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ABSTRACT

To understand psychological data, it is crucial to examine the structure and dimensions of
variables. In this study, we examined alternative estimation algorithms to the conventional
GLASSO-based exploratory graph analysis (EGA) in network psychometric models to assess
the dimensionality structure of the data. The study applied Bayesian conjugate or Jeffreys’
priors to estimate the graphical structure and then used the Louvain community detection
algorithm to partition and identify groups of nodes, which allowed the detection of the
multi- and unidimensional factor structures. Monte Carlo simulations suggested that the
two alternative Bayesian estimation algorithms had comparable or better performance
when compared with the GLASSO-based EGA and conventional parallel analysis (PA). When
estimating the multidimensional factor structure, the analytically based method (i.e.,
EGA.analytical) showed the best balance between accuracy and mean biased/absolute
errors, with the highest accuracy tied with EGA but with the smallest errors. The sampling-
based approach (EGA.sampling) yielded higher accuracy and smaller errors than PA; lower
accuracy but also lower errors than EGA. Techniques from the two algorithms had more sta-
ble performance than EGA and PA across different data conditions. When estimating the
unidimensional structure, the PA technique performed the best, followed closely by EGA,
and then EGA.analytical and EGA.sampling. Furthermore, the study explored four full
Bayesian techniques to assess dimensionality in network psychometrics. The results demon-
strated superior performance when using Bayesian hypothesis testing or deriving posterior
samples of graph structures under small sample sizes. The study recommends using the
EGA.analytical technique as an alternative tool for assessing dimensionality and advocates
for the usefulness of the EGA.sampling method as a valuable alternate technique. The find-
ings also indicated encouraging results for extending the regularization-based network mod-
eling EGA method to the Bayesian framework and discussed future directions in this line of
work. The study illustrated the practical application of the techniques to two empirical
examples in R.

data with overfactored dimensions often runs the risk
of misspecifying the model, harming predictions, and
losing knowledge translation. Furthermore, psycho-
logical theories often rely on detecting latent structures
to understand human traits, in the fields such as intel-
ligence (Garcia-Garzon et al., 2019), personality (Geiser
et al., 2021), and creativity (Silvia, 2008). Recovering
the number of latent factors plays a critical role in con-

Introduction

Examining the structure and dimensions of variables is
essential to understand many psychological data.
Psychology typically uses measurement instruments to
define a domain of functioning. Identifying the under-
lying dimensions of the multivariate psychological data
is an important endeavor to determine how the data

can be summarized into a smaller set of meaningful
variables (i.e., dimensions), which are often used as
inferences for psychological phenotypes. Analyzing

structing psychological theories.
Multivariate psychological data are often perceived as
proxies for latent variables that interact with each other
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(Bollen, 2014). Existing rules for assessing dimensions
in psychology are under the latent variable modeling
framework and can be classified into three categories
(Garrido et al., 2016). The first category applies statis-
tical tests such as maximum-likelihood, generalized least
squares, and asymptotically distribution-free methods to
assess dimensions. The second category relates to the
mathematical and psychometric criteria including
Kaiser-Guttman criterion (Kaiser, 1960), parallel ana-
lysis (Horn, 1965), and the minimum average partial
method (Velicer, 1976). The third category relies on
rules of thumb, such as the scree test (Cattell, 1966)
and variables with significant loadings (Floyd &
Widaman, 1995) to determine the number of factors.
All the above-mentioned estimation methods are based
on the latent variable modeling framework, in which
observed variables are believed to co-occur due to an
underlying unobserved (latent) attribute that has caused
the covariation between the observed variables.

The development of network models offers a new
perspective to understanding psychological data. By
demonstrating that a general factor model can be
estimated using a fully connected network model, van
der Maas et al. (2006) proposed using a network
model to examine the dynamic relationships between
variables, which rest on reciprocal mutualism or the
idea that variables directly and mutually reinforce one
another. Methodological advances (Borsboom et al,
2011; Borsboom & Cramer, 2013) and substantive
applications (e.g., Fried et al., 2015; Ron et al., 2021)
have since increased to study psychological behaviors
in this area. Epskamp (2016) introduced a network
model as a formal psychometric model, which pro-
poses that symptoms, as measured by psychometric
items or scale scores, directly and reciprocally cause
each other (Borsboom & Cramer, 2013; Cramer et al.,
2010; van Bork et al,, 2017; van der Maas et al., 2006).
Network models conceptualize observed variables
(e.g., symptoms) as nodes, and links between nodes as
edges that represent statistical relationships between
symptoms or behaviors (e.g, Epskamp, 2016).
Although psychological network models and latent
variable possess contrasting perspectives
regarding why variables are related, studies have dem-
onstrated that both models are statistically equivalent
under certain conditions in the binary (Epskamp
et al, 2018b; Holland, 1990; Kac, 1969; Marsman
et al, 2015, 2018; McCullagh, 1994), polytomous
(Christensen et al., 2023b), and continuous (Waldorp
& Marsman, 2022) data. The network structures of
nodes and edges are commonly estimated in network

models
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psychometrics using Gaussian graphical model (GGM;
Lauritzen, 1996) for normally distributed data.

Built upon GGM, which described the conditional
dependence structures of psychological constructs
(Lauritzen, 1996; Wainwright et al., 2008), Golino &
Epskamp (2017) developed a new assessment technique
using a network modeling perspective. The technique,
exploratory graph analysis (EGA; Golino & Epskamp,
2017), estimates a network and then applies a cluster-
ing algorithm to assess the factor dimensionality. Liu
(2021) developed a similar regularized Gaussian graph-
ical clustering that was based on regularized partial
correlations and the Louvain community detection
algorithm to determine the number of cell clusters.
Golino & Epskamp (2017); Golino et al. (2020) found
an equal or superior performance of EGA to conven-
tional latent variable based techniques in assessing fac-
tor structures. The researchers showed through a
decomposition using the Woodbury matrix identity
(Woodbury, 1950) that oblique factors are statistically
equivalent with clusters of nodes (i.e., sets of connected
nodes) and orthogonal factors are statistically equiva-
lent with unconnected clusters in GGM, when the data
generation mechanism is a factor model. Further,
Christensen & Golino (2021) showed that factor load-
ings are statistically equivalent with a modified version
of node strengths (ie., sum of all connections to a
node) that takes into consideration of the dimensional-
ity structure, represented as network loadings.

The current mainstream approach for assessing
dimensionality in network psychometrics uses fre-
quentist inference (i.e., EGA; Golino & Epskamp, 2017;
Golino et al., 2020). Exploring alternative estimation
approaches to the GLASSO-based EGA offers advan-
tages. First, on the one hand, the GLASSO-based EGA
method as a regularization based approach studies
point estimates but does not yield sampling distribu-
tions (Epskamp et al., 2018a), thus posing limitations
for further statistical inference (Hastie et al., 2009). On
the other hand, when using Bayesian estimation meth-
ods, one can obtain the full posterior probability distri-
butions for the edges that capture connections between
nodes and use the estimated posterior distributions to
extract different types of information about the edges.
This includes obtaining point estimates such as poster-
ior mean or posterior median as well as creating
interval estimates to establish a plausible range for sig-
nificance. Bayesian inferences can further be drawn
based on the information (Gelman et al, 2015).
Despite a nonregularized bootstrapping strategy was
introduced to estimate ® (Williams et al, 2019),
Williams (2021) advised against bootstrapping LASSO
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penalized estimates to conduct significance tests, as the
point mass at zero in sparse network likely results in
the distorted sampling distribution. In addition, before
evaluating factor structures, researchers may have some
level of understanding regarding those structures. Under
such a situation, Bayesian estimation has the capacity to
incorporate the prior belief or knowledge based on sub-
stantive theory to the parameter estimation. For
example, consider assigning a prior distribution (e.g., a
conjugate Wishart distribution) to the precision matrix
in graphical models, which represent dependencies
between variables in a network. Based on the degree of
uncertainty of connections among nodes, one could
assign informative or noninformative priors to express
the relationships between variables. While noninforma-
tive priors reflect the lack of specific information about
the parameters being estimated and are typically flat
and vague, informative priors incorporate specific prior
knowledge or information and can strongly influence
the posterior distribution. By expressing the knowledge
and beliefs through specifying values and incorporating
priors in Bayesian methods, the posterior distribution
can represent the range of potential characteristics
researchers may have based on prior data or beliefs
(e.g., Serang et al, 2014). For example, in a personality
test, if one is certain about the likely shape and spread
of a personality trait, one may assign an informative
scale matrix as the hyperprior to the precision matrix,
which will have a greater weight on posterior estimates.
One may also increase the value of the hyperprior for
the degrees of freedom to reflect a more informative
prior in the personality traits. On the contrary, if one is
uncertain or has limited prior information, one may
assign a noninformative scale matrix along with degrees
of freedom hyperprior to capture the uncertainty using
the noninformative prior. Thus, prior theory can play a
role in determining the network structure using the
Bayesian estimation.

This study examined alternative algorithms in EGA
framework to assess dimensionality in multivariate psy-
chological data. The study also explored four additional
full Bayesian techniques that showed promising results
to develop dimensionality assessment to Bayesian
graphical models. The remainder of the study is organ-
ized as follows. We first review the EGA framework for
assessing dimensionality in network psychometric mod-
els. Next, we discuss two Bayesian estimation methods
to estimate the model parameters for GGM. Then, we
discuss decision rules to reach the level of sparsity and
introduce a community detection algorithm to detect
patterns in the network structures. Furthermore, we
explore four full Bayesian techniques for evaluating the

feasibility of dimensionality assessment in full Bayesian
framework within psychological networks. We investi-
gate the performance of the proposed Bayesian techni-
ques using three Monte Carlo simulation studies and
end with discussion and future directions.

Exploratory graph analysis framework for
assessing dimensionality

Exploratory graph analysis (EGA) refers to a network
psychometric modeling framework to assess dimension-
ality in multivariate data. The EGA’s core idea (Golino
& Epskamp, 2017) combines undirected network models
(Lauritzen, 1996) with community detection algorithms
(Newman, 2006), specifically estimating a network struc-
ture first and then applying a clustering algorithm to
detect the undirected weighted network clusters and
estimate the underlying number of latent factors. EGA
has found to perform equally well or better than parallel
analysis using principle component analysis (PApca;
Horn, 1965). The current study achieves two goals. Up
to now, the EGA framework primarily uses the graph-
ical least absolute shrinkage and selection operation
(GLASSO; Friedman et al., 2008) to point estimate the
undirected network structure. This study investigates
two Bayesian algorithms to estimate the network struc-
ture by obtaining the structure’s posterior distributions.
The study shows that the new algorithms produce
smaller mean squared errors and are more stable than
the GLASSO-based EGA. Second, the study explores
four full Bayesian techniques and finds promising out-
comes to extending dimensionality assessment in net-
work psychometrics within Bayesian framework.

Part I. Existing GLASSO-based EGA algorithm

The GGM can be used to model the conditional
dependence or independence of pairs of continuous
variables in the network (Hojsgaard & Lauritzen,
2008; Sekulovski et al., 2023; Waldorp & Marsman,
2022). Let y be a random vector of k responses and is
assumed to be normally distributed, y ~ Ni(u, X),
with the mean vector u= (01,...,0k)' and a kxk
positive definite covariance matrix X. By determining
which off-diagonal elements in the precision matrix,
® = X!, are nonzeros, the undirected weighted
network graph is obtained and used to construct an
adjacency matrix. The adjacency matrix follows that
L i 0#0 1<i<j<k
5= {0, otherwise )

The precision matrix has a selected edge if the corre-
sponding adjacency matrix has an element 1, and zero



otherwise. The selected edges, after being standardized
and reversed the sign, are partial correlations between
two variables y; and y;, given all other variables in
¥:¥_;,; on their off-diagonal elements (Epskamp et al,

2018c). The partial correlations show conditional
dependency and are represented as
0;
Cor(Y;, ley—(i,j)) == - (1)

Yoo

A weighted network is formed using partial correla-
tions as shown in Equation 1, in which each variable y,
represents a node, and the partial correlations between
variables are represented as edges between the nodes. A
nonzero partial correlation represents the conditional
dependence between nodes, whereas the zero partial
correlation represents that the two nodes are independ-
ent conditional on all other nodes. Because the number
of free parameters in the precision matrix can grow
quadratically with the number of variables, a sparse
network is typically assumed (Epskamp et al, 2017;
Epskamp & Fried, 2018).

The GLASSO-based EGA (Golino & Epskamp, 2017)
estimates the GGM using the penalized maximum like-
lihood estimation. It uses a variant of the least absolute
shrinkage and selection operation (LASSO; Tibshirani,
1996) regularization technique known as GLASSO
(Friedman et al., 2008) to estimate the sparse inverse
covariance matrix and compute an associated Extended
Bayesian Information Criterion (EBIC; Foygel & Drton,
2010). The graph with the best EBIC is selected as the
final graph. Once the graphical structure is obtained,
the GLASSO-based EGA applies the walktrap commu-
nity detection algorithm (Pons et al., 2006) to iteratively
find the optimal clustering solution. By penalizing the
model complexity while estimating the statistical model,
regularization converges to the true network structure
under sparse networks (Ravikumar et al,, 2011). Later, a
few methodological improvement was made over the
GLASSO-based EGA (Golino et al, 2020). The
researchers adjusted the default value of the hyperpara-
meter y for EBIC, which determines whether a parsi-
monious model with fewer connections is favored, to
make the result of EGA more stable. Furthermore, the
researchers developed a unidimensionality expand rule
to accommodate assessing unidimensionality within the
EGA method.

Part ll. Two new EGA algorithms based on
posterior distributions

While the GLASSO-based EGA method (Golino et al.,
2020; Golino & Epskamp, 2017) has received popularity

MULTIVARIATE BEHAVIORAL RESEARCH 187

in applications in various disciplines (e.g., Rosenthal
et al.,, 2021; Rotundo, 2002), it is not without limitation.
Statistical inference could be limited by using only
the point estimates of the precision matrix obtained
from the regularized partial correlation network using
GLASSO (Friedman et al., 2008). In addition, conduct-
ing significance tests by bootstrapping LASSO penalized
estimates could pose challenges in sparse networks
(Williams, 2021), where many edges are estimated as
exactly zero, leading to a distortion in distribution of
sampling statistics.

Bayesian estimation

This section discusses estimating network structures
by generating their posterior distributions using
Bayesian priors that are conjugate or have invariant
property for the posterior reparameterization. The
GGM can be estimated either analytically or using
posterior sampling in Bayesian methods (Williams,
2021; Williams & Mulder, 2020). In the analytical
approach, a Wishart prior distribution, which is con-
jugate for the precision matrix ® (Kubokawa &
Srivastava, 2008) is used. The normal density function
of the multivariate normal data Y can be written as

p(Y|O®) = (21)|@|"? exp (—%Y@Y’).

Following a conjugate Wishart prior W(v,cl) to
O, with degrees of freedom v (v =k+ 1), identity
matrix I, and a constant ¢ with a small value, the
density function of the prior is

_ @2 exp [—tr(cI; ' ©) /2]
zyxk/zl—‘(%) |C1k|V/2

p(0)

Thus, the joint posterior density for the precision
matrix @ follows

p(O]Y) x p(Y[|©)p(0),
where Y is a n X k matrix drawn from a multivariate

normal distribution. Due to conjugacy, the posterior
distribution also has a Wishart distribution,

OlY ~ W(v+n,(S+c)™),

where n is the sample size and § is the sums of
squares matrix Y'Y. The posterior distribution of @ is

(ntv—k=-1

p(OY) =[O

)exp (—%tr[(S—l— ;') x O)).

As the number of variables in the network
increases, the degrees of freedom in the prior specifi-
cation for the precision matrix also increases, so does
the prior mean have a greater weight on the posterior
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mean. The posterior mean of the precision matrix @
can be expressed as

E(@Y) = (v + n)(nS + cI;) .

Accordingly, the analytical approach derives the
graphical structure and constructs the posterior proba-
bilities for the edges. Using this conjugate Wishart
distribution as a prior could produce a posterior dis-
tribution, which could then be used to generate
posterior samples and construct credible intervals
(Zhang, 2021).

The second approach uses a different prior setup
that allows to compute the posterior distribution for
the partial correlation matrix. This sampling-based
approach applies a Jeffreys’ prior |®|<p+1)/ > and
derives a posterior distribution that follows a Wishart
distribution @®|Y ~ W(n—1,87"') (Williams, 2021).
By specifying Jeffreys’ prior, one does not favor any
particular values of the precision matrix ®, but rather
relies solely on the dimension and the degrees of free-
dom of the distribution. One can draw posterior sam-
ples, s=1,...,S, to construct a posterior distribution
for the k x k precision matrix (Barnard et al., 2000),
which can be denoted as

r=- < [diag(O)“)} _1®(s> [diag(ﬂ)(s)} _1>,

where 0 are the square roots of diag(®). Based on the
posterior samples of the precision matrix, one can
define the region of practical significance for the null
area that provides support for determining the condi-
tional dependency and independency between edges
as well as practical equivalency around zero
(Kruschke, 2011).

Level of sparsity

Generating Bayesian posterior distributions does not
result in absolute zero but rather in probability. Thus,
one could define an area around the null value in pos-
terior distribution that is practically equivalent to no
effect. This range is the region of practical equivalence
(ROPE; Kruschke, 2014). ROPE, the region of which
can be used as a “null” hypothesis, can be used to test
whether a parameter is significant or not (Kruschke &
Liddell, 2018; Shi et al., 2019).

Bayesian estimation using ROPE does not directly
lead to a sparse network. The nonzero small estimates
typically represent weak edges, which are spurious or
false positive connections in the network, even among
conditionally independent nodes (Costantini et al,
2015). In the current study, we propose penalizing
model complexity by controlling for the level of

sparsity. By defining a null region using ROPE, one
can check the percentage of credible intervals that is
the region and determine the level of sparsity. A null
hypothesis will be rejected if there is a low percentage
of credible intervals within ROPE, and it will be
retained when a high percentage of credible intervals
fall within the ROPE (J. Kruschke, 2014).

The study uses the ROPE idea to estimate the net-
work structure. Specifically, we use Bayesian credible
intervals to limit spurious edges and yield a sparse esti-
mate for ®. The Bayesian credible intervals, built upon
the posterior probability distribution for ®, summarize
the posterior probability that the true edge effect is
within an interval. A 90% credible interval summarizes
the posterior mass and demonstrates that there is a
90% probability that the true network structure (ie.,
edges) falls within the specified interval range, assum-
ing that the alternative hypothesis one specifies is true
(Morey et al, 2016; van Doorn et al, 2021;
Wagenmakers et al., 2018). While larger credible inter-
vals indicate a higher level of sparsity in @, low cred-
ible intervals lead to non-zero elements in the network.
In an extreme case when the credible intervals fall into
zero, all the off-diagonal elements in the precision
matrix are non-zeros and © becomes the original
Wishart posterior distribution. It is advisable to select
a credible interval range that is consistent with the
underlying substantive theory. In other words, one
establishes credible intervals based on how likely an
unknown network structure lies within a particular
range. Through a simulation study, Williams (2021)
discovered that the analytic-based approach better con-
trolled the Type I error rates in small-sampled condi-
tions (i.e., sample size less than 1000) than the
sampling-based approach, although both techniques
converge to a similar performance asymptotically

The current study will use both the analytic-based
and sampling-based Bayesian approaches to estimate
the GGM and compare their performances. In this
study, we will adopt a 90% credible interval for both
the analytic-based and sampling-based Bayesian tech-
niques to demonstrate the confidence level of the
true network structures and limit spurious edges.
Researchers may designate other credible intervals to
fit into their underlying theoretical framework.

Clustering algorithm

We assess the underlying factor structure of the multi-
variate data by applying a community detection algo-
rithm to the estimated graphical networks. After
estimating the GGM through Bayesian methods and
applying the designated level of specificity to the



sampling-based technique, one obtains graphical net-
works representing relationships between nodes. In a
psychological context, the nodes having a similar psy-
chological construct are densely connected, whereas
the nodes with orthogonal constructs are expected to
be further away. In previous studies that used
GLASSO to estimate the GGM, the links between
nodes belonging to the same construct are expected to
be stronger than the connections between nodes from
distinct constructs (Golino et al., 2020; Golino &
Epskamp, 2017). In this study, we use the Louvain
community detection algorithm (Blondel et al., 2008)
to the graphical structures to detect the optimal parti-
tions in a network and define the dimensions in the
data.

The community detection algorithms can be under-
stood through the concept of modularity (Newman,
2006). Modularity measures the degree of connectivity
between nodes in a community. The Louvain algo-
rithm initiates a separate individual community for
each node and records the modularity in this state;
the algorithm then moves each node into a neighbor-
ing community and notes down a new modularity.
The change in modularity between both states is com-
pared. The node remains in the original community if
the modularity has no gain and belongs to the adja-
cent community if there is a gain in modularity. This
is an iterative process until the modularity does not
improve and a local maxima is achieved. Hierarchical
network structures can be further detected through
aggregating networks in Louvain. Specifically, the
algorithm moves individuals to an aggregated net-
work, records the modularity at each state, and com-
pares the connectivity (i.e., modularity) between states
to optimize the partitions. The process is repeated
until a global maxima between the expected and
actual number of edges is achieved in a community
(Christensen et al., 2023a; Gates et al., 2016).

We suggest utilizing the Louvain algorithm for the
proposed method for three primary reasons. First,
Christensen et al., (2023a) discovered through a well-
planned simulation that when coupled with GLASSO,
the Louvain algorithm was one of the most effective
approaches to identify network community structures.
Gates et al. (2016) had a similar finding when explor-
ing brain network correlation structures. Second, the
Louvain has the advantage of detecting hierarchical
structures (Blondel et al.,, 2008; Gates et al., 2016;
Jiménez et al., 2023). Bayesian methods have advan-
tage in handling hierarchical structures in data in
terms of model specification, quantifying parameter
uncertainties, and, model estimation with the
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incorporation of prior beliefs (e.g., Gelman et al,
2015; Gelman & Hill, 2002). For example, Bayesian
methods use a single principle, Bayes’ Theorem, for
parameter estimation. The technique not only uses the
prior distribution and the likelihood function but also
has the capacity to include information about hyperp-
riors. This enables the capture of random effects in
variables, which offers additional information for
more precise parameter estimation (Jongerling et al,
2023; Shi et al, 2023b). Furthermore, the MCMC
methods in Bayesian approach enable the simultan-
eous estimation of multiple hierarchical structures,
which have been found to better model uncertainties
at each level within the Bayesian framework (e.g., Lee
& Newell, 2011). Proposing Louvain to the alternative
Bayesian algorithms allows the potential to detect
hierarchical network structures in future studies.
Third, compared to the Louvain community detection
technique, the walktrap algorithm (Pons et al., 2006),
as the default algorithm for the GLASSO-based EGA
(Golino & Epskamp, 2017) method, may encounter
scalability challenges as it could become computation-
ally expensive for the walktrap technique in large or
hierarchical networks (Lancichinetti et al., 2008).

The EGA.analytical and EGA.sampling methods

This study proposes the application of two Bayesian
priors to EGA framework in network psychometric
modeling for assessing factor structures. Specifically,
we discuss two prior setups in the models, which vary
based on the way the Bayesian methods are used to
determine the structure of the conditional (in)depend-
ence. The first model estimates the conditional
dependence structure wusing the analytical-based
Bayesian approach with a conjugate Wishart prior,
and is termed the EGA.analytical method. The second
model, the EGA.sampling method, adopts a sampling-
based Bayesian approach to estimate a sparse network
structure. In this study, we establish the interval of
values in which there is a 90% probability of contain-
ing the true values, known as 90% credible intervals,
in the posterior samples of the EGA.analytical and
EGA.sampling methods to regulate the degree of
sparseness. Researchers may opt for a value range dif-
ferent from 90% to account for their prior knowledge
and beliefs about the network structure in practice.
Both the EGA.analytical and EGA.sampling methods
use the Louvain community detection algorithm to
assess the undirected weighted network clusters. To
address the issue of unidimensionality, we use the
above-mentioned expand adjustment rule (Golino
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et al., 2020) by creating an auxiliary dimension and
adjusting unidimensionality through the auxiliary fac-
tor structure in the EGA.analytical and EGA.sampling
techniques.

Because the true factor structure is unknown in
practical settings, the discussed techniques assess the
factor structures by verifying the unidimensional struc-
ture first and then proceeding to assess the multidi-
mensionality. Specifically, after obtaining an empirical
dataset with a sample size of N, the techniques would
simulate a dataset with the same sample size of N as
the empirical dataset with a hypothetical factor struc-
ture consisting of four items and factor loadings of 0.7.
This ensured that a non-unidimensional solution would
be obtained when estimating the network structures.
The process involves combining the simulated data
with the actual data and using either an analytical-
based or sampling-based Bayesian estimation approach
to estimate the network structure. The sampling-based
Bayesian estimation incorporates a designated specifi-
city level and controls for sparseness. The output is a
network graphical structure based on the partial correl-
ation matrix estimated using the Bayesian approaches.
The Louvain community algorithm is then applied to
identify community partitions. If the returned number
of factors is 2 or less, the algorithm stops and records
unidimensionality. If not, the process is repeated to
determine multidimensionality. The final estimated
multidimensional structure is calculated as the estimated
dimension, which excludes the simulated hypothetical
dimension. See Figure 1 for a detailed description of the
EGA analytical algorithm; EGA.sampling algorithm fol-
lowed a similar procedure.

Part lll. Exploring four full Bayesian procedures
for small samples

While the study has identified certain advantages of
the studied Bayesian algorithms when compared to
conventional regularization-based EGA technique
(Golino et al,, 2020), it is important to note that these
advantages are somewhat limited in scope in that the
focus primarily centers around alternative estimation
methods for network structure. The benefits of
Bayesian methods for addressing issues related to small
sample sizes are not clearly evident in the current find-
ings, despite Bayesian methods offering the advantage
of addressing this through the incorporation of priors
(e.g., McNeish, 2016; Shi & Tong, 2017).

In this section, we provide a conceptual exploration
of four alternative Bayesian techniques to assess
dimensionality in small sampled conditions through

network models. The four techniques are discussed in
terms of how they supplement certain aspects where
the above discussed EGA.analytical and EGA.sampling
approaches have limitations and weaknesses.

First, we discuss two Bayesian alternatives to clas-
sical NHST about the inclusion and exclusion of net-
work edges. The approaches use findings from
Bayesian hypothesis testing regarding the presence or
absence of edges together with clustering algorithms
to assess dimensionality. One problem with the ROPE
idea discussed above in Bayesian methods is that the
fundamental question of null hypothesis testing (e.g.,
E.-J. Wagenmakers et al.,, 2020; Wagenmakers et al,,
2016) remains. This means that we reject the null
when the null or the null regions are tested to be
different from being zero. The associated problem of
simply rejecting the null does not lead us to the con-
clusion that the alternative is true. Bayesian hypothesis
testing, on the other hand, allows researchers to
distinguish between not having evidence of network
connections and having evidence that network con-
nections are absent (e.g., Borsboom et al., 2021;
Wagenmakers et al., 2018), and thus, may facilitate
the decision about whether to include or exclude cer-
tain network connections (i.e., edges) among nodes in
a network.

The central idea of using the Bayesian hypothesis
testing to assess dimensionality is to use the Bayes fac-
tor, a direct measure of the relative evidence for two
models to quantify the uncertainty of including edges
and then assess dimensionality of those included
edges. We discuss two approaches to determining the
conditional dependency, depending on how we meas-
ure or quantify the evidence for the edge inclusion
and exclusion. The first method computes the poster-
ior inclusion probability (PIP) to determine the graph
structure (Huth et al, 2023; Williams & Mulder,
2020) and uses the community detection algorithm to
partition dimensions. Specifically, we compare the
likelihood of the data through a single-model Bayes
factor (Kass & Raftery, 1995; Morey & Rouder, 2011)
under the structure in which the edge is present
against the structure where the edge is absent. We
term this single Bayes factor method as EGA.pip. The
EGA.pip method is based on one model-averaged esti-
mate (Huth et al., 2023; Williams et al., 2019) that is
sensitive and fluctuates depending on the conditional
dependency of the current edge on other edges
(Sekulovski et al., 2023) when quantifying the edge
inclusion uncertainty. To mitigate this potential issue
from the single Bayes factor approach, the second
method computes the inclusion Bayes factor using
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Algorithm 1 EGAanalytical for Assessing Dimensionality

Require: An empirical dataset with n observations and p variables.
1: function CHECKUNIDIMENSIONALITY
2: Generate a unidimensional structure simdata with four items and factor

loadings of 0.70.

3: Column bind simdata with the empirical data empdata into a new data

frame expanddata.

4: Specify a conjugate Wishart prior and apply the analytical-based
Bayesian method to estimate the posterior distribution of the precision ma-

trix for expanddata.

5: Obtain the estimated partial correlation matrix (i.e., BGGM) from the

posterior mean.

6: Create a network graphical structure of the estimated partial correlation
matrix.

7: Identify the clusters of the graphical structures using the Louvain com-
munity detection algorithm.

8: Return the number of factors as the number of communities estimated
by the Louvain algorithm.

9: if the returned number of factors < 2 then

10: Return the number of factors = 1.

11: Unidimensionality is detected and recorded.

12: end if

13: end function

14: function CHECKMULTIDIMENSIONALITY

15: if the returned number of factors > 2 then

16: Specify a conjugate Wishart prior and apply the analytical-based
Bayesian method to estimate the posterior distribution of the precision ma-
trix for the original empirical data empdata.

17: Obtain the estimated partial correlation matrix (i.e., BGGM) for

empdata from the posterior mean.

18: Create a network graphical structure of the estimated partial corre-

lation matrix.

19: Identify the clusters of the graphical structures using the Louvain

community detection algorithm.

20: Return the number of factors as the estimated number of factors in

the algorithm.

21: Multidimensionality is detected and recorded.

22: end if
23: end function

Figure 1. Algorithm for the analytical-based (EGA.analytical) method.

Bayesian modeling averaging to determine the pres-
ence of network connections (Sekulovski et al., 2023).
Through using Bayesian model averaging (Hinne
et al., 2020; Hoeting et al., 1999), one obtains a single
inclusive Bayes factor that accounts for all possible
structures  simultaneously (Huth et al, 2023;
Sekulovski et al., 2023). By quantifying the uncertainty
of edge inclusion or exclusion through the inclusive
Bayes factor, one can subsequently determine the con-
ditional dependence structure. Studies have shown
this approach to be more robust (Sekulovski et al.,
2023). We then use the Louvain clustering algorithm
to assess dimensionality in a network and term
this approach EGA.incBF. Based on a comparable

approach to estimating the effect size measure in
experimental  analysis-of-variance ~ designs  using
Bayesian methods to estimate the posterior distribu-
tion (Marsman et al., 2019), these methods could
potentially offer a broader Bayesian perspective and
enhance the study’s robustness.

Second, assigning Bayesian priors is not limited to
assigning priors to only model parameters. In this
study, we consider alternative priors that explicitly take
into account the graph structure. Introduced by
Rotundo (2002), the G-Wishart distribution was a
probabilistic model for dealing with graphical structures
and accommodating graph-related information. As a
conjugate prior for the likelihood, the G-Wishart
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distribution has gained a growing popularity as a prior
for the precision matrix for the multivariate data, espe-
cially in GGM (Dobra et al., 2011; van den Boom
et al,, 2022). Being a generalization of the traditional
Wishart distribution, the G-Wishart distribution con-
tains hyperparameters that govern the shape and
spread of the distribution. Unlike traditional Wishart
distribution which typically assumes a fixed scale
matrix, the G-Wishart distribution has an additional
parameter, degrees of freedom, that allows the scale
matrix to vary (Mohammadi et al., 2023; Mohammadi
& Wit, 2015a). By specifying the prior probability for
including edges on the graph structure, one can better
accommodate the varying degrees of sparsity and struc-
ture in the precision matrix. This will in turn allow a
more flexible representation of dependency structures
within a network. The G-Wishart distribution can be
used for analyzing covariance structures in models with
expanding dimensions and rising complexity (Wang,
2012). It is advantageous in incorporating prior know-
ledge or beliefs about the precision matrix structure in
Bayesian inference in graphical models. We first apply
a G-Wishart distribution to the precision matrix to
obtain the graphical structure, and then use the
Louvain algorithm to determine its dimensions. We
term this method as EGA.gwishart.

Third, up to now, all discussions about dimen-
sionality reduction involves estimating and cluster-
ing the model parameters for GGM to identify the
optimal structure. That said, an alternative
Bayesian method may involve directly sampling the
underlying structure to model the uncertainty asso-
ciated with selecting the optimal structure. Indeed,
the graph structure in GGM is another type of
unknown mechanism (Mohammadi & Wit, 2015a),
where direct structure selection could be conducted
and then complemented by clustering. Specifically,
one may directly develop Bayesian structure learn-
ing in GGM that jointly estimates graph structure
and precision matrix, with various search algo-
rithms (e.g., Hinne et al., 2014; Lenkoski, 2013;
Mohammadi et al, 2023; Mohammadi & Wit,
2015a). In this study, we directly sample the under-
lying structure and covariance matrix from the pos-
terior distributions of all visited graph structures
(Love et al., 2019; Mohammadi & Wit, 2015b). This
sampled posterior structure contains the posterior
probabilities associated with all explored structures,
with higher values indicating higher posterior prob-
abilities of structure selection. By assessing the
graphical weights of a specific structure that reflects
the number of iterated structures being visited

(Huth et al., 2023; Mohammadi & Wit, 2015b), we
determine the uncertainty associated with the opti-
mal structure and then apply the community detec-
tion algorithm to assess the dimensionality of the
graph structures. We term this structure selection
and clustering algorithm as EGA.structure.

Monte Carlo simulation studies

We evaluated the performance of the discussed tech-
niques in assessing the multidimensional and unidi-
mensional factor structures via three Monte Carlo
simulation studies. In the first two simulation stud-
ies, we compared the proposed methods with two
existing dimensionality assessment techniques, the
GLASSO-based network psychometric tool (EGA;
Golino & Epskamp, 2017; Golino et al., 2020) and
parallel analysis using principal component analysis
eigenvalues (PApca; Horn, 1965). In the third simu-
lation, we compared performance of multiple
Bayesian-based techniques.

Simulation study 1 - assessing multidimensionality

Simulation design

In the simulation, we studied five potentially influential
variables (see Table 1 and Table 5), including number
of factors, number of items, factor loadings, interfactor
correlations, and sample size. These manipulated condi-
tions represented factor analytic scenarios commonly
seen in psychological studies (e.g., Comrey & Lee,
2013; Garrido et al, 2016; Kane et al, 2005).
Specifically, the data generating factor model had two,
three, or five factors, representing multidimensionality
factor designs. where each factor had four, six, or eight
items. All the models had three levels of factor loadings
that represented large (0.7), medium (0.55), and low
(0.4) magnitude. Because correlated factors likely affect
the performance of dimensionality techniques (e.g.,
Garcia-Garzon et al., 2019; Garrido et al., 2016), we
manipulated the interfactor correlations to range from
orthogonal (0), mild (0.3), moderate (0.5), to high
(0.7). Sample sizes had three levels, representing small

(250), medium (500), and large (1000) sampled
conditions.

Table 1. Simulation design for studies 1 and 2.

Influential Factors # of Factor Levels Levels
Number of factors F 4 1,2, 35"
Number of Items per Factor / 3 4,6, 8
Factor Loadings / 3 0.4, 0.55, 0.7
Interfactor Correlations r 4 0, 0.3, 0.5, 0.7
Sample Size N 3 250, 500, 1000

Note:'Includes the multidimensional and unidimensional designs



The sample data matrices were generated according
to the following common factor model procedure. First,
we computed the population correlation matrix Rg as

Rr = ADA + VP,

where Ry is the population correlation matrix, A rep-
resents the population factor loading matrix, @
denotes the population factor correlation matrix, and
¥ =1 — diag( A@A’). The next step was performing
a Cholesky decomposition of Rg, such that

Ry =U'U,

where U is an upper triangular matrix. Finally, we
computed the sample data matrix of continuous varia-
bles X as

X=27U,

where Z denotes the multivariate normal distribution
for the continuous variables, with rows equal to the
sample size and columns equal to the number of items.

We applied four analytic methods to evaluate and
compare the performance of the dimensionality assess-
ment techniques in the common factor model. The first
two methods were what we proposed in the study. The
first method, called the EGA.analytical method, used a
Bayesian analytic approach with a conjugate Wishart
prior to estimate the graphical structure. The method
then used the Louvain community detection algorithm
to extract communities. The second method, called the
EGA.sampling method, used a sampling-based Bayesian
approach to obtain posterior samples. The technique
set a 90% credible interval to control sparsity and used
the same Louvain procedure as the EGA.analytical
method to partition clusters. The remaining two meth-
ods were established dimensionality reduction techni-
ques for comparison purposes. Specifically, we applied
the GLASSO-based EGA technique (Golino et al,
2020) as the third method. In the previous literature,
Golino et al. (2020) compared EGA with other trad-
itional dimensionality assessment techniques including
Kaiser’s eigenvalue-greater-than-one rule (KI; Kaiser,
1960), parallel analysis using principal component ana-
lysis eigenvalues (PApca; Horn, 1965), and parallel ana-
lysis using principal axis factoring (PApaf; Humphreys
& Ilgen, 2016). Their studies found that PApca had the
overall best comparable performance to EGA over K1
and PApaf. Thus, we selected PApca as the fourth
method and examined its performance in the current
study to align with prior work.

All data were generated and analyses were con-
ducted in R (R Core Team, 2013). We used the
EGAnet package (Golino et al., 2023) and BGGM
package (Williams & Mulder, 2021) to conduct the
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two Bayesian estimation techniques, the EGAnet pack-
age (H. Golino et al, 2023) and the qgraph package
(Epskamp et al.,, 2012) to conduct the EGA analyses,
the nFactors package (Raiche et al., 2020) to conduct
the PApca analyses, and the igraph package (Csardi,
2006) to conduct the Louvain community detection.
We ran a total of 5,000 iterations for the MCMC
chains in the two Bayesian estimation methods. A
total of 3 x3x3x4x3=2324 conditions
studied for the multidimensional design. Each simu-
lated condition was replicated 500 times.

were

Evaluation criteria

We evaluated the performance of the proposed
Bayesian methods to assess the number of factors and
compared them with existing dimensionality assess-
ment techniques. We investigated the hit rate (HR),
mean bias error (MBE), and mean absolute error
(MAE) of the estimated number of factors across simu-
lation replications. Let F denote the true number of
factors in the population. Let F denote the estimated
number of factors from the kth simulation replication.
For 13;( = F, we counted it as hit in the kth replication;
conversely, for F ki1 = F, we counted it as miss in the
(k + 1)th replication. The hit rate is defined as

B number of hit
~ number of hit + number of miss

which indicates the percentage of replications correctly
recovering the true number of factors from the data
generation process. The hit rate ranges from 0 and 1
and can be seen as a metric for assessing accuracy.

MBE measures the average of the differences
between the estimated number of factors and the true
population factor. It is defined as

SR
Aiop)

MBE

MBE measures the bias of the predicted performance
of the dimensionality assessment technique. A positive
MBE indicates that the model is biased toward overesti-
mating the true number of factors, while a negative
MBE shows that the model underestimates the true fac-
tors. An MBE of 0 indicates no bias in the estimation.

MAE captures the average of the absolute differ-
ence between the estimated and the true number of
factors. It is represented as

i |Fi — F
T

MAE =

MAE is a measure of the average magnitude of the
errors in estimating the factor structure. While an
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MAE of 0 indicates no errors, higher values of MAE
show greater magnitude differences in estimation
errors.

To further determine the impact of the manipu-
lated factors and their interactions on the performance
of the proposed Bayesian methods, we conducted
ANOVAs for each method, where the hit rate was the
dependent variable and the five manipulated data con-
ditions were the independent variables. We employed
the partial eta squared statistic (1712,) as a metric to
gauge the magnitude of the effect, with effect sizes of
0.01, 0.06, and 0.14 being categorized as small,
medium, and large, respectively (Cohen, 1992).

Simulation results

Table 2 summarized the HR, MBE, and MAE for the
four models. Table 3 presented the main and inter-
action effects from the ANOVAs. The interaction
effect with large or close to large effect sizes (i.e.,
1, =>0.13) was further illustrated in Figure 2.

The two psychometric models that used Bayesian
priors (i.e., EGA.analytical and EGA.sampling
approaches) had comparable performance to EGA and
PApca in terms of high hit rate (HR), low mean
biased error (MBE), and low mean absolute error
(MAE) across conditions examined in the study. As
shown in Table 2, the EGA and EGA.analytical meth-
ods had the best HRs (0.84) overall. Furthermore, the
EGA . analytical method had the smallest MBEs and
MAE:s out of all four methods. At the same time, the
EGA.sampling method had the third-best HR (0.80),
which was higher than the PApca method (0.78). The
EGA.sampling method also had smaller and better
MBEs and MAEs than both the EGA and PApca
methods. The results additionally examined ANOVA
interactions and effect size stabilities across manipu-
lated conditions (see Table 3). The sub-section below
broke down the performance by manipulated factors.

Factor loadings

The two Bayesian techniques performed better than
EGA and PApca with higher HRs and better MBE and
MAE when the factor loadings were medium to high.
When the factor loading was low (0.40), EGA had the
highest HR while the EGA.analytical method had the
smallest MBE and MAE. Specifically, when the factor
loading was high (1 =0.7), the two Bayesian estima-
tion methods had the highest HRs (0.97 and 0.96,
respectively), as compared to EGA (0.91) and PApca
(0.88). The two Bayesian estimation methods also had

Table 2. HR, MBE, and MAE for EGA.analytical, EGA.sampling, EGA, and PApca in multidimensionality assessment.

Sample size

Number of factors

Factor correlations

Variables per factor

Factor loading

Total

500 1000

250

0.7

0.5
Hit Rate (HR)

0.3

0.55 0.7

0.4

Method

0.78
0.84
0.84
0.80

0.86
0.88
0.95
0.95

0.79
0.85
0.87
0.85

0.69
0.77
0.69
0.59

0.68
0.76
0.70
0.79

0.78
0.87
0.92
0.82

0.87
0.89
0.89
0.79

0.35
0.57
0.73
0.69

0.82
0.89
0.83
0.79

Mean Biased Error (MBE)

0.96
0.94
0.88
0.84
—0.05
—0.04
—0.06
0.12

0.99
0.96
0.90
0.87

0.88
0.91
0.82
0.74

0.87
0.86
0.83

0.8

0.65
0.74
0.83
0.83

0.88
091
0.97
0.96

0.81
0.9

0.88
0.86

0.65
0.69
0.62
0.58

PApca

EGA
EGA.analytical
EGA.sampling

—0.44
-0.25
—0.08

—0.28
—0.24
—0.06
—0.04

—0.42
-0.21
—0.09

—0.62

—0.86
—0.54
—0.35
—0.07

—0.34
—0.15

—0.13
—0.06

—1.42
—0.84
—0.14

-0.3

0
—0.03
—0.04

-0.23
—0.06

—0.39
—0.18
—0.07

-0.71
-0.49
—0.20
—0.06

—0.24
-0.23
—0.02

—-0.39

-0.2

-0.7

PAPApca
EGA

-0.29
—-0.10

—0.07
—0.08
0.14

—0.31
—0.15

0.04
0.23

0.07
0.24

0.02
0.33

—-0.07

EGA.analytical

0.13

0.04

0.4

0.18

0.1

0.13

0.07 0.01

0.32

0.45
0.31
0.19
0.26

0.28
0.26
0.06
0.06

0.42
0.28
0.15
0.17

0.63
0.42
0.36
0.56

0.87
0.62
0.36
0.24

0.34
0.21
0.09
0.25

0.13
0.1
0.12
0.29

1.42
0.93
0.32
0.42

Mean Absolute Error (MAE)
0.3
0.16
0.19
0.27

0.06

0.1
0.14

0.2

0.01
0.07
0.1
0.17

0.23
0.16
0.20
0.37

0.39
0.26
0.16
0.22

0.71
0.52
0.21
0.19

0.24
0.23
0.03
0.04

0.39
0.22
0.13
0.17

0.71
0.52
0.41

0.58
Note: PApca = parallel analysis with principal component analysis eigenvalues; EGA = exploratory graph analysis; EGA.analytical = analytically-based Bayesian exploratory graph analysis; EGA.sampling = sampling-

EGA.sampling
PAPApca

EGA.analytical
EGA.sampling

EGA

based Bayesian exploratory graph analysis



Table 3. ANOVA effect size for the hit rate dependent variable.
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Main Effect PApca EGA EGA.analytical EGA.sampling Interaction Effect PApca EGA EGA.analytical EGA.sampling
FL 0.18 0.17 0.24 0.25 FL:VF:FC 0.08 0.02 0.01 0
VF 0.16 0.07 0.01 0.02 FL:VF:F 0 0 0.01 0.01
FC 0.6 0.28 0.07 0.06 FL:VF:N 0 0.01 0.01 0.02
F 0.12 0.06 0.1 0 FLFCF 0.03 0.01 0.01 0

N 0.1 0.06 0.15 0.22 FL:FC:N 0.04 0.01 0.03 0.03
Interaction Effect PApca EGA EGA.analytical EGA.sampling FL:F:N 0 0 0.02 0.02
FL:VF 0 0 0.02 0 VF:FCF 0.03 0 0 0
FL:FC 0.1 0.02 0.04 0.02 VF:FCN 0.03 0 0 0
FL:F 0.01 0.03 0.03 0 VE:EN 0 0 0.01 0.01
FL:N 0.01 0.09 0.04 0.08 FC:FN 0.01 0 0 0
VF:FC 0.13 0.14 0.01 0 FL:VF:FCF 0.02 0 0.01 0
VF:F 0 0 0.01 0.03 FL:VF:FCN 0.03 0 0 0.01
VE:N 0 0 0.02 0.05 FL:VF:F:N 0.01 0 0.01 0.01
FC:F 0.08 0.03 0 0 FLFCEN 0.02 0.01 0.02 0.01
FCN 0.05 0.01 0 0 VF:FCF:N 0.01 0 0 0
F:N 0.01 0 0.03 0 FL:VF:FC:F:N 0.05 0 0 0

Note: FL = factor loading; VF = variables per factor; FC=factor correlation; F =number of factors: N =sample size; PApca = parallel analysis with principal

component analysis

eigenvalues;

EGA =exploratory graph analysis;

EGA.analytical = analytically-based Bayesian exploratory graph analysis;

EGA.sampling = sample-based Bayesian exploratory graph analysis. Cell values are partial eta squared effect size estimates. The unidimensional condition

was excluded from the analyses due to not crossing with the factor correlation variable.

VF=4 VF=6 VF=8
1.0 7 s e e Hormmmo 2 r
B g
o — s S
—
08 Booeneca T~
——
3 |
& 06 : k -
o
3 \
8 [}
< b
04 =
02 =
T T T T T T T T T T T T
FC=0 FC=3 FC=5 FC=7 FC=0 FC=3 FC=5 FC=7  FC=0

Interfactor Correlation

EGAanalytical
BEGAsampling & -fr-A
EGA

PCA a4

Figure 2. ANOVA interactions for EGA.analytical, EGA.sampling, EGA, and PApca (nf,fGA =0.14, nf,'PCA =0.13).

the lowest MAEs (0.03 and 0.04, respectively), as com-
pared to EGA (0.23) and PApca (0.24), as well as the
lowest MBEs (—0.02 and 0.01, respectively), as com-
pared to EGA (—0.23) and PApca (—0.24). As the fac-
tor loading decreased to 0.55, EGA and the
EGA.analytical method had the highest HRs (0.90 and
0.88, respectively), followed by the EGA.sampling
method (0.86) and PApca (0.81). At the same time, the
EGA .analytical approach produced the smallest MAE
(0.13), followed by the EGA.sampling method (0.17),
EGA (0.22), and PApca (0.39); following a similar pat-
tern, the EGA.analytical method and the EGA.sampling
method had the smallest MBEs (—0.07 and 0.07,
respectively), as compared to EGA (—0.20) and PApca
(—0.39). When the factor loading decreased to 0.4, the

four methods performed differently in terms of HRs,
MBEs, and MAEs. EGA had the highest HR, followed
by PApca, the EGA.analytical method, and the
EGA.sampling method. the EGA.analytical method had
the lowest and best MBE and MAE, followed by EGA,
the EGA.sampling method, and PApca.

Interfactor correlations

The two Bayesian techniques had apparently outstand-
ing performance in terms of high HRs and low MBEs
and MAEs under high interfactor correlation (0.7).
EGA had the best performance when the interfactor
correlations were 0.5, while PApca performed the best
as the interfactor correlation decreased to 0.3 and
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lower. Specifically, when the interfactor correlations
were 0.7, the EGA.analytical method and the
EGA.sampling method demonstrated clear higher HRs
(0.73 and 0.69, respectively) than EGA (0.57) and
PApca (0.35), respectively. The EGA.analytical method
and the EGA.sampling method also had better MBEs
and MAEs than EGA and PApca. When the interfac-
tor correlations were 0.50, EGA had the best HR,
MBE and MAE, followed by the EGA.analytical
method with the second highest HR the second lowest
MBE and MAE. As the interfactor -correlations
decreased (0.3 or less), PApca had the best HR, MBE
and MAE, followed by EGA, EGA.analytical, and the
EGA .sampling method.

Number of factors

In the presence of five factors, the EGA.sampling
method performed the best with high HRs and low
MBEs and MAEs. The EGA.analytical method
performed the best when there were 3 factors in the
data, and EGA performed the best when having 2 fac-
tors in the data. Specifically, with five factors, the
EGA.sampling method had a pronounced performance
with the highest HR and the lowest MBE and MAE
among the four techniques. EGA had the second best
HR, while the EGA.analytical method had the second
best MBE and MAE. The PApca technique performed
the least well in these three evaluation criteria under
the condition. Having 3 factors in the study, the
EGA.analytical method performed the best with high
HRs and low MBEs and MAE, followed by EGA, the
EGA.sampling method, and PApca, As the number of
factors decreased to 2, EGA had the best performance.
When compared with PApca, the EGA.analytical
method had lower HR while MBE and MAE. The
EGA.sampling method performed the least well under
these conditions.

Variables per factor

With eight items per factor, while EGA had the highest
HR and smallest MAE, the EGA.analytical method had
the smallest MBE among the four methods. With six
items per factor, EGA had the highest HR while the
EGA.analytical method had the smallest MBE and
MAE. In the presence of four items per factor, the
EGA .analytical method and the EGA.sampling method
performed the best with the highest HR and the
EGA.sampling method had the smallest MBE and
MAE. Specifically, when each factor had eight items,
EGA had the highest HR, followed by PApca, the

EGA.analytical method, and the EGA.sampling
method. The EGA.analytical method had the smallest
MBE, followed by EGA, PApca, and the EGA.sampling
method. With regards to MAE, EGA performed the
best, followed by the EGA.analytical method, PApca,
and the EGA.sampling method. When each factor had
six items, EGA had better HR (0.87) than the
EGA.analytical method (0.86), while worse MBE
(—0.18) than the EGA.analytical method (—0.07) and
higher MAE (0.26) than the EGA.analytical method
(0.16). As the items decreased to four per factor, the
two Bayesian techniques performed the best in terms
of HR, MBE, and MAE. The EGA.analytical method
and the EGA.sampling method had the best HRs
(0.83), followed by EGA (0.74) and PApca (0.65); the
EGA.sampling method also had the smallest MAE
(0.19), closely followed by The EGA.analytical method
(0.21), EGA (0.52), PApca (0.65), as well as the best
MBE (-0.06), followed by the EGA.analytical method
(—0.20), EGA (—0.49), and PApca (—0.71).

Sample size

When the sample sizes were medium to large (i.e.,
N > 500), the two Bayesian methods outperformed in
terms of the best HRs, MBEs and MAEs. Specifically,
when N=1000, the HRs for the EGA.analytical
method., EGA.sampling, EGA, and PApca were 0.95,
0.95, 0.88, and 0.86, respectively; the MBEs for the four
methods were —0.06, —0.04, —0.24, and —0.28, respect-
ively; and the MAEs for the EGA.analytical method., the
EGA.sampling method, EGA, and PApca were mono-
tone increasing, as 0.06, 0.06, 0.26, and 0.28, respect-
ively. A similar pattern appeared under the medium
sample  sized condition (ie, N=500). The
EGA.analytical method and the EGA.sampling method
produced better or identical HRs than EGA and PApca,
and smaller MBEs and MAEs than the other two tech-
niques. As the sample size decreased to 250, EGA and
PApca had higher HRs than the EGA.analytical method,
while the EGA.analytical method had the best MBE and
MAE. The EGA.sampling method did not perform well
under these conditions.

ANOVAs

We further conducted ANOVAs to assess the impact
of the manipulated variables and their interactions. In
the ANOVAs, the HR was the dependent variable and
the five manipulated data conditions were the inde-
pendent variables. The ANOVAs estimated up to four-
way interactions. The effect sizes for the ANOVAs



were presented in Table 3. Of note, the EGA.analytical
method was the only method that did not have an
interaction with a medium or wup effect size
(11;20.06), and the EGA.analytical method and the
EGA.sampling method were the only techniques that
did not have interactions with a large effect size
(,>0.14). In terms of the main effects, PApca had
the highest effect sizes, showing that the accuracy of
PApca was largely affected by the variability of factor
loadings, interfactor correlations, sample size, number
of factors, and number of variables per factor.

The two-way interaction VF (variables per factor) *
FC (interfactor correlations) yielded close to large
effect sizes for EGA (i, g, =0.14) and PApca
(1 papca = 0-13),  respectively, which demonstrated
the variabilities of the EGA and PApca methods in
producing accuracies. We plotted this two-way inter-
action which demonstrated large effect sizes (see
Figure 2) to further investigate and compare the per-
formances of the four methods. Under the four vari-
able per factor condition, the two Bayesian techniques
had relatively stable HRs across interfactor correlation
conditions, whereas the performance of EGA and par-
ticularly PApca varied largely across varying interfac-
tor correlations. Specifically, when the factors were
uncorrelated, PApca had the highest HR (= 0.98),
with the EGA.analytical method, the EGA.sampling
method and EGA having slightly lower and similar
HRs (= 0.92). The four methods had similar HRs (=~
0.90) when the interfactor correlation was 0.3. As the
interfactor correlations increased to 0.5, PApca had a
large drop in HR to around 0.7. When the interfactor
correlations climbed to 0.7, PApca had a huge plum-
met in HR (& 0.30), and so did EGA (= 0.40), while
the two Bayesian approaches remained relatively high
in accuracy (= between 0.71 and 0.76). Similar pat-
terns were seen when each factor had 6 items. When
there were 8 items per factor, the EGA.analytical
method, the EGA.sampling method, and EGA had sta-
ble performances across varying interfactor correla-
tions, while PApca had sharp drop in HR when the
interfactor correlation increased.

In sum, the results showed that across the studied
conditions, EGA and EGA.analytical had the highest
HRs (0.84), followed by EGA.sampling (0.80) and
PApca (0.78); EGA.analytical had the lowest and best
MBE (—0.08), followed by EGA.sampling (0.13), EGA
(—0.25), and PApca (—0.44); and EGA.analytical had
the lowest and best MAE (0.19), followed by
EGA.sampling (0.26), EGA (0.31), and PApca (0.45).
Furthermore, across manipulated data conditions and
their interactions, the EGA.analytical method was the
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least affected by varying levels of data conditions both
in the main and interaction effects, followed by
EGA.sampling and EGA. The performance of PApca
was largely affected by varying levels of manipulated
data conditions.

Simulation study 2 - assessing unidimensionality

Unidimensionality remains a challenge in network
psychometric models. The EGA.analytical and
EGA.sampling models developed in the study applied
the expand unidimensionality adjustment rule (Golino
et al., 2020). We carried out a second simulation study
to assess the effectiveness of the expand adjustment
rule proposed to the current two Bayesian models.

Data were generated using a similar design as in
the multdimensional setting (see Table 1), except that
the true data generating process was from a one-factor
(i.e., unidimensional) model. A total of 3 x 3 x 4 x
3 =108 conditions were studied for the unidimen-
sional design and each condition was replicated 500
times. The EGA.analytical and EGA.sampling methods
started with the expand adjustment rule to verify
whether there was a unidimensional factor structure.
After verifying the unidimesionality, the techniques
proceeded to check for multidimensionality in the
absence of the unidimensionality (See Figure 1).

Table 4 presented a summary of the HR, MBE, and
MAE values for the four techniques, which were
defined in a similar way as in the multidimensional
setting. The findings showed that the EGA.analytical
and EGA.sampling methods demonstrated satisfactory
performance when assessing unidimensionality. In
comparison to the other two existing techniques,
PApca demonstrated outstanding performance,
achieving almost perfect HR (99.92%), followed closely
by EGA (99.38%), the EGA.analytical method
(93.61%) and the EGA.sampling method (92.67%).
PApca also exhibited near-zero values for MBE and
MAE, with EGA closely following behind. The
EGA.analytical and EGA.sampling methods exhibited
lower HRs (93.61% and 92.67%, respectively) and
higher MBEs and MAEs (0.11), although these results
were still considered quite favorable.

Simulation study 3 - comparing Bayesian
techniques in small sample size

Small-sampled conditions are not uncommon in
behavioral and social sciences. Yet existing techniques
discussed above do not offer a flawless solution to
addressing this challenge. In this simulation study, we
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Table 4. HR, MBE, and MAE for EGA.analytical, EGA.sampling, EGA, and PApca in unidimensionality assessment.

Sample size

Variables per factor

Factor loading

Total

500 1000

250

0.55 0.70

0.40

Method

Hit Rate (HR)

99.96%
99.40%

99.92%
99.38%
93.61%
92.67%

100%
100%
100%
100%

99.98%
99.67%
98.81%

99.78%
98.46%
81.99%
79.59%

100%
98.89%
84.84%

99.80%
99.84%
99.56%

98.24%

100%
100%
97.91%
97.76%

100%
100%
95.47%

99.76%
98.12%
87.43%
85.22%

PApca
EGA

96.39%

EGA.analytical

98.42%

8367%

96.11%

95.04%

EGA.sampling

Mean biased error (MBE)

0.00
0.01
0.04

0.06
Mean absolute error (MAE)

0.00
0.01
0.07
0.1

0.00
0.00
0.00
0.00

0.00
0.00
0.01
0.02

0.00
0.02
0.20
0.32

0.00
0.01
0.18
0.26

0.00
0.00
0.00
0.02

0.00
0.00
0.02
0.03

0.00
0.00
0.05
0.07

0.00
0.02
0.14
0.25

PApca
EGA

EGA.analytical

EGA.sampling

0.00
0.01
0.07
0.1

0.00
0.00
0.00
0.00

0.00
0.00
0.01
0.02

0.00
0.02
0.20
0.32

0.00
0.01
0.18
0.26

0.00
0.01
0.04
0.06

0.00
0.00
0.00
0.02

0.00
0.00
0.02
0.03

0.00
0.00
0.05
0.07

0.00
0.02
0.14

0.25
Note: PApca = parallel analysis with principal component analysis eigenvalues; EGA = exploratory graph analysis; EGA.analytical = analytically-based Bayesian exploratory graph analysis; EGA.sampling = sampling-

based Bayesian exploratory graph analysis

PApca
EGA

EGA.analytical

EGA.sampling

compared the analytical-based EGA approach (ie,
EGA.analytical using the Bayesian conjugate Wishart
prior) with the other four above-discussed Bayesian
techniques (i.e., EGA.pip, EGA.incBF, EGA.gwishart,
EGA structure) under the small sample size condition.
This served as an exploration of the feasibility of
expanding EGA into full Bayesian framework.

Data were generated using a design similar to the
multidimensional and unidimensional settings, but
with specific attention given to conditions having
small sample sizes (see Table 5). A total of 2 x 2 x
2 x 3 =24 conditions were studied on each of the
five Bayesian techniques and each condition was repli-
cated 100 times. Each technique started with the
expand adjustment rule (Golino et al., 2020) to assess
the unidimensional factor structure and then pro-
ceeded to assess the multidimensional factor structure
only if the unidimensionality was not identified. For
the EGA.pip method, a PIP value of 0.5 or higher
indicated support for including the edge, and thus the
edge was selected; otherwise, it was excluded. For the
EGA.incBF method, an inclusion Bayes factor value
BFjp > 1 indicated that there was evidence supporting
the inclusion of the edge. Conversely, BF;y<1 indi-
cated that the edge was excluded. For the
EGA .gwishart method, we assigned the value of 3 to
the degrees of freedom hyperprior to indicate a non-
informative prior for the G-Wishart distribution. For
the EGA.structure method, the structure was directly
sampled from the posterior distributions of the visited
structures, and the structure visited most frequently
was selected as the final structure. We used the adja-
cency matrix of the selected graph to determine the
level of sparsity for the EGA.structure method. All the
above-mentioned techniques used the Louvain com-
munity detection algorithm to assess dimensionality
after the graphical structure was determined.

The HRs for the five techniques were presented in
Figures 3 and 4. Tables 6 and 7 presented the MAE
and MBE values for the five Bayesian techniques. The
findings showed that the Bayesian techniques illus-
trated great promise in small sampled conditions. The
two Bayes factor based approaches (i.e., EGA.pip and
EGA.incBF) and the direct structure selection tech-
nique (i.e., EGA.structure) exhibited outperformance

Table 5. Simulation design for study 3.

Influential Factors # of Factor Levels Levels
Number of factors F 3! 1,25
Number of Items per Factor / 2 4,8
Factor Loadings / 2 04, 0.7
Interfactor Correlations r 2 0,07
Sample Size N 1 250

Note: 'Includes the multidimensional and unidimensional designs
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Figure 3. Hit rates for five Bayesian techniques with two factors when N = 250.
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Figure 4. Hit rates for five Bayesian techniques with five factors when N = 250.

Table 6. Mean absolute errors for five Bayesian techniques when N = 250.

True F Loadings Nitems FCorrelations EGA.analytical EGApip EGAincBF EGAgwishart EGAstructure
2 0.4 4 0 0.414 1.220 1.180 3.420 1.700
0.7 0.343 0.900 0.870 2.540 1.140
8 0 1.798 1.800 1.920 4.110 1.840
0.7 2.101 2.520 2.480 4.010 1.960
0.7 4 0 0.000 0.000 0.000 1.000 0.440
0.7 0.000 0.010 0.010 1.000 0.420
8 0 0.192 0.010 0.000 1.000 0.860
0.7 0.586 0.070 0.070 1.000 1.260
5 04 4 0 0.545 1.800 1.930 6.540 0.280
0.7 0.293 0.630 0.550 2.960 0.910
8 0 0.424 0.790 0.740 7.760 0.190
0.7 0.747 1.430 1.330 6.650 0.170
0.7 4 0 0.010 0.000 0.000 1.000 0.400
0.7 0.222 0.020 0.020 0.770 0.870
8 0 0.051 0.000 0.000 1.000 0.210
0.7 0.020 0.010 0.000 1.010 0.230
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Table 7. Mean biased errors for five Bayesian techniques when N =250.

True F Loadings Nitems FCorrelations EGA.analytical EGApip EGAincBF EGAgwishart EGAstructure
2 04 4 0 0414 1.220 1.180 3420 1.700
0.7 0343 0.900 0.870 2.540 1.140
8 0 1.798 1.800 1.920 4110 1.840
0.7 2.101 2,520 2.480 4.010 1.960
07 4 0 0.000 0.000 0.000 1.000 0.440
0.7 0.000 0.010 0.010 1.000 0.420
8 0 0.192 0.010 0.000 1.000 0.860
0.7 0.586 0.070 0.070 1.000 1.260
5 04 4 0 ~0.545 1.800 1.930 6.540 ~0.280
0.7 -0.293 0630 0550 2.960 -0910
8 0 0424 0.790 0.740 7.760 0.190
0.7 0.747 1.430 1.330 6.650 0.170
07 4 0 -0.010 0.000 0.000 1.000 ~0.400
0.7 —-0.222 -0.020 -0.020 0.770 —-0.870
8 0 —0.051 0.000 0.000 1.000 -0210
0.7 0.020 —-0.010 0.000 1.010 —0.230
under the conditions with an increasing true number  the GLASSO-based EGA and the Bayesian

of latent factors and question items, which had chal-
lenged the EGA.analytical and EGA.sampling meth-
ods, especially in small sample size conditions.
Specifically, with a high factor loading (i.e., 4 =0.7),
the two Bayes factor based techniques, EGA.pip and
EGA.incBF, demonstrated consistently better hit rates,
MBEs and MAEs than the EGA.analytical and other
Bayesian techniques. The advantage is more apparent
when the true number of factors is 5 and the number
of items increased from 4 to 8. The structure selection
technique EGA.structure had a pronounced perform-
ance with the low factor loading (i.e., 4 = 0.4) condi-
tion with the true number of items being large. Under
these conditions, the EGA.structure yielded the highest
hit rates and better MAE and the advantage is more
apparent when the number of true factor increases
to 5.

In sum, the four Bayesian techniques demonstrate
encouraging outcomes in conditions that have other-
wise been challenging for the EGA.analytical and
EGA.sampling approaches. The two Bayes factor based
techniques, EGA.pip and EGA.incBF, that used
Bayesian hypothesis testing to assess dimensionality
were particularly promising, as evidence by the out-
performance of the two techniques in conditions dis-
cussed above. The reason the two techniques
performed similarly across the studied conditions was
because we did not impose sparsity in the data gener-
ating structure. The Bayesian model average technique
is expected to be more robust with sparse structure
(Sekulovski et al., 2023). We expect the EGA.incBF
will perform better than the single model EGA.pip
method when the underlying structure of the data is
sparse with fewer connections. The direct structure
sampling technique EGA.structure also demonstrates
considerable promise, excelling in conditions where

EGA.analytical method have struggled. Moreover, it
offers an alternative venue beyond estimating GGM
model parameters to assess dimensionality through
graphical models. In this simulation setup, we did not
observe improvement in performance from the
EGA .gwishart method that used the G-Wishart prior.
We expect its performance may improve with the spe-
cification of a more informative hyperprior in future
studies.

Two empirical examples using R

This section illustrates the applications of the two
alternative estimation methods to the EGA tech-
nique based on Bayesian methods using two empir-
ical examples via the EGAnet package (version 2.0.6,
H. Golino et al.,, 2023) in R. In the first example, we
assess the factor structures of a Big Five personality
test using the EGA.analytical technique. The BIG
Five personality test, traditionally assessed through
factor analysis, is widely recognized for having five
personality domains, including openness to experi-
ence (O), conscientiousness (C), extraversion (E),
agreeableness (A), and emotional stability or neur-
oticism (N), known as the OCEAN model. In this
example, a total of 1,015,341 participants each
answered 50 personality items, adopted from the
Big-Five Factor Markers from the International
Personality Item Pool (IPIP; Goldberg et al., 2006)
as part of a nonprofit initative to inform public
about psychology and personality research. The IPIP
items were administered with a 5-point Likert-type
scale ranging from 1 (strongly disagree) to 5
(strongly agree). The dataset is publicly available at
OpenPsychometrics.org.



The EGA.analytical and EGA.sampling methods are
executed as a branch of the EGAnet package (version
2.0.6; H. Golino et al., 2023) in the current version.
End-users first install the EGAnet branch from the
Gihub repository, using the code illustrated below.
After calling the EGAnet package, we use EGA() func-
tion to call the EGA.analytical technique and analyze
the data. The data to be analyzed need to be in a raw
data format, with rows showing the number of sample
size and columns showing the number of observed vari-
ables. We will call the EGA.analytical technique by
specifying an estimation model that calls model =
BGGM and analytic = TRUE, a community detection
algorithm by specifying the algorithm = louvain argu-
ment, and a desired level of credible interval by specify-
ing the cred argument in the function. The
EGA.analytical technique is currently available to han-
dle only continuous or mixed-type response format.
Thus, one needs to specify the response format in the
type argument. The argument of plot = TRUE will dis-
play the estimated network plot with the package’s
default plot color. Alternatively, in this example, we
produced an identical network plot with a colorblind
friendly version using the following code below.
Furthermore, while the EGAnet package has the walk-
trap community detection algorithm (Pons et al., 2006)
as its default, end-users have the flexibility to specify

other community detection algorithms. In the
EGA.analytical method, we wused the Louvain
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community detection algorithm and specified the cred-
ible interval level of 90%. Altogether, we assess the
dimensionality of the personality data using the follow-
ing R code.

devtools :: install_github("hfgolino/EGAnet", ref =
"bega")

library (EGAnet)

EGAanalytical <— EGA(big5, model="BGGM",
analytic=TRUE, algorithm="louvain", cred = 0.9,
type="continuous", plot = FALSE)

plot(EGAanalytical, color.palette = "blue.ridge2",
edge.color =c("blue", "red"), node.alpha = 1)

Using the above R code produces the five-dimen-
sional layout of the Big Five Personality Test as well
as the item assignments from the EGA.analytical tech-
nique, shown in Figure 5. This network plot of
dimensionality assessment helps visualize the grouping
of the 50 question items. The colors of the nodes rep-
resent latent factors; question items having the same
colors are grouped in the same factor. The result
showed a clean five dimensional result in the person-
ality questionnaires. The first dimension (red nodes)
represents extraversion and comprises 10 related items
such as El: “I am the life of the party”. The second
dimension (blue nodes) signifies emotional stability or
neuroticism and contains 10 items, such as N1: “T get
stressed out easily”. The third dimension (green nodes)
show agreeableness and consists of 10 items, such as

ot
Q

o
) o

Figure 5. Network plot of using the EGA.analytical method for the big five personality test.
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A8: “I take time out for others”. The fourth dimen-
sionality (orange nodes) exhibits conscientiousness
and includes 10 items such as Cl: “I am always pre-
pared”. Lastly, the fifth dimension (yellow nodes)
reflects openness to experience and contains 10 related
items such as O3:“T have a vivid imagination”. In add-
ition, this network plot can help immediately confirm
that the 50 personality question items have been
accurately assigned to their respective underlying
latent factor structure.

The second example assesses the dimensionality of
the Athens Insomnia Scale (AIS), a widely-used
screening tool for insomnia. The dataset is available
from the depression data from the EGAnet package. A
sample of 573 participants (69.3% female) completed
an AIS involving eight question items, which were
listed in Table 8. We use the EGA.sampling technique
to assess the AIS’ dimensionality and call the EGA()
function to implement the EGA.sampling technique
with the following code.

AlSdata = depression ([,70:77])

EGA(AISdata, model ="BGGM", analytic =FALSE,
algorithm="louvain",

cred = 0.9, type="continuous", uni.method="expand",
plot = TRUE)

Table 8. Athens insomnia scale questions.

Item Number Questions

Item 1 Sleep induction

Item 2 Awakenings during the night

ltem 3 Final awakening earlier than desired
Item 4 Total sleep duration

Item 5 Overall Quality of sleep

Item 6 Sense of well-being during the day
ltem 7 Functioning during the day

Item 8 Sleepiness during the day

EGAsampling

o e
o

To compare the result from the EGA.sampling
method with that from EGA, we apply the EGA tech-
nique to the same dataset with the following R code.
The uni.method arguments in both codes shows the
application of the expand method to address potential
unidimensionality.

EGA(AlSdata, plot = TRUE, uni.method="expand")

Figure 6 compares the network plots from the
EGA.sampling and the GLASSO-based EGA techni-
ques for assessing AIS’ dimensionality. Both techni-
ques yield identical number of three dimensions and
assign items to these dimensions in a similar way,
with the exception of one item that differs.
Specifically, the EGA.sampling method grouped item
8 (sleepiness during the day) more closely with one’s
daytime well-being (item 6) and daytime functioning
(item 7), whereas using EGA, daytime sleepiness (item
8) is thought to be more closely related to sleep dur-
ation (item 4) and sleep quality (item 5). In terms of
the actual content, the outcome of the EGA.sampling
method appears to be more sensible, with the second
cluster being related to the daytime impact.

We further compare the fit measures from both
results using the Total Entropy Fit Index (TEFI; H.
Golino et al.,, 2021). TEFI is an entropy-based measure
developed from information theory to check the
dimensionality structure of the data and has been
found to provide equally or more accurate results
than traditional fit measures. Lower TEFI indicates
better fit of the model to the data. Results showed
that the TEFIs for the EGA.sampling and EGA techni-
ques were —1.66 and —1.63, respectively. The finding
indicates that the EGA.sampling method leads to a
3-factor structure that fits slightly better than the
3-factor structure suggested by EGA.

Glasso EGA

ais4

N\
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.1 2.3

Figure 6. Network plot comparisons of using the EGA.sampling and the glasso-based EGA for the Athens insomnia scale.



Discussion

This study examined alternative estimation algorithms,
particularly using Bayesian methods to the conven-
tional GLASSO-based EGA (Golino et al, 2020;
Golino & Epskamp, 2017) in network psychometric
models to assess the dimensional structures of the
multivariate data. In particular, the EGA.analytical
method computed the Gaussian graphical structures
analytically from a conjugate Wishart prior distribu-
tion (Kubokawa & Srivastava, 2008) and used the
Louvain community detection algorithm (Blondel
et al., 2008) to partition the nodes and assess dimen-
sions. The EGA.sampling technique adopted a sam-
pling-based Bayesian approach using Jeffreys’ prior
(Williams, 2021) and then applied the Louvain com-
munity detection algorithm (Blondel et al., 2008) to
detect dimensionality. Both approaches applied the
expand adjustment rule (Golino et al., 2020) to evalu-
ate the potential unidimensional factor structure in
the model. In addition, the study explored four full
Bayesian network techniques to assess dimensionality
in the context of small sample conditions. We com-
pared the performance of the proposed two Bayesian
estimation methods (i.e, EGA.analytical and
EGA. sampling) via two Monte Carlo simulation stud-
ies with the GLASSO-based EGA and the eigenvalue-
based parallel analysis (i.e., PApca). We also compared
the performance of the four full Bayesian techniques
with the EGA.analytical method in a third simulation
study.

The study found that when estimating the multidi-
mensional structures, EGA had the highest HR, fol-
lowed by EGA.analytical, EGA.sampling, and PApca.
The EGA.analytical method had the smallest and
most accurate MBE and MAE, followed by the
EGA.sampling method, EGA, and PApca. Although
the EGA.analytical approach had a slightly lower over-
all HR than EGA by 2.38%, it had a significantly bet-
ter MBE by 32.26% and a better MAE by 60%. Given
that the small difference in HR did not outweigh the
large difference in MBE and MAE, the EGA.analytical
method had the best tradeoff between accuracy and
mean biased/absolute errors. The EGA.sampling
method had a lower overall accuracy but also lower
mean biased and mean absolute errors than EGA.
Further, the EGA.sampling method had better accur-
acy and smaller errors than PApca. Both Bayesian
techniques had more stable performance across the
main and interaction effects of the data conditions
than EGA and PApca. When considering the different
factors studied, the EGA.analytical method demon-
strated the best balance among the four techniques.
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This was observed when studying 3 or 5 factors, 4 or
6 items per factor, medium to high factor loadings
(0.55 or higher), high factor correlations (0.70), and
medium to large sample size (500 or more). On the
other hand, EGA performed the best when dealing
with 2 factors, 8 items per factor, small factor loadings
(0.40), or medium factor correlations (0.50), and
PApca performed the best when the factor correla-
tions were small (0.30 or less). When the sample size
was 250, EGA had the highest HR, while the
EGA . .analytical method had the best MBE and MAE.
In terms of estimating the unidimensional structure,
the PApca technique yielded the highest HR, as well
as the best MBE, and MAE. The tied EGA and
EGA.analytical approaches followed closely, and then
the EGA.sampling method. Among the four full
Bayesian techniques, the two Bayesian hypothesis test-
ing based methods (i.e., EGA.pip and EGA.incBF) and
the Bayesian direct structure selection technique dem-
onstrated superior performance as the true number of
latent factors and observed items increased when the
sample size is small. These are conditions where
the EGA.analytical and EGA.sampling methods strug-
gle most. In sum, the study recommends using
EGA.analytical as an alternative tool for assessing
dimensionalities and advocates the usefulness of
EGA.sampling as a valuable alternate technique. The
findings also indicated encouraging results for extend-
ing the regularization-based EGA network modeling
to the full Bayesian framework. The alternative esti-
mation approaches were not intended to replace exist-
ing dimensionality detection techniques such as the
GLASSO-based EGA or parallel analysis but provided
another view and opportunity to examine the multi-
varjate data.

Using Bayesian estimation to assess dimensionality
offers certain advantages and there is potential to
extend the dimensionality assessment in network mod-
els to full Bayesian framework. First, we can incorpor-
ate prior knowledge into the graph structures and
derive a posterior distribution of the parameters in the
Bayesian estimation. By obtaining a complete posterior
distribution, we can examine the parameter estimates
of interest within a specified range for further analysis.
This advantage is reflected in the EGA.analytical and
EGA.sampling methods with reduced mean biased/
absolute errors and greater consistency across various
conditions compared to those from the ROPE-based
EGA analytical, the GLASSO-based EGA and the
PApca methods. Second, the Bayesian estimation
obtains the posterior probabilities of graphical struc-
tures rather than a fixed point estimate to evaluate the
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conditional dependence relationships between varia-
bles. The estimated distributional details of the struc-
tures provides additional computational insights, such
as distributions, centrality, and empirical standard
errors. This information pieces allow flexibility in
adjusting the sparsity level of the graphical structure,
which contrast with the sparsity regularization used in
the GLASSO-based EGA’s regularization process. The
Bayesian methods do not produce a sparse matrix for
the graphical structures directly, but need decision
rules to control sparsity. Establishing rules that corres-
pond to an appropriate level of sparsity will benefit
the estimation of the graphical structures. We con-
ducted preliminary studies and found an improved
accuracy in the techniques when tailoring the sparsity
level to data specific conditions. We think this also
explained why the EGA.sampling technique outper-
formed EGA.analytical in certain conditions as the for-
mer allows the potential to control sparsity of the
graphical structure. Consequently, with an appropriate
decision rule, the EGA.sampling method is more likely
to detect the true dimensions. Additionally, engaging
the dimensionality assessment to full Bayesian frame-
work demonstrate both theoretical potential and
empirical evidence of promise. Bayesian hypothesis
testing overcomes the issues associated with the clas-
sical NHST. By focusing on the posterior density of
edge weights, the Bayes factor based Bayesian hypoth-
esis testing quantifies the sampling uncertainty via
probabilities to determine whether edges should be
included or excluded. Using this information on the
quantified uncertainty of edge inclusion, the hypothesis
that the accuracy of the dimensionality assessment will
improve is supported by evidence from the simulation
study conducted under conditions of small sample
sizes in this research. Furthermore, by conducting dir-
ect structure sampling from the posterior distributions,
the Bayesian method numerically calculates the rela-
tional uncertainties between nodes through edges and
applies the decision rules to generate network sparsity
that are consistent with substantive interpretability.
Substantively, we see the EGA.analytical and
EGA.sampling methods useful for both theoretical and
applied purposes. With respect to theory, the psycho-
logical literature is replete with debates regarding the
factor structure of scores where replicable good fit
for a multidimensional structure is difficult to find
through traditional confirmatory techniques. For
example, different models have been proposed for the
structure of affect scores beyond a two-dimensional
positive-negative structure. Although the addition of
an arousal dimension (i.e., high versus low activation

potential) has garnered the most empirical attention
(e.g., Shi et al,, 2023a), other dimensions (e.g., respon-
sibility/control, certainty, situational-control, depth of
experience, and regulatory focus) have been offered
(Baas et al., 2008; Smith & Ellsworth, 1985). Assessing
dimensionality holds considerable promise here and
in similar cases where strong factor correlations are
likely in attempts that go beyond a simple, two-
dimensional structure (e.g., Jorgensen et al.,, 2021). In
general, in literature where there is a proliferation of
theory, constructs, and measures, such as leadership
(Antonakis & House, 2014), career proactivity (Jiang
et al., 2023), personality (Hough et al., 2015), we see
potential in the studied methods to contribute to the-
oretical debates surrounding the multidimensional
nature of phenomena.

We also see considerable promise for the methods
to be leveraged for the practical purpose of mapping a
complex outcome space onto potential test batteries to
optimize prediction. A good case in point is the devel-
opment and validation of test batteries for predicting
work performance and hiring employees. Working
from a clear conceptualization and operationalization
of work performance is critical to the development
and weighting of component predictor test scores. It
is not uncommon for a job analysis to point to 20 or
more, if not dozens of, work performance compo-
nents. The EGA.analytical and EGA.sampling methods
could be leveraged to reduce the components to a the-
oretically meaningful and optimally weighted set of
criterion dimensions that guide the selection and
weighting of predictor tests. In this way, the methods
could support traditional criterion-related validation
studies as well as synthetic validation efforts (Johnson
& Carter, 2010). In the same vein as the preceding
paragraph, we see potential in the methods for
addressing debates in the scholarly literature regarding
the dimensionality of work performance (Carpenter
et al, 2021; Murphy & Shiarella, 1997; Rotundo,
2002).

The current study demonstrates the detection of
latent factors through detecting the clustering of the
network graphical structures estimated using Bayesian
methods. This study presents an initial exploration of
the potential benefits of incorporating Bayesian meth-
ods into the realm of psychological networks to assess
dimensionality. It incorporates a novel Bayesian esti-
mation method to evaluate the dimensionality within
the psychological network framework. While the study
has identified certain advantages of Bayesian methods
when compared to conventional regularization-based
EGA technique (Golino et al., 2020), it is important to



note that these advantages are somewhat limited in
scope in that the focus primarily centers around alter-
native estimation methods for network structure.
Future studies could expand the scope of the work in
this line of research, especially in terms of considering
the development of structure selection models to
assess dimensionality and assign membership using
various alternative Bayesian techniques.

The study had a few additional future directions to
explore. First, the current study for EGA.sampling
predetermined a value range of 90% as the credible
interval, which reflected the probability of the true
value falling into the range. However, this value range
was not based on prior knowledge and could poten-
tially be updated by researchers to improve the per-
formance of the EGA.sampling method. By adjusting
the probability range, researchers can change the
sparseness or density of the network, which could
lead to better performance of EGA.sampling. Second,
in the current study, the conjugate or the Jeffreys pri-
ors were used in the Bayesian estimation, which may
explain why the Bayesian approach did not show
much improvement in small sample size conditions.
The use of informative priors in future studies could
potentially help to improve the performance in such
conditions by incorporating previous information as
additional data (e.g., Serang et al., 2014; Shi & Tong,
2017; Zhang et al,, 2007). The performance of the pro-
posed Bayesian network psychometric framework
could be enhanced by developing and incorporating
informative priors.

Note that the Louvain and fast-greedy community
detection algorithms reached a similar accuracy when
detecting the communities from the BGGM. We pro-
posed the Louvain algorithm for the developed
EGA.analytical and EGA.sampling approaches in the
current study mainly due to Louvain’s ability to
accommodate hierarchical structures. It may not be
obvious in the current simulation setup where all the
data are from a single level factor structure, however,
the EGA.analytical and EGA.sampling approaches
with the Louvain algorithm allow potential to address
the hierarchical structures such as in the bifactor
model or the hierarchical factor models. We showed
evidence that the expand adjustment rule performed
very well in detecting the unidimensional structures
in this study. The Louvain algorithm with an adjusted
hyperparameter (resolution = 0.95) performs opti-
mally and should be considered in future studies
(Christensen et al., 2023b). Adjusting for unidimen-
sionality remains open for future directions.
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In conclusion, this study developed and systematic-
ally evaluated two approaches based on Bayesian net-
work psychometric models, EGA.analytical and
EGA.sampling, for the dimensionality assessment of
psychological data. The results indicate that both
approaches show promise as valuable alternative tech-
niques to existing methods such as EGA and parallel
analysis. Specifically, EGA.analytical demonstrated the
best tradeoff between accuracy and estimation errors,
while EGA.sampling exhibited improved performance
when controlling for sparsity of the graphical struc-
ture. The use of Bayesian techniques offers several
advantages, such as capturing uncertainty, facilitating
statistical inference, and providing opportunities to
control for sparsity levels. Moreover, the Louvain
algorithm employed in the EGA.analytical and
EGA.sampling approaches offers potential for address-
ing hierarchical structures. Future research should
focus on refining aspects of the EGA.sampling
method, such as adjusting the credible interval value
range, incorporating informative priors, and further
exploring unidimensionality adjustments. By doing so,
the proposed Bayesian network psychometric frame-
work can be further enhanced, offering researchers
additional tools to analyze and understand complex
data structures.
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