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ABSTRACT 
In this tutorial, we clarify the distinction between estimated factor scores, which are 
weighted composites of observed variables, and true factor scores, which are unobservable 
values of the underlying latent variable. Using an analogy with linear regression, we show 
how predicted values in linear regression share the properties of the most common type of 
factor score estimates, regression factor scores, computed from single-indicator and multiple 
indicator latent variable models. Using simulated data from 1- and 2-factor models, we also 
show how the amount of measurement error affects the reliability of regression factor 
scores, and compare the performance of regression factor scores with that of unweighted 
sum scores.
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A central feature of structural equation models (SEMs) is 
their ability to represent abstract constructs (e.g., neuroti
cism, life satisfaction, executive function) as error-free 
latent variables, or factors, each measured by a set of unre
liable observed variables, or indicators (e.g., scale items). 
When they are correctly specified, SEMs produce asymp
totically unbiased estimates of the associations (e.g., corre
lations, regression coefficients) among latent variables in 
the model. In contrast, simply adding up indicators of 
each construct and then modeling the relations among 
the resulting scale scores is suboptimal because scale 
scores will still contain measurement error, and thus lack 
perfect reliability (Bollen, 1989; Cole & Preacher, 2014).1

To obtain highly reliable scale scores, it is necessary to 
have either (a) highly reliable indicators, or (b) a very 
large number of indicators with lower reliability. For 
example, one can achieve scale score reliability of 0.95 by 
having 2 items that each have reliability of 0.9, or by hav
ing 50 items with reliability of 0.27 (Spearman, 1910). 
Latent variables, in contrast, contain no measurement 
error and are perfectly reliable. But while this difference 
between scale scores and latent variables is well-known, 
some confusion remains about the extent to which the 

properties of latent variables carry over to estimated 
scores on latent variables, obtained from observed data.

The goal of this article is to explain the difference 
between estimated factor scores, which are weighted com
posites of observed variables, and actual or true factor 
scores, which are unobservable values of the underlying 
latent variable. While many technical sources discuss this 
distinction (e.g., Waller, 2023), non-technical and intui
tive presentations are lacking. Anecdotally, these concepts 
are often confused. For example, in a recent tweet by a 
researcher asking how to get the values of the latent varia
bles that generated the observed data when using the 
simulateData function in the R package lavaan 
(Rosseel, 2012), the great majority of replies provided 
instead answers for how to get estimated factor scores 
from the generated data.2 Contributing to the confusion, 
the term “factor score” is frequently used in the published 
literature without a clear definition: It may refer to the 
estimated factor scores (e.g., DiStefano et al., 2009; Grice, 
2001; Skrondal & Laake, 2001), or to the individual’s true 
standing on the latent factor (e.g., Velicer, 1976; Waller, 
2023), or to both, blurring the distinction between them. 
In this article, we will use the terms “estimated factor 
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scores” and “true factor scores” to distinguish these two 
concepts.3 Following estimation of parameters of a latent 
variable model, scores on the latent variable can be esti
mated using a variety of methods (e.g., McDonald & 
Burr, 1967), but the most common is the so-called regres
sion approach. We will refer to factor score estimates 
obtained in this way as “regression factor scores.”4

At the heart of the distinction between true and esti
mated factor scores is the very concept of a latent vari
able. In classical test theory (CTT; Crocker & Algina, 
1986), each observed score is hypothesized to be a sum 
of the true score plus measurement error. The measure
ment error is assumed to be completely random and 
uncorrelated with everything (including itself across 
repeated assessments). For example, participants may 
sometimes circle an unintended answer due to moment
ary distraction. The true score is the hypothetical score 
that would be obtained if measurement could be repeated 
infinitely often, canceling out this random error in the 
long run.5 Because it can never be observed, CTT’s true 
score represents the earliest invocation of a latent vari
able, but in a narrow sense because the “latent variable” 
could be the true length of a table or a participant’s true 
standing on a single questionnaire item.

The common factor model is a generalization of CTT 
where the latent variable, sometimes referred to as the 
common score, now symbolizes the underlying true level 
of a broader construct that gives rise to scores on mul
tiple observed indicators, or items, which measure spe
cific consequences of being high or low on this construct. 
Each observed variable is still a sum of the latent variable 
(scaled by the factor loading, capturing that different 
items have different sensitivities to changes in the latent 
construct) plus error. The error term, while still often 
referred to as ”measurement error”, now captures the 
unique variance in each item, which includes completely 
random measurement noise plus any systematic compo
nent of a response to a given item that is not due to the 

latent variable and is not shared with other items. For 
example, a response to an item about appetite on a 
depression scale may partly due in differences in metab
olism, reflecting the systematic part of a response to that 
item that is unrelated to depression. Other latent variable 
models are generalizations of the common factor model, 
containing multiple latent variables.

For the ith individual, their true factor score, fi; is sim
ply their score on the latent variable f. Because the vari
able is latent, its values for any individual are 
unknowable and cannot be obtained from the observed 
indicators; if they could be, it would no longer be a latent 
variable. On the other hand, the ith individual’s estimated 
factor score, f̂ i; is a score on a composite observed vari
able f̂ that is constructed as a weighted linear combin
ation of the observed indicators of f, where the weights 
are functions of the estimated model parameters (e.g., 
factor loadings and residual variances). As the sample 
size increases, the weights become more precisely esti
mated, and f̂ becomes a weighted linear combination of 
observed variables with known weights, rather than esti
mated weights. But a linear combination of observed var
iables cannot reproduce the scores on a latent variable, 
even if the weights are precisely known. Estimated factor 
scores will generally not equal true factor scores: f̂ i 6¼ fi;

so long as none of the observed indicators are free of 
measurement error. Unlike sampling error, measurement 
error does not go away with increasing sample size.

Methods for estimating factor score estimates differ in 
how their weights are computed from the model parame
ters. The most common type, regression factor scores, 
have the property of maximal reliability in the popula
tion. That is, if the model parameters are exactly known, 
regression factor scores get “closest” to the true factor 
scores in the sense that the squared correlation between f 
and f̂ is the maximum possible for any linear composite 
of observed variables (Bentler, 1968; Raykov, 2004). In 
this note, we clarify the distinction between estimated 
and true factor scores by drawing an analogy between 
the derivation of the regression factor scores and how 
predicted values are obtained in regression. We start 
with simple regression and compare it to a single-indica
tor latent variable model. We then move to multivariate 
regression and draw the analogy to obtaining regression 
factor scores from a multiple indicator model. We then 
describe some implications of the regression analogy. In 
the next sections, we use simulated data from a 1-factor 
model and 2-factor model to show how the amount of 
measurement error affects the reliability of regression 
factor scores; we also compare the performance of regres
sion factor scores with that of unweighted sum scores 
across these scenarios. We conclude with a discussion.

3Many authors (e.g., Maraun, 1996) prefer the term “predicted” rather 
than “estimated” factor scores. Typically, we estimate parameters of a 
distribution of random variables (e.g., model parameters such as factor 
loadings) but predict values of random variables (though some 
psychometric models have person parameters). Another term in use is 
“constructed” factor scores (Beauducel & Rabe, 2009). However, we use 
“estimated” factor scores as it is more common in the psychometric 
literature. In addition, the word “predicted” may inadvertently imply a 
particular type of factor score estimate, namely regression factor score. 
While we primarily focus on regression factor scores, many of our 
statements are more general.
4“Regression factor score estimates” would be more correct, but the term 
“regression factor scores” is shorter and is widely used; we just ask the 
reader to remember that regression factor scores are not true factor 
scores.
5Other assumptions include that participants’ memory is wiped between 
measurements, so that there are no repeated testing effects, and that the 
true score itself, representing the quantity being measured, is stable over 
time.
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An analogy with regression

Simple regression and single-indicator factor 
model

Consider two models for an observed variable y, 
where all variables are scalars:

y ¼ bx þ ϵ (1) 

y ¼ kf þ e (2) 

Equation (1) describes a simple regression model, 
where the predictor x is another observed variable.6

Equation (2) describes a factor model, where the pre
dictor f is a latent variable. In both models, the error 
term assumed to be uncorrelated with the predictor. In 
the latent variable model, f is imagined to be a cause of 
y, and the error term represents measurement error in 
the sense discussed above. While in regression causality 
cannot often be assumed, to draw a parallel with factor 
analysis, in this instance we will assume that x causes y, 
and we will call the error term ϵ model error. Then, 
mathematically, the factor model can be viewed as a 
peculiar kind of a causal regression model where all 
scores are missing on the predictor.

The fact that x is in the dataset, whereas f is not, 
has two implications. First, the model parameters b 

and k in Equations (1) and (2) are estimated differ
ently. In a regression model, an estimate of b can be 
obtained straightforwardly from the data on x and y. 
In a factor analysis model, an estimate of k can only 
be obtained if we are able to find other observed vari
ables that are also predicted by f. That is, we will need 
to extend the model from a single variable y to mul
tiple observed indicators y; which we will do in the 
next section. In this section, we will assume that 
model parameters are known, so differences in estima
tion between the regression and the factor model are 
not relevant, and y is a single observed indicator.

The second implication is more esoteric and is 
known as the problem of factor score indeterminacy 
(Maraun, 1996). Briefly, because the values on f are 
not observed for any person, there are multiple 
latent variables that can fit the description given by 
Equation (2), even if k is exactly known. The most 
important practical consequence of this indetermin
acy is that the correlations of these different possible 
fs with other variables external to the model (say z) 
will be different, unless further assumptions are 
made (e.g., that z and e are uncorrelated). Stated dif
ferently, the precise location of the latent factor f, 

when viewed as a vector in the variable space that 
includes other variables (Wickens, 2014), is not fully 
known, which implies that its correlations with other 
variables are to some degree indeterminate. The 
indeterminacy issue does not affect our analogy, so 
we set it aside for now but give a fuller explanation 
in Appendix A.

We now use the analogy between the models in 
Equations (1) and (2) to explain the concept of regres
sion factor scores, which are the most popular type of 
factor score estimates. Because the latent factor is the 
predictor in Equation (2), attempting to estimate 
scores on f by predicting them from the indicator y is 
analogous to predicting individuals’ values on the pre
dictor x from their values on the outcome variable y 
in regression. To make this prediction, we need to 
invert the regression equation in 1, as follows:

x ¼ b�yþ ϵ�, (3) 

where the error term is different from that in Equation 1
because it now must be orthogonal to y and not to x. 
Because this inverse model is no longer causal, we will 
call this error term prediction error. Importantly for our 
analogy, if the parameters of the original regression 
model are known, the parameters of the inverse regres
sion model are also known. In fact, when x and y are 

standardized, b ¼ b�: More generally, b� ¼ b

ffiffiffiffiffiffiffiffiffi
varðxÞ
varðyÞ

q

;

where varðyÞ ¼ b2varðxÞ þ varðϵÞ; that is, we are able to 
write the inverse regression coefficient in terms of the 
parameters of the original regression model (which 
include predictor variance and error variance). Then, for 
an individual with a known score on y, we can predict 
their score on x as x̂i ¼ b�yi: This predicted value will 
not equal the actual (unknown) value xi for that individ
ual, even if the population value of b� is known. Figure 1
(left panel) shows the discrepancy between actual xi and 
x̂i: Because the values of x and y are observed for at least 
some individuals in the sample, the value of the residual 
or the error of prediction can also be obtained for those 
individuals simply by subtracting x̂i from xi:

To estimate factor scores using the regression 
method, we write the corresponding inverse regression 
model as follows:

f ¼ k�yþ e�, (4) 

where again the error term is different from the one 
in Equation (2) because it now must be orthogonal to 
y. Since this equation is no longer causal but is just a 
prediction equation, e� is prediction error, not meas
urement error (McDonald, 2011). This is the model 
from which regression factor scores are obtained. 
While all values on f are missing for everyone, the 

6Item intercepts are omitted for simplicity. We assume a random 
regression model.
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prediction is done in the same way as in regression. 
For an individual with a score yi; we can predict their 
true factor score with f̂ i ¼ k�yi; which is their regres
sion factor score. Then, completely parallel to regres

sion, k� ¼ k

ffiffiffiffiffiffiffiffiffi
varðf Þ
varðyÞ

q

; where varðyÞ ¼ k2varðf Þ þ varðeÞ:
Because the latent variable does not have assigned 
units, we set varðf Þ ¼ 1 for identification; therefore, 
k� ¼ kffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2þvarðeÞ
p : We have solved for the weight k�

needed to obtain the regression factor score in terms 
of the parameters of the original factor model.

Figure 1 (right panel) illustrates that, just as in 
regression, the predicted values, i.e., the regression factor 
scores, will always fall on the regression surface (here, a 
line), and therefore will not equal the true factor scores. 
However, unlike in regression, factor score indetermin
acy means that it is not possible to obtain or estimate 
residuals for anyone, because no values of fi are observed. 
The four different colors of points in this figure show 
four sets of possible factor scores that could have given 
rise to the observed values of y, but an infinite set of fac
tor scores are possible. Further, this two-dimensional 
plot does not capture the fact that we also do not have 
enough information to “ground” the location of these 
residuals in a higher-dimensional space involving other 
variables. If we were to expand this figure to three 
dimensions by adding a third axis for some other vari
able z, we would not have the information on how to 
position the plane defined by y and f relative to the axis 
defined by z. Thus, the factor model allows us to estimate 
the correlations between the factor and its indicators, but 
we lack precise information on how the factor is related 
to any variables that are not in the model.

Multivariate regression and the factor model

In the previous section, we have worked with a single- 
indicator factor model with known parameters for sim
plicity. In reality, latent variables require multiple indica
tors if model parameters are unknown and are to be 
estimated. As well, it is common to have multiple latent 
factors. In this section we will assume that there are k 
latent variables (although the most common case for fac
tor score estimation remains k ¼ 1), and each latent vari
able ft (t ¼ 1, :::, k) has at least three indicators, for a 
total of p observed variables.7 The appropriate regression 
analogy is then to multivariate regression, where there 
are multiple predicted variables (to parallel multiple indi
cators of a factor) and potentially multiple predictors as 
well (to parallel one or more latent factors). We now 
develop this analogy; however, this section can be skipped 
by more applied readers without loss of continuity.

The multivariate regression model is given by:

y ¼ Bx þ ϵ, (5) 

where y is now a p� 1 vector of criterion variables, x 
is a k� 1 vector of predictor variables, B is the p� k 
matrix of regression coefficients, and ϵ is a p� 1 vec
tor of model errors. We can use covariance algebra 
(e.g., Bollen, 1989) to obtain:

covðy, xÞ ¼ covðBx þ ϵ, xÞ ¼ Bcovðx, xÞ ¼ BvarðxÞ, 

and it follows that

B ¼ Ryx R−1
xx , (6) 

Figure 1. Discrepancy between observed and predicted values in simple linear regression, and between latent and predicted val
ues in factor analysis. Note. In the left plot, the circled point is the observed value of xi: In the right plot, the four circled points 
are four possible values (out of an infinite number of possible values) of fi: Neither the observed value of xi nor the possible val
ues of fi are equal to the predicted values x̂ i and f̂ i; which fall on the regression lines.

7We assume this for simplicity. Factor models can be estimated with 
fewer indicators than three under additional constraints or within a 
context of larger models (k > 1 with factor correlations.
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where Ryx ¼ covðy, xÞ and Rxx ¼ varðxÞ: To see the 
parallel to the factor model, we also note the model- 
implied covariance structure for y implied by the 
regression model:

Ryy ¼ varðyÞ ¼ BvarðxÞB0 þ varðϵÞ ¼ BRxxB0 þWϵ,
(7) 

where varðϵÞ ¼ Wϵ: We will use this equation shortly.
To predict scores on x from the scores on y, we 

need the inverse regression model:

x ¼ B�y þ ϵ�, (8) 

It follows by the same mathematics (i.e., covariance 
algebra) that the k� p matrix of inverse regression 
coefficients B� is given by

B� ¼ RxyR
−1
yy : (9) 

We can use Equations (6) and (7) to obtain an 
expression for B� in terms of B:

B� ¼ RxxB0R−1
yy ¼ RxxB0ðBRxxB0 þWϵÞ

−1
: (10) 

The matrix of original coefficients B will be analo
gous to the matrix of factor loadings, and the matrix 
of inverse regression coefficients B� will be analogous 
to the matrix of optimal weights used to obtain 
regression factor scores.

Lastly, it will also be helpful to draw an analogy 
between the coefficient of determination in regression 
(i.e., R-squared), and reliability or “construct repli
cability” (Hancock & Mueller, 2001) in a factor model. In 
regression, the R-squared gives the proportion of variance 
in each criterion variable explained by the predictors, or, 
equivalently, it is the squared correlation between the cri
terion variable and its predicted value. We will only give 
the R-squared expressions for the inverse regression in 
Equation (8). The proportion of variance in each variable 
xt (t ¼ 1, :::, k) explained by the variables in y is

R2
t ¼

varðb�
0

t yÞ
varðxtÞ

¼
b�
0

t varðyÞb�t
varðxtÞ

, (11) 

where b�
0

t is the tth row of B�: Equation (10) can be 
used to further re-write this expression in terms of 
the original regression weights B:

We now state parallel expressions to Equations 
(5)–(11) for the factor model. They only involve a 
change in notation. The factor model is

y ¼ Kf þ e, (12) 

where y is a p� 1 vector of indicators, f is a k� 1 
vector of latent factors, and K is the p� k matrix of 
latent regression coefficients, i.e., factor loadings. The 
expression parallel to Equation (6) is:

K ¼ RyfU
−1, (13) 

where Ryf ¼ covðy, fÞ and U ¼ varðfÞ: Unlike in 
regression, however, this expression cannot be used 
directly to obtain K because Ryf involves unknown 
correlations between observed and latent variables. 
The parallel expression to Equation (7) is:

Ryy ¼ KUK0 þW, (14) 

where W ¼ varðeÞ; which is the familiar covariance 
structure under a factor analytic model. Model esti
mates for the parameters on the right-hand side can 
be obtained by fitting this model to the sample covari
ance matrix of y: Once the model has been fit, we 
have the matrices K; U; and W (or their estimates).

To obtain regression factor scores, we invert the 
regression implied by the factor model:

f ¼Wy þ e�, (15) 

where W is the k� p matrix of weights.8 To obtain 
regression factor scores, we use the expression parallel 
to Equation (9):

W ¼ RfyR
−1
yy : (16) 

Only the model in Equation (12) can be estimated 
from the data, and the inverse model in Equation (15)
cannot be fit directly. This is the main difference between 
regression and factor analysis models. Therefore, to com
pute the regression factor score weights W; we express 
W in terms of the parameters of the original fitted factor 
model, parallel to the expression in Equation (10) for 
regression:

W ¼ UK0R−1
yy ¼ UK0ðKUK0 þWÞ

−1 (17) 

The k� 1 vector of estimated (regression) factor 
scores for the ith individual can be obtained as f̂ i ¼Wyi;

where yi is the p� 1 vector of their scores on y:
Estimated (regression) factor scores f̂ ¼Wy are random 
variables that are just weighted linear composites of the 
observed variables.9 In the case of a 1-factor model 
(k ¼ 1), f̂ is a scalar (a single score for each person), 
whereas y is a vector of p observed variables, so W 
reduces to a 1� p row vector of optimal weights for each 
variable. For multi-factor models, each row of W gives 

8For consistency, we could have called it K�; but W is a much more 
common notation.
9Two other types of factor score estimates use the original, rather than 
the inverted, regression line to reverse-engineer estimates of latent 
variable scores from the observed values of y: Under the “idealized 
variables” approach, f̂ I ¼ðK

0KÞ
−1

K0y; and under the Bartlett approach, 
which assumes the regression errors are heteroscedastic, 
f̂ B ¼ðK

0W−1KÞ
−1

K0W−1y: An expression connecting regression and 
Bartlett factor scores is f̂ B ¼ðIk þK0W−1KÞ

−1
U−1 f̂ : In the case of the 1- 

factor model (k ¼ 1), they are proportional.
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optimal weights for obtaining a different weighted com
posite of the variables in y to best capture each factor.10

The R-squared values for the inverse regression in 
Equation (15) will give the proportion of variance in 
each latent variable ft (t ¼ 1, :::, k) explained by all the 
observed indicators y, or equivalently, the squared 
correlation between each latent variable ft and its pre
diction, i.e., the tth regression factor score f̂ t: The 
squared correlation between the latent variable and 
the observed composite designed to measure it is also 
known as reliability. In the population, regression fac
tor scores have the property of maximal reliability: 
That is, no other weighted linear composite of 
observed variables y can have a higher squared correl
ation with the latent variable. For this reason, we will 
use the abbreviation “MR” to refer to these R-squared 
values. Parallel to Equation (11), they are given by:

MRt ¼ R2
t ¼

varðw0tyÞ
varðf tÞ

¼
varðw0tyÞ

1
¼ w0tvarðyÞwt

¼ /0tK
0R−1

yy K/t ,

(18) 

where w0t ¼ /0tK
0R−1

yy is the tth row of W (see 
Equation (17)) and /t is the tth row (or column) of 
U: As a reminder, the variance of each latent variable 
is set to 1 for identification. The square-roots of the 
values in Equation (18) have also been called factor 
determinacy (FD) indices (Grice, 2001; Rodriguez 
et al., 2016).

In the special case of the 1-factor model, the 
expression in Equation (18) simplifies to the following 
formula:

MR ¼ k0R−1
yy k ¼ ðk0kk0 þWÞ

−1
k, (19) 

When W is diagonal, the resulting further simpli
fied version of Equation (19) has also been labeled as 
“construct replicability” or “coefficient H” (Hancock 
& Mueller, 2001), but we will refer to it always as 
maximal reliability (MR).

Implications of the regression analogy

The analogy with regression has a number of implica
tions for understanding factor score estimation. We 
will continue to focus on regression factor scores, but 
our discussion applies more generally, since other factor 
score estimates will have worse prediction properties. 
First, as the sample size grows, estimation or prediction 

of factor scores only improves up to a point. A larger 
sample size will ensure that the estimated model 
parameters (such as factor loadings) become increas
ingly precise estimates of their population values, and 
that the factor score estimates are computed using an 
increasingly accurate set of weights (in the case of 
regression factor scores, these are optimal weights). In 
other words, sampling error decreases. But increasing 
sample size will never remove model error in regression 
(i.e., ϵ in Equation (1)) or measurement error in factor 
analysis (i.e., e in Equation (2)). To the extent that 
there is model error in regression, x does not explain 
all of the variation in y; and the values of the predicted 
variables will not fall exactly on the regression surface 
defined by the predictors, in either the original or the 
inverse regression equation. Similarly, in factor analysis, 
the true factor scores will not fall exactly on the inverse 
regression surface defined by the observed variables to 
the extent that there is measurement error in all of the 
observed variables (i.e., f does not explain all of the 
variation in y).

The coefficient of determination (R-squared) can 
be used to quantify the success of prediction in both 
regression and factor analysis. R-squared is the 
squared correlation between the predicted value 
(which is a weighted linear combination of the predic
tors) and the criterion. For the 1-factor model, the 
R-squared for predicting regression factor scores from 
the observed variables is called maximal reliability 
(MR; see Equation (19)). It is equal to the squared 
correlation between the best linear combination of the 
observed variables (i.e., the regression factor scores), 
and the true scores on the latent variable. We will 
compute MR for the illustrations in the next section.

A second implication of the analogy with regres
sion is that as prediction error decreases, regression 
factor scores approach true factor scores. Prediction 
error decreases as individual indicators become more 
reliable (measurement error for some or all indicators 
decreases in the original model, or equivalently stand
ardized loadings increase) and/or as the set of indica
tors becomes large. In fact, under minimal 
assumptions, factor score estimates will approach true 
factor scores as the number of indicators of that factor 
goes to infinity (Bentler & Kano, 1990; Ellis & Junker, 
1997). Recall that in classical test theory, the true 
score is defined as the long-run average of repeated 
observations. In the factor analysis model, repeated 
observations are multiple indicators, so as their num
ber increases, the latent variable can be approximated 
more and more precisely by a linear combination of 
them. In the next section, we illustrate how the 

10Interestingly, in correlated factor models, these weights will generally all 
be non-zero; that is, all variables in the model contribute to the 
estimation of scores on each factor, not just indicators of that factor.
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accuracy of regression factor scores depends on the 
measurement properties of the indicators.

Illustrations

In this section, we illustrate the ideas explained above 
in a few ways: First with a single dataset with a covari
ance matrix that perfectly represents a population (i.e., 
no sampling variability), then with several such data
sets, varying a range of population parameters, such as 
factor loadings, and finally with repeated draws of sam
ples from a given population, this time with sampling 
variability. We do this with both 1- and 2-factor mod
els to show some of the ways in which regression factor 
scores behave differently from true factor scores, and 
how these differences depend on whether the weights 
are known or estimated (i.e., with versus without sam
pling variability).11 Alongside these comparisons, we 
include unweighted sum scores to show the ways in 
which unit weights, which are theoretically sub-optimal 
but not affected by sampling variability, can produce 
scores that differ (sometimes for the worse, sometimes 
for the better) from those based on regression factor 
score weights, which are theoretically optimal but sub
ject to sampling variability.

Illustration 1: a single “population” dataset, 
1-factor model with equal loadings

Using the code in Appendix B, we generated a single 
dataset from a 1-factor model with 3 indicators, where 
each observed variable has a factor loading of 0.60 
and an error variance of 0.64, and the factor f has 
variance 1. To remove the influence of sampling fluc
tuations, we generated a “population” dataset, i.e., one 
where the covariance matrix is perfectly described by 
the population model. In addition to simulating scores 
on observed variables, we also simulated true factor 
scores (and true error scores), to enable the compari
son between the true and estimated factor scores. We 
then fit the 1-factor model to the generated data. 
Because the model fits the simulated data exactly, this 
fitting procedure produced parameter estimates that 
exactly match the population values. We obtained the 
regression factor scores from this analysis using the 
lavPredict function with method ¼ "regres

sion" in lavaan. The R code in Appendix B also 
shows how to reproduce the estimated factor scores 
produced by lavaan by applying Equation (16) to the 
parameter matrices obtained from the fitted model.

Table 1 displays the first 10 rows of data, including 
the observed variables y1 to y3; the true factor scores 
on f and the regression factor scores f̂ : Because sam
pling variability was removed from the simulation, 
these estimated factor scores are the closest we can 
get to the true factor scores using only observed data, 
maximizing the correlation between f and f̂ : However, 
it is apparent that these are quite different values. 
Their aggregate properties are also quite different: the 
true factor scores have been generated to have vari
ance of 1, whereas the estimated factor scores have 
variance .63. The same phenomenon can be observed 
in regression (predicted values vary less than true 
values).12

The difference between true factor scores and their 
estimated values is also apparent in the correlation 
between them: In this example, the correlation is 0.79, 
which is the square-root of maximum reliability 
(MR).13 Maximum reliability is the reliability of an 
optimally weighted sum score of the items, which is 
precisely what the regression factor scores (obtained 
when the population parameters are known, as is the 
case here) are. In this example, however, because all 
factor loadings are equal, estimated factor scores are 
equally-weighted composites, and thus are perfectly 
correlated with the sum scores. In this situation, MR 
has the same population value as coefficient omega 
(McDonald, 1978), which describes the reliability of 
an unweighted sum score.

Illustration 2: multiple “population” datasets, 
1-factor models with varied loadings

Next, we simulated 1000 datasets from a 1-factor 
model with 3 indicators, but each dataset came from a 

Table 1. Scores on the observed variables, true factor scores, 
and regression factor scores for the first ten rows of gener
ated data in Illustration 1: 1-factor model with known 
parameters.
y1 y2 y3 f f̂

1.450 −0.883 0.964 1.028 0.534
0.433 −0.384 1.070 0.709 0.390
0.158 1.378 0.302 1.329 0.641
0.833 0.487 0.893 0.944 0.772
0.758 0.754 −0.061 0.307 0.506
−0.768 0.643 −0.814 0.352 −0.328
1.313 2.152 1.213 1.483 1.632
1.272 0.060 −0.572 −0.815 0.265
0.050 −2.008 −0.702 −0.750 −0.928
−1.836 −1.691 −1.356 −2.098 −1.703

11Code to reproduce all simulations can be downloaded at osf.io/a68wm/.

12In practice, factor score estimates are often subsequently standardized, 
so that their sample variance becomes 1.
13This value can be obtained from the model parameters using Equation 
(19); the R code is given in Appendix B.
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population with different factor loadings. The factor 
loading values were randomly drawn from a uniform 
distribution U[0.2, 1]. The influence of sampling fluc
tuations was again removed by forcing each dataset to 
have the exact covariance matrix specified by the 
population values of the loadings. Figure 2 displays 
the correlations among true factor scores, estimated 
(regression) factor scores, and the unweighted sum 

scores for these 1000 populations. Along the x-axis is 
maximum reliability. The correlations between true 
and estimated factor scores (dark pink squares) fall on 
a curve for the square-root function because this cor
relation is simply the square root of MR. The correla
tions between regression factor scores and unweighted 
sum scores (light green triangles) reflect the amount 
of variation in the three randomly drawn factor 

Figure 2. Correlations among true factor scores, regression factor scores, and unweighted sum scores for Illustration 2: 1-factor 
models with varied loadings, parameters assumed to be known. Note. f ¼ true factor scores, f̂ ¼ estimated factor scores, and 
yþ ¼ unweighted sum scores. Data are generated from a 1-factor model with factor loadings drawn randomly from U[.2, 1]. 
Regression factor scores are obtained using Equation (16).

Figure 3. Correlations among true factor scores, regression factor scores, and unweighted sum scores for Illustration 3: 1-factor 
models with varied loadings, parameters estimated from N ¼ 200: Note. f ¼ true factor scores, f̂ ¼ estimated factor scores, and 
yþ ¼ unweighted sum scores. Population covariance matrices are generated from a 1-factor model with standardized factor load
ings drawn randomly from U[.2, 1], and sample data of size N ¼ 200 drawn from a multivariate normal distribution. Regression 
factor scores are obtained using Equation (16).
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loadings; the more disparate these loadings, the lower 
the correspondence between regression factor scores 
and unweighted sum scores. Finally, the correlations 
between true factor scores and unweighted sum scores 
(light pink circles) are always equal to or lower than 
the correlations between true and estimated factor 
scores (dark pink squares), reflecting that regression 
factor scores outperform unweighted sum scores when 
the true factor loadings are known.14 In the next simu
lation, we complicate this story by adding sampling 
variability, so that regression factor scores are com
puted using estimated rather than true factor loadings, 
which means they are no longer optimally weighted 
composites.

Illustration 3: multiple “sample” datasets drawn 
from 1-factor models with varied loadings

Adding sampling variability to the simulation depicted 
in Figure 2 introduces estimation error into the factor 
loadings, resulting in regression factor scores that are 
computed using error-laden weights rather than the 
optimal weights. Figure 3 displays the correlations 
among true factor scores, regression factor scores, and 
the unweighted sum scores in 1000 datasets of size 
N ¼ 200; drawn from different populations. For each 
dataset, population factor loadings were again ran
domly drawn from the uniform distribution U[0.2, 1], 
but the datasets were not forced to conform to the 
population covariance matrix (i.e., sampling variability 
was left in). Along the x-axis is the population value 
of MR.

The correlations between true and regression factor 
scores (dark pink squares) no longer fall on the curve 
for the square-root function because the regression 
factor scores are computed from estimated factor 
loadings, rather than population factor loadings. It is 
interesting to compare these correlations with the cor
relations between the true factor scores and 
unweighted sum scores (light pink circles). It is no 
longer the case that the regression factor scores are 
always more highly correlated with the true factor 
scores than are the unweighted sum scores. 
Regression factor scores perform worse than sum 
scores when the estimated factor loadings happen to 

be very different from their population values. For 
example, if the true population loadings for y1 and y2 
are 0.80 and 0.10, but their sample estimates are 
reversed (i.e., y1 is estimated to have a loading near 0 
and y2 is estimated to have a high loading), the 
regression factor scores will be strongly correlated 
with y2; and thus weakly correlated with f. In contrast, 
a simple sum score does not differentially weigh items 
on the basis of their estimated loadings, so the quality 
of estimated loadings does not affect its correlation 
with the true factor scores.

Figure 4 displays the dark and light pink dots of 
Figure 3 in a violin plot to enable a clearer comparison 
across distributions. The distribution of correlations 
between true factor scores and regression factor scores 
is right-skewed. The average correlation between the 
true and regression factor scores is higher than the 
average correlation between true factor scores and 
unweighted sum scores (0.82 vs. 0.79), but the variance 
of the correlations between true factor scores and 
regression factor scores is larger (SD ¼ :14 vs. 0.11).15

Illustration 4: a single “population” dataset, 
2-factor model with equal loadings

When there is more than one factor in the model, the 
true and estimated factor scores also differ in their cor
relations with each other.16 We now simulate data 
from a 2-factor model to illustrate the difference in the 
correlation matrices of true factor scores versus regres
sion factor scores. Here, we encounter a complicating 
factor: We must choose whether to predict each factor 
score with all of the indicators of the 2-factor model or 
with only its own indicators (i.e., from the parameters 
of a one-factor model fit to only those indicators) 
(Logan et al., 2022).17 We illustrate both approaches. In 
the former approach, Equation (17) is applied to the 
parameter matrices obtained from the two-factor 
model, producing a weight matrix that contains non- 
zero weights for all indicators of both factors (unless 
the factors are uncorrelated). That is, regression factor 
scores for each factor are a weighted combination of 
not only the indicators of that factor, but also of the 

14This figure shows that variability of the correlations increases with 
increasing MR. This is because it is a function of the variance in the 
(randomly drawn) loadings. When MR is low, that corresponds to a draw 
of 3 low loadings. When MR is high, it could be that there is one high 
loading and the other two are near zero, or that there are 3 medium- 
high loadings. When there is more variability in the loadings, there is 
more discrepancy between the regression factor scores and the sum 
scores.

15This result appears to be in conflict with the results of McNeish (2023). 
We explore this discrepancy in Discussion.
16Here, we focus on regression factor scores. Other types of estimated 
factor scores exist that preserve correlations among the factors, but they 
have other suboptimal properties (McDonald & Burr, 1967).
17In sample data, there are actually three options, because regression 
factor score weights from only the indicators of that factor can be 
obtained either from the 2-factor model (i.e., by subsetting the model 
matrices) or from a 1-factor model. These two approaches will result in 
different estimates, but when the larger model is correct, these methods 
are asymptotically the same.
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indicators of the other factor. These regression factor 
scores have the property of maximal reliability. To 
obtain estimated factor scores using only the indicators 
of each factor, we use the model matrices correspond
ing to one-factor models for each factor. Prediction 
based on a subset of predictors will naturally result in 
lower R-squared (reliability); However, this is still max
imal reliability for the smaller set of indicators.

We simulated data from a 2-factor model with 3 
indicators per factor, where each observed variable has 
a factor loading of 0.60 and an error variance of 0.64, 
the factors f1 and f2 have variance 1, and the correl
ation between the factors is .30. We again generated 
data that were perfectly described by the population 
model, and we fit (a) a 2-factor model to the data, and 
(b) two 1-factor models to each factor separately. 
Table 2 displays the correlations among the true factor 
scores (f1; f2), regression factor scores obtained from 
the two-factor model (f †

1 ; f †
2 ), and regression factor 

scores obtained from two one-factor models (f̂ 1; f̂ 2).
Even though the data were simulated to reproduce the 

exact population parameters, so that the regression factor 
score weights are at their population values, the correla
tions among estimated factor scores do not match the 
correlations among true factor scores.18 While the true 
factor correlation is 0.30, the correlation between esti
mated factor scores is either 0.39 (when obtained from 

the full 2-factor model) or 0.20 (when obtained from 
individual 1-factor models). The actual estimated factor 
scores for each person are of course different as well. 
While the regression factor scores from the 2-factor 
model will have higher squared correlations with the 
actual factors (as given by Equation (18)) than the regres
sion factor scores from 1-factor models (as given by 19), 
in practice factor scores are typically estimated from uni
dimensional models. For this reason, in the remaining 
two illustrations, we focus on the regression factor scores 
obtained from two separate one-factor models.

Illustration 5: multiple “population” datasets, 
2-factor models with varied loadings

We now extend the previous illustration from equal load
ings to randomly drawn loadings. We simulated 1000 
datasets from a 2-factor model with 6 indicators, where 

Table 2. Correlations among true factor scores and regression 
factor scores in illustration 4: 2-factor model with known 
parameters.

f1 f2 f †
1 f †

2 f̂ 1 f̂ 2

f1 1.00
f2 0.30 1.00
f †
1 0.80 0.34 1.00

f †
2 0.31 0.86 0.39 1.00

f̂ 1 0.79 0.24 0.99 0.28 1.00
f̂ 2 0.26 0.86 0.32 1.00 0.20 1.00

Note. f1 and f2 are true factor scores, f †
1 and f †

2 are regression factor 
scores obtained from the 2-factor model, and f̂ 1 and f̂ 2 are regression 
factor scores obtained from 2 separate 1-factor models of f1 and f2:

Figure 4. Correlations between true and estimated factor scores, and between true and unweighted sum scores in Illustration 3: 
1-factor models with varied loadings, parameters estimated from N ¼ 200: Note. f ¼ true factor scores, f̂ ¼ estimated factor 
scores, and yþ ¼ unweighted sum scores. Population covariance matrices are generated from a 1-factor model with standardized 
factor loadings drawn randomly from U[.2, 1], and sample data of size N ¼ 200 drawn from a multivariate normal distribution. 
Regression factor scores are obtained using Equation (16).

18This is a known problem in factor score estimation (Grice, 2001)
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each dataset is perfectly described by a population model 
with different factor loadings. To determine the parame
ters of each population, three factor loadings are ran
domly drawn from the uniform distribution U[0.2, 1], 
and these loadings are repeated across factors (i.e., the 3 
loadings for Factor 2 are identical to those of Factor 1). 
The correlation between true f1 and f2 is always .5. The 
covariance matrix of each dataset is perfectly described 
by the population model.

Figure 5 shows the correlations among true factor 
scores, regression factor scores from 1-factor models, 
and unweighted sum scores, as a function of MR (MR is 
the same for both factors because they have the same 
loadings). First we examine the correlation between the 
estimated factor scores for f1 and f2 (light pink circles, 
which overlap each other so as to appear as a solid line). 
While the true scores for the two factors are always cor
related at 0.50, the correlation between estimated scores 
is downwardly biased to the degree that that these 
weighted composites are unreliable (i.e., as a function of 
MR)—this is the famous attenuation due to unreliability, 
and it again illustrates the fact that estimated factor 
scores are observed composites, not actual latent varia
bles. The correlations between unweighted sum scores 
(shown as dark green diamonds) computed from the 
indicators of f1 and f2 are also attenuated (downwardly 
biased) due to unreliability, but because their reliability is 
given by coefficient x and not MR, the relationship with 

MR is not deterministic. In these population simulations, 
the correlations between the sum scores are always at 
least as attenuated or more attenuated than the correl
ation among the regression factor scores, reflecting their 
lower reliability. Lastly, the correlations of the true factor 
scores with regression factor scores and with sum scores 
(the dark pink squares and the light green triangles, 
respectively) show the same patterns as for the one factor 
model in Figure 2.

Illustration 6: multiple “sample” datasets drawn 
from 2-factor models with varied loadings

In our final simulation, we modify the previous simula
tion by adding sampling variability; that is, we draw ran
dom samples of size N ¼ 200; without forcing the 
sample covariance matrix to equal the population 
covariance matrix. The population characteristics are 
otherwise the same as in the previous simulation. Here, 
to obtain the estimated regression weights based on a 
1-factor submodel, estimates from the fitted 2-factor 
model can be used, or two separate 1-factor models can 
be fit to each subset of indicators, resulting in slightly 
different estimates. We chose to refit the individual 1- 
factor models, but when the larger model is correct, 
these methods are asymptotically the same. Figure 6 dis
plays the correlations among true factor scores, regres
sion factor scores, and unweighted sum scores. The 

Figure 5. Correlations among true factor scores, regression factor scores, and unweighted sum scores in Illustration 5: 2-factor model 
with known parameters. Note. f1 and f2 are true factor scores, f̂ 1 and f̂ 2 are regression factor scores from one factor models, and 
y1þ and y2þ are unweighted subscale sum-scores. Population covariance matrices are generated from a 2-factor model with 3 indica
tors per factor, one set of 3 standardized factor loadings drawn randomly from U[.2, 1] repeated across the 2 factors, and 
corðf1, f2Þ ¼ :5: Regression factor scores are obtained from separate 1-factor models, fit to each of the 2 factors, using Equation (16).
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correlations between estimated factor scores for the two 
factors (light pink circles) again tend to underestimate 
the true factor correlation, but there is now a great deal 
of variability in the estimated values, and for higher val
ues of MR, there are a few cases of overestimation. Sum 
score correlations (dark green diamonds) are also quite 
variable, with visibly more variability relative to esti
mated factor scores for higher values of H.

The patterns of correlations between true factor 
scores and regression factor scores (dark pink 
squares), and between true factor scores and sum 
scores (light green triangles) replicate the results 
observed for the 1-factor model in a similar scenario 
(see Figure 3). Regression factor scores are, on aver
age, more strongly correlated with true factor scores 
than sum scores are (mean correlations ¼ :83 and 
0.79), but are also more variable (standard deviations 
¼ :13 and 0.10).

Discussion

The goal of this article was to make more intuitive 
the distinction between true and estimated factor 
scores. Using an analogy with estimated values in 
regression, we clarified that estimated factor scores are 
never equal to the true factor scores, and that their 
proximity to true scores is a function of the amount 
of measurement error in the set of indicators (Rigdon 
et al., 2019), as captured by MR. Focusing on 

regression factor scores, we showed that estimated fac
tor scores differ from true factor scores in terms of 
individual values, overall variance, and correlations 
with each other. These differences exist even when the 
model parameters are known.

Estimated factor scores do not approach true 
factor scores with increasing sample size

It may seem plausible that estimated factor scores 
would approach factor scores as the sample size goes 
to infinity, but they do not. When researchers work 
with large samples or when methodologists generate 
simulated data and use the regression method to get 
factor score estimates, they may mistakenly think they 
are dealing with estimated values that are as good as 
actual factor scores. However, our analogy with 
regression has aimed to highlight that model error (in 
regression) and measurement error (in factor analysis) 
are distinct from sampling error. In the simple case of 
a single predictor (of either an observed or a latent 
variable), if the standardized population regression 
coefficient is not 1, that means there is some model 
error (variation around the regression line), and esti
mated values are never the same as the actual values, 
no matter how much data one has. In the case of a 
factor model, the regression plane defined by the 
observed variables will be a sub-space of the larger 
latent variable space, defined by the errors and the 

Figure 6. Correlations among true factor scores, regression factor scores, and unweighted sum scores in Illustration 6: 2-factor 
models with varied loadings, parameters estimated from N ¼ 200: Note. f1 and f2 are true factor scores, f̂ 1 and f̂ 2 are regression 
factor scores from one factor models, and y1þ and y2þ are unweighted subscale sum-scores. Population covariance matrices are 
generated from a 2-factor model with 3 indicators per factor, one set of 3 standardized factor loadings drawn randomly from U[.2, 
1] repeated across the 2 factors, and corðf1, f2Þ ¼ :5: Sample data of size N ¼ 200 are drawn from a multivariate normal distribu
tion. Regression factor scores are obtained from separate 1-factor models, fit to each of the 2 factors, using Equation (16).
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factors. This is the difference between sampling error 
(the kind that disappears with sample size) and meas
urement error or model error (the kind that doesn’t).

Different methods of estimating factor scores result 
in slightly different properties. We have focused on 
regression factor scores because they are the default 
method of factor score estimation in popular software, 
but some of the issues highlighted in our simulation 
results will differ as a function of factor score estima
tion method. For example, Logan et al. (2022) recom
mended using ten Berge estimates (Krijnen et al., 
1996; Ten Berge et al., 1999), which are estimated 
from a multi-factor model and have the property that 
correlations among the estimated factor scores are 
equivalent to those among the latent variables. For 
these estimates, therefore, the distortions presented in 
Table 2 should be eliminated. While this is a nice 
property, only regression factor scores enjoy the prop
erty of maximum reliability, which is lost if other 
methods are employed. However, while factor score 
prediction methods differ in which properties are 
optimized in the estimated scores (McDonald & Burr, 
1967), all methods share the same basic limitation 
that they cannot account for the missing dimension(s) 
on which the true factor scores lie. That is, all esti
mated factor scores are observed composites, and they 
cannot fully account for the information contained in 
the latent variables they try to approximate, no matter 
the sample size.

However, there does exist a limit in which esti
mated factor scores will approach factor scores: If the 
number of indicators goes to infinity, estimated factor 
scores approach true factor scores (or, in another 
sense, factors become principal components; Bentler 
& Kano, 1990). Another limit also exists, although it 
is admittedly less useful in practice: As we showed via 
simulation, holding the number of indicators constant, 
factor score estimates will approach true factor scores 
as their reliability (i.e., MR) approaches 1. For this 
coefficient to approach 1, it is not required that all 
indicators become more precise, but in fact, only one 
increasingly precise indicator is required. The need 
for just one good indicator is a useful reminder that 
in the reflective measurement model, all indicators 
carry the same information such that a single perfect 
indicator is better than 100 unreliable ones. That is, 
the reflective model does not allow different indicators 
to capture unique facets of a latent variable (Bollen & 
Bauldry, 2011).

We have focused on regression factor scores in this 
article.

Do regression factor scores outperform 
unweighted sum scores?

While the comparison of different observed compo
sites was not our direct focus here, given recent resur
gent interest in properties of sum scores (e.g., 

Figure 7. Correlations between true and estimated factor scores, and between true factor scores and unweighted sum scores, for 
high vs. low loadings. Note. f ¼ true factor scores, f̂ ¼ regression factor scores, yþ ¼ unweighted sum scores. Population factor 
loadings in the “high loadings” condition are f:40, :50, :65, :80, :85g and those in the “low loadings” condition are 
f:05, :15, :25, :35, :40g: Each distribution describes results from 1000 sample draws (N ¼ 250) from the same population. A full 
description of the simulation, including cutpoints used to discretize each observed variable, can be found in McNeish (2023), and 
code for this figure can be found at https://osf.io/a68wm/.
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McNeish, 2023; Widaman & Revelle, 2023), we have 
also investigated the accuracy and stability of regres
sion factor scores relative to unweighted sum scores. 
Our illustrations confirmed that when the population 
measurement model parameters are known, regression 
factor scores outperform unweighted sum scores, as 
measured by higher resulting correlations with the 
true factor scores. These differences will be most pro
nounced when the population loadings are highly het
erogeneous, because when loadings are equal, 
regression factor scores (estimated from one-factor 
models) and unweighted sum scores become colinear. 
However, the property of maximal reliability holds 
only in the population, and in sample data where fac
tor loadings are estimated rather than known, regres
sion factor scores can perform better or worse than 
unweighted sum scores, depending on how close the 
estimated factor loadings are to their population val
ues, which in turn depends on the mean and variance 
of the true factor loadings, as well as on the sample 
size.

Some of these results seemingly contradict those of 
McNeish (2023), who found that regression factor 
scores always outperform unweighted sum scores. The 
primary difference between our simulation designs is 
that we sampled from a wider range of factor loadings 
that included much lower values. For example, 
McNeish (2023) drew samples of size N ¼ 250 from a 
1-factor model with 5 indicators and loadings of 
f:40, :50, :65, :80, :85g and found that not only was the 
average correlation between true and estimated factor 
scores higher than that between true factor scores and 
sum scores (0.89 vs. 0.87), but that the variance of 
those correlations was also slightly lower (SD ¼ :011 
vs. 0.015). We replicated these findings and extended 
them by adding a condition with substantially lower 
factor loadings of f:05, :15, :25, :35, :40g: Figure 7 dis
plays the distribution of correlations from the original 
and the modified set of factor loadings. In the low 
loadings condition, the correlation between true and 
estimated factor scores was lower on average than the 
correlation between true factor scores and unweighted 
sum scores (0.20 vs. 0.47) and had a much larger vari
ance (0.36 vs. 0.05). While factor loadings in the range 
of 0.05 to 0.40 are not common, this extreme condi
tion demonstrates that the relative performance of 
sum scores and estimated factor scores depends dra
matically on the reliability of the observed indicators. 
Uanhoro (2019) examined a broader range of condi
tions and suggested that when there is a great deal of 
uncertainty in the model (e.g., when factor loadings 
are lower and when sample size is smaller), 

unweighted sum scores outperform estimated factor 
scores. In addition, sample estimates of MR (reliability 
of regression factor scores) have been found to be 
more positively biased than sample estimates of coeffi
cient omega (reliability of sum scores) in such condi
tions (Aguirre-Urreta et al., 2019). Lastly, while the 
details of these arguments are not our focus here, we 
note that there may be other reasons researchers may 
prefer sum scores over predicted factor scores as the 
observed composite of choice, such as consistent 
weights across samples (e.g., Widaman & Revelle, 
2023).

Recommendations for practice

The most obvious alternative to computing estimated 
factor scores and carrying those forward to a subse
quent analysis is to keep variables latent by doing all 
analysis in the context of SEM. But SEM is not always 
the best approach. For example, the full model may 
be too large or complex to estimate on the available 
sample, or individuals’ estimated factor scores are of 
direct interest. In these cases, estimated factor scores 
can be a viable approach, but it is important to keep 
in mind that they differ from true factor scores. So 
long as their reliability is less than perfect (which will 
virtually always be the case in practice), estimated fac
tor scores will not equal true factor scores. Depending 
on estimation method, their correlations with each 
other may be biased estimates of the corresponding 
correlations among true factor scores, even in the 
population. For all factor score estimation methods, 
the correlations of factor score estimates with other 
variables external to the measurement model will 
always be biased (i.e., attenuation due to unreliability) 
(McDonald & Burr, 1967). In theory, regression factor 
scores are superior to simple unweighted sum scores, 
because they are closer to true factor scores than any 
other composite could be. In practice, this optimal 
property is threatened by sampling variability—in 
small samples and with low factor loadings, it can be 
safer to use unweighted sum scores than to rely on 
imprecisely estimated factor loadings to derive regres
sion factor scores (Uanhoro, 2019; Widaman & 
Revelle, 2023).

Conclusion

There is a great deal of confusion among practitioners 
of factor analysis about the difference between esti
mated factor scores and actual scores on a latent vari
able. While many technical presentations on this 
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distinction exist, here we have attempted to present a 
relatively less technical and intuitive explanation of 
the difference between estimated and true values on 
the latent variable. We urge both researchers and 
methodologists to take care to clarify what they mean 
by “factor scores” when using this shorthand in 
papers; in the vast majority of cases, they mean 
“estimated factor scores” when discussing values 
obtained from observed data, and not the actual 
scores on the latent variable.
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Appendix A. Factor score indeterminacy

In this appendix, we provide a geometric illustration of fac
tor score indeterminacy. Figure A1 shows the difference 
between predicting observed variables and estimating factor 
scores. In this figure, variables are represented by vectors, 
and correlations between variables are cosines of angles 
between the vectors (e.g., Wickens, 2014). In the left panel, 
the variable x is predicted by the variable y. Both x and y 
have well-defined correlations (i.e., well-defined angles) 
with any third variable (here, one such variable, z, is 
shown), because all are observed variables. In the right 
panel, the latent variable f is predicted by the observed vari
able y (y may be a linear combination of a set of observed 
variables, e.g., y is proportional to f̂ ). However, because f is 
entirely latent, we only know the exact location of y and the 
length of the residual (i.e., amount of prediction error, in 
the case of regression factor scores), but not its location. 
Stated equivalently, we know the angle between f and y (its 
cosine is maximum reliability, or reliability of the regression 
factor scores), but there are infinitely many locations where 
f could be that have the same angle with y. Four possible 
locations for f are shown, but any vector running along the 
wall of this “hyper-cone” (or, any vector that ends on the 
circle) would be a legitimate alternative representation. We 
include the variable z in this representation to make clear 
that different possible locations of F will have somewhat 
different correlations (angles) with z, if no other assump-
tions are made about z. Two such angles are shown for f1 
and f2:

This consequence of factor score indeterminacy—that 
correlations between the latent variable and external varia-
bles are undefined—also has implications for identification 
of latent variable models that include associations between a 
given latent variable and other variables (beyond its 
observed indicators), whether latent or observed. For 
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example, if an observed variable z is added to the 1-factor 
model, its correlation with the latent variable would not be 
uniquely defined if z is also permitted to correlate with the 
measurement errors of all the indicators of f, leading to lack 
of identification for the latent variable model. However, if z 
is assumed to be orthogonal to all the measurement errors, 
its correlation with f becomes estimable, as this assumption 
reduces the dimensionality of the “hyper-cone” of possibil-
ities for the location of f (see Figure A1). Admittedly show-
ing orthogonality between z and measurement errors is 
difficult and is not attempted in this figure. It is difficult 
because in the three-dimensional simplification, which is 
what is attempted in Figure A1, a vector orthogonal to the 
residuals from factor score prediction will have to be shown 
as colinear with y (and f̂ ), but in a high-dimensional space 
this does not have to be the case. The assumption of 
orthogonality with the measurement errors is traditionally 
made by the approaches of “factor score regression” (e.g., 
Croon, 2002; Devlieger & Rosseel, 2017): In this family of 
methods, one regresses the criterion (say z) on estimated 
factor scores obtained from a latent variable model, and 
then corrects the regression coefficient for predicting z from 
f̂ for bias; this correction assumes that z and f̂ are orthog-
onal controlling for f.

Appendix B: Simulation code

This appendix describes how to use the R package lavaan 
(Rosseel, 2012) to simulate the data used in Illustrations 1 
and 4, as well as how to extract and examine regression fac-
tor scores and examine their properties. Illustrations 2, 3, 5, 
and 6 are straightforward extensions of 1 and 4. Full R code 
to reproduce all illustrations and figures can be found at 
osf.io/a68wm/.

We first generate a simulated dataset of size N ¼ 100 
from a 1-factor model with three variables in the R package 
lavaan (Rosseel, 2012). The syntax to generate data only on 
observed variables would be as follows, where we specify 
each model parameter explicitly for maximum clarity:

set.seed(123)

genmod0 < - ‘

F ¼� 0.6�Y1þ0.6�Y2þ0.6�Y3

Y1 �� 0.64�Y1

Y2 �� 0.64�Y2

Y3 �� 0.64�Y3

F �� 1�F

‘

data0 < - simulateData(genmod0, sample. 

nobs¼100)

Figure A1. A geometric illustration of the difference between predicting an observed variable and predicting a latent variable (fac
tor score estimation), illustrating factor score indeterminacy. Note. Left: An observed variable x is predicted from another observed 
variable, y (the prediction x̂ is colinear with y and the dotted line represents the residual). Because x is observed, its location in 
space is known, not only relative to y but also to any third variable z (one such z is shown; its correlation with x is the cosine of 
its angle with x). Right: A latent variable f is predicted from an observed variable y (or a best linear combination of observed varia
bles), resulting in the prediction f̂ (the blue vector, colinear with y). The exact location of f is not known, and four possibilities are 
shown (f1 to f4); they all result in the same orthogonal projection onto the line colinear with f̂ ; and all dotted lines represent the 
residuals from these projections (all of the same length; this squared length gives the amount of residual variance). Infinitely many 
fs are possible, one for each point on the circle around f̂ ; with the radius given by the length of the residual. These different fs 
have different correlations with an arbitrary third variable (z), because they have different angles with z. Two such angles are 
shown. The less factor indeterminacy there is, the smaller the radius of the circle (the shorter the residual vectors) and the more 
similar are the angles between different fs and z.
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This method produces values on the observed variables only, which we see by examining the first few rows of the simu-
lated data:

> round(head(data0),3)

Y1 Y2 Y3

1 0.916 −1.057 1.414

2 0.823 −0.657 0.356

3 −1.413 −1.028 −1.100

4 −0.022 −0.433 0.295

5 −0.757 0.096 0.368

6 −1.509 −0.993 −1.394

This is because when simulating observed data from a factor model, the approach implemented in SEM software such as 
lavaan is to use the user-supplied model parameters to produce a model-implied covariance matrix of observed variables, 
and then use a multivariate normal data generation method (e.g., Venables & Ripley, 2013) to draw a sample of observations 
from a multivariate normal distribution with that matrix as the population covariance matrix.

Because our goal is to compare estimated factor scores to true factor scores, this method does not work for us. We want 
the generated datasets to include participants’ scores on both observed and latent variables. To generate the values on f as 
well, we set up the model as a system of regression equations of indicators y on the latent factor f, so the latent variable is 
treated as observed. That is, instead of using the operator ¼� ; which indicates the creation of a latent variable on the left 
by observed variables listed on the right, we use the usual regression operator � ; as follows:

set.seed(123)

genmod1 < - ‘

Y1 � 0.6�Fþ1�E1

Y2 � 0.6�Fþ1�E2

Y3 � 0.6�Fþ1�E3

Y1 �� 0.64�Y1

Y2 �� 0.64�Y2

Y3 �� 0.64�Y3

F �� 1�F

‘

data1 < - simulateData(genmod1, sample.nobs¼100, empirical¼TRUE)

We can now view the first 6 rows of data to see that the dataset simulated in this way contains not only the observed var-
iables but also the common factor f as well as the residuals e1-e3:

> round(head(data1), 3)

Y1 Y2 Y3 F E1 E2 E3

1 0.720 1.762 −1.638 0.537 0.025 −0.004 −0.433

2 −0.490 0.215 −2.078 −0.990 −0.385 0.404 −0.153

3 −1.687 1.166 0.094 −0.831 −0.171 0.956 −0.296

4 −0.223 1.095 1.337 −0.543 −0.034 0.922 1.430

5 −0.725 0.345 −0.486 1.300 −1.387 −0.063 −0.721

6 −2.661 −1.196 −1.157 −1.750 −0.642 −0.291 −0.630 

In this syntax, we have also specified empirical¼TRUE, which means that the sample covariance matrix of the result-
ing dataset will be exactly equal to the population model implied covariance matrix. This means that all estimated model 
parameters from this sample will be equal to true parameters, and there is no sampling error. To see this, we can compute 
the sample covariance matrix for the dataset:

N¼dim(data1)[1]

S¼cov(data1)�(N-1)/N

and then view it:

> round(S, 3)

Y1 Y2 Y3 F E1 E2 E3

Y1 2.00 0.36 0.36 0.6 1 0 0

Y2 0.36 2.00 0.36 0.6 0 1 0

Y3 0.36 0.36 2.00 0.6 0 0 1

F 0.60 0.60 0.60 1.0 0 0 0

E1 1.00 0.00 0.00 0.0 1 0 0
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E2 0.00 1.00 0.00 0.0 0 1 0

E3 0.00 0.00 1.00 0.0 0 0 1

We can see that the correlations among observed variables are equal to the product of the corresponding loadings (each 
is 0.6), and the variances of the observed variables are 1 (¼ :62 þ :64), because that is the sum of the squared loading and 
the error variance. The correlation between the factor and each indicator is equal to the corresponding factor loading. This 
is the method we used to generate “population datasets” in Illustrations 1, 2, 4, and 5. In Illustrations 3 and 6 where sam-
pling variability is introduced, we simply omitted empirical¼TRUE.

To obtain regression factor scores, we first fit a 1-factor model to the generated observed data and then use the 
lavPredict() function:

data1.obs < - data1[, c("Y1","Y2","Y3")]

mod1 < - ‘F ¼� Y1þY2þY3

‘

fit1 < - cfa(mod1, data1.obs, std.lv¼TRUE)
#append estimated factor scores to data generated from latent variable model:

data1[, "Fpred"] < - as.numeric(lavPredict(fit1, method ¼ "regression"))

We can then examine the first 6 rows of data to see these estimated factor scores:

> round(head(data1), 3)

Y1 Y2 Y3 F E1 E2 E3 Fpred

1 0.720 1.762 −1.638 0.537 0.025 −0.004 −0.433 0.186

2 −0.490 0.215 −2.078 −0.990 −0.385 0.404 −0.153 −0.519

3 −1.687 1.166 0.094 −0.831 −0.171 0.956 −0.296 −0.094

4 −0.223 1.095 1.337 −0.543 −0.034 0.922 1.430 0.487

5 −0.725 0.345 −0.486 1.300 −1.387 −0.063 −0.721 −0.191

6 −2.661 −1.196 −1.157 −1.750 −0.642 −0.291 −0.630 −1.106

The following code shows how to replicate these estimated values printed by lavaan using Equation (16).

#Note: Phi¼1 because there is only one factor

Lambda¼lavInspect(fit1, what ¼ "coef")$lambda #matrix of loadings

Theta¼lavInspect(fit1, what ¼ "coef")$theta #matrix of residual variances

W¼t(Lambda) %�% solve(Lambda %�% t(Lambda) þ Theta) #equation 15

Fpred.manual < - as.numeric(W %�% t(data1.obs))

We can view the first six values to confirm that they match the values shown in the previous chunk of output:

> round(Fpred.manual[1:6], 3)

[1] 0.186 −0.519 −0.094 0.487 −0.191 −1.106

Comparing the true factor scores in the column labeled ‘F’ and the estimated (regression) factor scores in the column 
labeled ‘Fpred’, it is clear that they are quite different values. Their aggregate properties are also quite different. Below is 
their variance-covariance matrix, as well as their correlation:

> round(var(data1[, c("F", "Fpred")]), 3)

F Fpred

F 1.010 0.401

Fpred 0.401 0.401

> round(cor(data1[, c("F", "Fpred")]), 3)

F  Fpred

F 1.00 0.63

Fpred 0.63 1.00
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In the second example (Illustration 4), we simulate data from a model with two latent factors.

set.seed(123)

genmod2 < - ‘

Y1 � 0.6�F1

Y2 � 0.6�F1

Y3 � 0.6�F1

Y4 � 0.7�F2

Y5 � 0.7�F2

Y6 � 0.7�F2 

Y1 �� 0.64�Y1

Y2 �� 0.64�Y2

Y3 �� 0.64�Y3

Y4 �� 0.51�Y4

Y5 �� 0.51�Y5

Y6 �� 0.51�Y6 

F1 �� 1�F1þ0.3�F2

F2 �� 1�F2

‘

data2 < - simulateData(genmod2, sample.nobs¼100, empirical¼TRUE)
data2.obs < - data2[, 1:6]

As we explain in the main text, if Equation (16) is applied to a multi-dimensional factor model (2 or more factors) then 
the regression factor scores for each factor will be a weighted sum of not only the indicators of that factor, but also those of 
other factors. To get estimated values that are a function of only the indicators of that factor, the elements of Equation (16)
must be derived from the results of a 1-factor model fit to just those indicators. In the code below we show both methods.

First, in Method 1 (regression factor scores are weighted sums of indicators of all factors), regression factor scores for f1 
and f2 are estimated from the 2-factor model.

mod2 < - ‘F1 ¼� Y1þY2þY3

F2 ¼� Y4þY5þY6

‘

fit2 < - cfa(mod2, data2.obs, std.lv¼TRUE)
data2[, c("Fpred1.2F", "Fpred2.2F")] < - lavPredict(fit2, method ¼ "regression")

which produces data with the following estimated factor scores:

> round(head(data2),3)

Y1 Y2 Y3 Y4 Y5 Y6 F1 F2 Fpred1.2F Fpred2.2F

1 −0.009 0.614 −0.331 −1.061 −0.751 −2.541 −0.108 −1.604 −0.087 −1.508

2 0.600 1.269 −0.453 −0.841 −1.722 −1.374 0.456 −1.281 0.319 −1.331

3 1.235 −0.352 0.608 −0.311 −0.974 −0.162 −0.279 0.169 0.447 −0.462

4 0.011 −1.059 −0.793 0.725 −0.649 −0.301 −0.522 −0.021 −0.634 −0.130

5 0.505 0.338 −0.745 −1.971 −0.250 −0.429 −0.259 −1.135 −0.076 −0.920

6 1.850 1.118 1.254 0.897 0.394 0.984 1.288 1.420 1.528 0.911

For interested readers, below is the computation of these estimated factor scores using Equation (16):

Lambda¼lavInspect(fit2, what ¼ "coef")$lambda #matrix of loadings

Psi¼lavInspect(fit2, what ¼ "coef")$psi #matrix of factor correlations

Theta¼lavInspect(fit2, what ¼ "coef")$theta #matrix of error variances

W¼Psi %�% t(Lambda) %�% solve(Lambda %�% Psi %�% t(Lambda) þ Theta) #equation 15

Fpred.2F.manual < - W %�% t(data2.obs) 
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which produces the same values as the previous code chunk:

> t(Fpred.2F.manual)[1:6, 1:2]

F1 F2

[1,] −0.08656863 −1.5079484

[2,] 0.31901981 −1.3307737

[3,] 0.44708646 −0.4621398

[4,] −0.63448178 −0.1301551

[5,] −0.07620193 −0.9196783

[6,] 1.52847602 0.9110895

Next, in Method 2, f1 and f2 scores are estimated from two separate 1-factor models.

mod3 < - ‘F1 ¼� Y1þY2þY3’

mod4 < - ‘F2 ¼� Y4þY5þY6’

fit3 < - cfa(mod3, data2.obs, std.lv¼TRUE)
fit4 < - cfa(mod4, data2.obs, std.lv¼TRUE)
data2$Fpred1.1f < - predict(fit3)

data2$Fpred2.1f < - predict(fit4)

round(head(data2), 3) 

which produces different factor score estimates (see the right-most two columns):

> round(head(data2), 3)

Y1 Y2 Y3 Y4 Y5 Y6 F1 F2 Fpred1.2F Fpred2.2F F1 F2

1 −0.009 0.614 −0.331 −1.061 −0.751 −2.541 −0.108 −1.604 −0.087 −1.508 0.095 −1.539

2 0.600 1.269 −0.453 −0.841 −1.722 −1.374 0.456 −1.281 0.319 −1.331 0.494 −1.392

3 1.235 −0.352 0.608 −0.311 −0.974 −0.162 −0.279 0.169 0.447 −0.462 0.520 −0.512

4 0.011 −1.059 −0.793 0.725 −0.649 −0.301 −0.522 −0.021 −0.634 −0.130 −0.642 −0.080

5 0.505 0.338 −0.745 −1.971 −0.250 −0.429 −0.259 −1.135 −0.076 −0.920 0.034 −0.937

6 1.850 1.118 1.254 0.897 0.394 0.984 1.288 1.420 1.528 0.911 1.473 0.805

Below is the covariance matrix of the true factor scores, which is the same as the model-estimated matrix W (off by a fac-
tor of ðN − 1Þ=N), because the data were generated to reproduce the population parameters exactly:

> round(var(data2[, c("F1", "F2")]), 3)

F1 F2

F1 1.010 0.303

F2 0.303 1.010

Below are the covariance and correlation matrices of the estimated factor scores, both those estimated from the 2-factor 
model and then those estimated from separate one-factor models:

> round(var(data2[, c("Fpred1.2F", "Fpred2.2F")]), 3)

Fpred1.2F Fpred2.2F

Fpred1.2F 0.644 0.273

Fpred2.2F 0.273 0.754

> round(cor(data2[, c("Fpred1.2F", "Fpred2.2F")]), 3)

Fpred1.2F Fpred2.2F

Fpred1.2F 1.000 0.391

Fpred2.2F 0.391 1.000

> round(var(data2[, c("Fpred1.1f", "Fpred2.1f")]), 3)

Fpred1.1f Fpred2.1f

Fpred1.1f 0.634 0.141

Fpred2.1f 0.141 0.750

> round(cor(data2[, c("Fpred1.1f", "Fpred2.1f")]), 3)

Fpred1.1f Fpred2.1f

Fpred1.1f 1.000 0.205

Fpred2.1f 0.205 1.000

When estimated factor scores are obtained from 2 separate 1-factor models, the true correlation of 0.3 is estimated to be 
0.2, and when estimated factor scores are obtained from a 2-factor model, it is estimated to be 0.39.
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Lastly, here are the correlations among the pairs of true factor scores and estimated factor scores:

> round(cor(data2[, "F1"], data2[, "Fpred1.1f"]), 3)

F1

[1,] 0.792

> round(cor(data2[, "F2"], data2[, "Fpred2.1f"]), 3)

F2

[1,] 0.862

> round(cor(data2[, "F1"], data2[, "Fpred1.2F"]), 3)

[1] 0.798

> round(cor(data2[, "F2"], data2[, "Fpred2.2F"]), 3)

[1] 0.864

These correlations are higher for the factors that had higher factor loadings in the model specification. Whether they are 
estimated from the full 2-factor vs. 1-factor models does not appear to make a difference.
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