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ABSTRACT 
Nowadays research into affect frequently employs intensive longitudinal data to assess fluc
tuations in daily emotional experiences. The resulting data are often analyzed with moder
ated autoregressive models to capture the influences of contextual events on the emotion 
dynamics. The presence of noise (e.g., measurement error) in the measures of the contextual 
events, however, is commonly ignored in these models. Disregarding noise in these covari
ates when it is present may result in biased parameter estimates and wrong conclusions 
drawn about the underlying emotion dynamics. In a simulation study we evaluate the esti
mation accuracy, assessed in terms of bias and variance, of different moderated autoregres
sive models in the presence of noise in the covariate. We show that estimation accuracy 
decreases when the amount of noise in the covariate increases. We also show that this bias 
is magnified by a larger effect of the covariate, a slower switching frequency of the covari
ate, a discrete rather than a continuous covariate, and constant rather than occasional noise 
in the covariate. We also show that the bias that results from a noisy covariate does not 
decrease when the number of observations increases. We end with a few recommendations 
for applying moderated autoregressive models based on our simulation.
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Introduction

Psychological research increasingly studies the dynam
ics with which emotions fluctuate over time within 
individuals (e.g., Hamaker et al., 2016; Kuppens et al., 
2010; Kuppens & Verduyn, 2017). Inter-individual 
differences in these dynamics have been linked to 
psychological well-being and psychopathology 
(Brose et al., 2015a; Houben et al., 2015; Kuppens 
& Verduyn, 2017; van Roekel et al., 2018). Auto
regressive (AR) models are currently widely used to 
quantify the dynamic properties of emotional states 
over time (Kuppens & Verduyn, 2017). In an AR 
model an observation at a given time-point is 
regressed on the observation at a previous time-point 
(Hamilton, 1994). A reason for the popularity of this 
model is that the corresponding regression parameter 
(AR coefficient) quantifies the propensity of affective 
states to resist change and persist over time, a concept 

that is coined emotional inertia (Houben et al., 2015; 
Kuppens & Verduyn, 2017). Further, an intercept is 
often included in the AR model to account for non- 
zero expected values.1 Lastly, the innovation variance, 
the variance of the process residuals, is taken to reflect 
variability in the emotional process due to the influ
ence of all factors that are not directly measured in 
the AR model (Hamaker et al., 2018).

Usually the AR model parameters (i.e., AR coeffi
cient, intercept, and innovation variance) are assumed 
to be constant over time. However, emotions and 
their dynamics are not constant but likely change 
across different contexts. For instance, emotions 
dynamics might change over time (Bringmann et al., 
2018; Lancee et al., 2022), across interpersonal con
texts (Sels et al., 2022), during stressful or unpleasant 
situations (e.g., as induced in an experiment (Sels 
et al., 2020)), across different times of the day (Ernst 
et al., 2020), or might be altered suddenly by 
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traumatic events (Simons et al., 2021). Recently, 
researchers are calling for such contexts to be suffi
ciently taken into account when modeling emotion 
dynamics (Dejonckheere et al., 2020; Lapate & Heller, 
2020; Mestdagh & Dejonckheere, 2021). In an AR 
model, changes in emotion dynamics can be modeled 
through, for example, change-point detection methods 
(Albers & Bringmann, 2020; Cabrieto et al., 2018; Sels 
et al., 2022), regime-switching models (Chow et al., 
2013; Crayen et al., 2017; Fuchs et al., 2017; Griffin & 
Li, 2016; Stifter & Rovine, 2015), threshold autoregres
sive models (Haan-Rietdijk et al., 2016), regression 
splines (Bringmann et al., 2018), or moderated AR 
models (MAR models henceforth, see Adolf et al., 
2017; Bringmann et al., 2024; Ernst et al., 2020; 
Haslbeck et al., 2021; McNeish & Hamaker, 2020).

Here we focus on MAR models where observed 
covariates moderate the model parameters as this is one 
of the relatively simple and computationally light ways 
of accounting for changing dynamics (Adolf et al., 
2017). These MAR models thus use a covariate, for 
instance stress at work, to predict changes in the emo
tion dynamics of a person within the AR framework. In 
this paper we focus on covariates that predict changes 
in the intercept and AR coefficients, as these are often 
the parameters of interests (Kuppens et al., 2010). 
Other parameters in the model could also be influenced 
by a covariate, for instance the innovation variance 
(e.g., Adolf et al., 2017; McNeish & Hamaker, 2020).2

A problem with tying changes in emotion dynam
ics to an observed covariate, such as work stress, is 
that changes in emotion dynamics are often caused by 
an unobserved covariate and we can observe only an 
imperfect measure of it that consequently contains 
measurement error. Measurement error can be caused 
by: (1) inaccurate recording of responses (e.g., enter
ing an unintended response), or by (2) random error, 
as human responses to questions like “How demand
ing is your job at this moment?” are known to ran
domly fluctuate around the true value at that time. 
“The amount of measurement error variance in some 
measures used in psychological research is large, often 
in the neighborhood of 50% of the total variance of 
the measure” (Schmidt & Hunter, 1996, p. 200). In 
this paper we refer to covariates that contain measure
ment error as noisy. Noise can also arise when there 
is an omitted variable, that is when another unob
served covariate that is not accounted for also cause 
changes, and this unobserved covariate covaries with 

the included covariate. In this paper we focus exclu
sively on the measurement error case, but we will dis
cuss the extension to the omitted variable case in the 
“Discussion” section.

For cross-sectional moderation models, various fac
tors that influence their estimation accuracy have been 
studied, for discrete (Aguinis & Stone-Romero, 1997) 
and continuous covariates (Stone-Romero & Anderson, 
1994). Of all these factors, noise in the covariates stands 
out as one of the most crucial, as it causes considerable 
bias in correlation and regression estimates, potentially 
leading researchers to erroneous conclusions (Liu & 
Salvendy, 2009). As a result, the power to detect moder
ation effects decreases rapidly as the amount of noise in 
the covariate and/or predictor variable increases 
(Aguinis, 1995; Dunlap & Kemery, 1988; Stone-Romero 
& Anderson, 1994). This decrease can already be sub
stantial for very small amounts of noise (Aguinis, 1995; 
Dunlap & Kemery, 1988). Additionally, the power to 
detect moderation effects decreases as the sample size 
decreases (Aguinis & Stone-Romero, 1997), the range 
of the predictor variable is restricted (Aguinis, 1995; 
Aguinis & Stone-Romero, 1997), or there are unequal 
sample sizes across covariate based subgroups (Aguinis, 
1995; Aguinis & Stone-Romero, 1997). Also, the artifi
cial dichotomization of a continuous covariate can lead 
to a decrease in power (Stone-Romero & Anderson, 
1994) and to an increase in Type I errors (Kang & 
Waller, 2005).

Crucially, these factors that lower the estimation 
accuracy of moderation effects interact with one 
another (i.e., they have non-additive effects) (Aguinis 
& Stone-Romero, 1997; Kang & Waller, 2005), often 
leading to detrimentally low estimation accuracy in 
empirically realistic settings. In light of these findings, 
many empirical studies have been shown to have had 
inadequate power to detect a moderation effect 
(Aguinis & Stone-Romero, 1997), illustrating the need 
to determine the estimation accuracy of moderation 
models under specific research conditions (i.e., for 
possible combinations of different factors that influ
ence their estimation accuracy) (Dunlap & Kemery, 
1988). This highlights the need for simulation studies 
to establish how well MAR models can be estimated 
in certain conditions when factors that influence their 
estimation accuracy, like noise, co-occur and poten
tially interact with factors that are specific to time-ser
ies data, such as a covariate being measured 
repeatedly over time.

For intensive longitudinal data it has been estab
lished by previous research that noise in the outcome 
variable (which constitutes a predictor) of an AR 

2McNeish and Hamaker (2020) address between-individual differences in 
the innovation covariance matrix through a multilevel model, in this 
paper, however, we focus on within-individual differences.
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model causes parameter estimates to be biased 
(Schuurman et al., 2015). Schuurman et al. (2015) 
found that estimates of the AR parameter already 
exhibit bias for relatively small proportions of noise in 
the outcome variable (i.e., 13%). The effects of a noisy 
covariate in MAR have, however, not been extensively 
studied thus far. This is concerning because recent 
research suggests that applied researchers often do not 
consider the psychometric properties of their intensive 
longitudinal data (Vogelsmeier et al., 2024) and also 
because the research on cross-sectional moderation 
models suggests that the estimation accuracy of MAR 
models will be severely impacted by noise in the cova
riate (Aguinis, 1995; Dunlap & Kemery, 1988; Stone- 
Romero & Anderson, 1994).

The aim of this paper is to investigate to what 
extent the estimation accuracy, assessed in terms of 
bias and variance, of different MAR models will be 
impacted when the covariate is a noisy predictor of 
changes in the dynamics. In addition to the amount 
of noise, we also investigate how other covariate char
acteristics influence the estimation accuracy of MAR 
models when they co-occur with noise. We investigate 
characteristics such as the format of the covariate (i.e., 
discrete or continuous), the switching frequency of 
the covariate (e.g., if the covariate measurements that 
are closely spaced in time are similar to each other), 
and the time-structure of the noise in the covariate 
(i.e., if noise is present constantly, at all measurements 
or only occasionally, at some measurements). This 
will add to the recent line of research on how well 
(M)AR-type models can be estimated under realistic 
conditions (e.g., Adolf et al., 2017; Ariens et al., 2023).

Overview

This paper is organized as follows, first we illustrate a 
standard AR model, followed by extensions to MAR 
models and the underlying assumptions of these mod
els. Second, we illustrate the estimation of MAR mod
els in the case of a noisy covariate. Third, we describe 
the covariate characteristics that we will investigate in 
this paper. Fourth, we present our simulation study 
where we examine the estimation accuracy of different 
MAR models across many empirically relevant situa
tions. Fifth, we present our simulation results on how 
estimation accuracy is influenced by the different 
covariate characteristics that we have listed above. We 
end with an evaluation of the MAR models we have 
illustrated by discussing the implications of their 
underlying statistical assumptions, and formulating 

recommendations for applying them based on our 
simulation study.

Autoregressive models

In the following we describe the different (M)AR 
models we will consider in this paper. Throughout 
this paper we will exclusively consider (M)AR models 
with a time lag of one, often denoted (M)AR(1), 
henceforth we drop the notation that indicates the 
time lag for simplicity. AR models describe the 
dynamics of an emotion of interest, for example a 
person’s mood denoted by gt , over time-points t with 
t ¼ 1, :::, T: We also show the extensions to MAR 
models where we include the covariate X to account 
for contextual influences by letting the intercept and/ 
or the autoregression be moderated by covariate X. X 
could be any time-varying variable, for instance, the 
person’s work stress as rated on a scale from one to 
100, or an experimental condition that is experienced 
as either pleasant or stressful (dummy coded). The 
effect of the covariate can be included in a contem
poraneous way, with xt effecting outcomes at time- 
point t, or in a lagged way, with xt−1 effecting 
outcomes at time-point t. Here we stick to a lagged 
effect, we thus use work stress at a previous time- 
point, xt−1, as a covariate when predicting a person’s 
current mood, gt:

Basic AR model

In a basic AR model the emotion dynamics of a per
son are modeled by predicting a person’s mood on a 
given measurement, gt , by their mood at the previous 
measurement gt−1: This model implies that values that 
are closely spaced in time will be more similar to each 
other than values that are further apart. The basic AR 
model can be written as 

gt ¼ aþ qgt−1 þ ft ft � N 0, r2ð Þ

where a represents the intercept, and q represents the 
AR coefficient which indicates the direct influence of 
gt−1 on gt (i.e., the carry-over effect or inertia). ft rep
resents the innovations which indicate the process 
residuals. These innovations are passed to future time 
points through q: All (M)AR models make the follow
ing assumptions. Innovations ft are assumed normally 
distributed with mean zero and variance r2: Further, 
innovations are assumed serially independent and 
independent of all predictors that appear with them in 
the regression equation (i.e., the previous value of the 
outcome variable, gt−1) (Wooldridge, 2009, p. 351). 
Additionally, the underlying process is assumed 
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weakly stationary. For a Gaussian process this implies 
that the mean (which is given by lg ¼

a
ð1−qÞ

), varian
ces, and autocovariances3 of the outcome variable are 
assumed stable over time (Hamilton, 1994). This 
assumption implies a restriction on the AR parameter 
to be no greater than j1j (Hamilton, 1994). Further, 
the measurements are assumed equidistant with equal 
time-intervals between them.

Including contextual events as a moderator for 
the intercept and autoregression

A MAR model where the value of the intercept and 
the autoregression are influenced by a covariate can 
be specified as follows. We denote the following 
model as the IntAR-MAR model

Structural model : gt ¼ at þ qtgt−1 þ ft ft � N 0, r2ð Þ

(2) 

Moderation : qt ¼ qþ bqxt−1 (3) 

at ¼ aþ baxt−1, (4) 

where at represents the intercept at time-point t, a 

represents the value of the intercept when xt−1 ¼ 0, 
and ba represents the effect of the covariate at the 
previous time-point, xt−1, on the intercept at the cur
rent time-point t. qt is the AR coefficient at time t, q 

represents the value of the AR coefficient when xt−1 ¼

0, and bq represents the effect of the covariate at the 
previous time-point, xt−1, on the AR coefficient at the 
current time-point t. MAR models assume conditional 
stationarity, thus they make the same assumptions as 
AR models, except all assumptions are conditional on 
the covariate xt−1 (Adolf et al., 2017).

Including contextual events as an influence for the 
intercept

Besides the full IntAR-MAR model, a special case of 
the model could be specified where the covariate 
influences only the intercept and consequently, bq is 
equal to zero. In the following we denote such a 
model the Int-MAR model (usually referred to as 
ARX(1) model, see e.g., L€utkepohl, 2005, Chapter 10)

Structural model : gt ¼ at þ qgt−1 þ ft ft � N 0, r2ð Þ

(5) 

Moderation : at ¼ aþ baxt−1, (6) 

Including contextual events as a moderator for 
the autoregression

Also, a special case of the IntAR-MAR model could 
be specified where the covariate influences only the 
autoregression and consequently ba is equal to zero. 
In the following we denote such a model as the AR- 
MAR model

Structural model : gt ¼ aþ qtgt−1 þ ft ft � N 0, r2ð Þ

(7) 

Moderation : qt ¼ qþ bqxt−1, (8) 

Estimation

Despite accommodating time-series data, the MAR 
models shown above are simply moderated regression 
models (Cohen et al., 2003). These models can thus 
be estimated through ordinary least squares 
(L€utkepohl, 2005), maximum likelihood estimation 
(Adolf et al., 2017; L€utkepohl, 2005), or Bayesian esti
mation (Speyer et al., 2024). Software that can be used 
for the maximum likelihood estimation of MAR mod
els include dynr (Ou et al., 2019) and OpenMx 
(Adolf, 2023; Neale et al., 2016) in R. For some MAR 
models, the vars R-package can be used for ordinary 
least squares estimation (i.e., for the Int-MAR model, 
see Pfaff, 2008). Also, some MAR models can readily 
be estimated in Mplus through Bayesian estimation 
(Koval & Kuppens, 2012; McNeish & Hamaker, 2020; 
Muth�en & Muth�en, 2013).4 Alternatively, Stan can be 
used for Bayesian estimation of MAR models (Stan 
Development Team, 2024). In our simulation we 
employ maximum likelihood estimation. However, 
our findings of a noisy covariate causing bias general
ize to all other estimation methods as well, because 
this bias is due to model misspecification. Hence, this 
bias is independent of the estimation method (Frost & 
Thompson, 2000), unless methods that are robust 
toward misspecification were used, as discussed in the 
Discussion section.

Factors that influence the estimation accuracy of 
a MAR model

The different MAR models that were introduced 
above are depicted as path diagrams in the left panels 
of Figure 1; here moderated parameters are shown in 

3Autocovariances describe the covariance of the outcome variable and its 
own lagged value.

4Mplus employs the within-person mean specification as mentioned in 
the Discussion section and as shown in in Equations A.9–A.12 in 
Supplemental material, supplemental content D.
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circles (Curran & Bauer, 2007). An example of how a 
person’s mood might change based on each of these 
different MAR models as true data generating model 
is visualized in the middle column of Figure 1. These 
panels also show the true covariate that influences the 
emotion dynamics of mood in this example: Changes 
in the true covariate visibly coincide with changes in 
the emotion dynamics. The right panels of Figure 1
show again the person’s mood based on these differ
ent MAR models but now next to a noisy observed 
covariate. Using the observed covariate, it becomes 
harder to distinguish whether changes in the covariate 
coincided with changes in the emotion dynamics. In 
practice, this likely leads to decreased estimation 
accuracy of various model parameters. The aim of the 
following simulation is to investigate to what extent 
the estimation accuracy of different MAR models will 
be impacted by noise in the covariate. We also aim to 
investigate how other properties of the covariate or of 
the noise impact the decrease in estimation accuracy 
that is caused by noisy covariates. This will extend the 
recent line of research on how well (M)AR-type mod
els can be estimated under realistic conditions (e.g., 
Adolf et al., 2017; Ariens et al., 2023).

In Figure 1, the true covariate persists in phases of 
similar observations for several time-points before 
‘switching’ to a different phase of similar observations. 
Such switching behavior is common for covariates in 
empirical applications because, often contextual events 
persist over time so that contextual events that are 
closely spaced in time tend to be similar to each 
other. When recording the work-stress that a person 
experiences, for instance, one might observe that 
many high-stress observations occur one after another. 
Depending on the sampling frequency (i.e., the time 
gap between measurements) and the nature of the 
covariate, such phases of similar observations can per
sist for many time-points, resulting in a slow-switch
ing covariate, or for few time-points, resulting in a 
fast-switching covariate. Fast-switching covariates 
show low temporal persistence while slow-switching 
covariates show high temporal persistence. The 
switching frequency of a covariate is another charac
teristic (next to the amount of noise) that can influ
ence the estimation accuracy of MAR models. For 
example, Adolf et al. (2017) showed that in the 
absence of noise, a slower switching frequency of the 
covariate caused higher bias in MAR models. 

Figure 1. MAR models, their behavior and covariates. Panel A displays path diagrams of all MAR models considered and panels B 
and C show model-implied trajectories combined with the trajectories of the true and noisy observed covariate respectively. The 
figure is restricted to the case of a slow-switching covariate with occasional discrete noise.
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Similarly, (Ariens et al., 2023) demonstrated that in 
the absence of noise, serial dependence (i.e., due to 
autoregression or trending) in the covariate can result 
in larger standard errors for MAR models. In our 
simulation we will investigated to what extent differ
ent switching frequencies will impact the estimation 
accuracy when they co-occur with noise in the 
covariate.

Instead of a discrete covariate like in Figure 1, we 
could also consider a covariate with a different format, 
like a continuous covariate. The format of the covari
ate might also influences the estimation accuracy of 
MAR models, especially when the covariate contains 
noise; because a noisy continuous covariate can con
tain continuous noise, while a noisy discrete covariate 
can contain only discrete noise. We, therefore, con
sider different formats of the covariate (i.e., discrete 
and continuous covariates) in our simulation.

In Figure 1, noise in the covariate occurs occasion
ally with only certain measurements of the covariate 
including noise and other measurements being noise- 
free. Alternatively, if a variable is measured in a con
tinuous manner, a given percentage of noise might be 
present at all measurements of the covariate, leading 
thus to constant noise in the covariate. To find if the 
time-structure of the noise influences the estimation 
accuracy, we include different time-structures of the 
noise in our simulation.

Expectations
We expect the following main and interaction effects: 
(1) In the presence of noise, the influence of the cova
riate (i.e., b̂q and/or b̂a) will be biased toward zero 
and this effect will become more severe with larger 
amounts of noise. We expect this because, in the pres
ence of noise, regression coefficients are always biased 
toward zero, provided that only a single predictor 
variable is used and that the noise is unbiased and 
independent of the true value of the outcome variable 
(Frost & Thompson, 2000). This effect is referred to 
as regression dilution bias (MacMahon et al., 1990). 
(2) The bias toward zero of b̂q and b̂a will lead to a 
bias away from zero (thus leading to larger absolute 
values) of q̂ and â: (3) the autoregression will be 
most severely over-estimated in the slow-switching 
covariate conditions. This expectation arises because 
in all our simulation conditions, the covariate persists 
in phases (e.g., the covariate equals 1 for a number of 
successive time-points and then switches to be equal 
to 0 for a number of successive time-points). This 
leads to a greater similarity between observations, 
denoted as gt , that occur around similar times due to 

comparable covariate influences. In the presence of 
noise, it is expected that the impact of the covariate 
(expressed as b̂q and/or b̂a) will be underestimated. 
Consequently, this underestimation leaves the similar
ity between closely spaced gt unexplained. The unex
plained similarity, which is due to comparable 
covariate influences, is then erroneously interpreted as 
heightened autoregression in gt (indicated by q̂). This 
overestimation of autoregression is anticipated to be 
more pronounced in the case of slow-switching 
covariates compared to fast-switching covariates. This 
distinction arises from the fact that, under slow- 
switching covariates, closely spaced observations gt 
are similar to one another for longer. Therefore, if the 
influence of the covariate is underestimated in these 
conditions, the resulting unexplained longer similarity 
between successive observations leads to a greater 
overestimation of the autoregression.

Model assumptions
As stated above, (MA)R models assume that the inno
vations, ft, are assumed independent of any of the 
predictors that appear with them in the regression 
equation (i.e., contemporaneous exogeneity, see 
Wooldridge (2009, p. 351) or L€utkepohl (2005, 
p. 389)). In our case this implies that ft should be 
independent of xt−1 and gt−1: If instead of the lagged 
effect the contemporaneous effect of X, xt, would be 
included, ft would have to be independent of xt: Such 
contemporaneous exogeneity is sufficient for the con
sistent estimation of model parameters (Pesaran, 2015; 
Wooldridge, 2009) though stricter versions and more 
theoretical definitions of exogeneity exist (see e.g., 
Hendry (1995, Chapter 5) or Engle et al. (1983)). The 
assumption of contemporaneous exogeneity will be 
violated, for instance, when the observed covariate 
contains measurement error and the measurement 
error is correlated with the observed covariate5 (see 
e.g., Wooldridge (2002) pp. 71—76 or our illustration 
in the Supplemental material, supplemental content 
A). Alternatively, the assumption of contemporaneous 
exogeneity will be violated when a variable is omitted 
that influences the outcome and that is correlated 
with the observed covariate (see e.g., Wooldridge 
(2002), pp. 50—51 or our illustration in the 
Supplemental material, supplemental content A). We 
will investigate the effect of this assumption violation 
in our simulation study where this assumption will be 

5The measurement error contained in an observed covariate will always 
be correlated with the observed covariate, provided that the 
measurement error is uncorrelated with the true covariate (Wooldridge, 
2002, pp. 73–76).
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violated because of measurement error in the observed 
covariate.

Simulation

We conduct a simulation study to assess how the esti
mation accuracy of MAR models is impacted by noise 
in the covariate under various relevant conditions. In 
this simulation, we distinguish between the observed 
covariate X, which is used in the estimation of 
the model, and the true covariate Z, which is used in 
the data generation of the model. Additionally, the 
observed covariate X is generated to be a noisy meas
ure of the true covariate Z.

We investigate to what extent estimation accuracy 
depends on seven factors: (1) the type and number of 
parameters that are influenced by the covariate (i.e., 
the intercept, the autoregression, or the intercept and 
the autoregression), (2) the number of time-points, 
and (3) the effect size of the influence of the covariate. 
Two factors reflect how the true covariate for the 
data-generating models are generated (i.e., the true 
covariate Z): (4) the switching frequency of the covari
ate (we consider slow-switching and fast-switching 
covariates) and, (5) the format of the covariate (i.e., 

discrete or continuous). Two factors reflect how the 
observed covariate for the estimation models are gen
erated (i.e., the observed covariate X): (6) the time- 
structure of the noise (which depends on the format 
of the covariate), we consider covariates that contain 
occasional noise or constant noise, and (7) the 
amount of noise in the covariate. In the following 
paragraphs we describe these seven simulation factors 
in more detail. Figure 2 shows an overview of our 
simulation design.

Simulation method

Across all (3� 3� 3� 2� 3� 5 ¼ 810 in total) 
simulation conditions, the number of replications per 
condition was set to 500, the innovation variance, r2, 
was set to 0.5, the baseline autoregression, q, equaled 
0.2,6 and the baseline intercept, a, equaled 0. The fol
lowing simulation factors were varied in a completely 
crossed design.

Figure 2. Simulation design aspects. Panels A and B display partial path diagrams of the MAR models used for data generation 
and estimation respectively. Panels C and D show the types of true and observed covariates used, in this case restricted to the 
case of 100 time points.

6In our simulation this value of 0.2 pertains to the baseline 
autoregression, q, thus for many of the time-points in our simulation the 
value of the ‘overall’ autoregression, qt , is higher than 0.2 and is given 
by Equation 3.
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1. The type and number of parameters that are 
influenced by the covariate. This factor pertains to 
the model that was used to generate the data. 
Data was generated according to one of the three 
moderation models specified in the Introduction 
section (i.e, either Int-MAR, AR-MAR, or IntAR- 
MAR). Because we always fitted the ‘true’ model 
to the data, the data generation model is always 
identical to the model that was then subsequently 
fitted to the data:
� Data was generated according to the Int-MAR 

model (Equation (5)), this model was then also 
fitted to the data. Estimation accuracy was 
evaluated in these conditions for q, ba, and a:

� Data was generated according to the AR-MAR 
model (Equations (7) and (8)),7 this model was 
then also fitted to the data. Estimation accur
acy was evaluated in these conditions for q, 
bq, and a:

� Data was generated according to the IntAR- 
MAR model (Equations (2) and (3)).8 This 
model was then also fitted to the data. 
Estimation accuracy was evaluated in these 
conditions for q, bq, ba, and a:

2. The total number of observations: 100, 200, 
or 500.

3. The effect sizes of the covariate influence, 
expressed in values of ba (if specified in the data 
generation model) and/or bq (if specified in the 
data generation model):
� Low effect sizes of covariate influence, with 

bq ¼ 0:15 and/or ba ¼ 0:36;

� Medium effect sizes of covariate influence, 
with bq ¼ 0:20 and/or ba ¼ 0:72;

� High effect sizes of covariate influence, with 
bq ¼ 0:25 and/or ba ¼ 1:08:

These effect sizes of bq and ba are not equivalent to 
one another. Rather we chose the effect sizes for bq in 
such a way that they would result in a broad range of 
values for qt (see Equation (3)) that correspond to 
values that are observed in practice for emotion 
dynamics and in values that do not exceed j1j. For 
example, in conditions with bq ¼ 0.25, qt is equal to 
0.2 when xt−1 ¼ 0 and to 0.45 when xt−1 ¼ 1: The 
effect sizes for ba were chosen so that they correspond 
respectively to an increase in the intercept, a, of 0.5, 
1, or 1.5 standard deviations of the time-series when 

the covariate is equal to 0.9 We express the size of the 
effects for ba in measures of the standard deviations 
of the time-series because it takes the autoregression 
and innovation variance into account. This facilitates 
comparison of the effect sizes employed in our simu
lation with the effect sizes observed in data with dif
ferent values for autoregression and innovation 
variance.
4. The switching frequency of the covariate:
� Fast-switching covariate where the covariate 

was switching between ‘condition A’ and 
‘condition B’ (see details below) every five 
time-points;

� Slow-switching covariate where the covariate 
was switching between ‘condition A’ and 
‘condition B’ every 50 time-points.
We thus consider scenarios where true covari
ate Z describes contextual events that persist 
for five observations (fast-switching covariate) 
or for 50 observations (slow-switching 
covariate).

5.&6. The type of covariate. This combines two of 
our simulation factors because these factors 
depend on each other. Combining (5) the for
mat of the covariate (i.e., either a discrete or a 
continuous covariate) and (6) the time-struc
tures of the noise, results in the following 
three types of covariate:

� A discrete covariate with noise at some ran
dom time-points (Type 1: Occasional discrete 
noise covariate);

� A continuous covariate with noise at some 
random time-points (Type 2: Occasional con
tinuous noise covariate);

� A continuous covariate with noise at all time- 
points (Type 3: Constant continuous noise 
covariate).

7. The amount of noise in the covariate. To evaluate 
how the amount of noise in the covariate influen
ces the estimation accuracy of MAR models, we 
add noise (i.e., measurement error) to the covari
ate in the following way. We first generate a true 
covariate Z, which is used to generate data. We 
then add noise to Z in order to create a noisy 
covariate X that is then used in the model estima
tion as the observed covariate. Adding noise in 
this fashion simulates the scenario where the 
covariate is measured inaccurately and conse
quently contains measurement error. As can be 

7When a randomly generated value for the covariate was so high/low as 
to imply a locally non-stationary process (i.e., implying a value for qt that 
is larger than j1j), the covariate was generated again.
8See footnote 7.

9The standard deviation of a time-series with an AR coefficient of 0.2 and 

an innovation variance of 0.5 equals 
ffiffiffiffiffiffiffiffiffiffi

0:5
1−0:22

q
� 0:72:
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seen when comparing the path diagrams for the 
data generating models and the estimation models 
that are shown in Figure 2, their difference lies in 
the estimation models using the noisy observed 
covariate X in place of the true covariate Z. The 
amount of noise contained in observed covariate 
X was manipulated on five levels in terms of the 
proportion of noise ( varðNoiseÞ

varðZþNoiseÞ ¼
varðNoiseÞ

varðXÞ ) :
� No noise in the observed covariate X (i.e., 

observed covariate X is identical to true covari
ate Z);

� 13% of the observed covariate X is noise;
� 23% of the observed covariate X is noise;
� 31% of the observed covariate X is noise;
� 43% of the observed covariate X is noise;

These proportions of noise were chosen because 
they correspond to simulation conditions in 
Schuurman15 who investigated the effect of including 
measurement error in an AR model that does not 
include a covariate. In order to ensure that all three 
different types of covariates employed in our simula
tion will have these proportions of noise, the 15 con
ditions that result from crossing simulation factors (5 
& 6) ‘The type of covariate’ with (7) ‘The amount of 
noise’, are simulated as follows:

� Occasional discrete noise covariate (Type 1): Z is 
equal to zero for all observations from ‘condition 
A’, Z is equal to one for all observations from 
‘condition B’. The amount of noise that is added 
to Z to create X is manipulated on five levels:
○ No noise is added;
○ 3% of random values in Z are changed (i.e., 

from 0 to 1 or from 1 to 0);
○ 6% of random values in Z are changed;
○ 8% of random values in Z are changed;
○ 11% of random values in Z are changed;10

� Occasional continuous noise covariate (Type 2): 
The value of Z for any observation from ‘condition 
A’ is drawn from Nð0, 0:1Þ, 11 the value of Z for 
any observation from ‘condition B’ is drawn from 
Nð1, 0:1Þ:12 The amount of noise that is added to 
Z to create X is manipulated on five levels:
○ No noise is added;
○ 4% of randomly selected values in Z are 

changed (i.e., when the selected value is in 
‘condition A’, it is replaced with a value 

generated from Nð1, 0:1Þ; when the selected 
value is in ‘condition B’, it is replaced with a 
value generated from Nð0, 0:1Þ);

○ 7% of randomly selected values in Z are 
changed;

○ 9% of random values in Z are changed;
○ 13% of random values in Z are changed;13

� Constant continuous noise covariate (Type 3): the 
value of Z for any observation from ‘condition A’ 
is drawn from Nð0, 0:1Þ, the value of Z for any 
observation from ‘condition B’ is drawn from 
Nð1, 0:1Þ: The amount of noise that is added to Z 
to create X is manipulated on five levels:
○ No noise is added;14

○ To each value of Z, a value that is drawn from 
Nð0, 0:052Þ is added (this corresponds to 
�13% of the total variance of X, details can be 
found in the Supplemental material, supple
mental content B);

○ To each value of Z, a value that is drawn from 
Nð0, 0:105Þ is added (this corresponds to 
�23% of the total variance of X);

○ To each value of Z, a value that is drawn from 
Nð0, 0:158Þ is added (this corresponds to �
31% of the total variance of X);

○ To each value of Z, a value that is drawn from 
Nð0, 0:265Þ is added (this corresponds to �
43% of the total variance of X).

Figure 2 displays the covariates that result from 
our simulation conditions. The top of Figure 2 shows 
the different measurement formats and switching fre
quencies of the true covariate Z, the bottom parts 
shows the observed covariate X that is created by add
ing noise to true covariate Z, resulting in Occasional 
discrete noise covariates, Occasional continuous noise 
covariates, and Constant continuous noise covariates 
with varying proportions of noise. Data was generated 
with the fmTSA package (Adolf, 2023) in R. Data was 
analyzed as a linear discrete-time model with the dynr 
package (Ou et al., 2019), which employs maximum 
likelihood estimation. Here a Kalman Filter is used to 
construct the log-likelihood function, known as the 
prediction error decomposition function (Ou et al., 
2019). Optimization of this likelihood function yields 
maximum likelihood estimators for the parameters of 
interest. Estimation with dynr requires starting values 
for all estimators, in line with recommendations by 
Liu et al. (2021) we picked starting values of 0.1. All 

10We selected these percentages because they result in average noise 
proportions of roughly 13%, 23%, 31%, or 43%, respectively.
11A normal distribution with mean 0 and a variance of 0.1.
12A normal distribution with mean 1 and a variance of 0.1.

13We selected these percentages because they result in average noise 
proportions of roughly 13%, 23%, 31%, or 43%, respectively.
14The no noise conditions for Occasional continuous noise covariates and 
Constant continuous noise covariates are thus identical.

MULTIVARIATE BEHAVIORAL RESEARCH 431



the R scripts used to generate data, carry out the sim
ulations, and analyze the data are provided on the 
project’s OSF page.15

Performance measures
We evaluate estimation accuracy in terms of bias, 
assessed as the mean difference between parameters 
and estimators across all simulation replications, and 
variance, assessed as the variance of estimators 
obtained across all simulation replications (see Hastie 
et al., 2009, p. 24). To be able to better evaluate 
the size of the bias, we employ the relative bias. 
For this we convert the bias to be expressed in 
measures of the true underlying effect size: 

1
#Replications

P#Replications
r¼1

ĥr−hr
hr 

(Hoogland & Boomsma, 
1998). Further, to quantify the uncertainty in our 
simulation results due to random sampling of replica
tions, we bootstrap the sampling distribution of bias 
estimates with 500 bootstrap replicates. We calculate 
the standard error of the sampling distribution of the 
bias for all estimators in all 810 cells of our com
pletely crossed design. Subsequently, we calculate the 
average bootstrapped standard error for all main 
effects by averaging all the bootstrapped standard 
errors of the cells that are contained in that condition 

(c): 1
#Cells

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P#Cells

c¼1 Standard Error2
c

q

:

Model misspecification
We assess the performance of the different MAR 
models in case of (almost) correct model specifica
tion, meaning that the data was generated according 
to one of the MAR models specified in the introduc
tion (e.g., the Int-MAR model) and were then subse
quently fitted to this same model (i.e., the Int-MAR 
model). Despite this, in the conditions in which 
there is noise in the covariate, there will be slight 
model misspecification because the covariate being 
used to fit the model (i.e., X) is not the true covari
ate (i.e., Z).

Simulation results

Here we present the results for each of the three 
MAR models. In the results we exclude estimates of 
models that did not converge. The non-convergence 
rate was 0:21%, 0:14%, and 1:00% respectively for 
the Int-MAR, AR-MAR, and IntAR-MAR models. 
Additionally, we excluded three models (out of 

405000) because the absolute value of their estimate 
for the baseline autoregression exceeded 1.16

Figure 3 shows the bias for each type of covariate 
condition crossed with the amount of noise. Figure 4
shows the bias for the different switching frequencies 
crossed with the amount of noise. These figures thus 
show the interaction effect of type of covariate with 
amount of noise and the interaction effect between 
switching frequency and the amount of noise. Tables 
1–3 display the bias and variance across all simulation 
factors per MAR model, thus showing the main effects 
for each simulation factor. It can be clearly seen in 
these figures and tables, that bias increases rapidly 
with the amount of noise. When noise is absent, the 
bias is small for estimators of all parameters across all 
MAR models, which can be seen by the means falling 
on the gray line for these conditions in Figures 3
and 4. For the AR estimator q̂ for instance, the aver
age bias over all conditions with zero noise is equal to 
−:011 across all three models (as can be seen in 
Tables 1 through 3). In terms of relative bias, this cor
responds to 6% of the true effect size, which is slightly 
above the cutoff of 5% that Hoogland and Boomsma 
(1998) use to indicate a small relative bias. When 
noise increases, however, bias increases rapidly for all 
estimators across all MAR models leading to substan
tial bias for all estimators in high-noise conditions. 
For the AR estimator q̂ for instance, the average bias 
over all conditions with a noise proportion of 43% is 
equal to 0.066, 0.022, or 0.120 for the Int-MAR, AR- 
MAR, and IntAR-MAR models respectively (this can 
be seen in Tables 1–3). When converting these aver
age biases to relative biases (Hoogland & Boomsma, 
1998), they correspond to 33%, 11%, or 60% of the 
true effect size of the AR estimator, respectively. An 
exception to this pattern of increasing bias with 
increasing noise are the estimators for the intercept 
(â) in the AR-MAR model, in the AR-MAR model, 
these estimators display small bias even in high noise 
conditions, as can be seen in the plot in the first row, 
second column of Figure 3. Tables 4–6 show the aver
age bootstrapped standard errors for the bias esti
mates, which quantify the uncertainty due to random 
sampling of replications in our simulation results for 
bias. These standard errors are relatively small (all are 
below 0.001), we derive that our 500 replications pro
vide sufficiently accurate estimates of bias.

In line with our expectations, the following general 
patterns become visible across the figures and tables 
for all three MAR models, in the presence of noise: 

15https://osf.io/sjtfk/?view_only=bd7dcc62fd214effa2b2e61e588a113d

16These three excluded models were all IntAR-MAR models in conditions 
in which the number of observations was equal to 500.
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The baseline intercept estimator (â) and the baseline 
AR estimator (q̂) exhibit positive bias, the covariate 
influence estimators (b̂a and b̂q) exhibit negative bias. 
These general patterns are visible in Figures 3 and 4
by looking at a row of plots, which show the results 
of the same estimators across the different MAR mod
els, and by observing that the black lines, which indi
cate the mean of estimators across different 

conditions, fall consistently below or consistently 
above the gray zero line.

Figure 3 shows that in the presence of noise, there 
are differences in bias for the different covariate types: 
bias is lowest for the Occasional continuous noise 
covariate, followed by the Occasional discrete noise 
covariate, bias is highest for the Constant continuous 
noise covariate. This pattern is visible across all MAR 

Figure 3. Interaction effects for type of covariate crossed with the amount of noise. 
Note. The figure shows distances between parameter and estimators (bias). Type 1: Occasional discrete noise, Type 2: Occasional 
continuous noise, Type 3: Constant continuous noise. The first column shows the results of the Int-MAR model, the second column 
the results of the AR-MAR model, and the third column the results of the IntAR-MAR model. A black box indicates the area within 
one standard error from the mean, a gray line highlights zero.
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models in Figure 3. Regarding the different switching 
frequencies, the following differences between fast- 
switching and slow-switching covariates are visible in 
Figure 4: for the covariate influence estimators (b̂a 

and b̂q) and the AR estimator (q̂), the slow-switching 
covariate has more bias than the fast-switching covari
ate. For the intercept estimator (â), there are no clear 

differences between the slow-switching and the fast- 
switching covariate in terms of bias. Because MAR 
models rely on several parameters, having less bias in 
one estimator does not equal less bias overall. Figure 4
shows that differences between fast-switching and slow- 
switching covariates are largest for the AR estimator 
(q̂). In line with our expectations, the slow-switching 

Figure 4. Interaction effects for switching frequency of the covariate crossed with the amount of noise. 
Note. The figure shows distances between parameter and estimators (bias). The first column shows the results of the Int-MAR 
model, the second column the results of the AR-MAR, and the third column the results of the IntAR-MAR. A black box indicates 
the area within one standard error from the mean, a gray line highlights zero.

434 A. F. ERNST ET AL.



covariate has more bias than the fast-switching covari
ate in terms of the AR estimator (q̂) and this estimator 
is over-estimated in the presence of noise.

In sum, Tables 1–3 show the following general 
main effects of bias that hold across all MAR models 

Table 1. Main effects for bias and variance across the simula
tion factors in the Int-MAR model.

â Bias â Var b̂a Bias b̂a Var q̂ Bias q̂ Var

100 Observations .046 .011 −0.122 .084 .023 .010
200 Observations .045 .006 −0.126 .074 .031 .006
500 Observations .044 .003 −0.128 .068 .036 .003
Low ES .027 .006 −0.053 .011 jxj < .001 .005
Medium ES .048 .007 −0.121 .018 .029 .005
High ES .061 .008 −0.203 .034 .061 .007
Type 2 .032 .006 −0.098 .076 .029 .006
Type 1 .035 .007 −0.107 .076 .032 .007
Type 3 .068 .008 −0.171 .071 .029 .006
Fast-switching .046 .007 −0.112 .078 .017 .005
Slow-switching .044 .007 −0.139 .072 .043 .008
0 .002 .006 .007 .099 −0.011 .005
0.13 .027 .006 −0.074 .077 .015 .005
0.23 .048 .006 −0.137 .063 .034 .006
0.31 .063 .006 −0.179 .055 .046 .006
0.43 .085 .007 −0.245 .046 .066 .008

Note. Bias indicates the mean difference between parameter and estima
tors, variance indicates the variance of estimators. Type 1: Occasional 
discrete noise, Type 2: Occasional continuous noise, Type 3: Constant 
continuous noise.

Table 2. Main effects for bias and variance across the simula
tion factors in the AR-MAR model.

â Bias â Var q̂ Bias q̂ Var b̂q Bias b̂q Var

100 Observations −0.001 .006 −0.002 .017 −0.037 .030
200 Observations jxj < .001 .003 .007 .008 −0.034 .015
500 Observations jxj < .001 .001 .012 .003 −0.030 .007
Low ES jxj < .001 .003 .002 .010 −0.026 .016
Medium ES jxj < .001 .003 .005 .010 −0.033 .016
High ES jxj < .001 .003 .010 .010 −0.042 .016
Type 2 jxj < .001 .003 .002 .009 −0.026 .017
Type 1 jxj < .001 .003 .002 .011 −0.027 .022
Type 3 −0.001 .003 .013 .009 −0.048 .014
Fast-switching jxj < .001 .003 .005 .010 −0.033 .018
Slow-switching jxj < .001 .003 .006 .010 −0.034 .017
0 jxj < .001 .003 −0.011 .010 −0.004 .019
0.13 jxj < .001 .003 −0.001 .010 −0.021 .017
0.23 −0.001 .003 .008 .010 −0.036 .017
0.31 jxj < .001 .003 .011 .009 −0.044 .017
0.43 −0.001 .003 .022 .009 −0.062 .016

Note. Bias indicates the mean difference between parameter and estima
tors, variance indicates the variance of estimators. Type 1: Occasional 
discrete noise, Type 2: Occasional continuous noise, Type 3: Constant 
continuous noise.

Table 3. Main effects for bias and variance across the simulation factors in the IntAR-MAR model.
â Bias â Var b̂a Bias b̂a Var q̂ Bias q̂ Var b̂q Bias b̂q Var

100 Observations .050 .011 −0.121 .093 .054 .020 −0.048 .026
200 Observations .048 .006 −0.129 .078 .061 .012 −0.045 .013
500 Observations .047 .004 −0.133 .071 .064 .008 −0.041 .007
Low ES .029 .006 −0.052 .012 .015 .010 −0.028 .016
Medium ES .052 .007 −0.122 .023 .059 .011 −0.043 .014
High ES .064 .008 −0.211 .051 .107 .015 −0.064 .014
Type 2 .035 .006 −0.099 .080 .053 .012 −0.035 .014
Type 1 .038 .007 −0.112 .083 .063 .017 −0.043 .020
Type 3 .071 .008 −0.172 .076 .064 .011 −0.055 .012
Fast-switching .048 .008 −0.109 .082 .035 .009 −0.034 .014
Slow-switching .048 .007 −0.146 .079 .085 .017 −0.055 .016
0 .002 .006 .011 .110 −0.011 .008 −0.003 .017
0.13 .030 .006 −0.074 .081 .034 .009 −0.029 .015
0.23 .051 .006 −0.139 .066 .068 .011 −0.049 .014
0.31 .067 .006 −0.184 .057 .088 .013 −0.061 .014
0.43 .090 .007 −0.251 .048 .120 .015 −0.081 .014

Note. Bias indicates the mean difference between parameter and estimators, variance indicates the variance of estimators. Type 1: Occasional discrete 
noise, Type 2: Occasional continuous noise, Type 3: Constant continuous noise.

Table 4. Averaged bootstrapped standard error for the bias 
(Int-MAR model).

â b̂a q̂

100 Observations 0.0005 0.0006 0.0004
200 Observations 0.0003 0.0004 0.0003
500 Observations 0.0002 0.0003 0.0002
Low ES 0.0003 0.0004 0.0003
Medium ES 0.0003 0.0005 0.0003
High ES 0.0003 0.0005 0.0003
Type 2 0.0003 0.0005 0.0003
Type 1 0.0004 0.0005 0.0003
Type 3 0.0003 0.0004 0.0003
Fast-switching 0.0003 0.0004 0.0003
Slow-switching 0.0003 0.0004 0.0003
0 0.0005 0.0006 0.0004
0.13 0.0005 0.0006 0.0004
0.23 0.0004 0.0006 0.0004
0.31 0.0004 0.0006 0.0004
0.43 0.0004 0.0006 0.0004

Table 5. Averaged bootstrapped standard error for the bias 
(AR-MAR model).

â q̂ b̂q

100 Observations 0.0004 0.0006 0.0008
200 Observations 0.0002 0.0004 0.0006
500 Observations 0.0002 0.0003 0.0004
Low ES 0.0003 0.0005 0.0006
Medium ES 0.0003 0.0005 0.0006
High ES 0.0003 0.0005 0.0006
Type 2 0.0003 0.0005 0.0006
Type 1 0.0003 0.0005 0.0007
Type 3 0.0003 0.0004 0.0005
Fast-switching 0.0002 0.0004 0.0005
Slow-switching 0.0002 0.0004 0.0005
0 0.0003 0.0006 0.0008
0.13 0.0003 0.0006 0.0008
0.23 0.0003 0.0006 0.0008
0.31 0.0003 0.0006 0.0008
0.43 0.0003 0.0006 0.0007
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and almost all estimators: (1) In terms of bias there is 
no clear main effect for the number of observations. 
This makes sense as the bias observed in our simula
tion is not finite sample bias but instead is related to 
the noise (i.e., misspecification of the model), thus 
this bias will be present asymptotically. The variance 
of estimators, however, consistently decreases with 
higher numbers of observations. (2) Bias increases 
with the effect size of the covariate influence, the 
higher the covariate influence the higher the bias. (3) 
Bias is lowest for the Occasional continuous noise 
covariate, followed by the Occasional discrete noise 

covariate, bias is highest for the Constant continuous 
noise covariate. (4) Bias is higher for the slow-switch
ing covariate than for the fast-switching covariate. (5) 
Bias is small in the conditions without noise but 
increases with noise, leading to very substantial bias 
across all estimators in the conditions with high noise. 
A small proportion of noise equal to 13% is already 
enough for a notable increase in bias for all estimators 
(with exception of the intercept estimator (â) in the 
AR-MAR model, in the AR-MAR model these estima
tors display low bias even in high noise conditions).

In contrast to the bias, the main effect of the vari
ance of the estimators are less clear cut. However, the 
following general main effects of estimator variance 
can be seen across the MAR models in Tables 1–3: (1) 
The variance of estimators consistently decreases with 
higher numbers of observations. (2) The variance of 
all estimators increases with the effect size of the 
covariate influence, the higher the covariate influence 
the higher the estimator variance. (3) Estimator vari
ance is often lowest for the Constant continuous noise 
covariate. (4) In terms of estimator variance there is 
no clear main effect for the switching frequency of the 
covariate. (5) In terms of estimator variance there is 
no clear main effect for the amount of noise in the 
covariate. Below we discuss the implications of our 
simulation for study design and applied research.

Table 6. Averaged bootstrapped standard error for the bias 
(IntAR-MAR model).

â b̂a q̂ b̂q

100 Observations 0.0005 0.0008 0.0006 0.0007
200 Observations 0.0003 0.0005 0.0004 0.0005
500 Observations 0.0002 0.0004 0.0002 0.0003
Low ES 0.0003 0.0005 0.0005 0.0006
Medium ES 0.0003 0.0006 0.0004 0.0005
High ES 0.0004 0.0007 0.0004 0.0005
Type 2 0.0003 0.0006 0.0004 0.0005
Type 1 0.0004 0.0007 0.0005 0.0006
Type 3 0.0003 0.0006 0.0004 0.0005
Fast-switching 0.0003 0.0004 0.0003 0.0004
Slow-switching 0.0003 0.0005 0.0004 0.0005
0 0.0005 0.0009 0.0005 0.0007
0.13 0.0005 0.0008 0.0005 0.0007
0.23 0.0004 0.0007 0.0005 0.0007
0.31 0.0004 0.0007 0.0005 0.0007
0.43 0.0004 0.0007 0.0005 0.0007

Figure 5. Average bias in estimators of the IntAR-MAR model as a function of covariate noise, under various conditions. 
Note. Type 1: Occasional discrete noise, Type 2: Occasional continuous noise, Type 3: Constant continuous noise. Low ES: condi
tions where bq ¼ 0:15 and ba ¼ 0:36, Medium ES: conditions where bq ¼ 0:20 and ba ¼ 0:72, High ES: conditions where bq ¼

0:25 and ba ¼ 1:08:
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To facilitate researchers in utilizing these simulation 
results for assessing the extent to which effect sizes are 
impacted by covariate noise, Figure 5 illustrates the aver
age bias for the IntAR-MAR model as a function of cova
riate noise, across various data characteristics. 
Correspondingly, Figures S6 and S7 in the Supplemental 
material, supplemental content C show these average 
biases as a function of covariate noise, for the Int-MAR 
and the AR-MAR model, respectively. We created these 
figures by drawing a spline through the average bias that 
we observed for different proportions of noise in our 
simulation. These figures thus allow researchers to evalu
ate and compare different study designs. For example, 
when considering a study design with an IntAR-MAR 
model featuring medium effect sizes for bq and ba, along 
with a slow-switching, Constant continuous noise covari
ate, the top-right panel in Figure 5 illustrates that if this 
study design employs a covariate with a noise proportion 
of 0.35, the estimate b̂q can be expected to decrease by 
0.1 compared to the true parameter value (i.e., bias). 
However, if the noise proportion of the covariate is low
ered to 0.1, Figure 5 indicates that the estimate b̂q would 
only decrease by roughly 0.025.

Discussion

While the effects of measurement error (i.e., noise) 
have received ample attention for cross-sectional 
regression models (Wooldridge, 2002), in this paper we 
have investigated its effects for longitudinal regression 
models, like the MAR model, where their effects are not 
often considered (for an exception see Castro-Alvarez 
et al., 2022; Schuurman et al., 2015). Specifically, in this 
paper we have investigated different scenarios where 
the covariate is a noisy predictor of the changes in a 
process due to measurement error.

Our simulation showed that noise in the covariate will 
lead to bias in almost all estimators of the MAR model. 
This bias was already notable for a noise proportion of 
13%. When the noise proportion was 43%, the bias was 
large for nearly all estimators: the AR estimator in the 
IntAR-MAR model, for instance, exhibited a relative bias 
equal to 60% of the true effect size. Our results are con
cerning because measuring a covariate with a noise pro
portion of 43% is plausible in psychological research 
practice (Schmidt & Hunter, 1996). This bias of estima
tors can have implications for the conclusions drawn 
from MAR models. Specifically, noise in the covariate 
attenuates estimates for the influence of the covariate 
toward zero (known as regression dilution bias 
(MacMahon et al., 1990)). Though our simulation cov
ered only positive parameter values for these regression 

coefficients, noise in the covariate is known to bias the 
estimate of the associated regression coefficient toward 
zero, as long as only a single predictor variable is used 
and the noise is unbiased and independent of the true 
value of the outcome variable (Frost & Thompson, 
2000). Further, noise in the covariate inflates estimates 
for the autoregression of the outcome variable. Thus, 
noise in the covariate leads to incorrect conclusions, sug
gesting less absolute influence of the covariate on the 
dynamics and a too large autoregression.

The aim of this paper is not to discourage people 
from including contextual influences into the AR 
model. On the contrary, if a covariate indeed affects 
the emotion dynamics under study, omitting it will 
lead to biased estimates. Instead, we advise researchers 
to adjust their study design accordingly and to con
sider the accuracy with which a covariate can be 
measured when interpreting the results of a MAR 
model. This is particularly important because recent 
research suggests that applied researchers often do not 
consider the psychometric properties of their intensive 
longitudinal data (Vogelsmeier et al., 2024). The 
remainder of this paper will be dedicated to a number 
of implications of our simulation findings for applied 
research and a discussion on possible solutions to 
address the problem of noisy covariates in MAR mod
els. We will conclude with a few general considera
tions for specifying a MAR model.

Implications for applied research

Our simulation showed that when a noisy covariate 
persists over time (i.e., switches slowly), this can par
ticularly inflate estimates for the AR coefficient (all 
covariates in our simulation design persisted for some 
observations, though the slow-switching covariates per
sisted longer than the fast-switching covariates). Thus, 
the higher the temporal persistence of a noisy covariate, 
the higher the positive bias of the AR coefficient. This 
finding has important implications because the AR 
coefficient is often of particular interest to psychological 
researchers (see e.g., Brose et al., 2015b; Koval & 
Kuppens, 2012; Koval et al., 2012; Kuppens et al., 2010) 
and because many of the contextual covariates that are 
relevant in psychology show some temporal persistence 
(e.g., work demands, or weather often persist for sev
eral observations).17 Thus, if permitted by the research 
question, studies should favor designs where the 

17Though contextual covariates without temporal persistence also occur in 
empirical studies, for instance when including a covariate that indicates 
whether a random prompt during an ecological momentary assessment 
was made in the morning or in the evening.
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covariate exhibits low temporal persistence (i.e., fast- 
switching). Otherwise, the temporal persistence in a 
noisy covariate can be mistaken for higher autoregres
sion in the outcome variable, as was shown in our 
simulation. Our advice is in line with the advice given 
by Ariens et al. (2023) who studied noise-free MAR 
models and noted that serial dependence in the covari
ate can lead to lower estimation accuracy.

In our simulation, the Occasional continuous noise 
covariate was associated with the lowest bias, followed 
by the Occasional discrete noise covariate, the Constant 
continuous noise covariate had the highest bias. This 
suggest firstly that in the presence of comparable pro
portions of noise, continuous covariates with occasional 
noise display lower bias than discrete covariates with 
occasional noise. Secondly, in the presence of compar
able proportions of noise, occasional noise is associated 
with lower bias than constant noise. Thus, if permitted 
by the covariate under study, researchers should favor 
continuous rather than discrete covariates. These find
ings suggest also that researchers should take steps to 
avoid study designs where all observations of the cova
riate are noisy. For instance, by avoiding a study design 
that includes measurement times at which the partici
pant is particularly prone to enter inaccurate responses 
due to being in-attentive, tired, or unable to take 
enough time to enter responses. Generally, keeping the 
total amount of noise to a minimum is crucial because 
the bias that is caused by a noisy covariate quickly 
increased as the amount of noise in the covariate 
increased, as was shown in our simulation study. 
Further, the bias caused by noisy covariates increased 
as the effect size of the covariate increased. 
Consequently, researchers should particularly avoid 
noise in the measurement of the covariate when the 
covariate is expected to have a large effect on the emo
tion dynamics. The bias that results from a noisy cova
riate did not decrease as the number of observations 
increased. Hence, researchers should be mindful of the 
bias that is caused by a noisy covariate even when they 
collect very long time-series.

Finally, when considering tradeoffs in the study 
design and analysis of intensive longitudinal data, 
researchers can utilize Figures S5–S7 (Figures S6 and 
S7 are contained in Supplemental material, supple
mental content C). These figures show how the par
ameter estimates of different MAR models are 
impacted as a function of covariate noise, across vari
ous data characteristics. By locating the appropriate 
panel and curve given the characteristics of the data 
that is being collected, researchers can evaluate the 
anticipated changes in effect size due to noise in the 

covariate. These figures provide a way for researchers 
to determine whether they deem the degree of bias 
that is caused by a given noise proportion as accept
able or whether efforts need to be made to collect a 
less noisy covariate.

Statistical solutions

Schuurman et al. (2015) investigated the consequences 
of measurement error in the outcome variable in AR 
models, they showed that the bias resulting from this 
can be alleviated by explicitly modeling the outcome 
variable’s measurement error. Though Schuurman 
et al. (2015) studied only the scenario of noise in the 
outcome variable and not of noise in the covariate, an 
equivalent approach (i.e., explicitly modeling the cova
riate’s measurement error) could be used to counter
act the bias we have found in our simulation. 
Explicitly modeling measurement error, however, 
relies on assumptions, such as a Normal distribution 
of the measurement error. Thus, explicitly modeling 
measurement error will make a statistical model more 
complex and harder to estimate. In a Bayesian frame
work, for instance, estimating a MAR model that 
accounts for measurement error of the covariate will 
require strong informative prior distributions, espe
cially for short time-series.

Various methods could be used to estimate a MAR 
model where measurement error in the covariate is 
accounted for through a measurement model. For 
instance, by using the dynamic factor analysis model 
offered in Mplus (Asparouhov et al., 2018; Muth�en & 
Muth�en, 2013), or by using state space model estima
tion as offered in the dynr R package (Ou et al., 
2019). Measurement error could also be incorporated 
into a MAR model through structural equation mod
eling (Bollen, 1989; Jaccard & Wan, 1995). 
Alternatively, the development of errors-in-variables 
methods for MAR models could prove beneficial to 
achieve consistent estimates despite measurement 
error, for instance through instrumental variable 
methods which are distribution-free and have a cer
tain robustness to model misspecification (Bollen 
et al., 2007, 2024). Instrumental variable methods use 
so-called ‘instruments’: variables that are uncorrelated 
with the measurement error but are correlated with 
the covariate. Once instrumental variables are identi
fied, instrumental variable estimators can be used to 
estimate the latent variable model, for instance in a 
factor model (Bollen, 1996).

While such methods to address measurement error 
are already widely developed for cross-sectional and 
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AR models (Castro-Alvarez et al., 2022; Schuurman 
et al., 2015), their estimation possibilities for moder
ated AR models, like the MAR, are still lagging 
behind. Studying potential modeling solutions to 
account for noisy covariates in MAR models would be 
very beneficial for intensive longitudinal studies of 
psychological concepts.

Relation to omitted variables and other sources of 
model misspecification

In this paper we have focused exclusively on noise 
being due to measurement error. Noise can also arise, 
however, when there are omitted variables. That is, 
when there are unobserved covariates that correlate 
with the observed predictor and that also cause 
changes in the emotion dynamics. While omitted vari
ables and measurement error are conceptually very 
different, they are similar in their statistical structure 
(see e.g., Wooldridge, 2002, p. 70): In both cases the 
covariate is an imperfect predictor of the changes in 
the dynamics and thus an unexplained part (unex
plained either because the variable is omitted or 
because it is measurement error) ends up in the 
innovation. In the measurement error and the omitted 
variable case, this can lead to a correlation between 
predictor xt−1 and innovation ft (see Wooldridge, 
2002, pp. 71–76) or our illustration in the 
Supplemental material, supplemental content A), vio
lating thus the assumption of predictors being uncor
related with the innovation. In short, while our 
simulation included only the measurement error scen
ario, it also covers a special case of the omitted vari
able problem. Thus, similar bias than we found in our 
simulation can be expected when important predictors 
that covary with the included covariate are omitted 
form the MAR model.

In addition to measurement error and omitted varia
bles, other sources of model misspecification are pos
sible. For instance, it is a crucial consideration whether 
to model the covariate’s influence on an intercept (as 
specified in Equations (2)–(4)) or on a within-person 
mean (as specified in Equations (A.9)–(A.12) in 
Supplemental material, supplemental content D). This 
consideration is essential because the interpretation of 
the covariate influence differs between these two model 
specifications, and furthermore, these specifications 
imply different assumptions about the underlying 
mechanism generating the data (Ernst et al., 2024; 
Usami et al., 2019). In the intercept specification, the 
influence of the covariate is assumed to carry over to 
the next time-points via the autoregressive process. In 

contrast, in the within-person mean specification, the 
covariate is assumed to influence only one measure
ment, and these influences do not carry over to any 
future time-point. Consequently, covariates included in 
a model with intercept-specification are commonly 
referred to as accumulating factors (Ernst et al., 2024; 
Usami et al., 2019), while covariates included in a 
model with within-person mean specification are 
referred to as deterministic trends (Usami et al., 2019) 
or as direct influences (Ernst et al., 2024). For details on 
the distinction and the implications of these two specifi
cations see Ernst et al. (2024), Hamaker (2005), and 
Usami et al. (2019).

Thus, because these two specifications are not 
equivalent, the model is misspecified when the data is 
generated according to an intercept specification but 
is analyzed with a within-person mean specification, 
or vice versa. We expect that such misspecification 
will cause similar bias as when a misspecification 
occurs because of measurement error or omitted vari
ables. In the future, it would be useful to investigate 
and compare the amount of bias that can result from 
these different model misspecifications.

In this paper we have considered exclusively the 
scenario where data is generated and analyzed accord
ing to the intercept specification, in order to keep the 
focus of our paper on misspecification due to noise in 
the covariate. In the Supplemental material, supple
mental content D we show the results of an additional 
simulation where data was generated and analyzed 
according to a MAR model with a within-person 
mean specification. The results of this simulation 
are presented in Table 7 and Figure S8 in the 
Supplemental material, supplemental content D. These 
results show that the main effects for the bias in MAR 
models with within-person mean specification are the 
same as those for MAR models with intercept specifi
cation (the effects for the different types of covariate, 
however, were less clear-cut in this simulation). Also, 
equivalently to MAR models with intercept specifica
tion, for MAR models with within-person mean speci
fication, noise in the covariate attenuates estimates for 
the influence of the covariate toward zero while inflat
ing estimates for the autoregression.

Extensions to multi-individual MAR models

In this paper we have focused on single-individual 
models rather than multi-individual models. We did so 
because for multi-individual models there is an added 
layer of complexity and within-person and between- 
person parameter estimators become related and the 
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true parameter values at both levels, the number of 
observations, and the number of persons will have an 
impact on estimator performance at both levels, which 
would make our results even harder to communicate 
(Schultzberg & Muth�en, 2018). However, we expect 
multi-individual extensions of the MAR model to show 
similar biases overall due to noisy covariates as we have 
shown for single-individual models. We expect this 
because we have shown in our simulation that these 
biases do not decrease with an increase in available data 
(i.e., by increasing the number of observations). Multi- 
individual extensions of MAR models are possible, for 
instance through multilevel extensions (Ernst et al., 
2021). Multilevel MAR models can be estimated in 
MPlus (Muth�en & Muth�en, 2013)18 while latent class 
MAR models can be estimated through ClusterVAR in 
R (Ernst & Haslbeck, 2024).19

Conclusion

In sum, while it is crucial for researchers to account 
for contextual events when modeling emotion dynam
ics, researchers should be mindful of the noise that is 
contained in measures of such contextual events 
because this noise can cause large bias of parameter 
estimates. The bias caused by noisy measures of con
textual events is further exacerbated by temporal per
sistence in the contextual events, discrete measures of 
the contextual events, a larger effect of the contextual 
events, and by a constant rather than occasional pres
ence of noise. The bias that results from noisy meas
ures of contextual events does not decrease as the 
number of observations increases.

Article information

Conflict of interest disclosures: Each author signed a form 
for disclosure of potential conflicts of interest. No authors 
reported any financial or other conflicts of interest in rela
tion to the work described. 

Funding: The research presented in this article was sup
ported by research grants from the Fund for Scientific 
Research-Flanders (FWO; EOS40007528/G0I2422N) and 
from the Research Council of KU Leuven (C14/23/062; 
iBOF/21/090) awarded to E. Ceulemans.

Data availability statement: The R-code to replicate all 
simulations and analysis that are presented in this manu
script are published on OSF. No empirical data is used in 
this manuscript.

Role of the funders/sponsors: None of the funders or 
sponsors of this research had any role in the design

Author contributions: AFE, EC, and JA conceived the pre
sented ideas. AFE performed the simulation and analyzed 
the results. JA wrote the simulation code for the data gener
ation. JA made Figures 1 and 2. AFE wrote the manuscript 
with the input from all authors. All authors contributed to 
the final manuscript.

References

Adolf, J. (2023). fmTSA. https://gitlab.kuleuven.be/ppw- 
okpiv/researchers/u0119417/published/fmTSA

Adolf, J. K., Voelkle, M. C., Brose, A., & Schmiedek, F. 
(2017). Capturing context-related change in emotional 
dynamics via fixed moderated time series analysis. 
Multivariate Behavioral Research, 52(4), 499–531. https:// 
doi.org/10.1080/00273171.2017.1321978

Table 7. Main effects for bias and variance across the simulation factors (WpmAR-MAR model).
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