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ABSTRACT
Invariance of the measurement model (MM) between subjects and within subjects over
time is a prerequisite for drawing valid inferences when studying dynamics of psychological
factors in intensive longitudinal data. To conveniently evaluate this invariance, latent Markov
factor analysis (LMFA) was proposed. LMFA combines a latent Markov model with mixture
factor analysis: The Markov model captures changes in MMs over time by clustering sub-
jects’ observations into a few states and state-specific factor analyses reveal what the MMs
look like. However, to estimate the model, Vogelsmeier, Vermunt, van Roekel, and De
Roover (2019) introduced a one-step (full information maximum likelihood; FIML) approach
that is counterintuitive for applied researchers and entails cumbersome model selection pro-
cedures in the presence of many covariates. In this paper, we simplify the complex LMFA
estimation and facilitate the exploration of covariate effects on state memberships by split-
ting the estimation in three intuitive steps: (1) obtain states with mixture factor analysis
while treating repeated measures as independent, (2) assign observations to the states, and
(3) use these states in a discrete- or continuous-time latent Markov model taking into
account classification errors. A real data example demonstrates the empirical value.
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Introduction

New methods such as Experience Sampling
Methodology (ESM; Scollon et al., 2003) enable the
assessment of psychological constructs or “factors”
(e.g., depression) in daily life by repeatedly question-
ing multiple participants via smartphone apps, for
example, nine times a day for one week. Such inten-
sive longitudinal studies (say with more than 50 meas-
urement occasions) are often conducted to analyze
dynamics in factor means. For instance, researchers
investigated how emotional dynamics relate to sub-
jects’ mental health (Myin-Germeys et al., 2018) or
tailored interventions to subject’s daily experience of
negative affect (Van Roekel et al., 2017). For drawing
valid inferences about the dynamics, it is crucial that
the measurement model (MM) is invariant (i.e., con-
stant) between and within persons over time. The
MM indicates which factors are measured and how
these factors are measured by items, which is
expressed by means of “factor loadings”. In case of

continuous data, the MM is obtained with factor ana-
lysis (FA). If the MM is invariant, the factors are con-
ceptually equal across subjects and time-points and
therefore comparable. However, the MM might be
affected by subject- or time-point-specific response
styles or substantive changes in item interpretation.
As a result, the MMs might differ between subjects
(e.g., the item interpretation might depend on sub-
jects’ psychopathology) but the MM might also differ
within one subject (e.g., the response style of choosing
only the extreme categories might depend on situ-
ational motivation to complete the questionnaire). If
invariance stays undetected, inferences may be invalid.
For example, a mean score change in negative affect
might be at least partly due to changes in item
interpretations.

To conveniently evaluate (violations of) invariance
of intensive longitudinal data for multiple subjects
simultaneously, latent Markov factor analysis (LMFA;
Vogelsmeier, Vermunt, van Roekel, & De Roover,
2019; Vogelsmeier, Vermunt, B€oing-Messing, & De

MULTIVARIATE BEHAVIORAL RESEARCH
2023, VOL. 58, NO. 2, 262–291

� 2021 The Author(s).
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



Roover, 2019) was proposed, which combines a dis-
crete- or continuous-time latent Markov model with
mixture factor analysis.1 As will be described in more
detail in Section “Latent Markov Factor Analysis”, the
Markov model clusters subject- and time-point-spe-
cific observations according to their underlying MM
into dynamic latent MM classes or “states”, which
implies that subjects can transition between latent
states and thus between MMs over time.2 State-spe-
cific factor analyses reveal which MM applies to each
state. Observations that belong to the same state are
invariant. Observations that belong to different states
are non-invariant, for instance, with regard to the
number or nature of the underlying factors or the size
of factor loadings. Note that some subjects might stay
in one state, which implies within-person invariance
(i.e., over time). Other subjects may transition (more
or less frequently) between different MMs, which
implies within-person non-invariance. Moreover,
comparing state memberships across subjects provides
information about between-person (non-)invariance.

The aim of assessing non-invariance patterns is
usually twofold. On the one hand, detecting non-
invariance is important for deciding how to proceed
with the data analysis. For example, if the invariance
violation is strong, one may decide to conduct factor-
mean analyses with observations from one state only.
If only a few MM parameters differ across states (i.e.,
“partial invariance” holds; Byrne et al., 1989), one
may decide to investigate dynamics in the factor
means but let the corresponding MM parameters dif-
fer across states. More specifically, if discrete (i.e.,
abrupt) changes are of interest, one could continue
with LMFA by adding factor means to the model and
constraining invariant parameters to be equal across
states. The state memberships would then (also) cap-
ture discrete changes in factor means (this is further
explained in Section “Measurement part”).3 If con-
tinuous (i.e., smooth) changes are of interest,
researchers could opt for a latent growth model
(Muth�en, 2002) with state-specific parameters.

On the other hand, researchers would typically like
to include explanatory variables (in the following
referred to as “covariates”) that can possibly explain
MM changes so they can learn about these

substantively interesting aspects of their data. As an
example, when studying adolescents’ affective well-
being in daily life, the situational context (e.g., being
with friends versus being with parents) might lead to
different MMs in that some items may be more rele-
vant for measuring affect in one over the other con-
text. For instance, “being excited” might be more
related to the positive affect factor when being with
friends whereas “being content” might be more related
to positive affect when being with parents.

Exploring the relations between covariates and state
memberships is theoretically possible by adding differ-
ent (sets of) covariates to the “structural model” (SM).
Note that the SM generally refers to the causal rela-
tionships between latent variables (and/or exogenous
variables) or between latent variables at consecutive
measurement occasions. Specifically, in LMFA, the
SM refers to the transitions between states and thus
between MMs. However, with the currently imple-
mented full information maximum likelihood (FIML)
approach, that estimates all parameters (i.e., from the
MM and the SM) at the same time, exploring covari-
ate effects is cumbersome. LMFA is an exploratory
method, which entails that researchers have to select
the best model in terms of number of latent states
and number of factors within the states. To this end,
one needs to estimate a large number of plausible
models and compare them with the Bayesian informa-
tion criterion (Vogelsmeier, Vermunt, van Roekel, &
De Roover, 2019) or an alternative model selection
criterion. For example, comparing models with 1� 3
states and 1� 3 factors per state would already result
in 19 models that have to be estimated by the
researchers. Model selection with covariates is even
more cumbersome because the whole model (i.e., the
MMs and the SM) would have to be re-estimated for
every set of covariates. Especially in exploratory stud-
ies, where researcher might want to add or remove
covariates until only significant covariates are left, the
model selection procedure quickly becomes unfeasible
(e.g., if there are only three different sets of covariates
for the 19 different model complexities, this would
already result in 19� 3 ¼ 57 models).

To avoid the model selection problem with covari-
ates in any latent class analysis (the latent Markov
model is a specific variant thereof), researchers some-
times first select the MM (or MMs if they differ across
latent classes) without including the covariates to the
SM. Once the choice about the complexity of the MM
has been made, researchers include the covariates in
the SM and re-estimate the whole model (i.e., only
19þ 3 ¼ 21 models have to be estimated). However,

1Note that it is also possible to apply LMFA to a single subject if the
number of observations was large enough. For guidelines on the required
number of observations, see Vogelsmeier, Vermunt, van Roekel, et
al. (2019).
2Note that classifying observations of different subjects into the same
latent states entails that persons are assumed to differ from themselves
in the same way as persons differ from other persons.
3This analysis would be comparable to the factor-mean modeling
approach that was proposed by Bartolucci and Solis-Trapala (2010).
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this is problematic because, in the FIML approach,
both parts of the model, the MM and the SM, are
estimated at the same time so that specifications of
the SM may also influence the MM. Thus, including
covariates can redefine the states and even impact the
optimal number of states or factors (Bakk et al., 2013;
Nylund-Gibson et al., 2014).

A better strategy that considerably simplifies the
estimation is the so-called “three-step” (“3S”)
approach, which decomposes the estimation into three
manageable pieces. More specifically, the steps for a
latent Markov model are as follows: step 1: obtain
state-specific MMs by conducting mixture factor ana-
lysis on the repeated measures data while disregarding
the dependency of these observations; step 2: assign
the observations to the states (and thus the MMs)
based on posterior state probabilities; step 3: pass the
state-specific MMs to a latent Markov model in order
to estimate the probabilities to transition between the
states (the three steps will be elaborated in Section
“Three-Step Estimation of Latent Markov Factor
Analysis”). Although the MMs are also estimated first
without considering the SM with its covariates (step
1), the MMs are kept fixed when adding the covariates
to the SM (step 3).

Next to facilitating the inclusion of covariates, the
step-wise approach is also more intuitive because it
ensures that the states—and thus the formation of the
MMs—are free from covariate influences. This is
required if latent classes (in our case latent states)
should exclusively capture heterogeneity in the MMs
(Bakk et al., 2013; Nylund-Gibson et al., 2014).
Moreover, the step-wise approach better corresponds
with how researchers prefer to approach their analyses
(Bakk et al., 2013; Devlieger et al., 2016; Vermunt,
2010). That is, they rather see the investigation of the
SM (i.e., in our case the transitions between states and
the influence of covariates) as a final step that comes
after investigating what the MMs look like. Because of
the separate steps, the analyses could even be distrib-
uted across researchers such that one researcher carries
out the first step to obtain the different underlying
MMs. A second researcher could take the results and
continue with the analyses of the transitions between
the MMs. If everything has to be done in one step, it
may quickly become overwhelming. Thus, applied
researchers are used to and typically prefer such step-
wise approaches and perceive simultaneous “one-step
approaches” as counter-intuitive and more difficult to
interpret (Vermunt, 2010). Especially for complex anal-
yses such as LMFA, offering step-wise approaches can
therefore help to reach applied researchers and motiv-
ate them to apply the new method.

When splitting the estimation of latent class models
in general—and latent Markov models in particular—
into the estimation of the MM(s) and the SM, esti-
mates of the SM would be biased, however. In order
to prevent this bias, the estimation procedure has to
take into account the classification error that results
from classifying observations into classes or states
because classification is never perfect. To this end,
Bolck et al. (2004) proposed the “BCH” method in
which the classification error is used to reweight the
data prior to conducting logistic regressions to predict
class membership. Moreover, Vermunt (2010) devel-
oped an alternative, more flexible, maximum likeli-
hood correction (“ML” method) in which the
estimation of the latent class model in the third step
explicitly incorporates the classification error. More
recently, the ML approach (or an extension thereof)
was applied to the 3S estimation of latent Markov
models (e.g., Asparouhov & Muth�en, 2014; Bartolucci
et al., 2015; Di Mari et al., 2016; Nylund-Gibson et al.,
2014) and showed to be a trustworthy alternative to
the one-step FIML approach.

The aims of the current study are (1) to tailor the
ML correction method to LMFA (in the following
referred to as 3S-LMFA) to provide a more accessible
alternative to the FIML estimation (in the following
referred to as FIML-LMFA) that is more convenient
to use (especially with covariates) and easier to inter-
pret for applied researchers and (2) to evaluate
whether 3S-LMFA approaches the good performance
of FIML-LMFA in terms of state and parameter
recovery. Note that both, FIML-LMFA as well as 3S-
LMFA, can be estimated by means of Latent GOLD
(LG) syntax (Vermunt & Magidson, 2016), which is
also used for the current study.

The remainder of this paper is structured as fol-
lows: In Section “Method”, we first describe the data
structure, provide a motivating example, outline the
general LMFA model, and explain the steps of 3S-
LMFA. In Section “Simulation Study”, by means of a
simulation study, we evaluate the performance of 3S-
LMFA and compare it to the performance of FIML-
LMFA. Section “Application” illustrates the empirical
value of 3S-LMFA by means of a real-data application.
In Section “Discussion”, we discuss limitations of 3S-
LMFA and directions for future research.

Method

In the following, we first describe the data
structure, the LMFA model, and the FIML estimation
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before we explain the three steps of the 3S estimation
in detail.

Data structure

We assume ESM data with repeated measures obser-
vations (with multiple continuous variables) that are
nested within subjects and are denoted by yijt (where
i ¼ 1, :::, I refers to subjects, j ¼ 1, :::, J refers to items,
and t ¼ 1, :::,T to time-points). Note that T may dif-
fer across subjects but we omit the index i in Ti for
simplicity. The yijt are collected in the 1� J vectors
yit ¼ ðyi1t , :::, yiJtÞ that themselves are collected in the
T � J data matrices Yi ¼ y

0
i1, :::, y

0
iT

� �0
:

Motivating example

In order to motivate the use of LMFA in general and
the 3S approach in particular, consider the following
ESM data that was collected within the larger ADAPT
project (Keijsers et al., 2017).4 Dutch adolescents
(N¼ 27; MAge ¼ 15.8; 67% girls) received five ques-
tionnaires a day for 13 consecutive days via the
“Ethica Data” mobile app (Ethica Data Services Inc,
2018), resulting in a maximum of 65 potential

measurement occasions per participant. In total, the
27 participants completed 1168 questionnaires (com-
pliance rate 67%). During each ESM questionnaire the
participants indicated their current affect with the
Dutch version of the Positive and Negative Affect
Schedule for Children (PANAS-C-NL; Ebesutani et al.,
2012; Keijsers et al., 2019; Watson et al., 1988), where
five items indicated positive affect and another five
items indicated negative affect (all items are displayed
in Table 4). All affect items were measured on a
Visual Analog Scale (VAS) from 0 (not at all) to 100
(very much). The visual display of the items in the
app can be found in the Online Supplement S.3. Next
to the affect questionnaire, adolescents also completed
questionnaires to assess time-varying covariates (e.g.,
participants’ current company) at each measurement
occasion. Furthermore, before the ESM study, partici-
pants completed a baseline questionnaire about time-
constant covariates (e.g., on emotion clarity and emo-
tion differentiation capability). A typical next step of
substantive or applied researchers would be to investi-
gate changes in positive and negative affect over time.
However, if response styles or item interpretation dif-
fer across time-points and/or subjects, the MM is not
invariant within and between subjects and conclusions
about dynamics in affect may be invalid. LMFA can
be used to trace MM differences between subjects and
MM changes over time. More specifically, there are
two main research questions that can be answered
using LMFA:

1. Which MMs underlie which parts of the data and
how do the MMs differ?

2. Are the MMs related to time-varying and/or time-
constant covariates?

For answering only the first question, FIML-LMFA
can be used. However, if researcher also want to
answer the second question, the model selection
including covariates would be too cumbersome with
FIML-LMFA and 3S-LMFA is indispensable. In
Section “Application”, we answer both research ques-
tions using 3S-LMFA.

Latent Markov factor analysis

LMFA consists of two parts. First, the measurement
part concerns the state-specific response variable dis-
tributions that, in the case of LMFA, consist of the
MMs for the constructs, which are defined by a mix-
ture of factor models. Second, the structural part con-
cerns the discrete latent process that is either defined

Figure 1. Artificial example of the relations between the struc-
tural model parameters (top panel) and a zoomed in state-spe-
cific measurement model (bottom panel) in the full
information maximum likelihood LMFA. Note that the state-
specific measurement models may differ regarding all parame-
ters, including the number of factors and the values of the
loadings (kkjf ), intercepts (�kj), and unique errors (ekj).

4Materials can be found at https://osf.io/svyau.
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by a “discrete-time” latent Markov model (Bartolucci
et al., 2014, 2015; Collins & Lanza, 2010; Zucchini et
al., 2016), which assumes equal time-intervals, or by a
“continuous-time” latent Markov model (B€ockenholt,
2005; Jackson & Sharples, 2002), which allows time-
intervals to differ. Additionally, it is possible to
include covariates to the SM. Figure 1 depicts the rela-
tions between the parameters from the SM and zooms
in on the relation between the states from the SM and
the state-specific MMs by means of an artificial
example. The different parts including the notation
will be described next.

Measurement part
The measurement part shows how the state member-
ships define the responses. Thereby, it is important to
note that the responses at time-point t, yit , depend
only on the latent state k ðk ¼ 1, :::,KÞ at that time-
point and the responses are thus independent of the
responses at other time-points given that state
(“independence assumption”), which is also illustrated
in Figure 1. In LMFA, the factor model depends on
the state membership of subject i at time-point t
(denoted by sitk ¼ 1) as follows:

½yitjsitk ¼ 1� ¼ mk þ Kkf itk þ eitk: (1)

In this equation, Kk is the state-specific J � Fk
loading matrix (where Fk is the state-specific number
of factors); f itk � MVNð0,WkÞ is the subject-specific
Fk � 1 vector of factor scores at time-point t (where
Wk is the state-specific factor covariance matrix); mk is
the state-specific J � 1 intercept vector; and eitk �
MVNð0,DkÞ the subject-specific J � 1 vector of resid-
uals at time-point t (with Dk containing the unique
variances dkj on the diagonal and zeros on the off-
diagonal). Thus, the state-specific response densities,
p yitjsitk ¼ 1
� �

, are defined by state-specific multivari-
ate normal distributions with means mk and covari-
ance matrices Rk ¼ KkK

0
k þDk: To obtain the state-

specific factor models, LMFA employs exploratory fac-
tor analysis within the states in order to retain max-
imal flexibility regarding the differences in MMs that
can be traced. In contrast to confirmatory factor ana-
lysis, exploratory factor analysis puts no a priori con-
straints on the factor loadings. However, if desired,
confirmatory factor analysis can also be used.

From Eq. (1) we can see that the state-specific
MMs may differ with regard to their loadings Kk,
intercepts mk, unique variances Dk, and factor (co)va-
riances Wk, implying that LMFA explores all levels of
measurement non-invariance, that is, configural
invariance (invariant number of factors and pattern of

zero loadings), weak factorial invariance (invariant
loading values), strong factorial invariance (invariant
intercepts), and strict factorial invariance (invariant
unique variances) (for more details see, e.g., Meredith,
1993). For identification purposes, the factor variances
are equal to one in all the states and rotational free-
dom is dealt with by means of criteria to optimize
simple structure and/or the between-state agreement
of the factor loadings (e.g., Clarkson & Jennrich, 1988;
De Roover & Vermunt, 2019; Kiers, 1997).

It is important to note that restricting the factors
to have a mean of zero and a variance of one has the
consequence that changes in factor means and varian-
ces may be captured as changes in the intercepts and
loadings (i.e., if an additional state is selected for such
a change). Therefore, when all intercepts that pertain
to the same factor are higher or lower in one state
compared to the other, it might be a sign that the fac-
tor means rather than separate intercepts differ across
these states. Similarly, if all loadings of the same factor
are likewise larger or smaller (i.e., the scaling is
affected), it might be a sign that factor variances
rather than the separate loadings differ across states.
However, when the number of factors differs across
states, it does not make sense to disentangle loading
differences from factor-variance differences and, as
long as weak invariance is violated, it does not make
sense to disentangle intercept differences from factor-
mean differences. In contrast, if the loadings and
intercepts are (at least partially) invariant5, one could
go ahead with an adjusted LMFA—that means, with
equality restrictions on the MM parameters and
including state-specific factor variances and means—
and capture discrete changes in factor variances and
means over time, as was already mentioned in the
Introduction.

Furthermore, LMFA currently assumes that factors
have no auto- and cross-lagged correlations at con-
secutive time-points. By means of a dynamic factor
analysis, it would be possible to incorporate such
autocorrelations, but factor rotation would be more
intricate as auto- and cross-lagged relations have to be
rotated toward a priori specified target matrices

5Note that evaluating higher levels of invariances would require
specifying increasingly more restrictive confirmatory factor analysis (CFA)
models within the states in step 1 of the three-step estimation. Deciding
on which equality constrains to add for the loadings may be based on
multigroup factor rotation (MGFR; De Roover, Vermunt, & Ceulemans,
2020). For the intercepts and unique variances, the decision can be based
on “score tests” (Oberski, van Kollenburg, & Vermunt, 2013). The
tenability of (partial) invariance can be evaluated by comparing models
with different restrictions, for example, in terms of their BIC value (Lubke
& Muth�en, 2005). Note that estimating constrained models is already
possible in LG but the CFA variant of LMFA with equality restrictions has
yet to be explained and evaluated in future research.
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(Browne, 2001; Zhang, 2006). This would require a
priori hypotheses about MM changes that are often
not present or incomplete and that are thus undesired
in exploratory studies. In addition, one would require
more measurement occasions per subject (Ram et al.,
2012), which is often unfeasible. In order to investi-
gate whether ignoring autocorrelations in the data
would pose problems for LMFA, Vogelsmeier,
Vermunt, van Roekel, and De Roover (2019) con-
ducted a simulation study using the FIML estimation
and showed that the state and parameter recovery of
the MMs were largely unaffected. Note, however, that
ignoring dependency in the data leads to an underesti-
mation of standard errors (SEs) of the MM parame-
ters. This is only relevant when using hypothesis tests
to trace significant differences in the MMs across
states, which is possible by means of Wald tests using
De Roover and Vermunt (2019)’s recently developed
“multigroup factor rotation”.6 One would then have
to correct for the dependency in the data (e.g., with
the “primary sampling unit” identifier in LG;
Vermunt & Magidson, 2016). Otherwise, invariance of
parameters would be rejected too easily. However, the
hypothesis tests are outside the scope of this paper.

Structural part
A latent Markov model generalizes a latent class
model—the statistical method to identify subgroups
with a similar set of indicator values—because subjects
can transition between classes in a latent Markov
model, while subjects remain in the same classes in a
latent class model. The classes in a latent Markov
model are therefore referred to as “states”. For an
extensive description of latent Markov models, see, for
example, Bartolucci, Farcomeni, et al. (2015) and
Zucchini et al. (2016). In brief, transitions between
the states are captured by a latent “Markov chain”
defined by the probabilities to start in a state k at
time-point t ¼ 1 (“initial state probabilities”) and the
probability of being in a state k at time-point t > 1
conditional on the occupied state lðl ¼ 1, :::,KÞ at t �
1 (“transition probabilities”). Note that, according to
the first-order Markov assumption, the probability of
being in a certain state k at time-point t depends only
on the state at t � 1: The initial state probabilities are
given by the K � 1 probability vector p, which con-
tains the elements pk ¼ p s1k ¼ 1ð Þ with stk referring to
the state membership k at time-point t (e.g., if a

subject is in state 1 at time-point 1, then s11 ¼ 1 and
s12 ¼ � � � ¼ s1K ¼ 0). These binary variables are in
turn collected in the membership vectors sit ¼
sit1, :::, sitKð Þ0, for t ¼ 1, :::,T, which are in turn col-
lected in the K � T state membership matrix S ¼
si1, si2, :::, siTð Þ: The transition probabilities are col-
lected in the K � K matrix P, which contains the ele-
ments plk ¼ pðstk ¼ 1jst�1, l ¼ 1Þ: Note that the rows
indicate the state that a person comes from and the
columns determine the state where the person transi-
tions to. Hence, the diagonal elements represent the
probabilities to stay in a state and the off-diagonal ele-
ments the probabilities to transition to another state.
Therefore, diagonal values close or equal to 1 indicate
stable state memberships and, thus, within-person
invariance. It applies that the sum of the initial state

probabilities,
PK

k¼1 pk, and the row sums of the tran-

sition probabilities,
PK

k¼1 plk, equal 1.
In the discrete-time latent Markov model, the time-

intervals between observations are assumed to be
equal. This assumption is often not tenable in empir-
ical data. For instance, the questionnaires in ESM are
usually send out at random moments and participants
may skip certain measurement occasions, which auto-
matically increases the distance between two subse-
quent observations. To accommodate such data, a
continuous-time latent Markov model can be
employed, which allows for differing intervals across
time-points and subjects by considering the length of
time spent in a state, d: In the following, we provide a
brief summary. The interested reader is referred to
B€ockenholt (2005) and Jackson and Sharples (2002)
for general information about continuous-time latent
Markov model and to Vogelsmeier, Vermunt, B€oing-
Messing, and De Roover (2019) for more specific
information on continuous-time-LMFA. In brief, tran-
sitioning from the origin state l to destination statek
is defined by the “intensities” (or rates) qlk(collected
in the K � K intensity matrix Q) that replace the
transition probabilities plk and can be seen as proba-
bilities to transition between states per very small time
unit:

qlk ¼ lim
d!0

pðstk ¼ 1jst�d, l ¼ 1Þ
d

, (2)

for all k 6¼ l (thus, for the off-diagonal elements in the
intensity matrix Q). The diagonal elements are equal
to the negative row sums (i.e., �P

k 6¼lqlk; Cox &
Miller, 1965). The transition probabilities for any
interval of interest can be computed by taking the
matrix exponential of Q� d: Note that larger time-
intervals d increase the probability to transition to a

6The method solves the rotation problem for multiple groups
simultaneously by rotating group-specific factor loadings to simple
structure and between-group agreement with user-defined weights on
these two aspects of the rotation.
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different state. In turn, Q can be obtained by taking
the matrix logarithm of P:7

In the following, we expand the structural part by
including U subject and possibly time-point specific
covariates zitu (collected in the U � 1 vectors zit) such
that they affect the initial and transition probabilities.8

Note that the measurement part is assumed to be not
(directly) affected by the covariates, which can also be
seen in Figure 1. Also note that the parameters of the
structural part are typically modeled using a logit
model (for initial and transition probabilities) or via a
log-linear model (for transition intensities) in order to
prevent parameter space restrictions, which is also
what LG does. The covariates enter the model through
these parameterizations. For the initial state probabil-
ities, we use the parameterization

log
pðsi1k ¼ 1jzi1Þ
pðsi11 ¼ 1jzi1Þ ¼ b0k þ b

0
kzit¼1, (3)

with k ¼ 2, :::,K and k ¼ 1 as the reference category.
The coefficients b0k are the initial state intercepts and
b

0
k ¼ ðbk, zi11 , :::, bk, zi1U Þ0 are the initial state slopes,

which quantify the effect of the covariates on the initial
state memberships. In discrete-time-LMFA, the multi-
nomial logistic model for the transition probabilities is

log
pðsitk ¼ 1jsit�1, l ¼ 1, zitÞ
pðsitl ¼ 1jsit�1, l ¼ 1, zitÞ ¼ c0lk þ c

0
lkzit (4)

with k 6¼ l: Thus, the logit is modeled by comparing
the transition from state l to state k with the probabil-
ity of staying in state l: The coefficients c0lk are the
transition intercepts and c

0
lk ¼ ðclk, zitu , :::, clk, zitU Þ0 are

the transition slopes, which quantify the effect of the
covariates on transitioning to another state. In con-
tinuous-time-LMFA, we use a log-linear model for the
transition intensities (for k 6¼ l):

log qlk ¼ c0lk þ c
0
lkzit: (5)

Finally, the joint distribution of observations and
states, given the covariates, is

p Yi, SijZið Þ ¼ p yi1, :::, yiT, si1, :::, siT jzi1, :::, ziT
� �

¼ p si1jzi1ð Þ
YT
t¼2

pdti sitjsit�1, zitð Þ
YT
t¼1

p yitjsit
� �

: (6)

Note that the dti in pdti sitjsit�1, zitð Þ refers to the
transition probabilities’ dependency on the subject-
and time-point-specific time-interval in continuous-
time-LMFA. The term reduces to p sitjsit�1, zitð Þ in dis-
crete-time-LMFA.

FIML estimation of latent Markov factor analysis
(FIML-LMFA)

In order to obtain the maximum likelihood (ML) par-
ameter estimates with the FIML estimation, the fol-
lowing loglikelihood function has to be maximized:

logLFIML ¼
XI

i¼1

log
X
si1

:::
X
siT

p Yi, SijZið Þ
� �

, (7)

with p Yi, SijZið Þ as given in Eq. (6). The ML estimates
can be obtained by means of the forward-backward
algorithm (Baum et al., 1970), which is an efficient
version of the expectation maximization (EM;
Dempster et al., 1977) algorithm and is also utilized
by LG to find the ML solution. Within the maximiza-
tion-step, a Fisher algorithm is used to update the
state-specific covariance matrices defined by the factor
models (Jennrich & Sampson, 1976) and, in case of
continuous-time-LMFA, also to update the log-transi-
tion intensities. For a summary of the algorithms
(including information about the convergence criteria
and the utilized multistart procedure) see
Vogelsmeier, Vermunt, van Roekel, and De Roover
(2019) for discrete-time-LMFA and Vogelsmeier,
Vermunt, B€oing-Messing, et al. (2019) for continuous-
time-LMFA.

It is important to note that we assume the number
of states (K) and factors per state (FkÞ to be known
when estimating the models. However, in real data,
the best model in terms of the number of states and
factors has to be evaluated. The Bayesian information
criterion (BIC) performs well in selecting the best
model in FIML-LMFA although the final decision
regarding the optimal model should also take inter-
pretability into account (Vogelsmeier, Vermunt, van
Roekel, & De Roover, 2019). When also including
covariates, every model under comparison (i.e., with
all possible combinations of K and Fk) has to be re-
estimated every time a covariate is added or removed
from the model because, using FIML estimation, the
best model may change depending on the included
covariates. For instance, when researchers want to
obtain the best subset of U ¼ 3 covariate candidates,
they would have to estimate 2U ¼ 8 times the number
of models that is already under comparison. When all
models are estimated, one may use the BIC and

7Note that the Q matrix with the particular structure on the off-diagonals
follows naturally from taking the matrix logarithm of the P matrix with
its restriction

PK
k¼1 plk ¼ 1:

8Note that the only difference between time-varying and time-constant
covariates is that the former may take different values within a subject
(i.e., in the dataset, the covariate scores may differ across rows) and the
latter has the same value within a subject (i.e., in the dataset, the
covariate scores are repeated/identical across rows).
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interpretability to choose the final model. Thus, the
model selection quickly becomes overwhelming and
even unfeasible when exploring relations between state
memberships and many covariates.

Three-step estimation of latent Markov factor
analysis (3S-LMFA)

In contrast to FIML-LMFA, 3S-LMFA decomposes
the maximization problem for estimating the MMs
and the SM into smaller parts. First, the state-specific
MMs are estimated (step 1). Second, the observations
are assigned to the MMs (i.e., classified to the states)
and “classification errors” are calculated (step 2).
Finally, the SM is estimated using the state-assign-
ments while correcting for the classification errors
(step 3). In the following, we explain the three steps
in detail.

Step 1: Estimation of the state-specific measurement
models
The first step as illustrated in Figure 2 involves esti-
mating the state-specific MMs underlying the data by
means of mixture factor analysis (McLachlan & Peel,
2000; McNicholas, 2016). The structural part (includ-
ing the covariates) can be validly ignored because, in
LMFA, the observations at a given time-point t, yit ,
are assumed to be conditionally independent of the
state at time-point t � 1, sitl ¼ 1, and the covariates
at time-point t, zit , given the state membership at
time-point t, sitk ¼ 1 (see Figure 1). For the estima-
tion, all repeated observations are treated as
“independent” such that respectively, say, 100 observa-
tions for each of 100 subjects results in 10,000 inde-
pendent observations. The model parameters of
interest are the state proportions p sitk ¼ 1ð Þ and the
state-specific response probabilities p yitkjsitk ¼ 1

� � ¼
MVNðyitkjmk,KkKk þDkÞ: The mixture factor analysis
model is therefore

p yitð Þ ¼
XK
k¼1

p sitk ¼ 1ð Þp yitkjsitk ¼ 1
� �

(8)

and the loglikelihood function is

logLSTEP1 ¼
XI

i¼1

XT
t¼1

logp yitð Þ: (9)

In LG, the posterior state probabilities and the
state-specific factor models are estimated with an EM
algorithm with Fisher scoring (Lee & Jennrich, 1979)
in the maximization-step.9

As already discussed in the introduction, in this
step, one also selects the optimal number of states K
and factors per state Fk without having to be con-
cerned about the covariates. Although the BIC is also
a commonly used model selection criterion for mix-
ture factor analysis (McNicholas, 2016), the CHull
(Ceulemans & Kiers, 2006) method—which also bal-
ances model complexity and fit—proved to outper-
form the BIC in mixture factor analysis, especially
when considering the three best models (Bulteel et al.,
2013). Based on their results, we suggest to use the
CHull method, potentially combined with the BIC, to
select the three best models and compare them in
terms of interpretability.

Step 2: Classification of observations and calcula-
tion of the classification error
Once the state-specific MMs have been estimated, in
the second step, we allocate each observation to one
of the K states (see Figure 3). Therefore, we create a
new variable wit ¼ wit1, :::,witKð Þ0, that, similar to sit ,
represents the assignments of the observations to the
estimated MMs from step 1. These predicted state
memberships are based on the estimated posterior
state probabilities p sitk ¼ 1jYitð Þ from step 1, which
can be expressed using Bayes’ theorem as

Figure 2. Step 1: Estimating the measurement model by per-
forming mixture factor analysis. Note that the dependence of
the observations is disregarded, which is indicated by the
missing arrows between the latent states.

Figure 3. Step 2: Assigning states and calculating the classifi-
cation error.

9Alternatively, one may also use another EM algorithm in the
maximization-step (e.g., McNicholas, 2016).
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p sitk ¼ 1jyit
� � ¼ p sitk ¼ 1ð Þp yitjsitk ¼ 1

� �
p yitð Þ

¼ p sitk ¼ 1ð Þp yitjsitk ¼ 1
� �

PK
k0¼1p sitk0 ¼ 1ð Þp yitjsitk0 ¼ 1

� � :
(10)

Thus, all observations yit belong to each of the K
states with a certain probability p sitk ¼ 1jyit

� �
: There

are two common rules10 on how to proceed with
these posterior state probabilities with regard to the
final state assignments. First, “proportional assign-
ment” assigns a state according to the posterior prob-
abilities such that p witk ¼ 1jyit

� � ¼ p sitk ¼ 1jyit
� �

,
which leads to a “soft” partitioning. Second, “modal
assignment” allocates the weight p witk ¼ 1jyit

� � ¼ 1
for the state k with the largest posterior state probabil-
ity in sit and a zero weight for all others states. Note
that we will focus on modal assignment because pro-
portional assignment is unfeasible with a large num-
ber of time-points per subject, which would involve
separate weights for all KT possible combinations of
states in case of classification uncertainty (Di Mari et
al., 2016).

Regardless of the assignment rule, classification
error is inherent to any assignment procedure because
the largest posterior probability is usually not equal to
1. We have to account for this error because, if not
accounted for, the error attenuates relationships
between variables. On the one hand, this attenuation
will lead to an underestimation of the relation among
true states sit at two consecutive time-points and thus,
an overestimation of the transition probabilities away
from a state (Vermunt et al., 1999). On the other
hand, estimating the relationship between the esti-
mated memberships wit and covariates zit—instead of

using the true states sit—causes underestimation of
the covariate effects (Di Mari et al., 2016). Hence, a
correction for attenuation of relationships due to clas-
sification error is necessary.

In order to calculate the classification error so that
we can account for it in step 3, we have to obtain the
probability of a certain state assignment witm ¼ 1 con-
ditional on the true state sitk ¼ 1, p witm ¼ 1jsitk ¼ 1ð Þ,
for all k,m ¼ 1, :::,K: These probabilities are collected
in the K � K “classification error probability matrix”.
They are computed as

p witm ¼ 1jsitk ¼ 1ð Þ

¼
Ð
p witm ¼ 1jyit
� �

p yitð Þp sitk ¼ 1jyit
� �

dyit
p sitk ¼ 1ð Þ : (11)

For the derivation, see the Appendix A.1.1. To
solve this equation, p yitð Þ can be validly substituted by
its empirical distribution (Di Mari et al., 2016;
Vermunt, 2010), resulting in

p witm ¼ 1jsitk ¼ 1ð Þ

¼
1

I�T

PI
i¼1

PT
t¼1 p witm ¼ 1jyit

� �
p sitk ¼ 1jyit
� �

p sitk ¼ 1ð Þ : (12)

Note that another option to solve the integral
would be to use Monte Carlo simulation. The larger
the probabilities for m ¼ k (corresponding to the
diagonal elements of the classification error probabil-
ity matrix), the better the classification and thus, the
smaller the classification error. Note that classification
error is strongly related to separation between the
states (i.e., how well the latent states are predicted by
Y ¼ Y

0
1,Y

0
2, :::,Y

0
I

� �
; Bakk et al., 2013; Vermunt,

2010). To qualify the separation in any LC analysis,
an entropy-based (pseudo) R-squared measure,
R2
entropy, is commonly used (Luko�cien_e et al., 2010;

Vermunt & Magidson, 2016; Wedel & Kamakura,
1998). The R2

entropy value defines the relative improve-
ment of predicting the state membership when using
the observations yit compared to predicting the state
membership without yit: Values range from zero (pre-
diction is no better than chance) to one (perfect pre-
diction). State separation (and hence classification
error) depends on various factors. For example, it
increases with a lower number of states, higher factor
overdetermination (which is higher in case of less fac-
tors, more variables, or lower unique variances), and
lower between-state similarity (determined by larger
differences in the state-specific MMs). The R2

entropy val-
ues for the different settings in our simulation study
will be reported below in Section “Design
and Procedure”.

Figure 4. Step 3: Estimating the structural model by means of
a latent Markov model with single indicators wit:

10Note that also other assignment rules such as random assignment
(Goodman, 2007) can be found in the literature but they are less
commonly used for the three-step approaches and are therefore not
further discussed.
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Step 3: Estimation of the structural model
In the final step, we estimate the SM (i.e., the Markov
model with covariates), which is illustrated in Figure
4. The key to correct for the classification error
obtained in step 2 is to show the relationship between
the estimated state memberships conditional on the
covariates, pðWijZiÞ, and the true state memberships
conditional on the covariates, pðSijZiÞ, where Wi ¼
ðwi1,wi2, :::,wiTÞ, Zi ¼ ðzi1, zi2, :::, ziTÞ and Si ¼
ðsi1, si2, :::, siTÞ (Di Mari et al., 2016). Therefore, we
consider the joint probability p Wi,Yi, Si,Zið Þ and
solve for pðWijZiÞ (see Appendix A.1.2), which results
in

pðWijZiÞ ¼
X
si1

� � �
X
siT

pðsi1jzi1Þ
YT
t¼2

p sitjsit�1, zitð Þ
YT
t¼1

pðwitjsitÞ:

(13)

It can be seen that Eq. (13) resembles the FIML-
LMFA model from Eq. (6), marginalized over Si and
with different response probabilities. It is in fact a
latent Markov model with the state assignments from
Wi as single indicators with K categories replacing the
observed item responses Yi: This demonstrates that Yi

is no longer needed in step 3 if we have the classifica-
tion error probabilities p witjsitð Þ: The response proba-
bilities are fixed to the classification error probabilities
and thus do not have to be estimated. Hence, the focus
of the latent Markov model changes. Instead of
accounting for unobserved heterogeneity of the MMs
(as in FIML-LMFA), the latent Markov model accounts
for error in the estimated state assignments Wi:

In order to estimate the SM, the following loglikeli-
hood function has to be maximized:

logLSTEP3 ¼
XI

i¼1

log p WijZið Þ� �
: (14)

The estimation, just as in the regular FIML-LMFA,
is done by means of the forward-backward algo-
rithm.11 However, the classification error probabilities
are utilized as fixed response probabilities, such that
only the (covariate-specific) transition and initial-state
probabilities need to be estimated. Note that the state-
assignments Wi are treated as the manifest (i.e.,
observed) indicators (that contain error) of the “true”
(error-free) latent states Si, which are inferred
through the forward-backward algorithm and used to
determine the parameters of the SM. Differences

between Wi and Si become less likely for well-sepa-
rated states with small classification error.

Finally, as already discussed in the Introduction, in
the third step, one evaluates which covariates signifi-
cantly relate to the transition and/or initial state prob-
abilities. Instead of selecting the best subset of
covariates by means of an information criterion as in
the FIML approach, one may start with a model
including all covariate candidates or none of them
and use Wald (or likelihood ratio) tests to decide
which covariates can be removed from or added to
the model one by one (e.g., using forward or back-
ward elimination). Note that, as in any statistical
model, there are advantages and disadvantages with
regard to such data-driven covariate selection proce-
dures (for a review, see Heinze et al., 2018). When in
doubt, one may conduct sensitivity analyses compar-
ing the results from different approaches. When hav-
ing strong a priori hypotheses about covariates, one
may also consider a more theory-driven approach.

Simulation study

Problem

The aim of the simulation study was to evaluate the
performance of 3S-LMFA and to see if it approaches
the performance of FIML-LMFA. The specific targeted
measures were recovery of the states (i.e., the classifica-
tion), the MM parameters, and the parameters and SEs
of the SM consisting of the Markov model with covari-
ate effects. First, parameter and state recovery have pre-
viously been shown to be positively influenced by an
increasing amount of information (in terms of sample
size) and by higher state-separation (i.e., a better dis-
tinction between the states; Bakk et al., 2013; Di Mari
et al., 2016; Vermunt, 2010). The more information is
available and the more separable the states are, the
more accurate the mixture factor analysis can estimate
the MM parameters in step 1 and the more accurate
the estimation of the SM in step 3.

Second, SEs are possibly slightly underestimated
because the error probabilities p witm ¼ 1jsitk ¼ 1ð Þ are
assumed to be known in step 3 although they are
actually estimated parameters of the mixture factor
analysis in step 1. When the SEs are underestimated,
the Wald statistic to test covariate effects would lead
to wrong conclusions regarding the statistical signifi-
cance of covariates. If this underestimation is present,
it will likely vanish with large state separation and
amount of information (Di Mari et al., 2016;
Vermunt, 2010). In the simulation study, we evaluate
whether underestimation is present and from what

11Note that the third step of 3S-LMFA can be fastened by combining the
EM estimation with a Newton-Raphson algorithm which is extensively
described in De Roover, Vermunt, Timmerman, and Ceulemans (2017).

MULTIVARIATE BEHAVIORAL RESEARCH 271



point on state separation and amount of information
are sufficient to obtain trustworthy SE values.

Third, the R2
entropy and thus the state separation is

higher for FIML-LMFA than for the initial state sep-
aration in the first step of 3S-LMFA because the for-
mer has additional information from the SM (i.e., the
covariates and the states occupied at adjacent time-
points) while the latter has information only from the
MMs in step 1. Therefore, the recovery of the state
memberships is expected to be better for FIML-
LMFA. We expect this difference in recovery to

decrease when the state memberships are updated in
step 3 (i.e., when the SM is also included). However,
the degree to which the state-membership recovery in
3S-LMFA approaches the recovery in FIML has to be
demonstrated in the simulation study.

Note that the evaluation of the model selection
procedures in step 1 (i.e., finding the best number of
states, K, and factors per state, Fk by means of the
BIC and the CHull) and step 3 (i.e., selecting the cor-
rect covariates by means of Wald tests, e.g., with back-
ward elimination) is beyond the scope of this paper
and will be used only in the application. As described
in Section “Step 1: Estimation of the State-Specific
Measurement Models”, the BIC and the CHull have
already been extensively evaluated for mixture factor
analysis. Furthermore, when the simulation study
shows that the covariate parameters and their SEs are
estimated correctly, we believe that the Wald tests will
also correctly identify the significant covariates.
However, in Section “Discussion”, we will discuss the
possibility of inaccurate model selection under the
violation of the conditional independence assumption.

We manipulated the two key factors: (1) state-separ-
ation12 (this includes (a) between-state loading differen-
ces and (b) intercept differences) and (2) amount of
information (this includes (c) number of subjects and
(d) number of participation days per subject). Note

that, for selected conditions, we also investigated
whether 3S-LMFA might be more affected by ignoring
autocorrelation than FIML-LMFA (see Appendix A.2)
and whether varying the strength of the covariate effects
and the distribution of the covariates across observa-
tions or subjects impacted the estimation procedures
differently (see Appendix A.3), which was not the case.

Design and procedure

The conditions were the following:

This design resulted in 2� 2� 4� 2 ¼ 32 condi-
tions. For the population model, we used an ESM
setup—with number of subjects, N, days, D, and
observations per day, Tday—that is often found in
practice (e.g., van Roekel et al., 2019; Van Roekel et
al., 2017). Furthermore, we used unequal time-inter-
vals that are typical for ESM studies and, therefore,
employed continuous-time-LMFA. Thereby, the fol-
lowing values were used as constants: number of items
J ¼ 20, unique variances e ¼ :2, number of states
K ¼ 3, number of factors Fk ¼ F ¼ 2, and number of
observations per day Tday ¼ 9: The latter also deter-
mined the ESM sampling scheme (comparable to
Vogelsmeier, Vermunt, B€oing-Messing, et al., 2019):
Imposing that a sampling day lasts from 9 am to
9 pm, both day and night intervals were on average
12 hours long. The Tday ¼ 9 measurement occasions
during the day lead to intervals of 1.5 hours if the
measurement-occasions were fixed. However, for ran-
dom variations, we let observations deviate from these
fixed time-points by means of a uniform distribution
with a maximum of plus and minus 30 percent of the
fixed 1.5 hour intervals. Thus, the deviations were
drawn from Unif ð�0:3� 1:5, 0:3� 1:5Þ:

To determine the SM, the initial state parameters
were chosen to lead to equal probabilities of starting in
a state (b02 ¼ b03 ¼ 0). The transition intercept param-
eters were specified to be realistic for a short unit inter-
val of 1.5 hours with high probabilities to stay in a
state.13 More specifically, the intercept parameters were
c012 ¼ c013 ¼ c021 ¼ c023 ¼ c031 ¼ c032 ¼ �3:65 which

State-separation

a: Between-state loading differences at two levels :
medium loading differences, low loading differences;

b: Between-state intercept differences at two levels :
no intercept differences, low intercept differences;

8>><
>>:

Amount of information
c: Number of SubjectsN at four levels : 30, 50, 70, 90;
d: Number of daysD at two levels : 7, 30;

�

12Note that there are many possibilities to manipulate state-separation as
previously stated (e.g., number of factors and states and factor
overdetermination). For feasibility of the simulation study, we only chose
the two types of between-state differences.
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would correspond to the following transition probabil-
ity matrix if no covariates were present:

Pday ¼
:950 :025 :025
:025 :950 :025
:025 :05 :950

0
@

1
A: (15)

To alter the transition probabilities, we used one
time-varying dichotomous covariate (zit1Þ, which
changed in value after 3 days for D ¼ 7 or after
15 days for D ¼ 30, and one time-constant dichotom-
ous covariate (zit2 ¼ zi2Þ that was randomly assigned
to the subjects with equal probabilities. Both covari-
ates had values equal to �0:5 or 0:5: A higher value
for zit1 lowered the probabilities of transitioning to
and staying in state 1 and 3 while increasing the prob-
abilities of transitioning to and staying in state 2. For
instance, this time-varying covariate could represent
an intervention that increased the probability to move
to and stay in a “healthy state”. The corresponding
slope parameters were c12, zit1 ¼ c32, zit1 ¼ 1 and
c13, zit1 ¼ c21, zit1 ¼ c23, zit1 ¼ c31, zit1 ¼ �0:5: Furthermore,
a higher value for zi2 increased the probability to tran-
sition away from the origin state, leading to a less sta-
ble Markov chain. For instance, this stable variable
could be a trait-like general stability in response
behavior that influences all probabilities to transition
away from the state at the previous time-point. The
corresponding slope parameters were c12,Zit2

¼
c13, zit2 ¼ c21, zit2 ¼ c23, zit2 ¼ c31, zit2 ¼ c32, zit2 ¼ 0:5: The
four resulting possibilities for the transition probabil-
ity matrices were

Pzit1¼�:5, zit2¼�:5 ¼
:963 :012 :025
:025 :950 :025
:025 :012 :963

0
@

1
A,

Pzit1¼�:5, zit2¼:5 ¼
:940 :019 :041
:041 :919 :041
:041 :019 :940

0
@

1
A,

Pzit1¼:5, zit2¼�:5 ¼
:952 :032 :015
:015 :969 :015
:015 :032 :952

0
@

1
A

Pzit1¼:5, zit2¼:5 ¼
:923 :052 :025
:025 :951 :025
:025 :052 :923

0
@

1
A, (16)

Note that the covariate effects appear to be rather
small but they increase for larger intervals than the
unit interval.

Regarding the state separation, we used the same
conditions as in previous simulation studies evaluating
LMFA (Vogelsmeier, Vermunt, B€oing-Messing, et al.,
2019; Vogelsmeier, Vermunt, van Roekel, & De
Roover, 2019). More specifically, we generated data
with state-specific MMs as defined in Eq. (1), assum-
ing orthogonal factors (i.e., f itk � MVNð0, IÞ). To
induce the between-state loading differences, we
started with a common base matrix in both states:

KBase ¼ 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

� �0

,

(17)

which shows a binary simple structure that is often
found in empirical studies (e.g., consider a typical
positive vs. negative affect structure that may also
underlie the data in the motivating example described
in Section “Motivating Example”). For the medium
loading difference condition, respectively one loading
was shifted from the first factor to the second and
one from the second to the first (for different items
across states). Through this manipulation, the overde-
terminaton of the factors was not affected and thus
equal across states. For example, the first two of three
loading matrices were

K1 ¼ k1 1 1 1 1 1 1 1 1 1 k2 0 0 0 0 0 0 0 0 0
k2 0 0 0 0 0 0 0 0 0 k1 1 1 1 1 1 1 1 1 1

� �0

K2 ¼ 1 k1 1 1 1 1 1 1 1 1 0 k2 0 0 0 0 0 0 0 0
0 k2 0 0 0 0 0 0 0 0 1 k1 1 1 1 1 1 1 1 1

� �0

(18)

with k1 ¼ 0 and k2 ¼ 1: Similarly, for the low
between-state loading difference condition one cross-
loading of

ffiffiffiffi
:5

p
was added to the first and second fac-

tor (for different items across states), which also low-
ered the primary loadings to

ffiffiffiffi
:5

p
: Specifically, in the

example in Eq. (18), the entries in K1 and K2 were
k1 ¼

ffiffiffiffi
:5

p
and k2 ¼

ffiffiffiffi
:5

p
: Finally, row-wise rescaling of

the loading matrices leads to a sum of squares of 1�
e per row. The between-state loading matrix similarity
was computed by means of the grand mean, umean, of

Tucker’s (1951) congruence coefficient (i.e., uxy ¼
x0yffiffiffiffiffi

x0x
p ffiffiffiffi

y0y
p , with x and y referring to matrix columns)

that was computed for each pair of factors (note that
u ¼ 1 means proportionally identical factors). The
umean across all states and factors was respectively .80
and .94 for the medium and low loading differ-
ence condition:

For the intercepts, we used the following base vec-
tor with fixed values of 5:

mBase ¼ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
� �0

,

(19)
131.5 hours pertains to one unit and the other intervals are scaled to this
unit interval.
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which was used as such in all states for the no inter-
cept difference condition. To induce low intercept dif-
ferences across states, we altered two intercepts to 5.5
(different items across the states). For example, for
the first two states, the vectors were

m1 ¼ 5:5 5:5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
� �0

,

m2 ¼ 5 5 5:5 5:5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
� �0

:

(20)

The combination of the between-state loading differ-
ence and intercept difference conditions lead to four
different state-separation conditions. To quantify the
general state-separation in both analyses based on the
population values, we calculated the four R2

entropy val-
ues for step 1 of 3S-LMFA, where information is only
obtained from the MM, and for FIML-LMFA, where
information is retrieved from both the MM and the
SM including the two covariates.14 For FIML-LMFA,
starting from the smallest R2

entropy, the resulting values
amounted to .90 for the low loading difference/no
intercept difference condition, to .94 for the medium
loading difference/no intercept difference condition,
to .96 for the low loading difference/low intercept dif-
ference condition, and to .97 for the medium loading
difference/low intercept difference condition. For the
same conditions in the first step of 3S-LMFA, these
values were respectively equal to .52, .65, .76, and .82.
Thus, as expected, state-separation is initially lower in
3S-LMFA than in FIML-LMFA, showing the import-
ance for 3S-LMFA to include the information from
the SM in step 3.15

For each condition, we generated 100 datasets in R
(R Core Team, 2020) according to the described
population models and analyzed them in LG. Note
that only one syntax file is required for FIML-LMFA
but two files are necessary for 3S-LMFA. First, one
syntax file is required to run step 1 and 2. Thereby,
the posterior state assignments and the classification
error probability matrix are saved and, subsequently,
they are loaded in the second syntax file that is
required for step 3.

Results

In the following, we evaluate the performance of 3S-
LMFA and compare it to the results of FIML-LMFA
based on the replications that converged in both steps
of the 3S method as well as in the FIML method.
Results that did not converge were re-estimated once
and were excluded if convergence still failed. After re-
estimation, 3180 out of 3200 datasets converged in
3S- and FIML-LMFA (all datasets converged in step 1
and step 3 of 3S-LMFA and 3180 in FIML-LMFA).
Non-convergence in FIML was almost exclusively pre-
sent for the smallest amount of information condition
(i.e., N ¼ 30 and D ¼ 7) and was caused by reaching
the maximum number of EM iterations without con-
vergence. Furthermore, we re-estimated the replica-
tions of converged results that showed unrealistically
large SEs due to boundary values for any of the esti-
mated initial state and transition parameters (i.e., with
an SE > 10 such as 100, 400 or 1000) because includ-
ing such cases would falsify the results. This was only
the case for 56 datasets in the third step of 3S-LMFA,
where re-estimation did not help. As a result, 3124
datasets were included in the performance analyses
reported below.16

Goodness of state recovery
The recovery of the states was assessed by means of
the Rand Index (RI) as well as the Adjusted Rand
Index (ARI; Hubert & Arabie, 1985). Both indices
evaluate the overlap between two sets of elements
while being insensitive to permutations of element
labels (in our case state labels). The indices in the RI
range from 0 (no overlap between any of the pairs) to
1 (perfect overlap) and the ARI takes values from
around 0 (overlap is not better than chance) to 1 (per-
fect overlap). As expected, the state-recovery was
rather poor after the first step of 3S-LMFA because of
the low R2

entropy values here (RI ¼ :83, SDRI ¼ :06,
ARI ¼ :61, SDARI ¼ :14). However, the overall recov-
ery in 3S-LMFA was excellent (Steinley, 2004; RI ¼
:94, SDRI ¼ :03, ARI ¼ :87, SDARI ¼ :06) and almost
as high as in FIML-LMFA (RI ¼ :97, SDRI ¼ :01,
ARI ¼ :94, SDARI ¼ :03). Moreover, only the state-sep-
aration influenced the state recovery in that larger
separation increased recovery (Table 1), indicating

14The population R2entropy value for a specific choice of population
parameters and number of measurement occasions was obtained using
Monte Carlo simulation. For this purpose we used the ‘Monte Carlo
simulation study’ option in LG with one random draw of the time-
intervals and covariate patterns and with the parameters fixed to their
population values.
15Note that it is always good to check the R2entropy after step 1 that is
automatically provided in LG because for a very small state-separation,
say, with a value much lower than 0.5, it might be better to conduct a
FIML-LMFA with additional state-separation information from the SM
(including covariates). This is because in that case, the actual differences
between the states might be even lower than the estimated ones. This
would lead to an underestimation of the classification error (Vermunt,
2010). However, such low values are unlikely to be found in practice.

16Note that we also investigated whether the solutions converged to local
maxima (i.e., that they had smaller logL values than the global maximum
likelihood (ML) solution. Although the latter is unknown, we can obtain
an approximation (‘proxi’) in simulation studies by estimating the models
with the population parameters as starting values. When logLmultistart <
logLproxi , the solution is considered a local maximum. This was no issue
in FIML-LMFA and the first step of 3S-LMFA and only occurred for 3
datasets in the third step of 3S-LMFA.
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that already the minimum sample size of 30 Nð Þ �
7 Dð Þ � 9 Tday

� � ¼ 1890 was sufficient to estimate K ¼
3 states (and thus about 630 observations per state),
which is largely in line with previous results showing
that about 500 observations per state are sufficient for
similar settings and that a higher amount of informa-
tion in terms of sample size and observations per sub-
ject does not aid recovery once this threshold is
reached (Vogelsmeier, Vermunt, van Roekel, & De
Roover, 2019).

Goodness of MM parameter recovery
Goodness of loading recovery. We computed a good-
ness of state-loading recovery (GOSL) as the average
Tucker congruence coefficient between the true and
the estimated loading matrices:

GOSL ¼
PK

k¼1

PF
f¼1uðK

f
k, K̂

f
kÞ

K � F
, (21)

where Kf
k corresponds to the state- and factor-specific

loadings. By using Procrustes rotation17 (Kiers, 1997)
in order to rotate the estimated state-specific loading
matrices K̂k to the true ones Kk, we solved the label
switching of the factor labels within the states.
Furthermore, to handle the label switching of the states,
we retained the state permutation that maximized the
GOSL value. Overall, the loading recovery was very
good in 3S-LMFA (GOSL ¼ 1; SD ¼ 0) and was the
same for FIML-LMFA. Note that loading recovery can

be good despite a bad state recovery because the load-
ing matrices are very similar across states.

Goodness of intercept recovery and unique variance
recovery. To examine the recovery of the intercepts
and the unique variances, we calculated the mean
absolute difference (MAD) between the true and the
estimated parameters. The overall intercept recovery
in 3S-LMFA was very good (MADint ¼0.02;
SD ¼ 0:01) and did not differ from the recovery in
FIML-LMFA. The same applied to the unique vari-
ance recovery (MADunique ¼0.01; SD ¼ 0:00).
Moreover, only the amount of information had a mar-
ginal effect on the two types of recovery in that the
largest number of subjects (N ¼ 90) and a higher
number of participation days (D ¼ 30) slightly
improved the recovery in both analyses (Table 1).18

Goodness of SM parameter recovery
Goodness of transition and initial state parameter
recovery. To evaluate the recovery of the transition
and initial state parameters, we calculated the average
bias and the average Root-Mean-Square-Error (RMSE)
for the individual parameters of the four parameter
types (i.e., initial state and transition intercept param-
eters and the two slope parameters for the covariates;
Table 2). As can be seen, the bias in 3S-LMFA is gen-
erally very small (i.e., between �0.02 and 0.01) and in
line with FIML-LMFA. However, the RMSE is gener-
ally higher in 3S-LMFA (e.g., RMSE ¼ 0:39 for the

Table 1. Goodness of recovery for the states, loadings, intercepts and unique variances averaged across and conditional on the
manipulated factors.

Goodness of recovery

States ðARIÞ States RI ðRIÞ Loadings ðGOSLÞ Intercepts ðMADintÞ Unique variances ðMADuniqueÞ
Type of LMFA

Condition Factors 3S-1 3S-3 FIML 3S-1 3S-3 FIML 3S FIML 3S FIML 3S FIML

Between-State Loading Difference low .56 .85 .93 .80 .93 .97 1 1 .02 .02 .01 .01
medium .66 .89 .95 .85 .95 .98 1 1 .02 .02 .01 .01

Between-State Intercept Difference no .47 .81 .91 .77 .92 .96 1 1 .02 .02 .01 .01
low .74 .92 .97 .89 .97 .98 1 1 .02 .02 .01 .01

Number of Subjects N 30 .61 .87 .94 .83 .94 .97 1 1 .02 .02 .01 .01
50 .61 .87 .94 .82 .94 .97 1 1 .02 .02 .01 .01
70 .61 .87 .94 .83 .94 .97 1 1 .02 .02 .01 0
90 .61 .87 .94 .83 .94 .97 1 1 .01 .01 0 0

Number of Participation Days D 7 .61 .86 .94 .83 .94 .97 1 1 .03 .02 .01 .01
30 .61 .87 .94 .83 .94 .97 1 1 .01 .01 0 0

All Conditions

Average .61 .87 .94 .83 .94 .97 1 1 .02 .02 .01 .01
SD .14 .06 .03 .06 .03 .01 0 0 .01 .01 0 0

Note. LMFA¼ latent Markov factor analysis; 3S-1¼ three-step step 1; 3S-3¼ three-step step 3; FIML¼ full information maximum likelihood. The perfect
loading recoveries result from the loading matrices that are highly similar across the states.

17Note that the rotation was done in R. Although rotation in LG was
already possible for known groups, the issue with switching state labels
has to be resolved to provide LG with the correct state-specific target
matrices before rotation can be applied to unknown groups such as
the states.

18The unique variance recovery may be affected by Heywood cases (i.e.,
improper factor solutions with at least one unique variance being
negative or equal to zero, possibly caused by insufficient amount of
information or underdetermined factors; Van Driel, 1978). However, this
was not the case in any of the analyses.
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first initial state intercept parameter in 3S-LMFA ver-
sus RMSE ¼ 0:36 for the same parameter in FIML-
LMFA). This is because using the step-wise procedure
implies some loss of information. Moreover, Table 3
illustrates the effects of the manipulated factors for
the four different parameter types, yet, averaged across
the individual parameters for the sake of brevity and
illustrative purposes. The manipulated factors had an

influence on the bias and the RMSE in 3S-LMFA that
were similar to the effects on the measures in FIML-
LMFA. More specifically, a higher amount of informa-
tion generally decreased the bias, while a larger state-
separation only marginally decreased the bias for
some of the individual parameters. Furthermore, a
higher state-separation as well as a higher amount of
information decreased the RMSE.

Table 2. Parameter bias, RMSE, and SE/SD ratio for all individual parameters averaged across all simulation conditions.
Initial state intercept parameters b0k

Bias (RMSE) SE/SD

b0k 0 0 \ \ \ \ 0 0 \ \ \ \

FIML .01 (.36) .01 (.36) \ \ \ \ 1.02 1 \ \ \ \
3S 0 (.39) .01 (.39) \ \ \ \ 1.02 1 \ \ \ \

Transition intercept parameters c0lk
Bias (RMSE) SE/SD

c0lk �3.65 �3.65 �3.65 �3.65 �3.65 �3.65 �3.65 �3.65 �3.65 �3.65 �3.65 �3.65

FIML �.02 (.18) �.01 (.18) �.01 (.17) �.02 (.16) �.02 (.18) �.02 (.18) 1.01 0.98 1 1 0.98 0.99
3S �.01 (.23) 0 (.22) �.01 (.21) �.01 (.21) �.01 (.22) �.01 (.24) 1.02 0.98 0.99 0.99 0.99 1

Slope parameters covariate 1 clk, Zit1
Bias (RMSE) SE/SD

clk, Zit1 1 �0.5 �0.5 �0.5 �0.5 1 1 �0.5 �0.5 �0.5 �0.5 1

FIML �.02 (.18) 0 (.17) 0 (.16) 0 (.16) 0 (.17) �.02 (.18) 1.01 0.99 0.98 1 0.98 1
3S �.02 (.23) .01 (.22) �.01 (.22) �.01 (.20) 0 (.21) �.02 (.25) 1 0.98 0.95 0.98 0.96 1

Slope parameters covariate 2 clk, Zit2
Bias (RMSE) SE/SD

clk, Zit2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

FIML 0 (.15) 0 (.16) 0 (.16) �0.01 (.16) 0 (.16) 0 (.15) 0.97 0.99 0.98 0.99 1.01 0.99
3S 0 (.18) 0 (.19) 0 (.20) �0.02 (.20) �.01 (.20) 0 (.17) 0.97 0.97 0.96 0.97 0.97 1

Note. FIML¼ full information maximum likelihood; 3S¼ three-step.

Table 3. Parameter bias, RMSE, and SE/SD for the four types of parameters averaged across and conditional on the manipu-
lated factors.

Initial state
intercept parameters

Transition intercept
parameters

Slope parameters
covariate 1

Slope parameters
covariate 2

Bias RMSE SE/SD Bias RMSE SE/SD Bias RMSE SE/SD Bias RMSE SE/SD

Condition Factor FIML-LMFA

Average .01 .36 1.01 �.02 .17 0.99 0 .17 0.99 0 .16 0.99
Between-State Loading
Difference

low .01 .37 1.01 �.02 .18 1 0 .18 0.99 0 .16 0.98
medium .01 .36 1.01 �.01 .17 0.99 �.01 .16 0.99 0 .15 1

Between-State Intercept
Difference

no .01 .37 1.01 �.02 .18 0.99 �.01 .18 0.99 0 .16 0.99
low .01 .35 1.02 �.02 .17 1 0 .16 1 0 .15 0.99

Number of Subjects N 30 .02 .47 1.03 �.03 .24 1 �.01 .23 0.98 �.01 .21 0.97
50 .02 .36 1.02 �.02 .17 1.01 �.01 .17 1 0 .16 0.98
70 0 .31 0.99 �.01 .15 0.98 0 .14 0.98 0 .13 1
90 0 .27 1.02 �.01 .13 0.98 0 .12 1.01 0 .11 0.99

Number of Participation Days D 7 0 .35 1.03 �.03 .23 0.99 �.01 .22 0.99 0 .20 0.98
30 .02 .37 0.99 0 .10 0.99 0 .10 1 0 .09 0.99

Condition Factor 3S-LMFA

Average .01 .39 1.01 �.01 .22 0.99 �.01 .22 0.98 �.01 .19 0.97
Between-State Loading
Difference

low 0 .40 1 �.01 .23 1.01 �.01 .23 0.98 �.01 .20 0.96
medium .01 .38 1.01 �.01 .21 0.98 �.01 .21 0.98 0 .18 0.98

Between-State Intercept
Difference

no .01 .41 0.99 0 .24 1 �.01 .24 0.97 �.01 .21 0.96
low 0 .37 1.03 �.01 0.20 0.98 �.01 .20 0.99 0 .17 0.98

Number of Subjects N 30 .03 .52 1.01 �.02 .31 1.02 �.02 .31 0.97 �.01 .27 0.95
50 �.02 .38 1.02 �.01 .22 1 �.01 .22 0.98 �.01 .19 0.97
70 .02 .34 0.99 0 .18 0.97 �.01 .18 0.97 �.01 .15 0.99
90 0 .29 1.01 0 .15 0.98 0 .15 1 0 .13 0.98

Number of Participation Days D 7 .02 .38 1.02 �.02 .29 0.99 �.02 .29 0.97 �.01 .25 0.95
30 �.01 .40 0.99 0 .12 1 0 .11 0.99 0 .10 0.99

Note. LMFA¼ latent Markov factor analysis; FIML¼ full information maximum likelihood; 3S¼ three-step.
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Goodness of covariates’ SE recovery. To examine
the SE recovery, we compared the average estimated
SE for all 100 replications within a condition with
the SD of the parameter estimates across these rep-
lications and calculated the SE/SD ratios for the
individual parameters for the four parameter types
(Table 2). The ratios are generally slightly lower
than 1 in 3S-LMFA with values ranging from 0.95
to 1.02, indicating that the SEs are slightly underes-
timated. However, this is similar in FIML-LMFA,
yet with values ranging from 0.97 to 1.02.
Moreover, the manipulated factors had no clear
impact on the recovery in neither of the analyses as
the four parameter types were influenced differently
by a higher state-separation and higher amount of
information.

Computation time
Exploring the computation time of all replications in
the two analyses, we found that, with 178.01 seconds,
FIML-LMFA took on average more than twice as
much time as 3S-LMFA, where the total computation
time was 82.42 seconds (45.37 seconds for step 1 and
37.05 seconds for step 3). It should be noted that we
used 25 random start sets with an EM tolerance of
1e-005 in FIML-LMFA and step 1 and 3 of 3S-LMFA.
However, one set and a criterion of 0.01 is probably
enough in the third step of 3S-LMFA because local
maxima are very unlikely when the measurement part
is fixed. Adjusting the values accordingly makes the
computation even faster.

Conclusion
Summarized, the parameter and SE recovery in 3S-
LMFA approached the recovery in FIML-LMFA, mak-
ing the 3S procedure a promising fast alternative
when the inclusion of covariates is of interest and
hence the FIML estimation is likely unfeasible.
Although a small information loss in terms of higher
RMSE values for the parameters of the SM and a
slightly worse state-recovery in 3S-LMFA could be
observed, the general parameter recovery in 3S-LMFA
was on average as good as in FIML-LMFA and fur-
thermore much faster.

Application

To illustrate the empirical value of the 3S-LMFA
approach we applied it to the ESM data introduced in
Section “Motivating Example”. Note that this applica-
tion is only meant to illustrate the possibilities of the
new methodology, and since the hypotheses were not

preregistered, we consider these analyses exploratory.19

As previously described, we investigated which MMs
underlie which part of the data and how the MMs dif-
fer (step 1), and whether the MMs are related to cova-
riates (step 3). From all covariates offered in the
dataset, we included only five covariates that we
thought were plausible to influence MM differences/
changes and were of interest for this application.
Because emotional experiences may vary depending on
situational influences (Dejonckheere, Mestdagh, et al.,
2021), and adolescents spend most of their time with
parents and friends (Larson, 1983; van Roekel et al.,
2015), we chose the following three time-varying cova-
riates for the social context: (1) being alone (nominal),
(2) being with a friend (nominal), and (3) being with a
parent (nominal). From the baseline measurement, we
chose the following two time-constant covariates: (1)
emotion clarity deficit measured with the Emotion
Clarity Questionnaire (ECQ; Flynn & Rudolph, 2010)
on a Likert scale from 1 (totally disagree) to 5 (totally
agree) (e.g., “I often have a hard time understanding
how I feel.”) and (2) differentiation of emotional
experience assessed via a subscale of the Range and
Differentiation of Emotional Experience Scale (RDEES;
Kang & Shaver, 2004) on a Likert scale from 1 (totally
disagree) to 7 (totally agree) (e.g., “I am aware that
each emotion has a completely different meaning.”).
These baseline questionnaires can be found in the
Online Supplement S.1 and S.2.20

In step 1, we investigate which MMs underlie the
data by performing mixture factor analysis including
the model selection procedure. Given the relatively
small number of observations (Ti � I ¼ 1168) and
items (J¼ 10), we only considered models with 1� 3
states and 1� 3 factors per state. The best fitting
model according to the CHull method was a two-state
model with two factors in the first state and one fac-
tor in the second state (“[2 1]”). We provide more
information about the selection procedure in
Appendix A.6. The state separation was very high
(R2

entropy ¼ 0:98). About 60 percent of the observations
were classified into state 1 and 40 percent into state 2.
We will inspect the differences between the MMs step
by step, starting with (1) the loadings, followed by (2)
the intercepts and (3) proportions of unique variances,

19Note that the NA items were generally right-skewed. Since the
consequences of violating the normality assumption have yet to be
investigated, one should be particularly cautious with drawing substantial
conclusions (Vogelsmeier, Vermunt, van Roekel, et al., 2019). This is,
however, not a problem for illustrating the purpose of 3S-LMFA.
20Note that three subjects in the ESM study did not have any baseline
measures for an unspecified reason. For such cases, LG automatically
imputes the average scale score.
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which are all given in Table 4. First, looking at the
standardized (and in state 1 obliquely rotated) load-
ings, we can see that state 1 is characterized by two
independent positive affect (PA) and negative affect
(NA) factors that are hardly correlated (r ¼ 0:07),
indicating that adolescents in this state differentiate
positive and negative emotional experiences. In con-
trast, the dimensions seem to collapse in state 2,
which is characterized by a single (“bipolar”) dimen-
sion “PA versus NA”. Moreover, it is noticeable that
the item “miserable” has a high loading in state 2 but
not in state 1. Finally, the rather low loadings of the
negative emotions indicate that their relation to
the general score on the latent factor is weaker than is
the case for the positive emotions.

Second, the intercepts in state 1 are rather high for
the positive emotions and very low for the negative
emotions. In state 2, the intercepts for the positive
emotions are somewhat lower and the intercepts for
the negative emotions somewhat higher. Note that, as
explained in Section “Measurement part”, intercept
differences pertaining to all items that are strongly
related to a certain factor are probably due to differ-
ences in the factor means.

Third, investigating the proportions of unique var-
iances, it appears that two of the positive emotions
“proud” and “lively” have something unique that can-
not be explained by the PA dimension/end of the
scale in neither of the two states. Comparing them
with the other positive emotions, one can imagine
that their scores at least partly depend on specific
encountered events (e.g., “proud” may be elicited by
achievements and “lively” is more likely to occur dur-
ing high-energy activities). Moreover, “miserable” has
a large unique variance in state 1 and therefore, also
considering the low loading, is hardly related to the
other emotions. It could be that the item is not always
suited to assess affect in adolescents as it is an

emotion that is likely triggered by rather extreme sit-
uations that might not have been encountered for
adolescents in the ESM study. Finally, the negative
emotions in state 2 have higher unique variances than
in state 1, indicating that there is less covariance
between them and that there is no large covariance
with the positive emotions.

There is a theoretical debate about whether positive
and negative affect are two independent factors
(Watson & Tellegen, 1985) or two bipolar ends of the
same factor (Russell, 1980). However, our results sug-
gest that both theoretical perspectives can be true at dif-
ferent points in time within one individual. In the first
state, adolescents are capable of differentiating positive
and negative emotional experiences (“independent
state”). In contrast, the factor structure in the second
state may be a result of adolescents’ simplistic represen-
tation of either having “positive” or “negative” emotions
(“bipolar state”). These findings are in line with recent
research, which suggests that both theoretical perspec-
tives can be true, dependent on person specific factors
(e.g., Dejonckheere et al., 2019) or situation specific fac-
tors (e.g., Dejonckheere, Mestdagh, et al., 2021).
Regarding the intercept differences, we conclude that
being in a rather good mood is related to the independ-
ent state and being in a rather unpleasant mood is
related to the bipolar state. This is in line with research
indicating that the bipolar state is more common in
individuals with depression (Dejonckheere et al., 2018)
and who are stressed (Dejonckheere, Mestdagh, et al.,
2021; Zautra et al., 2002).

In order to better understand what triggers the dif-
ferent states, we investigated the influence of the five
covariates. First, based on the posterior probabilities of
the observations to belong to the state-specific MMs,
we obtained the modal state membership and the clas-
sification errors (step 2). Given the high state separ-
ation, the classification errors were very small:

Table 4. Step 1 results: Standardized (for state 1 oblimin rotated) factor loadings, intercepts, and unique variances for the
ADAPT dataset.

State 1 (independent state) State 2 (bipolar state)

Factors Factor

PA NA Int Unique V. PA vs NA Int Unique V.

joyful 0.93 �0.01 75.98 0.14 0.96 53.47 0.07
cheerful 0.95 0.00 75.06 0.09 0.96 51.90 0.08
lively 0.55 0.06 62.08 0.69 0.61 43.86 0.62
happy 0.87 0.08 76.50 0.23 0.89 51.75 0.20
proud 0.53 0.13 61.43 0.69 0.66 42.10 0.57
miserable �0.22 0.11 5.38 0.96 �0.61 26.53 0.63
mad 0.01 0.94 1.19 0.16 �0.34 14.68 0.88
afraid 0.02 0.94 1.14 0.17 �0.43 17.03 0.81
scared 0.04 0.93 1.11 0.13 �0.38 11.46 0.85
sad 0.04 0.92 1.20 0.19 �0.56 18.49 0.69

Notes. Int. ¼ Intercepts; V. ¼ Variance; Factor loadings were standardized by dividing them by the state-specific item standard deviations. We considered
the loadings to be considerable when they were larger than 0.3 in absolute value (e.g., Hair et al., 2014). These loadings are depicted in boldface.
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p witjsitð Þ ¼ :9968 :0032
:0080 :9920

� �
: (22)

Therefore, correction for classification error is hardly
necessary, which generally cannot be foreseen before
conducting the step-1 analysis. The modal state assign-
ments were subsequently used as indicators in order to
estimate the Markov model with covariates on the tran-
sition probabilities (step 3).21 By means of stepwise
backward selection with the five covariates, we elimi-
nated the least significant covariate at each step until
only covariates were left that met the criterion
ofa < 0:05: The final model contained the two time-
constant covariates from the baseline measure and the
time-varying covariate being with a parent. Note that,
due to the low classification errors, the final state

memberships (i.e., 60% in state 1 and 40% in state 2)
did not change after step 1. In Table 5, we present the
parameters of the SM (including the Wald test statis-
tics). To see the covariate effect more easily, we also pre-
sent the transition probabilities for a two-hour-interval,
which was the most frequently encountered interval
length in the data. We calculated them respectively for
the highest and lowest score on one covariate while set-
ting the value of the other covariates to their average
value in the sample (averages are given in the notes of
Table 5). Note that the effect of being with a parent was
so small that we do not further discuss it. Regarding the
time-constant covariates (emotion clarity deficit and
differentiation of emotional experience), we can see that
adolescents with high emotion clarity deficit have a
slightly higher probability to stay in or transition to the
bipolar state (i.e., are more likely to be in that state)
compared to adolescents with a low emotion clarity

Table 5. Logit and log intensity parameters for the structural model and additional transition probabilities respectively for the
lowest and highest possible score on the three covariates for a two-hour interval.
parameter Coef S.E. Wald df p-value

Transition Probabilitiesb02 0.4043 0.3951 1.0470 1 0.31

c012 �6.3343 1.2503 25.9605 2 < 0.01
c021 �4.5298 1.2851 low covariate score high covariate score

c12, P 0.5214 0.2409 6.0807 2 0.048 P0 ¼ :82 :18
:28 :72

� �
P1 ¼ :72 :28

:29 :71

� �
c21, P 0.1533 0.2312

c12,ECD 0.8274 0.2006 42.3336 2 < 0.01 ECD1 ¼ :93 :07
:33 :67

� �
ECD5 ¼ :19 :81

:12 :88

� �
c21,ECD �0.0534 0.1994

c12,D 0.4932 0.2183 8.9022 2 0.012 D1 ¼ :95 :05
:04 :96

� �
D7 ¼ :70 :30

:66 :34

� �
c21,D 0.6761 0.2268

Notes. We present four decimals as this is the default in LatentGOLD. P¼ being with parent; EDC¼ emotion clarity deficit; D¼ differentiation of emotions;
the probabilities were calculated by setting the covariate of interest to the lowest or highest score and the other two on their averages; the average
scores were 0.33 for P, 2.48 for EDC and 4.39 for D; the overall model was significant with Wald (6) ¼ 68.43; 8.6e-13 and thus outperformed the inter-
cept only model.

Figure 5. Six examples of adolescents’ transition plots that are representative for the whole sample. Note that the scale does not
consider the time-interval between the observations to enable the illustration.

21Note that we did not add covariates to the initial state probabilities as
the number of subjects was rather small.
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deficit, who are equally likely to be in either of the
states. Moreover, adolescents with a high differentiation
of emotional experiences have a slightly higher prob-
ability to stay in or transition to the differentiated state
than adolescents with a low differentiation of emotional
experiences, who are equally likely to be in either of
the states.

From the individual transition plots of the adoles-
cents (see Figure 5 for six representative examples), we
can clearly see between-person differences (that are
apparently partly related to clarity and differentiation
of emotions). For instance, some adolescents are
mainly in the independent state (row 1) and others are
mainly in the bipolar state (row 2). However, we can
also see some adolescents with frequent transitions
between the states (right picture in row 3) and some
adolescents with transitions after a certain amount of
completed questionnaires (left picture row 3). These
transitions indicate that there are likely time-varying
within-person variables that influence the transitions
but that we are not aware of. Therefore, in the future,
it would be interesting if applied researchers would
include time-varying covariates in their ESM studies
(e.g., stress Dejonckheere, Mestdagh, et al., 2021;
Zautra et al., 2002) that could potentially influence
within-person changes between a bipolar and an inde-
pendent representation of one’s emotional state. To
conclude, LMFA indicated that configural invariance
was violated across states and that some subjects transi-
tioned between the two states frequently over time
while others were mainly in one of the two states.
Therefore, the questionnaire data is not validly compar-
able across all subjects and time-points.

Discussion

In this article, we tailored Vermunt’s (2010) maximum
likelihood (ML) three-step (3S) procedure to latent
Markov factor analysis (LMFA)—a method to explore
measurement model (MM) changes over time—and
showed that the resulting 3S estimation of LMFA (3S-
LMFA) is a promising alternative to the original full
information maximum likelihood (FIML) estimation of
LMFA (FIML-LMFA): 3S-LMFA performs almost as
good as FIML-LMFA, is more accessible and intuitive
for applied researchers, and facilitates estimation when
researchers want to explore the influence of different
(sets of) covariates on transitions between MMs.

It is important to note that this article is one of the
first to apply a 3S approach with a continuous-time
Markov model to time-intensive longitudinal data,
which is data that becomes increasingly popular in dif-
ferent fields with diverse data characteristics. On top of

that, the flexible step-wise nature of 3S-LMFA can be
used to easily extend the method. Specifically, it is easy
to adjust the method to the data and research questions
at hand by exchanging the first step (i.e., the mixture
factor analysis), which makes it applicable to a wide
range of data. For example, one may consider extending
item response theory models for longitudinal categorical
data. If it is not possible to estimate the first step in
Latent GOLD (LG), one can also estimate the first step
in a different program and only communicate the
results to LG to continue with the second and third
step. The same will soon be possible in the open-source
program R as we are working on a package that takes
estimated state probabilities from any step 1 model
(estimated in R or another program) as input, calculates
modal state assignments and the classification errors,
and links it to an existing package that can estimate sin-
gle indicator (continuous-time) Markov models with
fixed response probabilities. Although adaptations of the
MMs are also possible in FIML-LMFA, it is much more
difficult in practice since a specific part of the estima-
tion procedure would have to be adapted (i.e., inside
the LG software), which is not possible for applied
researchers but only for the software programmer.

A limitation of the current paper is that we did not
examine the performance of 3S- and FIML-LMFA
under violation of the conditional independence
assumption and assumed the covariates to influence
only the parameters in the structural model (SM), that
is, the transitions in the Markov model, and not the fac-
tors or the observed variables directly. This assumption
might be violated (e.g., being with friends might be
related to higher positive affect) and might lead to
extracting a wrong number of states and inaccurate par-
ameter estimates (Kim et al., 2016; Kim & Wang, 2017;
Masyn, 2017; Nylund-Gibson & Masyn, 2016). As in
any other mixture model approach with covariates, the
problem of model misspecifications is inherent to both
the FIML and the 3S estimation and should be exten-
sively studied in the specific context of LMFA. With
regard to extracting the correct number of states, it can
be expected that 3S-LMFA performs better than FIML-
LMFA when the effects of the covariates on the latent
state memberships are included and direct effects of
these covariates—for example, on the response varia-
bles—are falsely omitted. In the first analysis step of 3S-
LMFA, the MMs are formed while disregarding the
covariates. Therefore, the covariates do not affect the
state enumeration. This is different in FIML-LMFA,
where covariates may affect the state enumeration.
Specifically, if the local independence assumption is vio-
lated, FIML-LMFA would require too many states to
counter the local independence violation and achieve a
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good model fit (Kim & Wang, 2017; Nylund-Gibson &
Masyn, 2016). However, inaccurate covariate estimates
could occur with both estimation approaches
(Asparouhov & Muth�en, 2014; Kim et al., 2016; Masyn,
2017). Therefore, it is important to develop diagnostic
tools to detect misspecification (e.g., by means of
residual statistics) and to account for it, possibly by
including the respective covariates with direct effects on
the response variables in step 1 of the analysis and by
using covariate-specific classification-error adjustments
in step 3 (Vermunt & Magidson, 2021). However, tai-
loring these methods to LMFA is beyond the scope of
this paper.

Another limitation is that the states capture not
only dynamics in the MM but also in the factor
means. If additional states are selected for differences
in the factor means, it is difficult to identify if covari-
ates are related to the states only because they explain
differences in the MMs or (also) because they explain
dynamics in the factor means. In the future, it would
be relevant to investigate under which circumstances
additional states are selected for factor mean differen-
ces and, if necessary, to look into possibilities to lower
the impact of factor means on the state formation, for
example, by adding random effects to the factor
means of zero. This would capture part of the factor
mean dynamics and increase the role of other param-
eter differences in the state formation. Significant
covariate effects would then be mainly attributable to
differences in the MM parameters.
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Appendix

A.1. Derivations

A.1.1. Derivation step 2
We obtain the conditional probabilities,
p witm ¼ 1jsitk ¼ 1ð Þ, starting from the joint probability
p witm ¼ 1, sitk ¼ 1, yitð Þ applying the product rule:

p witm ¼ 1, sitk ¼ 1, yitð Þ ¼ p witm ¼ 1jsitk ¼ 1, yit
� ��

p yitjsitk ¼ 1
� �

p sitk ¼ 1ð Þ (A1)

.

Next, conditioning on sitk ¼ 1 yields

p witm ¼ 1, yit jsitk ¼ 1
� � ¼ p witm ¼ 1jsitk ¼ 1, yit

� �
p yitjsitk ¼ 1
� �

¼ p witm ¼ 1jyit
� �

p yit jsitk ¼ 1
� �

(A2)

because witm ¼ 1 is conditionally independent of sitk ¼ 1
given yit (see Figure 3). Next, we obtain the marginal prob-
ability by integrating out yit :

p witm ¼ 1jsitk ¼ 1ð Þ ¼
ð
p witm ¼ 1jyit
� �

p yitjsitk ¼ 1
� �

dyit ,

(A3)

where the second factor on the right-hand side can be
rewritten using Bayes’ theorem:

p yitjsitk ¼ 1
� � ¼ p yitð Þp sitk ¼ 1jyit

� �
p sitk ¼ 1ð Þ : (A4)

Inserting this in Eq. (A3) leads to

p witm ¼ 1jsitk ¼ 1ð Þ ¼
Ð
p witm ¼ 1jyit
� �

p yitð Þp sitk ¼ 1jyit
� �

dyit
p sitk ¼ 1ð Þ ,

(A5)

where p sitk ¼ 1ð Þ is factored out from the integral because it
is independent of yit:

A.1.2. Derivation step 3
We consider the joint probability and solve for pðWijZiÞ:
The joint probability is

p Wi,Yi, Si,Zið Þ ¼ p WijYi, Si,Zið Þp YijSi,Zið Þp SijZið Þp ZiÞ:ð
(A6)

Next, we condition on Zi and use the assumption that Zi

and Yi are conditionally independent given Si and that Wi

is conditionally independent of Si and Zi given Yi, which is
also depicted in Figure 4:

where we use p witjyit
� �

with the m th element in wit equal
to 1 and all others equal to 0 as a shorthand notation for
p witm ¼ 1jyit
� �

: We then marginalize over Si and Yi :

p WijZið Þ ¼
X
si1

� � �
X
siT

ð
p yi1jsi1
� �

p wi1jyi1
� �

dyit � � �
ð
p yiT jsiT
� �

p wiT jyiT
� �

dyit �MC (A8)

We can then rewrite p yitjsit
� �

using Bayes’ theorem (see
A4), insert it in Eq. (A8), and make use of (A5), which
leads to

p Wi,Yi, SijZið Þ ¼ p WijYið Þp YijSið Þp SijZið Þ
¼ p wi1jyi1

� � � � � p wiT jyiT
� �

p yi1jsi1
� � � � � p yiT jsiT

� �
p si1, :::, siT jzi1, :::, ziTð Þ

¼ p yi1jsi1
� �

p wi1jyi1
� � � � � p yiT jsiT

� �
p wiT jyiT
� �� p si1jzi1ð Þp si2jsi1, zi2ð Þ � � � p siT jsiT�1, ziTð Þ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Markov Chain MCð Þ

, (A7)
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A.2. Additional simulation study: Autocorrelated
factor scores

A.2.1. Problem
In order to investigate whether ignoring autocorrelated fac-
tor scores is more harmful for the performance of 3S-
LMFA than it is for FIML-LMFA (Vogelsmeier, Vermunt,
van Roekel, & De Roover, 2019), we conducted a simulation
study with selected conditions from the main simulation
study (a–d) and, furthermore, manipulated the autocorrel-
ation (e). More specifically, we kept the state-separation
conditions (a) and (b) as they had considerable effects on
the performances in the main simulation study (Section
“Simulation Study”) but we kept respectively only one factor
of the conditions pertaining to the amount of information
(c and d) as these conditions had only minor effects on the
performances. For the size of the autocorrelation, we used
the coefficients suggested by Cabrieto et al. (2017), that
were also used in the simulation study to investigate the
effect of ignoring autocorrelation in FIML-LMFA
(Vogelsmeier, Vermunt, van Roekel, & De Roover, 2019).

A.2.2. Design and procedure
The new conditions were the following:

The conditions marked with “�” are the ones that are
the ones that are now fixed to one value from the manipu-
lated conditions in the main simulation study. This design
resulted in 2� 2� 1� 1� 3 ¼ 12 conditions. The data
generation was the same as in the main simulation study
(again with 100 replicates). However, instead of using an
orthogonal regular factor model as shown in Eq. (1), we
used an orthogonal dynamic factor model, where the factor

scores at time-point t are correlated with the factor scores
at t � 1 by the coefficient / (e):

yit ¼ mk þ Kk f itk þ eit

f it ¼ /f it�1, k þ eit , (A10)

where eit � MVNð0, IÞ is a subject- and time-point specific
Fk � 1 noise vector. The correlated factor scores f itk were
generated by means of a recursive filter (Hamilton, 1994),
that is, the first factor scores are set equal to the noise ele-
ments ei1 and the remaining scores are computed as in Eq.
(A10). In order to retain the expected variance of 1, we
multiplied the resulting factor scores by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� /2

p
(De

Roover et al., 2014). Note that we computed the average
autocorrelation across all datasets belonging to the same
condition to see how the manipulation played out. The
autocorrelations were �0.02, 0.26, and 0.64.

A.2.3. Results
Overall, the state recovery and the parameter recovery of
the MMs was unaffected for both 3S- and FIML-LMFA
(Table A1). Only the state recovery after step 3 of 3S-LMFA
was slightly worse for increasing autocorrelations.
Furthermore, with both procedures, the intercept recovery
decreased for increasing autocorrelations. This is because

the autocorrelations are partly captured by the intercepts
and in turn have a higher variation around the popula-
tion values.

Regarding the SM (Table A2), the recovery was also
largely unaffected for both 3S- and FIML-LMFA. Only for
the strongest autocorrelation (/ ¼ :7) in 3S-LMFA, the
RMSE was slightly higher and the SEs slightly more under-
estimated for the initial state intercepts and the bias was

p WijZið Þ ¼

X
si1

� � �
X
siT

Ð
p si1jyi1
� �

pðyi1Þp wi1jyi1
� �

dyi1
p si1ð Þ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{classification error

� � �
Ð
p siT jyiT
� �

pðyiTÞp wiT jyiT
� �

dyiT
p siTð Þ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{classification error

�MC

¼
X
si1

� � �
X
siT

p wi1jsi1ð Þ � � � p wiT jsiTð Þ �MC

¼
X
si1

� � �
X
siT

pðsi1jzi1Þ
YT
t¼2

p sitjsit�1, zitð Þ
YT
t¼1

p witjsitð Þ: (A9)

State-separation

a: Between-state loading differences at two levels :
medium loading differences, low loading differences;

b: Between-state intercept differences at two levels :
no intercept differences, low intercept differences;

8>><
>>:

Amount of information
c: Fixed number of subjects N : 70�;
d: Fixed Number of days D : 70�
e: Autocorrelation at three levels : 0, 0:3, 0:7

8<
:
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slightly higher for the transition intercepts. Thus, the auto-
correlation appears to be partially captured by the step-3
latent state transitions. However, the effect of the autocor-
relation on the parameter estimation is negligible.

A.3. Additional simulation study: Varying
covariate distributions and effects

A.3.1. Problem
In order to test whether non-uniform covariate distributions
and the strength of the covariate effects influence the per-
formance of 3S- and FIML-LMFA differently, we repeated
selected conditions from the main simulation study and add-
itionally manipulated the strength of the covariate effects (e)
and the distribution of covariates (f). More specifically, we
selected the conditions that affected the performances in the
main simulation study the most (Section “Simulation

Study”). This implied that we kept the state-separation condi-
tions (a and b) while selecting only one factor from the con-
ditions pertaining to the amount of information (c and d).

A.3.2. Design and procedure
The new conditions were the following:

The conditions marked with “�” are the ones that are
now fixed to one value from the main simulation study.
This design resulted in 2� 2� 1� 1� 3� 3 ¼ 36 condi-
tions. We generated the data as in the main simulation
study (again with 100 replicates). However, the effects of
the time-varying covariate zit1 and time-constant covariate
zi2 as well as their distributions across observations and/or
subjects differed depending on factors (e) and (f). First,
with regard to the strength of the covariate effects, a higher
value for zit1 still lowered the probabilities of transitioning
to and staying in state 1 and 3 and increased the probabil-
ities of transitioning to and staying in state 2 but with slope

Table A1. Goodness of recovery for the states, loadings, intercepts and unique variances conditional on the three autocorrel-
ation factors.

Goodness of recovery

States ðARIÞ States RI ðRIÞ Loadings ðGOSLÞ Intercepts ðMADintÞ Unique Variances ðMADuniqueÞ
Type of LMFA

Condition Factors 3S-1 3S-3 FIML 3S-1 3S-3 FIML 3S FIML 3S FIML 3S FIML

Auto-correlation /
0 .61 .87 .94 .82 .94 .97 1 1 .02 .02 .01 .01
.3 .61 .86 .94 .82 .94 .97 1 1 .03 .03 .01 .01
.7 .61 .85 .93 .82 .93 .97 1 1 .04 .04 .01 .01

Note. LMFA¼ latent Markov factor analysis; 3S-1¼ three-step step 1; 3S-3¼ three-step step 3; FIML¼ full information maximum likelihood. The perfect
loading recoveries result from the loading matrices that are highly similar across the states.

Table A2. Parameter Bias, RMSE, and SE/SD for the four types of parameters averaged across and conditional on the three auto-
correlation factors.

Initial state
intercept parameters

Transition intercept
parameters

Slope parameters
covariate 1

Slope parameters
covariate 2

Bias RMSE SE/SD Bias RMSE SE/SD Bias RMSE SE/SD Bias RMSE SE/SD

Condition Factor FIML-LMFA

Average .01 .31 1.01 �.02 .18 1 �.01 .18 0.99 0 .17 0.99

Auto-correlation /

0 .02 .31 1.01 �.02 .18 1.01 0 .18 0.98 0 .17 0.97
.3 .01 .31 1.02 �.02 .18 1.01 0 .18 0.98 0 .17 0.99
.7 0 .32 1.01 �.02 .19 0.99 �.01 .18 1 0 .17 1

Condition Factor 3S-LMFA

Average .01 .35 0.98 .01 .23 0.98 0 .23 0.95 0 .20 0.96

Auto-correlation /
0 0 .33 1 0 .23 0.99 �.01 .23 0.94 �.01 .20 0.96
.3 0 .33 1 �.01 .23 0.99 �.01 .23 0.94 0 .21 0.95
.7 .02 .37 0.94 .04 .23 0.97 0 .22 0.97 0 .20 0.97

Note. LMFA¼ latent Markov factor analysis; FIML¼ full information maximum likelihood; 3S¼ three-step.

State-separation

a: Between-state loading differences at two levels :
medium loading differences, low loading differences;

b: Between-state intercept differences at two levels :
no intercept differences, low intercept differences;

8>><
>>:

Amount of information

c:Number of Subjects N at four levels : 70�;
d: Number of days D at two levels : 7�;
e: Strength of covariate effects at three levels : 0:25, 0:5, 1
f : Distributions of covariate scores at three levels : 70=30, 50=50, 30=70

8>><
>>:
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parameters being equal to c12, zit1 ¼ c32, zit1 ¼ 1 and c13, zit1 ¼
c21, zit1 ¼ c23, zit1 ¼ c31, zit1 ¼ �s: Furthermore, a higher value
for zi2 still increased the probability to transition away from
the origin state but with slope parameters being equal to
c12, zit2 ¼ c13, zit2 ¼ c21, zit2 ¼ c23, zit2 ¼ c31, zit2 ¼ c32, zit2 ¼ s: The
parameter s was either 0.25, 0.5, or 1 (see factor e).

Next, with regard to the distributions of the covariate
scores �0:5 and 0:5, we included conditions with a uni-
form distribution (i.e., “50/50”) and both a “70/30” and “30/
70” condition. The time-varying covariate zit1 was assigned
such that the score changed from �0:5 to 0:5 after 5 of the
7 days in the 70/30 condition and after 2 days in the 30/70
condition. To obtain exactly a 50/50 condition, the scores
changed after 3 days for the first half of the subjects and
after 4 days for the other half of the subjects. For the time-
constant covariate zi2, the scores �0:5 and 0:5 were ran-
domly selected with probabilities being equal to the three
distribution levels (i.e., 70/30, 50/50, or 30/70). Note that
we included a 70/30 and 30/70 condition to prevent a pos-
sible confounding of the results: The covariate scores influ-
ence the transition probabilities (i.e., the state memberships
become more or less stable) and a higher stability of the
state membership previously showed a positive influence on
the recovery of the states in FIML-LMFA (Vogelsmeier,

Vermunt, van Roekel, & De Roover, 2019). For instance, a
covariate score of �0:5 on both covariates would lead to
a slightly more stable transition probability matrix than a
covariate score of 0:5 on both covariates (e.g., with an aver-
age of 96% versus 92% probability to stay in a state with
s ¼ 1 and a one-unit interval). Note, however, that the dif-
ference is so small that it might not affect the performance.

A.3.3. Results
The results can be found in Table A3. The state and MM
recovery of 3S- and FIML-LMFA were largely unaffected by
the strength of the effect and the distribution of the covari-
ates and, therefore, will not be further discussed. With
regard to the SM, there was only a very small effect with
regard to the RMSE but it was the same for both estimation
procedures. First, the RMSE was slightly higher for the
strongest covariate effect (i.e., s ¼ 1). This is likely due to
somewhat larger SE values that are inherent to larger logit
parameters. Second, the RMSE for the transition intercepts
and transition slopes was slightly higher for non-uniform
covariate distributions, which is likely caused by the general
loss of information when covariate scores are not uniformly
distributed.

Table A3. Parameter Bias, RMSE, and SE/SD for the four types of parameters averaged across and conditional on the manipulated
factors.

Initial state
intercept parameters

Transition intercept
parameters

Slope parameters
covariate 1

Slope parameters
covariate 2

Bias RMSE SE/SD Bias RMSE SE/SD Bias RMSE SE/SD Bias RMSE SE/SD

Condition Factor FIML-LMFA

Average .01 .31 1.02 �.03 .22 0.98 0 .2 0.98 0 .18 0.98

Strength of covariate effects s 0.25 .01 .30 1.02 �.03 .21 0.98 �.01 .2 0.97 0 .18 0.98
0.50 0 .30 1.04 �.02 .21 0.98 0 .2 0.99 0 .18 0.99
1.00 .02 .32 1 �.03 .23 0.99 0 .21 0.99 �.01 .19 0.97

Distributions of covariate scores 30/70 0 .31 1.01 �.03 .24 0.99 �.02 .21 0.98 �.02 .2 0.98
50/50 .02 .31 1.02 �.02 .19 0.98 0 .18 0.99 0 .17 0.98
70/30 .02 .30 1.03 �.03 .22 0.98 .01 .21 0.99 0 .18 0.98

Factor 3S�LMFA

Average .01 .34 1 �.02 .28 0.98 0 .26 0.97 0 .22 0.96

Strength of covariate effects s 0.25 .02 .33 1.01 �.02 .27 0.98 �.01 .25 0.96 0 .22 0.97
0.50 .01 .33 1 �.01 .27 0.98 0 .25 0.97 0 .22 0.97
1.00 0 .34 1 �.02 .30 0.99 .01 .28 0.98 �.01 .24 0.94

Distributions of covariate scores 30/70 .01 .34 0.99 �.02 .31 0.99 �.02 .27 0.98 �.02 .25 0.96
50/50 �.01 .34 1 �.01 .23 0.97 0 .23 0.96 0 .2 0.96
70/30 .01 .33 1.02 �.02 .28 0.99 .02 .27 0.98 0 .22 0.95

Note. LMFA¼ latent Markov factor analysis; FIML¼ full information maximum likelihood; 3S¼ three-step.
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A.4. Step 1 and 2 syntax of 3S-LMFA

//LG5.1//
version 5.1
infile 'Dataset.csv' quote single
model
title 'Step 1 and Sep 2 CT-[2 2 2]';
options

algorithm
tolerance 1e-008 emtolerance 1e-008 emiterations 5000 nriterations 0;

startvalues
seed 0 sets 25 tolerance 1e-005 iterations 100 PCA;

bayes
latent 1 categorical 1 poisson 1 variances 1;

quadrature nodes 10;
missing includeall;

output
parameters effect
betaopts wl
standarderrors
classification
profile
probmeans posterior
bivariateresiduals
estimatedvalues model
iterationdetails
WriteParameters 'results_parameters1.csv'
write 'results1.csv';

outfile
'classification1.csv' classification

keep id deltaT cov1_vary_D cov2_con_N;

variables
dependent
V1 continuous,V2 continuous,V3 continuous,V4 continuous,V5 continuous,V6

continuous,V7 continuous,V8 continuous,V9 continuous,V10 continuous, V11
continuous, V12 continuous,V13 continuous, V14 continuous, V15 continuous,
V16 continuous, V17 continuous, V18 continuous, V19 continuous, V20 continuous;

latent
State nominal coding first 3,
F1 continuous,
F2 continuous;

equations
(1) F1j State;
(1) F2j State;
State - 1 ;
V1-V20 - 1 j State F1 j State F2 j State;
V1 j State;
V2 j State;
V3 j State;
V4 j State;
V5 j State;
V6 j State;
V7 j State;
V8 j State;
V9 j State;
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V10 j State;
V11 j State;
V12 j State;
V13 j State;
V14 j State;
V15 j State;
V16 j State;
V17 j State;
V18 j State;
V19 j State;
V20 j State;

end model

A.5. Step 3 syntax of 3S-LMFA

Note that the step-3 syntax below is only one option to estimate the third step. Instead of calculating the classification error
probability matrix manually and inserting it into the syntax ('w ¼ … ') to tell LG that the matrix should be used as fixed
response probability matrix, it is also possible to use the “step3” option in LG ('step3ml modal;' ). When using this
option, LG automatically calculates the classification error probability matrix from the input file (i.e., the step 1 posterior
probabilities and the modal state assignments, here 'classification1.csv') and uses it as fixed response probability
matrix. However, when using the step3 option, LG does not yet provide the user with the final latent state-assignments. This
is because the classification is often not the primary focus of interest in other three-step analyses where researchers rather
focus on parameter estimates such as covariate effects. Since classification is certainly of interest in LMFA, we suggest to use
the manual syntax version.

//LG5.1//
version 5.1
infile 'classification1.csv' quote single
model
title 'Step 3-[2 2 2]';
options

algorithm
tolerance 1e-008 emtolerance 1e-006 emiterations 5000 nriterations 500

expm pade;
startvalues

seed 0 sets 25 tolerance 1e-005 iterations 100 PCA;
bayes latent 1 categorical 1 poisson 1 variances 1 ct 1;

quadrature nodes 10;
missing includeall;
output

parameters effect
standarderrors
classification
profile
iterationdetails
estimatedvalues model
WriteParameters 'results_parameters2.csv'
write 'results2.csv';

outfile
'classification2.csv' classification;

variables
caseid id;
independent cov1_vary_D nominal, cov2_con_N nominal;
timeinterval deltaT;

latent
State3 nominal dynamic coding first 3;
dependent State#;
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equations
State3[0] - 1;
State3 - (�tra) 1 j State3[-1]

+ (�tra) cov1_vary_D j State3[-1] + (�tra) cov2_con_N j State3[-1];
State# - (w�wei) State3;

w values obtained from first syntax;
end model

A.6. Extra information application

A.6.1. Model selection procedure with the
CHull method

For the model selection, we ran all models five times to see
whether the maximum likelihood solutions were indeed glo-
bal solutions. We considered the solutions to be global when
the absolute differences between the loglikelihood values of
the 5 solutions was respectively smaller than 0.01. As a
result, 11 out of 19 models were passed to the model selec-
tion procedure with the CHull method, which was con-
ducted with the R-package “multichull” (note that we also
did a sensitivity check by doing the CHull test including
possible local optima and the selected model was always the
same). The CHull can be considered an automated general-
ized scree-test (Bulteel et al., 2013; Ceulemans & Kiers, 2006;
Ceulemans & Van Mechelen, 2005). The method identifies
the models in a “loglikelihood versus number of parameters”
plot that are at the higher boundary of the convex hull
(Cattell, 1966) and identifies the optimal model by evaluat-
ing the elbow in the scree plot (i.e., the point where the

improvement in fit with additional parameters levels off).
During the CHull procedure, following Wilderjans et al.
(2013)’s recommendation, we discarded models for which
the fit was almost equal to the fit of a less complex model
(i.e., when it fitted less than 1 percent better than the less
complex model, which is also the default value in the R-
package). The model with 2 states and respectively 2 and 1
factors (“[2 1]”) was the best (see output in A.6.2). The
second best model was the model with two states and 1 fac-
tor in both states (“[1 1]”). From the grouping of points,
corresponding to the different number of states, it can also
be seen that the improvement in fit from 1 to 2 states is
much larger than the one from 2 to 3 states. Model [2 1]
was also better than model [1 1] according to the BIC values
(see output A.6.3) and furthermore, better interpretable
(model [1 1] was comparable to model [2 1] only that the
second factor in the first state was clearly missing as was evi-
dent from tremendously high unique variance proportions
for the items that had high loadings on the second factor in
model [2 1]. Therefore, for this application, we chose model
[2 1].

A.6.2. Output CHull
Output from the CHull method performed by the R-package “multichull “shows the models considered, the models on the
upper bound of the convex hull, the selected model [2 1], and the CHull-figure plotting the number of free parameters
against the loglikelihood value.

SETTINGS BY USER:
Optimalization: upper bound
Required improvement in fit: 1%
Number of considered models: 11

RESULTS:
Number of selected models: 1

SELECTED MODEL:
complexity fit

[2 1] 71 -41695.7

ALL MODELS ON upper BOUND:
complexity fit st

[1] 30 -48338.88 NA
[1 1] 61 -42738.06 1.733280
[2 1] 71 -41695.70 2.572494
[1 1 1] 92 -40844.78 NA
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ORIGINAL MODELS
complexity fit

[1] 30 -48338.88
[2] 40 -47601.71
[3] 50 -47468.42
[1 1] 61 -42738.06
[2 1] 71 -41695.70
[2 2] 81 -41477.40
[3 2] 91 -41430.23
[1 1 1] 92 -40844.78
[3 3] 101 -41406.83
[2 1 1] 102 -40495.49
[3 2 1] 122 -40367.42

A.6.3. Output BIC
This is an extra BIC-figure that, comparable to the CHull-
figure, plots the number of free parameters against the BIC
value, showing that model [2 1] fits considerably better
than model [1 1] not only according to the CHull but also
according to the BIC value.
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