. 3).

Simulation study 1: Prior precision

All of our simulation studies involve the trivariate SRM 
described in Equations 5, 6, and 7, using parameters 
described in the following section. We first compared 
FIML estimation to MCMC using (a) diffuse (current 
software-default) prior distributions or (b) accurately 
located priors with expected values equal to the popula
tion values. Although the latter are unrealistic because 
parameters are unknown in practice, it is informative 
to learn about the quality of MCMC estimates in the 
“worst-case” (diffuse) and “best-case” scenarios (i.e., 
accurately located priors supplement minimal informa
tion from data). Because the discrepancy between a 
prior location and a true parameter can introduce bias1

in the posterior estimate (e.g., EAP or MAP)— 

particularly when proportionally less information is 
available from the data—we designed two simulations 
to separately investigate the effects of prior precision 
(using accurate prior locations in Simulation 1) and of 
prior accuracy (by varying prior locations in 
Simulation 2).

We describe in the Method how we manipulated 
the precision of the prior information in the best-case 
scenario (accurately located priors). We refer to the 
accurately located priors as prophetic priors, to 
acknowledge the need for an uncanny ability to know 
the unknowable in order to specify such a perfectly 
accurate prior location.

Method

We used the population values specified by (Nestler 
et al., 2020, see https://osf.io/9twkm/) to derive the 
population correlations and SDs in Tables 1 and 2. 
Nestler et al. (2020) chose population values based on 
previous SRM research such that the majority of a 
dyadic variable’s variance is in the relationship com
ponent (compare the SD columns of Tables 1 and 2), 
and that ego effects have greater variance than alter 
effects (compare odd rows to even rows in Table 2).

Prior distributions
Priors distributions for random effects and residuals 
are the multivariate normal distributions shown in 
Equations 6 and 7, respectively. Because the hyper
parameters REA and RR are unknown, they are also 
estimated from the data2 using hyperprior distribu
tions for the SDs and correlations. We describe diffuse 
priors below, which are the default settings in the 
lavaan.srm package. More informative prior con
ditions in each study are described in later sections.

Hyperprior distributions for SDs in Table 1 were 
specified as a t distribution (left-truncated at 0) with 
� ¼ 4 degrees of freedom:

r > 0 � tð� ¼ 4, l, 1Þ, (9) 

which has been shown to work well for variance- 
decomposition models in past simulation research 
(e.g., Ten Hove et al., 2020) and is the default prior 
for scale parameters in the R package brms (B€urkner, 
2017). A location parameter l can be specified to shift 
the t distribution’s mean, and a scaling parameter 1 

1Prior-induced bias can be compensated by the reduction in sampling 
variability offered by the informative prior, thus yielding a lower overall 
mean-squared error (MSE), which combines both (squared) bias and 
sampling variance. This trade-off between accuracy and precision is well 
documented (see, e.g., Zitzmann et al., 2021).

2This has also been referred to as a fully Bayesian variety of empirical- 
Bayes estimation—“Bayes empirical Bayes” (Carlin & Louis, 2000b, p. 
1286)—which is distinct from the variety we propose and evaluate in 
Simulation Study 2. Gelman et al. (2013) refer to this variety instead as 
“hierarchical Bayes” (ch. 5, section 5.2).
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can vary its spread. The lavaan.srm package speci
fies diffuse priors by default (as elaborated by 
Jorgensen et al., 2024), setting both l and 1 as the 
sample3 SD, which is the maximum value that any 
SRM component can have.

Hyperprior distributions for correlations were 
specified as a Beta(x, a ¼ 1:5, b ¼ 1:5) distribution, 
which has an expected value M ¼ :5 and SD ¼ :25:
During MCMC estimation, parameters sampled from 
a Beta distribution lie in the range f0, 1g; which are 
rescaled to the f−1, þ 1g range using the transform
ation (2x − 1), so the rescaled-Beta(1.5, 1.5) prior 
implies correlations vary with M ¼ 0 and SD ¼ :5:
This is equivalent to placing a prior on transformed 
correlations:

qþ 1
2
� Betaða ¼ 1:5, b ¼ 1:5Þ, (10) 

which is the same method employed by the R package 
blavaan (Merkle & Rosseel, 2018) for structural 
equation models.

Simulation conditions
To specify prophetic priors, we centered each SRM 
parameter’s prior distribution at its population value. 
For each SD, the population parameter was specified 
as the location hyperparameter l of the prophetic t 
distribution, whose scaling hyperparameters were 
specified as either 1 ¼ 0:05 (Pr-0.05), 1 ¼ 0:10 (Pr- 
0.1), or 1 ¼ 0:20 (Pr-0.2). For prophetic Beta priors of 

SRM correlations, an optimization algorithm4 was 
used to identify the a and b hyperparameters that 
yielded expected values equal to population correlations 
and prior SD equal to 0.05, 0.1, or 0.2. The optimization 
algorithm simply minimized the sum of two squared 
discrepancies: (a) the difference between the population 
correlation and expected value5 of the rescaled Beta dis
tribution, and (b) the difference between the intended 
prior SD and the expected6 SD of the rescaled Beta dis
tribution. We provide an example in Figure 1 of four 
different rescaled-Beta priors for qA1, E1

¼ :236 (see 
Table 2) with hyperparameters a and b chosen to yield 
the same location (M) but different prior SDs for 
qA1, E1

: Prior distributions for the other correlation 
parameters may be visualized in a similar manner.

The prior SD reflects the degree of uncertainty about 
the prior expectation. For example, narrow priors (i.e., 
smaller prior SD) imply more precision and, thus, more 
certainty about the prior expectation. Figure 1 shows 
that the diffuse prior (the dotted-line distribution) 
reflects considering any positive or negative correlation 
to be nearly equally likely, except the most extreme val
ues near 61: Informative priors are more restrictive, to 
varying degrees. The Pr-0.1 prior reflects high certainty 
that the correlation is positive, with 95% of probability 
density between 0.036–0.436, whereas the Pr-0.2 prior 
does not rule out large or even small negative correla
tions (−:164–0.636). The Pr-0.05 prior, on the other 
hand, reflects greater certainty that the correlation is in 
the small-to-medium range (0.136–0.336). Thus, it is 
logical to expect that Pr-0.05 priors (the solid-line dis
tribution in Figure 1) will provide more accurate esti
mates with lower sampling variability than Pr-0.1 
priors (the dashed-line distribution in Figure 1), which 
will in turn provide more accurate estimates with lower 
sampling variability than Pr-0.2 priors (the dash-dotted 
line distribution in Figure 1) which will furthermore 
provide more accurate estimates with lower sampling 
variability than the diffuse priors.

Posterior point estimates (EAPs) of the prophetic 
and diffuse priors were compared with FIML point 
estimates, yielding five estimator conditions. We also 

Table 1. Dyad-level population SD and correlation values for 
Simulations 1–4.

SRM component 1 2 3 4 5 6 SD

1. R1, ij – 0.949
2. R1, ji .167 – 0.949
3. R2, ij .538 .135 – 0.940
4. R2, ji .135 .538 .222 – 0.940
5. R3, ij .705 .176 .569 .142 – 1.255
6. R3, ji .176 .705 .142 .569 .060 – 1.255

Table 2. Case-level population SD and correlation values for 
Simulations 1–4.

SRM component 1 2 3 4 5 6 SD

1. E1, i – 0.775
2. A1, i .236 – 0.548
3. E2, i .703 .124 – 0.881
4. A2, i .093 .528 .099 – 0.415
5. E3, i .574 .102 .606 .080 – 0.629
6. A3, i .093 .528 .099 .419 .195 – 0.415

3This constitutes using the data twice—to specify the prior, which is then 
updated using the same data—which generally results in posterior 
distributions with underestimated variance (i.e., underestimated 
uncertainty; Carlin & Louis 2000b, p. 1287; Zitzmann et al. 2024, p. 3). 
However, diffuse priors lack sufficient information to substantially impact 
estimated posteriors (Schuurman et al., 2016).

4The code for the optimization algorithm used to compute a and b 

hyperparameters for this and subsequent simulations can be found in our 
supplementary material on the Open Science Framework (OSF): https:// 
osf.io/ju4fd/.
5The expectation of a Beta(a, bÞ-distributed random variable is �x ¼ a

aþb
;

which is transformed using the function 2�x − 1 to obtain the expected 
value of the rescaled Beta distribution.
6The variance of a Beta(a, bÞ-distributed random variable is 
VarðxÞ ¼ ab

ðaþbÞ
2
ðaþbþ1Þ

; so the SD of the rescaled Beta distribution 

is 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� VarðxÞ

p
:
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manipulated the number of round-robin groups (G ¼
10 or 25) and the size of each group (ng ¼ 6, 8, 10, or 
20 per group). For these 5 (estimator/priors) 
�4 ðngÞ � 2 ðGÞ ¼ 40 simulation conditions, we gen
erated R ¼ 1000 replications per condition.

Analysis plan
All analyses were conducted in R (R Core Team, 
2023). A total of 33 unique correlations and SDs were 
estimated across the case (6 SDs and 15 correlations) 
and dyad (3 SDs and 9 correlations) levels.

FIML estimates were obtained using the srm package 
(version 0.5-1). The srm package assumes SRM compo
nents to be multivariate normally distributed with a 
mean vector l and covariance matrix R; and can accom
modate structural relations between SRM components. 
However, we fit a saturated model at the case and dyad 
levels—equivalent to fitting a multivariate SRM—to 
derive (co)variance estimates between SRM components. 
Group effects were not treated as fixed in the srm pack
age. This is because the algorithm fails to converge for 
the specified model if group effects are fixed. We do not 
expect that this limitation will greatly affect our results, 
as we generated data such that the mean of each variable 
per group is zero. Furthermore, the srm package produ
ces only unstandardized output (i.e., variances and cova
riances). We calculated the SRM SDs, correlations, 
associated SEs, and confidence intervals using the delta 
method, provided in the car package (Fox & Weisberg, 
2019). The delta method relies on Taylor series approxi
mation to provide an approximate asymptotic variance— 
and, by extension, SE—of a non-linear transformation of 
one or more random variables when the expected values 

of the Taylor polynomial are known up to a certain order 
of derivatives (provided that the random variables are 
themselves asymptotically normal). Although higher- 
order approximations provide more accurate estimates, 
first-order Taylor approximations are deemed sufficient 
for sufficiently large samples in psychological research. 
Note that the deltaMethod() function in the car 
package provides only the first-order asymptotic variance 
approximation of the Taylor polynomial. The srm pack
age results were saved and the delta method was applied 
only if an internal diagnostic tool indicated convergence.

MCMC estimates were obtained from the lav
aan.srm package (version 0.1-0.0044), using the 
mvsrm() function to estimate a multivariate SRM 
with priors described in the previous section. For all 
MCMC analyses, we initialized four Markov chains 
with random starting values and ran each for 2000 iter
ations, discarding the first 1000 as burn-in, which 
yielded 4000 posterior samples to estimate the joint 
posterior distribution of the SRM parameters. All varia
bles were group-mean centered to remove any group 
differences due to sampling error. We monitored the 
multivariate potential scale-reduction factor (mPSRF; 
Brooks & Gelman, 1998), using values > 1:05 as an 
indication that the four chains had not yet converged 
on the same posterior space, in which case the MCMC 
estimation was then repeated with double the initial 
number of iterations (i.e., discarding 2000 as burn-in 
retaining 2000 samples per chain). We also calculated 
each parameter’s effective sample size (ESS) and poten
tial scale-reduction factor (PSRF or R̂; Gelman & 
Rubin, 1992) to make a more informed decision about 
convergence. ESS ¼ 100 and R̂ � 1:02—which is 
equivalent to ESS ¼ 100 when four MCMC chains are 
run (see Equation 13, Kwon et al., 2025)—were applied 
as cutoff values. Because any poorly sampled parameter 
could call convergence into question, a sample was 
flagged and removed from the final analysis if either 
ESS < 100 or R̂ > 1:02 for any correlation or SD esti
mate. If ESS > 100 and R̂ < 1:02 for all correlations 
and SDs, we included that sample’s EAP estimates of 
SRM correlations, SDs, and (co)variances for analysis7.

Figure 1. Figure depicting the impact of manipulating prior 
information (i.e., width of the prior distribution) for a fixed 
prior location on the shape of the rescaled Beta distribution 
for correlations. The solid line shows the Pr-0.05 prior, the 
dashed line shows the Pr-0.1 prior, the dash-dotted line shows 
the Pr-0.2 prior, and finally, the dotted line shows a diffuse 
prior (i.e., the current software default).

7Kwon et al. (2025) and Zitzmann and Hecht (2019) recommend using 
ESS ¼ 400—equivalent to R̂ � 1:005 with four MCMC chains—as a cutoff 
value to minimize the impact of Monte Carlo error. However, doing so 
resulted in zero samples eligible for final analysis in the ng ¼ 6 
conditions (with G ¼ 10 or 25 groups) with diffuse priors. Furthermore, 
the resulting plots differed only negligibly between criteria 
(ESS ¼ 100=R̂ � 1:02 vs. ESS ¼ 400=R̂ � 1:005), leading to the same 
conclusions about the general patterns of results. Thus, we chose to 
retain ESS ¼ 100 and R̂ � 1:02 as our cutoff values in order to display 
these patterns across all simulated conditions. Interested readers can find 
a side-by-side comparison of these plots in our OSF project.
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Outcome variables
We inspected the robust bias (RB) of point estimates, 
the bias in SE estimates, coverage rate (CR) of interval 
estimates and the root mean-squared error (RMSE) to 
assess the accuracy and efficiency of the different 
prior types and FIML.

The RB of an estimate was computed as the differ
ence between (a) the median of all estimates (ĥr ;

where r 2 1, :::, R) per condition and (b) the true par
ameter (h).

The SE bias per simulation condition was com
puted as the difference between (a) the mean esti
mated SE and (b) the empirically observed SE (i.e., 
the SD of point estimates across replications).

CRs of interval estimates were computed as the 
percentage of samples for which the true value of a 
parameter was captured by the interval. The lav
aan.srm package provides central 95% Bayesian 
credible intervals (BCI) for the MCMC estimates by 
default. For FIML estimates of (co)variance parame
ters, we constructed a normal-theory 95% confidence 
interval (CI) for the transformed parameter (SDs and 
correlations) using delta-method SEs.

Finally, consistent with Nestler et al. (2020), the 
RMSE was computed as the sum of the squared 
robust bias and the squared median absolute deviation 
(MAD), which is a robust estimate of the true sam
pling variability (RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bias2 þMAD2

p
). The 

MAD was computed as g �Medðĥr − Medðĥr ÞÞ where 
g ¼ 1:4826 (Talloen et al., 2019).

Results

One FIML sample in the smallest sample-size condi
tion (ng ¼ 6; G ¼ 10) did not converge. In addition, a 
total of 108 FIML samples, mostly from the ng ¼ 6;
G ¼ 10 condition were not considered in the final 
analysis, given that they produced inadmissible solu
tions (namely, correlation estimates with absolute 
value > 1). Table A1 in Appendix A shows the num
ber of converged samples for all MCMC prior types 
and for FIML.

The results for all 24 correlations and 9 SDs are 
visually summarized in plots. All other results can be 
found on our OSF page.

For this, and subsequent simulations, we structure 
our results by Monte Carlo outcome, beginning with 
accuracy (of point, SE, and interval estimates) and 
then efficiency (using RMSE, which combines both 
sampling error and bias). The results are presented in 
multifaceted line plots with error bars that display the 
range (minimum and maximum) per condition. Each 

panel displays results for a particular sample-size con
dition, the prior type (or FIML) appear along the x- 
axis, and the y-axis contains a scale of values for the 
outcome variable. Each panel contains two lines—dot
ted for the case level and solid for the dyad level— 
with the median displayed using different symbols per 
level (� for the dyad level and � for the case level). 
For the SE bias plots, additional ribbons displaying 
the range of the empirically observed SEs per level 
have been included. For CR plots, a solid horizontal 
line at 95% to indicate nominal coverage and a dashed 
horizontal line at 90% to indicate minimally accept
able coverage are added. Readers interested in viewing 
plots containing the results of individual parameters 
can find these in our supplementary material on 
the OSF.

Robust bias
RB results across all simulation conditions are pre
sented in Figure 2.

We found that the diffuse—i.e., software-default— 
priors could lead to highly biased estimates at the case 
level, which is consistent with Smid et al.’s (2020) 
conclusions that software-default MCMC estimates 
display greater bias than frequentist estimates in small 
samples. We found that this was particularly the case 
in the small-group conditions (ng ¼ 6 or 8), wherein 
information from only ng � G ¼ 60, 80, 150, or 200 
people is available when estimating the parameters. 
However, the distribution of bias was closer to 0 with 
G ¼ 10 groups of ng ¼ 10; despite the total number 
of cases ng � G ¼ 100 being smaller than G ¼ 25 
groups of ng ¼ 6 (ng � G ¼ 150), for which distribu
tion of bias was more negative. This finding reinforces 
results from Nestler (2018) and L€udtke et al. (2013), 
who concluded that group size ng was more important 
than the number of groups G to accurately estimate 
SRM parameters. Larger groups imply more interac
tions per person and, by extension, more information 
about each case.

Diffuse priors yielded much lower bias in dyad- 
level estimates. Even in the ng ¼ 6 conditions, 
maximum absolute bias value did not exceed approxi
mately 0.5 units. This is due to estimating relation
ship-level parameters with more dyads (ng �

ng −1
2 � G) 

than cases (ng � G). Therefore, dyad-level parameters 
tend to be more accurately and precisely estimated.

Comparing the prophetic-prior conditions reveals 
the effect of prior information. Estimates of the Pr-0.2 
priors were, as expected, more accurate than those of 
the diffuse priors. However, these estimates yielded the 
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most variability in bias around 0 out of the three pro
phetic prior conditions, at both levels and across all 
sample sizes. The Pr-0.05 prior estimates had the least 
variability in bias around 0. Bias still tended to be dis
tributed around 0 at the dyad level, but case-level bias 
seemed to be distributed more negatively with less 
prior information (i.e., Pr-0.2 performed worse than 
Pr-0.1). This result suggests that even if accurately 
located priors are specified, sufficient prior information 
(i.e., a sufficiently small prior SD) would be required to 
prevent bias of posterior point estimates.

Finally, FIML produced relatively unbiased esti
mates at both levels, parallel to results in Nestler 
(2018); Nestler et al. (2020); Nestler, L€udtke, et al., 
2022a). The distribution of bias was spread very little 
around 0, even in samples of a few small groups 
(ng ¼ 6, G ¼ 10). Note, however, that FIML produced 
98 samples with at least one out-of-bounds correlation 
estimate in the ng ¼ 6, G ¼ 10 condition, which were 
excluded from the results.

Standard-error bias
The SE bias is illustrated in Figure 3, wherein the rib
bons display the range of empirical SEs (i.e., the SDs 
of each parameter’s estimate). As evident Figure 3, the 
empirical SEs for FIML were higher than for any prior 
condition when ng < 10; implying that even with dif
fuse priors, MCMC can be more efficient than FIML 

in small samples. Diffuse priors have a similar spread 
of efficiency as FIML when ng � 10:

The median SE bias for diffuse priors was close to 
zero, implying that the median bias in SEs was small 
relative to the actual sampling variability, even in the 
small-group conditions. However, SEs for some 
parameters at the case level were overestimated in the 
ng ¼ 6 condition, leading to the error bar for SE bias 
in these conditions to be positively skewed. As with 
point estimates, SE bias at the dyad level was also 
minimal.

The median SE bias for the prophetic priors was 
also, on average, close to zero across all sample-size 
conditions. However, note that the Pr-0.2 priors over
estimated the SEs for some parameters at the case 
level in the ng ¼ 6 conditions. This is because a lower 
prior precision (i.e., larger prior SD) allows for more 
variability in sampled estimates, resulting in higher 
posterior variance than the actual variability in esti
mated parameters.

For all MCMC conditions, across all ng at the case 
level, the overestimation of SEs reduces as G increases 
from 10 to 25. This is because collecting data from a 
greater number of groups per sample decreases the 
amount of sampling variability in the estimated 
parameters.

The SEs of FIML estimates displayed low to min
imal bias across all conditions, even in the ng ¼ 6 
conditions. However, note that the empirically 

Figure 2. Plot depicting the robust bias for Simulation-1 SRM correlation and SD estimates. The estimation methods compared in 
this simulation are presented in the x-axis and the y-axis contains the robust bias values. Each facet presents the results for a sep
arate fng, Gg combination. The symbols � (case level) and � (dyad level) represent the median robust bias across all estimates 
per level, whereas the error bars extend to the minimum and maximum robust bias per level. Solid lines are used for the dyad 
level and dotted lines are used for the case level.
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observed SEs for FIML are the greatest of the methods 
compared in this simulation, implying that the esti
mated SEs are also large. In addition, out of the 98 
samples with at least one out-of-bounds correlation 
estimate in the ng ¼ 6, G ¼ 10 condition, most had 
unrealistically high associated SEs—for example, the 
associated SE for an out-of-bounds estimate q̂A3, E3

¼

−53:426 (which is impossible for a correlation esti
mate) was as high as 187,344.504. These samples were 
excluded from the final analysis.

Coverage rates
The CRs per level and condition are presented in 
Figure 4.

In the diffuse-prior conditions, case-level interval 
estimates had coverage rates that were lower than 
nominal in small-to-moderate samples. This shows 
how greatly case-level parameters were underesti
mated, given that their overestimated sampling vari
ability (high SE bias) would make the interval 
estimates too wide. Coverage at the dyad level was 
much better, but not always nominal (e.g., between 80 
and 90% when ng ¼ 6 or 8).

Out of the three prophetic-prior conditions, Pr- 
0.05 priors capture the true value of the parameter 
almost 100% of the time, whereas Pr-0.1 and Pr-0.2 
priors had lower CRs. This is to be expected, given 
that not only do Pr-0.1 and Pr-0.2 estimates display a 
greater magnitude of bias than Pr-0.05 estimates, but 

also larger sampling variability. Whereas the width of 
the Pr-0.05 prior is narrower with greater probability 
density concentrated at the expected value, Pr-0.1 and 
Pr-0.2 are wider priors allowing for estimation of a 
diverse set of values (see Figure 1), which affects their 
estimated posterior distributions and, by extension, 
their CRs.

FIML estimates had nominal coverage at both lev
els, even in small groups. This follows from the lack 
of bias in point and SE estimates.

RMSE
The previous outcomes were used to compare accur
acy of point, SE, and interval estimates, but even in 
the absence of bias, estimates can be inaccurate 
(unequal to their population parameter) due to sam
pling error. RMSE incorporates (in)efficiency, mak
ing it possible to compare a less biased but less 
efficient estimator to one that is more efficient but 
more biased. Our results so far have shown FIML 
to be quite accurate (even in small samples), but 
less efficient than MCMC in small samples (even 
with diffuse priors). The RMSE results presented in 
Figure 5 allow us to compare MCMC (with varying 
prior information) to FIML in a way that accounts 
for the accuracy–precision tradeoff: lower RMSE 
indicates that estimates are closer to population 
values.

Figure 3. Plot depicting the SE bias for Simulation-1 SRM correlation and SD estimates. The estimation methods compared in this 
simulation are presented in the x-axis and the y-axis contains the SE bias values. Each facet presents the results for a separate 
fng, Gg combination. The symbols � (case level) and � (dyad level) represent the median SE bias across all parameters per level, 
whereas the error bars extend to the minimum and maximum SE bias per level. The ribbons show the range of the empirically 
observed SEs across all parameters per level. Solid lines are used for the dyad level and dotted lines are used for the case level.

MULTIVARIATE BEHAVIORAL RESEARCH 939



On average, across both levels, all approaches are 
asymptotically comparable, given that both bias and 
sampling variability decrease as the sample size 
increases. Dyad-level RMSE was quite low across all 
sample sizes and estimators. Differences in case-level 

RMSE were more apparent, particularly in smaller 
groups with less prior information. Even weakly 
informative priors—which were not informative 
enough to minimize bias—yielded notably lower 
RMSE than FIML or diffuse priors. As expected, the 

Figure 4. Plot depicting the coverage rate for Simulation-1 SRM correlation and SD estimates. The estimation methods compared 
in this simulation are presented in the x-axis and the y-axis contains the coverage rates. Each facet presents the results for a separ
ate fng, Gg combination. The symbols � (case level) and � (dyad level) represent the median coverage rate across all estimates 
per level, whereas the error bars extend to the minimum and maximum coverage rate per level. Solid lines are used for the dyad 
level and dotted lines are used for the case level. A solid horizontal line indicates the nominal 95% confidence level, and a dashed 
horizontal line indicates a minimally acceptable 90% coverage.

Figure 5. Plot depicting the RMSE for Simulation-1 SRM correlation and SD estimates. The estimation methods compared in this 
simulation are presented in the x-axis and the y-axis contains the RMSE values. Each facet presents the results for a separate 
fng, Gg combination. The symbols � (case level) and � (dyad level) represent the median RMSE across all estimates per level, 
whereas the error bars extend to the minimum and maximum RMSE per level. Solid lines are used for the dyad level and dotted 
lines are used for the case level.
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Pr-0.05 priors had lowest RMSE values compared to 
the Pr-0.1 and Pr-0.2 priors, owing to the low esti
mate bias and MAD values.

Discussion

These results show that even with accurately located 
priors, the accuracy of posterior point, SE, and interval 
estimates of multivariate SRM parameters can depend 
on prior precision (i.e., the SD of the prior distribu
tion). Naturally, more informative priors yielded more 
efficient estimates, minimizing RMSE due to the priors 
being accurately located. However, informative priors 
can overwhelm the data in small samples, and the 
highest level of precision we considered (Pr-0.05) might 
not be representative of how confident researchers are 
likely to be about their expectations (if any) when esti
mating SRM parameters with MCMC.

Researchers in substantive settings do not have 
knowledge of the true values of parameters they esti
mate with MCMC. In the next simulation, we explore 
the use of less accurate priors—based on theory or 
data, rather than prophetically knowing the true 
parameters. We therefore manipulate prior locations, 
but we hold the magnitude of prior information 
constant.

Simulation study 2: Prior location

Whereas Simulation 1 investigated the effects of prior 
precision under the condition of unrealistically accur
ate location, Simulation 2 compares practical methods 
to specify priors with approximately accurate loca
tions. Reasonably accurate prior locations can be 
specified based on theoretical expectations—perhaps 
also informed by previous research findings—which 
Smid et al. (2020) referred to as thoughtful priors. In 
the context of analyzing round-robin data, thoughtful 
priors would incorporate researchers’ prior know
ledge—for example, from previous studies—about the 
strength of relations between SRM components (cor
relations) and the relative contributions of case- and 
dyad-level components (often expressed as propor
tions of the total variance).

It is also possible to choose hyperparameters based 
on preliminary (frequentist) analyses of the round- 
robin sample data. These are called empirical Bayes 
(EB) priors, of which we consider two types to deter
mine approximate prior locations of SRM SDs and 
correlations: method-of-moments estimation (EB- 
MOM prior) and FIML estimation (EB-FIML prior). 

We designed Simulation 2 to compare thoughtful pri
ors to the two EB prior types.

Simulation conditions

The main difference from Simulation Study 1 is our 
manipulation of prior locations for SD and correlation 
parameters, which we describe in detail here.

Thoughtful priors were designed to simulate a real
istic situation wherein a researcher specifies hyper
parameters based on expert knowledge. In this case, 
we assume the researcher would correctly expect all 
correlations at both levels to be positive, but to have 
less confidence about how large the correlations 
would be. Thus, we specified a Beta ða ¼ 58:500, b ¼
31:500Þ prior, which after rescaling has an expected 
value of M ¼ :30 (i.e., most likely to be a “medium” 
correlation; Cohen, 2013) with SD ¼ :1: We consider 
this reasonably located and weakly informative, as 
approximately 95% of the prior probability mass is 
located within 6:2 of the specified location. That is, 
the prior is not so informative as to rule out small 
(0.1) or large (0.5) correlations as being reasonably 
likely—a range which covers most of the correlations 
in Tables 1 and 2. The default location of the prior t 
distributions were retained for SDs in the thoughtful 
condition as the location hyperparameters (l) are 
chosen based on the total sample SD.

The EB-MOM and EB-FIML prior locations were 
chosen in two steps. In the first step, a univariate 
SRM was conducted for each round-robin variable 
using frequentist estimation (method-of-moments or 
FIML) to obtain point estimates of SDs and correla
tions (reciprocities). A bivariate SRM was conducted 
for each pair of round-robin variables to obtain point 
estimates of between-variable correlations among SRM 
components. The following section provides more 
detail about frequentist estimation.

After obtaining point estimates, EB priors were 
specified with hyperparameters that implied an 
expected value equal to the point estimate in the 
second step. For SD parameters, this was simply the 
location parameter, l; of the prior t distributions. For 
correlation parameters, an optimization algorithm was 
used to find hyperparameters of the rescaled-Beta pri
ors that yielded expected values equal to the frequent
ist correlation estimates. As with thoughtful priors, 
priors t distributions were specified with scaling 
hyperparameter 1 ¼ 0:1; and rescaled Beta distribu
tions had a prior SD ¼ :1:

The EB priors described above involve using the 
same data both to determine prior hyperparameters, 
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then updating the prior with the same data to esti
mated the posterior distribution. This is a contentious 
practice in Bayesian literature—sometimes called 
“double dipping”—both philosophically (due to being 
“not particularly Bayesian” Carlin & Louis, 2000b, p. 
1287) and due to its empirical consequences. 
Especially in small samples, informative (narrow) pri
ors may overwhelm the data to exert greater impact 
on the estimated posterior’s location (Darnieder, 
2011). A data-informed prior location will be consist
ent with the data (re)used in the likelihood, resulting 
in a similarly located posterior; however, greater prior 
precision will lead to more precisely estimated poster
ior. Because the precision is illusory (i.e., prior infor
mation is borrowed from the data, ignoring sampling 
error), uncertainty intervals will be too narrow, lead
ing to lower-than-nominal coverage (documented in, 
e.g., Kass & Steffey, 1989; Schuurman et al., 2016). 
Our simulation results clearly demonstrate this prob
lem in the SRM context, and we explore a potential 
solution in Simulation 4.

As in Simulation Study 1, we specified the size of 
round-robin groups ng ¼ 6, 8, 10, or 20 and the num
ber of round-robin groups G ¼ 10 or 25, resulting in 
3 (priors) �4 ðngÞ � 2 ðGÞ ¼ 24 simulation condi
tions. We generated R ¼ 1000 samples per condition, 
saving EAP estimates and calculating the same out
come variables as for Simulation Study 1.

Frequentist analyses for EB priors

The first step of specifying the EB-MOM priors was 
to fit univariate and bivariate SRMs in the TripleR 
package (version 1.5.4). TripleR estimates group- 
wise variances and covariances for (pairs of) SRM 
components, the weighted means of which are the 
resulting method-of-moments estimates. However, the 
method-of-moments estimator sometimes produces 
Heywood cases (i.e., negative variances) which are 
also considered in the weighted mean by default. 
Following L€udtke et al. (2013), we assumed group- 
wise negative variance estimates were an outcome of 
negligible variances and rescaled these to 0 before 
computing the weighted mean. The square-roots of 
the weighted-mean variances were then set as the l 

hyperparameters for the prior t distributions. 
TripleR follows a similar procedure for covariance 
parameters, wherein the weighted mean of the covari
ance among SRM component pairs is computed. We 
standardized the weighted means and fixed correlation 
estimates > :9 to .9. The correlation values were then 

passed through the optimization algorithm, resulting 
in unique a and b hyperparameters per SRM correl
ation parameter in each sample.

To specify the EB-FIML priors, we first fit univari
ate and bivariate SRMs in the srm package. FIML 
may produce negative variance estimates given near- 
zero population variances and small sample sizes. In 
such cases, the l of the t-prior was set to 0. When 
computing a correlation qxy between SRM compo
nents x and y, covariances were standardized only if 
both r2

x > 0 and r2
y > 0: Large correlations were fixed 

to 0.9 and the a and b hyperparameters were chosen 
based on the FIML estimates. Similar to Simulation 1, 
an optimization algorithm computed a and b values 
that minimized the sum of two squared discrepan
cies—(a) the difference between the FIML correlation 
estimate and the expectation M of the rescaled Beta 
distribution, and (b) the difference between the 
intended prior SD and the expected SD of the rescaled 
Beta distribution, the code for which can be found in 
our supplementary materials. If r2

x < 0 or r2
y < 0; the 

a and b hyperparameters for that correlation were 
fixed to the default value of 1.5. Although it is pos
sible to fit multivariate models in srm, we performed 
all above computations using univariate model esti
mates for SDs and bivariate model estimates for corre
lations. This is because Simulation 1 revealed 
convergence issues that led to unstable or unrealistic 
estimates when fitting multivariate models in the srm 
package. Fitting bivariate SRMs minimized conver
gence problems.

Results

As with Simulation 1, MCMC samples were not con
sidered in the final analysis if ESS < 100 or R̂ > 1:02 
for any estimated correlation or SD parameter. Table 
A1 in Appendix A shows the number of converged 
samples for thoughtful, EB-MOM, and EB-FIML pri
ors per sample-size condition. We include FIML and 
Pr-0.1 estimates from Simulation Study 1 as bench
marks for comparison with Simulation-2 results.

Robust bias
Figure 6 presents the (range of) robust bias for the 
thoughtful, EB-MOM, and EB-FIML priors per level.

Although the median bias in thoughtful-prior esti
mates lies close to 0, the distribution of the outcome 
is wide, indicating that thoughtful priors poorly esti
mate some parameters. As expected, parameters with 
true values > :3 were underestimated, whereas those 
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with true values < :3 were overestimated (interested 
readers can find figures displaying aggregate results 
per parameter on our OSF project). Although the 
magnitude of the bias diminishes in larger groups, the 
pattern of over/underestimation persists. The overall 
bias at the dyad level is much lower, but parameters 
still appear to be over/underestimated in the small- 
group conditions.

Both the EB priors generally display a near-zero 
median bias at both the case and dyad levels for all 
sample-size conditions. Further, the range of bias val
ues is also lower for these prior types. This is sensible, 
since the frequentist estimates used as the location for 
the prior distributions are presumably much closer to 
the true value of the parameter than a fixed location 
of .3. There does not appear to be a substantial differ
ence between the bias of EB-MOM and EB-FIML 
prior locations.

Standard-error bias
The SE bias is presented in Figure 7. As indicated by 
the shaded ribbons, both EB priors are as (in)efficient 
as FIML8, but the SE estimates (i.e., posterior SDs) are 
more biased for the EB priors than FIML. That is, EB 
priors expect less variability than is actually observed, 
consistent with past research on EB priors (Carlin & 
Louis, 2000b; Schuurman et al., 2016).

The SEs for thoughtful priors are only slightly over
estimated. The bias is greatest in the smallest condi
tion, with a maximum of approximately 0.06 units, 
but reduces as sample size increases. Also note that, 
across all ng ; SE bias reduces from G ¼ 10 to 25 since 
the sampling variability of estimates reduces when 
more information is available.

Most evident for the case level, SEs for the EB pri
ors are underestimated. This implies that, in reality, 
there is greater variability in estimated values across 
samples than approximated by the posterior SD. As 
mentioned in Simulation Study 1, the underestimation 
of sampling variance due to “double dipping” is a 
common problem when using EB priors (Carlin & 
Louis, 2000b). We derived estimates for our EB priors 
by using the complete dataset twice for a hierarchical 
process: first deriving frequentist estimates of the 
desired model parameters, then using these as hyper
parameters (or computing hyperparameters based on 
these) before proceeding with Bayesian estimation as 
if the hyperparameters were known (or believed) a 
priori (Carlin & Louis, 2000a, ch. 3). Thus, to more 
accurately estimate sampling variability, it is necessary 
to account for uncertainty from two sources: (a) the 
uncertainty in the frequentist estimation of the hyper
parameters, and (b) the uncertainty in the Bayesian 
estimation of SRM parameters. Our EB priors fail to 
adjust for the uncertainty in the frequentist process 
used to choose hyperparameters, which leads to 
underestimating the true sampling variance. However, 

Figure 6. Plot depicting the robust bias for Simulation-2 SRM correlation and SD estimates. The estimation methods compared in 
this simulation are presented in the x-axis and the y-axis contains the robust bias values. Each facet presents the results for a sep
arate fng, Gg combination. The symbols � (case level) and � (dyad level) represent the median robust bias across all estimates 
per level, whereas the error bars extend to the minimum and maximum robust bias per level. Solid lines are used for the dyad 
level and dotted lines are used for the case level.

8A plot containing the estimated SEs for both EB priors and FIML can be 
found on our OSF page.
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the SE bias is negligible for dyad-level estimates, and 
even SE bias of case-level estimates is attenuated by 
more data, reducing in conditions with more (G) or 
larger (ng) groups.

We conduct 2 additional small-scale simulations, first 
to explore the effect of sampling more small groups 
(ng ¼ 6 and 8) in Simulation 3. Because sampling small 
round-robin groups is so common (to minimize the 
burden of data collection), it is valuable to discover 
whether unbiased results for EB priors can be obtained 
from small groups when G is large. In Simulation 4, we 
explore a potential solution to double dipping by using 
only some data to estimate hyperparameters.

Coverage rates
The CR for each analysis type and sample-size condi
tion is presented in Figure 8.

Across all sample-size conditions, thoughtful priors 
display very low CRs due to their inaccurate point 
estimates. Figure 6 shows that parameters are either 
greatly overestimated or greatly underestimated by the 
thoughtful priors. The BCIs fail to capture the true 
value of the parameters at nominal levels. This implies 
inflated Type I error rates when using BCIs to apply 
traditional null-hypothesis significance tests.

CRs for the EB priors are also (but to a lesser 
degree than thoughtful priors) below nominal in 
small-sample conditions, but CRs slightly improve as 
ng or G increase (i.e., when data overwhelm the 
prior). Given that the EB priors underestimate SEs, 

their BCIs are too narrow, which yields low coverage 
even when point estimates are unbiased—the same 
consequence of double dipping observed for SE bias.

RMSE
The ranges of RMSE values for the thoughtful priors 
and EB priors were, for the most part, comparable. 
Figure 9 shows the EB priors also had comparable 
RMSE values to FIML, indicating a similar accuracy– 
precision tradeoff. In line with Nestler et al. (2020) 
results, we also found that FIML more efficiently esti
mates case-level parameters with fewer large groups 
(e.g., ng � G ¼ 20� 10 ¼ 200) than with many small 
groups (e.g., 8� 25 ¼ 200), given the same number of 
cases (200).

Discussion

Simulation 2 shows how the accuracy of weakly 
informative prior locations can impact quality of esti
mation. We found that while the EB priors provided 
relatively accurate estimates of parameters, they 
underestimated their sampling variability—especially 
of case-level estimates in smaller samples. This is due 
to double dipping, which involves a hierarchical pro
cess in computing EB-prior estimates: first obtaining 
frequentist estimates of hyperparameters, then treating 
those EB-hyperparameters as a priori knowledge. 
Posterior SDs estimate sampling variability expected if 
the same model were fitted to new data. But priors 

Figure 7. Plot depicting the SE bias for Simulation-2 SRM correlation and SD estimates. The estimation methods compared in this 
simulation are presented in the x-axis and the y-axis contains the SE bias values. Each facet presents the results for a separate 
fng, Gg combination. The symbols � (case level) and � (dyad level) represent the median SE bias across all parameters per level, 
whereas the error bars extend to the minimum and maximum SE bias per level. The ribbons show the range of the empirically 
observed SEs across all parameters per level. Solid lines are used for the dyad level and dotted lines are used for the case level.
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are part of the model, and EB priors cause the model 
to fluctuate from sample to sample. That additional 
“model variability” is not captured by a single MCMC 
estimation. In Simulation 4, we explore BMA as a 
solution to the underestimated-variance problem of 
EB priors.

We also found that EB-MOM and EB-FIML 
yielded comparable point and SE estimates. 

Thoughtful priors produced biased estimates even in 
the large-sample conditions, indicating that the accur
acy of a posterior estimate is highly dependent on 
how accurate the expected value of the prior distribu
tion is. In our thoughtful-prior conditions, we speci
fied the same prior location for all correlations. In 
practice, a researcher with expert knowledge might be 
able to specify more accurate thoughtful prior 

Figure 8. Plot depicting the coverage rate for Simulation-2 SRM correlation and SD estimates. The estimation methods compared 
in this simulation are presented in the x-axis and the y-axis contains the coverage rates. Each facet presents the results for a separ
ate fng, Gg combination. The symbols � (case level) and � (dyad level) represent the median coverage rate across all estimates 
per level, whereas the error bars extend to the minimum and maximum coverage rate per level. Solid lines are used for the dyad 
level and dotted lines are used for the case level.

Figure 9. Plot depicting the RMSE for Simulation-2 SRM correlation and SD estimates. The estimation methods compared in this 
simulation are presented in the x-axis and the y-axis contains the RMSE values. Each facet presents the results for a separate 
fng, Gg combination. The symbols � (case level) and � (dyad level) represent the median RMSE across all estimates per level, 
whereas the error bars extend to the minimum and maximum RMSE per level. Solid lines are used for the dyad level and dotted 
lines are used for the case level.
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locations that depend on the correlation—for example, 
generalized and dyadic reciprocities are likely to be 
the largest correlations, and one might reasonably 
expect intrapersonal correlations to be larger than 
interpersonal correlations (as in Table 1). In such 
cases, the performance of thoughtful priors might 
more closely resemble that of EB priors, which vary 
across correlations by taking the data into account, so 
our simulation merely shows how poorly thoughtful 
priors might perform if they are not well informed.

Simulation study 3: More small groups

Simulation Studies 1 and 2 showed that MCMC esti
mation of SRM effects is inaccurate in small-group 
(ng ¼ 6 or 8) conditions. For a given group size ng ;

sampling more groups reduces the range of estimation 
bias when using diffuse or thoughtful priors. The EB 
priors yielded relatively unbiased point estimates in 
small-group conditions, but they produced biased SEs 
when fewer groups were sampled for a given ng : The 
goal of this simulation is to determine whether sub
stantially larger G would yield sufficiently unbiased 
point estimates for diffuse or thoughtful priors, or suf
ficiently less biased SEs for EB priors.

Simulation conditions

Data with G ¼ 50 and 100 groups of size ng ¼ 6 as 
well as G ¼ 50 groups of size ng ¼ 8 were generated 
and analyzed for this simulation. We compared the 
software-default diffuse priors with thoughtful and 
EB-FIML priors. The population values (see Tables 1
and 2) and prior specifications from Simulations 1 
and 2 were retained. EB-MOM priors were not speci
fied in this simulation, given that we found EB-FIML 
and EB-MOM priors perform similarly (see 
Simulation 2’s Results). We simulated R ¼ 1000 repli
cations in each of these new conditions.

Results

As in Simulations 1 and 2, only converged samples 
(using criteria ESS ¼ 100 and R̂ ¼ 1:02) were consid
ered for the final analysis (see Table A2 in Appendix 
A). We include plots for ng ¼ 6 and 8 with G ¼ 10 
and 25 (from Simulations 1 and 2) in the figures for 
comparison. Readers interested in viewing plots based 
on stricter convergence criteria (ESS ¼ 400 and 
R̂ ¼ 1:005) can find these in our supplementary 
materials.

We present results for only RB and SE bias, to 
evaluate whether sampling more G reduces point esti
mate bias for diffuse and thoughtful priors and 
reduces SE bias for EB-FIML priors.

Robust bias
Figure 10 displays the results for robust bias.

The median bias of diffuse-prior estimates for the 
ng ¼ 6 conditions at the case level remain consistent 
as G increases from 10 to 100. Increasing G for a 
given ng decreases the sampling variability of esti
mates, but smaller groups still yield biased estimates. 
Thus, the inaccurate results are more precise, which 
yields even worse coverage (see our supplementary 
materials on the OSF). For the ng ¼ 8 condition, both 
the median bias and range of bias remain consistent 
across the various G. At the dyad level, there is a sub
stantial increase in accuracy of estimation from G ¼
25 to G ¼ 50 for both ng ¼ 6 and 8.

For both ng ¼ 6 and 8 in the thoughtful-prior con
ditions, the median bias is approximately constant 
across all G conditions. The distribution of bias 
around the median value becomes tighter as G 
increases. This same pattern persists at the dyad level.

Bias for EB-FIML priors remains stable across G 
for both levels.

Standard-error bias
SE bias is presented in Figure 11.

For both levels, the SE bias for diffuse prior esti
mates greatly improves when G is increased from 25 
to 50. This is sensible, given that information from 
more groups is available to estimate parameters, 
thereby reducing the overall sampling variability.

There appears to be no substantial difference in the 
median SE bias and range of (consistently low) SE 
bias values for thoughtful priors at either the case or 
dyad level.

EB priors greatly underestimated case-level SEs of 
estimated parameters when ng ¼ 6: However, the 
magnitude of underestimation appeared (in 
Simulation 2) to reduce when G increased from 10 to 
25. Following this pattern, the SE bias reduced further 
when G increased to 50 and then 100. The ng ¼ 8 
conditions display a similar pattern. This overall 
improvement in estimation of SEs follows from the 
prior exerting less relative influence on the posterior 
when more information is available from data to esti
mate the parameters.

Despite the improvement in SE bias as G increases, 
the CR for some parameters remains quite low. The 
CR plot can be found in our supplementary material.
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Discussion

Simulation 3 shows that sampling many groups is 
insufficient to compensate for the lack of information 
due to small groups, specifically at the case level, 
when considering point-estimate bias for diffuse and 
thoughtful priors. Although bias in SEs for EB-FIML 
priors improves with greater G, it is often impractical 

to sample 100 or even 50 round-robin groups in 
applied SRM settings.

Simulation 4: Bayesian model averaging

For the additional sampling variability induced by 
using data-dependent priors to be captured by the 
posterior, we adapted a method for a similar problem: 

Figure 10. Plot depicting the robust bias for Simulation-3 SRM correlation and SD estimates. The estimation methods compared in 
this simulation are presented in the x-axis and the y-axis contains the robust bias values. Each facet presents the results for a sep
arate fng, Gg combination. The symbols � (case level) and � (dyad level) represent the median robust bias across all estimates 
per level, whereas the error bars extend to the minimum and maximum robust bias per level. Solid lines are used for the dyad 
level and dotted lines are used for the case level.

Figure 11. Plot depicting the SE bias for Simulation-3 SRM correlation and SD estimates. The estimation methods compared in 
this simulation are presented in the x-axis and the y-axis contains the SE bias values. Each facet presents the results for a separate 
fng, Gg combination. The symbols � (case level) and � (dyad level) represent the median SE bias across all parameters per level, 
whereas the error bars extend to the minimum and maximum SE bias per level. The ribbons show the range of the empirically 
observed SEs across all parameters per level. Solid lines are used for the dyad level and dotted lines are used for the case level.
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capturing uncertainty due to incomplete data. When 
missing data are imputed multiple times, MCMC esti
mation can be applied to each completed data set. 
Given satisfactory convergence criteria per imputed 
data set, inference can proceed by mixing the poster
ior samples from all imputations (Gelman et al. 2013, 
p. 452; Zhou & Reiter 2010).

Similarly, we used FIML to estimate SRM parame
ters with subsets of round-robin groups, to specify EB 
priors with different location parameters. The degree 
to which the estimated posterior distribution varied 
across these subsets should reflect the uncertainty 
about the estimates used as location hyperparameters. 
Because priors are part of the model, merging the sep
arate posterior samples in this scenario is a form of 
Bayesian model averaging (BMA), although BMA is 
usually applied when models differ in their covariates 
or estimated parameters (see Hinne et al., 2020; 
Wasserman, 2000, for an introduction). We label this 
prior type as the “BMA-FIML” prior to reflect the two 
components involved.

Simulation conditions

Adequately investigating this BMA method would 
warrant its own paper (to review the BMA literature, 
motivating design factors to manipulate), so this 
small-scale simulation study serves only as a proof of 
concept, both to assess its effectiveness in addressing 
the underestimated posterior variance issue and to 
determine the computational feasibility of such a 
method in the SRM context. For this reason, we 
focused only on a single small-sample condition: ng ¼

6 with G ¼ 10: We compared point and SE estimates 
of FIML and EB-FIML priors to those computed 
using BMA-FIML priors. As with Simulation 3, we 
used the same population values and prior specifica
tions detailed previously and simulated R ¼ 1000 
replications.

Bayesian model averaging

We first created five subsets—containing six groups 
each—per dataset, resulting in 36 cases and 90 dyads 
(15 dyads per group) in each subset. EB-FIML priors 
were constructed for each of the five subsets (see 
Simulation 2’s Method for the procedure). Similar to 
previous simulations, we specified weakly informative 
priors and fixed precision to 0.1. Posterior samples 
were then generated for each of the five subsets.

For each MCMC analysis, we initialized two 
Markov chains with random starting values and ran 

each for 2000 iterations, discarding 1000 as burn-in 
(which returned 2000 posterior samples per subset). 
This resulted in five separate sets of posterior samples, 
corresponding to each subset. Then, we computed the 
mPSRF—using values mPSRF > 1:05 as an indication 
that the algorithm had not yet converged—for each 
subset posterior. If mPSRF > 1:05 for any of the five 
subsets, we repeated the MCMC estimation for all 
subsets with 10,000 iterations, discarding 5000 as 
burn-in (i.e., 10,000 posterior samples per subset). 
Subsets for which mPSRF remained > 1:05 after the 
second round of MCMC were discarded before 
merging9 the remaining posterior samples to estimate 
the joint posterior distribution of the SRM parame
ters. EAP estimates of the SRM correlations, SDs and 
(co)variances were saved from this pooled posterior 
distribution.

Results and discussion

A total of 802 samples were considered for the final 
analysis in the BMA-FIML condition (see Table A3 in 
Appendix A). That is, at least two subsets converged 
with mPSRF < 1:05 for each of these samples.10 Plots 
of FIML (from Simulation 1) and EB-FIML (from 
Simulation 2) are included for comparison.

We evaluate the robust bias, SE bias, and coverage 
rates below. Plots for all three outcome variables can 
be found in Figure 12. The plot for robust RMSE can 
be found in our supplementary material.

The left panel in Figure 12 presents the robust bias 
comparisons for EB-FIML priors, BMA-FIML priors, 
and FIML. Estimates at the dyad level are comparable 
across priors, but at the case level, BMA-FIML priors 
displayed slightly greater absolute median bias than 
EB-FIML estimates; however, this difference is negli
gible (approximately 0.02 units). This slight increase 
in absolute median bias is likely due to the fewer 
number of cases per subset for BMA-FIML priors (36 
cases) compared to EB-FIML priors (60 cases). That 
is, for BMA-FIML priors, data from only 36 cases is 
used to estimate FIML estimates of case-level parame
ters and subsequently compute the final posterior dis
tribution per subset, in contrast to the 60 cases used 
for EB-FIML priors.

9Merging separate chains invalidates the standard calculation of ESS and 
R̂ because additional between-chain variance is expected, not due to lack 
of convergence, but due to conditioning on different priors (based on 
different subsets of data). Arguably, the ESS for the merged posterior 
could be calculated as the sum of the estimated ESS per subset, but 
exploring that issue is beyond the scope of this article.
10We did not consider samples for which only one subset converged with 
mPSRF < 1:05; as these samples did not undergo mixing of chains from 
multiple subsets (thus, no model averaging was involved).
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The range of SE bias values is presented in the cen
ter panel of Figure 12. The range of SE bias is already 
minimal at the dyad level, but is improved with BMA. 
BMA more noticeably improves case-level SE bias, 
although some bias still remains. The practical impact 
of the remaining SE bias is clear from the range of 
low CR, displayed in the right panel of Figure 12.

Overall, the results of Simulation 4 show that 
merging posterior samples from multiple subsets of 
data attenuates, but does not completely eliminate, SE 
bias. More work is needed to explore whether a more 
optimal implementation of BMA (e.g., larger or more 
subsets) can further reduce SE bias.

General discussion

In this article, we explored MCMC estimation of the 
multivariate SRM, comparing it to FIML across a 
range of commonly employed round-robin design 
conditions. Bayesian inference for SRM parameters 
has several theoretical and practical advantages, as 
demonstrated in several developments and applica
tions for univariate round-robin outcomes (e.g., 
Jorgensen et al., 2018; Koster & Leckie, 2014; L€udtke 
et al., 2013, 2018). An increased demand for multi
variate modeling of round-robin data has led to recent 
developments using FIML estimation (Nestler, 2018; 
Nestler et al., 2020), and Jorgensen et al. (2024) dem
onstrated the practical utility of MCMC estimation, 

acknowledging the need for Monte Carlo research to 
establish best practices, as well as reveal conditions 
that warrant caution (e.g., small samples). To this end, 
we presented four simulation studies. The first three 
simulations explored the impact of manipulating (a) 
the precision of prior distributions for a fixed prior 
location, (b) the accuracy of prior locations for a fixed 
prior precision, and (c) the number of groups sampled 
when information from only a few participants per 
group is available. For (b), we explored two methods 
for specifying more accurate EB priors to better 
estimate SRM correlations and SDs. The fourth simu
lation study applied BMA to attenuate a well-docu
mented problem with EB priors.

In Simulation 1, we found that even for “prophetic” 
prior locations, the accuracy of point estimates 
depends on prior precision, with more precise priors 
yielding more accurate posterior estimates (see Figure 
5). However, as prophetic prior locations are an 
unrealistic scenario, we fixed the prior precision in 
Simulation 2, manipulating prior locations to compare 
thoughtful and EB priors.

Of the MCMC priors considered in Simulation 2 
(diffuse, thoughtful, EB-FIML and EB-ANOVA), the 
EB priors (which performed comparably) had lower 
point-estimate bias but higher SE bias, resulting in 
lower but similar RMSE than our minimally thought
ful priors (see Figure 9)—the familiar bias–variance 
tradeoff. The accuracy of diffuse priors was quite 

Figure 12. Plot depicting the robust bias (left panel), SE bias (center panel), and coverage rate (right panel) for Simulation-4 SRM 
correlation and SD estimates. The estimation methods compared in this simulation are presented in the x-axis and the y-axis con
tains the outcome variable values. In all three panels, the symbols � (case level) and � (dyad level) represent the median value 
across all estimates per level, whereas the error bars extend to the minimum and maximum per level. Solid lines are used for the 
dyad level and dotted lines are used for the case level. In the center panel, the ribbons show the range of the empirically 
observed SEs across all parameters per level.
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poor, but improved as ng increased. Thoughtful priors 
over/underestimated the SRM parameters depending 
on whether the true value of the parameter was 
greater/lesser than the chosen expected value of the 
rescaled Beta distribution (M ¼ :30). We selected a 
single expected value for all correlations across both 
levels. In practice, researchers may select separate 
thoughtful-prior locations for different parameters 
informed by theory or previous research which may 
improve the accuracy of the estimation. Though the 
EB priors displayed low bias, they underestimated 
sampling variability, leading to low coverage in small 
groups since the algorithms failed to account for the 
uncertainty in estimating the Beta hyperparameters.

In Simulation 3, we considered conditions wherein 
a greater number of small groups are sampled to 
assess whether (a) point-estimate bias for diffuse and 
thoughtful priors improves and (b) SEs are more 
accurately estimated for EB-FIML priors. Case-level 
point-estimate bias for diffuse and thoughtful priors 
did not show substantial improvement as more groups 
were sampled. Instead, in the smallest-group condi
tion, bias increased with more groups due to more 
precision for inaccurate estimates. Dyad-level esti
mates appeared to improve as G increased from 25 to 
50. Additionally, the underestimation of SEs for EB- 
FIML priors improved as more groups were sampled. 
However, sampling many small round-robin groups 
may be costly or burdensome; thus, this may not be a 
practical solution in applied settings.

Use of the same data twice—first to specify prior 
distributions, and again for the MCMC estimation— 
can be problematic and results in underestimated pos
terior variability (Carlin & Louis, 2000b). Simulation 2 
demonstrated this issue in the SRM context. In 
Simulation 4, we attempted to address this issue by 
merging posterior samples obtained from multiple 
subsets of the same data, using priors we termed 
BMA-FIML priors. We found that the SEs for BMA- 
FIML priors were more accurately estimated than 
those for EB-FIML priors, making the combination of 
EB priors and BMA a promising topic for future 
exploration.

Our findings are largely consistent with prior 
research on univariate SRM with MCMC estimation 
(L€udtke et al., 2013) and multivariate SRM with FIML 
estimation (Nestler, 2018). Generally speaking, dyad- 
level parameters are more accurately and efficiently 
estimated than case-level parameters, particularly in 
small groups. Measuring a participant’s multiple inter
actions within larger groups (i.e., greater ng) results in 
more accurate estimates of SRM correlations and SDs 

than smaller groups. Furthermore, increasing G for a 
given ng did not substantially improve the estimation 
of SRM parameters. Thus, if researchers must consider 
a tradeoff between ng and G, it is preferable to collect 
data from fewer large groups than many small groups 
(Kenny et al., 2006, p. 215). Our third simulation 
study showed that even 100 small groups (perhaps not 
even practical) does not substantially reduce the bias 
of point estimates, and their decreased sampling vari
ability makes BCI coverage even worse.

Recommendations for future research

In Simulation 4, we explored only a single subset con
dition—specifically, we created five subsets of six 
groups each for ng ¼ 6, G ¼ 10 data. This combin
ation barely yielded more observations than parame
ters, given that data from 36 cases were available to 
estimate 21 parameters at the case level. When more 
parameters are to be estimated, the number of subsets, 
size of subsets, or size of groups may have to be 
increased. It is necessary to reveal the extent to which 
these factors impact estimates of posterior variability.

In the present simulations, we saved both EAP and 
MAP posterior estimates of SRM correlations and 
SDs, but found that these negligibly differed. These 
posterior summary estimates have been previously 
found to differ for boundary conditions (i.e., near- 
zero variances or large correlations) in small samples 
(L€udtke et al., 2013; Ten Hove et al., 2020). It is inter
esting for future research to explore whether these 
estimates differ based on the magnitude of SRM SDs 
and sample size.

Finally, Jorgensen et al. (2024) demonstrated how 
social-relations structural equation model (SR-SEM) 
parameters can be estimated, using as input data the 
level-specific covariances matrices calculated from the 
correlations and SDs estimated with MCMC in this 
paper. SR-SEMs enable researchers to test measure
ment and structural hypotheses about round-robin 
variables, and Nestler et al. (2020) evaluated FIML 
estimation of SR-SEM parameters. The two-stage 
method proposed by Jorgensen et al. (2024) remains 
to be evaluated.

Advice for applied researchers

Our simulations show that informative prior distribu
tions are not a substitute for sufficient data and that 
larger groups are preferable to derive more accurate 
estimates. However, we recognize the impracticality of 
collecting round-robin data from larger groups, which 
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involve many interactions (e.g., 190 dyads in a group 
of 20). Researchers may have difficulties setting up 
studies of this kind, and participants are likely to find 
it burdensome to interact with or rate many other 
individuals. In such cases, researchers can plan ng and 
G sizes based on their specific hypotheses. For 
example, if researchers are interested in testing only 
dyad-level hypotheses, it may be acceptable to collect 
data from smaller groups, but if they are interested in 
case-level SRM correlations and SDs, collecting data 
from fewer large groups may be more suitable. It is 
necessary to note that we provide these recommenda
tions in the context of our analysis of a trivariate 
SRM. A potentially useful extension in this context 
may be to explore unequal ng in the same sample— 
for instance, whether sampling many small groups in 
combination with a few large groups may partly solve 
the issues with accuracy and variability. Another solu
tion could be planned missing-data designs, wherein 
each of 20 subjects only interacts with (or responds 
about) a subset of partners (Brunson et al., 2016; 
Øverup et al., 2021).

Furthermore, our results showed that the choice of 
prior is highly influential in parameter estimation; 
hence, it may also be useful—especially in small-group 
conditions—to conduct a prior sensitivity analysis to 
evaluate the robustness of estimates across varying 
prior location and precision. If this reveals results to 
be sensitive to prior specification, then confidence in 
any results would be undermined by lacking sufficient 
data.

Finally, we used ESS, R̂; and mPSRF to specify con
vergence criteria in our simulations, which is more 
feasible than inspecting visual diagnostics (e.g., trace
plots) for 1000 samples per condition. In practice, 
researchers are advised to use more informative visual 
diagnostics to evaluate whether the algorithm has con
verged. Cowles and Carlin (1996) and Roy (2020) pro
vide an overview of convergence diagnostic tools for 
MCMC. Kwon et al. (2025) and Zitzmann and Hecht 
(2019) use simulations to compare various conver
gence criteria.

Conclusion

In summary, the present article explored the impact 
of manipulating the location and scale of MCMC pri
ors of SRM parameter estimates. We compared 
MCMC to FIML and found that although FIML pro
duced less biased estimates, they were less efficient 
than MCMC estimates in small samples. However, 
MCMC estimates were biased in small samples 

without prior information, which can be improved 
using EB priors. RMSE indicated the efficiency gain 
can outweigh the bias, making MCMC more accurate 
overall, although the biased estimates of sampling 
variability led to low coverage, threatening validity of 
inferences based on interval estimates, particularly in 
small samples. Thus, MCMC estimation has distinct 
advantages over FIML estimation of multivariate SRM 
parameters, but depending on the researcher’s priority 
on valid inference (e.g., nominal BCI coverage), those 
may be outweighed by bias in small groups. For less 
biased, more efficient results with either estimator, 
researchers should prioritize designs with (fewer) large 
groups rather than (many) small groups.
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Appendix A: Converged samples across all 

conditions per simulation

Table A1. Number of converged samples (out of 1000) per 
condition in simulations 1 and 2.

Simulation condition

G ¼ 10 G ¼ 25

Study Prior type 6 8 10 20 6 8 10 20

1 Default priors 121 385 747 1000 94 594 983 1000
1 Pr-0.05 priors 998 1000 1000 1000 1000 1000 1000 902
1 Pr-0.1 priors 981 993 1000 1000 991 1000 1000 986
1 Pr-0.2 priors 678 907 980 1000 667 967 1000 1000
1 None (FIML) 901 994 999 1000 997 1000 1000 1000
2 Thoughtful priors 991 995 999 1000 961 993 999 1000
2 EB-MOM priors 734 932 994 999 917 997 1000 989
2 EB-FIML priors 648 910 980 1000 889 994 1000 990

Table A3. Number of samples in simulation 4 that merged 
converged posterior samples from 2–5 subsets of data.
Converged subsets Number of samples

2 270
3 252
4 200
5 80

Table A2. Number of converged samples (out of 1000) per 
condition in simulation 3.

Simulation condition

G ¼ 50 G ¼ 100

Analysis type 6 8 6

Default priors 48 849 24
Thoughtful priors 879 999 813
EB-FIML priors 946 1000 931
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