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ABSTRACT

Nowadays research into affect frequently employs intensive longitudinal data to assess fluc-
tuations in daily emotional experiences. The resulting data are often analyzed with moder-
ated autoregressive models to capture the influences of contextual events on the emotion
dynamics. The presence of noise (e.g., measurement error) in the measures of the contextual
events, however, is commonly ignored in these models. Disregarding noise in these covari-
ates when it is present may result in biased parameter estimates and wrong conclusions
drawn about the underlying emotion dynamics. In a simulation study we evaluate the esti-
mation accuracy, assessed in terms of bias and variance, of different moderated autoregres-
sive models in the presence of noise in the covariate. We show that estimation accuracy
decreases when the amount of noise in the covariate increases. We also show that this bias
is magnified by a larger effect of the covariate, a slower switching frequency of the covari-
ate, a discrete rather than a continuous covariate, and constant rather than occasional noise
in the covariate. We also show that the bias that results from a noisy covariate does not
decrease when the number of observations increases. We end with a few recommendations
for applying moderated autoregressive models based on our simulation.
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Introduction that is coined emotional inertia (Houben et al., 2015;
Kuppens & Verduyn, 2017). Further, an intercept is
often included in the AR model to account for non-
zero expected values.' Lastly, the innovation variance,
the variance of the process residuals, is taken to reflect
variability in the emotional process due to the influ-
ence of all factors that are not directly measured in
the AR model (Hamaker et al., 2018).

Usually the AR model parameters (i.e., AR coeffi-

Psychological research increasingly studies the dynam-
ics with which emotions fluctuate over time within
individuals (e.g., Hamaker et al., 2016; Kuppens et al,,
2010; Kuppens & Verduyn, 2017). Inter-individual
differences in these dynamics have been linked to
psychological ~ well-being and  psychopathology
(Brose et al., 2015a; Houben et al., 2015; Kuppens

& Verduyn, 2017; van Roekel et al, 2018). Auto-
regressive (AR) models are currently widely used to
quantify the dynamic properties of emotional states
over time (Kuppens & Verduyn, 2017). In an AR
model an observation at a given time-point is
regressed on the observation at a previous time-point
(Hamilton, 1994). A reason for the popularity of this
model is that the corresponding regression parameter
(AR coefficient) quantifies the propensity of affective
states to resist change and persist over time, a concept

cient, intercept, and innovation variance) are assumed
to be constant over time. However, emotions and
their dynamics are not constant but likely change
across different contexts. For instance, emotions
dynamics might change over time (Bringmann et al,
2018; Lancee et al., 2022), across interpersonal con-
texts (Sels et al., 2022), during stressful or unpleasant
situations (e.g., as induced in an experiment (Sels
et al., 2020)), across different times of the day (Ernst
et al, 2020), or might be altered suddenly by
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traumatic events (Simons et al, 2021). Recently,
researchers are calling for such contexts to be suffi-
ciently taken into account when modeling emotion
dynamics (Dejonckheere et al., 2020; Lapate & Heller,
2020; Mestdagh & Dejonckheere, 2021). In an AR
model, changes in emotion dynamics can be modeled
through, for example, change-point detection methods
(Albers & Bringmann, 2020; Cabrieto et al., 2018; Sels
et al., 2022), regime-switching models (Chow et al.,
2013; Crayen et al., 2017; Fuchs et al., 2017; Griffin &
Li, 2016; Stifter & Rovine, 2015), threshold autoregres-
sive models (Haan-Rietdijk et al, 2016), regression
splines (Bringmann et al, 2018), or moderated AR
models (MAR models henceforth, see Adolf et al,
2017; Bringmann et al., 2024; Ernst et al, 2020;
Haslbeck et al., 2021; McNeish & Hamaker, 2020).

Here we focus on MAR models where observed
covariates moderate the model parameters as this is one
of the relatively simple and computationally light ways
of accounting for changing dynamics (Adolf et al,
2017). These MAR models thus use a covariate, for
instance stress at work, to predict changes in the emo-
tion dynamics of a person within the AR framework. In
this paper we focus on covariates that predict changes
in the intercept and AR coefficients, as these are often
the parameters of interests (Kuppens et al., 2010).
Other parameters in the model could also be influenced
by a covariate, for instance the innovation variance
(e.g., Adolf et al., 2017; McNeish & Hamaker, 2020).”

A problem with tying changes in emotion dynam-
ics to an observed covariate, such as work stress, is
that changes in emotion dynamics are often caused by
an unobserved covariate and we can observe only an
imperfect measure of it that consequently contains
measurement error. Measurement error can be caused
by: (1) inaccurate recording of responses (e.g., enter-
ing an unintended response), or by (2) random error,
as human responses to questions like “How demand-
ing is your job at this moment?” are known to ran-
domly fluctuate around the true value at that time.
“The amount of measurement error variance in some
measures used in psychological research is large, often
in the neighborhood of 50% of the total variance of
the measure” (Schmidt & Hunter, 1996, p. 200). In
this paper we refer to covariates that contain measure-
ment error as noisy. Noise can also arise when there
is an omitted variable, that is when another unob-
served covariate that is not accounted for also cause
changes, and this unobserved covariate covaries with

2McNeish and Hamaker (2020) address between-individual differences in
the innovation covariance matrix through a multilevel model, in this
paper, however, we focus on within-individual differences.

the included covariate. In this paper we focus exclu-
sively on the measurement error case, but we will dis-
cuss the extension to the omitted variable case in the
“Discussion” section.

For cross-sectional moderation models, various fac-
tors that influence their estimation accuracy have been
studied, for discrete (Aguinis & Stone-Romero, 1997)
and continuous covariates (Stone-Romero & Anderson,
1994). Of all these factors, noise in the covariates stands
out as one of the most crucial, as it causes considerable
bias in correlation and regression estimates, potentially
leading researchers to erroneous conclusions (Liu &
Salvendy, 2009). As a result, the power to detect moder-
ation effects decreases rapidly as the amount of noise in
the covariate and/or predictor variable increases
(Aguinis, 1995; Dunlap & Kemery, 1988; Stone-Romero
& Anderson, 1994). This decrease can already be sub-
stantial for very small amounts of noise (Aguinis, 1995;
Dunlap & Kemery, 1988). Additionally, the power to
detect moderation effects decreases as the sample size
decreases (Aguinis & Stone-Romero, 1997), the range
of the predictor variable is restricted (Aguinis, 1995;
Aguinis & Stone-Romero, 1997), or there are unequal
sample sizes across covariate based subgroups (Aguinis,
1995; Aguinis & Stone-Romero, 1997). Also, the artifi-
cial dichotomization of a continuous covariate can lead
to a decrease in power (Stone-Romero & Anderson,
1994) and to an increase in Type I errors (Kang &
Waller, 2005).

Crucially, these factors that lower the estimation
accuracy of moderation effects interact with one
another (i.e., they have non-additive effects) (Aguinis
& Stone-Romero, 1997; Kang & Waller, 2005), often
leading to detrimentally low estimation accuracy in
empirically realistic settings. In light of these findings,
many empirical studies have been shown to have had
inadequate power to detect a moderation effect
(Aguinis & Stone-Romero, 1997), illustrating the need
to determine the estimation accuracy of moderation
models under specific research conditions (i.e., for
possible combinations of different factors that influ-
ence their estimation accuracy) (Dunlap & Kemery,
1988). This highlights the need for simulation studies
to establish how well MAR models can be estimated
in certain conditions when factors that influence their
estimation accuracy, like noise, co-occur and poten-
tially interact with factors that are specific to time-ser-
ies data, such as a covariate being measured
repeatedly over time.

For intensive longitudinal data it has been estab-
lished by previous research that noise in the outcome
variable (which constitutes a predictor) of an AR



model causes parameter estimates to be biased
(Schuurman et al, 2015). Schuurman et al. (2015)
found that estimates of the AR parameter already
exhibit bias for relatively small proportions of noise in
the outcome variable (i.e., 13%). The effects of a noisy
covariate in MAR have, however, not been extensively
studied thus far. This is concerning because recent
research suggests that applied researchers often do not
consider the psychometric properties of their intensive
longitudinal data (Vogelsmeier et al.,, 2024) and also
because the research on cross-sectional moderation
models suggests that the estimation accuracy of MAR
models will be severely impacted by noise in the cova-
riate (Aguinis, 1995; Dunlap & Kemery, 1988; Stone-
Romero & Anderson, 1994).

The aim of this paper is to investigate to what
extent the estimation accuracy, assessed in terms of
bias and variance, of different MAR models will be
impacted when the covariate is a noisy predictor of
changes in the dynamics. In addition to the amount
of noise, we also investigate how other covariate char-
acteristics influence the estimation accuracy of MAR
models when they co-occur with noise. We investigate
characteristics such as the format of the covariate (i.e.,
discrete or continuous), the switching frequency of
the covariate (e.g., if the covariate measurements that
are closely spaced in time are similar to each other),
and the time-structure of the noise in the covariate
(i.e., if noise is present constantly, at all measurements
or only occasionally, at some measurements). This
will add to the recent line of research on how well
(M)AR-type models can be estimated under realistic
conditions (e.g., Adolf et al., 2017; Ariens et al., 2023).

Overview

This paper is organized as follows, first we illustrate a
standard AR model, followed by extensions to MAR
models and the underlying assumptions of these mod-
els. Second, we illustrate the estimation of MAR mod-
els in the case of a noisy covariate. Third, we describe
the covariate characteristics that we will investigate in
this paper. Fourth, we present our simulation study
where we examine the estimation accuracy of different
MAR models across many empirically relevant situa-
tions. Fifth, we present our simulation results on how
estimation accuracy is influenced by the different
covariate characteristics that we have listed above. We
end with an evaluation of the MAR models we have
illustrated by discussing the implications of their
underlying statistical assumptions, and formulating
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recommendations for applying them based on our
simulation study.

Autoregressive models

In the following we describe the different (M)AR
models we will consider in this paper. Throughout
this paper we will exclusively consider (M)AR models
with a time lag of one, often denoted (M)AR(1),
henceforth we drop the notation that indicates the
time lag for simplicity. AR models describe the
dynamics of an emotion of interest, for example a
person’s mood denoted by #,, over time-points ¢ with
t=1,..,T. We also show the extensions to MAR
models where we include the covariate X to account
for contextual influences by letting the intercept and/
or the autoregression be moderated by covariate X. X
could be any time-varying variable, for instance, the
person’s work stress as rated on a scale from one to
100, or an experimental condition that is experienced
as either pleasant or stressful (dummy coded). The
effect of the covariate can be included in a contem-
poraneous way, with x; effecting outcomes at time-
point ¢, or in a lagged way, with x,_; effecting
outcomes at time-point t. Here we stick to a lagged
effect, we thus use work stress at a previous time-
point, x,_;, as a covariate when predicting a person’s
current mood, 7.

Basic AR model

In a basic AR model the emotion dynamics of a per-
son are modeled by predicting a person’s mood on a
given measurement, 7,, by their mood at the previous
measurement #,_;. This model implies that values that
are closely spaced in time will be more similar to each
other than values that are further apart. The basic AR
model can be written as

m=oa+pm_+& & ~ N(0, 6?)

where o represents the intercept, and p represents the
AR coefficient which indicates the direct influence of
-, on 1, (i.e., the carry-over effect or inertia). {; rep-
resents the innovations which indicate the process
residuals. These innovations are passed to future time
points through p. All (M)AR models make the follow-
ing assumptions. Innovations (; are assumed normally
distributed with mean zero and variance ¢°. Further,
innovations are assumed serially independent and
independent of all predictors that appear with them in
the regression equation (i.e., the previous value of the
outcome variable, #,_;) (Wooldridge, 2009, p. 351).
Additionally, the underlying process is assumed
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weakly stationary. For a Gaussian process this implies
that the mean (which is given by u, = ﬁ), varian-
ces, and autocovariances’ of the outcome variable are
assumed stable over time (Hamilton, 1994). This
assumption implies a restriction on the AR parameter
to be no greater than |1| (Hamilton, 1994). Further,
the measurements are assumed equidistant with equal

time-intervals between them.

Including contextual events as a moderator for
the intercept and autoregression

A MAR model where the value of the intercept and
the autoregression are influenced by a covariate can
be specified as follows. We denote the following
model as the IntAR-MAR model

Structural model : u, = o' + p'n,_, + ¢ {, ~ N(0,6%)

(2)
Moderation :  p' = p + %, (3)
o = o+ Bxe-1 (4)

where o' represents the intercept at time-point t, o
represents the value of the intercept when x;_; =0,
and f, represents the effect of the covariate at the
previous time-point, x,_;, on the intercept at the cur-
rent time-point t. p' is the AR coefficient at time ¢, p
represents the value of the AR coefficient when x,_; =
0, and ﬁp represents the effect of the covariate at the
previous time-point, x;_;, on the AR coefficient at the
current time-point £. MAR models assume conditional
stationarity, thus they make the same assumptions as
AR models, except all assumptions are conditional on
the covariate x;_; (Adolf et al., 2017).

Including contextual events as an influence for the
intercept

Besides the full IntAR-MAR model, a special case of
the model could be specified where the covariate
influences only the intercept and consequently, f3, is
equal to zero. In the following we denote such a
model the Int-MAR model (usually referred to as
ARX(1) model, see e.g., Liitkepohl, 2005, Chapter 10)

Structural model : n, = o' + pn,_, +{; {, ~ N(0,0?)
(5)
Moderation : o' = o + B,x:_1, (6)

3Autocovariances describe the covariance of the outcome variable and its
own lagged value.

Including contextual events as a moderator for
the autoregression

Also, a special case of the IntAR-MAR model could
be specified where the covariate influences only the
autoregression and consequently f§, is equal to zero.
In the following we denote such a model as the AR-
MAR model

Structural model : i, = o+ p'n,_, +{; { ~ N(0,0?)
(7)
Moderation : p' = p + %1, (8)

Estimation

Despite accommodating time-series data, the MAR
models shown above are simply moderated regression
models (Cohen et al., 2003). These models can thus
be estimated through ordinary least squares
(Litkepohl, 2005), maximum likelihood estimation
(Adolf et al., 2017; Liitkepohl, 2005), or Bayesian esti-
mation (Speyer et al., 2024). Software that can be used
for the maximum likelihood estimation of MAR mod-
els include dynr (Ou et al, 2019) and OpenMx
(Adolf, 2023; Neale et al., 2016) in R. For some MAR
models, the vars R-package can be used for ordinary
least squares estimation (i.e., for the Int-MAR model,
see Pfaff, 2008). Also, some MAR models can readily
be estimated in Mplus through Bayesian estimation
(Koval & Kuppens, 2012; McNeish & Hamaker, 2020;
Muthén & Muthén, 2013).* Alternatively, Stan can be
used for Bayesian estimation of MAR models (Stan
Development Team, 2024). In our simulation we
employ maximum likelihood estimation. However,
our findings of a noisy covariate causing bias general-
ize to all other estimation methods as well, because
this bias is due to model misspecification. Hence, this
bias is independent of the estimation method (Frost &
Thompson, 2000), unless methods that are robust
toward misspecification were used, as discussed in the
Discussion section.

Factors that influence the estimation accuracy of
a MAR model

The different MAR models that were introduced
above are depicted as path diagrams in the left panels
of Figure 1; here moderated parameters are shown in

“Mplus employs the within-person mean specification as mentioned in
the Discussion section and as shown in in Equations A.9-A.12 in
Supplemental material, supplemental content D.
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Figure 1. MAR models, their behavior and covariates. Panel A displays path diagrams of all MAR models considered and panels B
and C show model-implied trajectories combined with the trajectories of the true and noisy observed covariate respectively. The
figure is restricted to the case of a slow-switching covariate with occasional discrete noise.

circles (Curran & Bauer, 2007). An example of how a
person’s mood might change based on each of these
different MAR models as true data generating model
is visualized in the middle column of Figure 1. These
panels also show the true covariate that influences the
emotion dynamics of mood in this example: Changes
in the true covariate visibly coincide with changes in
the emotion dynamics. The right panels of Figure 1
show again the person’s mood based on these differ-
ent MAR models but now next to a noisy observed
covariate. Using the observed covariate, it becomes
harder to distinguish whether changes in the covariate
coincided with changes in the emotion dynamics. In
practice, this likely leads to decreased estimation
accuracy of various model parameters. The aim of the
following simulation is to investigate to what extent
the estimation accuracy of different MAR models will
be impacted by noise in the covariate. We also aim to
investigate how other properties of the covariate or of
the noise impact the decrease in estimation accuracy
that is caused by noisy covariates. This will extend the
recent line of research on how well (M)AR-type mod-
els can be estimated under realistic conditions (e.g.,
Adolf et al,, 2017; Ariens et al., 2023).

In Figure 1, the true covariate persists in phases of
similar observations for several time-points before
‘switching’ to a different phase of similar observations.
Such switching behavior is common for covariates in
empirical applications because, often contextual events
persist over time so that contextual events that are
closely spaced in time tend to be similar to each
other. When recording the work-stress that a person
experiences, for instance, one might observe that
many high-stress observations occur one after another.
Depending on the sampling frequency (i.e., the time
gap between measurements) and the nature of the
covariate, such phases of similar observations can per-
sist for many time-points, resulting in a slow-switch-
ing covariate, or for few time-points, resulting in a
fast-switching covariate. Fast-switching covariates
show low temporal persistence while slow-switching
show high temporal persistence. The
switching frequency of a covariate is another charac-
teristic (next to the amount of noise) that can influ-
ence the estimation accuracy of MAR models. For
example, Adolf et al. (2017) showed that in the
absence of noise, a slower switching frequency of the
caused higher bias in MAR models.

covariates

covariate
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Similarly, (Ariens et al., 2023) demonstrated that in
the absence of noise, serial dependence (i.e., due to
autoregression or trending) in the covariate can result
in larger standard errors for MAR models. In our
simulation we will investigated to what extent differ-
ent switching frequencies will impact the estimation
accuracy when they co-occur with noise in the
covariate.

Instead of a discrete covariate like in Figure 1, we
could also consider a covariate with a different format,
like a continuous covariate. The format of the covari-
ate might also influences the estimation accuracy of
MAR models, especially when the covariate contains
noise; because a noisy continuous covariate can con-
tain continuous noise, while a noisy discrete covariate
can contain only discrete noise. We, therefore, con-
sider different formats of the covariate (i.e., discrete
and continuous covariates) in our simulation.

In Figure 1, noise in the covariate occurs occasion-
ally with only certain measurements of the covariate
including noise and other measurements being noise-
free. Alternatively, if a variable is measured in a con-
tinuous manner, a given percentage of noise might be
present at all measurements of the covariate, leading
thus to constant noise in the covariate. To find if the
time-structure of the noise influences the estimation
accuracy, we include different time-structures of the
noise in our simulation.

Expectations

We expect the following main and interaction effects:
(1) In the presence of noise, the influence of the cova-
riate (i.e., ﬁp and/or ﬁ}) will be biased toward zero
and this effect will become more severe with larger
amounts of noise. We expect this because, in the pres-
ence of noise, regression coefficients are always biased
toward zero, provided that only a single predictor
variable is used and that the noise is unbiased and
independent of the true value of the outcome variable
(Frost & Thompson, 2000). This effect is referred to
as regression dilution bias (MacMahon et al, 1990).
(2) The bias toward zero of [fp and ﬁa will lead to a
bias away from zero (thus leading to larger absolute
values) of p and &. (3) the autoregression will be
most severely over-estimated in the slow-switching
covariate conditions. This expectation arises because
in all our simulation conditions, the covariate persists
in phases (e.g., the covariate equals 1 for a number of
successive time-points and then switches to be equal
to 0 for a number of successive time-points). This
leads to a greater similarity between observations,
denoted as 7,, that occur around similar times due to

comparable covariate influences. In the presence of
noise, it is expected that the impact of the covariate
(expressed as [fp and/or ﬁ;) will be underestimated.
Consequently, this underestimation leaves the similar-
ity between closely spaced 7, unexplained. The unex-
plained similarity, which is due to comparable
covariate influences, is then erroneously interpreted as
heightened autoregression in #, (indicated by p). This
overestimation of autoregression is anticipated to be
more pronounced in the case of slow-switching
covariates compared to fast-switching covariates. This
distinction arises from the fact that, under slow-
switching covariates, closely spaced observations #,
are similar to one another for longer. Therefore, if the
influence of the covariate is underestimated in these
conditions, the resulting unexplained longer similarity
between successive observations leads to a greater
overestimation of the autoregression.

Model assumptions

As stated above, (MA)R models assume that the inno-
vations, {;, are assumed independent of any of the
predictors that appear with them in the regression
equation (i.e., contemporaneous exogeneity, see
Wooldridge (2009, p. 351) or Liitkepohl (2005,
p- 389)). In our case this implies that {; should be
independent of x;_; and #,_,. If instead of the lagged
effect the contemporaneous effect of X, x;, would be
included, {; would have to be independent of x;. Such
contemporaneous exogeneity is sufficient for the con-
sistent estimation of model parameters (Pesaran, 2015;
Wooldridge, 2009) though stricter versions and more
theoretical definitions of exogeneity exist (see e.g.,
Hendry (1995, Chapter 5) or Engle et al. (1983)). The
assumption of contemporaneous exogeneity will be
violated, for instance, when the observed covariate
contains measurement error and the measurement
error is correlated with the observed covariate® (see
e.g., Wooldridge (2002) pp. 71—76 or our illustration
in the Supplemental material, supplemental content
A). Alternatively, the assumption of contemporaneous
exogeneity will be violated when a variable is omitted
that influences the outcome and that is correlated
with the observed covariate (see e.g., Wooldridge
(2002), pp. 50—51 or our illustration in the
Supplemental material, supplemental content A). We
will investigate the effect of this assumption violation
in our simulation study where this assumption will be

>The measurement error contained in an observed covariate will always
be correlated with the observed covariate, provided that the
measurement error is uncorrelated with the true covariate (Wooldridge,
2002, pp. 73-76).
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Figure 2. Simulation design aspects. Panels A and B display partial path diagrams of the MAR models used for data generation
and estimation respectively. Panels C and D show the types of true and observed covariates used, in this case restricted to the

case of 100 time points.

violated because of measurement error in the observed
covariate.

Simulation

We conduct a simulation study to assess how the esti-
mation accuracy of MAR models is impacted by noise
in the covariate under various relevant conditions. In
this simulation, we distinguish between the observed
covariate X, which is used in the estimation of
the model, and the true covariate Z, which is used in
the data generation of the model. Additionally, the
observed covariate X is generated to be a noisy meas-
ure of the true covariate Z.

We investigate to what extent estimation accuracy
depends on seven factors: (1) the type and number of
parameters that are influenced by the covariate (i.e.,
the intercept, the autoregression, or the intercept and
the autoregression), (2) the number of time-points,
and (3) the effect size of the influence of the covariate.
Two factors reflect how the true covariate for the
data-generating models are generated (i.e., the true
covariate Z): (4) the switching frequency of the covari-
ate (we consider slow-switching and fast-switching
covariates) and, (5) the format of the covariate (i.e.,

discrete or continuous). Two factors reflect how the
observed covariate for the estimation models are gen-
erated (i.e., the observed covariate X): (6) the time-
structure of the noise (which depends on the format
of the covariate), we consider covariates that contain
occasional noise or constant noise, and (7) the
amount of noise in the covariate. In the following
paragraphs we describe these seven simulation factors
in more detail. Figure 2 shows an overview of our
simulation design.

Simulation method

Across all (3x3x3x2x3x5=2810 in total)
simulation conditions, the number of replications per
condition was set to 500, the innovation variance, g2,
was set to 0.5, the baseline autoregression, p, equaled
0.2,° and the baseline intercept, «, equaled 0. The fol-
lowing simulation factors were varied in a completely
crossed design.

Sin our simulation this value of 0.2 pertains to the baseline
autoregression, p, thus for many of the time-points in our simulation the
value of the ‘overall’ autoregression, p', is higher than 0.2 and is given
by Equation 3.
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1. The type and number of parameters that are
influenced by the covariate. This factor pertains to
the model that was used to generate the data.
Data was generated according to one of the three
moderation models specified in the Introduction
section (i.e, either Int-MAR, AR-MAR, or IntAR-
MAR). Because we always fitted the ‘true’ model
to the data, the data generation model is always
identical to the model that was then subsequently
fitted to the data:

e Data was generated according to the Int-MAR
model (Equation (5)), this model was then also
fitted to the data. Estimation accuracy was
evaluated in these conditions for p, f,, and a.

e Data was generated according to the AR-MAR
model (Equations (7) and (8)),” this model was
then also fitted to the data. Estimation accur-
acy was evaluated in these conditions for p,

ﬁp, and o.

e Data was generated according to the IntAR-
MAR model (Equations (2) and (3)).2 This
model was then also fitted to the data.
Estimation accuracy was evaluated in these
conditions for p, ﬁp, p,» and a.

2. The total number of observations: 100, 200,
or 500.
3. The effect sizes of the covariate influence,

expressed in values of 8, (if specified in the data

generation model) and/or f8, (if specified in the

data generation model):

o Low effect sizes of covariate influence, with
B, = 0.15 and/or f8, = 0.36;

e Medium effect sizes of covariate influence,
with #, = 0.20 and/or f8, = 0.72;

e High effect sizes of covariate influence, with
B, = 0.25 and/or f§, = 1.08.

These effect sizes of 8, and f3, are not equivalent to
one another. Rather we chose the effect sizes for 8, in
such a way that they would result in a broad range of
values for p' (see Equation (3)) that correspond to
values that are observed in practice for emotion
dynamics and in values that do not exceed |1|. For
example, in conditions with [)’p = 0.25, p' is equal to
0.2 when x,_; =0 and to 0.45 when x,_; = 1. The
effect sizes for , were chosen so that they correspond
respectively to an increase in the intercept, o, of 0.5,
1, or 1.5 standard deviations of the time-series when

"When a randomly generated value for the covariate was so high/low as
to imply a locally non-stationary process (i.e., implying a value for p' that
is larger than |1]), the covariate was generated again.

8See footnote 7.

the covariate is equal to 0.” We express the size of the
effects for f, in measures of the standard deviations
of the time-series because it takes the autoregression
and innovation variance into account. This facilitates
comparison of the effect sizes employed in our simu-
lation with the effect sizes observed in data with dif-
ferent values for autoregression and innovation
variance.

4. The switching frequency of the covariate:

e Fast-switching covariate where the covariate
was switching between ‘condition A’ and
‘condition B’ (see details below) every five
time-points;

o Slow-switching covariate where the covariate
was switching between ‘condition A’ and
‘condition B’ every 50 time-points.

We thus consider scenarios where true covari-
ate Z describes contextual events that persist
for five observations (fast-switching covariate)
or for 50 observations (slow-switching
covariate).

The type of covariate. This combines two of
our simulation factors because these factors
depend on each other. Combining (5) the for-
mat of the covariate (i.e., either a discrete or a
continuous covariate) and (6) the time-struc-
tures of the noise, results in the following
three types of covariate:

e A discrete covariate with noise at some ran-
dom time-points (Type 1: Occasional discrete
noise covariate);

e A continuous covariate with noise at some
random time-points (Type 2: Occasional con-
tinuous noise covariate);

e A continuous covariate with noise at all time-
points (Type 3: Constant continuous noise
covariate).

7. The amount of noise in the covariate. To evaluate

5.&6.

how the amount of noise in the covariate influen-
ces the estimation accuracy of MAR models, we
add noise (i.e., measurement error) to the covari-
ate in the following way. We first generate a true
covariate Z, which is used to generate data. We
then add noise to Z in order to create a noisy
covariate X that is then used in the model estima-
tion as the observed covariate. Adding noise in
this fashion simulates the scenario where the
covariate is measured inaccurately and conse-
quently contains measurement error. As can be

The standard deviation of a time-series with an AR coefficient of 0.2 and
an innovation variance of 0.5 equals 4 /1_0522 ~ 0.72.




seen when comparing the path diagrams for the

data generating models and the estimation models

that are shown in Figure 2, their difference lies in

the estimation models using the noisy observed

covariate X in place of the true covariate Z. The

amount of noise contained in observed covariate

X was manipulated on five levels in terms of the
. . var(Noise) __ var(Noise)y .

proportion of noise (W(Z Noise) =~ var(X) )

e No noise in the observed covariate X (i.e.,

observed covariate X is identical to true covari-

ate 2);

13% of the observed covariate X is noise;

23% of the observed covariate X is noise;

31% of the observed covariate X is noise;

43% of the observed covariate X is noise;

These proportions of noise were chosen because
they correspond to simulation conditions in
Schuurmanl5 who investigated the effect of including
measurement error in an AR model that does not
include a covariate. In order to ensure that all three
different types of covariates employed in our simula-
tion will have these proportions of noise, the 15 con-
ditions that result from crossing simulation factors (5
& 6) ‘The type of covariate’ with (7) ‘The amount of
noise’, are simulated as follows:

e Occasional discrete noise covariate (Type 1): Z is
equal to zero for all observations from ‘condition
A’, Z is equal to one for all observations from
‘condition B’. The amount of noise that is added
to Z to create X is manipulated on five levels:

o No noise is added;

0 3% of random values in Z are changed (i.e.,
from 0 to 1 or from 1 to 0);

0 6% of random values in Z are changed;

o 8% of random values in Z are changed;

o 11% of random values in Z are changed;10

e Occasional continuous noise covariate (Type 2):
The value of Z for any observation from ‘condition
A’ is drawn from N(0,0.1),"" the value of Z for
any observation from ‘condition B’ is drawn from
N(1,0.1)."* The amount of noise that is added to
Z to create X is manipulated on five levels:

o No noise is added;

o 4% of randomly selected values in Z are
changed (i.e., when the selected value is in
‘condition A’, it is replaced with a value

MULTIVARIATE BEHAVIORAL RESEARCH 431

generated from N(1,0.1); when the selected
value is in ‘condition B’, it is replaced with a
value generated from N(0,0.1));

o 7% of randomly selected values in Z are
changed;

0 9% of random values in Z are changed;

o 13% of random values in Z are changed;"’

e Constant continuous noise covariate (Type 3): the
value of Z for any observation from ‘condition A’
is drawn from N(0,0.1), the value of Z for any
observation from ‘condition B’ is drawn from
N(1,0.1). The amount of noise that is added to Z
to create X is manipulated on five levels:

o No noise is added;"*

o To each value of Z, a value that is drawn from
N(0,0.052) is added (this corresponds to
~13% of the total variance of X, details can be
found in the Supplemental material, supple-
mental content B);

o To each value of Z, a value that is drawn from
N(0,0.105) is added (this corresponds to
~23% of the total variance of X);

o To each value of Z, a value that is drawn from
N(0,0.158) is added (this corresponds to ~
31% of the total variance of X);

o To each value of Z, a value that is drawn from
N(0,0.265) is added (this corresponds to ~
43% of the total variance of X).

Figure 2 displays the covariates that result from
our simulation conditions. The top of Figure 2 shows
the different measurement formats and switching fre-
quencies of the true covariate Z, the bottom parts
shows the observed covariate X that is created by add-
ing noise to true covariate Z, resulting in Occasional
discrete noise covariates, Occasional continuous noise
covariates, and Constant continuous noise covariates
with varying proportions of noise. Data was generated
with the fmTSA package (Adolf, 2023) in R. Data was
analyzed as a linear discrete-time model with the dynr
package (Ou et al,, 2019), which employs maximum
likelihood estimation. Here a Kalman Filter is used to
construct the log-likelihood function, known as the
prediction error decomposition function (Ou et al,
2019). Optimization of this likelihood function yields
maximum likelihood estimators for the parameters of
interest. Estimation with dynr requires starting values
for all estimators, in line with recommendations by
Liu et al. (2021) we picked starting values of 0.1. All

YWe selected these percentages because they result in average noise
proportions of roughly 13%, 23%, 31%, or 43%, respectively.

A normal distribution with mean 0 and a variance of 0.1.

127 normal distribution with mean 1 and a variance of 0.1.

3We selected these percentages because they result in average noise
proportions of roughly 13%, 23%, 31%, or 43%, respectively.

"“The no noise conditions for Occasional continuous noise covariates and
Constant continuous noise covariates are thus identical.
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the R scripts used to generate data, carry out the sim-
ulations, and analyze the data are provided on the
project’s OSF page.'”

Performance measures

We evaluate estimation accuracy in terms of bias,
assessed as the mean difference between parameters
and estimators across all simulation replications, and
variance, assessed as the variance of estimators
obtained across all simulation replications (see Hastie
et al, 2009, p. 24). To be able to better evaluate
the size of the bias, we employ the relative bias.
For this we convert the bias to be expressed in
measures of the true underlying effect
mzfﬁfphm“’“s%;ﬁ (Hoogland & Boomsma,
1998). Further, to quantify the uncertainty in our
simulation results due to random sampling of replica-
tions, we bootstrap the sampling distribution of bias
estimates with 500 bootstrap replicates. We calculate

the standard error of the sampling distribution of the

size:

bias for all estimators in all 810 cells of our com-
pletely crossed design. Subsequently, we calculate the
average bootstrapped standard error for all main
effects by averaging all the bootstrapped standard
errors of the cells that are contained in that condition

#Cell
(o): #Clells \/ S 74" Standard Error’.

c=1

Model misspecification

We assess the performance of the different MAR
models in case of (almost) correct model specifica-
tion, meaning that the data was generated according
to one of the MAR models specified in the introduc-
tion (e.g., the Int-MAR model) and were then subse-
quently fitted to this same model (i.e., the Int-MAR
model). Despite this, in the conditions in which
there is noise in the covariate, there will be slight
model misspecification because the covariate being
used to fit the model (i.e., X) is not the true covari-
ate (i.e., 2).

Simulation results

Here we present the results for each of the three
MAR models. In the results we exclude estimates of
models that did not converge. The non-convergence
rate was 0.21%, 0.14%, and 1.00% respectively for
the Int-MAR, AR-MAR, and IntAR-MAR models.
Additionally, we excluded three models (out of

https://osf.io/sjtfk/?view_only=bd7dcc62fd214effa2b2e61e588a113d

405000) because the absolute value of their estimate
for the baseline autoregression exceeded 1.'°

Figure 3 shows the bias for each type of covariate
condition crossed with the amount of noise. Figure 4
shows the bias for the different switching frequencies
crossed with the amount of noise. These figures thus
show the interaction effect of type of covariate with
amount of noise and the interaction effect between
switching frequency and the amount of noise. Tables
1-3 display the bias and variance across all simulation
factors per MAR model, thus showing the main effects
for each simulation factor. It can be clearly seen in
these figures and tables, that bias increases rapidly
with the amount of noise. When noise is absent, the
bias is small for estimators of all parameters across all
MAR models, which can be seen by the means falling
on the gray line for these conditions in Figures 3
and 4. For the AR estimator p for instance, the aver-
age bias over all conditions with zero noise is equal to
—.011 across all three models (as can be seen in
Tables 1 through 3). In terms of relative bias, this cor-
responds to 6% of the true effect size, which is slightly
above the cutoff of 5% that Hoogland and Boomsma
(1998) use to indicate a small relative bias. When
noise increases, however, bias increases rapidly for all
estimators across all MAR models leading to substan-
tial bias for all estimators in high-noise conditions.
For the AR estimator p for instance, the average bias
over all conditions with a noise proportion of 43% is
equal to 0.066, 0.022, or 0.120 for the Int-MAR, AR-
MAR, and IntAR-MAR models respectively (this can
be seen in Tables 1-3). When converting these aver-
age biases to relative biases (Hoogland & Boomsma,
1998), they correspond to 33%, 11%, or 60% of the
true effect size of the AR estimator, respectively. An
exception to this pattern of increasing bias with
increasing noise are the estimators for the intercept
(&) in the AR-MAR model, in the AR-MAR model,
these estimators display small bias even in high noise
conditions, as can be seen in the plot in the first row,
second column of Figure 3. Tables 4-6 show the aver-
age bootstrapped standard errors for the bias esti-
mates, which quantify the uncertainty due to random
sampling of replications in our simulation results for
bias. These standard errors are relatively small (all are
below 0.001), we derive that our 500 replications pro-
vide sufficiently accurate estimates of bias.

In line with our expectations, the following general
patterns become visible across the figures and tables
for all three MAR models, in the presence of noise:

These three excluded models were all IntAR-MAR models in conditions
in which the number of observations was equal to 500.
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Figure 3. Interaction effects for type of covariate crossed with the amount of noise.

Note. The figure shows distances between parameter and estimators (bias). Type 1: Occasional discrete noise, Type 2: Occasional
continuous noise, Type 3: Constant continuous noise. The first column shows the results of the Int-MAR model, the second column
the results of the AR-MAR model, and the third column the results of the IntAR-MAR model. A black box indicates the area within

one standard error from the mean, a gray line highlights zero.

The baseline intercept estimator (&) and the baseline
AR estimator (p) exhibit positive bias, the covariate
influence estimators (ﬁa and [fA ,) exhibit negative bias.
These general patterns are visible in Figures 3 and 4
by looking at a row of plots, which show the results
of the same estimators across the different MAR mod-
els, and by observing that the black lines, which indi-

cate the mean of estimators across different

conditions, fall consistently below or consistently
above the gray zero line.

Figure 3 shows that in the presence of noise, there
are differences in bias for the different covariate types:
bias is lowest for the Occasional continuous noise
covariate, followed by the Occasional discrete noise
covariate, bias is highest for the Constant continuous
noise covariate. This pattern is visible across all MAR
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Figure 4. Interaction effects for switching frequency of the covariate crossed with the amount of noise.
Note. The figure shows distances between parameter and estimators (bias). The first column shows the results of the Int-MAR
model, the second column the results of the AR-MAR, and the third column the results of the IntAR-MAR. A black box indicates
the area within one standard error from the mean, a gray line highlights zero.

models in Figure 3. Regarding the different switching
frequencies, the following differences between fast-
switching and slow-switching covariates are visible in
Figure 4: for the covariate influence estimators (f,
and /§ ) and the AR estimator (p), the slow-switching
covariate has more bias than the fast-switching covari-
ate. For the intercept estimator (&), there are no clear

differences between the slow-switching and the fast-
switching covariate in terms of bias. Because MAR
models rely on several parameters, having less bias in
one estimator does not equal less bias overall. Figure 4
shows that differences between fast-switching and slow-
switching covariates are largest for the AR estimator
(p). In line with our expectations, the slow-switching



Table 1. Main effects for bias and variance across the simula-
tion factors in the Int-MAR model.

o Bias & Var /3; Bias /3; Var  p Bias  p Var

100 Observations  .046 011 -0.122 .084 .023 .010
200 Observations  .045 .006 —-0.126 .074 .031 .006
500 Observations  .044 .003 -0.128 .068 .036 .003
Low ES .027 .006 —0.053 011 |x| <.001 .005
Medium ES .048 .007  -0.121 .018 .029 .005
High ES 061 .008 —0.203 .034 061 .007
Type 2 .032 .006 —0.098 .076 .029 .006
Type 1 .035 .007 -0.107 .076 .032 .007
Type 3 .068 .008 —0.171 .071 .029 .006
Fast-switching .046 .007 -0.112 .078 .017 .005
Slow-switching 044 .007 -0.139 072 .043 .008
0 .002 .006 .007  .099 —0.011 .005
0.13 .027 .006 -0.074 077 015 .005
0.23 .048 .006 —0.137  .063 .034 .006
0.31 .063 .006 -0.179  .055 .046 .006
0.43 .085 .007 —0.245 .046 .066 .008

Note. Bias indicates the mean difference between parameter and estima-
tors, variance indicates the variance of estimators. Type 1: Occasional
discrete noise, Type 2: Occasional continuous noise, Type 3: Constant
continuous noise.

Table 2. Main effects for bias and variance across the simula-
tion factors in the AR-MAR model.

& Bias & Var pBias pVar B, Bias S, Var
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covariate has more bias than the fast-switching covari-
ate in terms of the AR estimator (p) and this estimator
is over-estimated in the presence of noise.

In sum, Tables 1-3 show the following general
main effects of bias that hold across all MAR models

Table 4. Averaged bootstrapped standard error for the bias
(Int-MAR model).

b

o p
100 Observations 0.0005 0.0006 0.0004
200 Observations 0.0003 0.0004 0.0003
500 Observations 0.0002 0.0003 0.0002
Low ES 0.0003 0.0004 0.0003
Medium ES 0.0003 0.0005 0.0003
High ES 0.0003 0.0005 0.0003
Type 2 0.0003 0.0005 0.0003
Type 1 0.0004 0.0005 0.0003
Type 3 0.0003 0.0004 0.0003
Fast-switching 0.0003 0.0004 0.0003
Slow-switching 0.0003 0.0004 0.0003
0 0.0005 0.0006 0.0004
0.13 0.0005 0.0006 0.0004
0.23 0.0004 0.0006 0.0004
0.31 0.0004 0.0006 0.0004
0.43 0.0004 0.0006 0.0004

100 Observations  —0.001  .006 —0.002 017 —0.037 .030 Table 5. Averaged bootstrapped standard error for the bias
200 Observations |x| < .001 .003 .007 .008 —0.034 .015 (AR-MAR model).
500 Observations x| < .001 .001 .012 .003 -0.030 .007 " " =
Low ES [x| <.001 .003 002 010 -0.026 .016 * p By
Medium ES x| <.001 .003 005 010 —0.033 .016 100 Observations 0.0004 0.0006 0.0008
High ES |x| <.001 .003 .010 .010 —0.042 .016 200 Observations 0.0002 0.0004 0.0006
Type 2 [x| <.001 .003 .002 .009 -—0.026 .017 500 Observations 0.0002 0.0003 0.0004
Type 1 [x| <.001 .003 .002 .01 —0.027 .022 Low ES 0.0003 0.0005 0.0006
Type 3 —0.001 .003 .013 .009 —0.048 .014 Medium ES 0.0003 0.0005 0.0006
Fast-switching |x| <.001 .003 .005 .010 —0.033 .018 High ES 0.0003 0.0005 0.0006
Slow-switching x| <.001 .003 .006 .010 —0.034 .017 Type 2 0.0003 0.0005 0.0006
0 |x| <.001 .003 —0.011 .010 —0.004 .019 Type 1 0.0003 0.0005 0.0007
0.13 |x| <.001 .003 —0.001 .010 —0.021 .017 Type 3 0.0003 0.0004 0.0005
0.23 —0.001 .003 008 .010 -0.036 .017 Fast-switching 0.0002 0.0004 0.0005
0.31 [x| <.001 .003 011 .009 —0.044 .017 Slow-switching 0.0002 0.0004 0.0005
0.43 —0.001 .003 022 009 -0062 .016 0 0.0003 0.0006 0.0008
Note. Bias indicates the mean difference between parameter and estima- 0.13 0.0003 0.0006 0.0008

tors, variance indicates the variance of estimators. Type 1: Occasional 0.23 0.0003 0.0006 0.0008

discrete noise, Type 2: Occasional continuous noise, Type 3: Constant 031 0.0003 0.0006 0.0008

continuous noise. 0.43 0.0003 0.0006 0.0007
Table 3. Main effects for bias and variance across the simulation factors in the IntAR-MAR model.

o Bias a Var /3; Bias ﬁ; Var 0 Bias p Var ﬁp Bias /?,, Var

100 Observations .050 011 -0.121 .093 .054 .020 —0.048 .026
200 Observations .048 .006 —-0.129 .078 .061 .012 —0.045 .013
500 Observations .047 .004 —0.133 .071 .064 .008 —0.041 .007
Low ES .029 .006 —0.052 012 015 .010 —0.028 .016
Medium ES .052 .007 —0.122 .023 .059 .01 —0.043 .014
High ES .064 .008 -0.211 .051 107 .015 —0.064 .014
Type 2 .035 .006 —0.099 .080 .053 .012 —0.035 .014
Type 1 .038 .007 -0.112 .083 .063 017 —0.043 .020
Type 3 .071 .008 —0.172 .076 .064 .01 —0.055 .012
Fast-switching .048 .008 —-0.109 .082 .035 .009 —0.034 .014
Slow-switching .048 .007 —0.146 .079 .085 .017 —0.055 .016
0 .002 .006 0N 110 —0.011 .008 —0.003 017
0.13 .030 .006 —0.074 .081 .034 .009 —0.029 .015
0.23 .051 .006 —-0.139 .066 .068 .0M —0.049 .014
0.31 .067 .006 —0.184 .057 .088 .013 —0.061 .014
0.43 .090 .007 —0.251 .048 120 .015 —0.081 .014

Note. Bias indicates the mean difference between parameter and estimators, variance indicates the variance of estimators. Type 1: Occasional discrete
noise, Type 2: Occasional continuous noise, Type 3: Constant continuous noise.
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and almost all estimators: (1) In terms of bias there is
no clear main effect for the number of observations.
This makes sense as the bias observed in our simula-
tion is not finite sample bias but instead is related to
the noise (i.e., misspecification of the model), thus
this bias will be present asymptotically. The variance
of estimators, however, consistently decreases with
higher numbers of observations. (2) Bias increases
with the effect size of the covariate influence, the
higher the covariate influence the higher the bias. (3)
Bias is lowest for the Occasional continuous noise
covariate, followed by the Occasional discrete noise

Table 6. Averaged bootstrapped standard error for the bias
(IntAR-MAR model).

& B, P B,
100 Observations 0.0005 0.0008 0.0006 0.0007
200 Observations 0.0003 0.0005 0.0004 0.0005
500 Observations 0.0002 0.0004 0.0002 0.0003
Low ES 0.0003 0.0005 0.0005 0.0006
Medium ES 0.0003 0.0006 0.0004 0.0005
High ES 0.0004 0.0007 0.0004 0.0005
Type 2 0.0003 0.0006 0.0004 0.0005
Type 1 0.0004 0.0007 0.0005 0.0006
Type 3 0.0003 0.0006 0.0004 0.0005
Fast-switching 0.0003 0.0004 0.0003 0.0004
Slow-switching 0.0003 0.0005 0.0004 0.0005
0 0.0005 0.0009 0.0005 0.0007
0.13 0.0005 0.0008 0.0005 0.0007
0.23 0.0004 0.0007 0.0005 0.0007
0.31 0.0004 0.0007 0.0005 0.0007
0.43 0.0004 0.0007 0.0005 0.0007
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covariate, bias is highest for the Constant continuous
noise covariate. (4) Bias is higher for the slow-switch-
ing covariate than for the fast-switching covariate. (5)
Bias is small in the conditions without noise but
increases with noise, leading to very substantial bias
across all estimators in the conditions with high noise.
A small proportion of noise equal to 13% is already
enough for a notable increase in bias for all estimators
(with exception of the intercept estimator (&) in the
AR-MAR model, in the AR-MAR model these estima-
tors display low bias even in high noise conditions).
In contrast to the bias, the main effect of the vari-
ance of the estimators are less clear cut. However, the
following general main effects of estimator variance
can be seen across the MAR models in Tables 1-3: (1)
The variance of estimators consistently decreases with
higher numbers of observations. (2) The variance of
all estimators increases with the effect size of the
covariate influence, the higher the covariate influence
the higher the estimator variance. (3) Estimator vari-
ance is often lowest for the Constant continuous noise
covariate. (4) In terms of estimator variance there is
no clear main effect for the switching frequency of the
covariate. (5) In terms of estimator variance there is
no clear main effect for the amount of noise in the
covariate. Below we discuss the implications of our
simulation for study design and applied research.
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To facilitate researchers in utilizing these simulation
results for assessing the extent to which effect sizes are
impacted by covariate noise, Figure 5 illustrates the aver-
age bias for the IntAR-MAR model as a function of cova-
riate across various data characteristics.
Correspondingly, Figures S6 and S7 in the Supplemental
material, supplemental content C show these average
biases as a function of covariate noise, for the Int-MAR
and the AR-MAR model, respectively. We created these
figures by drawing a spline through the average bias that
we observed for different proportions of noise in our
simulation. These figures thus allow researchers to evalu-
ate and compare different study designs. For example,
when considering a study design with an IntAR-MAR
model featuring medium effect sizes for f§, and f3,, along
with a slow-switching, Constant continuous noise covari-
ate, the top-right panel in Figure 5 illustrates that if this
study design employs a covariate with a noise proportion
of 0.35, the estimate f§ , can be expected to decrease by
0.1 compared to the true parameter value (i.e., bias).
However, if the noise proportion of the covariate is low-
ered to 0.1, Figure 5 indicates that the estimate I3 , would
only decrease by roughly 0.025.

noise,

Discussion

While the effects of measurement error (i.e., noise)
have received ample attention for cross-sectional
regression models (Wooldridge, 2002), in this paper we
have investigated its effects for longitudinal regression
models, like the MAR model, where their effects are not
often considered (for an exception see Castro-Alvarez
et al., 2022; Schuurman et al., 2015). Specifically, in this
paper we have investigated different scenarios where
the covariate is a noisy predictor of the changes in a
process due to measurement error.

Our simulation showed that noise in the covariate will
lead to bias in almost all estimators of the MAR model.
This bias was already notable for a noise proportion of
13%. When the noise proportion was 43%, the bias was
large for nearly all estimators: the AR estimator in the
IntAR-MAR model, for instance, exhibited a relative bias
equal to 60% of the true effect size. Our results are con-
cerning because measuring a covariate with a noise pro-
portion of 43% is plausible in psychological research
practice (Schmidt & Hunter, 1996). This bias of estima-
tors can have implications for the conclusions drawn
from MAR models. Specifically, noise in the covariate
attenuates estimates for the influence of the covariate
toward zero (known as regression dilution bias
(MacMahon et al., 1990)). Though our simulation cov-
ered only positive parameter values for these regression
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coefficients, noise in the covariate is known to bias the
estimate of the associated regression coefficient toward
zero, as long as only a single predictor variable is used
and the noise is unbiased and independent of the true
value of the outcome variable (Frost & Thompson,
2000). Further, noise in the covariate inflates estimates
for the autoregression of the outcome variable. Thus,
noise in the covariate leads to incorrect conclusions, sug-
gesting less absolute influence of the covariate on the
dynamics and a too large autoregression.

The aim of this paper is not to discourage people
from including contextual influences into the AR
model. On the contrary, if a covariate indeed affects
the emotion dynamics under study, omitting it will
lead to biased estimates. Instead, we advise researchers
to adjust their study design accordingly and to con-
sider the accuracy with which a covariate can be
measured when interpreting the results of a MAR
model. This is particularly important because recent
research suggests that applied researchers often do not
consider the psychometric properties of their intensive
longitudinal data (Vogelsmeier et al, 2024). The
remainder of this paper will be dedicated to a number
of implications of our simulation findings for applied
research and a discussion on possible solutions to
address the problem of noisy covariates in MAR mod-
els. We will conclude with a few general considera-
tions for specifying a MAR model.

Implications for applied research

Our simulation showed that when a noisy covariate
persists over time (i.e., switches slowly), this can par-
ticularly inflate estimates for the AR coefficient (all
covariates in our simulation design persisted for some
observations, though the slow-switching covariates per-
sisted longer than the fast-switching covariates). Thus,
the higher the temporal persistence of a noisy covariate,
the higher the positive bias of the AR coefficient. This
finding has important implications because the AR
coefficient is often of particular interest to psychological
researchers (see e.g., Brose et al, 2015b; Koval &
Kuppens, 2012; Koval et al., 2012; Kuppens et al., 2010)
and because many of the contextual covariates that are
relevant in psychology show some temporal persistence
(e.g., work demands, or weather often persist for sev-
eral observations)."” Thus, if permitted by the research
question, studies should favor designs where the

Though contextual covariates without temporal persistence also occur in
empirical studies, for instance when including a covariate that indicates
whether a random prompt during an ecological momentary assessment
was made in the morning or in the evening.
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covariate exhibits low temporal persistence (i.e., fast-
switching). Otherwise, the temporal persistence in a
noisy covariate can be mistaken for higher autoregres-
sion in the outcome variable, as was shown in our
simulation. Our advice is in line with the advice given
by Ariens et al. (2023) who studied noise-free MAR
models and noted that serial dependence in the covari-
ate can lead to lower estimation accuracy.

In our simulation, the Occasional continuous noise
covariate was associated with the lowest bias, followed
by the Occasional discrete noise covariate, the Constant
continuous noise covariate had the highest bias. This
suggest firstly that in the presence of comparable pro-
portions of noise, continuous covariates with occasional
noise display lower bias than discrete covariates with
occasional noise. Secondly, in the presence of compar-
able proportions of noise, occasional noise is associated
with lower bias than constant noise. Thus, if permitted
by the covariate under study, researchers should favor
continuous rather than discrete covariates. These find-
ings suggest also that researchers should take steps to
avoid study designs where all observations of the cova-
riate are noisy. For instance, by avoiding a study design
that includes measurement times at which the partici-
pant is particularly prone to enter inaccurate responses
due to being in-attentive, tired, or unable to take
enough time to enter responses. Generally, keeping the
total amount of noise to a minimum is crucial because
the bias that is caused by a noisy covariate quickly
increased as the amount of noise in the covariate
increased, as was shown in our simulation study.
Further, the bias caused by noisy covariates increased
as the effect size of the covariate increased.
Consequently, researchers should particularly avoid
noise in the measurement of the covariate when the
covariate is expected to have a large effect on the emo-
tion dynamics. The bias that results from a noisy cova-
riate did not decrease as the number of observations
increased. Hence, researchers should be mindful of the
bias that is caused by a noisy covariate even when they
collect very long time-series.

Finally, when considering tradeoffs in the study
design and analysis of intensive longitudinal data,
researchers can utilize Figures S5-S7 (Figures S6 and
S7 are contained in Supplemental material, supple-
mental content C). These figures show how the par-
ameter estimates of different MAR models are
impacted as a function of covariate noise, across vari-
ous data characteristics. By locating the appropriate
panel and curve given the characteristics of the data
that is being collected, researchers can evaluate the
anticipated changes in effect size due to noise in the

covariate. These figures provide a way for researchers
to determine whether they deem the degree of bias
that is caused by a given noise proportion as accept-
able or whether efforts need to be made to collect a
less noisy covariate.

Statistical solutions

Schuurman et al. (2015) investigated the consequences
of measurement error in the outcome variable in AR
models, they showed that the bias resulting from this
can be alleviated by explicitly modeling the outcome
variable’s measurement error. Though Schuurman
et al. (2015) studied only the scenario of noise in the
outcome variable and not of noise in the covariate, an
equivalent approach (i.e., explicitly modeling the cova-
riate’s measurement error) could be used to counter-
act the bias we have found in our simulation.
Explicitly modeling measurement error, however,
relies on assumptions, such as a Normal distribution
of the measurement error. Thus, explicitly modeling
measurement error will make a statistical model more
complex and harder to estimate. In a Bayesian frame-
work, for instance, estimating a MAR model that
accounts for measurement error of the covariate will
require strong informative prior distributions, espe-
cially for short time-series.

Various methods could be used to estimate a MAR
model where measurement error in the covariate is
accounted for through a measurement model. For
instance, by using the dynamic factor analysis model
offered in Mplus (Asparouhov et al., 2018; Muthén &
Muthén, 2013), or by using state space model estima-
tion as offered in the dynr R package (Ou et al,
2019). Measurement error could also be incorporated
into a MAR model through structural equation mod-
eling (Bollen, 1989; Jaccard & Wan, 1995).
Alternatively, the development of errors-in-variables
methods for MAR models could prove beneficial to
achieve consistent estimates despite measurement
error, for instance through instrumental variable
methods which are distribution-free and have a cer-
tain robustness to model misspecification (Bollen
et al., 2007, 2024). Instrumental variable methods use
so-called ‘instruments’: variables that are uncorrelated
with the measurement error but are correlated with
the covariate. Once instrumental variables are identi-
fied, instrumental variable estimators can be used to
estimate the latent variable model, for instance in a
factor model (Bollen, 1996).

While such methods to address measurement error
are already widely developed for cross-sectional and



AR models (Castro-Alvarez et al., 2022; Schuurman
et al, 2015), their estimation possibilities for moder-
ated AR models, like the MAR, are still lagging
behind. Studying potential modeling solutions to
account for noisy covariates in MAR models would be
very beneficial for intensive longitudinal studies of
psychological concepts.

Relation to omitted variables and other sources of
model misspecification

In this paper we have focused exclusively on noise
being due to measurement error. Noise can also arise,
however, when there are omitted variables. That is,
when there are unobserved covariates that correlate
with the observed predictor and that also cause
changes in the emotion dynamics. While omitted vari-
ables and measurement error are conceptually very
different, they are similar in their statistical structure
(see e.g., Wooldridge, 2002, p. 70): In both cases the
covariate is an imperfect predictor of the changes in
the dynamics and thus an unexplained part (unex-
plained either because the variable is omitted or
because it is measurement error) ends up in the
innovation. In the measurement error and the omitted
variable case, this can lead to a correlation between
predictor x;,_; and innovation (; (see Wooldridge,
2002, pp. 71-76) or our illustration in the
Supplemental material, supplemental content A), vio-
lating thus the assumption of predictors being uncor-
related with the innovation. In short, while our
simulation included only the measurement error scen-
ario, it also covers a special case of the omitted vari-
able problem. Thus, similar bias than we found in our
simulation can be expected when important predictors
that covary with the included covariate are omitted
form the MAR model.

In addition to measurement error and omitted varia-
bles, other sources of model misspecification are pos-
sible. For instance, it is a crucial consideration whether
to model the covariate’s influence on an intercept (as
specified in Equations (2)-(4)) or on a within-person
mean (as specified in Equations (A.9)-(A.12) in
Supplemental material, supplemental content D). This
consideration is essential because the interpretation of
the covariate influence differs between these two model
specifications, and furthermore, these specifications
imply different assumptions about the underlying
mechanism generating the data (Ernst et al., 2024;
Usami et al., 2019). In the intercept specification, the
influence of the covariate is assumed to carry over to
the next time-points via the autoregressive process. In
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contrast, in the within-person mean specification, the
covariate is assumed to influence only one measure-
ment, and these influences do not carry over to any
future time-point. Consequently, covariates included in
a model with intercept-specification are commonly
referred to as accumulating factors (Ernst et al., 2024;
Usami et al., 2019), while covariates included in a
model with within-person mean specification are
referred to as deterministic trends (Usami et al., 2019)
or as direct influences (Ernst et al., 2024). For details on
the distinction and the implications of these two specifi-
cations see Ernst et al. (2024), Hamaker (2005), and
Usami et al. (2019).

Thus, because these two specifications are not
equivalent, the model is misspecified when the data is
generated according to an intercept specification but
is analyzed with a within-person mean specification,
or vice versa. We expect that such misspecification
will cause similar bias as when a misspecification
occurs because of measurement error or omitted vari-
ables. In the future, it would be useful to investigate
and compare the amount of bias that can result from
these different model misspecifications.

In this paper we have considered exclusively the
scenario where data is generated and analyzed accord-
ing to the intercept specification, in order to keep the
focus of our paper on misspecification due to noise in
the covariate. In the Supplemental material, supple-
mental content D we show the results of an additional
simulation where data was generated and analyzed
according to a MAR model with a within-person
mean specification. The results of this simulation
are presented in Table 7 and Figure S8 in the
Supplemental material, supplemental content D. These
results show that the main effects for the bias in MAR
models with within-person mean specification are the
same as those for MAR models with intercept specifi-
cation (the effects for the different types of covariate,
however, were less clear-cut in this simulation). Also,
equivalently to MAR models with intercept specifica-
tion, for MAR models with within-person mean speci-
fication, noise in the covariate attenuates estimates for
the influence of the covariate toward zero while inflat-
ing estimates for the autoregression.

Extensions to multi-individual MAR models

In this paper we have focused on single-individual
models rather than multi-individual models. We did so
because for multi-individual models there is an added
layer of complexity and within-person and between-
person parameter estimators become related and the
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Table 7. Main effects for bias and variance across the simulation factors (WpmAR-MAR model).

o Bias o Var ﬁ; Bias ﬁ; Var p Bias b Var B, Bias ﬁ;, Var
100 Observations .077 .023 -.175 .099 .001 .021 —.048 .035
200 Observations .076 .013 -.175 .080 .013 .010 —.042 017
500 Observations .076 .007 -177 .070 .019 .004 —.039 .008
Low ES .038 .010 —.082 018 .001 0 —-.028 018
Medium ES .076 .012 -171 .031 .009 .01 —.041 .019
High ES 116 .018 —.274 .061 .023 .014 —.060 .021
Type 2 .060 .012 —.138 .083 .005 .01 —.038 .020
Type 1 .076 016 —-.182 .085 .015 014 —.032 .025
Type 3 .094 .015 —.207 .079 .014 .01 —.059 .016
Fast-switching .068 .012 —.149 .081 .002 .01 —.043 .019
Slow-switching .085 .017 —.202 .084 .020 .013 —.042 .021
0 x| < .001 .009 .001 .105 —-.015 011 —.006 .020
0.13 .046 .010 —-111 .079 —.006 .01 —.029 .019
0.23 .082 .01 —.194 .065 .010 012 —.046 .020
0.31 .108 .013 —.248 .056 .021 .012 —.057 .019
0.43 145 016 —.326 .046 .045 013 —-.077 019

true parameter values at both levels, the number of
observations, and the number of persons will have an
impact on estimator performance at both levels, which
would make our results even harder to communicate
(Schultzberg & Muthén, 2018). However, we expect
multi-individual extensions of the MAR model to show
similar biases overall due to noisy covariates as we have
shown for single-individual models. We expect this
because we have shown in our simulation that these
biases do not decrease with an increase in available data
(i.e., by increasing the number of observations). Multi-
individual extensions of MAR models are possible, for
instance through multilevel extensions (Ernst et al.,
2021). Multilevel MAR models can be estimated in
MPlus (Muthén & Muthén, 2013)'® while latent class
MAR models can be estimated through ClusterVAR in
R (Ernst & Haslbeck, 2024)."

Conclusion

In sum, while it is crucial for researchers to account
for contextual events when modeling emotion dynam-
ics, researchers should be mindful of the noise that is
contained in measures of such contextual events
because this noise can cause large bias of parameter
estimates. The bias caused by noisy measures of con-
textual events is further exacerbated by temporal per-
sistence in the contextual events, discrete measures of
the contextual events, a larger effect of the contextual
events, and by a constant rather than occasional pres-
ence of noise. The bias that results from noisy meas-
ures of contextual events does not decrease as the
number of observations increases.

"®MPlus employs only the within-person mean specification, not the
intercept specification. Also, to estimate an AR-MAR model in Mplus
requires the use of a work-around, see Koval and Kuppens (2012).
“ClusterVAR can only estimate the within-person mean specification and
does not facilitate the estimation of AR-MAR.
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