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ABSTRACT
Many psychological phenomena can be understood as arising from systems of causally con-
nected components that evolve over time within an individual. In current empirical practice,
researchers frequently study these systems by fitting statistical models to data collected at a
single moment in time, that is, cross-sectional data. This raises a central question: Can cross-
sectional data analysis ever yield causal insights into systems that evolve over time—and if so,
under what conditions? In this paper, we address this question by introducing Equilibrium
Causal Models (ECMs) to the psychological literature. ECMs are causal abstractions of an under-
lying dynamical system that allow for inferences about the long-term effects of interventions,
permit cyclic causal relations, and can in principle be estimated from cross-sectional data, as
long as information about the resting state of the system is captured by those measurements.
We explain the conditions under which ECM estimation is possible, show that they allow
researchers to learn about within-person processes from cross-sectional data, and discuss how
tools from both the psychological measurement modeling and the causal discovery literature
can inform the ways in which researchers collect and analyze their data.
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Introduction

Over the last two decades, many areas of psychological
science have moved toward characterizing psycho-
logical phenomena as arising from systems that evolve
over time within an individual, perhaps best typified by
network and idiographic process approaches (Borsboom,
2017; Hamaker, 2012; Molenaar, 2004; van der Maas
et al., 2006; Wichers, 2014). To gain insight into these
systems, empirical researchers have relied on fitting
statistical models to a variety of different observational
data types, such as cross-sectional data, gathered from
many individuals at a single point in time (Borsboom &
Cramer, 2013; Epskamp et al., 2018; Robinaugh et al.,
2020), and time series data, gathered from one or more
individuals at many points in time (Bringmann et al.,
2013; Epskamp, 2020; Hamaker et al., 2005; Hamaker &
Wichers, 2017; Wichers, 2014).

There are two central challenges that these areas of
psychological research face. The first challenge con-
cerns how cross-sectional data can be used to learn

about within-person processes. Recent treatments of
the ergodicity problem have suggested that inferences
from cross-sectional to within-person statistical
dependencies may rarely be warranted (Hamaker &
Wichers, 2017; Molenaar, 2004). While this has led a
number of researchers to question the utility of gath-
ering cross-sectional data to learn about within-person
processes at all (Bos et al., 2017; Fisher et al., 2018;
Hofmann et al., 2020), others have argued that pat-
terns of statistical dependency in cross-sectional data
provide an important and complementary source of
information (Borsboom & Cramer, 2013; von
Klipstein et al., 2021). The second challenge pertains
to the question of how observational data can yield
insights into the effects of interventions (Cronbach,
1957; Diener et al., 2022; Foster, 2010; Grosz et al.,
2020; Pearl, 2009; Rohrer, 2018; Ryan & Hamaker,
2022). For example, does reducing avoidance behavior
reduce social anxiety? If so, is this change short-lived,
with anxiety eventually returning to its usual level, or

MULTIVARIATE BEHAVIORAL RESEARCH
2025, VOL. 60, NO. 6, 1116–1150

Ois�ın Ryana# and Fabian Dablanderb#

� 2025 The Author(s).
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the
posting of the Accepted Manuscript in a repository by the author(s) or with their consent.



long-lived, with typical anxiety levels permanently
reduced? Statistical models alone cannot provide an
answer to these questions. Instead, we need a causal
model of the system (Briganti et al., 2022; Dablander
& van Bork, 2021; Pearl et al., 2016; Peters et al.,
2017; Ryan et al., 2022; Sch€olkopf & von K€ugelgen,
2022). Recent work in the causal modeling literature
has shown that there are typically many different valid
causal models for any given dynamical system, and
that these models may differ with respect to the type
of data they can be learned from, and the types of
interventions they are informative about.

In this paper, we introduce Equilibrium Causal
Models (ECMs) to the psychological literature and
investigate how this model class may help address
both of the challenges outlined above. An ECM is a
causal model of a dynamical system that allows for
inferences about the long-term effects of interventions,
even though it does not describe or allow inferences
about the moment-to-moment relations that produce
those effects. The ECM can be represented as a causal
graph (Bongers et al., 2022). ECMs have been studied
before (Bongers et al., 2022; Dash, 2005; Iwasaki &
Simon, 1994; Spirtes, 1995; Strotz & Wold, 1960;
Weinberger, 2020, 2023)—forming the target of infer-
ence in many cyclic causal discovery methods
(Bongers et al., 2021; Lacerda et al., 2012; Mooij et al.,
2013; 2020; Mooij & Claassen, 2020; Richardson,
1996; Rothenh€ausler et al., 2015)—but are virtually
unknown in psychology. Crucially, the ECM can in
principle be estimated or learned from cross-sectional
data, and thereby provides the missing link between
dynamical systems modeling and cross-sectional data
analysis. Although most contemporary causal model-
ing work focuses on Directed Acyclic Graphs (DAGs;
Pearl, 2009), ECMs may contain patterns of cyclic
causal effects which reflect feedback relations in the
underlying dynamical system. This makes them an
attractive model class in situations where feedback
relationships are expected (Borsboom, 2017;
Borsboom & Cramer, 2013; Haslbeck et al., 2022;
Park et al., 2023; Schmittmann et al., 2013), but makes
them more difficult, on a practical level, to estimate
and learn from data. Focusing on the most basic lin-
ear case, we introduce and develop the intuition
behind ECMs and—drawing on both the psychological
measurement and causal discovery literature—discuss
how equilibrium causal modeling can be made feasible
for empirical research.

This paper is structured as follows. In Section 1, we
introduce a linear dynamical system model that we
will use as a running example, and describe the ways

in which different interventions affect the system on
different timescales. In Section 2, we use this example
model to introduce the general concept of an ECM,
showing how they allow us to make inferences about
long-term intervention effects, and how they can in
principle be estimated from cross-sectional data under
idealized conditions. In Section 3, we examine how
these measurement conditions can be relaxed, show-
ing how ECMs fit into the ergodicity debate, and how
the psychological measurement literature can aid in
estimating ECMs. In Section 4, we discuss key chal-
lenges of applying ECMs in practice and show how
modern causal discovery methods can be used to
overcome problems of unobserved confounding and
model identifiability. Finally, we discuss the implica-
tions of the ECM perspective for empirical practice
moving forward. In addition, throughout we provide
example code for estimating and discovering ECMs
using relevant SEM and causal discovery packages in
R (R Core Team, 2021).

Dynamical systems and causal effects

Dynamical systems theory provides a unifying frame-
work for studying how systems as disparate as the cli-
mate and the behavior of humans change over time.
A dynamica system model is a set of equations which
describe how the (multivariate) process of interest
evolves over time (Hamilton, 1994; Strogatz, 2014).
Often, dynamical systems models are formulated as
generative or computational models, formalizing sub-
stantive assumptions about the exact nature of the
mechanisms and moment-to-moment relationships
which drive the system under investigation (Haslbeck
et al., 2022; Robinaugh et al., 2021; Scholkopf et al.,
2021; van Rooij, 2022). This is in contrast to, say, stat-
istical models, which only describe patterns of co-
occurrence in a particular data type, and causal models,
which we can think about as a mid-point between stat-
istical and computational models (Haslbeck et al., 2022;
Sch€olkopf & von K€ugelgen, 2022). Causal models are
more informative than statistical models, but less
informative than computational models: They allow for
inferences about statistical relationships and about the
effects that certain interventions might have on the sys-
tem, without necessarily allowing inferences about the
exact mechanistic relations in the underlying system
(Peters et al., 2017; Scholkopf et al., 2021; Sch€olkopf &
von K€ugelgen, 2022).

In the first part of the paper, we will focus on developing
the intuition behind having a causal model of a dynamical
system. We introduce a simple multivariate dynamical
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systems model, and describe various interventions that are
possible in this system. We will use this model throughout
the remainder of the paper to build intuition for ECMs and
what they can tell us about dynamical systems. We also
focus our analysis of how to recover ECMs from data
around this specific type of dynamical system (for discus-
sions about ECMs in general, see Mooij et al., 2013;
Bongers et al., 2022; Blom et al., 2020; Weinberger, 2020;
Dash, 2005; Iwasaki & Simon, 1994).

A basic dynamical systems model

A dynamical systems model consisting of linear rela-
tionships between the variables of the system can be
represented using the auto-regressive equation

Xt ¼ cþUXt−1 þ et , (1)

where c is a vector of intercepts, U is a matrix of
parameters encoding lagged effects of Xt−1 on Xt; and
et is a vector of error terms, representing perturba-
tions to the system drawn from a Gaussian distribu-
tion et � Nð0,R�Þ: In psychological modeling terms,
this can be considered a model for how a system
evolves over time within a particular person.

Readers may recognize Equation (1) as the first-
order vector auto-regressive or VAR(1) model, which is
a popular choice for the statistical analysis of time series
data across a number of domains, and in particular is
widely used to analyze psychological time series data
(Bringmann et al., 2013; Epskamp, 2020; Hamaker,
2012; Hamilton, 1994; Vanhasbroeck et al., 2021). In
those settings we typically have many repeated self-
report measures of some psychological phenomena,
such as stress or anxiety, and the VAR(1) model is used
to model the wave-to-wave auto- and cross-covariances
between these different variables. In the present paper,
we treat Equation (1) not as a statistical model but as a
computational (i.e., generative) model, describing how
future values of the process Xt are produced by a com-
bination of time-constant forces c acting on the system;
past values of the process Xt−1 through the matrix U;
and random exogenous perturbations to the system et:
As an example, suppose Xt represents the multivariate
process stress. Then we could interpret c as representing
the stable effect of one’s environment (e.g., having a
stressful job), et as representing time-varying effects of
one’s environment (e.g., entering or leaving a stressful
interaction), and U as representing the way in which
current stress levels produce or regulate future stress
levels, as well as the levels of the other psychological
processes in our system. The diagonal elements of U
are termed auto-regressive effects and the off-diagonals
cross-lagged effects, with /jk representing the extent to

which Xk, t−1 determines Xj, t: The values of the lagged
parameters U can be represented in the form of a net-
work. This is shown in Figure 1(a), where we see for
example a cyclic relationship X2�X3 due to the pres-
ence of non-zero values of the cross-lagged effects /23

and /32: This implies that X2 at time point t − 1 has an
effect of size /32 on X3 at time point t, which in turn
has an effect on X2 of size /23 at time point t þ 1:1

A key concept in dynamical systems modeling is
that of an equilibrium. We can think of an equilib-
rium as a resting or steady state of the system—if the
system is at equilibrium, then it will stay there unless
it experiences some shock or perturbation that pushes
it away from equilibrium. In general, a dynamical sys-
tem can have more than one equilibrium, and these
equilibria can be stable (pulling nearby trajectories
toward it) or unstable (pushing nearby trajectories
away; Strogatz, 2014; Dablander, 2020). The linear
dynamical system model we introduced above can be
considered simple in the sense that, if the eigenvalues
of U are non-zero, and all smaller than 1 in absolute
value (denoted jkj < 1), then the system fluctuates
around a single stable equilibrium position l ¼ E½Xt�
over time, as depicted in Figure 1(b). E denotes the
expectation operator yielding the long-run average of
the process. We can write

E Xt½ � ¼ E cþUXt−1 þ et½ �
l ¼ cþUl,

(2)

since the noise term et is independent of Xt and has
expectation zero and c is a constant.2 Equation (2) is
another way of stating that if we are at equilibrium
(right-hand side), then we will we stay at equilibrium
(left-hand side) in the absence of any external per-
turbation. If the eigenvalues of U are all smaller than
1, perturbations et push the system away from
equilibrium, but the lagged parameters U ensure that
the system returns to equilibrium over time. In
the present paper we will consider only stable
systems, that is, systems that return to their equilib-
rium after a perturbation. The expression for how the
equilibrium position in a stable system is determined
by the model parameters can be found by re-
arranging Equation (2) as

1While we use an auto-regressive equation rather than a linear differential
equation (a continuous-time model; Driver et al., 2017; Ryan et al., 2018;
Ryan & Hamaker, 2022) for simplicity, the results presented here
generalize to the continuous-time case if we interpret the auto-regressive
equation as defined over an infinitesimal time-step.
2Equation (1) is sometimes also written in its mean-centered form, using
ðXt − lÞ: However, that form can sometimes imply that the mean of the
process is determined independently from the rest of the parameters of
the model, an assumption we explicitly do not make in the current
setting.
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l ¼ ðI −UÞ−1c, (3)

which shows that the location of the equilibrium position
l is determined both by the value of the lagged parame-
tersU and by the time-constant intercept terms c:

Causal effects and interventions

Now that we have a dynamical systems model in
place, we can consider how the behavior of this sys-
tem reacts to different interventions. In other words,
we can consider how the system can be understood in
terms of different causal relations and its reactions
over time to different interventions. These causal rela-
tions will allow us to understand causal models of a
dynamical system in the following sections. Note that
for now we will focus primarily on defining causal
effects and causal models, and will return to the prob-
lem of estimating or learning that causal model from
data, and the strict assumptions necessary for that
type of inference, in later parts of the paper. To avoid
any potential confusion when reading this section,
recall that we treat the model described in Equation
(1) as a causal, not a statistical model.

To define a causal relationship we need to specify
three components. First, we need to define the specific
type of intervention or action which we will apply to
the system. Following the modern causal inference lit-
erature, we limit ourselves to considering interven-
tions that are local and modular (Pearl, 2009; Peters
et al., 2017). That is, we assume it is possible to inter-
vene on one component of our system at a specific
time without altering other parts of the system. In
other words, we assume that we can intervene to force
Xj, t to obtain a particular value (say, Xj, t ¼ 1), without

also changing the value of Xk, t (locality), and that the
manner in which the effect variable Xk, tþ1 reacts to
Xj, t ¼ 1 is not itself changed by the intervention
(modularity). The second component we need to
define is the target of the intervention, that is, the
part of the system on which we intervene, such as the
value of Xj at time point t. Third, we need to define
the property of the system on which we want to
evaluate the effect of the intervention (see also, Gische
& Voelkle, 2022). An intervention is said to have a
causal effect on the system if the intervention leads to
changes in the short- and/or long-term properties of
the system, such as the value of the system at a future
time point, or the equilibrium positions. For our pur-
poses we will focus on three possible types of inter-
vention that we could apply to our dynamical system
model, and outline the effects each intervention has
on different properties of the system.

Pulse interventions
A pulse intervention can be understood as an interven-
tion that changes the value of a single variable at a
single point in time (Bender et al., 1984; Hamilton,
1994; Pearl, 2009). Consider the dynamical system
visualized in Figure 1(a). Applying a pulse interven-
tion by forcing X1, t ¼ 1 results in X2, tþ1 increasing in
value by /21 ¼ 0:30 compared to the situation in
which X1, t is forced to obtain a value of zero. In the
causal modeling literature, such an intervention would
be denoted doðX1, t ¼ 1Þ; and the causal effect on
X2, tþ1 would be defined as the contrast between the
expected values of X2, tþ1 under two different interven-
tion conditions, e.g., E½X2, tþ1jdoðX1, t ¼ 1Þ� − E½X2, tþ1j
doðX1, t ¼ 0Þ�; which, keeping all other variables fixed,

Figure 1. Left: Example of a linear dynamical system depicted as a network. Each arrow Xk ! Xj represents the value of a lagged
parameter /jk: Right: Data generated by the dynamical system with U as depicted in Panel (a), c ¼ ½0:50, 1:25, − 2:00, − 1:25�;
and R� ¼ Ir2 with r ¼ 0:30: The dashed lines represent the equilibrium positions l:
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yields a value of 0.30 (Ryan & Hamaker, 2022). To
avoid confusion with other interventions, we will in this
paper denote such an intervention pulseðX1, t ¼ 1Þ:
Cross-lagged relationships /ij have a natural interpret-
ation in terms of causal effects, as they directly deter-
mine the direct effect of a pulse interventions on the
value of the system at the next time point.3 In stable,
linear dynamical systems, pulse interventions only have
a short-lived effect on the system. They never result in
any long-term changes in the equilibrium position or
other properties of the system. Mathematically, this can
be understood by noting that the effect of a pulse inter-
vention can be found by taking the appropriate power
of the lagged effects matrix, Us; where s represents the
time since the intervention took place. Since in stable
systems the eigenvalues of U are smaller than one, Us

converges to a matrix of zeros as s gets larger and
larger—the effect of the pulse intervention is zero at a
long enough timescale. An example of this can be seen
in Figure 2(a), where the pulse intervention described
above is applied at t ¼ 10; and the behavior of the sys-
tem as it reacts to this intervention is visualized. For
stable linear systems, the pulse intervention has no
long-term effect—the equilibrium position of each vari-
able remains the same.4 For a mathematical treatment
of pulse interventions, see Appendix A.1 and for code
to calculate and simulate the effects of all interventions
described in this paper, see https://github.com/fdabl/
Equilibrium-Causal-Models.

Press interventions
A press intervention is an intervention that sets a sin-
gle variable to a constant value over an interval of

time, rather than at just a single moment in time
(Bender et al., 1984; Hyttinen et al., 2012; Pearl,
2009). While a pulse intervention can be thought of
as a temporary shock to the system, the press inter-
vention could be thought of as “clamping down” on
the system over a longer period of time. Formally, it
can be expressed as doðXj, t ¼ 1Þ for t 2 fT,T þ
1, :::,T þ kg (Pearl, 2009; Ryan et al., 2022). For clar-
ity, we will here denote such an intervention using
pressðXÞ: The press intervention has both a short and
long-term effect on the system, as we can see in
Figure 2(b). Here we intervene in the system to force
X1 ¼ 1 starting at t ¼ 10 for an indefinite period of
time. In the short-term, that is, from t to t þ 1; this
press intervention has a similar effect to the pulse
intervention, changing the value of X2, tþ1 by the same
amount. However, the press intervention changes the
equilibrium positions of the system: During the period
where the press intervention is active, the equilibrium
positions of both X2 and X3 change, in both cases
decreasing in value. This happens because forcing X1

to obtain a constant value over time effectively alters
the lagged relationships in the system, setting all of
the lagged effects pointing toward X1 in U to zero.
This in turn yields a new vector of equilibrium posi-
tions when plugged into Equation (3). Note that in
this case the press intervention results in a system
which is still stable, but for some linear systems,
applying a press intervention can result in an even
more dramatic change in the long-term behavior of
the system, changing it from stable to unstable. For
simplicity, we will consider only systems that are sta-
ble and stable under press interventions, a point we
will return to in the discussion. For a mathematical
treatment of press interventions, see Appendix A.2.

Shift interventions
Finally, we may consider interventions that target
parts of the system other than the value of Xj at one
or more points in time. A shift intervention represents

Figure 2. Effect of a pulse (left), press (middle), and shift (right) intervention on our example system.

3This intervention also has an indirect effect on X3, tþ2; which we can see
by reading off the directed path X1 ! X2 ! X3 from the network in
Figure 1(a). The effect of this intervention on X3, tþ2 can be calculated by
taking the product of cross-lagged effects involved. However, this
intervention has no effect on X4, tþ1 since /42 ¼ 0 and there are no
indirect paths from X1, t to X4, tþs in the network.
4In systems with multiple equilibria, pulse interventions may push the
system into a different equilibrium (see e.g., Dablander, 2020).
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an intervention to change the intercept of a variable cj
in our system, that is, a change to the time-invariant
force acting on a particular variable in the model, and
which we will denote shiftðXÞ (Eberhardt & Scheines,
2007; Peters et al., 2016; Rothenh€ausler et al., 2015).5

Figure 2(c) depicts a shift intervention to set c1 (the
intercept term of X1) to a value of 1 from time point
t ¼ 10 onwards. Unlike in the case of a press inter-
vention, we can see that the variable X1 is free to vary
when the shift intervention is applied. However, the
equilibrium position of X1 changes due to the change
in the intercept, and this in turn results in a change
to the equilibrium positions of X2 and X3: The change
in the intercept yields a new vector of equilibrium
positions l; which can be obtained by plugging the
new intercept vector into Equation (3). As such, shift
interventions have a long-term effect on the dynam-
ical system, and this long-term effect is distinct from
that of press interventions. Unlike press interventions,
shift interventions in linear systems never change the
overall stability of the system, since shift interventions
do not change the lagged relationships U; which
determine stability. For a mathematical treatment of
shift interventions, see Appendix A.3.

Summary
As we can see, different interventions have different
effects on different properties of a system. This is
summarized in Table 1, where we show the three dif-
ferent intervention types described above, whether
these interventions can in principle have a short or
long-term effect on the system, and if so, how to cal-
culate this effect. Of course, not all interventions will
have an effect on the target variable, since this
depends on the weights matrix U of the system at
hand: In our example system in Figure 1, no interven-
tion on X1 will have an effect on X4; while all types of
interventions on X1 will have some effect on X2:

Notably, however, in any stable linear system, pulse

interventions can have no long-term effects on the
equilibrium, while press and shift interventions can
affect the equilibrium. To continue our stress example,
we could imagine that pulse interventions might pro-
duce short-term changes to stress levels for example
by reminding one of an upcoming public speech.
Press interventions may map onto much stronger
interventions, for example the administering of a
hypothetical drug which completely suppresses the
stress response, while shift interventions change stable
parts of one’s environment which produce stress, for
example by switching to a less stressful profession.
Because we are interested in long-term changes to the
system in the current paper, we will focus on press
and shift rather than on pulse interventions in the
remainder. Specifically, in the following we will
describe how, under certain conditions, we can use
observations of a dynamical system taken at a single
point in time to learn about the effects of these inter-
ventions, and show how it is possible to do so without
knowing the moment-to-moment generating parame-
ters of the dynamical system.

Equilibrium causal models

In the previous section, we introduced a basic dynam-
ical system governed by linear moment-to-moment
dynamic relationships and showed how we can define
and compute the effects of different interventions in
that system. A natural implication of this is that, if we
wish to learn about the effects of interventions in our
system, we could try to do this by collecting suitable
repeated measures time series data of each process,
and in recent years, a number of psychological
researchers have called both for an increasing focus
on theories for how psychological processes evolve
over time within an individual and a complimentary
increase in empirical approaches which collect and
analyze psychological time series to gain insight into
these processes (Hamaker, 2012; Molenaar, 2004;
Robinaugh et al., 2019).

It turns out, however, that this is not the only way
in which researchers might hope to learn about the
effects of interventions in a dynamical system. In this
section, we describe the Equilibrium Causal Model

Table 1. Characterizations of the effects of different interventions.
Intervention Action Short-term effect Long-term effect

Pulse Force Xk, t ¼ a at time t E½Xj, tþ1� ¼ /jk � a No effect
Press Force Xk, t ¼ a for t 2 fT , T þ 1, :::} E½Xj, tþ1� ¼ /jk � a l ¼ ðI − PkUÞ−1ðPkc þ akÞ
Shift Force ck ¼ ck þ a for t 2 fT , T þ 1, :::} E½Xj, tþ1� ¼ /jk � ðck þ aþUXtÞ l ¼ ðI −UÞ−1ðc þ akÞ
The short-term effect describes the effect of Xk, t on Xj, tþ1: The long-term effect is defined with respect to the new equilibrium positions produced by the
intervention. Pk represents the p� p identity matrix with the kth diagonal set to zero, and ak represents a p� 1 vector with the kth element set to a
and zeros elsewhere. The derivation of the long-term effects is detailed in Appendix A.

5This interpretation allows us to consider cj as a latent time-invariant
variable to which we apply an intervention. Alternatively, we could also
interpret a shift intervention as a soft intervention or mechanism change,
which alters part of the system (e.g., the mean of a variable) without
forcing the variables to obtain a constant value (Eberhardt & Scheines,
2007).
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(ECM), which is a type of model which allows for infer-
ences about the effects of certain interventions in a
dynamical system, but which in principle can be learned
from single-time-point observations, that is, cross-
sectional data. ECMs allow inferences about these inter-
ventions without capturing the moment-to-moment
dynamics of the underlying dynamical system.

A causal model of a dynamical system

To define the ECM, it is first necessary to clarify what
we mean by a causal model in the first place. A causal
model of a dynamical system is any model that yields
predictions about the effect of one or more types of
interventions in that system. In the context of the
example model introduced above, a causal model
would correctly inform us about at least one cell of
Table 1: the short and/or long-term effect of pulse,
press and/or shift interventions. The equations which
govern how the dynamical system evolves over time,
as specified in Equation (1), would of course represent
the best causal model of the system we can hope for:
If we know all of the parameters of these equations,
then we know the exact moment-to-moment dynam-
ics governing the system, and so can derive the short
and long-term effects of all intervention types.
However, a causal model need not be quite as com-
plete a description of the system to still be useful.

An Equilibrium Causal Model is a causal model of
the system which allows inferences about the long-
term effects of interventions, that is, the effects of
interventions that act on and affect the equilibrium
positions of the system. While in principle we could
think about defining an ECM for many different types
of dynamical systems, in the current paper we will
only consider ECMs of linear dynamical systems such
as the one presented in the previous section. An ECM
of our example system would allow us to assess the
effect of applying press and/or shift interventions (the
bottom-right and middle-right cells of Table 1) on
the equilibrium positions of other variables. To see
how this works, recall that the equilibrium is the rest-
ing state of the system. If the system is at equilibrium,
it will—in expectation—take on the same value at the
next point in time, as stated in Equation (2). An ECM
of this system can thus be understood as any set of
equations, that is, any new set of parameters, replacing
U and c; which (a) yields the same equilibrium posi-
tions as the original system, that is, satisfies Equation
(2) and (b) yields the same effects of press and shift
interventions as described in Table 1, but which (c)
does not describe the exact moment-to-moment

dynamics of the system, as defined by the original
parameters of Equation 1.

Hyttinen et al. (2012) showed that there exists an
ECM representation of the linear dynamical system
that we consider here, and described how the parame-
ters of that ECM can be obtained as functions or
transformations of the original systems parameter
matrices as follows. First, we can obtain a matrix of
equilibrium direct effects ~U by (a) deleting the auto-
regressive parameters or self-loops /ii such that ~/ii ¼
0; and then (b) computing the off-diagonal parameters
of this matrix as a function of the cross-lagged param-
eters in the dynamic process

~/jk ¼
/jk

ð1 − /jjÞ
, (4)

as shown in Appendix B. Intuitively, the equilibrium
direct effects can be seen as re-scaling or standardizing
the cross-lagged effects, according to how stable the
outcome variable Xj is. The more stable the outcome
variable (the closer /jj is to one), the bigger the equi-
librium direct effect ~/jk: As such, the matrix ~U can
be interpreted as long-run or equilibrium direct effects,
rather than the moment-to-moment direct effects of
the original system (although derived in a different
context, the same interpretation is given to re-scaling
effects by ð1 − /jjÞ by Shamsollahi et al., 2022).
Intuitively, we can understand this re-scaling as a
path-tracing operation through the auto-regressive
effect of Xj over-time (for more details, see Appendix
B.1). Second, we obtain the intercepts of the equilib-
rium model in a similar way, by transforming (re-
scaling) the original intercepts through

~cj ¼
cj

ð1 − /jjÞ
, (5)

which again means that, the more stable the variable,
the larger the re-scaled intercept term becomes. We
can again interpret these new intercept terms as repre-
senting the cumulative or long-run effect of the time-
constant forces c in the original system. The intuition
for this interpretation is given in Appendix B, where
we show how these parameters arise from path-
tracing through (or equivalently, marginalizing over)
the auto-regressive parameters.

Taken together, these new parameter matrices
define an ECM of the system, which can be written as

l ¼ ~c þ ~Ul: (6)

Using the results of Hyttinen et al. (2012), it can be
shown that these transformed parameters imply the
same equilibrium positions l as the original dynam-
ical system in Equation (2) (see Appendix B.2 for
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details). We want to reiterate that the parameters ~c
and ~U; while arrived at through re-scaling of the
parameters c and ~U of the original dynamical system,
are not parameters of this dynamical system. Instead,
they are parameters of its Equilibrium Causal Model.
The parameters in Equations (4) and (5) can naturally
be obtained from the parameters of the dynamical sys-
tem. However, we will show in the remainder of the
paper that they can also be obtained from cross-
sectional data under particular conditions.

While this may seem somewhat abstract at the
moment, this definition of the ECM is useful for two
reasons. First, it implies that the ECM can be inform-
ative about certain intervention effects, and second, it
implies that the ECM could in principle be estimated
from single-time-point observations, without the need
to estimate either the auto-regressive effects or the
cross-lagged effects. Before we examine how to esti-
mate the ECM, however, we will first focus on under-
standing what kinds of inferences the ECM allows,
that is, why we might want to estimate it in the first
place.

To understand what else the ECM can and cannot
tell us about a dynamical system, we first visualize the
parameters of the ECM for our example system in
Figure 3(b) alongside the original parameters in panel
(a). We can see that the ECM contains a direct effect
~/jk 6¼ 0 only when there is a corresponding moment-
to-moment direct effect /jk 6¼ 0; which means that
the ECM parameters in this situation are informative
about the presence or absence of direct relationships.6

As a result, while the ECM in Equation (6) can be
read as static model, relating stable equilibrium posi-
tions to each other, the model itself contains cyclic
relationships, since the dynamical system from which
it is derived also contains cyclic relationships. Besides
this, however, the ECM is not very informative about
the moment-to-moment dynamics of the system.
Since the intercepts and cross-lagged parameters have
been re-scaled, the values of the ECM parameters can
be quite different to the moment-to-moment direct

Figure 3. Example of a linear dynamical system (a) and its Equilibrium Causal Model (b). In panel (c) we see the evolution of the
dynamical system following a press intervention at time t ¼ 10; where dashed lines represent the equilibrium positions of each
variable, and solid lines represent simulated trajectories of each variable. In panel (d) we illustrate how the ECM predicts the same
long-term effect of the press intervention, that is, the change in equilibrium positions (dashed lines). However, the equilibrium
model cannot be used to make inferences about the actual trajectories of each variable over time.

6According to Equation (6), if /jj 6¼ 1; as we would expect in a stable
system, then ~/ jk 6¼ 0 if and only if /jk 6¼ 0:
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effects: (in)equality relations (such as /23 ¼ /32 and
j/21j < j/34j) are not necessarily preserved in the
ECM (~/23 >

~/32 and j~/21j ¼ j~/34j). Since the param-
eters are all re-scaled, and since ~U contains no auto-
regressive parameters, if we were to plug these model
matrices into Equation (1), we would simulate time
series which look very different from those produced
by the original system.

Despite these limitations, the ECM is a useful and
informative representation of the dynamical system
because the ECM makes the same predictions about
the long-term effects of interventions as the original
system. The proof of this statement is adapted from
the work of Hyttinen et al. (2012) and is outlined in
detail in Appendix B.3 and B.4. For a press interven-
tion, these predictions can be made by simply plug-
ging in the ECM parameters into the expression for
the press intervention in Table 1. This is shown for
our example in panels (c) and (d) of Figure 3. First,
we see that for t < 10; both models imply the same
equilibrium positions in the no-intervention setting.
In panel (c) we show the trajectory of the system fol-
lowing a press intervention to force X2 ¼ a; the effect
of which on the long timescale is to alter the equilib-
rium positions of X1; X2; and X3: We see in panel (d)
that the ECM, while not allowing us to predict the
trajectories of each variable following the intervention,
does allow us to predict the new equilibrium positions
following the intervention. The post-intervention equi-
librium positions predicted by the ECM are identical
to those of the original system.

The importance of these insights are so central to
the rest of the developments presented here that they
deserve repeating. The ECM is informative about the
long-term effects of interventions in our system, while
simultaneously being almost entirely uninformative
about the short-term effects of those interventions. In
other words, although we are studying a system that
evolves over time, we can potentially make correct
predictions about how to intervene in that system
without knowing the moment-to-moment dynamics
that govern the system. In the next section, we extend
the ECM to multiple individuals and then discuss
how to estimate its parameters from cross-sectional
data.

Equilibrium causal models and multiple
individuals

Now that we have defined what an Equilibrium
Causal Model is and shown that it yields important
insights into the effects of interventions, we can begin

to turn to the question of how ECMs might be useful
in empirical research using cross-sectional data.
Before doing so, however, we must first extend our
dynamical systems model to multiple individuals. The
dynamical systems model in Equation (1) describes a
within-person model, that is, how process values X
evolve over time t for a single individual. To extend
this model to include multiple different individuals we
need to impose some structure on the ways in which
these individuals differ from and are similar to one
another, that is, we need to add between-person com-
ponent(s) to our dynamical systems model. We con-
sider the following model:

Xi, t ¼ ci þUXi, t−1 þ ei, t , (7)

where the parameters have the same meaning as in
Equation (1) and the subscript i denotes individuals
so that parameters or variables with that subscript
vary across individuals. The process values Xi, t and
perturbations ei, t � Nð0,R�Þ both vary across time
and differ between individuals. In terms of the param-
eters of the model, individuals are similar in the sense
that they share the same lagged parameter matrix U:

However, individuals are allowed to differ in their
intercepts, that is, time-constant forces ci � Nðlc,RcÞ:
Note that this model is conceptually similar to a
VAR(1) model with random intercepts across individ-
uals. The equilibrium positions for each individual
satisfy the expression

li ¼ ðI −UÞ−1ci, (8)

which implies that variation between people in their
equilibrium positions arises because of the variation
in time-constant terms ci: As in the within-person
case, we consider only those systems that are stable,
which, as outlined above, in the linear case means
assuming that U has eigenvalues jkj < 1:

We can define different interventions in the sys-
tem—and hence different causal effects—in much the
same way as we did for the single-individual model in
the previous section. Since the time-constant forces
differ across individuals, so too does the effect of press
and shift interventions on the equilibrium positions of
those individuals, and these can be computed using
the expressions shown in Table 1. As in the single-
individual case, we can write down the ECM of this
system as

li ¼ ~ci þ ~Uli, (9)

where ~U is the matrix of equilibrium direct effects,
re-scaled and fixed across individuals. The term ~c i
represents a vector of person-specific intercepts, which
are each re-scaled as described in the previous section.

1124 O. RYAN AND F. DABLANDER



This implies that these new intercept terms are also
normally distributed, ~c i � Nð~lc, ~RcÞ; with the mean
and covariance matrix of the intercepts across individ-
uals (~lc and ~RcÞ also re-scaled in a similar way (see
Appendix B for details).

As in the single-individual case, the ECM pre-
dicts the same equilibrium positions as the original
model and makes equivalent predictions about the
long-term effects of press and certain (standardized)
shift interventions. This is discussed in detail in
Appendix B.3 and B.4. The implication of this is
that, if we can learn or estimate this model from
data, then we can infer the long-term effects of
these interventions.

Equilibrium causal models from cross-sectional
data

With these concepts in place, we can now turn our
attention to how and under what conditions ECMs
can be estimated from different data types. As is well
known from the causal modeling literature, inference
about causal effects from observational data is only
feasible under a number of strict conditions, such as
the absence of unobserved confounding variables and
selection bias, and the possibility of local or modular
interventions, which we have introduced above (see
also Pearl, 2009). In addition, causal inference in prac-
tice often relies on the estimation of a statistical
model, and so assumptions necessary for valid statis-
tical inference, such as linearity and distributional
form assumptions, are also required. While these
assumptions deserve critical evaluation in any causal
modeling context (and we return to them in more
detail later in the current paper), there are two add-
itional types of conditions that we must contend with
when considering inference about equilibrium causal
effects. The first of these concerns the nature of the
underlying dynamical system we are studying. As we
have stated above, in the current paper we consider
only linear dynamical systems which are stable and
stable under different interventions, and we consider
that we are studying a population of individuals who
are relatively homogeneous, differing only in the val-
ues of their individual intercepts. The second condi-
tion concerns the nature of the information that
cross-sectional measurements captures about the
underlying dynamical system.

The crucial insight we can take from our treatment
above is that, because the ECM implies the same equi-
librium positions as the original system, if we observe
those equilibrium positions when collecting cross-

sectional data then we can potentially estimate the
ECM on that data. As such, ECMs provide a potential
bridge between dynamical systems modeling and
cross-sectional (i.e., multiple individuals, single-time
point) data analysis.

Stated more formally, a sufficient (but as we will
see later, not necessary) condition is that cross-
sectional measurements consist of direct observations
of the equilibrium positions of the system for each
individual, li: That is, we need single time-point
observations across individuals to represent the resting
state or long-run average value of each variable for
each person. The importance of this condition
becomes clear when we rewrite the model in Equation
(9) as

li ¼ ~lc þ ~Uli þ fi, (10)

where fi � Nð0, ~RcÞ represents the person-specific
deviation from the population average intercept ~lc:

7

On the left-hand side we have a vector of equilibrium
positions per person, which are regressed on their dir-
ect causes on the right-hand side. The parameters of
this model are a vector of constants ~lc; a square
matrix of regression parameters, and a mean-zero
residual with variance covariance matrix defined
above.

By re-writing the model in this form, it becomes
clear that the ECM can be seen as a structural equa-
tion model (SEM; Bollen, 1989) defined with respect
to equilibrium data. From the usual SEM variance-
covariance decomposition it follows that the (co)vari-
ance of the equilibrium positions is given by

Rl ¼ ðI − ~UÞ−1RcðI − ~UÞT , (11)

where Rc is the covariance matrix describing how the
time-constant forces c of the individuals relate to each
other, and Rl is the covariance matrix of the equilibrium
data. This equation implies that, if we observe the equi-
librium positions for all of the variables in our system,
then the problem of estimating the ECM reduces down
to the problem of estimating the corresponding SEM.
The estimated ECM then allows us to make predictions
about the long-term effects of different interventions,
without knowing the moment-to-moment dynamics of
the system, as we have outlined above.

To illustrate that this indeed works, we simulate
equilibrium data from the dynamical system in Figure
1 for sample sizes n between 50 and 1000. For each
individual we have a single observation, representing
the equilibrium value for that variable for that

7This is because ~c i � Nð~lc , ~RcÞ can be re-written as
~c i ¼ ~lc þ fi � Nð0, ~RcÞ
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individual.8 We use lavaan (Rosseel, 2012) to fit a
cyclic linear SEM model in which X2 is regressed on
(X1,X3) and X3 is regressed on (X2,X4). In causal
modeling terms, this reflects the situation in which
the structure of the causal model is known, and we
want to estimate the values of the effects themselves.
Because this model is statistically identified, its param-
eters can be estimated from the equilibrium data just
as in any standard SEM application. We repeat this
250 times for each sample size. The left panel in
Figure 4 shows that, as expected, the parameters of
the model are estimated without bias, with a sampling
variance that decreases with sample size. The right
panel shows that the effects of the press interventions
on X1 and X4 on the equilibrium positions of X2 and
X3 are estimated without bias, too. Naturally, they
exhibit a higher variance given that they are computed
from parameters that are themselves estimated. The
code to reproduce these (and all further) simulation
results and figures is available from https://github.
com/fdabl/Equilibrium-Causal-Models.

This short exercise illustrates that single time-point
measurements can, in principle, yield a model that
allows valid and useful inferences about long-term
causal effects of an underlying dynamical system. Of
course, in showing how this works in principle we have
made a number of simplifying assumptions, notably
regarding the nature of psychological measurements, the
statistical identifiability of the model, and the degree of
knowledge available on the causal system of interest. In

the following sections, we will turn our attention to the
potential of using ECMs in psychological research in
practice. We will first examine previous research on the
nature of psychological measurements and whether the
measurement assumption outlined here can be relaxed.
We will then discuss issues around statistical identifiabil-
ity, and the discovery and interpretation of causal mod-
els from observational data in general.

Psychological measurement and the ergodicity
problem

In showing how equilibrium models can be estimated
from data in the previous section we have relied on
the assumption that measurements perfectly capture
the equilibrium position of the underlying process. In
this section, we assess to what degree this is a reason-
able assumption considering what is known about the
nature of psychological measurement. In particular,
We discuss the ergodicity problem, which is com-
monly interpreted to imply that no useful inferences
can be made about dynamical systems from single-
time-point cross-sectional observations (Hamaker for
more detailed treatments of the ergodicity problem,
we refer readers to 2012; Molenaar for more detailed
treatments of the ergodicity problem, we refer readers
to 2004). Drawing on research from the latent-state-
trait modeling literature, we will show that cross-
sectional data can in fact be informative about
dynamical systems if sufficient knowledge about the
variance components underlying our measurements is
available.

Figure 4. Mean (solid lines) and standard deviation (shaded areas) of parameter estimates (left) and causal effect estimates (right)
as a function of sample size n. True values are shown as dashed grey lines. Causal effects refer to two different press interventions,
pressðX1 ¼ 1Þ and pressðX4 ¼ 1Þ; with the size of the causal effect in each case evaluated with respect to the change in the result-
ing equilibrium values of X2 and X3: The figure illustrates that both parameter estimates of the equilibrium model and estimates
of the effects of press interventions are unbiased when using the appropriate SEM model fit to equilibrium data.

8Intercepts are drawn from a multivariate Gaussian with mean zero and
the identity matrix as the covariance matrix.
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Ergodicity as a measurement problem

In the previous section we showed that ECMs can be
estimated from cross-sectional measurements of a
dynamical system, as long as those measurements cap-
ture the equilibrium position of each process. In SEM
terminology, we can think about this as proposing a
particular type of measurement model, which we
depict in panels (a) and (b) of Figure 5. We imagine
that there is some latent process Xt which evolves
over time within an individual, and that when we take
measurements of this process at a certain point in
time Y t; we capture the long-run tendency or mean
of this process. Formally, we have that

Y it ¼ li, (12)

where i indexes the person. We can think about this as a
reflective measurement model where the measurements
are akin to a weighted sum (i.e., average) of some previous
values of the latent process stretching back in time.

This is a somewhat different way of conceptualizing
single-time-point measurements of a dynamical
system than is typically found in the psychological
methods literature, which typically assumes that cross-
sectional measurements of a dynamical system consist
of snapshots, that is, direct measurements of the posi-
tion or value of the process at the time of the meas-
urement (Xt), as depicted in Figure 5(b). This model
of psychological measurement is present in almost all
discussions of the ergodicity problem (Hamaker, 2012;
Molenaar, 2004) in psychology.9 Essentially, the litera-
ture on the ergodicity problem shows that, when there

are inter-individual differences in the underlying
dynamic process (such as individual differences in the
intercepts or ci parameters in our data-generating
model from Equation (7)), then the means and (co-)
variances of snapshot measurements collected cross-
sectionally will differ from the means and
(co-)variances of data collected repeatedly over time
and from the means and (co-)variances of the equilib-
rium positions between individuals. In other words, if
measurements represent snapshots, then—even for the
basic dynamical system considered in the current
paper—cross-sectional statistical dependencies will not
be equivalent to either the equilibrium dependencies
or the moment-to-moment dependencies between
processes in the dynamical systems model, with the
latter shown and discussed in depth by, amongst
others, Hamaker (2012, 2022); Molenaar (2004) and
Schuurman (2023).

Clearly, this challenging feature of studying proc-
esses with individual differences is relevant for the esti-
mation of ECMs, since it implies that the ECM cannot
directly be estimated from snapshot data using the sim-
ple multivariate SEM defined in the previous section.
The basic intuition for this is that, when the data rep-
resent equilibrium positions, then variation in the
observed variables represents the variation across indi-
viduals in their equilibrium positions, represented by
Rl: This variation can, in turn, be attributed to the
fixed parameter values in Equation (10) and the vari-
ance between individuals in the time-constant forces
acting on the system, Rc: However, when observations
are snapshots, then additional variation in these data
come from the variance around the equilibrium posi-
tions at a certain point in time. Formally, we have that

Y it|{z}
Observation

¼ li|{z}
Trait = Equilibrium

þ sit|{z}
State

, (13)

which states that snapshot measurements at a particu-
lar point in time (Y it) can be considered as a sum of

Figure 5. Left: Shows the equilibriummeasurement as capturing the expected value or resting state of the process X at a single point in
time t. Right: Shows the snapshot measurement as capturing the value or position of a process X at a single point in time t.

9An ergodic process is one for which the structure of variation captured
between individuals at a single time point (also referred to as
interindividual variation) is equivalent or equal to the structure of
variation which would be captured over time within a single individual
(also referred to as intraindividual variation) (Molenaar, 2004). The
ergodicity problem can be broadly understood as the problem of making
inferences about non-ergodic processes from single-time-point
observations across individuals. The dynamic process under consideration
in the current manuscript, defined in Equation (7), is nonergodic.
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the person-specific equilibrium (li) and a person’s
deviation from their equilibrium (sit). Hamaker and
Wichers (2017) refer to the li term as a trait, repre-
senting the stable mean values of the processes X for
a given individual and so equivalent to the equilib-
rium in a linear dynamical system, while referring to
sit as the state value. This expression makes it explicit
that the variance in our data in the snapshot scenario
comes both from the variance between individuals Rl

and the variance within individuals around their equi-
librium, that is, the variance of the state Rs: Critically,
failing to separate these two sources of variance means
that we cannot use snapshot data to estimate the equi-
librium parameters: Estimating a SEM model from the
covariance matrix of the snapshot data RY instead of
the covariance matrix of the equilibria Rl will not
recover the ECM.

While this shows that using snapshot data to esti-
mate equilibrium parameters is problematic in theory,
the extent to which the estimates are biased in practice
depends on the variance-covariance matrix of the
states. To assess this, we conduct a small simulation
study. Specifically, we simulate n ¼ 2000 observations

from our example ECM while varying the state varian-
ces (assumed equal for all states, r2s ¼ diagðRsÞ; and,
consistent with the data-generating model defined in
Equation 7, equal for all individuals). In particular, set-
ting the covariance matrix of the equilibrium positions
to be diagonal with variances 1, we vary the proportion
of the total variance that is attributable to the state
variance—denoted r2s=ð1þ r2s Þ—from 0 to 0.50 in
increments of 0.10. A value of 0 indicates that we
observe the equilibrium positions directly, while a value
of 0.50 indicates that half of the total variance is due to
the state variance. In essence, all conditions except the
0 value represent different versions of a “snapshot”
measurement, with only the amount of variance attrib-
utable to the state varied.

Figure 6 shows the results of the simulation study
for the press intervention effect of forcing X1 ¼ 1 on
X2 (top left) and X3 (top right), and of X4 ¼ 1 on X2

(bottom left) and X3 (bottom right). Focusing on the
case in which the states are uncorrelated, that is, Rs is
a diagonal matrix (indicated by q12 ¼ 0 in the figure),
we find that the causal effect estimates are attenuated,
that is, pulled toward zero with increasingly large state

Figure 6. Estimates of the effect of the intervention pressðX1 ¼ 1Þ on X2 (top left) and X3 (top right), and pressðX4 ¼ 1Þ on X2
(bottom left) and X3 (bottom right) across different state variances (given as a proportion of the total variance) and residual corre-
lations between X1 and X2: As the state variances increase, the causal effects generally become attenuated. For negative residual
correlation between X1 and X2 (green), the attenuation is stronger, while it is weaker for a positive one (purple). Dashed gray lines
indicate the true causal effect.
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variance. The situation becomes more complicated
when we allow for unobserved common causes between
the deviations of the equilibrium positions, which
results in correlations between them. We simulate
two such scenarios: One in which the correlation
between X1 and X2 is q12 ¼ 0:25 (purple) and one in
which it is q12 ¼ −0:25 (green). Naturally, this has
the strongest effect on the estimate of the causal
effect of X1 on X2: A positive correlation increases
the causal effect, which works against the attenuation
effect from the increasing state variance. A negative
correlation on the other hand decreases the causal
effect. The effect is similar, but much less pro-
nounced, for the other causal effects.

States and traits in psychological measurement

The simulation study above showed that we obtain
biased estimates of the ECM parameters if we use
snapshot measurements, capturing the current value
of the process at a single point in time, rather than
equilibrium measurements, capturing the long-run
average of the process. As such, if ECMs are to be of
potential use for psychological research, the crucial
question is: To what degree should psychological
measurements be considered to capture snapshots,
equilibrium positions, or something in-between? To
gain insight into this question, we can make use of
the extensive literature on psychological measurement,
in particular the literature on latent state-trait (LST)
modeling (Hertzog & Nesselroade, 1987; Steyer et al.,
1989, 1999, 2015).

In the psychological measurement literature, a
distinction is often made between measurement
instruments which aim to capture trait aspects of a
psychological process versus those which aim to capture
state aspect of that process. Typically, a psychological
trait is in this context defined as a stable-over-time or
long run characteristic of the process, while a state is
considered to vary over time. For example state anx-
iety could be conceptualized as the degree of anxiety
that an individual is feeling at a given moment in
time in reaction to a stressful event, while trait anxiety
would be the tendency to experience anxiety in reac-
tion to stressful events (Speilberger et al., 1983). In
LST research, traits are often specifically defined as
long-run mean values of psychological processes, with
the trait component of a measurement tool identified
by taking the mean of repeatedly administered meas-
urements over time (Steyer et al., 1989). As such, in
the context of the dynamical systems model we study
in the current paper, the trait aspect of our process X

can be considered to be equivalent to the equilibrium
of that process, l:

When we consider the types of questions typically
used in cross-sectional psychological research, we can
see that researchers often aim to capture long-run
summaries rather than snapshots of the target process.
For example, experience sampling studies which aim
to study anxiety (Bringmann et al., 2016; Rowland &
Wenzel, 2020) typically ask participants the degree to
which they currently feel anxious multiple times a
day, that is, at the moment they receive the measure-
ment prompt. In that situation, it is clear that the
researchers aim to capture snapshot measurements of
some time-varying psychological process. In contrast,
a cross-sectional measurement instrument such as the
trait part of the State-Trait Anxiety Inventory
(Speilberger et al., 1983) asks participants about how
anxious they generally feel, as distinct from how they
feel at that moment in time. Similar comparisons can
be made with depressed mood, where experience sam-
pling studies typically query depressed mood levels at
the moment of measurement (Bringmann et al., 2016;
Rowland & Wenzel, 2020); cross-sectional studies
based on the Beck Depression Index or DSM-criteria
ask participants to assess their depressed mood over
the past week, two weeks, or the past 30 days (Alegria
et al., 2007; Beck et al., 1987; Fried et al., 2016;
Kendler et al., 2018); while still other cross-sectional
studies assess stable levels of depressed mood using
measures designed to assess trait positive and negative
affect (Clark & Watson, 1991; Watson et al., 1994).
This already gives some indication that the (perhaps
implicit) measurement model being used by empirical
researchers in cross-sectional settings may be closer to
that of equilibrium measurements than that of snap-
shot measurements.

Of course, prior research has also shown that peo-
ple’s responses to such measurements can be influ-
enced by contextual effects, such as one’s current state
(Augustine & Larsen, 2012; Barrett, 1997; Bower,
1981; Brose et al., 2013; Leertouwer et al., 2021),
which means that, even if we attempt to measure the
equilibrium or trait, we are likely not able to do so
perfectly. For example, measurements of general life
satisfaction appear to be influenced by the mood of
the participant, and potentially even the weather on
the day of measurement (Schwarz & Clore, 1983).
However, as we saw in the simulation study above,
the degree to which this is a problem in practice
depends on the degree to which measurements deviate
from the equilibrium values.

MULTIVARIATE BEHAVIORAL RESEARCH 1129



From the LST literature, we know that designing
an item to ask about long-term general tendencies
does appear to have positive effect on our ability to
capture stable features of the process of interest.
Braun et al. (2021) showed that, when items were
phrased to explicitly probe general trait-like levels of
self-esteem and depressive symptoms, around 70% of
the variance in these items could be attributed to trait
variability (67:5 − 68:5% for depression, 71 − 72:6%
for self-esteem), in contrast to state-like measure-
ments, for which 50 − 60% of the variance was due to
traits. In a similar vein, Eid and Diener (2004) showed
that items which queried participants general affect
intensity showed a higher proportion of trait variance
(60 − 83%) than items which queried affect frequency
over a shorter time frame (46 − 83%) or current
mood levels (33 − 47%).

These studies show that careful design of items
could realistically yield measurements in which
upwards of 70 to 80% of the variability is due to true
variation in stable between-person differences. Based
on this, we can say that trait-like measurement instru-
ments could be conceptualized as something in-
between an equilibrium measurement and a snapshot
measurement, with many instruments tools skewing
closer to the former than the latter. Furthermore, a
number of studies have aimed to characterize the
amount of trait variance in different psychological
measurement tools. For example, Eid and Diener
(2004) showed that, in their sample of undergraduate
students, the satisfaction with life scale (SWLS; Diener
et al., 1985) exhibited 74 − 80% trait variance; the
Rosenberg Self-Esteem Scale (Rosenberg, 1965) 93 −
96%; the Life Orientation Scale (LOT; Scheier &
Carver, 1985) 75 − 85%; and the Eysenck Personality
Inventory (EPI; Eysenck, 1968) neurotisicm and extra-
version scales 90 − 92% and 88 − 93% trait variances,
respectively.

Equilibrium models from non-equilibrium cross-
sectional data

Having prior knowledge about the degree of trait vari-
ance in a measurement instrument already allows us
to get a clearer idea of the amount of bias that we
might expect when fitting a statistical model which
assumes a perfect equilibrium measurement model.
For instance, for our example system, if 70 to 80% of
the variance in our measurements is attributable to
variance in the equilibrium positions, and so, corres-
pondingly, 20 to 30% attributable to variance in the
state, then, consulting Figure 6, we would expect only

a small amount of bias to be present. In principle,
however, if prior research has established how much
trait variability we can expect in an instrument, then
we can use this information to relax the measurement
assumption stated earlier in the current paper. That is,
we can use this information to, in principle, estimate
the ECM from non-equilibrium measurements.

We can see how such a correction would work by
returning to our running example. Suppose that we
measure variables X1 through X4 with a questionnaire
designed to capture the long-run value of the process,
and that we only take measurements at a single
moment in time. Further suppose that previous
research is available which shows that 70% of the vari-
ance in these items is due to the trait, that is, equilib-
rium variability across people, and we wish to
estimate the equilibrium dependencies between these
variables. In order to do this, we first need to expand
our SEM model, defined in Equation (10), with a
measurement component which relates the observed
variables Y to their equilibria l; now considered
latent variables. We write

Y i ¼ li þ xi, (14)

where xi is (a vector of) deviations from the equilib-
rium value for each individual. In SEM terms, we
have a typical measurement model consisting of a
latent variable l; an observed variable Y; and what
would usually be referred to as a measurement error
term x: Note that we make no distinction between
variance due to errors in the measurement (for
instance, mistakes in filling out the survey) and vari-
ance due to the state values, referred to sit in
Equation (13) (Steyer and colleagues note that LST
studies often decompose measurement instruments
into trait, state, and measurement error variances,
see Steyer et al. 1989).

We assume without loss of generality that the var-
iances of the observed variables Y are equal to one.
To be able to estimate this model from data, we use
our prior knowledge about the measurement instru-
ment and fix the measurement error variances r2x to
0.30, and assume that the measurement errors are
uncorrelated with each other. We further constrain
the latent variable variances to 0.70 (see Appendix C.1
for how this can be done in standard SEM software).
With these constraints in place, the model is statistic-
ally identified, and the ECM parameters can be esti-
mated in much the same way as above.

To illustrate this, we conduct a small simulation
study. Specifically, we simulate n ¼ 2000 observations
whose variance are 70% due to the trait and 30% due
to the state, which in the model is now considered as

1130 O. RYAN AND F. DABLANDER



error variance. We estimate the ECM by specifying
the modeled trait variance to be between 50% and
90%. The left panel in Figure 7 shows the values of
the estimated parameters while the right panel shows
the estimates of selected causal effects. If we fix the
trait variance in the model to be equal to the true trait
variance in the measurements (0.70), we obtain
unbiased estimates, as indicated by the vertical lines
in Figure 7. As we would expect, we not only obtain
unbiased estimates of the ECM parameters (left
panel), but also of the causal effects (right panel). In
other words, if we have sufficient knowledge about
the measurement instrument employed, we can
incorporate this information into our SEM model,
thereby correcting for the unwanted variance compo-
nent and recovering the equilibrium model parameters
and causal effects.

In practice, of course, researchers may be uncertain
about the degree of trait variation in their measure-
ments. As Figure 7 shows, when we under-specify the
true trait variance (e.g., by setting the modeled trait
proportion to 0.50), then the estimated parameters
and causal effects are inflated (larger in absolute
value). This is because, if we assume that the measure-
ment error is smaller than it really is, then the param-
eter estimates have to account for the larger
remaining (co)variance. Correspondingly, over-specify-
ing the true trait variance means that the estimates
are shrunk toward zero because more of the (co)vari-
ance is attributed to measurement error and the par-
ameter estimates thus do not have to be as large. In
Appendix C.2 we show that additional bias may result
when the measurement errors are correlated but we
fail to specify this in the measurement model.

This simulation shows that when snapshot meas-
urements of a process are available, researchers can
still potentially estimate the ECM from data if they
have sufficient prior knowledge about the degree of
state vs trait variance present in a measurement
instrument. When this is available, a measurement
model can be specified implementing these values as
fixed parameters, and the ECM model can again in
principle by estimated using standard SEM methods.
In this example, we can see that the degree of bias
introduced through misspecifying the modeled trait
variance is not too large. Of course, the larger the lit-
erature we can rely on, the more confident we can be
in specifying the trait variance. In practice, if research-
ers wish to apply this approach, they should identify a
range of plausible values for the trait variance percent-
age, and vary the fixed model variance as a sensitivity
analysis to check the robustness of their conclusions
to this type of model misspecification. In principle,
this approach could be extended to include modeling
of measurement error variance in addition to state and
trait variance if researchers have access to multiple
indicators of their latent variables of interest (Bollen,
1989; Hertzog & Nesselroade, 1987; Steyer et al.,
2015).

Equilibrium causal models in practice

So far, we have focused on introducing the basic ideas
behind Equilibrium Causal Models and showed that
statistical modeling tools already familiar to psycho-
logical researchers can—in certain idealized situa-
tions—be applied to cross-sectional data to yield a

Figure 7. Mean (solid lines) and standard deviation (shaded areas) of parameter estimates (left) and causal effect estimates (right)
with n ¼ 2000 observations as a function of the modeled trait variance, assuming a true trait variance of 0.70 (indicated by the
vertical black line). True values are shown as dashed grey lines.
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model that is informative about the long-term effects
of interventions in linear dynamical systems.

One implication of our analysis above is that, when
studying the type of linear system considered here, an
ECM will contain cycles whenever there are feedback rela-
tionships in the underlying dynamical system. In our
example, there exists a feedback relationship between the
variables X2 and X3; and in the dynamical systems repre-
sentation, this cyclic relationship can be unrolled in time,
resulting in a representation that is acyclic: X2 has a causal
effect on X3 at time point t, while X3 has a causal effect on
X2 at time point t þ 1: In the corresponding ECM there
is no notion of time ordering any more, since the model
describes causal relations between equilibrium positions.
However, the feedback relationship between X2 and X3

carries over, resulting in a cycle. Thus, despite the fact that
ECM is a model for cross-sectional data, we have an intui-
tive interpretation of cycles in this model: Cycles exist
whenever the underlying dynamical system has feedback
relationships. In the context of psychological research, we
may expect the dynamics underlying psychological proc-
esses to consist of many such feedback loops, and so it is
an advantage of ECMs that they provide a clear connec-
tion between cross-sectional statistical dependencies and
feedback relations in dynamical systems.

While in the previous section we outlined the con-
siderations that researchers must make in regards to the
nature of psychological measurements, there remain a
number of other challenges that are likely to arise if
researchers wish to use ECMs in empirical practice.
These challenges relate to practical difficulties of esti-
mating cyclic SEM models, the problem of unobserved
confounding, and the issue of learning unknown causal
structures from empirical data. After outlining these
challenges, we discuss how the modern causal discovery
literature may help address them.

Challenges in estimating ECMs

While ECMs are a promising tool to bridge dynamical
systems thinking and cross-sectional data analysis,
there are at least four key challenges with applying
them in practice. First, since we expect that psycho-
logical processes are typically characterized by a num-
ber of feedback relationships, we expect ECMs of
psychological processes to include cyclic relationships.
Unfortunately however, cyclic relationships are typic-
ally more challenging to estimate from data. The vast
majority of both SEM and causal modeling applica-
tions are typically limited to considering only acyclic
causal relations (DAGs; Pearl, 2009; Ryan et al., 2022).
In the language of SEMs, most models are recursive

(i.e., acyclic) rather than nonrecursive (i.e., cyclic). The
reason for considering only acyclic causal models is
partly because of practical concerns, since they gener-
ally have more convenient properties than cyclic
causal models (for details, see Lauritzen et al., 1990;
Bongers et al., 2021; Spirtes et al., 1995). In the SEM
literature, it is well known that a necessary condition
for estimating U relates to the invertibility of the
matrix matrix I −U with ðI −UÞ−1 appearing in the
expression for the model-implied covariance matrix of
a SEM. If U is triangular, as is the case for acyclic
models, then this condition is always met, regardless
of the parameter values. This is not the case for cyclic
models, where a necessary condition for this to hold
relates to the values of eigenvalues of U; for instance,
this will hold if the eigenvalues are smaller than one
in absolute value, jkj < 1:10 Recall that this is in fact
the same condition we needed for our linear dynam-
ical system to be stable. Usually, this means that we
require that the feedback relations in the dynamical
system are not too strong such that, when iterating
the system (Xtþ1 ¼ UXt þ �), it reaches equilibrium
(Rothenh€ausler et al., 2015). From a structural stand-
point, cyclic models may be statistically identified in,
for instance, the presence of sufficient instrumental
variables; variables that are direct causes of only one
variable in the model, as in our running example the
variables X1 and X4:

Second, even if the true parameters U meet this
condition, the model itself may not be statistically
identified. A model is not identified when there are (at
least) two distinct sets of parameter values that, given
the same data, give rise to the same likelihood. It is
known that, if we estimate only directed relationships
in the structural model, that is, regressing observed
variables directly on one another without any meas-
urement model, then every acyclic model is identified.
However, not all cyclic models are identified, with the
rank condition providing a necessary and sufficient
condition for a model to be identified (for details, see
Bollen, 1989, pp. 98–103). So far, we have considered
an example system which is relatively sparse: There is
a feedback relationship between X2 and X3; but X1

and X4 only act as unique causes of X2 and X3;

respectively. This model is statistically identified, but

10Strictly speaking, the condition is that the eigenvalues of DUD−1 are
smaller than 1 in absolute value, where D is a diagonal invertible
“stabilization” matrix (for details, see Bongers et al., 2022, Corollary 4.22).
The freedom to choose D significantly enlarges the class of stable linear
dynamical systems that equilibrate to the ECM. Equation (8) in Corollary
4.23 of Bongers et al. (2022) provides a condition on U for when a
suitable “stabilization” matrix D can be found. We thank an anonymous
reviewer for this clarification.
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if we were to add more relationships, such as add-
itional feedback loops X1! X3; X2! X4; and X1! X4;

this would no longer be the case. The practical implica-
tion of this is that, even if we know the structure of
the ECM and have observed all relevant variables, we
may in some cases not be able to estimate it from data
using standard approaches.

Third, unobserved confounding can obscure the
estimation of causal effects. For example, we may find
a statistical dependency between X1 and X2; yet this
dependency may be explained by the common cause
X3; which we failed to include in our model
(Dablander & van Bork, 2021; Pearl, 2009; Peters
et al., 2017; Rohrer, 2018). Unobserved confounding
is the bane of causal inference from observational data
and likely the de facto situation in psychology and the
social sciences more broadly. Thus, researchers who
wish to interpret the SEM models they fit to empirical
data as ECMs, that is, interpret estimated statistical
relationships as causal effects, should be very cautious.

Fourth, while we have so far assumed that we
know the structure of the ECM, that is, we know (or
have strong theoretical expectations about) the causal
relations between variables, this is generally not the
case in practice. For example, we used knowledge of
the ECM structure previously by specifying the spe-
cific directed relationships which should be estimated.
In the causal modeling literature, this is sometimes
referred to as causal inference: Using knowledge about
the causal system at hand in order to estimate the
causal effects of interest (Peters et al., 2017). The the-
oretical understanding of psychological phenomena
may in many situations be too weak to confidently
assert which variables cause (or do not cause) which
other variables. In the majority of cases, the key diffi-
culty is in correctly specifying the structure of the
causal model, rather than just estimating the causal
effects given a particular structure. This is known as
causal discovery in the literature (Peters et al., 2017).

To illustrate the challenges of estimating ECMs from
cross-sectional data in practice, Appendix D provides an
empirical application of an ECM estimation approach.
Recall that in the simulated examples above we have
shown that an ECM estimated from equilibrium data
yields the same inferences about (equilibrium) causal
relations and interventions as would be obtained if the
true data-generating dynamic system parameters were
known. One may be tempted to infer from this that,
given a time-series dataset, one would expect to obtain
the same inferences about causal relations by fitting an
appropriate VAR(1) model to data and deriving the
implied equilibrium relations or by simply fitting the

appropriate equilibrium model to the person-means of
the time-series. As we have discussed above, and as we
show in the empirical example, this will not generally be
the case. Model identifiability, unobserved confounding,
model misspecification, and measurement issues can all
cause inconsistencies between models fit to equilibrium
and time-series data, respectively.

In sum, while ECMs provide us with an under-
standing of how, hypothetically, cross-sectional data
could yield insights into (cyclic) dynamic causal rela-
tions, estimating ECMs from data using SEM-based
confirmatory modeling approaches familiar to social
science researchers faces considerable challenges.
However, as we will outline in the next section, some
of these difficulties may be directly addressed by using
practical tools and approaches developed in the mod-
ern causal discovery literature. As we will see, by
using different research designs, and by leveraging
information from different sources, these tools can in
principle allow us to overcome these challenges, ena-
bling us to learn cyclic ECMs from data.

Cyclic causal discovery

As outlined above, in practice we generally do not
know the structure of the ECM, that is, which variables
have direct causal effects on which other variables.
When the structure of the ECM is unknown, the infer-
ence problem changes from estimating known (or at
least hypothesized) causal relations to discovering the
causal model itself (Peters et al., 2017; Spirtes et al.,
2000). The field of causal discovery is an active area of
research that has made great progress in developing
tools to help researchers learn the structure of causal
relations between variables from data (for recent over-
views, see e.g., Eberhardt, 2017; Heinze-Deml et al.,
2018; Zhang et al., 2017). As we have outlined in the
introduction of this paper, in many psychological con-
texts researchers are specifically interested in studying
systems which are characterized by reciprocal feedback
relations (Borsboom, 2017; Borsboom & Cramer, 2013;
Haslbeck et al., 2022), which specifically necessitates the
use of cyclic causal discovery methods.

There are many challenges associated with learning
causal relations from data (for a list, see e.g., Spirtes &
Zhang, 2018). One fundamental problem of causal dis-
covery lies in the fact that many causal models are
compatible with the same set of data (MacCallum
et al., 1993; Raykov & Marcoulides, 2001; Verma &
Pearl, 1990). In SEM terms, we would say that there
are many models which are statistically equivalent
(Bollen, 1989; Ryan et al., 2022). For example,
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suppose you observe a correlation between variables
X and Y. Even if we are willing to make the simplify-
ing assumption that there are no unobserved (latent)
confounding variables, the causal models compatible
with this observation are X ! Y; X  Y; and X�Y:
Using our running p ¼ 4 variable example, the top
row in Figure 8 further illustrates this equivalence
problem. The rightmost panel shows that there are
two causal graphs that are consistent with the empir-
ical data gathered from observing the true causal sys-
tem on the left. In other words, observing only these
data cannot allow us to rule out any of the estimated
graphs—all of them exhibit the same set of condi-
tional independencies found in the data.

That the causal graph often cannot be uniquely
identified from data is a challenge for all causal dis-
covery methods. So-called constraint-based causal dis-
covery methods, which aim to estimate causal graphs
from patterns of statistical (in)dependence in a single
observational dataset, typically output an equivalence
class of causal graphs consistent with the data at
hand.11 Although these can still be quite informative
for researchers, they may be challenging to interpret
in practice. For treatments of how constraint-based

cyclic causal discovery methods can be applied and
interpreted in psychological settings, we refer readers
to Park et al. (2023) and Kossakowski et al. (2021).

A major recent insight in the causal discovery lit-
erature is that using data from different contexts can
improve our ability to recover causal models (Mooij
et al., 2020; Peters et al., 2016). Although a context
can be broadly defined, the most straightforward
example is when we have a mix of data from observa-
tional settings and settings where some intervention is
applied to the system.12 This is illustrated in the bot-
tom row in Figure 8, where we now not only observe
the causal system in the context S ¼ 1; where no
intervention takes place, but also in the contexts S ¼ 2
and S ¼ 3; where interventions on X1 and fX3,X4g
occur, respectively. Using observations from these dif-
ferent contexts allows us to completely recover the
true causal graph, as shown in the rightmost panel.
The intuition behind this is that the set of graphs that
are interventionally equivalent (i.e., imply the same
statistical dependencies when we intervene on the sys-
tem) is generally much smaller than the set of graphs
that are observationally equivalent. Returning to our
two variable example involving only X and Y, if we
have data where X has been intervened on and Y

Figure 8. Top: True causal model (left) observed in one setting (S ¼ 1) giving rise to empirical observations (middle). Applying a
causal discovery method on only these data results in two causal models that both reproduce the statistical dependencies in the
data, that is, in an equivalence class of estimated causal models (right). Bottom: Same except that the causal model is observed in
three settings (S 2 f1, 2, 3g). Utilizing this additional information allows one to rule out statistically equivalent models and arrive
at the correct causal model (right).

11Currently existing cyclic causal discovery methods do not directly return a set
of equivalent graphs. Instead, they return a Partial Ancestral Graph which
encodes ancestral relations and from which one can derive the Markov
equivalent set of directed cyclic graphs, for example by brute force enumeration.

12Different contexts can also refer to observing the system at different
points in time (Rothenh€ausler et al., 2015, for an empirical example).
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changes as a result, we know that there must be a
path X ! Y; excluding all models where such a path
does not exist.

Using modern causal discovery methods that draw
on data from different contexts can potentially address
the challenges outlined above. Many of these methods
allow for the discovery of cyclic causal relations even
in the presence of unobserved confounding (for an
overview, see e.g., Mooij et al., 2020). Some of them
also identify the causal structure exactly, rather than
an equivalence class, as well as returning causal effects
estimates. The Backshift (Rothenh€ausler et al., 2015)
method seems particularly promising as it fulfills all
these requirements. Backshift assumes that shift inter-
ventions are applied in the different contexts, but the
intervention targets themselves need not be known,
which is important for psychological research where
interventions are likely to often be “fat-hand” in
nature, that is, targeting multiple variables at once
(Eronen, 2020). Backshift further assumes linear rela-
tionships similar to the example system which we
have used throughout the current paper. Note that
since we assume that the causal structure is the same
across the different settings, the data need not be col-
lected from the same set of individuals. However, if
the individuals come from different populations for
which the underlying causal structure is in fact differ-
ent, Backshift’s performance will be negatively
impacted.

The main disadvantages of Backshift are a) that it
is limited to considering shift interventions, and b)
that it requires at least three different settings, where
one setting can be entirely observational. The first
assumption can potentially be relaxed by switching to
conceptually similar multiple-context causal discovery
methods which can handle a larger variety of inter-
ventions, such as JCI-FCI (Mooij et al., 2020).
However, as many psychological interventions are
likely to be “soft” in nature, meaning that the value of
the variable is not completely determined by the inter-
vention, as in a shift intervention (Campbell, 2007;
Eronen, 2020), we consider this to be a potentially
acceptable tradeoff for the Backshift method in the
context of psychological research, especially as it han-
dles linear systems and outputs interpretable weighted
causal graphs, unlike more general but related meth-
ods. The second disadvantage of the Backshift method,
that data be drawn from multiple (intervention-based)
settings, is more fundamental, and shared across all
such so-called invariance-based methods. We provide a
small simulation study in Appendix E that assesses the
performance of Backshift for our example system. Our

results show that the number of settings or contexts
available to researchers is more important than the
sample size per setting. This implies that researchers
who are interested in estimating ECMs, should try to
maximize the settings in which the system is observed
rather than the sample size per se. This would consti-
tute a shift in how data is currently collected in psych-
ology, away from a focus on simply collecting more
data in an absolute sense, and toward a focus of
observing the system in different contexts. In Appendix
F we provide an empirical example (Blanken et al.
using data from 2019), of how the Backshift method
can be applied, and what the output of this method is,
when data from multiple contexts is available.

Discussion

In this paper, we introduced the concept of
Equilibrium Causal Models to the psychological litera-
ture. While Equilibrium Causal Models have been
studied before (Bongers et al., 2022; Dash, 2005;
Iwasaki & Simon, 1994; Spirtes, 1995; Strotz & Wold,
1960; Weinberger, 2020, 2021)—forming the target of
inference in many cyclic causal discovery methods
(Bongers et al., 2021; Lacerda et al., 2012; Mooij et al.,
2013; 2020; Mooij & Claassen, 2020; Richardson,
1996; Rothenh€ausler et al., 2015)—they are virtually
unknown in psychology. Using the example of a linear
dynamical system, we showed that ECMs provide a
missing link that connects cross-sectional data analysis
with dynamical systems modeling. We demonstrated
that ECMs (a) can yield insights into the long-term
effects of different interventions and (b) can, under
certain conditions, be estimated from cross-sectional
data. Focusing on linear systems, we showed how
ECMs can be estimated using standard SEM software
when the structure of causal relations is known. In
case this structure is not known, as is generally the
case in practice, we also showed how ECMs can be
estimated using modern causal discovery techniques.

Our analysis of ECMs made three key simplifying
assumptions. First, we limited our analysis to the case
of linear dynamical systems that are stable in both the
observational and intervention setting. Linearity
implies (assuming that all eigenvalues are nonzero)
that the system has a single global equilibrium. This
rules out the possibility of multiple equilibria, includ-
ing the fact that a small intervention can have a large
effect on the dynamics of the system (Dablander
et al., 2023; van der Maas et al., 2020). ECMs and
causal discovery methods for more general (nonlinear)
systems—including systems whose equilibrium
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depends on the initial condition—are an active area of
research (Bongers et al., 2022; Mooij et al., 2013).
Second, we assumed that individuals exhibit only lim-
ited heterogeneity, expressed in our model as differing
with respect to the intercepts but not the lagged rela-
tionships. In psychological settings, this assumption
may be overly strict, and further research is needed to
investigate to what extent this assumption can be
relaxed. Third, we assumed that psychological meas-
urements either yield equilibrium positions directly,
or that sufficient knowledge about the properties of
measurement instruments was available. We showed
that this knowledge could potentially be gleaned from
the psychological measurement literature on latent-
state-trait variance decompositions, and demonstrated
how this can be used to correct for deviations from
the equilibrium using standard SEM software. In prac-
tice, however, this information may not be available
for all measurement instruments and may also differ
for different populations. Furthermore, if measure-
ment instruments yield correlated errors, then know-
ledge of these correlations may be required to fully
correct for imperfect equilibrium measurements. This
highlights the need to build on the existing literature
with detailed and thorough studies on psychological
measurement.

The ECM perspective put forward in this paper has
a number of implications for empirical researchers.
First, ECMs connect cross-sectional data analysis to
dynamical systems modeling, providing a new per-
spective on the ergodicity debate in psychological
research. Specifically, if the assumptions outlined
above hold, then between-person data can be inform-
ative about causal relations present in within-person
processes. Importantly, ECMs can include cyclic
causal relations and—at least for the linear case dis-
cussed here—give them a straightforward interpret-
ation: A cyclic relationship exists in the ECM if there
is a feedback relationship in the underlying dynamical
system. Of course, for more complicated dynamical
systems, the mapping between equilibrium and
dynamic causal dependencies may be less straightfor-
ward (Blom et al., 2020; Dash, 2005; Dash &
Druzdzel, 2001; Weinberger, 2023). However, pursu-
ing equilibrium causal dependencies may be a fruitful
avenue for research, both for its own end and as a
way of constraining the space of possible dynamical
models which may underlie those equilibrium
relationships.

Second, researchers interested in estimating ECMs
can connect to a large array of tools developed in the
field of causal discovery. While there are important

statistical and conceptual challenges to causal discov-
ery (see e.g., Eronen, 2020; Spirtes & Zhang, 2018),
we have seen that utilizing observations from multiple
contexts can substantially improve performance
(Mooij et al., 2020). This draws from the fact that
causal relations are relations that should be invariant
across settings (B€uhlmann, 2020), suggesting a poten-
tial shift in the way psychological data is collected.
Specifically, rather than solely focusing on increasing
sample size, researchers may wish to increase the
number of settings in which the psychological system
is observed. Several causal discovery methods, includ-
ing the one we have focused on in this paper, do not
require precise knowledge of which variables were
intervened on, nor do they assume that all causally
relevant variables have been observed. These consti-
tute important advances that psychological researchers
can benefit from in practice. For causal discovery
methods to become more widely applied in psych-
ology, however, more extensive research must be
directed into several issues. Initially, we may need to
develop or adapt existing methods to deal with the
presence of measurement error (Blom et al., 2018;
Saeed et al., 2020; Zhang et al., 2017). Following the
development of fit-for-purpose methods, we need
studies investigating how well these methods work for
settings common to psychology, varying effect sizes,
the density of the causal graph, the number of nodes,
the sample size, the extent and type of measurement
error, and the type and target of interventions in a
more systematic manner. Once certain methods have
shown promise in simulation, they can be applied to
empirical data. The results of these analyses can then
be probed for sensibility—do certain causal relations
make sense given the existing literature? Would
experts on particular systems agree with the estimated
relationships? If the face validity of the results has
been sufficiently established, these methods can be
used to make predictions about the outcome of par-
ticular interventions, resulting in the strongest test of
their usefulness. Some initial promising work has
been done on cyclic causal models in psychology
(Kossakowski et al., 2019; 2021), but we believe that
there are many more research avenues and opportuni-
ties for the psychological research community to
pursue.

Throughout this paper we have assumed that psy-
chological systems can be fruitfully described using the
language of dynamical systems theory and causal mod-
eling. However, some concepts in dynamical systems
theory and causal modeling may not map onto psycho-
logical systems in an obvious way. Although the
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equilibrium of a system of differential equations can be
clearly defined, the notion of a resting state for a psy-
chological process is less clear. For example, one’s
stress might remain constant within a week, but may
be changing when viewed on a monthly timescale, and
so the notion of an equilibrium and long-term versus
short-term effects are inherently tied up with the time-
scale under consideration. We defined causal effects on
an abstract level using the concepts of press, pulse, and
shift interventions, but these may not map neatly onto
real-world interventions. We should remember to view
all models, including the ECMs we describe in the cur-
rent paper, as simplifications and abstractions of real
world systems. Ultimately, their practical utility must
be assessed by testing whether the causal predictions
they yield are accurate.

Conclusion

Equilibrium Causal Models can yield insights into the
long-term effects of different interventions and can, under
certain conditions, be estimated from cross-sectional
data. They help us understand how cross-sectional data
can be used to learn about within-person processes.
Causal discovery methods can be used to estimate these
models, but they require observations from the system
under different settings. This would represent a shift in
psychological data collection. There is ample room for
future research—both conceptual and empirical—to
help establish Equilibrium Causal Models as a valuable
tool in the psychologist’s toolbox.
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Appendix A: Interventions in linear dynamical
systems

In this section, we formally define the interventions consid-
ered in the main text and the effects those interventions
have on different properties of the system. Recall that the
equilibrium positions are given by

l ¼ ðI −UÞ−1c, (15)

where U is the matrix of lagged effects in the underlying
dynamical system and c are the time-invariant intercepts.
Press and shift interventions modify Equation (15), reflect-
ing their long-term effects, while pulse interventions do not
cause long-lasting changes in the equilibrium positions. We
turn to them first.

A.1. Pulse interventions

Pulse interventions represent surgical interventions whereby
the target variable X at a certain point in time t ¼ s is
forced to obtain a particular value. In the causal modeling
literature this operation would be referred to as a do-inter-
vention at a single point in time (Pearl, 2009). Consider a

pulse intervention which acts by setting the variable Xj, s :¼
z at a particular point in time s: Let Zs represent a p� 1
vector with values Zi, s ¼ Xi, s and Zj, s ¼ z; again at a par-
ticular point in time s: The effect of the pulse intervention
on the values of other variables in the system at the next
time point can be expressed as

E Xsþ1½ � ¼ cþUZs: (16)

To compute the effect of the same pulse intervention at
a longer timescale t þ s we can simply take the appropriate
power of U; yielding

E Xsþs½ � ¼ cþ ðUÞsZs: (17)

As outlined in the main text, if the system is stationary,
then U has eigenvalues jkj < 1: This implies that as s!1;
we have that ðUÞs ! 0; meaning that the effect of the pulse
intervention eventually disappears from the system at a long
enough timescale. We can also see that the pulse interven-
tion does not alter the lagged relationships U; and that the
expression for the equilibrium position does not depend on
Xs: As such, we can say that the pulse intervention has no
long-term effect on the system.
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A.2. Press intervention

Press interventions represent surgical interventions in our
system whereby the target variable is made independent of its
causes and is forced to obtain a constant value over a window
of time. As such, press interventions have a natural interpret-
ation in terms of the do-operator, essentially being a do-
operation applied at every moment in time. Formally, a press
intervention replaces the causal effects on X with a constant
a. Consider a press intervention which acts on the variable Xk

such that Xk :¼ a: Let Pk be a p� p matrix with zeros on the
off-diagonals and the kth diagonal, and ones as the other diag-
onal elements. The equilibrium positions which are produced
as a result of the press intervention can be expressed as

l ¼ ðI − PkUÞ−1ðPkcþ akÞ, (18)

where ak is a p� 1 column vector with kth element a, the
value that the intervened-on variable is set to by interven-
tion, and the other elements of ak are zero. The term Pkc
represents setting the time-invariant incoming forces acting
on Xk; represented by the intercept, to zero and adding ak
enforces that the causal effect on Xk is the constant a.
Focusing on the left term, note that pre-multiplying the
parameter matrix U by Pk cuts all incoming ties to Xk by
setting the kth row of U to zero.

Press interventions can change the stability of the sys-
tem, potentially making a previously stable system unstable,
since the eigenvalues of U will typically not be equal to the
eigenvalues of the intervened system PkU: Hyttinen et al.
(2012) use the term ‘asymptotic stability’ to refer to systems
which are both stable in the observational setting and under
any press intervention.

A.3. Shift intervention

In contrast to press interventions, shift interventions represent
‘soft’ interventions in the system. Unlike with press interven-
tions, we do not cut off all incoming ties to the target vari-
able, and so we do not force the variable to obtain a specific
value. Instead, a shift intervention can be considered as an
intervention on the time-invariant causal forces acting on the
system—an intervention on the intercept terms directly. In
terms of the model equations, the shift intervention involves
adding a constant s to the intercept term c: Let s represent
the p-dimensional column vector of shift values: If we apply a
shift intervention to Xk; then s has the kth element equal to s
and all other elements zero. The equilibrium positions pro-
duced by a shift intervention can be expressed as

l ¼ I −Uð Þ−1ðcþ sÞ (19)

From this expression it is clear that the shift intervention
has no effect on the stability of the system, but does change
the equilibrium positions.

Appendix B: Canonical model form and model
equivalence

In this section, we study the relationships between the
underlying dynamical system and the corresponding
Equilibrium Causal Model, drawing heavily on the results
by Hyttinen et al. (2012), which we generalize to shift

interventions. Hyttinen et al. (2012) consider the discovery
of cyclic causal models from equilibrium data, assuming an
underlying dynamic process of the form

Xi, t ¼ ci þUXi, t−1, (20)

where c � Nð0,RcÞ represents a time-invariant perturbation
to the system, equivalent to the intercept terms in the
model given in the main text. This represents a special case
of the linear dynamical systems model discussed in the cur-
rent paper, where the innovation or time-varying perturba-
tions et are omitted, and where the average intercept value
lc is assumed equal to be zero, largely for the sake of nota-
tional simplicity. The former restriction ensures that at
some time point s sufficiently long after the initial time
point t ¼ 0 the process is at equilibrium, Xi, s ¼ Xi, sþ1 ¼
::: ¼ li; essentially meaning that at some time point the
equilibrium positions can be directly observed by sampling
the position of the system at time s or later. In the main
text, we allow for time-varying perturbations et but also
assume that it is possible to observe the equilibrium posi-
tions li directly or inferring it by taking the mean over a
suitable sequence of observations of Xi, t:

The models considered by Hyttinen et al. (2012) and in
the current paper yield the same expression for the equilib-
rium positions of the process

li ¼ ci þUli, (21)

which can be re-arranged as

li ¼ ðI −UÞ−1ci: (22)

This equivalence means that we can directly apply sev-
eral derivations made by Hyttinen et al. (2012) in the cur-
rent context, applying the additional assumption that we
can directly observe the equilibrium positions of our system.
The remainder of this appendix is structured as follows. In
Section B.1, we discuss how the fact that we cannot assess
the auto-regressive effect of a variable Xk from equilibrium
data changes the parameters we can estimate. In Section
B.2, we show that the equilibrium causal model and the
underlying dynamic system produce the same observational
data; in Section B.3, we show that they produce the same
observations under press interventions; and in Section B.4,
we show that they produce the same observations under
shift interventions.

B.1. Marginalization of self-cycles and the
canonical form

One of the key issues with studying equilibrium models of
dynamical systems is that, when the system contains self-
loops or auto-regressive effects (/ii 6¼ 0), these self-loops
cannot be recovered from equilibrium data. Hyttinen et al.
(2012) show that any such system which is stable can be re-
written into an equivalent equilibrium model in which the
self-loops are standardized or marginalized out. Hyttinen
et al. (2012) refers to this as the canonical form of the
model. Let U be a p� p matrix with zero off-diagonal ele-
ments and diagonal elements

Uii ¼ /ii

1 − /ii
: (23)
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The marginalized or canonical form direct effects ( ~U),
intercept covariance-matrix ( ~Rc ), and mean intercept vector
( ~lc ) can be expressed in terms of the original matrices as

~U ¼ U − UðI −UÞ (24)

~Rc ¼ Iþ Uð ÞRcðIþ UÞT (25)

~lc ¼ Iþ Uð Þlc, (26)

where ~U is a matrix with zero elements on the diagonal (no
self-cycles), but which otherwise retains the same structure
(non-zero off-diagonal elements) as U: The off-diagonal ele-
ments of ~U will differ in numeric value from the off-diagonal
elements in U; with every element /ij re-scaled by auto-
regressive effects of the effect variable /ii such that

~/ij ¼ /ij þ /ij
/ii

ð1 − /iiÞ

¼ /ijð1 − /iiÞ þ /ij/ii

ð1 − /iiÞ

¼ /ij

ð1 − /iiÞ
:

The parameters of ~U can be interpreted as cumulative
direct effects over a long timescale, in contrast to the lag-1
direct effects of the original matrix U: This interpretation
becomes clear if we consider how we would express such an
effect in a VAR setting. There, we could consider a cumula-
tive effect of Xi on Xj as the sum of the lag-1 direct effect
of /ij and longer lag indirects through the self-loop /ii: We
could express this as

/ij þ /ij/ii þ /ij/
2
ii þ :::

¼ /ij

X1
T¼0

/T
ii

 !

¼ /ij

ð1 − /iiÞ
:

where the last line simplification comes from the assump-
tion of asymptotic stability, and can be understood to be
valid whenever j/iij < 1; as we would expect in a stable sys-
tem. Notably, while ~U retains the same structure as U;
many informative properties of the system are lost. For
example, the rank order of the parameters in ~U may differ
from the rank order of cross-lagged effects in U (a property
of interest in a number of applications of lagged regression
models; Hamaker et al., 2015; Kuiper & Ryan, 2018). The
absence of auto-regressive parameters also means that in
principle we are unable to recover properties such as the
stability of individual variables, or the speed of return to
equilibrium of specific trajectories.

Equations (24) and (25) are derived directly by Hyttinen
et al. (2012), while Equation (26) follows as an implication
of the derivations shown in their Appendix E. We demon-
strate the validity of these expressions below. The matrices
~U; ~Rc ; and ~lc define a model for the equilibrium positions
of the dynamical system

li ¼ ~ci þ ~Uli, (27)

with ~ci � Nð ~lc , ~RcÞ: It turns out that, even though the
model matrix ~U does not contain any information

regarding the auto-regressive effects, the canonical model as
a whole is actually equivalent to the original dynamical sys-
tems model in two ways. First, it yields equivalent means and
covariances of equilibrium data in the observational setting
(as we will show in Section B.2), and second, it yields equiva-
lent predictions about the effects of press and shift interven-
tions on the equilibrium positions (as we will show in
Sections B.3 and B.4). Crucially, since the model does not
require the estimation of the auto-regressive effects, the
canonical model can be estimated using only equilibrium
position data and standard SEM techniques. The implication
of this is that, in principle, it is possible to learn a model
which allows inferences about equilibrium positions and the
causal effects of interventions on equilibrium positions using
only data about those equilibrium positions.

B.2. Observational equivalence

Here we show that the underlying dynamical system and
the equilibrium causal model in canonical form produce the
same equilibrium data in an observational setting. Let Ml

and Rl denote the mean vector and covariance matrix of
equilibrium data in the observational setting. Standard
expressions for Ml and Rl are known from the study of
structural equation models (Bollen, 1989).

Proposition 1. The observational means Ml are equiva-
lent under the original and the canonical model, that is, we
have that

I − ~Uð Þ−1ð ~lcÞ¼! I −Uð Þ−1ðlcÞ: (28)

Proof. Recall that ~U ¼ U − UðI −UÞ and ~lc ¼ ðIþ UÞlc:
We show that substituting the latter into Equation 28 and
pre-multiplying by ðI − ~UÞ results in the former, thereby
proving the proposition. We write

~lc ¼ I − ~Uð Þ I −Uð Þ−1ðlcÞ (29)

¼ I −Uþ UðI −UÞð Þ I −Uð Þ−1ðlcÞ (30)

¼ I −Uð Þ I −Uð Þ−1 þ UðI −UÞ I −Uð Þ−1
� �

ðlcÞ (31)

¼ Iþ Uð Þlc, (32)

which concludes the proof.

Proposition 2. The observational covariances are equiva-
lent under the original and the canonical model, that is, we
have that

I −Uð Þ−1Rc I −Uð Þ−T ¼! I − ~Uð Þ−1 ~Rc I − ~Uð Þ−T : (33)

Proof. From the derivation above and Equation (29) we
have that

I − ~Uð Þ I −Uð Þ−1 ¼ Iþ Uð Þ (34)

I −Uð Þ−1 ¼ I − ~Uð Þ−1 Iþ Uð Þ (35)

I −Uð Þ−T ¼ Iþ Uð ÞT I − ~Uð Þ−T : (36)
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Recall that ~Rc ¼ ðIþ UÞRcðIþ UÞT : Using this and the
above we write

I −Uð Þ−1Rc I −Uð Þ−T ¼ I − ~Uð Þ−1 Iþ Uð ÞðRcÞ Iþ Uð ÞT I − ~Uð Þ−T

(37)

¼ I − ~Uð Þ−1 ~Rc I − ~Uð Þ−T , (38)

which concludes the proof.

The implication of observational equivalence is that, given
data on the means and covariance matrix of equilibrium
positions, and knowledge of the structure of the model, we
can in principle estimate the canonical model from observa-
tional equilibrium data using standard SEM software. If the
structure of the model is not known, one can use causal dis-
covery methods, as discussed in the main text. Irrespective of
the estimation method, and even though the parameter val-
ues differ between the two models, the structure is the same,
and we know exactly how the original lagged parameters
map onto the parameters we estimate from equilibrium data.
This is interesting, but it does not stop there. As we will see
in the next two sections, these models are not only observa-
tionally equivalent but also yield the same predictions about
the effect of press and shift interventions.

B.3. Equivalence under press interventions

Recall the effect of a press intervention on the equilibrium
positions as formalized in Equation (18)

l ¼ ðI − PkUÞ−1ðPkcþ sÞ, (39)

where Pk is a p� p matrix with zeros on the off-diagonals
and the kth diagonal, and ones as the other diagonal elements
(such that pre-multiplying by Pk yields a matrix with the kth

row equal to zero and other elements unchanged), and ak is a
p column vector with kth element equal to a, the value that
the intervened-on variable is set to by intervention.

Proposition 3. The canonical and the original dynamical
system yield the same inferences about the effects of press
interventions, that is, we have that

ðI − PkUÞ−1ðPkcþ sÞ¼! ðI − Pk
~UÞ−1ðPk~c þ sÞ: (40)

Proof. We begin by showing that

ðI − Pk
~UÞðI − PkUÞ−1¼! Iþ UPk: (41)

To see this, recall that ~U ¼ U − UðI −UÞ and substitute

ðI − Pk
~UÞðI − PkUÞ−1 ¼ ðI − Pk U − UðI −UÞð Þ I − PkUð Þ−1

(42)

¼ I − PkUþ PkUðI −UÞð Þ I − PkUð Þ−1 (43)

¼ ðI − PkUÞ I − PkUð Þ−1 þ ðPkUðI −UÞÞ I − PkUð Þ−1 (44)

¼ Iþ ðUPkðI −UÞÞ I − PkUð Þ−1, (45)

where the last steps follows because U is diagonal and hence
multiplication commutes. Notice that because Pk sets the kth

row to zero, it follows that Pk ¼ P2
k: We can thus write

PkðI −UÞ ¼ PkðI − PkUÞ; which plugged into (45) yields

ðI − Pk
~UÞðI − PkUÞ−1 ¼ Iþ UPkðI − PkUÞ I − PkUð Þ−1

(46)

¼ Iþ UPk: (47)

With this in hand, we left-multiply Equation (40) by
ðI − Pk

~UÞ and substitute, yielding

ðIþ UPkÞðPkcþ sÞ¼! ðPk~c þ sÞ: (48)

Recall that ~c ¼ ðIþ UÞc: We expand and substitute,
writing

ðIþ UPkÞPkcþ ðIþ UPkÞs ¼ PkðIþ UÞcþ s (49)

PkðIþ UPkÞcþ ðIþ UPkÞs ¼ PkðIþ UÞcþ s (50)

ðIþ UPkÞs ¼ s (51)

s ¼ s: (52)

The last step follows because ðIþ UPkÞ yields a diagonal
matrix with the kth diagonal equal to 1 and all other diago-
nals i equal to 1þ Uii; and s is a p� 1 column vector with
the kth element equal to s and all other elements zero.
Multiplying thus yields s; which concludes the proof.
Another way to prove equivalence under press interventions
is to show that the equilibrium means and covariances are
the same in the interventional setting. For a proof of this,
see Appendix E in Hyttinen et al. (2012).

B.4. Equivalence under shift intervention

Recall the effect of a shift intervention on the equilibrium
positions as formalized in Equation (19)

l ¼ I −Uð Þ−1ðcþ sÞ, (53)

where s is a p� 1 column vector.

Proposition 4. If we consider only shift values s which
are defined with respect to a linear function of the popula-
tion standard deviations of the intercept, then the canonical
and the original dynamical system yield the same inferences
about the effects of shift interventions. This condition
becomes clearer shortly. Formally, we have that

I −Uð Þ−1ðcþ sÞ¼! I − ~Uð Þ−1ð~c þ ~sÞ, (54)

where s and ~s are p� 1 column vectors. Note that if we
apply a shift intervention to Xk—respecting the linearity
condition mentioned above—then s and ~s have elements
sk ¼ q� rk þ z and ~sk ¼ q� ~rk þ z; respectively, where q
and z are arbitrary constants and rk and ~rk represent the
population standard deviations of the kth intercept term in
the observational and canonical setting, respectively.

Proof. It is easy to show that ðI − ~UÞðI −UÞ−1 ¼ Iþ U:
Further, recall that ~c ¼ ðIþ UÞc: From this and Equation
(54) it follows that

I − ~Uð Þ I −Uð Þ−1ðcþ sÞ ¼ ~c þ ~s (55)

Iþ Uð Þðcþ sÞ ¼ ðIþ UÞcþ ~s (56)

Iþ Uð Þs ¼ ~s: (57)

Equation (57) gives a condition on s and ~s under which the
original and canonical model are equivalent under shift
interventions. Without lack of generality, note that if we
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intervene on Xk; then all elements of s and ~s are zero except
for the kth element, for which we have

ð1þ ukÞsk ¼ ~sk , (58)

where uk denotes the kth diagonal element of U: Recall that
U and hence uk are a function of the auto-regressive effects
in the original model, as defined in Equation (23). In the
canonical model, we do not have direct access to the auto-
regressive effects and thus U; and choosing ~sk such that it is
equal to ð1þ ukÞsk is impossible to do directly.

We can, however, achieve this implicitly by defining ~sk
with respect to ~rk: To see this, note that a very similar rela-
tion as in Equation (58) holds with regards to the popula-
tion standard deviations rk and ~rk of the original and
canonical model, respectively. To see this, recall that ~Rc ¼
ðIþ UÞRcðIþ UÞ: Let rk and ~rk denote the kth diagonal
element of Rc and ~Rc; respectively. It follows that

ð1þ ukÞ2r2k ¼ ~r2
k (59)

ð1þ ukÞrk ¼ ~rk: (60)

If we define ~sk to be a linear function of ~rk; denoted as
f, we can—using Equation (58)—write

ð1þ ukÞsk ¼ f ð~rkÞ (61)

ð1þ ukÞsk ¼ f ðð1þ ukÞrkÞ (62)

ð1þ ukÞsk ¼ ð1þ ukÞf ðrkÞ (63)

sk ¼ q� rk þ z: (64)

This shows that, if we define the shift interventions s and
~s on any variable Xk in terms of the same linear function of
rk and ~rk; respectively, then the canonical and the original
dynamical system are equivalent under shift interventions.

Appendix C: Latent state trait and residual
correlation

In this section, we provide additional information regarding
the specification of fixed measurement models and the
effects that misspecification of this measurement model has
in practice.

C.1. Estimating ECMs with fixed trait variance

In the main text we stated that prior knowledge can be used
to fix the measurement error variances and latent variable
variances to constants. Using SEM terminology, we have the
following structural equation and measurement equation

l ¼ ~lc þ ~Ulþ f (65)

Y ¼ lþ e, (66)

which yields a model-implied covariance matrix given by
the standard SEM expression

RY ¼ ðI − ~UÞ−1WðI − ~UÞT þH, (67)

where H is the variance-covariance of the measurement
errors � and W represents the variance-covariance matrix of
the latent variables or equivalently the structural error terms
f: the diagonal elements of W represent the variances of
exogenous latent variables and the residual variances of
endogenous variables.

Suppose that based on prior research the proportion of
variance in a measurement instrument which can be attri-
bute to the trait, that is, equilibrium variance across indi-
viduals, is known, and the rest of the variance is
attributable to an independent variance term. Using the
measurement equation above we could write

varðYÞ ¼ varðlÞ þ varðeÞ, (68)

and statements about the proportion of variance attributable
to a trait can then be interpreted as a statement about
knowing the magnitude of varðlÞ relative to varðeÞ:
Suppose without loss of generality that the observed varia-
bles Y are standardized, such that varðYÞ ¼ 1 for all varia-
bles, and that we know that 70% of the variance of each
observed variable is attributable to variance in the equilib-
rium and 30% to other sources. In order to use this infor-
mation in parameter estimation, we need to impose
parameter constraints on H and W such that varðeÞ ¼ 0:30
and varðlÞ ¼ 0:70: In the former case, this is straightfor-
ward, since the variance of the measurement error is para-
meterized directly by H; meaning that we can set
hii ¼ 0:30 8i: However, varðlÞ is parameterized by wii alone
only in the case of an exogenous variable. For endogenous
variables, varðljÞ is a function of its predictors, their varian-
ces and covariances, and the residual variance term wjj; and
so imposing the appropriate parameter constraint on wjj is
less straightforward.

To see this, consider our example ECM discussed in the
main text, which has weights matrix

~U ¼
0 0 0 0
a 0 b 0
0 c 0 d
0 0 0 0

0
BB@

1
CCA

An expression for the variance of l2 can be found by
using the structural equation

l2 ¼ al1 þ bl3 þ �2
varðl2Þ ¼ varðal1 þ bl3 þ �2Þ
varðl2Þ ¼ varðal1Þ þ varðbl3Þ þ covðal1, bl3Þ þ varð�2Þ
varðl2Þ ¼ a2varðl1Þ þ b2varðl3Þ þ ab� covðl1, l3Þ þ w22,

which we can see is dependent on the variances of l1 and
l3; and the covariance between l1 and l3: The variance of
l3 yields a similar expression, dependent both on varðl2Þ
and the covariance between l2 and l4; while variance of l1
and l4 simply reduce to w11 and w44; respectively. This
means that we can fix w11 and w44 to take on values of
0.70, but imposing the same constraint on w22 and w33
would not yield the desired total variance. As such, our goal
is to impose parameter constraints on w22 and w33 such
that the expression on the right hand side of the above
equation adds up to the known total trait variance value of
0.70. To do this we must solve for an expression for w22
which does not involve w33; and vice versa. In the current
example, this yields

w22 ¼
a2w11 þ a2bcw11 − 0:70þ b20:70þ bc0:70 − b3c0:70

1þ bc
(69)

MULTIVARIATE BEHAVIORAL RESEARCH 1145



w33 ¼
d2w44 þ bcd2w44 − 0:70þ bc0:70þ c20:70 − bc30:70

1þ bc
:

(70)

These parameter constraints can be implemented directly
in standard SEM software. R code showing how this can be
done is available from https://github.com/fdabl/Equilibrium-
Causal-Models.

C.2. Fixed trait variance and residual
correlation

In the main text, we studied the effect that a residual correl-
ation between the variables Y1 and Y2 has on the causal
effects estimates between all variables. Specifically, we consid-
ered unmodeled correlations between the state components
of the measurement s. In the standard SEM notation used in
the previous section, this concerns a correlation between the
measurement error variances h12 6¼ 0: In the main text we
also, we studied the effects that misspecifying the measure-
ment model has on the parameter and causal effects esti-
mates. Here, we combine these two issues. In particular, we
mirror the simulation study described earlier, except that we
now always correctly specify the modeled trait variance cor-
rectly. For example, if r2s =ð1þ r2s Þ ¼ 0:50; then we assume
that we have correctly specified the modeled trait variance as
being as high as the state variance in the estimation routine
described above. We again study a residual correlation
between Y1 and Y4 q12 2 ½−0:25, 0, 0:25�; but we assume that

we do not correctly specify this residual correlation in the
measurement model.

Figure 9 shows the estimated causal effects across the rela-
tive proportion of trait and state variance, residual correl-
ation, and causal effects. In contrast to Figure 6, were we did
not correctly specify the measurement model, we now see
that the causal effects are estimated without bias in case of
zero residual correlation (orange). In contrast, a negative
residual correlation between Y1 and Y4 that is not correctly
specified in the measurement model leads to an attenuation
of the effect estimates (green), most strongly for the causal
effect X1 ! X2: Correspondingly, a positive residual correl-
ation yields to an overestimate of the causal effects (purple).

Appendix D: Illustrating challenges of
estimating ECMs

In the main text we demonstrated that, given assumptions
regarding the qualitative dynamics being studied, unob-
served confounding, and correct model specification, equi-
librium causal effects can be estimated from equilibrium
data of a dynamical system. In empirical practice, of course,
many of these assumptions are likely not to hold.

Here, using an open-access time-series dataset (McNeish &
MacKinnon, 2025) we investigate whether we obtain equivalent
estimates of equilibrium causal relations by (a) estimating a
lagged regression model and then deriving the equilibrium rela-
tions or (b) obtaining estimates of the equilibrium positions
and then estimating the equilibrium model directly from that
data.

Figure 9. Estimates of the effect of pressðX1 ¼ 1Þ on X2 (top left) and X3 (top right), and pressðX4 ¼ 1Þ on X2 (bottom left) and X3
(bottom right) across different state variances (given as a proportion of the total variance) and residual correlations between X1
and X2: Dashed gray lines indicate the true causal effect.
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D.1. Data and context

To perform this analysis, we will make use of an open-
source synthetic empirical time-series dataset published by
McNeish and MacKinnon (2025) and available open access
(see https://osf.io/yk3je/). All code to reproduce this analysis
is available from https://github.com/fdabl/Equilibrium-
Causal-Models. McNeish and MacKinnon (2025) generate
these data based on the distributional characteristics of data
from an empirical intensive longitudinal study (Scherer et al.,
2022) studying the dynamic relations between adherence to a
health-behavior intervention (hereafter Adh), self-reported
measures of perseverance (hereafter Pers) and the number of
steps taken (hereafter Steps). The dataset consists of 35
repeated measures of each variable for 50 individuals. This
dataset is suitable for use as an illustration for three reasons.
First, the research goal of the original study, and the work of
McNeish and MacKinnon (2025), focuses on investigating a
hypothesized dynamic mediation structure where current
Adh has a direct effect on future Steps, as well as an indirect
effect through its effect on intermediate values of Pers (Adh
! Pers ! Steps). The models used to investigate this struc-
ture are linear. This structure of dynamic relations would
imply a linear ECM which is non-recursive, and therefore
identifiable using standard SEM methods. Second, the fea-
tures of the dataset, in terms of number of measurements
within- and between-person, is somewhat typical for what is
often encountered in psychological research. Third, although
synthetic in nature, the dataset was simulated based on char-
acteristics of a true empirical dataset, and therefore does not
impose that any of the idealizing assumptions we make in
our simulation study in the main text.

D.2. Estimation procedure

We estimate an equilibrium model using two approaches. First,
we fit a multilevel VAR(1) model to the time series data, esti-
mating only lag-1 autoregressive effects and lag-1 cross-lagged
effects which impose the mediation structure described above
(Stepst regressed on Perst−1 and Adht−1; with Perst regressed
on Adht−1). The model is estimated using the Bayesian DSEM
module in Mplus (Asparouhov et al., 2018), using the station-
ary mediation script supplied by McNeish and MacKinnon
(2025) adapted to estimate only lag-1 cross-lagged effects (avail-
able from our online code repository). From this model we
extract a matrix of point-estimates for the lagged fixed effects,
Ûlag : During estimation, we also extract 1000 posterior samples
of Û lag : By applying the transformation described in Equation
(4) to these point estimates and posterior samples, we obtain
point estimates and 95% credible intervals for the model-
implied equilibrium relations (~U).

Second, we obtain direct estimates of the equilibrium rela-
tions ~U by using the within-person sample means of each
variable as an estimate of their equilibrium positions l̂i: With
this dataset of sample means, we estimate a simple SEM
mediation model (lSteps regressed on lPers and lAdh; lPers
regressed on lAdh). The regression weights matrix of this
model gives us a direct estimate of the equilibrium relations.

D.3. Results and discussion

Table 2 shows the point estimates and 95% credible intervals
obtained using the above approach. In the first column we

see the estimates of the model-implied ECM relations; we see
positive estimates for all relations, although we see a rela-
tively wide CI encompassing zero for the Adh ! Steps rela-
tion. In the second column we see the equilibrium relations
directly estimated using the sample-means as stand-ins for
the equilibrium positions. We see that the point estimates are
again all positive, and relatively similar in magnitude to those
in the first column. We see, here, however, that the credible
intervals are noticeably wider than in the first column, and
all encompass zero. This is in part to be expected as, by tak-
ing the means across the 50 individual time series before
model estimation, we essentially reduce the size of our data-
set to just 50 data points. We also see that, for the Pers !
Steps, the point estimates obtained from both approaches are
quite different; although not a formal test in any way, the
fact that the CIs obtained from both approaches do not over-
lap can be taken to mean that both approaches would lead to
relatively different conclusions about this particular equilib-
rium relationship.

This exercises demonstrates that, while the equivalence
between empirical ECMs and equilibrium relations implied
by dynamic relations has been shown to hold under a set of
assumptions described in the main text, there is no guaran-
tee that those assumptions will hold in practice. When the
true system is unlikely to be satisfactorily modeled by a
simple non-recursive linear model such as this, or when we
cannot assume the nonexistence of unobserved confound-
ing, then we should also not expect this equivalence to
hold. This exercise also illustrates the practical difficulty of
testing whether ECM estimates are equivalent to those
obtained from a time-series model in a typical psychological
setting. Specifically, we saw that this equivalence could only
be directly investigated when the implied ECM is identifi-
able (typically, with few or no feedback relations), and even
then, such tests will likely run into issues of statistical
power: Collecting longitudinal data is relatively difficult,
and so intensive longitudinal datasets in psychology tend to
have relatively few participants. When pre-processing this
data to obtain sample means (i.e., average across time for
each participant), we ended up with a much smaller dataset.
As discussed in the main text, however, we do not suggest
that researchers estimate ECMs in the way we have done
here, unless strong evidence is provided that the necessary
assumptions hold. Instead, we suggest that novel develop-
ments in the causal discovery literature can be utilized to
estimate ECMs on psychological data.

Appendix E: Causal discovery simulation

In this section, we briefly describe the Backshift method
and assess its performance in a simulation study using our
running p ¼ 4 variable example.

Table 2. Point estimates and 95% confidence intervals in par-
enthesis for the ECM model implied by estimated multilevel
VAR(1) model (left column) and directly estimated from the
estimated person-specific equilibrium positions (right column).

Model-implied ECM Directly estimated ECM

Adh ! Pers 1.26 (0.97, 1.59) 1.32 (−2.02, 4.66)
Adh ! Steps 2.01 (−1.52, 5.71) 1.56 (−15.28, 18.40)
Pers ! Steps 3.62 (2.81, 4.49) 0.72 (−0.67, 2.10)
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E.1. Backshift

Backshift assumes that the observations are equilibrium
positions and that for a particular environment j they can
be modeled as

xj ¼ Bxj þ cj þ ej, (71)

where the random shift intervention cj has covariance Rc, j

and the matrix B and the error distribution of ej are
assumed to be identical across environments. While the
covariance matrix of the errors Re, j does not have to be
diagonal, Rc, j is assumed to be diagonal. This implies that
interventions at different variables are assumed to be uncor-
related. Backshift further assumes that the intervention shift
cj and the noise ej are uncorrelated. Interventions can differ
in their strength, and this is encoded in the variance of cj: a
higher variance implies a stronger intervention strength. Of
note is that the location (or target) of the intervention (i.e.,
the indices of cj who have non-zero values) and their
strength can be estimated from data (for details, see
Rothenh€ausler et al., 2015). R code showing an example of
using Backshift is available from E.

E.2. Simulation study

To assess the performance of Backshift we simulate from
our p ¼ 4 variable example model we have used through-
out. Specifically, we generate equilibrium data varying the
sample size n ¼ ½250, 500, 1000, 2500, 5000�; the number of
variables the shift intervention targets t ¼ ½1, 2, 3�; the num-
ber of settings s ¼ ½3, 4, :::, 9, 10�; the strength of the shift
intervention m ¼ ½0:50, 1, 2� (Rothenh€ausler et al. formalized
as in 2015); and the extent of unobserved confounding, par-
ameterized as residual correlation r ¼ ½0, 0:50�—we ran-
domly set each off-diagonal element to either 0.50 or −0:50:
We assess the estimation error defined as the (element-
wise) average absolute difference between the estimated Û
and the true parameters U:

E.3. Simulation results

Figure 10 shows the estimation error across different inter-
vention strengths, number of targets, and residual con-
founding. We find that residual confounding leads to a

Figure 10. Average absolute difference between estimated and true parameters across sample sizes n and number of settings s
for p ¼ 4; t ¼ 3 number of targets, an effect size of m ¼ 0:50 (top), m ¼ 1 (middle), and m ¼ 2 (bottom) for no (left) or r ¼ 0:50
(right) residual confounding. Results are ordered with increasing number of settings from s ¼ 3 (dark blue) to s ¼ 10 (white).
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slightly worse performance and that the number of settings
are more important than the sample size per setting. Figure 10
further shows that increasing the intervention strength and
especially the number of targets yields to significant reduc-
tions in the estimation error. Focusing on the middle left
panel, we observe that the estimation error decreases with
increasing sample size per setting as well as with increasing
the number of settings. The number of settings has a stron-
ger beneficial effect than the sample size: for example,
increasing the sample size from n ¼ 250 to n ¼ 500 with
s ¼ 3 settings decreases the estimation error from 0.28
ð0:29Þ to only 0.26 ð0:27Þ for r ¼ 0 and r ¼ 0:50 residual
correlation, respectively. Fixing the sample size per setting
at n ¼ 250 and increasing the number of settings from s ¼
3 to s ¼ 4; on the other hand, decreasing the estimation
error from 0.28 (0.29) to 0.21 ð0:21Þ for r ¼ 0 and r ¼ 0:50;
respectively, a 25% ð28%Þ reduction rather than just a 7%
ð7%Þ reduction when increasing the sample size but keeping
the number of settings fixed. Increasing the intervention
strength (going from the top to the bottom panels)
decreases the estimation error

Figure 10 shows results in which the intervention in each
setting is targeting t ¼ 3 variables. The top panels in Figure
11 show the estimation error as a function of the number of
targets and no (left) and r ¼ 0:50 (right) residual correlation
across intervention strengths of m ¼ 0:50 (top), m ¼ 1 (mid-
dle), and m ¼ 2 (bottom), fixing the sample size at n ¼ 500:
We find that the estimation error decreases quite strongly
with the number of targets in each setting. For example, with
s ¼ 4 environments and an intervention strength of m ¼ 1;
the estimation error in the case of two targets t ¼ 2 is about
almost three times as high (0.20) compared to four targets
t ¼ 4 (0.07) in case of no residual correlation. For r ¼ 0:50;
a similar pattern holds (0.30 vs. 0.09). Note that these results
are robust to changing the intervention target.

Appendix F: Empirical example of cyclic causal
discovery

We illustrate how empirical researchers may utilize back-
shift to estimate ECMs by reanalyzing the data presented in

Figure 11. Average absolute difference between estimated and true parameters across across number of targets t and number of
settings s for p ¼ 4; n ¼ 500; an effect size of m ¼ 0:50 (top), m ¼ 1 (middle), and m ¼ 2 (bottom) for no (left) or r ¼ 0:50
(right) residual confounding. Results are ordered with increasing number of settings from s ¼ 3 (dark blue) to s ¼ 10 (white).
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Blanken et al. (2019). In a randomized control trial, one
group of patients received no treatment (n ¼ 52) while
another group received cognitive-behavioral therapy for
insomnia for five weeks (n ¼ 52). Symptoms of insomnia
and depression were assessed each week for ten weeks
(before treatment T0-T1, during treatment T2-T6, and after
treatment T7-T9). Although there are a number of causal
discovery methods which can use longitudinal data directly
(Assaad et al., 2022; Pfister et al., 2019), for the purpose of
illustration in the current paper, we treat this data as
though it were cross-sectional in nature. We do this by
averaging the measures across all ten weeks for the control
group and across the two pretreatment and three post-
treatment weeks for the treatment group. We do not use
the measures during treatment because they may, conceptu-
ally and empirically, not constitute equilibrium observa-
tions. The left graph in Figure 12 shows the backshift
estimate, yielding a fully connected graph with some effects
being much stronger than others. R code to reproduce this
analysis is provided in the reproducibility archive of the
current paper, though data must be requested from the
authors of the original paper (Blanken et al., 2019).

In the cyclic structure shown in Figure 12 we can for
example see that difficulties initiating sleep is an effect of

several variables, being negatively influenced by for example
concentration problems, difficulties maintaining sleep, and
depressed mood. It is important to note, however, that all of
the point estimates in this graph are quite unstable; estimat-
ing the stability of each edge using the stability selection
procedure described by Meinshausen and B€uhlmann (2010)
results in no edge being estimate consistently, and so, the
point estimates shown in Figure 12 are not robust. They are
very likely misleading and should not be interpreted.
Significance testing based on bootstrapping also indicates
that no edge can be assumed to be significantly different
from 0. This is likely in large part due to the comparatively
small sample size (N ¼ 158 total observations spread across
three groups), though it may also be due to the differences
between the settings (i.e., the intervention strengths) not
being large enough to inform causal effect estimates, or
because the averaging procedure obscured any differences.
This illustration does however serve the show the potential
of methods like backshift in helping uncover cyclic causal
depencies, though to fully realize this potential may require
different data collection and study design strategies than
what we commonly see in current network-based approaches
in psychology.

Figure 12. Causal effect estimates from backshift before stability selection. No causal effect remains after stability selection, see
main text for details.
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