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ABSTRACT

In this tutorial, we clarify the distinction between estimated factor scores, which are
weighted composites of observed variables, and true factor scores, which are unobservable
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values of the underlying latent variable. Using an analogy with linear regression, we show
how predicted values in linear regression share the properties of the most common type of
factor score estimates, regression factor scores, computed from single-indicator and multiple
indicator latent variable models. Using simulated data from 1- and 2-factor models, we also
show how the amount of measurement error affects the reliability of regression factor
scores, and compare the performance of regression factor scores with that of unweighted

sum scores.

A central feature of structural equation models (SEMs) is
their ability to represent abstract constructs (e.g., neuroti-
cism, life satisfaction, executive function) as error-free
latent variables, or factors, each measured by a set of unre-
liable observed variables, or indicators (e.g., scale items).
When they are correctly specified, SEMs produce asymp-
totically unbiased estimates of the associations (e.g., corre-
lations, regression coefficients) among latent variables in
the model. In contrast, simply adding up indicators of
each construct and then modeling the relations among
the resulting scale scores is suboptimal because scale
scores will still contain measurement error, and thus lack
perfect reliability (Bollen, 1989; Cole & Preacher, 2014).!
To obtain highly reliable scale scores, it is necessary to
have either (a) highly reliable indicators, or (b) a very
large number of indicators with lower reliability. For
example, one can achieve scale score reliability of 0.95 by
having 2 items that each have reliability of 0.9, or by hav-
ing 50 items with reliability of 0.27 (Spearman, 1910).
Latent variables, in contrast, contain no measurement
error and are perfectly reliable. But while this difference
between scale scores and latent variables is well-known,
some confusion remains about the extent to which the

properties of latent variables carry over to estimated
scores on latent variables, obtained from observed data.
The goal of this article is to explain the difference
between estimated factor scores, which are weighted com-
posites of observed variables, and actual or true factor
scores, which are unobservable values of the underlying
latent variable. While many technical sources discuss this
distinction (e.g., Waller, 2023), non-technical and intui-
tive presentations are lacking. Anecdotally, these concepts
are often confused. For example, in a recent tweet by a
researcher asking how to get the values of the latent varia-
bles that generated the observed data when using the
simulateData function in the R package lavaan
(Rosseel, 2012), the great majority of replies provided
instead answers for how to get estimated factor scores
from the generated data.” Contributing to the confusion,
the term “factor score” is frequently used in the published
literature without a clear definition: It may refer to the
estimated factor scores (e.g., DiStefano et al., 2009; Grice,
2001; Skrondal & Laake, 2001), or to the individual’s true
standing on the latent factor (e.g., Velicer, 1976; Waller,
2023), or to both, blurring the distinction between them.
In this article, we will use the terms “estimated factor
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scores” and “true factor scores” to distinguish these two
concepts.” Following estimation of parameters of a latent
variable model, scores on the latent variable can be esti-
mated using a variety of methods (e.g., McDonald &
Burr, 1967), but the most common is the so-called regres-
sion approach. We will refer to factor score estimates
obtained in this way as “regression factor scores.”*

At the heart of the distinction between true and esti-
mated factor scores is the very concept of a latent vari-
able. In classical test theory (CTT; Crocker & Algina,
1986), each observed score is hypothesized to be a sum
of the true score plus measurement error. The measure-
ment error is assumed to be completely random and
uncorrelated with everything (including itself across
repeated assessments). For example, participants may
sometimes circle an unintended answer due to moment-
ary distraction. The true score is the hypothetical score
that would be obtained if measurement could be repeated
infinitely often, canceling out this random error in the
long run.’ Because it can never be observed, CTT’s true
score represents the earliest invocation of a latent vari-
able, but in a narrow sense because the “latent variable”
could be the true length of a table or a participant’s true
standing on a single questionnaire item.

The common factor model is a generalization of CTT
where the latent variable, sometimes referred to as the
common score, now symbolizes the underlying true level
of a broader construct that gives rise to scores on mul-
tiple observed indicators, or items, which measure spe-
cific consequences of being high or low on this construct.
Each observed variable is still a sum of the latent variable
(scaled by the factor loading, capturing that different
items have different sensitivities to changes in the latent
construct) plus error. The error term, while still often
referred to as “measurement error”, now captures the
unique variance in each item, which includes completely
random measurement noise plus any systematic compo-
nent of a response to a given item that is not due to the

3Many authors (e.g., Maraun, 1996) prefer the term “predicted” rather
than “estimated” factor scores. Typically, we estimate parameters of a
distribution of random variables (e.g., model parameters such as factor
loadings) but predict values of random variables (though some
psychometric models have person parameters). Another term in use is
“constructed” factor scores (Beauducel & Rabe, 2009). However, we use
“estimated” factor scores as it is more common in the psychometric
literature. In addition, the word “predicted” may inadvertently imply a
particular type of factor score estimate, namely regression factor score.
While we primarily focus on regression factor scores, many of our
statements are more general.

““Regression factor score estimates” would be more correct, but the term
“regression factor scores” is shorter and is widely used; we just ask the
reader to remember that regression factor scores are not true factor
scores.

®Other assumptions include that participants’ memory is wiped between
measurements, so that there are no repeated testing effects, and that the
true score itself, representing the quantity being measured, is stable over
time.
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latent variable and is not shared with other items. For
example, a response to an item about appetite on a
depression scale may partly due in differences in metab-
olism, reflecting the systematic part of a response to that
item that is unrelated to depression. Other latent variable
models are generalizations of the common factor model,
containing multiple latent variables.

For the ith individual, their true factor score, f;, is sim-
ply their score on the latent variable f. Because the vari-
able is latent, its values for any individual are
unknowable and cannot be obtained from the observed
indicators; if they could be, it would no longer be a latent
variable. On the other hand, the ith individual’s estimated

factor score, f;, is a score on a composite observed vari-

able f that is constructed as a weighted linear combin-
ation of the observed indicators of f, where the weights
are functions of the estimated model parameters (e.g.,
factor loadings and residual variances). As the sample
size increases, the weights become more precisely esti-

mated, and f becomes a weighted linear combination of
observed variables with known weights, rather than esti-
mated weights. But a linear combination of observed var-
iables cannot reproduce the scores on a latent variable,
even if the weights are precisely known. Estimated factor

scores will generally not equal true factor scores: f : F 1o
so long as none of the observed indicators are free of
measurement error. Unlike sampling error, measurement
error does not go away with increasing sample size.
Methods for estimating factor score estimates differ in
how their weights are computed from the model parame-
ters. The most common type, regression factor scores,
have the property of maximal reliability in the popula-
tion. That is, if the model parameters are exactly known,
regression factor scores get “closest” to the true factor
scores in the sense that the squared correlation between f
and f is the maximum possible for any linear composite
of observed variables (Bentler, 1968; Raykov, 2004). In
this note, we clarify the distinction between estimated
and true factor scores by drawing an analogy between
the derivation of the regression factor scores and how
predicted values are obtained in regression. We start
with simple regression and compare it to a single-indica-
tor latent variable model. We then move to multivariate
regression and draw the analogy to obtaining regression
factor scores from a multiple indicator model. We then
describe some implications of the regression analogy. In
the next sections, we use simulated data from a 1-factor
model and 2-factor model to show how the amount of
measurement error affects the reliability of regression
factor scores; we also compare the performance of regres-
sion factor scores with that of unweighted sum scores
across these scenarios. We conclude with a discussion.
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An analogy with regression

Simple regression and single-indicator factor
model

Consider two models for an observed variable y,
where all variables are scalars:

y=pxte (1)
y=/4 +e (2)

Equation (1) describes a simple regression model,
where the predictor x is another observed variable.®
Equation (2) describes a factor model, where the pre-
dictor f is a latent variable. In both models, the error
term assumed to be uncorrelated with the predictor. In
the latent variable model, f is imagined to be a cause of
¥, and the error term represents measurement error in
the sense discussed above. While in regression causality
cannot often be assumed, to draw a parallel with factor
analysis, in this instance we will assume that x causes y,
and we will call the error term € model error. Then,
mathematically, the factor model can be viewed as a
peculiar kind of a causal regression model where all
scores are missing on the predictor.

The fact that x is in the dataset, whereas f is not,
has two implications. First, the model parameters S
and 4 in Equations (1) and (2) are estimated differ-
ently. In a regression model, an estimate of f§ can be
obtained straightforwardly from the data on x and y.
In a factor analysis model, an estimate of 4 can only
be obtained if we are able to find other observed vari-
ables that are also predicted by f. That is, we will need
to extend the model from a single variable y to mul-
tiple observed indicators y, which we will do in the
next section. In this section, we will assume that
model parameters are known, so differences in estima-
tion between the regression and the factor model are
not relevant, and y is a single observed indicator.

The second implication is more esoteric and is
known as the problem of factor score indeterminacy
(Maraun, 1996). Briefly, because the values on f are
not observed for any person, there are multiple
latent variables that can fit the description given by
Equation (2), even if A is exactly known. The most
important practical consequence of this indetermin-
acy is that the correlations of these different possible
fs with other variables external to the model (say z)
will be different, unless further assumptions are
made (e.g., that z and e are uncorrelated). Stated dif-
ferently, the precise location of the latent factor f,

Sltem intercepts are omitted for simplicity. We assume a random
regression model.

when viewed as a vector in the variable space that
includes other variables (Wickens, 2014), is not fully
known, which implies that its correlations with other
variables are to some degree indeterminate. The
indeterminacy issue does not affect our analogy, so
we set it aside for now but give a fuller explanation
in Appendix A.

We now use the analogy between the models in
Equations (1) and (2) to explain the concept of regres-
sion factor scores, which are the most popular type of
factor score estimates. Because the latent factor is the
predictor in Equation (2), attempting to estimate
scores on f by predicting them from the indicator y is
analogous to predicting individuals’ values on the pre-
dictor x from their values on the outcome variable y
in regression. To make this prediction, we need to
invert the regression equation in 1, as follows:

x=py+€, (3)

where the error term is different from that in Equation 1
because it now must be orthogonal to y and not to x.
Because this inverse model is no longer causal, we will
call this error term prediction error. Importantly for our
analogy, if the parameters of the original regression
model are known, the parameters of the inverse regres-
sion model are also known. In fact, when x and y are
standardized, f§ = f*. More generally, " =f

var(x)
var(y)?
where var(y) = f*var(x) + var(€); that is, we are able to
write the inverse regression coefficient in terms of the
parameters of the original regression model (which
include predictor variance and error variance). Then, for
an individual with a known score on y, we can predict
their score on x as X; = f*y;. This predicted value will
not equal the actual (unknown) value x; for that individ-
ual, even if the population value of " is known. Figure 1
(left panel) shows the discrepancy between actual x; and
X;. Because the values of x and y are observed for at least
some individuals in the sample, the value of the residual
or the error of prediction can also be obtained for those
individuals simply by subtracting x; from x;.

To estimate factor scores using the regression
method, we write the corresponding inverse regression
model as follows:

f=ry+e, 4)

where again the error term is different from the one
in Equation (2) because it now must be orthogonal to
y. Since this equation is no longer causal but is just a
prediction equation, e* is prediction error, not meas-
urement error (McDonald, 2011). This is the model
from which regression factor scores are obtained.
While all values on f are missing for everyone, the
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Predict f from y
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Figure 1. Discrepancy between observed and predicted values in simple linear regression, and between latent and predicted val-
ues in factor analysis. Note. In the left plot, the circled point is the observed value of x;. In the right plot, the four circled points
are four possible values (out of an infinite number of possible values) of ;. Neither the observed value of x; nor the possible val-
ues of f; are equal to the predicted values X; and f;, which fall on the regression lines.

prediction is done in the same way as in regression.
For an individual with a score y;, we can predict their
true factor score with f . = A"yi, which is their regres-
sion factor score. Then, completely parallel to regres-

sion, A" =1 ZZ;((Q, where var(y) = A*var(f) + var(e).
Because the latent variable does not have assigned

units, we set var(f) =1 for identification; therefore,

P S

22 4var(e)
needed to obtain the regression factor score in terms
of the parameters of the original factor model.

Figure 1 (right panel) illustrates that, just as in
regression, the predicted values, i.e., the regression factor
scores, will always fall on the regression surface (here, a
line), and therefore will not equal the true factor scores.
However, unlike in regression, factor score indetermin-
acy means that it is not possible to obtain or estimate
residuals for anyone, because no values of f; are observed.
The four different colors of points in this figure show
four sets of possible factor scores that could have given
rise to the observed values of y, but an infinite set of fac-
tor scores are possible. Further, this two-dimensional
plot does not capture the fact that we also do not have
enough information to “ground” the location of these
residuals in a higher-dimensional space involving other
variables. If we were to expand this figure to three
dimensions by adding a third axis for some other vari-
able z, we would not have the information on how to
position the plane defined by y and f relative to the axis
defined by z. Thus, the factor model allows us to estimate
the correlations between the factor and its indicators, but
we lack precise information on how the factor is related
to any variables that are not in the model.

. We have solved for the weight A"

Multivariate regression and the factor model

In the previous section, we have worked with a single-
indicator factor model with known parameters for sim-
plicity. In reality, latent variables require multiple indica-
tors if model parameters are unknown and are to be
estimated. As well, it is common to have multiple latent
factors. In this section we will assume that there are k
latent variables (although the most common case for fac-
tor score estimation remains k = 1), and each latent vari-
able f; (t =1,...,k) has at least three indicators, for a
total of p observed variables.” The appropriate regression
analogy is then to multivariate regression, where there
are multiple predicted variables (to parallel multiple indi-
cators of a factor) and potentially multiple predictors as
well (to parallel one or more latent factors). We now
develop this analogy; however, this section can be skipped
by more applied readers without loss of continuity.

The multivariate regression model is given by:

y=Bx+e¢, (5)

where y is now a p x 1 vector of criterion variables, x
is a k x 1 vector of predictor variables, B is the p x k
matrix of regression coefficients, and € is a p X 1 vec-
tor of model errors. We can use covariance algebra
(e.g., Bollen, 1989) to obtain:

cov(y, x) = cov(Bx + €,x) = Bcov(x,x) = Bvar(x),
and it follows that

"We assume this for simplicity. Factor models can be estimated with
fewer indicators than three under additional constraints or within a
context of larger models (k > 1 with factor correlations.
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where Xy, = cov(y,x) and X, = var(x). To see the
parallel to the factor model, we also note the model-
implied covariance structure for y implied by the
regression model:

L,y = var(y) = Bvar(x)B’ + var(e) = BE4B' + ¥,
(7)

where var(e) = W.. We will use this equation shortly.
To predict scores on x from the scores on y, we
need the inverse regression model:

x =By +¢, (8)

It follows by the same mathematics (i.e., covariance
algebra) that the k x p matrix of inverse regression
coefficients B* is given by

B' = EyTl. ©)

We can use Equations (6) and (7) to obtain an
expression for B* in terms of B:

B = L B = L B'(BEB + W)™ (10)

The matrix of original coefficients B will be analo-
gous to the matrix of factor loadings, and the matrix
of inverse regression coefficients B* will be analogous
to the matrix of optimal weights used to obtain
regression factor scores.

Lastly, it will also be helpful to draw an analogy
between the coefficient of determination in regression
(i.e, R-squared), and reliability or “construct repli-
cability” (Hancock & Mueller, 2001) in a factor model. In
regression, the R-squared gives the proportion of variance
in each criterion variable explained by the predictors, or,
equivalently, it is the squared correlation between the cri-
terion variable and its predicted value. We will only give
the R-squared expressions for the inverse regression in
Equation (8). The proportion of variance in each variable
x¢ (t = 1,..., k) explained by the variables in y is

B var(B'y) _ B?’Var(y)l‘f)

R = =
b var(x)) var(x;)

(11)

where lif/ is the tth row of B*. Equation (10) can be
used to further re-write this expression in terms of
the original regression weights B.

We now state parallel expressions to Equations
(5)-(11) for the factor model. They only involve a
change in notation. The factor model is

y=Af+e, (12)

where y is a p x 1 vector of indicators, f is a k x 1
vector of latent factors, and A is the p x k matrix of
latent regression coefficients, i.e., factor loadings. The
expression parallel to Equation (6) is:

A=Xu®7", (13)

where Xyt = cov(y,f) and ® =var(f). Unlike in
regression, however, this expression cannot be used
directly to obtain A because Xyf involves unknown
correlations between observed and latent variables.
The parallel expression to Equation (7) is:

Iy = ADA + Y, (14)

where W = var(e), which is the familiar covariance
structure under a factor analytic model. Model esti-
mates for the parameters on the right-hand side can
be obtained by fitting this model to the sample covari-
ance matrix of y. Once the model has been fit, we
have the matrices A, ®, and ¥ (or their estimates).

To obtain regression factor scores, we invert the
regression implied by the factor model:

f=Wy+e', (15)

where W is the k x p matrix of weights.® To obtain
regression factor scores, we use the expression parallel
to Equation (9):

_ -1
W= nyEyy . (16)

Only the model in Equation (12) can be estimated
from the data, and the inverse model in Equation (15)
cannot be fit directly. This is the main difference between
regression and factor analysis models. Therefore, to com-
pute the regression factor score weights W, we express
W in terms of the parameters of the original fitted factor
model, parallel to the expression in Equation (10) for
regression:

W= QAL = OA(ADA + )™ (17)

The k x 1 vector of estimated (regression) factor
scores for the ith individual can be obtained as f; =Wy,
where y; is the p x 1 vector of their scores on y.
Estimated (regression) factor scores f =Wy are random
variables that are just weighted linear composites of the
observed variables.” In the case of a Il-factor model
(k=1), f is a scalar (a single score for each person),
whereas y is a vector of p observed variables, so W
reduces to a 1 X p row vector of optimal weights for each
variable. For multi-factor models, each row of W gives

8For consistency, we could have called it A*, but W is a much more
common notation.

“Two other types of factor score estimates use the original, rather than
the inverted, regression line to reverse-engineer estimates of latent
variable scores from the observed values of y. Under the “idealized
variables” approach, f; :(A'A)"IA’y, and under the Bartlett approach,
which  assumes  the  regression errors are  heteroscedastic,
fo =(AP'A)"A’P'y. An expression connecting regression and
Bartlett factor scores is fg =(lx + A’¥~'A)'®7!f. In the case of the 1-
factor model (k = 1), they are proportional.



optimal weights for obtaining a different weighted com-
posite of the variables in y to best capture each factor."
The R-squared values for the inverse regression in
Equation (15) will give the proportion of variance in
each latent variable f; (t = 1,..., k) explained by all the
observed indicators y, or equivalently, the squared
correlation between each latent variable f; and its pre-
diction, i.e., the fth regression factor score f,. The
squared correlation between the latent variable and
the observed composite designed to measure it is also
known as reliability. In the population, regression fac-
tor scores have the property of maximal reliability:
That is, no other weighted linear composite of
observed variables y can have a higher squared correl-
ation with the latent variable. For this reason, we will
use the abbreviation “MR” to refer to these R-squared
values. Parallel to Equation (11), they are given by:

var(wiyy) _ var(wy) _
var(f,) 1 = wivar(y)w:

= PA'E A,

MR, = R} =

(18)

where w; = ALl is the tth row of W (see
Equation (17)) and ¢, is the tth row (or column) of
®. As a reminder, the variance of each latent variable
is set to 1 for identification. The square-roots of the
values in Equation (18) have also been called factor
determinacy (FD) indices (Grice, 2001; Rodriguez
et al., 2016).

In the special case of the 1-factor model, the
expression in Equation (18) simplifies to the following
formula:

MR = VI b = (V0 + W) 7', (19)

When YW is diagonal, the resulting further simpli-
fied version of Equation (19) has also been labeled as
“construct replicability” or “coefficient H” (Hancock
& Mueller, 2001), but we will refer to it always as
maximal reliability (MR).

Implications of the regression analogy

The analogy with regression has a number of implica-
tions for understanding factor score estimation. We
will continue to focus on regression factor scores, but
our discussion applies more generally, since other factor
score estimates will have worse prediction properties.
First, as the sample size grows, estimation or prediction

interestingly, in correlated factor models, these weights will generally all
be non-zero; that is, all variables in the model contribute to the
estimation of scores on each factor, not just indicators of that factor.
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of factor scores only improves up to a point. A larger
sample size will ensure that the estimated model
parameters (such as factor loadings) become increas-
ingly precise estimates of their population values, and
that the factor score estimates are computed using an
increasingly accurate set of weights (in the case of
regression factor scores, these are optimal weights). In
other words, sampling error decreases. But increasing
sample size will never remove model error in regression
(i.e., € in Equation (1)) or measurement error in factor
analysis (ie., e in Equation (2)). To the extent that
there is model error in regression, x does not explain
all of the variation in y, and the values of the predicted
variables will not fall exactly on the regression surface
defined by the predictors, in either the original or the
inverse regression equation. Similarly, in factor analysis,
the true factor scores will not fall exactly on the inverse
regression surface defined by the observed variables to
the extent that there is measurement error in all of the
observed variables (i.e., f does not explain all of the
variation in y).

The coefficient of determination (R-squared) can
be used to quantify the success of prediction in both
regression and factor analysis. R-squared is the
squared correlation between the predicted value
(which is a weighted linear combination of the predic-
tors) and the criterion. For the 1-factor model, the
R-squared for predicting regression factor scores from
the observed variables is called maximal reliability
(MR; see Equation (19)). It is equal to the squared
correlation between the best linear combination of the
observed variables (i.e., the regression factor scores),
and the true scores on the latent variable. We will
compute MR for the illustrations in the next section.

A second implication of the analogy with regres-
sion is that as prediction error decreases, regression
factor scores approach true factor scores. Prediction
error decreases as individual indicators become more
reliable (measurement error for some or all indicators
decreases in the original model, or equivalently stand-
ardized loadings increase) and/or as the set of indica-
tors becomes large. In fact, under minimal
assumptions, factor score estimates will approach true
factor scores as the number of indicators of that factor
goes to infinity (Bentler & Kano, 1990; Ellis & Junker,
1997). Recall that in classical test theory, the true
score is defined as the long-run average of repeated
observations. In the factor analysis model, repeated
observations are multiple indicators, so as their num-
ber increases, the latent variable can be approximated
more and more precisely by a linear combination of
them. In the next section, we illustrate how the
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accuracy of regression factor scores depends on the
measurement properties of the indicators.

Illustrations

In this section, we illustrate the ideas explained above
in a few ways: First with a single dataset with a covari-
ance matrix that perfectly represents a population (i.e.,
no sampling variability), then with several such data-
sets, varying a range of population parameters, such as
factor loadings, and finally with repeated draws of sam-
ples from a given population, this time with sampling
variability. We do this with both 1- and 2-factor mod-
els to show some of the ways in which regression factor
scores behave differently from true factor scores, and
how these differences depend on whether the weights
are known or estimated (i.e., with versus without sam-
pling variability)."" Alongside these comparisons, we
include unweighted sum scores to show the ways in
which unit weights, which are theoretically sub-optimal
but not affected by sampling variability, can produce
scores that differ (sometimes for the worse, sometimes
for the better) from those based on regression factor
score weights, which are theoretically optimal but sub-
ject to sampling variability.

Illlustration 1: a single “population” dataset,
1-factor model with equal loadings

Using the code in Appendix B, we generated a single
dataset from a 1-factor model with 3 indicators, where
each observed variable has a factor loading of 0.60
and an error variance of 0.64, and the factor f has
variance 1. To remove the influence of sampling fluc-
tuations, we generated a “population” dataset, i.e., one
where the covariance matrix is perfectly described by
the population model. In addition to simulating scores
on observed variables, we also simulated true factor
scores (and true error scores), to enable the compari-
son between the true and estimated factor scores. We
then fit the I1-factor model to the generated data.
Because the model fits the simulated data exactly, this
fitting procedure produced parameter estimates that
exactly match the population values. We obtained the
regression factor scores from this analysis using the
lavPredict function with method = "regres-
sion" in lavaan. The R code in Appendix B also
shows how to reproduce the estimated factor scores
produced by lavaan by applying Equation (16) to the
parameter matrices obtained from the fitted model.

"Code to reproduce all simulations can be downloaded at osf.io/a68wm/.

Table 1. Scores on the observed variables, true factor scores,
and regression factor scores for the first ten rows of gener-
ated data in lllustration 1: T1-factor model with known

pa rameters.

) )2 V3 f f
1.450 —0.883 0.964 1.028 0.534
0433 —0.384 1.070 0.709 0.390
0.158 1.378 0.302 1.329 0.641
0.833 0.487 0.893 0.944 0.772
0.758 0.754 —0.061 0.307 0.506
—0.768 0.643 -0.814 0.352 —0.328
1.313 2.152 1.213 1.483 1.632
1.272 0.060 —0.572 —0.815 0.265
0.050 —2.008 —0.702 —0.750 —0.928
—1.836 —1.691 —1.356 —2.098 —1.703

Table 1 displays the first 10 rows of data, including
the observed variables y; to ys, the true factor scores
on f and the regression factor scores f. Because sam-
pling variability was removed from the simulation,
these estimated factor scores are the closest we can
get to the true factor scores using only observed data,
maximizing the correlation between f and f . However,
it is apparent that these are quite different values.
Their aggregate properties are also quite different: the
true factor scores have been generated to have vari-
ance of 1, whereas the estimated factor scores have
variance .63. The same phenomenon can be observed
in regression (predicted values vary less than true
values).'?

The difference between true factor scores and their
estimated values is also apparent in the correlation
between them: In this example, the correlation is 0.79,
which is the square-root of maximum reliability
(MR)."> Maximum reliability is the reliability of an
optimally weighted sum score of the items, which is
precisely what the regression factor scores (obtained
when the population parameters are known, as is the
case here) are. In this example, however, because all
factor loadings are equal, estimated factor scores are
equally-weighted composites, and thus are perfectly
correlated with the sum scores. In this situation, MR
has the same population value as coefficient omega
(McDonald, 1978), which describes the reliability of
an unweighted sum score.

lllustration 2: multiple “population” datasets,
1-factor models with varied loadings

Next, we simulated 1000 datasets from a 1-factor
model with 3 indicators, but each dataset came from a

2In practice, factor score estimates are often subsequently standardized,
so that their sample variance becomes 1.

3This value can be obtained from the model parameters using Equation
(19); the R code is given in Appendix B.
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Figure 2. Correlations among true factor scores, regression factor scores, and unweighted sum scores for lllustration 2: 1-factor
models with varied loadings, parameters assumed to be known. Note. f = true factor scores, f = estimated factor scores, and
y. = unweighted sum scores. Data are generated from a 1-factor model with factor loadings drawn randomly from U[.2, 1].

Regression factor scores are obtained using Equation (16).
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Figure 3. Correlations among true factor scores, regression factor scores, and unweighted sum scores for lllustration 3: 1-factor
models with varied loadings, parameters estimated from N = 200. Note. f = true factor scores, f = estimated factor scores, and
y+ = unweighted sum scores. Population covariance matrices are generated from a 1-factor model with standardized factor load-
ings drawn randomly from U[.2, 1], and sample data of size N =200 drawn from a multivariate normal distribution. Regression

factor scores are obtained using Equation (16).

population with different factor loadings. The factor
loading values were randomly drawn from a uniform
distribution U[0.2, 1]. The influence of sampling fluc-
tuations was again removed by forcing each dataset to
have the exact covariance matrix specified by the
population values of the loadings. Figure 2 displays
the correlations among true factor scores, estimated
(regression) factor scores, and the unweighted sum

scores for these 1000 populations. Along the x-axis is
maximum reliability. The correlations between true
and estimated factor scores (dark pink squares) fall on
a curve for the square-root function because this cor-
relation is simply the square root of MR. The correla-
tions between regression factor scores and unweighted
sum scores (light green triangles) reflect the amount
of variation in the three randomly drawn factor
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loadings; the more disparate these loadings, the lower
the correspondence between regression factor scores
and unweighted sum scores. Finally, the correlations
between true factor scores and unweighted sum scores
(light pink circles) are always equal to or lower than
the correlations between true and estimated factor
scores (dark pink squares), reflecting that regression
factor scores outperform unweighted sum scores when
the true factor loadings are known."* In the next simu-
lation, we complicate this story by adding sampling
variability, so that regression factor scores are com-
puted using estimated rather than true factor loadings,
which means they are no longer optimally weighted
composites.

lllustration 3: multiple “sample” datasets drawn
from 1-factor models with varied loadings

Adding sampling variability to the simulation depicted
in Figure 2 introduces estimation error into the factor
loadings, resulting in regression factor scores that are
computed using error-laden weights rather than the
optimal weights. Figure 3 displays the correlations
among true factor scores, regression factor scores, and
the unweighted sum scores in 1000 datasets of size
N =200, drawn from different populations. For each
dataset, population factor loadings were again ran-
domly drawn from the uniform distribution U[0.2, 1],
but the datasets were not forced to conform to the
population covariance matrix (i.e., sampling variability
was left in). Along the x-axis is the population value
of MR.

The correlations between true and regression factor
scores (dark pink squares) no longer fall on the curve
for the square-root function because the regression
factor scores are computed from estimated factor
loadings, rather than population factor loadings. It is
interesting to compare these correlations with the cor-
relations between the true factor scores and
unweighted sum scores (light pink circles). It is no
longer the case that the regression factor scores are
always more highly correlated with the true factor
scores than are the unweighted sum
Regression factor scores perform worse than sum
scores when the estimated factor loadings happen to

Scores.

"“This figure shows that variability of the correlations increases with
increasing MR. This is because it is a function of the variance in the
(randomly drawn) loadings. When MR is low, that corresponds to a draw
of 3 low loadings. When MR is high, it could be that there is one high
loading and the other two are near zero, or that there are 3 medium-
high loadings. When there is more variability in the loadings, there is
more discrepancy between the regression factor scores and the sum
scores.

be very different from their population values. For
example, if the true population loadings for y; and y,
are 0.80 and 0.10, but their sample estimates are
reversed (i.e., y; is estimated to have a loading near 0
and y, is estimated to have a high loading), the
regression factor scores will be strongly correlated
with y,, and thus weakly correlated with f. In contrast,
a simple sum score does not differentially weigh items
on the basis of their estimated loadings, so the quality
of estimated loadings does not affect its correlation
with the true factor scores.

Figure 4 displays the dark and light pink dots of
Figure 3 in a violin plot to enable a clearer comparison
across distributions. The distribution of correlations
between true factor scores and regression factor scores
is right-skewed. The average correlation between the
true and regression factor scores is higher than the
average correlation between true factor scores and
unweighted sum scores (0.82 vs. 0.79), but the variance
of the correlations between true factor scores and
regression factor scores is larger (SD = .14 vs. 0.11)."°

lllustration 4: a single “population” dataset,
2-factor model with equal loadings

When there is more than one factor in the model, the
true and estimated factor scores also differ in their cor-
relations with each other.'® We now simulate data
from a 2-factor model to illustrate the difference in the
correlation matrices of true factor scores versus regres-
sion factor scores. Here, we encounter a complicating
factor: We must choose whether to predict each factor
score with all of the indicators of the 2-factor model or
with only its own indicators (i.e., from the parameters
of a one-factor model fit to only those indicators)
(Logan et al,, 2022)."” We illustrate both approaches. In
the former approach, Equation (17) is applied to the
parameter matrices obtained from the two-factor
model, producing a weight matrix that contains non-
zero weights for all indicators of both factors (unless
the factors are uncorrelated). That is, regression factor
scores for each factor are a weighted combination of
not only the indicators of that factor, but also of the

>This result appears to be in conflict with the results of McNeish (2023).
We explore this discrepancy in Discussion.

'®Here, we focus on regression factor scores. Other types of estimated
factor scores exist that preserve correlations among the factors, but they
have other suboptimal properties (McDonald & Burr, 1967).

7In sample data, there are actually three options, because regression
factor score weights from only the indicators of that factor can be
obtained either from the 2-factor model (i.e., by subsetting the model
matrices) or from a 1-factor model. These two approaches will result in
different estimates, but when the larger model is correct, these methods
are asymptotically the same.
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Figure 4. Correlations between true and estimated factor scores, and between true and unweighted sum scores in lllustration 3:
1-factor models with varied loadings, parameters estimated from N = 200. Note. f = true factor scores, f = estimated factor
scores, and y, = unweighted sum scores. Population covariance matrices are generated from a 1-factor model with standardized
factor loadings drawn randomly from U[.2, 1], and sample data of size N =200 drawn from a multivariate normal distribution.

Regression factor scores are obtained using Equation (16).

indicators of the other factor. These regression factor
scores have the property of maximal reliability. To
obtain estimated factor scores using only the indicators
of each factor, we use the model matrices correspond-
ing to one-factor models for each factor. Prediction
based on a subset of predictors will naturally result in
lower R-squared (reliability); However, this is still max-
imal reliability for the smaller set of indicators.

We simulated data from a 2-factor model with 3
indicators per factor, where each observed variable has
a factor loading of 0.60 and an error variance of 0.64,
the factors f; and f, have variance 1, and the correl-
ation between the factors is .30. We again generated
data that were perfectly described by the population
model, and we fit (a) a 2-factor model to the data, and
(b) two 1-factor models to each factor separately.
Table 2 displays the correlations among the true factor
scores (fi, f2), regression factor scores obtained from
the two-factor model (f{, f), and regression factor
scores obtained from two one-factor models (f , f,).

Even though the data were simulated to reproduce the
exact population parameters, so that the regression factor
score weights are at their population values, the correla-
tions among estimated factor scores do not match the
correlations among true factor scores.'® While the true
factor correlation is 0.30, the correlation between esti-
mated factor scores is either 0.39 (when obtained from

8This is a known problem in factor score estimation (Grice, 2001)

Table 2. Correlations among true factor scores and regression
factor scores in illustration 4: 2-factor model with known
parameters.

f, f ff ff f1 f)
f 1.00
f 0.30 1.00
ff 0.80 0.34 1.00
£ 0.31 0.86 0.39 1.00
f1 0.79 0.24 0.99 0.28 1.00
f2 0.26 0.86 032 1.00 0.20 1.00

Note. f; and f, are true factor scores, ff and f;f are regression factor
scores obtained from the 2-factor model, and fy and f, are regression
factor scores obtained from 2 separate 1-factor models of f; and f;.

the full 2-factor model) or 0.20 (when obtained from
individual 1-factor models). The actual estimated factor
scores for each person are of course different as well.
While the regression factor scores from the 2-factor
model will have higher squared correlations with the
actual factors (as given by Equation (18)) than the regres-
sion factor scores from 1-factor models (as given by 19),
in practice factor scores are typically estimated from uni-
dimensional models. For this reason, in the remaining
two illustrations, we focus on the regression factor scores
obtained from two separate one-factor models.

lllustration 5: multiple “population” datasets,
2-factor models with varied loadings

We now extend the previous illustration from equal load-
ings to randomly drawn loadings. We simulated 1000
datasets from a 2-factor model with 6 indicators, where
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Figure 5. Correlations among true factor scores, regression factor scores, and unweighted sum scores in lllustration 5: 2-factor model
with known parameters. Note. f; and f, are true factor scores, f1 and f, are regression factor scores from one factor models, and
y1+ and y,, are unweighted subscale sum-scores. Population covariance matrices are generated from a 2-factor model with 3 indica-
tors per factor, one set of 3 standardized factor loadings drawn randomly from U[.2, 1] repeated across the 2 factors, and
cor(fy,f,) = .5. Regression factor scores are obtained from separate 1-factor models, fit to each of the 2 factors, using Equation (16).

each dataset is perfectly described by a population model
with different factor loadings. To determine the parame-
ters of each population, three factor loadings are ran-
domly drawn from the uniform distribution U[0.2, 1],
and these loadings are repeated across factors (i.e., the 3
loadings for Factor 2 are identical to those of Factor 1).
The correlation between true f; and f, is always .5. The
covariance matrix of each dataset is perfectly described
by the population model.

Figure 5 shows the correlations among true factor
scores, regression factor scores from 1-factor models,
and unweighted sum scores, as a function of MR (MR is
the same for both factors because they have the same
loadings). First we examine the correlation between the
estimated factor scores for f; and f, (light pink circles,
which overlap each other so as to appear as a solid line).
While the true scores for the two factors are always cor-
related at 0.50, the correlation between estimated scores
is downwardly biased to the degree that that these
weighted composites are unreliable (i.e., as a function of
MR)—this is the famous attenuation due to unreliability,
and it again illustrates the fact that estimated factor
scores are observed composites, not actual latent varia-
bles. The correlations between unweighted sum scores
(shown as dark green diamonds) computed from the
indicators of f; and f, are also attenuated (downwardly
biased) due to unreliability, but because their reliability is
given by coefficient w and not MR, the relationship with

MR is not deterministic. In these population simulations,
the correlations between the sum scores are always at
least as attenuated or more attenuated than the correl-
ation among the regression factor scores, reflecting their
lower reliability. Lastly, the correlations of the true factor
scores with regression factor scores and with sum scores
(the dark pink squares and the light green triangles,
respectively) show the same patterns as for the one factor
model in Figure 2.

lllustration 6: multiple “sample” datasets drawn
from 2-factor models with varied loadings

In our final simulation, we modify the previous simula-
tion by adding sampling variability; that is, we draw ran-
dom samples of size N =200, without forcing the
sample covariance matrix to equal the population
covariance matrix. The population characteristics are
otherwise the same as in the previous simulation. Here,
to obtain the estimated regression weights based on a
1-factor submodel, estimates from the fitted 2-factor
model can be used, or two separate 1-factor models can
be fit to each subset of indicators, resulting in slightly
different estimates. We chose to refit the individual 1-
factor models, but when the larger model is correct,
these methods are asymptotically the same. Figure 6 dis-
plays the correlations among true factor scores, regres-
sion factor scores, and unweighted sum scores. The
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Figure 6. Correlations among true factor scores, regression factor scores, and unweighted sum scores in lllustration 6: 2-factor
models with varied loadings, parameters estimated from N = 200. Note. f; and f, are true factor scores, f1 and f, are regression
factor scores from one factor models, and y;, and y,, are unweighted subscale sum-scores. Population covariance matrices are
generated from a 2-factor model with 3 indicators per factor, one set of 3 standardized factor loadings drawn randomly from U[.2,
1] repeated across the 2 factors, and cor(f;,f,) = .5. Sample data of size N = 200 are drawn from a multivariate normal distribu-
tion. Regression factor scores are obtained from separate 1-factor models, fit to each of the 2 factors, using Equation (16).

correlations between estimated factor scores for the two
factors (light pink circles) again tend to underestimate
the true factor correlation, but there is now a great deal
of variability in the estimated values, and for higher val-
ues of MR, there are a few cases of overestimation. Sum
score correlations (dark green diamonds) are also quite
variable, with visibly more variability relative to esti-
mated factor scores for higher values of H.

The patterns of correlations between true factor
(dark pink

squares), and between true factor scores and sum

scores and regression factor scores
scores (light green triangles) replicate the results
observed for the 1-factor model in a similar scenario
(see Figure 3). Regression factor scores are, on aver-
age, more strongly correlated with true factor scores
than sum scores are (mean correlations = .83 and
0.79), but are also more variable (standard deviations
= .13 and 0.10).

Discussion

The goal of this article was to make more intuitive
the distinction between true and estimated factor
scores. Using an analogy with estimated values in
regression, we clarified that estimated factor scores are
never equal to the true factor scores, and that their
proximity to true scores is a function of the amount
of measurement error in the set of indicators (Rigdon
et al, 2019), as captured by MR. Focusing on

regression factor scores, we showed that estimated fac-
tor scores differ from true factor scores in terms of
individual values, overall variance, and correlations
with each other. These differences exist even when the
model parameters are known.

Estimated factor scores do not approach true
factor scores with increasing sample size

It may seem plausible that estimated factor scores
would approach factor scores as the sample size goes
to infinity, but they do not. When researchers work
with large samples or when methodologists generate
simulated data and use the regression method to get
factor score estimates, they may mistakenly think they
are dealing with estimated values that are as good as
actual factor scores. However, our analogy with
regression has aimed to highlight that model error (in
regression) and measurement error (in factor analysis)
are distinct from sampling error. In the simple case of
a single predictor (of either an observed or a latent
variable), if the standardized population regression
coefficient is not 1, that means there is some model
error (variation around the regression line), and esti-
mated values are never the same as the actual values,
no matter how much data one has. In the case of a
factor model, the regression plane defined by the
observed variables will be a sub-space of the larger
latent variable space, defined by the errors and the
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Figure 7. Correlations between true and estimated factor scores, and between true factor scores and unweighted sum scores, for
high vs. low loadings. Note. f = true factor scores, f = regression factor scores, y, = unweighted sum scores. Population factor
loadings in the “high loadings” condition are {.40,.50,.65,.80,.85} and those in the “low loadings” condition are
{.05,.15,.25,.35,.40}. Each distribution describes results from 1000 sample draws (N = 250) from the same population. A full
description of the simulation, including cutpoints used to discretize each observed variable, can be found in McNeish (2023), and

code for this figure can be found at https://osf.io/a68wm/.

factors. This is the difference between sampling error
(the kind that disappears with sample size) and meas-
urement error or model error (the kind that doesn’t).

Different methods of estimating factor scores result
in slightly different properties. We have focused on
regression factor scores because they are the default
method of factor score estimation in popular software,
but some of the issues highlighted in our simulation
results will differ as a function of factor score estima-
tion method. For example, Logan et al. (2022) recom-
mended using ten Berge estimates (Krijnen et al,
1996; Ten Berge et al., 1999), which are estimated
from a multi-factor model and have the property that
correlations among the estimated factor scores are
equivalent to those among the latent variables. For
these estimates, therefore, the distortions presented in
Table 2 should be eliminated. While this is a nice
property, only regression factor scores enjoy the prop-
erty of maximum reliability, which is lost if other
methods are employed. However, while factor score
prediction methods differ in which properties are
optimized in the estimated scores (McDonald & Burr,
1967), all methods share the same basic limitation
that they cannot account for the missing dimension(s)
on which the true factor scores lie. That is, all esti-
mated factor scores are observed composites, and they
cannot fully account for the information contained in
the latent variables they try to approximate, no matter
the sample size.

However, there does exist a limit in which esti-
mated factor scores will approach factor scores: If the
number of indicators goes to infinity, estimated factor
scores approach true factor scores (or, in another
sense, factors become principal components; Bentler
& Kano, 1990). Another limit also exists, although it
is admittedly less useful in practice: As we showed via
simulation, holding the number of indicators constant,
factor score estimates will approach true factor scores
as their reliability (i.e., MR) approaches 1. For this
coefficient to approach 1, it is not required that all
indicators become more precise, but in fact, only one
increasingly precise indicator is required. The need
for just one good indicator is a useful reminder that
in the reflective measurement model, all indicators
carry the same information such that a single perfect
indicator is better than 100 unreliable ones. That is,
the reflective model does not allow different indicators
to capture unique facets of a latent variable (Bollen &
Bauldry, 2011).

We have focused on regression factor scores in this
article.

Do regression factor scores outperform
unweighted sum scores?

While the comparison of different observed compo-
sites was not our direct focus here, given recent resur-
gent interest in properties of sum scores (e.g.,



McNeish, 2023; Widaman & Revelle, 2023), we have
also investigated the accuracy and stability of regres-
sion factor scores relative to unweighted sum scores.
Our illustrations confirmed that when the population
measurement model parameters are known, regression
factor scores outperform unweighted sum scores, as
measured by higher resulting correlations with the
true factor scores. These differences will be most pro-
nounced when the population loadings are highly het-
erogeneous, because when loadings are equal,
regression factor scores (estimated from one-factor
models) and unweighted sum scores become colinear.
However, the property of maximal reliability holds
only in the population, and in sample data where fac-
tor loadings are estimated rather than known, regres-
sion factor scores can perform better or worse than
unweighted sum scores, depending on how close the
estimated factor loadings are to their population val-
ues, which in turn depends on the mean and variance
of the true factor loadings, as well as on the sample
size.

Some of these results seemingly contradict those of
McNeish (2023), who found that regression factor
scores always outperform unweighted sum scores. The
primary difference between our simulation designs is
that we sampled from a wider range of factor loadings
that included much lower values. For example,
McNeish (2023) drew samples of size N = 250 from a
1-factor model with 5 indicators and loadings of
{.40, .50, .65, .80, .85} and found that not only was the
average correlation between true and estimated factor
scores higher than that between true factor scores and
sum scores (0.89 vs. 0.87), but that the variance of
those correlations was also slightly lower (SD = .011
vs. 0.015). We replicated these findings and extended
them by adding a condition with substantially lower
factor loadings of {.05,.15,.25,.35,.40}. Figure 7 dis-
plays the distribution of correlations from the original
and the modified set of factor loadings. In the low
loadings condition, the correlation between true and
estimated factor scores was lower on average than the
correlation between true factor scores and unweighted
sum scores (0.20 vs. 0.47) and had a much larger vari-
ance (0.36 vs. 0.05). While factor loadings in the range
of 0.05 to 0.40 are not common, this extreme condi-
tion demonstrates that the relative performance of
sum scores and estimated factor scores depends dra-
matically on the reliability of the observed indicators.
Uanhoro (2019) examined a broader range of condi-
tions and suggested that when there is a great deal of
uncertainty in the model (e.g., when factor loadings
are lower and when sample size is smaller),
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unweighted sum scores outperform estimated factor
scores. In addition, sample estimates of MR (reliability
of regression factor scores) have been found to be
more positively biased than sample estimates of coefti-
cient omega (reliability of sum scores) in such condi-
tions (Aguirre-Urreta et al, 2019). Lastly, while the
details of these arguments are not our focus here, we
note that there may be other reasons researchers may
prefer sum scores over predicted factor scores as the
observed composite of choice, such as consistent
weights across samples (e.g., Widaman & Revelle,
2023).

Recommendations for practice

The most obvious alternative to computing estimated
factor scores and carrying those forward to a subse-
quent analysis is to keep variables latent by doing all
analysis in the context of SEM. But SEM is not always
the best approach. For example, the full model may
be too large or complex to estimate on the available
sample, or individuals’ estimated factor scores are of
direct interest. In these cases, estimated factor scores
can be a viable approach, but it is important to keep
in mind that they differ from true factor scores. So
long as their reliability is less than perfect (which will
virtually always be the case in practice), estimated fac-
tor scores will not equal true factor scores. Depending
on estimation method, their correlations with each
other may be biased estimates of the corresponding
correlations among true factor scores, even in the
population. For all factor score estimation methods,
the correlations of factor score estimates with other
variables external to the measurement model will
always be biased (i.e., attenuation due to unreliability)
(McDonald & Burr, 1967). In theory, regression factor
scores are superior to simple unweighted sum scores,
because they are closer to true factor scores than any
other composite could be. In practice, this optimal
property is threatened by sampling variability—in
small samples and with low factor loadings, it can be
safer to use unweighted sum scores than to rely on
imprecisely estimated factor loadings to derive regres-
sion factor scores (Uanhoro, 2019; Widaman &
Revelle, 2023).

Conclusion

There is a great deal of confusion among practitioners
of factor analysis about the difference between esti-
mated factor scores and actual scores on a latent vari-
able. While many technical presentations on this
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distinction exist, here we have attempted to present a
relatively less technical and intuitive explanation of
the difference between estimated and true values on
the latent variable. We urge both researchers and
methodologists to take care to clarify what they mean
by “factor scores” when using this shorthand in
papers; in the vast majority of cases, they mean
“estimated factor scores” when discussing values
obtained from observed data, and not the actual
scores on the latent variable.
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Appendix A. Factor score indeterminacy

In this appendix, we provide a geometric illustration of fac-
tor score indeterminacy. Figure Al shows the difference
between predicting observed variables and estimating factor
scores. In this figure, variables are represented by vectors,
and correlations between variables are cosines of angles
between the vectors (e.g., Wickens, 2014). In the left panel,
the variable x is predicted by the variable y. Both x and y
have well-defined correlations (i.e., well-defined angles)
with any third variable (here, one such variable, z, is
shown), because all are observed variables. In the right
panel, the latent variable f is predicted by the observed vari-
able y (y may be a linear combination of a set of observed
variables, e.g., y is proportional to f). However, because f is
entirely latent, we only know the exact location of y and the
length of the residual (ie., amount of prediction error, in
the case of regression factor scores), but not its location.
Stated equivalently, we know the angle between f and y (its
cosine is maximum reliability, or reliability of the regression
factor scores), but there are infinitely many locations where
f could be that have the same angle with y. Four possible
locations for f are shown, but any vector running along the
wall of this “hyper-cone” (or, any vector that ends on the
circle) would be a legitimate alternative representation. We
include the variable z in this representation to make clear
that different possible locations of F will have somewhat
different correlations (angles) with z, if no other assump-
tions are made about z. Two such angles are shown for f;
and f,.

This consequence of factor score indeterminacy—that
correlations between the latent variable and external varia-
bles are undefined—also has implications for identification
of latent variable models that include associations between a
given latent variable and other variables (beyond its
observed indicators), whether latent or observed. For
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X

} a (cosa = pxz)

cospy = PF,z/ cosf, = PF,z

Figure A1. A geometric illustration of the difference between predicting an observed variable and predicting a latent variable (fac-
tor score estimation), illustrating factor score indeterminacy. Note. Left: An observed variable x is predicted from another observed
variable, y (the prediction x is colinear with y and the dotted line represents the residual). Because x is observed, its location in
space is known, not only relative to y but also to any third variable z (one such z is shown; its correlation with x is the cosine of
its angle with x). Right: A latent variable f is predicted from an observed variable y (or a best linear combination of observed varia-
bles), resulting in the prediction f (the blue vector, colinear with y). The exact location of f is not known, and four possibilities are
shown (f; to f;); they all result in the same orthogonal projection onto the line colinear with f, and all dotted lines represent the
residuals from these projections (all of the same length; this squared length gives the amount of residual variance). Infinitely many
fs are possible, one for each point on the circle around f, with the radius given by the length of the residual. These different fs
have different correlations with an arbitrary third variable (z), because they have different angles with z. Two such angles are
shown. The less factor indeterminacy there is, the smaller the radius of the circle (the shorter the residual vectors) and the more
similar are the angles between different fs and z.

example, if an observed variable z is added to the 1-factor
model, its correlation with the latent variable would not be
uniquely defined if z is also permitted to correlate with the
measurement errors of all the indicators of f, leading to lack
of identification for the latent variable model. However, if z
is assumed to be orthogonal to all the measurement errors,
its correlation with f becomes estimable, as this assumption
reduces the dimensionality of the “hyper-cone” of possibil-
ities for the location of f (see Figure Al). Admittedly show-
ing orthogonality between z and measurement errors is
difficult and is not attempted in this figure. It is difficult
because in the three-dimensional simplification, which is
what is attempted in Figure Al, a vector orthogonal to the
residuals from factor score prediction will have to be shown

Appendix B: Simulation code

This appendix describes how to use the R package lavaan
(Rosseel, 2012) to simulate the data used in Illustrations 1
and 4, as well as how to extract and examine regression fac-
tor scores and examine their properties. Illustrations 2, 3, 5,
and 6 are straightforward extensions of 1 and 4. Full R code
to reproduce all illustrations and figures can be found at
osf.io/a68wm/.

We first generate a simulated dataset of size N = 100
from a 1-factor model with three variables in the R package
lavaan (Rosseel, 2012). The syntax to generate data only on
observed variables would be as follows, where we specify
each model parameter explicitly for maximum clarity:

as colinear with y (and f), but in a high-dimensional space
this does not have to be the case. The assumption of
orthogonality with the measurement errors is traditionally
made by the approaches of “factor score regression” (e.g.,
Croon, 2002; Devlieger & Rosseel, 2017): In this family of
methods, one regresses the criterion (say z) on estimated
factor scores obtained from a latent variable model, and
then corrects the regression coefficient for predicting z from
f for bias; this correction assumes that z and f are orthog-
onal controlling for f.

set.seed (123)
genmod0 < -
F=~0.6%Y1+0.6%Y2+0.6%Y3
Y1 ~~ 0.64%Y1
Y2 ~~ 0.64%Y2
Y3 ~~ 0.64%Y3
F ~~ 1*F
datal < - simulateData (genmod0, sample.
nobs=100)
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This method produces values on the observed variables only, which we see by examining the first few rows of the simu-
lated data:

> round (head (data0) , 3)

Y1l Y2 Y3
1 0.916 —1.057 1.414
2 0.823 —0.657 0.356
3 —1.413 —1.028 —1.100
4 —0.022 —0.433 0.295
5 —0.757 0.096 0.368
6 —1.509 —0.993 —1.39%4

This is because when simulating observed data from a factor model, the approach implemented in SEM software such as
lavaan is to use the user-supplied model parameters to produce a model-implied covariance matrix of observed variables,
and then use a multivariate normal data generation method (e.g., Venables & Ripley, 2013) to draw a sample of observations
from a multivariate normal distribution with that matrix as the population covariance matrix.

Because our goal is to compare estimated factor scores to true factor scores, this method does not work for us. We want
the generated datasets to include participants’ scores on both observed and latent variables. To generate the values on f as
well, we set up the model as a system of regression equations of indicators y on the latent factor f, so the latent variable is
treated as observed. That is, instead of using the operator =~ , which indicates the creation of a latent variable on the left
by observed variables listed on the right, we use the usual regression operator ~ , as follows:

set.seed(123)

genmodl < -
Y1 ~ 0.6%F+1*E1
Y2 ~ 0.6%F+ 1*E2
Y3 ~ 0.6%F+1*E3
Y1l ~~ 0.64%Y1
Y2 ~~ 0.64*Y2
Y3 ~~ 0.64*Y3
F ~~ 1*F

\

datal < - simulateData (genmodl, sample.nobs =100, empirical =TRUE)

We can now view the first 6 rows of data to see that the dataset simulated in this way contains not only the observed var-
iables but also the common factor f as well as the residuals el-e3:

> round (head (datal), 3)

Y1l Y2 Y3 F El E2 E3
1 0.720 1.762 —1.638 0.537 0.025 —0.004 —0.433
2 —0.490 0.215 —-2.078 —0.990 —0.385 0.404 —0.153
3 —1.687 1.166 0.094 —-0.831 —-0.171 0.956 —0.296
4 =0.223 1.095 1.337 —0.543 —0.034 0.922 1.430
5 —-0.725 0.345 —0.486 1.300 —1.387 —0.063 —-0.721
6 —2.661 —1.196 —1.157 —1.750 —0.642 = 0,291 —0.630

In this syntax, we have also specified empirical = TRUE, which means that the sample covariance matrix of the result-
ing dataset will be exactly equal to the population model implied covariance matrix. This means that all estimated model
parameters from this sample will be equal to true parameters, and there is no sampling error. To see this, we can compute
the sample covariance matrix for the dataset:

N=dim(datal) [1]
S=cov(datal)*(N-1) /N

and then view it:

> round (S, 3)

Y1 Y2 Y3 F E1 E2 E3
Y1l 2.00 0.36 0.36 0.6 1 0 0
Y2 0.36 2.00 0.36 0.6 0 1 0
Y3 0.36 0.36 2.00 0.6 0 0 1
F 0.60 0.60 0.60 1.0 0 0 0
El 1.00 0.00 0.00 0.0 1 0 0
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E2 0.
E3 0.

We can see that the correlations among observed variables are equal to the product of the corresponding loadings (each
is 0.6), and the variances of the observed variables are 1 (= .62 + .64), because that is the sum of the squared loading and
the error variance. The correlation between the factor and each indicator is equal to the corresponding factor loading. This
is the method we used to generate “population datasets” in Illustrations 1, 2, 4, and 5. In Illustrations 3 and 6 where sam-

.00
.00

(el e]
o O

pling variability is introduced, we simply omitted empirical = TRUE.

To obtain regression factor scores, we first fit a 1-factor model to the generated observed data and then use the

lavPredict () function:

datal.obs < - datal[, c("Yl","vy2","Y3")]
modl < - ‘F =~ Y1 4Y24Y3

\

fitl < - cfa(modl, datal.obs, std.lv=TRUE)
#append estimated factor scores to data generated from latent variable model:
datal[, "Fpred"] < - as.numeric (lavPredict (fitl, method = "regression"))

We can then examine the first 6 rows of data to see these estimated factor scores:

> round (head (datal), 3)

Y1l
0.720
—0.490
—1.687
=0,223
—-0.725
—2.661

o Ul W

RO RkRoR

Y2

.762
.215
.166
.095
.345
.196

Y3

=1,
=2
0.
1
=0,
=1,

638

.078

094

.337

486
157

F

0.
=0,
-0.
=00,

i,
=1,

537
990
831
543
300
750

0.
=0,
-0.
=0,
=1,
=0.

El

025
385
171
034
387
642

E2

=0,

0.
0.
0.
=0,
=0.

004
404
956
922
063
291

E3

=0,
=0.
-0.

1
=0,
=0.

433
153
296

.430

721
630

Fpred

0.
=0.
-0.

0.
=0.
=1,

186
519
094
487
191
106

The following code shows how to replicate these estimated values printed by lavaan using Equation (16).

#Note: Phi=1 because there is only one factor

Lambda =lavInspect (fitl, what = "coef")Slambda #matrix of loadings

Theta=1lavInspect (fitl, what = "coef")Stheta #matrix of residual variances

W=t (Lambda) %*% solve (Lambda %*% t (Lambda) + Theta) #equation 15
Fpred.manual < - as.numeric (W %*% t (datal.obs))

We can view the first six values to confirm that they match the values shown in the previous chunk of output:

> round (Fpred.manual[l:6], 3)

[1] 0.186

Comparing the true factor scores in the column labeled *F’ and the estimated (regression) factor scores in the column
labeled ‘Fpred’, it is clear that they are quite different values. Their aggregate properties are also quite different. Below is

—0.519

—0.094

0.487

their variance-covariance matrix, as well as their correlation:

> round (var (datal[, c("F",
F Fpred

F 1.010

0.401

Fpred 0.401 0.401
> round (cor (datal[, c("F",

F
F 1.00
Fpred 0.63

Fpred
0.63
1.00

"Fpred")]), 3)

"Fpred")]), 3)

—-0.191

—1.106
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In the second example (Illustration 4), we simulate data from a model with two latent factors.

set.seed(123)

genmod2 < -
Y1 ~
Y2 ~
Y3 ~
Y4 ~
Y5 ~
Y6 ~

.6*F1
.6*F1
.6*F1
L7T¥F2
.7*F2
.7*F2

O O O O O o

.64%Y1
.64%Y2
.64%Y3
.51*v4
.51*Y5
.51*Y6

Y1 ~~
Y2 ~r~
Y3 ~r
Y4 ~~
Y5 ~~
Y6 ~r

O O O O O o

Fl ~~ 1*F1+0.3*F2

F2 ~~ 1%F2
data2 < - simulateData (genmod2, sample.nobs =100, empirical =TRUE)
data2.obs < - data2[, 1:6]

As we explain in the main text, if Equation (16) is applied to a multi-dimensional factor model (2 or more factors) then
the regression factor scores for each factor will be a weighted sum of not only the indicators of that factor, but also those of
other factors. To get estimated values that are a function of only the indicators of that factor, the elements of Equation (16)
must be derived from the results of a 1-factor model fit to just those indicators. In the code below we show both methods.

First, in Method 1 (regression factor scores are weighted sums of indicators of all factors), regression factor scores for fi
and f, are estimated from the 2-factor model.

mod2 < - ‘Fl1 =~ Y1+Y2+Y3
F2 =~ Y4 4Y5+Y6

\

fit2 < - cfa(mod2, data2.obs, std.1lv=TRUE)
data2[, c("Fpredl.2F", "Fpred2.2F")] < - lavPredict (fit2, method = "regression")

which produces data with the following estimated factor scores:

> round (head (data2), 3)

Y1 Y2 Y3 Y4 Y5 Y6 Fl F2 Fpredl.2F Fpred2.2F
1 —-0.009 0.614 —-0.331 —-1.061 —-0.751 —2.541 —-0.108 —-1.604 —0.087 —1.508
2 0.600 1.269 —-0.453 —-0.841 -—-1.722 —-1.374 0.456 —-1.281 0.319 —1.331
3 1.235 —-0.352 0.608 —0.311 —-0.974 —-0.162 —-0.279 0.169 0.447 —0.462
4 0.011 —-1.059 —-0.793 0.725 —0.649 —-0.301 —-0.522 —0.021 —0.634 —0.130
5 0.505 0.338 —0.745 —-1.971 —-0.250 —0.429 —-0.259 —-1.135 —0.076 —0.920
6 1.850 1.118 1.254 0.897 0.394 0.984 1.288 1.420 1.528 0.911

For interested readers, below is the computation of these estimated factor scores using Equation (16):

Lambda =lavInspect (fit2, what = "coef")Slambda #matrix of loadings
Psi=1lavInspect (fit2, what = "coef")S$psi #matrix of factor correlations
Theta=1lavInspect (fit2, what = "coef")S$Stheta #matrix of error variances

W=Psi %*% t (Lambda) %*% solve (Lambda %*% Psi %*% t (Lambda) + Theta) #equation 15
Fpred.2F.manual < - W %*% t (data2.obs)
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which produces the same values as the previous code chunk:

> t (Fpred.2F.manual) [1:6, 1:2]
Fl F2
1,] —0.08656863 —1.5079484
2,1 0.31901981 —1.3307737
3,1 0.44708646 —0.4621398
4,1 —0.63448178 —0.1301551
5,1 —0.07620193 —-0.9196783
6,1 1.52847602 0.9110895

Next, in Method 2, f; and f, scores are estimated from two separate 1-factor models.

mod3 < - ‘Fl =~ Y1+4+Y2+4+Y3"

modd < - ‘F2 =~ Y4 +Y5+Y6’

fit3 < - cfa(mod3, data2.obs, std.lv=TRUE)
fitd < - cfa(mod4, data2.obs, std.1lv=TRUE)
data2$Fpredl.1f < - predict (fit3)
data2$Fpred2.1f < - predict(fit4)

round (head (data2), 3)

which produces different factor score estimates (see the right-most two columns):

> round (head (data2), 3)

Y1l Y2 Y3 Y4 Y5 Y6 Fl F2 Fpredl.2F Fpred2.2F F1l F2
1 -0.009 0.614 -0.331 —-1.061 —-0.751 —-2.541 -0.108 -—-1.604 -—-0.087 —1.508 0.095 —1.539
2 0.600 1.269 —-0.453 —-0.841 —-1.722 —-1.374 0.456 —-1.281 0.319 —1.331 0.494 —-1.392
3 1.235 -0.352 0.608 —0.311 -0.974 -0.162 —-0.279 0.169 0.447 —0.462 0.520 -0.512
4 0.011 -1.059 —-0.793 0.725 -0.649 —-0.301 -0.522 -=0.021 -0.634 —-0.130 —-0.642 —-0.080
5 0.505 0.338 —=-0.745 —-1.971 —-0.250-0.429 —-0.259 —-1.135 -=0.076 —-0.920 0.034 -0.937
6 1.850 1.118 1.254 0.897 0.394 0.984 1.288 1.420 1.528 0.911 1.473 0.805

Below is the covariance matrix of the true factor scores, which is the same as the model-estimated matrix ¥ (off by a fac-
tor of (N —1)/N), because the data were generated to reproduce the population parameters exactly:

> round (var (data2[, c("F1", "F2")]1), 3)

Fl F2
Fl 1.010 0.303
F2 0.303 1.010

Below are the covariance and correlation matrices of the estimated factor scores, both those estimated from the 2-factor
model and then those estimated from separate one-factor models:

> round (var (data2[, c("Fpredl.2F", "Fpred2.2F")]), 3)
Fpredl.2F Fpred2.2F

Fpredl.2F 0.644 0.273

Fpred2.2F 0.273 0.754

> round (cor (data2[, c("Fpredl.2F", "Fpred2.2F")]1), 3)
Fpredl.2F Fpred2.2F

Fpredl.2F 1.000 0.391

Fpred2.2F 0.391 1.000

> round (var (data2[, c("Fpredl.1lf", "Fpred2.1£f")]), 3)
Fpredl.1lf Fpred2.1f

Fpredl.1lf 0.634 0.141

Fpred2.1f 0.141 0.750

> round (cor (data2[, c("Fpredl.lf", "Fpred2.1f")]1), 3)
Fpredl.lf Fpred2.1lf

Fpredl.lf 1.000 0.205

Fpred2.1f 0.205 1.000

When estimated factor scores are obtained from 2 separate 1-factor models, the true correlation of 0.3 is estimated to be
0.2, and when estimated factor scores are obtained from a 2-factor model, it is estimated to be 0.39.
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Lastly, here are the correlations among the pairs of true factor scores and estimated factor scores:

> round (cor (data2[, "F1"], data2[, "Fpredl.1f"]), 3)
Fl

[1,]1 0.792

> round (cor (data2[, "F2"], data2[, "Fpred2.1f"]), 3)
F2

[1,]1 0.862

> round (cor (data2[, "F1"], data2[, "Fpredl.2F"]), 3)

[1] 0.798

> round (cor (data2[, "F2"], data2[, "Fpred2.2F"]), 3)
[1] 0.864

These correlations are higher for the factors that had higher factor loadings in the model specification. Whether they are
estimated from the full 2-factor vs. 1-factor models does not appear to make a difference.
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