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ABSTRACT 
To understand psychological data, it is crucial to examine the structure and dimensions of 
variables. In this study, we examined alternative estimation algorithms to the conventional 
GLASSO-based exploratory graph analysis (EGA) in network psychometric models to assess 
the dimensionality structure of the data. The study applied Bayesian conjugate or Jeffreys’ 
priors to estimate the graphical structure and then used the Louvain community detection 
algorithm to partition and identify groups of nodes, which allowed the detection of the 
multi- and unidimensional factor structures. Monte Carlo simulations suggested that the 
two alternative Bayesian estimation algorithms had comparable or better performance 
when compared with the GLASSO-based EGA and conventional parallel analysis (PA). When 
estimating the multidimensional factor structure, the analytically based method (i.e., 
EGA.analytical) showed the best balance between accuracy and mean biased/absolute 
errors, with the highest accuracy tied with EGA but with the smallest errors. The sampling- 
based approach (EGA.sampling) yielded higher accuracy and smaller errors than PA; lower 
accuracy but also lower errors than EGA. Techniques from the two algorithms had more sta
ble performance than EGA and PA across different data conditions. When estimating the 
unidimensional structure, the PA technique performed the best, followed closely by EGA, 
and then EGA.analytical and EGA.sampling. Furthermore, the study explored four full 
Bayesian techniques to assess dimensionality in network psychometrics. The results demon
strated superior performance when using Bayesian hypothesis testing or deriving posterior 
samples of graph structures under small sample sizes. The study recommends using the 
EGA.analytical technique as an alternative tool for assessing dimensionality and advocates 
for the usefulness of the EGA.sampling method as a valuable alternate technique. The find
ings also indicated encouraging results for extending the regularization-based network mod
eling EGA method to the Bayesian framework and discussed future directions in this line of 
work. The study illustrated the practical application of the techniques to two empirical 
examples in R.
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Introduction

Examining the structure and dimensions of variables is 
essential to understand many psychological data. 
Psychology typically uses measurement instruments to 
define a domain of functioning. Identifying the under
lying dimensions of the multivariate psychological data 
is an important endeavor to determine how the data 
can be summarized into a smaller set of meaningful 
variables (i.e., dimensions), which are often used as 
inferences for psychological phenotypes. Analyzing 

data with overfactored dimensions often runs the risk 
of misspecifying the model, harming predictions, and 
losing knowledge translation. Furthermore, psycho
logical theories often rely on detecting latent structures 
to understand human traits, in the fields such as intel
ligence (Garcia-Garzon et al., 2019), personality (Geiser 
et al., 2021), and creativity (Silvia, 2008). Recovering 
the number of latent factors plays a critical role in con
structing psychological theories.

Multivariate psychological data are often perceived as 
proxies for latent variables that interact with each other 
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(Bollen, 2014). Existing rules for assessing dimensions 
in psychology are under the latent variable modeling 
framework and can be classified into three categories 
(Garrido et al., 2016). The first category applies statis
tical tests such as maximum-likelihood, generalized least 
squares, and asymptotically distribution-free methods to 
assess dimensions. The second category relates to the 
mathematical and psychometric criteria including 
Kaiser-Guttman criterion (Kaiser, 1960), parallel ana
lysis (Horn, 1965), and the minimum average partial 
method (Velicer, 1976). The third category relies on 
rules of thumb, such as the scree test (Cattell, 1966) 
and variables with significant loadings (Floyd & 
Widaman, 1995) to determine the number of factors. 
All the above-mentioned estimation methods are based 
on the latent variable modeling framework, in which 
observed variables are believed to co-occur due to an 
underlying unobserved (latent) attribute that has caused 
the covariation between the observed variables.

The development of network models offers a new 
perspective to understanding psychological data. By 
demonstrating that a general factor model can be 
estimated using a fully connected network model, van 
der Maas et al. (2006) proposed using a network 
model to examine the dynamic relationships between 
variables, which rest on reciprocal mutualism or the 
idea that variables directly and mutually reinforce one 
another. Methodological advances (Borsboom et al., 
2011; Borsboom & Cramer, 2013) and substantive 
applications (e.g., Fried et al., 2015; Ron et al., 2021) 
have since increased to study psychological behaviors 
in this area. Epskamp (2016) introduced a network 
model as a formal psychometric model, which pro
poses that symptoms, as measured by psychometric 
items or scale scores, directly and reciprocally cause 
each other (Borsboom & Cramer, 2013; Cramer et al., 
2010; van Bork et al., 2017; van der Maas et al., 2006). 
Network models conceptualize observed variables 
(e.g., symptoms) as nodes, and links between nodes as 
edges that represent statistical relationships between 
symptoms or behaviors (e.g., Epskamp, 2016). 
Although psychological network models and latent 
variable models possess contrasting perspectives 
regarding why variables are related, studies have dem
onstrated that both models are statistically equivalent 
under certain conditions in the binary (Epskamp 
et al., 2018b; Holland, 1990; Kac, 1969; Marsman 
et al., 2015, 2018; McCullagh, 1994), polytomous 
(Christensen et al., 2023b), and continuous (Waldorp 
& Marsman, 2022) data. The network structures of 
nodes and edges are commonly estimated in network 

psychometrics using Gaussian graphical model (GGM; 
Lauritzen, 1996) for normally distributed data.

Built upon GGM, which described the conditional 
dependence structures of psychological constructs 
(Lauritzen, 1996; Wainwright et al., 2008), Golino & 
Epskamp (2017) developed a new assessment technique 
using a network modeling perspective. The technique, 
exploratory graph analysis (EGA; Golino & Epskamp, 
2017), estimates a network and then applies a cluster
ing algorithm to assess the factor dimensionality. Liu 
(2021) developed a similar regularized Gaussian graph
ical clustering that was based on regularized partial 
correlations and the Louvain community detection 
algorithm to determine the number of cell clusters. 
Golino & Epskamp (2017); Golino et al. (2020) found 
an equal or superior performance of EGA to conven
tional latent variable based techniques in assessing fac
tor structures. The researchers showed through a 
decomposition using the Woodbury matrix identity 
(Woodbury, 1950) that oblique factors are statistically 
equivalent with clusters of nodes (i.e., sets of connected 
nodes) and orthogonal factors are statistically equiva
lent with unconnected clusters in GGM, when the data 
generation mechanism is a factor model. Further, 
Christensen & Golino (2021) showed that factor load
ings are statistically equivalent with a modified version 
of node strengths (i.e., sum of all connections to a 
node) that takes into consideration of the dimensional
ity structure, represented as network loadings.

The current mainstream approach for assessing 
dimensionality in network psychometrics uses fre
quentist inference (i.e., EGA; Golino & Epskamp, 2017; 
Golino et al., 2020). Exploring alternative estimation 
approaches to the GLASSO-based EGA offers advan
tages. First, on the one hand, the GLASSO-based EGA 
method as a regularization based approach studies 
point estimates but does not yield sampling distribu
tions (Epskamp et al., 2018a), thus posing limitations 
for further statistical inference (Hastie et al., 2009). On 
the other hand, when using Bayesian estimation meth
ods, one can obtain the full posterior probability distri
butions for the edges that capture connections between 
nodes and use the estimated posterior distributions to 
extract different types of information about the edges. 
This includes obtaining point estimates such as poster
ior mean or posterior median as well as creating 
interval estimates to establish a plausible range for sig
nificance. Bayesian inferences can further be drawn 
based on the information (Gelman et al., 2015). 
Despite a nonregularized bootstrapping strategy was 
introduced to estimate H (Williams et al., 2019), 
Williams (2021) advised against bootstrapping LASSO 
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penalized estimates to conduct significance tests, as the 
point mass at zero in sparse network likely results in 
the distorted sampling distribution. In addition, before 
evaluating factor structures, researchers may have some 
level of understanding regarding those structures. Under 
such a situation, Bayesian estimation has the capacity to 
incorporate the prior belief or knowledge based on sub
stantive theory to the parameter estimation. For 
example, consider assigning a prior distribution (e.g., a 
conjugate Wishart distribution) to the precision matrix 
in graphical models, which represent dependencies 
between variables in a network. Based on the degree of 
uncertainty of connections among nodes, one could 
assign informative or noninformative priors to express 
the relationships between variables. While noninforma
tive priors reflect the lack of specific information about 
the parameters being estimated and are typically flat 
and vague, informative priors incorporate specific prior 
knowledge or information and can strongly influence 
the posterior distribution. By expressing the knowledge 
and beliefs through specifying values and incorporating 
priors in Bayesian methods, the posterior distribution 
can represent the range of potential characteristics 
researchers may have based on prior data or beliefs 
(e.g., Serang et al., 2014). For example, in a personality 
test, if one is certain about the likely shape and spread 
of a personality trait, one may assign an informative 
scale matrix as the hyperprior to the precision matrix, 
which will have a greater weight on posterior estimates. 
One may also increase the value of the hyperprior for 
the degrees of freedom to reflect a more informative 
prior in the personality traits. On the contrary, if one is 
uncertain or has limited prior information, one may 
assign a noninformative scale matrix along with degrees 
of freedom hyperprior to capture the uncertainty using 
the noninformative prior. Thus, prior theory can play a 
role in determining the network structure using the 
Bayesian estimation.

This study examined alternative algorithms in EGA 
framework to assess dimensionality in multivariate psy
chological data. The study also explored four additional 
full Bayesian techniques that showed promising results 
to develop dimensionality assessment to Bayesian 
graphical models. The remainder of the study is organ
ized as follows. We first review the EGA framework for 
assessing dimensionality in network psychometric mod
els. Next, we discuss two Bayesian estimation methods 
to estimate the model parameters for GGM. Then, we 
discuss decision rules to reach the level of sparsity and 
introduce a community detection algorithm to detect 
patterns in the network structures. Furthermore, we 
explore four full Bayesian techniques for evaluating the 

feasibility of dimensionality assessment in full Bayesian 
framework within psychological networks. We investi
gate the performance of the proposed Bayesian techni
ques using three Monte Carlo simulation studies and 
end with discussion and future directions.

Exploratory graph analysis framework for 
assessing dimensionality

Exploratory graph analysis (EGA) refers to a network 
psychometric modeling framework to assess dimension
ality in multivariate data. The EGA’s core idea (Golino 
& Epskamp, 2017) combines undirected network models 
(Lauritzen, 1996) with community detection algorithms 
(Newman, 2006), specifically estimating a network struc
ture first and then applying a clustering algorithm to 
detect the undirected weighted network clusters and 
estimate the underlying number of latent factors. EGA 
has found to perform equally well or better than parallel 
analysis using principle component analysis (PApca; 
Horn, 1965). The current study achieves two goals. Up 
to now, the EGA framework primarily uses the graph
ical least absolute shrinkage and selection operation 
(GLASSO; Friedman et al., 2008) to point estimate the 
undirected network structure. This study investigates 
two Bayesian algorithms to estimate the network struc
ture by obtaining the structure’s posterior distributions. 
The study shows that the new algorithms produce 
smaller mean squared errors and are more stable than 
the GLASSO-based EGA. Second, the study explores 
four full Bayesian techniques and finds promising out
comes to extending dimensionality assessment in net
work psychometrics within Bayesian framework.

Part I. Existing GLASSO-based EGA algorithm

The GGM can be used to model the conditional 
dependence or independence of pairs of continuous 
variables in the network (Højsgaard & Lauritzen, 
2008; Sekulovski et al., 2023; Waldorp & Marsman, 
2022). Let y be a random vector of k responses and is 
assumed to be normally distributed, y � Nkðl, RÞ, 
with the mean vector l ¼ ð01, :::, 0kÞ

0 and a k� k 
positive definite covariance matrix R: By determining 
which off-diagonal elements in the precision matrix, 
H ¼ R−1, are nonzeros, the undirected weighted 
network graph is obtained and used to construct an 
adjacency matrix. The adjacency matrix follows that

Aij ¼
1, if hij 6¼ 0, 1 � i � j < k
0, otherwise :

�

The precision matrix has a selected edge if the corre
sponding adjacency matrix has an element 1, and zero 
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otherwise. The selected edges, after being standardized 
and reversed the sign, are partial correlations between 
two variables yi and yj, given all other variables in 
y, y−ði, jÞ on their off-diagonal elements (Epskamp et al., 
2018c). The partial correlations show conditional 
dependency and are represented as

CorðYi, Yjjy−ði, jÞÞ ¼ −
hij
ffiffiffiffiffi
hij

p ffiffiffiffiffi
hij

p : (1) 

A weighted network is formed using partial correla
tions as shown in Equation 1, in which each variable yk 
represents a node, and the partial correlations between 
variables are represented as edges between the nodes. A 
nonzero partial correlation represents the conditional 
dependence between nodes, whereas the zero partial 
correlation represents that the two nodes are independ
ent conditional on all other nodes. Because the number 
of free parameters in the precision matrix can grow 
quadratically with the number of variables, a sparse 
network is typically assumed (Epskamp et al., 2017; 
Epskamp & Fried, 2018).

The GLASSO-based EGA (Golino & Epskamp, 2017) 
estimates the GGM using the penalized maximum like
lihood estimation. It uses a variant of the least absolute 
shrinkage and selection operation (LASSO; Tibshirani, 
1996) regularization technique known as GLASSO 
(Friedman et al., 2008) to estimate the sparse inverse 
covariance matrix and compute an associated Extended 
Bayesian Information Criterion (EBIC; Foygel & Drton, 
2010). The graph with the best EBIC is selected as the 
final graph. Once the graphical structure is obtained, 
the GLASSO-based EGA applies the walktrap commu
nity detection algorithm (Pons et al., 2006) to iteratively 
find the optimal clustering solution. By penalizing the 
model complexity while estimating the statistical model, 
regularization converges to the true network structure 
under sparse networks (Ravikumar et al., 2011). Later, a 
few methodological improvement was made over the 
GLASSO-based EGA (Golino et al., 2020). The 
researchers adjusted the default value of the hyperpara
meter c for EBIC, which determines whether a parsi
monious model with fewer connections is favored, to 
make the result of EGA more stable. Furthermore, the 
researchers developed a unidimensionality expand rule 
to accommodate assessing unidimensionality within the 
EGA method.

Part II. Two new EGA algorithms based on 
posterior distributions

While the GLASSO-based EGA method (Golino et al., 
2020; Golino & Epskamp, 2017) has received popularity 

in applications in various disciplines (e.g., Rosenthal 
et al., 2021; Rotundo, 2002), it is not without limitation. 
Statistical inference could be limited by using only 
the point estimates of the precision matrix obtained 
from the regularized partial correlation network using 
GLASSO (Friedman et al., 2008). In addition, conduct
ing significance tests by bootstrapping LASSO penalized 
estimates could pose challenges in sparse networks 
(Williams, 2021), where many edges are estimated as 
exactly zero, leading to a distortion in distribution of 
sampling statistics.

Bayesian estimation

This section discusses estimating network structures 
by generating their posterior distributions using 
Bayesian priors that are conjugate or have invariant 
property for the posterior reparameterization. The 
GGM can be estimated either analytically or using 
posterior sampling in Bayesian methods (Williams, 
2021; Williams & Mulder, 2020). In the analytical 
approach, a Wishart prior distribution, which is con
jugate for the precision matrix H (Kubokawa & 
Srivastava, 2008) is used. The normal density function 
of the multivariate normal data Y can be written as

pðYjHÞ ¼ ð2pÞ
−k=2
jHj

1=2 exp −
1
2

YHY 0
� �

:

Following a conjugate Wishart prior Wð�, cIkÞ to 
H, with degrees of freedom � (� ¼ kþ 1Þ, identity 
matrix Ik, and a constant c with a small value, the 
density function of the prior is

pðHÞ ¼
jHj
ð�−k−1Þ=2 exp −trðcI−1

k HÞ=2
� �

2��k=2C �
2
� �
jcIkj

�=2 :

Thus, the joint posterior density for the precision 
matrix H follows

pðHjYÞ / pðYjHÞpðHÞ, 

where Y is a n� k matrix drawn from a multivariate 
normal distribution. Due to conjugacy, the posterior 
distribution also has a Wishart distribution,

HjY �Wð� þ n, ðSþ cIkÞ
−1
Þ, 

where n is the sample size and S is the sums of 
squares matrix Y 0Y: The posterior distribution of H is

pðHjYÞ ¼ jHj
ðnþ�−k−1Þ

2 exp ð−
1
2

tr ðSþ cI−1
k Þ �H

� �
Þ:

As the number of variables in the network 
increases, the degrees of freedom in the prior specifi
cation for the precision matrix also increases, so does 
the prior mean have a greater weight on the posterior 
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mean. The posterior mean of the precision matrix H 

can be expressed as

EðHjYÞ ¼ ð� þ nÞðnSþ cI−1
k Þ

−1
:

Accordingly, the analytical approach derives the 
graphical structure and constructs the posterior proba
bilities for the edges. Using this conjugate Wishart 
distribution as a prior could produce a posterior dis
tribution, which could then be used to generate 
posterior samples and construct credible intervals 
(Zhang, 2021).

The second approach uses a different prior setup 
that allows to compute the posterior distribution for 
the partial correlation matrix. This sampling-based 
approach applies a Jeffreys’ prior jHjðpþ1Þ=2 and 
derives a posterior distribution that follows a Wishart 
distribution HjY �Wðn − 1, S−1Þ (Williams, 2021). 
By specifying Jeffreys’ prior, one does not favor any 
particular values of the precision matrix H, but rather 
relies solely on the dimension and the degrees of free
dom of the distribution. One can draw posterior sam
ples, s ¼ 1, :::, S, to construct a posterior distribution 
for the k� k precision matrix (Barnard et al., 2000), 
which can be denoted as

R ¼ −
�

diagðhÞðsÞ
h i−1

HðsÞ diagðhÞðsÞ
h i−1�

, 

where h are the square roots of diagðHÞ: Based on the 
posterior samples of the precision matrix, one can 
define the region of practical significance for the null 
area that provides support for determining the condi
tional dependency and independency between edges 
as well as practical equivalency around zero 
(Kruschke, 2011).

Level of sparsity
Generating Bayesian posterior distributions does not 
result in absolute zero but rather in probability. Thus, 
one could define an area around the null value in pos
terior distribution that is practically equivalent to no 
effect. This range is the region of practical equivalence 
(ROPE; Kruschke, 2014). ROPE, the region of which 
can be used as a “null” hypothesis, can be used to test 
whether a parameter is significant or not (Kruschke & 
Liddell, 2018; Shi et al., 2019).

Bayesian estimation using ROPE does not directly 
lead to a sparse network. The nonzero small estimates 
typically represent weak edges, which are spurious or 
false positive connections in the network, even among 
conditionally independent nodes (Costantini et al., 
2015). In the current study, we propose penalizing 
model complexity by controlling for the level of 

sparsity. By defining a null region using ROPE, one 
can check the percentage of credible intervals that is 
the region and determine the level of sparsity. A null 
hypothesis will be rejected if there is a low percentage 
of credible intervals within ROPE, and it will be 
retained when a high percentage of credible intervals 
fall within the ROPE (J. Kruschke, 2014).

The study uses the ROPE idea to estimate the net
work structure. Specifically, we use Bayesian credible 
intervals to limit spurious edges and yield a sparse esti
mate for H: The Bayesian credible intervals, built upon 
the posterior probability distribution for H, summarize 
the posterior probability that the true edge effect is 
within an interval. A 90% credible interval summarizes 
the posterior mass and demonstrates that there is a 
90% probability that the true network structure (i.e., 
edges) falls within the specified interval range, assum
ing that the alternative hypothesis one specifies is true 
(Morey et al., 2016; van Doorn et al., 2021; 
Wagenmakers et al., 2018). While larger credible inter
vals indicate a higher level of sparsity in H, low cred
ible intervals lead to non-zero elements in the network. 
In an extreme case when the credible intervals fall into 
zero, all the off-diagonal elements in the precision 
matrix are non-zeros and H becomes the original 
Wishart posterior distribution. It is advisable to select 
a credible interval range that is consistent with the 
underlying substantive theory. In other words, one 
establishes credible intervals based on how likely an 
unknown network structure lies within a particular 
range. Through a simulation study, Williams (2021) 
discovered that the analytic-based approach better con
trolled the Type I error rates in small-sampled condi
tions (i.e., sample size less than 1000) than the 
sampling-based approach, although both techniques 
converge to a similar performance asymptotically

The current study will use both the analytic-based 
and sampling-based Bayesian approaches to estimate 
the GGM and compare their performances. In this 
study, we will adopt a 90% credible interval for both 
the analytic-based and sampling-based Bayesian tech
niques to demonstrate the confidence level of the 
true network structures and limit spurious edges. 
Researchers may designate other credible intervals to 
fit into their underlying theoretical framework.

Clustering algorithm
We assess the underlying factor structure of the multi
variate data by applying a community detection algo
rithm to the estimated graphical networks. After 
estimating the GGM through Bayesian methods and 
applying the designated level of specificity to the 
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sampling-based technique, one obtains graphical net
works representing relationships between nodes. In a 
psychological context, the nodes having a similar psy
chological construct are densely connected, whereas 
the nodes with orthogonal constructs are expected to 
be further away. In previous studies that used 
GLASSO to estimate the GGM, the links between 
nodes belonging to the same construct are expected to 
be stronger than the connections between nodes from 
distinct constructs (Golino et al., 2020; Golino & 
Epskamp, 2017). In this study, we use the Louvain 
community detection algorithm (Blondel et al., 2008) 
to the graphical structures to detect the optimal parti
tions in a network and define the dimensions in the 
data.

The community detection algorithms can be under
stood through the concept of modularity (Newman, 
2006). Modularity measures the degree of connectivity 
between nodes in a community. The Louvain algo
rithm initiates a separate individual community for 
each node and records the modularity in this state; 
the algorithm then moves each node into a neighbor
ing community and notes down a new modularity. 
The change in modularity between both states is com
pared. The node remains in the original community if 
the modularity has no gain and belongs to the adja
cent community if there is a gain in modularity. This 
is an iterative process until the modularity does not 
improve and a local maxima is achieved. Hierarchical 
network structures can be further detected through 
aggregating networks in Louvain. Specifically, the 
algorithm moves individuals to an aggregated net
work, records the modularity at each state, and com
pares the connectivity (i.e., modularity) between states 
to optimize the partitions. The process is repeated 
until a global maxima between the expected and 
actual number of edges is achieved in a community 
(Christensen et al., 2023a; Gates et al., 2016).

We suggest utilizing the Louvain algorithm for the 
proposed method for three primary reasons. First, 
Christensen et al., (2023a) discovered through a well- 
planned simulation that when coupled with GLASSO, 
the Louvain algorithm was one of the most effective 
approaches to identify network community structures. 
Gates et al. (2016) had a similar finding when explor
ing brain network correlation structures. Second, the 
Louvain has the advantage of detecting hierarchical 
structures (Blondel et al., 2008; Gates et al., 2016; 
Jim�enez et al., 2023). Bayesian methods have advan
tage in handling hierarchical structures in data in 
terms of model specification, quantifying parameter 
uncertainties, and, model estimation with the 

incorporation of prior beliefs (e.g., Gelman et al., 
2015; Gelman & Hill, 2002). For example, Bayesian 
methods use a single principle, Bayes’ Theorem, for 
parameter estimation. The technique not only uses the 
prior distribution and the likelihood function but also 
has the capacity to include information about hyperp
riors. This enables the capture of random effects in 
variables, which offers additional information for 
more precise parameter estimation (Jongerling et al., 
2023; Shi et al., 2023b). Furthermore, the MCMC 
methods in Bayesian approach enable the simultan
eous estimation of multiple hierarchical structures, 
which have been found to better model uncertainties 
at each level within the Bayesian framework (e.g., Lee 
& Newell, 2011). Proposing Louvain to the alternative 
Bayesian algorithms allows the potential to detect 
hierarchical network structures in future studies. 
Third, compared to the Louvain community detection 
technique, the walktrap algorithm (Pons et al., 2006), 
as the default algorithm for the GLASSO-based EGA 
(Golino & Epskamp, 2017) method, may encounter 
scalability challenges as it could become computation
ally expensive for the walktrap technique in large or 
hierarchical networks (Lancichinetti et al., 2008).

The EGA.analytical and EGA.sampling methods

This study proposes the application of two Bayesian 
priors to EGA framework in network psychometric 
modeling for assessing factor structures. Specifically, 
we discuss two prior setups in the models, which vary 
based on the way the Bayesian methods are used to 
determine the structure of the conditional (in)depend
ence. The first model estimates the conditional 
dependence structure using the analytical-based 
Bayesian approach with a conjugate Wishart prior, 
and is termed the EGA.analytical method. The second 
model, the EGA.sampling method, adopts a sampling- 
based Bayesian approach to estimate a sparse network 
structure. In this study, we establish the interval of 
values in which there is a 90% probability of contain
ing the true values, known as 90% credible intervals, 
in the posterior samples of the EGA.analytical and 
EGA.sampling methods to regulate the degree of 
sparseness. Researchers may opt for a value range dif
ferent from 90% to account for their prior knowledge 
and beliefs about the network structure in practice. 
Both the EGA.analytical and EGA.sampling methods 
use the Louvain community detection algorithm to 
assess the undirected weighted network clusters. To 
address the issue of unidimensionality, we use the 
above-mentioned expand adjustment rule (Golino 
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et al., 2020) by creating an auxiliary dimension and 
adjusting unidimensionality through the auxiliary fac
tor structure in the EGA.analytical and EGA.sampling 
techniques.

Because the true factor structure is unknown in 
practical settings, the discussed techniques assess the 
factor structures by verifying the unidimensional struc
ture first and then proceeding to assess the multidi
mensionality. Specifically, after obtaining an empirical 
dataset with a sample size of N, the techniques would 
simulate a dataset with the same sample size of N as 
the empirical dataset with a hypothetical factor struc
ture consisting of four items and factor loadings of 0.7. 
This ensured that a non-unidimensional solution would 
be obtained when estimating the network structures. 
The process involves combining the simulated data 
with the actual data and using either an analytical- 
based or sampling-based Bayesian estimation approach 
to estimate the network structure. The sampling-based 
Bayesian estimation incorporates a designated specifi
city level and controls for sparseness. The output is a 
network graphical structure based on the partial correl
ation matrix estimated using the Bayesian approaches. 
The Louvain community algorithm is then applied to 
identify community partitions. If the returned number 
of factors is 2 or less, the algorithm stops and records 
unidimensionality. If not, the process is repeated to 
determine multidimensionality. The final estimated 
multidimensional structure is calculated as the estimated 
dimension, which excludes the simulated hypothetical 
dimension. See Figure 1 for a detailed description of the 
EGA.analytical algorithm; EGA.sampling algorithm fol
lowed a similar procedure.

Part III. Exploring four full Bayesian procedures 
for small samples

While the study has identified certain advantages of 
the studied Bayesian algorithms when compared to 
conventional regularization-based EGA technique 
(Golino et al., 2020), it is important to note that these 
advantages are somewhat limited in scope in that the 
focus primarily centers around alternative estimation 
methods for network structure. The benefits of 
Bayesian methods for addressing issues related to small 
sample sizes are not clearly evident in the current find
ings, despite Bayesian methods offering the advantage 
of addressing this through the incorporation of priors 
(e.g., McNeish, 2016; Shi & Tong, 2017).

In this section, we provide a conceptual exploration 
of four alternative Bayesian techniques to assess 
dimensionality in small sampled conditions through 

network models. The four techniques are discussed in 
terms of how they supplement certain aspects where 
the above discussed EGA.analytical and EGA.sampling 
approaches have limitations and weaknesses.

First, we discuss two Bayesian alternatives to clas
sical NHST about the inclusion and exclusion of net
work edges. The approaches use findings from 
Bayesian hypothesis testing regarding the presence or 
absence of edges together with clustering algorithms 
to assess dimensionality. One problem with the ROPE 
idea discussed above in Bayesian methods is that the 
fundamental question of null hypothesis testing (e.g., 
E.-J. Wagenmakers et al., 2020; Wagenmakers et al., 
2016) remains. This means that we reject the null 
when the null or the null regions are tested to be 
different from being zero. The associated problem of 
simply rejecting the null does not lead us to the con
clusion that the alternative is true. Bayesian hypothesis 
testing, on the other hand, allows researchers to 
distinguish between not having evidence of network 
connections and having evidence that network con
nections are absent (e.g., Borsboom et al., 2021; 
Wagenmakers et al., 2018), and thus, may facilitate 
the decision about whether to include or exclude cer
tain network connections (i.e., edges) among nodes in 
a network.

The central idea of using the Bayesian hypothesis 
testing to assess dimensionality is to use the Bayes fac
tor, a direct measure of the relative evidence for two 
models to quantify the uncertainty of including edges 
and then assess dimensionality of those included 
edges. We discuss two approaches to determining the 
conditional dependency, depending on how we meas
ure or quantify the evidence for the edge inclusion 
and exclusion. The first method computes the poster
ior inclusion probability (PIP) to determine the graph 
structure (Huth et al., 2023; Williams & Mulder, 
2020) and uses the community detection algorithm to 
partition dimensions. Specifically, we compare the 
likelihood of the data through a single-model Bayes 
factor (Kass & Raftery, 1995; Morey & Rouder, 2011) 
under the structure in which the edge is present 
against the structure where the edge is absent. We 
term this single Bayes factor method as EGA:pip: The 
EGA:pip method is based on one model-averaged esti
mate (Huth et al., 2023; Williams et al., 2019) that is 
sensitive and fluctuates depending on the conditional 
dependency of the current edge on other edges 
(Sekulovski et al., 2023) when quantifying the edge 
inclusion uncertainty. To mitigate this potential issue 
from the single Bayes factor approach, the second 
method computes the inclusion Bayes factor using 

190 D. SHI ET AL.



Bayesian modeling averaging to determine the pres
ence of network connections (Sekulovski et al., 2023). 
Through using Bayesian model averaging (Hinne 
et al., 2020; Hoeting et al., 1999), one obtains a single 
inclusive Bayes factor that accounts for all possible 
structures simultaneously (Huth et al., 2023; 
Sekulovski et al., 2023). By quantifying the uncertainty 
of edge inclusion or exclusion through the inclusive 
Bayes factor, one can subsequently determine the con
ditional dependence structure. Studies have shown 
this approach to be more robust (Sekulovski et al., 
2023). We then use the Louvain clustering algorithm 
to assess dimensionality in a network and term 
this approach EGA:incBF: Based on a comparable 

approach to estimating the effect size measure in 
experimental analysis-of-variance designs using 
Bayesian methods to estimate the posterior distribu
tion (Marsman et al., 2019), these methods could 
potentially offer a broader Bayesian perspective and 
enhance the study’s robustness.

Second, assigning Bayesian priors is not limited to 
assigning priors to only model parameters. In this 
study, we consider alternative priors that explicitly take 
into account the graph structure. Introduced by 
Rotundo (2002), the G-Wishart distribution was a 
probabilistic model for dealing with graphical structures 
and accommodating graph-related information. As a 
conjugate prior for the likelihood, the G-Wishart 

Figure 1. Algorithm for the analytical-based (EGA.analytical) method.

MULTIVARIATE BEHAVIORAL RESEARCH 191



distribution has gained a growing popularity as a prior 
for the precision matrix for the multivariate data, espe
cially in GGM (Dobra et al., 2011; van den Boom 
et al., 2022). Being a generalization of the traditional 
Wishart distribution, the G-Wishart distribution con
tains hyperparameters that govern the shape and 
spread of the distribution. Unlike traditional Wishart 
distribution which typically assumes a fixed scale 
matrix, the G-Wishart distribution has an additional 
parameter, degrees of freedom, that allows the scale 
matrix to vary (Mohammadi et al., 2023; Mohammadi 
& Wit, 2015a). By specifying the prior probability for 
including edges on the graph structure, one can better 
accommodate the varying degrees of sparsity and struc
ture in the precision matrix. This will in turn allow a 
more flexible representation of dependency structures 
within a network. The G-Wishart distribution can be 
used for analyzing covariance structures in models with 
expanding dimensions and rising complexity (Wang, 
2012). It is advantageous in incorporating prior know
ledge or beliefs about the precision matrix structure in 
Bayesian inference in graphical models. We first apply 
a G-Wishart distribution to the precision matrix to 
obtain the graphical structure, and then use the 
Louvain algorithm to determine its dimensions. We 
term this method as EGA:gwishart:

Third, up to now, all discussions about dimen
sionality reduction involves estimating and cluster
ing the model parameters for GGM to identify the 
optimal structure. That said, an alternative 
Bayesian method may involve directly sampling the 
underlying structure to model the uncertainty asso
ciated with selecting the optimal structure. Indeed, 
the graph structure in GGM is another type of 
unknown mechanism (Mohammadi & Wit, 2015a), 
where direct structure selection could be conducted 
and then complemented by clustering. Specifically, 
one may directly develop Bayesian structure learn
ing in GGM that jointly estimates graph structure 
and precision matrix, with various search algo
rithms (e.g., Hinne et al., 2014; Lenkoski, 2013; 
Mohammadi et al., 2023; Mohammadi & Wit, 
2015a). In this study, we directly sample the under
lying structure and covariance matrix from the pos
terior distributions of all visited graph structures 
(Love et al., 2019; Mohammadi & Wit, 2015b). This 
sampled posterior structure contains the posterior 
probabilities associated with all explored structures, 
with higher values indicating higher posterior prob
abilities of structure selection. By assessing the 
graphical weights of a specific structure that reflects 
the number of iterated structures being visited 

(Huth et al., 2023; Mohammadi & Wit, 2015b), we 
determine the uncertainty associated with the opti
mal structure and then apply the community detec
tion algorithm to assess the dimensionality of the 
graph structures. We term this structure selection 
and clustering algorithm as EGA:structure:

Monte Carlo simulation studies

We evaluated the performance of the discussed tech
niques in assessing the multidimensional and unidi
mensional factor structures via three Monte Carlo 
simulation studies. In the first two simulation stud
ies, we compared the proposed methods with two 
existing dimensionality assessment techniques, the 
GLASSO-based network psychometric tool (EGA; 
Golino & Epskamp, 2017; Golino et al., 2020) and 
parallel analysis using principal component analysis 
eigenvalues (PApca; Horn, 1965). In the third simu
lation, we compared performance of multiple 
Bayesian-based techniques.

Simulation study 1 - assessing multidimensionality

Simulation design
In the simulation, we studied five potentially influential 
variables (see Table 1 and Table 5), including number 
of factors, number of items, factor loadings, interfactor 
correlations, and sample size. These manipulated condi
tions represented factor analytic scenarios commonly 
seen in psychological studies (e.g., Comrey & Lee, 
2013; Garrido et al., 2016; Kane et al., 2005). 
Specifically, the data generating factor model had two, 
three, or five factors, representing multidimensionality 
factor designs. where each factor had four, six, or eight 
items. All the models had three levels of factor loadings 
that represented large (0.7), medium (0.55), and low 
(0.4) magnitude. Because correlated factors likely affect 
the performance of dimensionality techniques (e.g., 
Garcia-Garzon et al., 2019; Garrido et al., 2016), we 
manipulated the interfactor correlations to range from 
orthogonal (0), mild (0.3), moderate (0.5), to high 
(0.7). Sample sizes had three levels, representing small 
(250), medium (500), and large (1000) sampled 
conditions.

Table 1. Simulation design for studies 1 and 2.
Influential Factors # of Factor Levels Levels

Number of factors F 41 1, 2, 3,51

Number of Items per Factor I 3 4, 6, 8
Factor Loadings k 3 0.4, 0.55, 0.7
Interfactor Correlations r 4 0, 0.3, 0.5, 0.7
Sample Size N 3 250, 500, 1000

Note:1Includes the multidimensional and unidimensional designs
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The sample data matrices were generated according 
to the following common factor model procedure. First, 
we computed the population correlation matrix RR as

RR ¼ KUK0 þW, 

where RR is the population correlation matrix, K rep
resents the population factor loading matrix, U 

denotes the population factor correlation matrix, and 
W ¼ 1 − diagð KUK0Þ: The next step was performing 
a Cholesky decomposition of RR, such that

RR ¼ U 0U , 

where U is an upper triangular matrix. Finally, we 
computed the sample data matrix of continuous varia
bles X as

X ¼ ZU, 

where Z denotes the multivariate normal distribution 
for the continuous variables, with rows equal to the 
sample size and columns equal to the number of items.

We applied four analytic methods to evaluate and 
compare the performance of the dimensionality assess
ment techniques in the common factor model. The first 
two methods were what we proposed in the study. The 
first method, called the EGA.analytical method, used a 
Bayesian analytic approach with a conjugate Wishart 
prior to estimate the graphical structure. The method 
then used the Louvain community detection algorithm 
to extract communities. The second method, called the 
EGA.sampling method, used a sampling-based Bayesian 
approach to obtain posterior samples. The technique 
set a 90% credible interval to control sparsity and used 
the same Louvain procedure as the EGA.analytical 
method to partition clusters. The remaining two meth
ods were established dimensionality reduction techni
ques for comparison purposes. Specifically, we applied 
the GLASSO-based EGA technique (Golino et al., 
2020) as the third method. In the previous literature, 
Golino et al. (2020) compared EGA with other trad
itional dimensionality assessment techniques including 
Kaiser’s eigenvalue-greater-than-one rule (K1; Kaiser, 
1960), parallel analysis using principal component ana
lysis eigenvalues (PApca; Horn, 1965), and parallel ana
lysis using principal axis factoring (PApaf; Humphreys 
& Ilgen, 2016). Their studies found that PApca had the 
overall best comparable performance to EGA over K1 
and PApaf. Thus, we selected PApca as the fourth 
method and examined its performance in the current 
study to align with prior work.

All data were generated and analyses were con
ducted in R (R Core Team, 2013). We used the 
EGAnet package (Golino et al., 2023) and BGGM 
package (Williams & Mulder, 2021) to conduct the 

two Bayesian estimation techniques, the EGAnet pack
age (H. Golino et al., 2023) and the qgraph package 
(Epskamp et al., 2012) to conduct the EGA analyses, 
the nFactors package (Raiche et al., 2020) to conduct 
the PApca analyses, and the igraph package (Csardi, 
2006) to conduct the Louvain community detection. 
We ran a total of 5,000 iterations for the MCMC 
chains in the two Bayesian estimation methods. A 
total of 3� 3� 3� 4� 3 ¼ 324 conditions were 
studied for the multidimensional design. Each simu
lated condition was replicated 500 times.

Evaluation criteria

We evaluated the performance of the proposed 
Bayesian methods to assess the number of factors and 
compared them with existing dimensionality assess
ment techniques. We investigated the hit rate (HR), 
mean bias error (MBE), and mean absolute error 
(MAE) of the estimated number of factors across simu
lation replications. Let F denote the true number of 
factors in the population. Let F̂ denote the estimated 
number of factors from the kth simulation replication. 
For bFk ¼ F, we counted it as hit in the kth replication; 
conversely, for F̂kþ1 6¼ F, we counted it as miss in the 
ðkþ 1Þth replication. The hit rate is defined as

HR ¼
number of hit

number of hit þ number of miss 

which indicates the percentage of replications correctly 
recovering the true number of factors from the data 
generation process. The hit rate ranges from 0 and 1 
and can be seen as a metric for assessing accuracy.

MBE measures the average of the differences 
between the estimated number of factors and the true 
population factor. It is defined as

MBE ¼
RK

k¼1ð
bFk − FÞ
K

:

MBE measures the bias of the predicted performance 
of the dimensionality assessment technique. A positive 
MBE indicates that the model is biased toward overesti
mating the true number of factors, while a negative 
MBE shows that the model underestimates the true fac
tors. An MBE of 0 indicates no bias in the estimation.

MAE captures the average of the absolute differ
ence between the estimated and the true number of 
factors. It is represented as

MAE ¼
RK

k¼1j
bFk − Fj
K

:

MAE is a measure of the average magnitude of the 
errors in estimating the factor structure. While an 
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MAE of 0 indicates no errors, higher values of MAE 
show greater magnitude differences in estimation 
errors.

To further determine the impact of the manipu
lated factors and their interactions on the performance 
of the proposed Bayesian methods, we conducted 
ANOVAs for each method, where the hit rate was the 
dependent variable and the five manipulated data con
ditions were the independent variables. We employed 
the partial eta squared statistic ðg2

pÞ as a metric to 
gauge the magnitude of the effect, with effect sizes of 
0.01, 0.06, and 0.14 being categorized as small, 
medium, and large, respectively (Cohen, 1992).

Simulation results

Table 2 summarized the HR, MBE, and MAE for the 
four models. Table 3 presented the main and inter
action effects from the ANOVAs. The interaction 
effect with large or close to large effect sizes (i.e., 
g2

pP0:13Þ was further illustrated in Figure 2.
The two psychometric models that used Bayesian 

priors (i.e., EGA.analytical and EGA.sampling 
approaches) had comparable performance to EGA and 
PApca in terms of high hit rate (HR), low mean 
biased error (MBE), and low mean absolute error 
(MAE) across conditions examined in the study. As 
shown in Table 2, the EGA and EGA.analytical meth
ods had the best HRs (0.84) overall. Furthermore, the 
EGA.analytical method had the smallest MBEs and 
MAEs out of all four methods. At the same time, the 
EGA.sampling method had the third-best HR (0.80), 
which was higher than the PApca method (0.78). The 
EGA.sampling method also had smaller and better 
MBEs and MAEs than both the EGA and PApca 
methods. The results additionally examined ANOVA 
interactions and effect size stabilities across manipu
lated conditions (see Table 3). The sub-section below 
broke down the performance by manipulated factors.

Factor loadings

The two Bayesian techniques performed better than 
EGA and PApca with higher HRs and better MBE and 
MAE when the factor loadings were medium to high. 
When the factor loading was low (0.40), EGA had the 
highest HR while the EGA.analytical method had the 
smallest MBE and MAE. Specifically, when the factor 
loading was high (k ¼ 0:7), the two Bayesian estima
tion methods had the highest HRs (0.97 and 0.96, 
respectively), as compared to EGA (0.91) and PApca 
(0.88). The two Bayesian estimation methods also had Ta
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the lowest MAEs (0.03 and 0.04, respectively), as com
pared to EGA (0.23) and PApca (0.24), as well as the 
lowest MBEs (−0.02 and 0.01, respectively), as com
pared to EGA (−0.23) and PApca (−0.24). As the fac
tor loading decreased to 0.55, EGA and the 
EGA.analytical method had the highest HRs (0.90 and 
0.88, respectively), followed by the EGA.sampling 
method (0.86) and PApca (0.81). At the same time, the 
EGA.analytical approach produced the smallest MAE 
(0.13), followed by the EGA.sampling method (0.17), 
EGA (0.22), and PApca (0.39); following a similar pat
tern, the EGA.analytical method and the EGA.sampling 
method had the smallest MBEs (−0.07 and 0.07, 
respectively), as compared to EGA (−0.20) and PApca 
(−0.39). When the factor loading decreased to 0.4, the 

four methods performed differently in terms of HRs, 
MBEs, and MAEs. EGA had the highest HR, followed 
by PApca, the EGA.analytical method, and the 
EGA.sampling method. the EGA.analytical method had 
the lowest and best MBE and MAE, followed by EGA, 
the EGA.sampling method, and PApca.

Interfactor correlations

The two Bayesian techniques had apparently outstand
ing performance in terms of high HRs and low MBEs 
and MAEs under high interfactor correlation (0.7). 
EGA had the best performance when the interfactor 
correlations were 0.5, while PApca performed the best 
as the interfactor correlation decreased to 0.3 and 

Table 3. ANOVA effect size for the hit rate dependent variable.
Main Effect PApca EGA EGA.analytical EGA.sampling Interaction Effect PApca EGA EGA.analytical EGA.sampling

FL 0.18 0.17 0.24 0.25 FL:VF:FC 0.08 0.02 0.01 0
VF 0.16 0.07 0.01 0.02 FL:VF:F 0 0 0.01 0.01
FC 0.6 0.28 0.07 0.06 FL:VF:N 0 0.01 0.01 0.02
F 0.12 0.06 0.1 0 FL:FC:F 0.03 0.01 0.01 0
N 0.1 0.06 0.15 0.22 FL:FC:N 0.04 0.01 0.03 0.03

Interaction Effect PApca EGA EGA.analytical EGA.sampling FL:F:N 0 0 0.02 0.02

FL:VF 0 0 0.02 0 VF:FC:F 0.03 0 0 0
FL:FC 0.1 0.02 0.04 0.02 VF:FC:N 0.03 0 0 0
FL:F 0.01 0.03 0.03 0 VF:F:N 0 0 0.01 0.01
FL:N 0.01 0.09 0.04 0.08 FC:F:N 0.01 0 0 0
VF:FC 0.13 0.14 0.01 0 FL:VF:FC:F 0.02 0 0.01 0
VF:F 0 0 0.01 0.03 FL:VF:FC:N 0.03 0 0 0.01
VF:N 0 0 0.02 0.05 FL:VF:F:N 0.01 0 0.01 0.01
FC:F 0.08 0.03 0 0 FL:FC:F:N 0.02 0.01 0.02 0.01
FC:N 0.05 0.01 0 0 VF:FC:F:N 0.01 0 0 0
F:N 0.01 0 0.03 0 FL:VF:FC:F:N 0.05 0 0 0

Note: FL¼ factor loading; VF¼ variables per factor; FC¼ factor correlation; F¼ number of factors: N¼ sample size; PApca¼ parallel analysis with principal 
component analysis eigenvalues; EGA¼ exploratory graph analysis; EGA.analytical¼ analytically-based Bayesian exploratory graph analysis; 
EGA.sampling¼ sample-based Bayesian exploratory graph analysis. Cell values are partial eta squared effect size estimates. The unidimensional condition 
was excluded from the analyses due to not crossing with the factor correlation variable.

Figure 2. ANOVA interactions for EGA.analytical, EGA.sampling, EGA, and PApca (g2
p:EGA ¼ 0:14, g2

p:PCA ¼ 0:13).
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lower. Specifically, when the interfactor correlations 
were 0.7, the EGA.analytical method and the 
EGA.sampling method demonstrated clear higher HRs 
(0.73 and 0.69, respectively) than EGA (0.57) and 
PApca (0.35), respectively. The EGA.analytical method 
and the EGA.sampling method also had better MBEs 
and MAEs than EGA and PApca. When the interfac
tor correlations were 0.50, EGA had the best HR, 
MBE and MAE, followed by the EGA.analytical 
method with the second highest HR the second lowest 
MBE and MAE. As the interfactor correlations 
decreased (0.3 or less), PApca had the best HR, MBE 
and MAE, followed by EGA, EGA.analytical, and the 
EGA.sampling method.

Number of factors

In the presence of five factors, the EGA.sampling 
method performed the best with high HRs and low 
MBEs and MAEs. The EGA.analytical method 
performed the best when there were 3 factors in the 
data, and EGA performed the best when having 2 fac
tors in the data. Specifically, with five factors, the 
EGA.sampling method had a pronounced performance 
with the highest HR and the lowest MBE and MAE 
among the four techniques. EGA had the second best 
HR, while the EGA.analytical method had the second 
best MBE and MAE. The PApca technique performed 
the least well in these three evaluation criteria under 
the condition. Having 3 factors in the study, the 
EGA.analytical method performed the best with high 
HRs and low MBEs and MAE, followed by EGA, the 
EGA.sampling method, and PApca, As the number of 
factors decreased to 2, EGA had the best performance. 
When compared with PApca, the EGA.analytical 
method had lower HR while MBE and MAE. The 
EGA.sampling method performed the least well under 
these conditions.

Variables per factor

With eight items per factor, while EGA had the highest 
HR and smallest MAE, the EGA.analytical method had 
the smallest MBE among the four methods. With six 
items per factor, EGA had the highest HR while the 
EGA.analytical method had the smallest MBE and 
MAE. In the presence of four items per factor, the 
EGA.analytical method and the EGA.sampling method 
performed the best with the highest HR and the 
EGA.sampling method had the smallest MBE and 
MAE. Specifically, when each factor had eight items, 
EGA had the highest HR, followed by PApca, the 

EGA.analytical method, and the EGA.sampling 
method. The EGA.analytical method had the smallest 
MBE, followed by EGA, PApca, and the EGA.sampling 
method. With regards to MAE, EGA performed the 
best, followed by the EGA.analytical method, PApca, 
and the EGA.sampling method. When each factor had 
six items, EGA had better HR (0.87) than the 
EGA.analytical method (0.86), while worse MBE 
(−0.18) than the EGA.analytical method (−0.07) and 
higher MAE (0.26) than the EGA.analytical method 
(0.16). As the items decreased to four per factor, the 
two Bayesian techniques performed the best in terms 
of HR, MBE, and MAE. The EGA.analytical method 
and the EGA.sampling method had the best HRs 
(0.83), followed by EGA (0.74) and PApca (0.65); the 
EGA.sampling method also had the smallest MAE 
(0.19), closely followed by The EGA.analytical method 
(0.21), EGA (0.52), PApca (0.65), as well as the best 
MBE (−0.06), followed by the EGA.analytical method 
(−0.20), EGA (−0.49), and PApca (−0.71).

Sample size

When the sample sizes were medium to large (i.e., 
N � 500), the two Bayesian methods outperformed in 
terms of the best HRs, MBEs and MAEs. Specifically, 
when N¼ 1000, the HRs for the EGA.analytical 
method., EGA.sampling, EGA, and PApca were 0.95, 
0.95, 0.88, and 0.86, respectively; the MBEs for the four 
methods were −0.06, −0.04, −0.24, and −0.28, respect
ively; and the MAEs for the EGA.analytical method., the 
EGA.sampling method, EGA, and PApca were mono
tone increasing, as 0.06, 0.06, 0.26, and 0.28, respect
ively. A similar pattern appeared under the medium 
sample sized condition (i.e., N¼ 500). The 
EGA.analytical method and the EGA.sampling method 
produced better or identical HRs than EGA and PApca, 
and smaller MBEs and MAEs than the other two tech
niques. As the sample size decreased to 250, EGA and 
PApca had higher HRs than the EGA.analytical method, 
while the EGA.analytical method had the best MBE and 
MAE. The EGA.sampling method did not perform well 
under these conditions.

ANOVAs

We further conducted ANOVAs to assess the impact 
of the manipulated variables and their interactions. In 
the ANOVAs, the HR was the dependent variable and 
the five manipulated data conditions were the inde
pendent variables. The ANOVAs estimated up to four- 
way interactions. The effect sizes for the ANOVAs 
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were presented in Table 3. Of note, the EGA.analytical 
method was the only method that did not have an 
interaction with a medium or up effect size 
ðg2

pP0:06Þ, and the EGA.analytical method and the 
EGA.sampling method were the only techniques that 
did not have interactions with a large effect size 
ðg2

pP0:14Þ: In terms of the main effects, PApca had 
the highest effect sizes, showing that the accuracy of 
PApca was largely affected by the variability of factor 
loadings, interfactor correlations, sample size, number 
of factors, and number of variables per factor.

The two-way interaction VF (variables per factor) �
FC (interfactor correlations) yielded close to large 
effect sizes for EGA ðg2

p:EGA ¼ 0:14Þ and PApca 
ðg2

p:PApca ¼ 0:13Þ, respectively, which demonstrated 
the variabilities of the EGA and PApca methods in 
producing accuracies. We plotted this two-way inter
action which demonstrated large effect sizes (see 
Figure 2) to further investigate and compare the per
formances of the four methods. Under the four vari
able per factor condition, the two Bayesian techniques 
had relatively stable HRs across interfactor correlation 
conditions, whereas the performance of EGA and par
ticularly PApca varied largely across varying interfac
tor correlations. Specifically, when the factors were 
uncorrelated, PApca had the highest HR ð� 0:98Þ, 
with the EGA.analytical method, the EGA.sampling 
method and EGA having slightly lower and similar 
HRs ð� 0:92Þ: The four methods had similar HRs ð�
0:90Þ when the interfactor correlation was 0.3. As the 
interfactor correlations increased to 0.5, PApca had a 
large drop in HR to around 0.7. When the interfactor 
correlations climbed to 0.7, PApca had a huge plum
met in HR ð� 0:30Þ, and so did EGA ð� 0:40Þ, while 
the two Bayesian approaches remained relatively high 
in accuracy (� between 0.71 and 0.76). Similar pat
terns were seen when each factor had 6 items. When 
there were 8 items per factor, the EGA.analytical 
method, the EGA.sampling method, and EGA had sta
ble performances across varying interfactor correla
tions, while PApca had sharp drop in HR when the 
interfactor correlation increased.

In sum, the results showed that across the studied 
conditions, EGA and EGA.analytical had the highest 
HRs (0.84), followed by EGA.sampling (0.80) and 
PApca (0.78); EGA.analytical had the lowest and best 
MBE (−0.08), followed by EGA.sampling (0.13), EGA 
(−0.25), and PApca (−0.44); and EGA.analytical had 
the lowest and best MAE (0.19), followed by 
EGA.sampling (0.26), EGA (0.31), and PApca (0.45). 
Furthermore, across manipulated data conditions and 
their interactions, the EGA.analytical method was the 

least affected by varying levels of data conditions both 
in the main and interaction effects, followed by 
EGA.sampling and EGA. The performance of PApca 
was largely affected by varying levels of manipulated 
data conditions.

Simulation study 2 - assessing unidimensionality

Unidimensionality remains a challenge in network 
psychometric models. The EGA.analytical and 
EGA.sampling models developed in the study applied 
the expand unidimensionality adjustment rule (Golino 
et al., 2020). We carried out a second simulation study 
to assess the effectiveness of the expand adjustment 
rule proposed to the current two Bayesian models.

Data were generated using a similar design as in 
the multdimensional setting (see Table 1), except that 
the true data generating process was from a one-factor 
(i.e., unidimensional) model. A total of 3� 3� 4�
3 ¼ 108 conditions were studied for the unidimen
sional design and each condition was replicated 500 
times. The EGA.analytical and EGA.sampling methods 
started with the expand adjustment rule to verify 
whether there was a unidimensional factor structure. 
After verifying the unidimesionality, the techniques 
proceeded to check for multidimensionality in the 
absence of the unidimensionality (See Figure 1).

Table 4 presented a summary of the HR, MBE, and 
MAE values for the four techniques, which were 
defined in a similar way as in the multidimensional 
setting. The findings showed that the EGA.analytical 
and EGA.sampling methods demonstrated satisfactory 
performance when assessing unidimensionality. In 
comparison to the other two existing techniques, 
PApca demonstrated outstanding performance, 
achieving almost perfect HR (99.92%), followed closely 
by EGA (99.38%), the EGA.analytical method 
(93.61%) and the EGA.sampling method (92.67%). 
PApca also exhibited near-zero values for MBE and 
MAE, with EGA closely following behind. The 
EGA.analytical and EGA.sampling methods exhibited 
lower HRs (93.61% and 92.67%, respectively) and 
higher MBEs and MAEs (0.11), although these results 
were still considered quite favorable.

Simulation study 3 - comparing Bayesian 
techniques in small sample size

Small-sampled conditions are not uncommon in 
behavioral and social sciences. Yet existing techniques 
discussed above do not offer a flawless solution to 
addressing this challenge. In this simulation study, we 
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compared the analytical-based EGA approach (i.e., 
EGA:analytical using the Bayesian conjugate Wishart 
prior) with the other four above-discussed Bayesian 
techniques (i.e., EGA:pip, EGA:incBF, EGA:gwishart, 
EGA:structure) under the small sample size condition. 
This served as an exploration of the feasibility of 
expanding EGA into full Bayesian framework.

Data were generated using a design similar to the 
multidimensional and unidimensional settings, but 
with specific attention given to conditions having 
small sample sizes (see Table 5). A total of 2� 2�
2� 3 ¼ 24 conditions were studied on each of the 
five Bayesian techniques and each condition was repli
cated 100 times. Each technique started with the 
expand adjustment rule (Golino et al., 2020) to assess 
the unidimensional factor structure and then pro
ceeded to assess the multidimensional factor structure 
only if the unidimensionality was not identified. For 
the EGA:pip method, a PIP value of 0.5 or higher 
indicated support for including the edge, and thus the 
edge was selected; otherwise, it was excluded. For the 
EGA:incBF method, an inclusion Bayes factor value 
BF10 � 1 indicated that there was evidence supporting 
the inclusion of the edge. Conversely, BF10<1 indi
cated that the edge was excluded. For the 
EGA:gwishart method, we assigned the value of 3 to 
the degrees of freedom hyperprior to indicate a non
informative prior for the G-Wishart distribution. For 
the EGA:structure method, the structure was directly 
sampled from the posterior distributions of the visited 
structures, and the structure visited most frequently 
was selected as the final structure. We used the adja
cency matrix of the selected graph to determine the 
level of sparsity for the EGA:structure method. All the 
above-mentioned techniques used the Louvain com
munity detection algorithm to assess dimensionality 
after the graphical structure was determined.

The HRs for the five techniques were presented in 
Figures 3 and 4. Tables 6 and 7 presented the MAE 
and MBE values for the five Bayesian techniques. The 
findings showed that the Bayesian techniques illus
trated great promise in small sampled conditions. The 
two Bayes factor based approaches (i.e., EGA:pip and 
EGA:incBF) and the direct structure selection tech
nique (i.e., EGA:structureÞ exhibited outperformance 
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Table 5. Simulation design for study 3.
Influential Factors # of Factor Levels Levels

Number of factors F 31 1, 2,51

Number of Items per Factor I 2 4, 8
Factor Loadings k 2 0.4, 0.7
Interfactor Correlations r 2 0, 0.7
Sample Size N 1 250

Note: 1Includes the multidimensional and unidimensional designs
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Figure 3. Hit rates for five Bayesian techniques with two factors when N¼ 250.

Figure 4. Hit rates for five Bayesian techniques with five factors when N¼ 250.

Table 6. Mean absolute errors for five Bayesian techniques when N¼ 250.
True F Loadings Nitems FCorrelations EGA.analytical EGApip EGAincBF EGAgwishart EGAstructure

2 0.4 4 0 0.414 1.220 1.180 3.420 1.700
0.7 0.343 0.900 0.870 2.540 1.140

8 0 1.798 1.800 1.920 4.110 1.840
0.7 2.101 2.520 2.480 4.010 1.960

0.7 4 0 0.000 0.000 0.000 1.000 0.440
0.7 0.000 0.010 0.010 1.000 0.420

8 0 0.192 0.010 0.000 1.000 0.860
0.7 0.586 0.070 0.070 1.000 1.260

5 0.4 4 0 0.545 1.800 1.930 6.540 0.280
0.7 0.293 0.630 0.550 2.960 0.910

8 0 0.424 0.790 0.740 7.760 0.190
0.7 0.747 1.430 1.330 6.650 0.170

0.7 4 0 0.010 0.000 0.000 1.000 0.400
0.7 0.222 0.020 0.020 0.770 0.870

8 0 0.051 0.000 0.000 1.000 0.210
0.7 0.020 0.010 0.000 1.010 0.230
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under the conditions with an increasing true number 
of latent factors and question items, which had chal
lenged the EGA.analytical and EGA.sampling meth
ods, especially in small sample size conditions. 
Specifically, with a high factor loading (i.e., k ¼ 0:7), 
the two Bayes factor based techniques, EGA:pip and 
EGA:incBF, demonstrated consistently better hit rates, 
MBEs and MAEs than the EGA:analytical and other 
Bayesian techniques. The advantage is more apparent 
when the true number of factors is 5 and the number 
of items increased from 4 to 8. The structure selection 
technique EGA:structure had a pronounced perform
ance with the low factor loading (i.e., k ¼ 0:4) condi
tion with the true number of items being large. Under 
these conditions, the EGA:structure yielded the highest 
hit rates and better MAE and the advantage is more 
apparent when the number of true factor increases 
to 5.

In sum, the four Bayesian techniques demonstrate 
encouraging outcomes in conditions that have other
wise been challenging for the EGA.analytical and 
EGA.sampling approaches. The two Bayes factor based 
techniques, EGA:pip and EGA:incBF, that used 
Bayesian hypothesis testing to assess dimensionality 
were particularly promising, as evidence by the out
performance of the two techniques in conditions dis
cussed above. The reason the two techniques 
performed similarly across the studied conditions was 
because we did not impose sparsity in the data gener
ating structure. The Bayesian model average technique 
is expected to be more robust with sparse structure 
(Sekulovski et al., 2023). We expect the EGA:incBF 
will perform better than the single model EGA:pip 
method when the underlying structure of the data is 
sparse with fewer connections. The direct structure 
sampling technique EGA.structure also demonstrates 
considerable promise, excelling in conditions where 

the GLASSO-based EGA and the Bayesian 
EGA:analytical method have struggled. Moreover, it 
offers an alternative venue beyond estimating GGM 
model parameters to assess dimensionality through 
graphical models. In this simulation setup, we did not 
observe improvement in performance from the 
EGA:gwishart method that used the G-Wishart prior. 
We expect its performance may improve with the spe
cification of a more informative hyperprior in future 
studies.

Two empirical examples using R

This section illustrates the applications of the two 
alternative estimation methods to the EGA tech
nique based on Bayesian methods using two empir
ical examples via the EGAnet package (version 2.0.6, 
H. Golino et al., 2023) in R. In the first example, we 
assess the factor structures of a Big Five personality 
test using the EGA.analytical technique. The BIG 
Five personality test, traditionally assessed through 
factor analysis, is widely recognized for having five 
personality domains, including openness to experi
ence (O), conscientiousness (C), extraversion (E), 
agreeableness (A), and emotional stability or neur
oticism (N), known as the OCEAN model. In this 
example, a total of 1,015,341 participants each 
answered 50 personality items, adopted from the 
Big-Five Factor Markers from the International 
Personality Item Pool (IPIP; Goldberg et al., 2006) 
as part of a nonprofit initative to inform public 
about psychology and personality research. The IPIP 
items were administered with a 5-point Likert-type 
scale ranging from 1 (strongly disagree) to 5 
(strongly agree). The dataset is publicly available at 
OpenPsychometrics.org.

Table 7. Mean biased errors for five Bayesian techniques when N¼ 250.
True F Loadings Nitems FCorrelations EGA.analytical EGApip EGAincBF EGAgwishart EGAstructure

2 0.4 4 0 0.414 1.220 1.180 3.420 1.700
0.7 0.343 0.900 0.870 2.540 1.140

8 0 1.798 1.800 1.920 4.110 1.840
0.7 2.101 2.520 2.480 4.010 1.960

0.7 4 0 0.000 0.000 0.000 1.000 0.440
0.7 0.000 0.010 0.010 1.000 0.420

8 0 0.192 0.010 0.000 1.000 0.860
0.7 0.586 0.070 0.070 1.000 1.260

5 0.4 4 0 −0.545 1.800 1.930 6.540 −0.280
0.7 −0.293 0.630 0.550 2.960 −0.910

8 0 0.424 0.790 0.740 7.760 0.190
0.7 0.747 1.430 1.330 6.650 0.170

0.7 4 0 −0.010 0.000 0.000 1.000 −0.400
0.7 −0.222 −0.020 −0.020 0.770 −0.870

8 0 −0.051 0.000 0.000 1.000 −0.210
0.7 0.020 −0.010 0.000 1.010 −0.230
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The EGA:analytical and EGA.sampling methods are 
executed as a branch of the EGAnet package (version 
2.0.6; H. Golino et al., 2023) in the current version. 
End-users first install the EGAnet branch from the 
Gihub repository, using the code illustrated below. 
After calling the EGAnet package, we use EGAðÞ func
tion to call the EGA.analytical technique and analyze 
the data. The data to be analyzed need to be in a raw 
data format, with rows showing the number of sample 
size and columns showing the number of observed vari
ables. We will call the EGA.analytical technique by 
specifying an estimation model that calls model ¼
BGGM and analytic ¼ TRUE, a community detection 
algorithm by specifying the algorithm ¼ louvain argu
ment, and a desired level of credible interval by specify
ing the cred argument in the function. The 
EGA.analytical technique is currently available to han
dle only continuous or mixed-type response format. 
Thus, one needs to specify the response format in the 
type argument. The argument of plot ¼ TRUE will dis
play the estimated network plot with the package’s 
default plot color. Alternatively, in this example, we 
produced an identical network plot with a colorblind 
friendly version using the following code below. 
Furthermore, while the EGAnet package has the walk
trap community detection algorithm (Pons et al., 2006) 
as its default, end-users have the flexibility to specify 
other community detection algorithms. In the 
EGA:analytical method, we used the Louvain 

community detection algorithm and specified the cred
ible interval level of 90%. Altogether, we assess the 
dimensionality of the personality data using the follow
ing R code.

devtools :: install_github("hfgolino/EGAnet", ref ¼
"bega")  
library (EGAnet)  
EGAanalytical <− EGA(big5, model¼"BGGM", 
analytic¼TRUE, algorithm¼"louvain", cred ¼ 0.9, 
type¼"continuous", plot¼ FALSE) 
plot(EGAanalytical, color.palette ¼ "blue.ridge2", 
edge.color¼ c("blue", "red"), node.alpha ¼ 1) 
Using the above R code produces the five-dimen

sional layout of the Big Five Personality Test as well 
as the item assignments from the EGA.analytical tech
nique, shown in Figure 5. This network plot of 
dimensionality assessment helps visualize the grouping 
of the 50 question items. The colors of the nodes rep
resent latent factors; question items having the same 
colors are grouped in the same factor. The result 
showed a clean five dimensional result in the person
ality questionnaires. The first dimension (red nodes) 
represents extraversion and comprises 10 related items 
such as E1: “I am the life of the party”. The second 
dimension (blue nodes) signifies emotional stability or 
neuroticism and contains 10 items, such as N1: “I get 
stressed out easily”. The third dimension (green nodes) 
show agreeableness and consists of 10 items, such as 

Figure 5. Network plot of using the EGA.analytical method for the big five personality test.
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A8: “I take time out for others”. The fourth dimen
sionality (orange nodes) exhibits conscientiousness 
and includes 10 items such as C1: “I am always pre
pared”. Lastly, the fifth dimension (yellow nodes) 
reflects openness to experience and contains 10 related 
items such as O3:“I have a vivid imagination”. In add
ition, this network plot can help immediately confirm 
that the 50 personality question items have been 
accurately assigned to their respective underlying 
latent factor structure.

The second example assesses the dimensionality of 
the Athens Insomnia Scale (AIS), a widely-used 
screening tool for insomnia. The dataset is available 
from the depression data from the EGAnet package. A 
sample of 573 participants (69.3% female) completed 
an AIS involving eight question items, which were 
listed in Table 8. We use the EGA.sampling technique 
to assess the AIS’ dimensionality and call the EGAðÞ
function to implement the EGA.sampling technique 
with the following code.

AISdata¼ depression ([,70:77]) 
EGA(AISdata, model¼ "BGGM", analytic¼ FALSE, 
algorithm¼"louvain", 
cred ¼ 0.9, type¼"continuous", uni.method¼" expand", 
plot¼TRUE) 

To compare the result from the EGA.sampling 
method with that from EGA, we apply the EGA tech
nique to the same dataset with the following R code. 
The uni:method arguments in both codes shows the 
application of the expand method to address potential 
unidimensionality.

EGA(AISdata, plot¼TRUE, uni.method¼"expand") 
Figure 6 compares the network plots from the 

EGA.sampling and the GLASSO-based EGA techni
ques for assessing AIS’ dimensionality. Both techni
ques yield identical number of three dimensions and 
assign items to these dimensions in a similar way, 
with the exception of one item that differs. 
Specifically, the EGA.sampling method grouped item 
8 (sleepiness during the day) more closely with one’s 
daytime well-being (item 6) and daytime functioning 
(item 7), whereas using EGA, daytime sleepiness (item 
8) is thought to be more closely related to sleep dur
ation (item 4) and sleep quality (item 5). In terms of 
the actual content, the outcome of the EGA.sampling 
method appears to be more sensible, with the second 
cluster being related to the daytime impact.

We further compare the fit measures from both 
results using the Total Entropy Fit Index (TEFI; H. 
Golino et al., 2021). TEFI is an entropy-based measure 
developed from information theory to check the 
dimensionality structure of the data and has been 
found to provide equally or more accurate results 
than traditional fit measures. Lower TEFI indicates 
better fit of the model to the data. Results showed 
that the TEFIs for the EGA.sampling and EGA techni
ques were −1.66 and −1.63, respectively. The finding 
indicates that the EGA.sampling method leads to a 
3-factor structure that fits slightly better than the 
3-factor structure suggested by EGA.

Figure 6. Network plot comparisons of using the EGA.sampling and the glasso-based EGA for the Athens insomnia scale.

Table 8. Athens insomnia scale questions.
Item Number Questions

Item 1 Sleep induction
Item 2 Awakenings during the night
Item 3 Final awakening earlier than desired
Item 4 Total sleep duration
Item 5 Overall Quality of sleep
Item 6 Sense of well-being during the day
Item 7 Functioning during the day
Item 8 Sleepiness during the day
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Discussion

This study examined alternative estimation algorithms, 
particularly using Bayesian methods to the conven
tional GLASSO-based EGA (Golino et al., 2020; 
Golino & Epskamp, 2017) in network psychometric 
models to assess the dimensional structures of the 
multivariate data. In particular, the EGA.analytical 
method computed the Gaussian graphical structures 
analytically from a conjugate Wishart prior distribu
tion (Kubokawa & Srivastava, 2008) and used the 
Louvain community detection algorithm (Blondel 
et al., 2008) to partition the nodes and assess dimen
sions. The EGA.sampling technique adopted a sam
pling-based Bayesian approach using Jeffreys’ prior 
(Williams, 2021) and then applied the Louvain com
munity detection algorithm (Blondel et al., 2008) to 
detect dimensionality. Both approaches applied the 
expand adjustment rule (Golino et al., 2020) to evalu
ate the potential unidimensional factor structure in 
the model. In addition, the study explored four full 
Bayesian network techniques to assess dimensionality 
in the context of small sample conditions. We com
pared the performance of the proposed two Bayesian 
estimation methods (i.e., EGA.analytical and 
EGA.sampling) via two Monte Carlo simulation stud
ies with the GLASSO-based EGA and the eigenvalue- 
based parallel analysis (i.e., PApca). We also compared 
the performance of the four full Bayesian techniques 
with the EGA.analytical method in a third simulation 
study.

The study found that when estimating the multidi
mensional structures, EGA had the highest HR, fol
lowed by EGA.analytical, EGA.sampling, and PApca. 
The EGA.analytical method had the smallest and 
most accurate MBE and MAE, followed by the 
EGA.sampling method, EGA, and PApca. Although 
the EGA.analytical approach had a slightly lower over
all HR than EGA by 2.38%, it had a significantly bet
ter MBE by 32.26% and a better MAE by 60%. Given 
that the small difference in HR did not outweigh the 
large difference in MBE and MAE, the EGA.analytical 
method had the best tradeoff between accuracy and 
mean biased/absolute errors. The EGA.sampling 
method had a lower overall accuracy but also lower 
mean biased and mean absolute errors than EGA. 
Further, the EGA.sampling method had better accur
acy and smaller errors than PApca. Both Bayesian 
techniques had more stable performance across the 
main and interaction effects of the data conditions 
than EGA and PApca. When considering the different 
factors studied, the EGA.analytical method demon
strated the best balance among the four techniques. 

This was observed when studying 3 or 5 factors, 4 or 
6 items per factor, medium to high factor loadings 
(0.55 or higher), high factor correlations (0.70), and 
medium to large sample size (500 or more). On the 
other hand, EGA performed the best when dealing 
with 2 factors, 8 items per factor, small factor loadings 
(0.40), or medium factor correlations (0.50), and 
PApca performed the best when the factor correla
tions were small (0.30 or less). When the sample size 
was 250, EGA had the highest HR, while the 
EGA.analytical method had the best MBE and MAE. 
In terms of estimating the unidimensional structure, 
the PApca technique yielded the highest HR, as well 
as the best MBE, and MAE. The tied EGA and 
EGA.analytical approaches followed closely, and then 
the EGA.sampling method. Among the four full 
Bayesian techniques, the two Bayesian hypothesis test
ing based methods (i.e., EGA:pip and EGA:incBF) and 
the Bayesian direct structure selection technique dem
onstrated superior performance as the true number of 
latent factors and observed items increased when the 
sample size is small. These are conditions where 
the EGA.analytical and EGA.sampling methods strug
gle most. In sum, the study recommends using 
EGA.analytical as an alternative tool for assessing 
dimensionalities and advocates the usefulness of 
EGA.sampling as a valuable alternate technique. The 
findings also indicated encouraging results for extend
ing the regularization-based EGA network modeling 
to the full Bayesian framework. The alternative esti
mation approaches were not intended to replace exist
ing dimensionality detection techniques such as the 
GLASSO-based EGA or parallel analysis but provided 
another view and opportunity to examine the multi
variate data.

Using Bayesian estimation to assess dimensionality 
offers certain advantages and there is potential to 
extend the dimensionality assessment in network mod
els to full Bayesian framework. First, we can incorpor
ate prior knowledge into the graph structures and 
derive a posterior distribution of the parameters in the 
Bayesian estimation. By obtaining a complete posterior 
distribution, we can examine the parameter estimates 
of interest within a specified range for further analysis. 
This advantage is reflected in the EGA.analytical and 
EGA.sampling methods with reduced mean biased/ 
absolute errors and greater consistency across various 
conditions compared to those from the ROPE-based 
EGA.analytical, the GLASSO-based EGA and the 
PApca methods. Second, the Bayesian estimation 
obtains the posterior probabilities of graphical struc
tures rather than a fixed point estimate to evaluate the 
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conditional dependence relationships between varia
bles. The estimated distributional details of the struc
tures provides additional computational insights, such 
as distributions, centrality, and empirical standard 
errors. This information pieces allow flexibility in 
adjusting the sparsity level of the graphical structure, 
which contrast with the sparsity regularization used in 
the GLASSO-based EGA’s regularization process. The 
Bayesian methods do not produce a sparse matrix for 
the graphical structures directly, but need decision 
rules to control sparsity. Establishing rules that corres
pond to an appropriate level of sparsity will benefit 
the estimation of the graphical structures. We con
ducted preliminary studies and found an improved 
accuracy in the techniques when tailoring the sparsity 
level to data specific conditions. We think this also 
explained why the EGA.sampling technique outper
formed EGA.analytical in certain conditions as the for
mer allows the potential to control sparsity of the 
graphical structure. Consequently, with an appropriate 
decision rule, the EGA.sampling method is more likely 
to detect the true dimensions. Additionally, engaging 
the dimensionality assessment to full Bayesian frame
work demonstrate both theoretical potential and 
empirical evidence of promise. Bayesian hypothesis 
testing overcomes the issues associated with the clas
sical NHST. By focusing on the posterior density of 
edge weights, the Bayes factor based Bayesian hypoth
esis testing quantifies the sampling uncertainty via 
probabilities to determine whether edges should be 
included or excluded. Using this information on the 
quantified uncertainty of edge inclusion, the hypothesis 
that the accuracy of the dimensionality assessment will 
improve is supported by evidence from the simulation 
study conducted under conditions of small sample 
sizes in this research. Furthermore, by conducting dir
ect structure sampling from the posterior distributions, 
the Bayesian method numerically calculates the rela
tional uncertainties between nodes through edges and 
applies the decision rules to generate network sparsity 
that are consistent with substantive interpretability.

Substantively, we see the EGA.analytical and 
EGA.sampling methods useful for both theoretical and 
applied purposes. With respect to theory, the psycho
logical literature is replete with debates regarding the 
factor structure of scores where replicable good fit 
for a multidimensional structure is difficult to find 
through traditional confirmatory techniques. For 
example, different models have been proposed for the 
structure of affect scores beyond a two-dimensional 
positive-negative structure. Although the addition of 
an arousal dimension (i.e., high versus low activation 

potential) has garnered the most empirical attention 
(e.g., Shi et al., 2023a), other dimensions (e.g., respon
sibility/control, certainty, situational-control, depth of 
experience, and regulatory focus) have been offered 
(Baas et al., 2008; Smith & Ellsworth, 1985). Assessing 
dimensionality holds considerable promise here and 
in similar cases where strong factor correlations are 
likely in attempts that go beyond a simple, two- 
dimensional structure (e.g., Jorgensen et al., 2021). In 
general, in literature where there is a proliferation of 
theory, constructs, and measures, such as leadership 
(Antonakis & House, 2014), career proactivity (Jiang 
et al., 2023), personality (Hough et al., 2015), we see 
potential in the studied methods to contribute to the
oretical debates surrounding the multidimensional 
nature of phenomena.

We also see considerable promise for the methods 
to be leveraged for the practical purpose of mapping a 
complex outcome space onto potential test batteries to 
optimize prediction. A good case in point is the devel
opment and validation of test batteries for predicting 
work performance and hiring employees. Working 
from a clear conceptualization and operationalization 
of work performance is critical to the development 
and weighting of component predictor test scores. It 
is not uncommon for a job analysis to point to 20 or 
more, if not dozens of, work performance compo
nents. The EGA.analytical and EGA.sampling methods 
could be leveraged to reduce the components to a the
oretically meaningful and optimally weighted set of 
criterion dimensions that guide the selection and 
weighting of predictor tests. In this way, the methods 
could support traditional criterion-related validation 
studies as well as synthetic validation efforts (Johnson 
& Carter, 2010). In the same vein as the preceding 
paragraph, we see potential in the methods for 
addressing debates in the scholarly literature regarding 
the dimensionality of work performance (Carpenter 
et al., 2021; Murphy & Shiarella, 1997; Rotundo, 
2002).

The current study demonstrates the detection of 
latent factors through detecting the clustering of the 
network graphical structures estimated using Bayesian 
methods. This study presents an initial exploration of 
the potential benefits of incorporating Bayesian meth
ods into the realm of psychological networks to assess 
dimensionality. It incorporates a novel Bayesian esti
mation method to evaluate the dimensionality within 
the psychological network framework. While the study 
has identified certain advantages of Bayesian methods 
when compared to conventional regularization-based 
EGA technique (Golino et al., 2020), it is important to 

204 D. SHI ET AL.



note that these advantages are somewhat limited in 
scope in that the focus primarily centers around alter
native estimation methods for network structure. 
Future studies could expand the scope of the work in 
this line of research, especially in terms of considering 
the development of structure selection models to 
assess dimensionality and assign membership using 
various alternative Bayesian techniques.

The study had a few additional future directions to 
explore. First, the current study for EGA.sampling 
predetermined a value range of 90% as the credible 
interval, which reflected the probability of the true 
value falling into the range. However, this value range 
was not based on prior knowledge and could poten
tially be updated by researchers to improve the per
formance of the EGA.sampling method. By adjusting 
the probability range, researchers can change the 
sparseness or density of the network, which could 
lead to better performance of EGA.sampling. Second, 
in the current study, the conjugate or the Jeffreys’ pri
ors were used in the Bayesian estimation, which may 
explain why the Bayesian approach did not show 
much improvement in small sample size conditions. 
The use of informative priors in future studies could 
potentially help to improve the performance in such 
conditions by incorporating previous information as 
additional data (e.g., Serang et al., 2014; Shi & Tong, 
2017; Zhang et al., 2007). The performance of the pro
posed Bayesian network psychometric framework 
could be enhanced by developing and incorporating 
informative priors.

Note that the Louvain and fast-greedy community 
detection algorithms reached a similar accuracy when 
detecting the communities from the BGGM. We pro
posed the Louvain algorithm for the developed 
EGA.analytical and EGA.sampling approaches in the 
current study mainly due to Louvain’s ability to 
accommodate hierarchical structures. It may not be 
obvious in the current simulation setup where all the 
data are from a single level factor structure, however, 
the EGA.analytical and EGA.sampling approaches 
with the Louvain algorithm allow potential to address 
the hierarchical structures such as in the bifactor 
model or the hierarchical factor models. We showed 
evidence that the expand adjustment rule performed 
very well in detecting the unidimensional structures 
in this study. The Louvain algorithm with an adjusted 
hyperparameter (resolution ¼ 0.95) performs opti
mally and should be considered in future studies 
(Christensen et al., 2023b). Adjusting for unidimen
sionality remains open for future directions.

In conclusion, this study developed and systematic
ally evaluated two approaches based on Bayesian net
work psychometric models, EGA.analytical and 
EGA.sampling, for the dimensionality assessment of 
psychological data. The results indicate that both 
approaches show promise as valuable alternative tech
niques to existing methods such as EGA and parallel 
analysis. Specifically, EGA.analytical demonstrated the 
best tradeoff between accuracy and estimation errors, 
while EGA.sampling exhibited improved performance 
when controlling for sparsity of the graphical struc
ture. The use of Bayesian techniques offers several 
advantages, such as capturing uncertainty, facilitating 
statistical inference, and providing opportunities to 
control for sparsity levels. Moreover, the Louvain 
algorithm employed in the EGA.analytical and 
EGA.sampling approaches offers potential for address
ing hierarchical structures. Future research should 
focus on refining aspects of the EGA.sampling 
method, such as adjusting the credible interval value 
range, incorporating informative priors, and further 
exploring unidimensionality adjustments. By doing so, 
the proposed Bayesian network psychometric frame
work can be further enhanced, offering researchers 
additional tools to analyze and understand complex 
data structures.
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