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ABSTRACT

For psychological formal models, the stability of different phases is an important property
for understanding individual differences and change processes. Many researchers use land-
scapes as a metaphor to illustrate the concept of stability, but so far there is no method to
quantify the stability of a system’s phases. We here propose a method to construct the
potential landscape for multivariate psychological models. This method is based on the gen-
eralized potential function defined by Wang et al. (2008) and Monte Carlo simulation. Based
on potential landscapes we define three different types of stability for psychological phases:
absolute stability, relative stability, and geometric stability. The panic disorder model by
Robinaugh et al. (2019) is used as an example, to demonstrate how the method can be
used to quantify the stability of states and phases, illustrate the influence of model parame-
ters, and guide model modifications. An R package, simlandr, was developed to provide an

implementation of the method.

Introduction

The past decades have seen a rapid growth of models
and theories in the field of psychology, and more spe-
cifically in the field of psychopathology. These models,
however, are not without critiques. Many verbal theories
acknowledge the complex and dynamic nature of men-
tal disorders, but they are not always able to make pre-
cise and falsifiable predictions (Borsboom et al., 2021;
Robinaugh et al., 2021). Statistical models can provide
quantitative estimations, but traditional and even cut-
ting-edge statistical methods are largely based on linear,
static, and homogeneous assumptions, and usually fail
to draw correct conclusions about the nature of the
underlying process (Granic & Hollenstein, 2003;
Haslbeck et al., 2021; Olthof, Hasselman, & Lichtwarck-
Aschoff, 2020). In recent years, formal models are gain-
ing momentum in the field of psychology, aimed to

address the abovementioned problems and provide a
quantitative foundation for theoretical inferences (e.g.,
Burger et al, 2020; Cramer et al, 2016; Robinaugh
et al., 2019; Schiepek et al., 2014)."

In those formal models, the elements of psycho-
logical systems and their interactions are described
mathematically. Based on these specifications, one can
simulate how the model evolves over time, observe
the characteristics of the model, and investigate how
the model output corresponds to real-life phenomena.
In complex systems, higher-order, macroscopic psy-
chological phases’—distinct patterns of psychological
systems—can emerge from the self-organization of
these microscopic elements and their interactions
(Goldstein, 1999; Olthof et al., in press). Different psy-
chological phases can sometimes be assigned to differ-
ences in mental health: a system can for instance be
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Figure 1. Diagram of concepts in the landscape metaphor of
psychopathology.

in an anxious, panicky phase or in a calm and relaxed
phase (Robinaugh et al., 2019).

For formal models, the stability of different states and
phases is an important quantity that relates to individual
differences and change processes of the system. Previous
research has often used the landscape metaphor to illus-
trate this idea: the state of the system is like a ball on
the landscape. If the ball is in “a deep valley,” the system
is stable; if the ball is on “a hill” or in “a shallow valley,”
the system is unstable, and it tends to “fall down” to a
more stable place. The “valleys” or “attractors” corres-
pond to possible phases of the system (Lamothe et al,
2019; Olthof, Hasselman, Oude Maatman, et al., 2020;
Wichers et al,, 2019; see Figure 1 for a diagram). If the
valley of an unhealthy phase of some individuals is
deeper, their mental systems are more likely to be
trapped there, and they will be more vulnerable to men-
tal disorders. Also, the process of treating mental disor-
ders can be seen as changing the landscape of the
system in a way that the stability of the unhealthy phase
is decreased while at the same time strengthening the
stability of healthy phases (Hayes et al., 2015).

While the metaphorical use of the landscape is cer-
tainly a good way of illustration, the concept of stability
does not yet have a formal, quantitative representation,
which hinders further investigation. This calls for a
new line of methods: quantitatively computing the
potential landscape from formal dynamic models.

Formal models and case simulations

As its name suggests, a psychological formal model of
psychological phenomena mathematically defines how
variables evolve over time and how they interact with
each other. Often the evolution of such systems can
be described by a set of (stochastic) differential equa-
tions. These equations specify the forms and strengths
of these interactions among variables and the magni-
tude of noise in mathematical form. With this precise
description, one can determine how the system
evolves over time from a starting point and gain
knowledge about the theory-implied behavior of the
system (Robinaugh et al., 2021).

A well-known psychological formal model is the
panic disorder model by Robinaugh et al. (2019; also see
Borsboom et al,, 2021, and Haslbeck et al.,, 2021, for dis-
cussions on this model). This model is well constructed
and contains many typical features that are common in
psychological models (e.g., nonlinear relationships, feed-
back loops, the dependence of system behavior on its
unique history, adaption to the environment, and a
rather large number of variables). Therefore, we use this
model as an example to explain our ideas. Here we
briefly introduce the model specification and the main
variables and parameters. The relationships of the most
important variables that we use in the current paper are
shown in Figure 2, and the full description of the model
can be found in Robinaugh et al. (2019). The variables
and parameters that will be investigated in the current
paper are marked in bold font on their first occurrence.

In this model, a panic disorder is considered to
emerge from mutually interacting system variables. The
core variables of this system are physical arousal (4,
the level of arousal-related sensations, e.g., heart rate)
and perceived threat (PT, the cognitive perception that
the situation is threatening). The changing rate of
physical arousal (A), dA/dt, is influenced by its own
value, perceived threat (PT), and homeostatic feedback
(H, the strength of the homeostatic processes that
counteract the unsustainably elevated physical arousal),

dA
i ra(spr,aAPT — A — sy, aH), (1)

which represents that physical arousal (A) tends to
decrease when itself and homeostatic feedback (H) is
high and tends to increase when perceived threat (PT)
is high. The parameters r4, spr,4, and sy 4 represent
the strength of these influences. The changing rate of
homeostatic feedback (H), dH/dt, is influenced by its
own value and physical arousal (4),

-H>, ®

which represents that homeostatic feedback (H) tends
to decrease when itself is high and tends to increase
when physical arousal (A) is high. The parameters ry,
pa,n> and hy g represent the strength of these influ-
ences. The changing rate of perceived threat (PT),
dPT/dt, is influenced by its own value, physical
arousal (A), and escape behavior (E),

dPT APAPT
dt e APapr hif?’lfj;

dH APan
ar T apen o W

— PT — SE,PTE> , (3)

which represents that perceived threat (PT) tends to
decrease when itself and escape behavior (E) is high
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Figure 2. Simplified causal diagram of the panic disorder model (adapted from Robinaugh et al., 2019). Each circle represents a
variable of the model. The solid lines represent positive influences on the changing rate of the target variable, and the dashed
lines represent negative influences on the changing rate of the target variable. The circle on the path from arousal to perceived
threat represents the moderating effect of arousal schema on this relationship.

and tends to increase when physical arousal (A) is  Therefore, it is easier for a relatively high level of
high. rpr, pa,pr, hapr, Sgpr are parameters repre- physical arousal (A) to lead to a large increase in per-
senting the strength of these influences. Here, the  ceived threat (PT). The increase of perceived threat
influence of A on the changing rate of PT is not lin-  (PT) can, in turn, amplify physical arousal (A). This
ear, but in the form of an S-shaped sigmoid function. ~ generates a vicious circle between the two and finally
Robinaugh et al. (2021) showed that this sigmoid lead to a panic attack. A collective variable fear is
function is necessary for the formal model in order to  defined as the geometric mean of A and PT,

generate theory-implied behavior as observed in real fear = VA x PT, ©6)
life. The changing rate of escape behavior (E), dE/dt,

is influenced by its own value and perceived threat, and is used to represent the general symptom severity.

Panic attacks, therefore, manifest as a sudden increase

dE = rp i —E|, (4) in the level of fear. If panic attacks happen relatively

dt PTPrrE + thTTE often, the person can be said to have a panic disorder.

Arousal schema (AS) is also influenced by a learning
mechanism. Its changing rate, dAS/d¢t, depends on its
own value and the previous history of perceived threat
(PT), fear, and escape behavior (E),

which represents that escape behavior (E) tends to
decrease when it is high itself and tends to increase
when perceived threat (PT) is high.

People with a panic disorder over-interpret their

dAS 0, if max(fear, g, ....fear,) < Crfuar,as
= = ras,a(max(PT,_q, ..., PT;) — AS), if max(feart_g, ...,feart) > Crfear,as and max(Ey_q, ..., Er) > crg as,
t — 1as,eAS, if max(feartfg,...,feart) > CTfoar,as and max(E;_q, ..., E) < crp a5

(7)

physical arousal as an indication of danger. When this ~ which represents three different learning conditions.
over-interpretation, termed as arousal schema (AS) in ~ When the maximum value of fear in the previous Q
the model, is high, an increase in physical arousal can  time points is lower than a critical threshold crfqr, s
result in a larger increase in perceived threat. This  no learning processes happened; when the maximum

effect of AS is represented as its influence on the par-  value of fear in the previous € time points is higher
ameter 4 pr, than the critical threshold crfqr, 45, the direction of
the learning process depends on whether the individu-
AS , . . . . .
hapr =1——————— — s apTC. (5)  al’s escape behavior (E) in the previous Q time points
AS + has, apr

is higher than another threshold crg 45. If the previous

When AS is higher, hy pr is lower, which makes escape behavior (E) is high, the individual does not

the influence of A more dominant in Equation 3. know how threatening the actual situation is, so he or
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Figure 3. The simulation results using the panic disorder model by Robinaugh et al. (2019). The first panic attack of the system
appears probabilistically. To make simulation results comparable, time was set as zero at the first panic attack (the time when the

peak value of fear is reached).

she will learn to update the arousal schema (AS)
according to the highest perceived threat (PT) during
this time period with an acquiring rate parameter
tas,q; if the previous escape behavior (E) is low, the
individual will find that the actual situation is not so
threatening, so his or her arousal schema (AS) will
decrease with an extinguishing rate parameter g, ,.

The model is intended to produce two qualitatively
different phases of the (patient) system: a healthy phase
and a panic phase. The simulation results of this model
(with the parameter values in Robinaugh et al., 2019;
Figure 3) indeed show clear sudden increases in fear,
which represent panic attacks. In these panic attacks,
the system moves from the healthy phase to the panic
phase, and quickly transitions back to the healthy
phase. When the arousal schema (AS) becomes higher,
the panic attacks become more frequent, which qualita-
tively shows the stability of the panic phase increasing,
and the stability of the healthy phase diminishing.
These simulation results align well with the theoretical
foundation of the model.

In this approach, the performance of the model is
evaluated by case simulation result: the output of dir-
ectly simulating the dynamic model. Case simulation
is an important way of model evaluation and deduc-
tion because it shows how the system evolves if the
model correctly represents the system. A mismatch of
the simulation result and real-life observations indi-
cates something must be wrong in the model. Case
simulation, however, cannot directly provide informa-
tion about the stability of states: what it shows is how
the state changes over time (i.e., state as a function of
time), not the stability of different states (i.e., stability
as a function of states). Therefore, we need to find a
way to define and calculate the stability of the states
in a psychological system.

Potential landscape for a dynamical system

Defining or representing stability is not a totally new
subject. In physics, the quantity that is used to

represent the stability of a state is the potential func-
tion. Take the gravitational potential energy as an
example: for a given object, if it is at a higher pos-
ition, its gravitational potential energy is higher. This
means that the object is more unstable, and it is more
likely to “fall down” to more stable states in lower pla-
ces. Mathematically, if a potential function can be
(strictly) defined for a system, its velocity (i.e., how
the system state changes over time) should be propor-
tional to the gradient of the potential function.
Intuitively, this means that the system always tends to
move to the place with lower potential energy, just
like a ball on a hill tends to fall along the most con-
venient way into the valley.

For a unidimensional deterministic system, the
potential function can be easily obtained from taking
the integral of the dynamic function. This method has
already been used for representing the stability of
states in unidimensional psychological systems (e.g.,
Dablander et al, 2022; Robinaugh et al., 2019).
However, most psychological models contain many
variables, thus are multidimensional. Analyzing the
stability for multidimensional systems is more chal-
lenging because the multivariate dynamic functions
are often not integrable. One way to understand this
issue is by looking at the Penrose impossible stairs
(Rodriguez-Sanchez et al., 2020; see Figure 4): it is
possible that a system keeps whirling around, but then
it cannot be represented as always going downstairs in
a real 3D space. Therefore, the potential landscape
cannot be directly obtained. Mathematicians have
developed several generalized methods to construct
generalized potential functions (P. Zhou & Li, 2016).
These methods relax the requirements of integrability,
but the resulting functions can also be used to repre-
sent the stability of system states. Among different
ways of generalization, we found the potential func-
tion by Wang et al. (2008; also see Li & Wang, 2013,
and Li & Ye, 2019, for examples of usage in complex
biochemical systems) the most suitable for psycho-
logical formal models because it can be estimated with



Figure 4. The Penrose impossible stairs (Sakurambo, 2005).

the Monte Carlo method, thus does not have a strict
requirement concerning the properties of the dynamic
functions. Other generalizations often require the
dynamic functions to be continuous, derivable, and
independent of the history, properties that psycho-
logical models often do not meet (e.g., Equation 7 of
the panic disorder model is dependent on the model
history and thus not derivable). Wang’s definition of
potential function is based on the steady-state distri-
bution of the system (denoted as Pss), which refers to
the distribution of states that holds constant over
time. If we have a single system evolving over time
according to a set of (stochastic) differential equations,
its state is likely to change every now and then.
However, if we have an infinite bunch of systems with
the steady-state distribution and let them all evolve
together, although each system’s state still changes,
their distribution can be invariant.” Following a gener-
alization of Boltzmann distribution, the potential (U)
of a state X is then given by

U(X) = —In Pss(X) (8)

which means that the potential is equal to the loga-
rithm of the steady-state distribution. If the probabil-
ity density for the steady-state distribution is lower,
then its potential is higher.

This potential function is also related to some other
properties expected from strictly defined potential
functions. Here we also explain the usefulness of gen-
eralized potential functions from the force decompos-
ition perspective (Zhou & Li, 2016). As mentioned
above, the main issue in constructing potential

3A concrete illustration: imagine an infinite number of copies of an
athlete running on a 400-meter track, and imagine they are independent
(so they do not run into each other). Even if they are copies of the same
athletes, due to random noises, they will gradually distance themselves
from each other. After an infinitely long time, these people will be very
evenly distributed in the track. Now even if each person is still running,
the population distribution on the track will not change anymore. If each
running person is a stochastic dynamic system, then this population
distribution is the steady-state distribution for the system.
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landscapes for multidimensional systems is that they
often show whirling behaviors that cannot be repre-
sented with a potential landscape. These whirling
behaviors are not the whole picture because the total
forces in the system also contain gradient parts that
represent the general tendency for the system to
move to some specific regions. The idea of force
decomposition means to decompose those complex
forces of a system into a curl part and a gradient
part. The stability information of the system is
mainly contained in the gradient part, and the gradi-
ent part is integrable. Therefore, the generalized
potential landscape can be obtained by integrating
the gradient part of the forces. The curl part does
not contain direct information about the stability
because if the system just has the tendency to oscil-
late between two states without a preference, it is not
meaningful to say that one state is more stable than
the other. Wang’s landscape is originally defined
from the steady-state distribution, but it can also be
proved that it is equivalent to a possible way of force
decomposition (Zhou & Li, 2016). Therefore, the
potential landscape constructed with Wang’s method
can be seen as a representation of the gradient part
of the system dynamics.

From either perspective, the potential landscape of
the system shows the tendency that the system
resides or leaves a specific state. If a state has a lower
density in the steady-state distribution, the system is
less likely to be around this state in the long run;
and if there are a bunch of systems starting with a
uniform distribution in the state space, it is more
likely that the systems starting around this state will
move to other states. If a system is in a higher pos-
ition on the gradient part of its dynamics, it means
that the system tends to fall down to a lower position
if not affected by the curl forces and random noises.
Therefore, the potential landscape can efficiently rep-
resent the stability of psychological systems on the
state level.

Having the potential for specific states, we can now
describe the stability of the phases. How to clearly
define psychological phases is a complex issue on its
own. One may propose that a collection of qualita-
tively similar states constitutes a phase (e.g., the men-
tal states when a patient with depression has a high
overall symptom severity), in which case the phase
may be seen as a point attractor. In contrast, it can
also be the case that certain kind of trajectories consti-
tutes a phase (e.g., a mental trajectory in which a
patient with cyclothymic disorder switches between
states with high depressive symptoms and states with
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Figure 5. The relationships among the potential function, parameters, variables, state, and phase in the framework of our method.

elevated moods), in which case the phase may be seen
as an oscillating attractor (Barton, 1994). Sometimes
those two definitions can also be interchangeable. For
example, if we use the mood variability over a period
instead of the valence and intensity of mood as the
key variable to describe the cyclothymic disorder, then
the patient’s mood variability is always high, and may
be described as a point attractor. Fully investigating
this issue is beyond the scope of the current paper.
For clarity and simplicity, we will only look into the
phases consisting of similar states and bounded by
barriers in the potential landscape (i.e., point
attractor-like phases). In other words, we use the term
state for a point in the state space (e.g., the state with
A=0.1 and PT=0.1) and the term phase for a
larger region that contains many states within it (e.g.,
the healthy phase). This distinction, although not
commonly made in psychological literature, is import-
ant for the method we are introducing. The relation-
ships among the potential function, parameters,
variables, state, and phase we used in the current
paper are shown in Figure 5.

Based on the potential function of states (defined in
Equation 8), we can go one step further to define the
stability of phases, which is often more important for
psychological systems. From the potential landscape
perspective, the stability of phases can be characterized
in three ways (see Figure 6). The first one is the local
minimum of the potential function within a given
phase. Although the phase contains a collection of
many states, the local minimum is the most stable state
in the phase, hence can provide a quantitative repre-
sentation. We refer to the potential of the local min-
imum as the absolute stability of the phase. Second, the
potential difference between the local minimum and
the barrier of the phase is directly related to the diffi-
culty for the system to move out of that phase. We

refer to it as the relative stability* of the phase. The dif-
ference between the two is that the former represents if
given infinite time, how probable it is for the system to
be in a given phase (e.g., the healthy phase in the panic
disorder model); the latter represents, if putting the
system in a given phase, how difficult it is for the sys-
tem to escape that phase. Finally, the shape of the
potential landscape within and around a certain phase
represents how probable the system vibrates within or
leaves a phase in a certain direction. We refer to this as
the geometric stability. Although the geometric stability,
as the shape of the landscape, is described qualitatively
in the current work, we should note that this qualita-
tive information is based on the quantitative informa-
tion of the stability of the states within and around a
phase of the system.

Besides quantifying the stability, potential land-
scapes can also be used for other purposes. One
advantage of the potential landscape over the case
simulation is that it can summarize the stability infor-
mation concisely and be directly compared across dif-
ferent parameter settings, therefore enables systematic
investigation of the influence of various parameters on
the model. For example, Robinaugh et al. (2019) only
provided one set of values for all 22 parameters in the
model, and these parameter values were chosen based
on their ability to produce reasonable output. The
plausible range of each parameter, however, was not
investigated. This is a common practice for perform-
ing case simulations for formal models but leaves the
robustness of a specific parameter setting question-
able. Those parameters also are related to trait-like
psychological properties of the system, which are of
theoretical interest. It is understandable that most
modelers do not show the simulation results with all

“This is related to the term ‘resilience” used in some papers (e.g.,
Dablander et al., 2022).
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Figure 6. The relationships among the absolute stability, relative stability, and geometric stability of a psychological phase.

different parameter settings because it does not show
the influence of parameters in an informative way.
With the help of potential landscapes, these problems
can be addressed more clearly.

The potential landscape can also provide guidance
on model modification. It is nearly impossible to have
a model that successfully explains every real-life phe-
nomenon. Modification is often needed to continuously
improve the model. Case simulations do not always
provide enough guidance on how to modify the model.
For example, there is a clinical phenomenon that the
panic attack model could not explain: some people
only have some (non-clinical) panic attacks but do not
develop a panic disorder (Robinaugh et al., 2019). In
the original model, however, if the panic attack hap-
pens once, the system would always develop into a
panic disorder. The authors provided a way of mend-
ing as an example of model improvement, namely add-
ing another parameter called “escape schema” (Sg).
When Sg is higher, the parameter hpr  in Equation 4
is higher. This parameter represents the extent to
which the individual believes escaping could help to
cope with the perceived threat. After adding this par-
ameter, individuals with a low Sg would have panic
attacks but would not develop a panic disorder. The
rationale behind this solution is mainly based on a
known theoretical mechanism that is translated into a
model parameter, but not based on the model output.
In other words, the simulation results only provide
information about whether there is a problem, but not
how the problem arises. The potential landscape
method in contrast can provide insight into the prob-
lem—at least problems can be systematically analyzed
from the perspective of stability.

Aim of the current research

The current research aims to provide a method to
compute the potential landscape for psychological

formal models and examine its usefulness in under-
standing psychological systems. First, we develop a set
of tools to compute the potential landscape and related
stability indicators from psychological dynamic models.
Then, we illustrate how the procedure works by using
the panic disorder model by Robinaugh et al. (2019).
We will show how to (1) analyze the stability of states
and phases from the potential landscape perspective,
(2) systematically investigate the influence of various
parameters from the potential landscape, and (3) use
the potential landscape to guide model modification.

Methods

The method section is divided into three parts. In the
first part, we show the adjustments we made to make
the panic disorder model more suitable for landscape
construction. In the second part, we explain the pre-
paratory analyses we did that ensure the validity of the
landscape results. In the third part, we introduce the
method that we used in the main analysis. The simula-
tions and analyses in this study were performed in R
412 (R Core Team, 2021). The replicable R scripts
used for this study, as well as the animation or inter-
active version of the landscapes, can be found at the
OSF repository of this project (https://osf.io/ke3xb/).
An R package, simlandr,” was developed to organize
the methods we used and to facilitate future applica-
tions. We try to involve minimal yet sufficient math-
ematics in the current article. For readers seeking more
rigorous technical details of this method, we refer them
to S3. Practical information on programming issues in
the Supplementary Materials and Cui et al. (2021).

Model adjustments

In order to construct the landscape for the system,
some modifications are needed. First, we adjusted

>The package is available at https:/cran.r-project.org/package=simlandr.
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some ways of computational implementations to make
the simulation more effective. The new implementa-
tion produces, in principle,’ the same outputs as the
implementation by Robinaugh et al. (2019). We refer
to this model as the original model.

Then, as we use long-term simulations to estimate
the steady-state distribution of the model, we need the
model to have global ergodicity. In other words, the
model should travel through its entire realistic phase
space in a sufficiently long time. Complex systems
often display local ergodicity breaking, which occurs
when the system gets trapped in a local minimum, or,
attractor state. To ensure global ergodicity, we want
the model to have large enough noise terms so that
the system can escape local minima. The original
model does not meet this requirement because there
is only one noise term on the changing rate of phys-
ical arousal (A). This term is not enough to ensure
the ergodicity of the whole system. Therefore, we
added several Gaussian noise terms on all model vari-
ables to replace the single noise term in the original
model. We also calibrated the standard deviation of
the noise term to make sure the panic phase still
exists. Second, in the original model, there is a short-
long term difference: some variables (e.g., arousal
schema, AS) are updated every “day,” while other var-
iables are updated per “minute.” However, in a Monte
Carlo simulation, the purpose is to estimate the
steady-state distribution, not to represent the actual
time scale of real-life changes. Keeping the short-long
term difference in the model for Monte Carlo simula-
tion is not meaningful and will reduce the effective
sample size for those slowly updated variables.
Therefore, we deleted the short-long term difference
by updating all the variables in the same frequency.
We refer to this model as the simplified model.

In the original model, AS is an important variable
that influences the stability of the system, and it
changes much more slowly compared to other varia-
bles. In the simplified model, we added noise to it
and made it change faster. These modifications make
it difficult to see how the value of AS changes the sta-
bility of the system. Therefore, we also made a model
that is based on the simplified model but holding AS
constant. In this model, AS is a parameter instead of a

®The simulation function is implemented using Rcpp (Eddelbuettel &
Frangois, 2011) instead of the implementation in R by Robinaugh et al.
(2019), and random numbers are generated using RcppZiggurat
(Eddelbuettel, 2020) in this implementation. Some differences in pseudo-
random number generation may lead to very minor differences in the
model output. These differences, however, do not influence the results
meaningfully.

variable, and it is useful for investigating the influence
of AS. We refer to it as the constant AS model.

Finally, we also extracted the deterministic part of
the constant AS model (i.e,, all noise terms were
deleted). This is because a model of deterministic
ordinary differential equations (ODEs) enables math-
ematical analyses of the stable points of the model.
We refer to this model as the deterministic model.

Preparatory analyses

The number and stability of equilibrium points
Using the deterministic model, it is possible to analyt-
ically tell how many equilibrium states there are in
the system. If the system is in its equilibrium points,
all the time derivatives of the models should be zero.
Moreover, if the eigenvalues of the Jacobian matrix of
the system all have negative real parts, the equilibrium
point is stable; if some of the eigenvalues have positive
real parts, the equilibrium point is unstable (see
Sayama, 2015, for explanations of this method).
Therefore, the stabilities of the equilibrium points are
determined by the dominant eigenvalue (14), which
means the eigenvalue with the largest real part. To
know how many equilibrium points there are in the
system, we hold every time derivative zero except for
dPT/dt, and then calculate how it changes over PT.
The result is shown in Figure S1 of the
Supplementary Materials. Based on these results, we
can find that when AS is low, there is only one zero
point at PT=0. However, as AS increases, two new
equilibrium points appear.

The real part of these /A4s is shown in Table S1
(Supplementary material). In the one-equilibrium-point
cases, that point is stable; in the three-equilibrium-
point cases, the first and the third points are stable, but
the second one is unstable. The first and the third
point here correspond to the healthy and the panic
phase, respectively. The third equilibrium point only
emerges when AS is sufficiently large. The second
(unstable) equilibrium point corresponds to the saddle
point of the system. Ideally, the system can be in equi-
librium there, but with a small disturbance, the system
will move to either of those two stable phases. Based
on the results of stability analysis, we can confirm the
heuristic that the landscape we construct should have
one or two phases, depending on parameter values.

Checking convergence and determining the simula-
tion length

Monte Carlo estimation of the steady-state distribution
is only valid if the simulation converges, which means



that there are enough data points sampled that the joint
distribution of the variables will not change even when
the simulation length is extended. We checked this by
comparing the distribution of key variables in the ini-
tial, middle, and final stages of the simulation. With a
simulation length of 10 timesteps, the distributions in
different stages are sufficiently stable (Supplementary
materials, Figure S2). Therefore, we use 10" as the
simulation length for constructing landscapes.

Main analysis

The stability of states and phases

For constructing the potential landscape function for
each possible state, we first estimate the steady-state
distribution (Pss) of the model with Monte Carlo simu-
lation. The raw potential landscape function is defined
in a high dimensional space, where the dimension
equals the number of variables in the model. To make
this function understandable, we need to perform a
dimensionality reduction. This was done with a simple
but widely used approach, which is obtaining the mar-
ginal distributions (e.g., Li & Wang, 2013; Zhang et al,,
2020). This method is capable of visualizing up to three
selected variables for the model. Kernel smooth meth-
ods were used to calculate smooth distribution density
with a reduced set of variables each time, and Equation
8 was used to calculate the potential landscape.

For the stability of phases, we first calculated the
absolute stability by finding the local minima of the
potential function within each phase. Then, we looked
for the minimum energy path (MEP) and the saddle
point between the two phases. The minimal energy
path is the path that the system would be most likely
to travel from one local minimum to another if the
system was purely gradient. The point with the high-
est potential in the MEP is the saddle point. It can be
proved that this path should first go along the steepest
ascending path from the starting point and then go
along the steepest descending path to the end point
(E & Vanden-Eijnden, 2010). Its geometric form,
from which a Dijkstra algorithm (Dijkstra, 1959) can
be derived, was used to find the MEP (Heymann &
Vanden-Eijnden, 2008). After that, the relative stabil-
ity defined by the barrier height was calculated as the
potential difference between the saddle point and the
local minima. The geometric stability of the phases is
described qualitatively.

The effect of parameters
To investigate the influence of parameters on the sta-
bility of the phases, multiple simulations with different
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parameter values were performed. For a single param-
eter, its value was sampled evenly within a parameter
space. The range of this parameter space is roughly
centered around the original parameter values used by
Robinaugh et al. (2019) with a plausible width that is
large enough to clearly show the influence of the par-
ameter on the potential landscape. The potential land-
scape was constructed separately for each parameter
value, and the barrier height was computed respect-
ively. Later, the barrier heights were compared across
parameter values to show the influence of parameters
on the difficulty for the system to escape a certain
phase and transition into another phase. For the joint
influence of two parameters, a sample grid was made
for the combination of parameter values, and the
potential landscape was calculated for each condition.

Model modification

Based on the information provided by the potential
landscape, we propose the following general strategy
for model modification. In the first step, the problem
of the model is identified. It is usually some differen-
ces in stability between model outcome and real-life
phenomena. In the second step, the reason for this
inconsistency is analyzed from the potential landscape
perspective. It can be that the stabilities of different
phases are not suitable, the barrier height between
phases is too high or too low, or the landscape has
more or fewer phases than it should have. After that,
the model is adjusted accordingly. For example, add-
ing or removing time derivative terms can tilt the
landscape and stabilize the states in a certain direc-
tion. Finally, both case simulation outputs and the
potential landscape of the modified model are checked
to test if the problem has been solved. Using this
strategy, we analyzed a problem of the panic disorder
model, provided a way of modification, and evaluated
the modified model (Figure 6).

Results
Stability of states and phases

Among all the model variables, physical arousal (A),
perceived threat (PT), and fear are the core variables
representing the symptoms of panic disorder. A
higher value of these variables represents higher
symptom severity. Besides that, arousal schema (AS)
represents the key control variable for the disorder.
Therefore, we first constructed potential landscapes
for these variables with the simplified model. In the
potential landscape of A and PT (Figure 7a), we can
find two local minima. The position of the first one is
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at A=0.01, PT=0.00 (U=—4.47), and the second
one is at A=0.63, PT=0.73 (U=3.01). The saddle
point is at A=0.38, PT=0.41 (U=3.99). The barrier
heights are AU=8.46 and AU=0.98 for the two
phases, respectively. The first phase has a lower symp-
tom severity, hence corresponds to the healthy phase
of the system. The symptom severity of the second
one is higher, hence corresponds to the panic phase
of the system. The potential of the local minimum
within the healthy phase is lower than that of the
panic phase, and the barrier height of the healthy
phase is higher than that of the panic phase, indicat-
ing that the healthy phase has a higher absolute and
relative stability. Both phases show a regular circle-
like shape, which means that the system state tends to
vibrate around the local minimum symmetrically in
both A and PT directions. There is a single pathway
connecting them, which is the path that the system is
likely to take when transitioning from one to the
other. For example, if the system is going from the
healthy phase to the panic phase, A and PT will
increase together until the system reaches the region
of the panic phase.

The landscape of AS and fear is shown in Figure 7b.
Similarly, the phase with a lower fear level is the
healthy phase, and the phase with a higher fear level is
the panic phase. According to the landscape, the panic
phase only appears when AS is high enough. The local
minimum with lower fear is at AS=0.77, fear=0.01
(U=-3.08), and the local minimum with higher fear
is at AS=10.78, fear =0.68 (U=2.83). The saddle point
is at AS=0.78, fear=041 (U=3.54). The barrier
heights are AU=6.62 and AU=0.71 for the two
phases, respectively. Again, both absolute and relative
stability indices support that the healthy phase is more
stable than the panic phase. While the panic phase
shows a circle-like shape, the healthy phase shows a
slender shape, indicating that the potential landscape is
rather flat along the AS direction. This shows that
when AS is lower than the local minimum point (0.78),
the higher and lower AS ranges do not differ much in
stability, which means there is little resistance for AS to
increase or decrease within the healthy phase. However,
when AS is higher than the local minimum point
(0.78), there is a strong tendency for AS to decrease.
This indicates that there are some mechanisms in the
system preventing AS from rising too much.

Besides the most central variables, the panic disorder
model also has many other elements. Here, we calcu-
lated the landscape of escape (E) and fear to show the
stability-related properties of E, which is an important
behavioral mechanism in panic disorder. This potential

landscape is shown in Figure 7c. As the previous
potential landscapes, this potential landscape also
shows two phases, with the healthy one being more
stable than the panic phase (local minimum in the
healthy phase: E=0.00, fear=0.00, U= —4.97; local
minimum in the panic phase: E=0.95, fear=0.66,
U=3.10; saddle point: E=0.34, fear=0.55, U=5.65;
barrier heights: AU=10.63 and AU=2.55). E is in a
lower range when the system is in the healthy phase
and in a higher range when the system is in the panic
phase, which indicates that the panic phase is related
to a higher tendency of escaping.

While the potential landscape (Figure 7c) around
two local minima shows a regular shape, the land-
scape between them shows a unique phenomenon:
between the healthy phase and the panic phase, there
are two pathways instead of one. Between these two
paths, there is also a small “hill” inside the “valley.”
This indicates that there are two possible paths of
transitioning from one phase to the other. The path
taken by the system from the healthy phase to the
panic phase is different from the path taken by the
system from the panic phase back to the healthy
phase. For systems where two variables have asym-
metric relationships (e.g., the Lotka-Volterra preda-
tor-prey model), this type of behavior is not
uncommon. It indicates that maybe the process of a
panic attack is a one-way street: if a panic attack has
started, it may not be possible to stop it before the
fear level reaches its peak. Further, because the path
taken by the system from the healthy phase to the
panic phase is different to the path from the panic
phase to the healthy phase, maybe it is possible to tell
the transition direction from the state of the system.”

Influence of parameters

As mentioned earlier, AS is an important variable in
the model that controls the stability of the phases. In
the constant AS model, AS is a parameter instead of a
variable. Therefore, we can first investigate AS again
using the method for parameters. We constructed a
series of landscapes from the constant AS model
(Figure 8a). Comparing those landscapes, we can find
that when AS is 0.3 or lower, there is only one phase
in the system, namely the healthy phase. The panic
phase only appears when AS is 0.7 or higher. For the
critical condition that AS=0.5, the system can go to

"The landscape for AS, E, and fear also confirms the results above. In this
landscape plot, three variables are represented with x-, y-, and z-axis, and
the potential value is represented by color. See the OSF repository
(https://osf.io/ke3xb/) for the visualization of this landscape.
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Figure 7. Bivariate potential landscapes of (a) A and PT, (b) AS and fear, and (c) E and fear. All three landscapes were constructed
using the simplified model. The first plot in each row is the 2D heatmap with contours, and the second plot is the 3D surface
plot. The white and red dots on the 2D heatmaps represent the local minima of the phases and the saddle points, respectively.

the region of panic phase, but there is not a local min- A and E). We call it a quasi-stable phase. Because there
imum in that region (i.e, the potential landscape  is no local minimum for a quasi-stable phase, its poten-
increases monotonically in the direction toward higher  tial value and barrier height cannot be calculated.
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Figure 8. Bivariate potential landscapes of A and PT with different (a) AS, (b) hs n, and (c) both AS and hy, 4. The landscapes were
constructed using the constant AS model. The first plot in each row is the potential landscapes represented in 2D heatmaps. The
white dots represent the local minima of the phases in the landscape, the white lines connecting two white dots represent the
minimum energy path between two local minima, and the red dots represent the saddle points in the paths. The second plot in
(@) and (b) shows the barrier heights (AU) of both phases in the potential landscapes for different parameter values. For cases
where there is only one phase in the system, it is not possible for the system to transition to an alternative phase, hence the bar-

rier height cannot be defined. Therefore, barrier heights were not calculated for those cases.

The barrier heights for the two phases are also
shown in Figure 8a. As AS becomes larger, the healthy
phase gradually becomes more unstable, while the

panic phase becomes more stable. Nevertheless, the
healthy phase is always more stable than the panic
phase. These results again confirm the findings above.




While AS is related to the relationship between A
and PT, which is at the core of the system, there are
also some other variables whose effects are less obvi-
ous. Here we investigate another parameter, hy py, as
an example. This parameter represents the relation-
ship between physical arousal (A) and homeostatic
feedback of arousal (H): the physical arousal at a later
point in time tends to reduce more if it is higher in
the previous time point. A has a positive influence on
H and H has a negative influence on A. Therefore, the
state of A is “stored” in H and will be influenced by
H later. When hy p is higher, the influence of A on H
is weaker.

The landscapes and barrier heights are shown in
Figure 8b. Comparing the landscapes with different
ha,u values (Figure 8b) and those with different AS
values (Figure 8a), we can find that both parameters
have a similar role in controlling the landscape of A
and PT. When arousal has weaker homeostatic feed-
back of arousal (i.e., when the delayed negative feed-
back gets weaker), the panic phase gradually appears
and stabilizes. If changing both parameters together,
their roles are similar and independent: increasing
either will stabilize the healthy phase of the system
(see Figure 8c). This suggests that the same phenom-
enon of the system (e.g., panic disorder) can stem
from different underlying mechanisms.

Guidance for model modification

Potential landscapes can also guide model modifica-
tion, as we show here with the panic disorder model
as an example. As mentioned by Robinaugh et al.
(2019), the problem of the original model is that the
system should have non-clinal panic attacks, but the
model failed to generate them. From the landscape
with AS and fear (Figure 7b), we can see that the
panic phase only appears when AS is high enough.
However, the landscape in the AS direction is rather
flat, which means that AS does not have a strong ten-
dency to increase or decrease within its plausible
range. This is related to the problem mentioned above
because whenever AS happens to be in the high range,
it does not go back. Hence, an increase in AS can eas-
ily lead to a panic disorder.

To solve this problem, what we should do is tilt
the landscape to make the low-AS region more stable.
The way to tilt the landscape is straightforward. As
the gradient of the landscape corresponds to the
changing rate of the variables, we can simply add a
negative term to the dynamic function to tilt it toward
zero. Here we added a small negative term to the time
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derivative of AS:

dAS —Textinction (AS — ASpaseline)> AS > ASpaseli
= (X extinction baseline /> aseline
dt g( ) + { 0, AS < Asbaseline

)

where g(X) represents the terms in the original func-
tions, and the term to the right of the brace is the
added term: when AS is larger than a given baseline
value (ASpaseline)> it declines exponentially. This setting
can add a small tendency toward lower AS around its
critical range while not letting it decline to zero. To
distinguish this way of modification and the way in
the original paper by Robinaugh et al. (2019, which
used a higher Sg to increase the parameter hpr g as a
constant; see Equation 4), we refer to the modification
in Equation 9 as the AS extinction modification and
the modification by Robinaugh et al. (2019) as the
escape schema modification.

Both modifications show a good effect on solving
the problem in the original model. As shown in
Figure 9, for both modifications, the system can have
a limited number of panic attacks without later going
into a full-blown panic disorder. After the first panic
attack, the AS value of the original model increases
and stays in a higher value until the next panic attack,
which further increases AS (Figure 3), whereas the AS
value decreases after the first panic attack for both
modified models. The difference in the direction of
change for AS shows the effects of both modification
mechanisms. The potential landscapes of both modifi-
cations are shown in Figure 10. Comparing them with
the landscape of the original model (Figure 7b), the
landscapes of those modified models show the
expected tendency that the lower-AS region of the
healthy phase is more stable.

However, there are several important differences
between the two modifications. For the escape schema
modification, the fear value reaches a higher peak
level and the AS value directly decreases after the
panic attack; in the AS extinction model, the peak fear
value is similar to the case in the original model, and
the AS value first increases before it declines back to a
lower value (Figure 9). Why is this the case? The
landscapes of the models can provide further informa-
tion. The general shape of the landscape of the AS
extinction modification (Figure 10a) is similar to the
original model (Figure 7b), but only the stability of
the lower AS range of the healthy phase is increased.
The shape of the landscape of the escape schema
modification (Figure 10b), however, is much different
from the original model, especially around the panic
phase. There is a small island in the middle between
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Figure 9. Model simulation results of fear and AS for the two modifications. The first panic attack of the system appears probabil-
istically. To make simulation results comparable, time was set as zero at the first panic attack (the time when the peak value of
fear is reached). In the AS extinction modification, reytinction = 0.001, ASpaseiine = 0.5; in the escape schema modification, Sp = 0.

the two phases. As explained earlier (for the landscape
of E and fear in Figure 7c), this indicates that the
pathway the system takes from the healthy phase to
the panic phase is different than the other way
around, so that the system does not recover in the
same way. In this model, this means that the system
goes to the panic phase when AS is high, and then the
AS level declines during the same panic attack. When
the system goes back to the healthy phase, the AS
value is already at a lower level. In the original model
and the AS extinction modification, AS decreases at a
slower time scale, so that the system recovers to the
healthy phase with a similarly high AS value. These
differences enable further theoretical and empirical
examinations of these two modifications.

Discussion

We here introduced a new method to construct
potential landscapes for multivariate psychological for-
mal models. Based on the steady-state distribution,
the stability of any state of the system can be quanti-
fied with the potential function. We illustrated the
method with the panic disorder model by Robinaugh
et al. (2019). After several adjustments to the original
model, we constructed potential landscapes for the
system and analyzed the absolute, relative, and geo-
metric stability of the healthy phase and the panic
phase. Then, we examined the influence of two model
parameters on the potential landscape of the system.
Finally, based on the information from the potential
landscape, we came up with a new way of model
modification and compared the simulation output and

the potential landscape of it with the modification
suggested by Robinaugh et al. (2019).

The results of the potential landscape showed that
there are one or two phases in the system, depending
on the parameter settings. The healthy phase is always
present, while the panic phase only appears under cer-
tain conditions (e.g., with high AS) and is always less
stable than the healthy phase. Increasing AS can thus
stabilize the panic phase and destabilize the healthy
phase. These results are well aligned with the conclu-
sions from the case simulations in the original paper.
It is important to note that we do not think that the
potential landscape method can or should replace case
simulations. On the contrary, we claim that both
methods provide important information about the
nature of psychological formal models. The advantage
of our method is that it can present the concept of
stability in a clear, explicit way. By filtering out the
time-related information in the model output, the sta-
bility-related information that does not change over
time emerges clearly on the potential landscapes.
Instead of relying on the heuristics from observation,
the stability of states is now specified as positions in a
potential landscape. Specifically, the stability of psy-
chological phases can be described accurately based
on three aspects: absolute stability, relative stability,
and geometric stability. This makes the stability infor-
mation more apparent for researchers, hence facilitat-
ing understanding and communication of the models.

Moreover, the potential landscape method also ena-
bles easy investigation of variables and parameters. A
common problem for psychological formal models is
that the number of variables and parameters used for
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Figure 10. Bivariate potential landscapes of AS and fear for (a) the AS extinction modification and (b) the escape schema modifica-
tion. The first plot in each row is the 2D heatmap with contours, and the second plot is the 3D surface plot. The white and red
dots on the 2D heatmaps represent the local minima of the phases and the saddle points, respectively.

constructing the model is much higher than the critical
variables that are examined to evaluate the model. In
this paper, we showed how to construct the potential
landscape for A, PT, AS, E, and fear and how the poten-
tial landscape changes with AS and hy y. With the tools
we provided in the simlandr package, the same land-
scape construction method can be easily extended to all
other variables and parameters in the model. Our
method allows researchers to evaluate each of their vari-
ables and parameters systematically and see if the result-
ing potential landscape is consistent with theory and
empirical findings, which parameter range produces the
expected behavior, and how the parameters influence
the stability. This not only makes model evaluation
more effective and comprehensive but also helps to clar-
ify the scope and boundaries of a model or theory.

Based on the information from the potential land-
scape, we provided a new modification of the original
model. The advantage of using a stability measure to
guide model modification is that, in some cases, the
discrepancy between model output and real-life phe-
nomena is more closely related to the stability of
states or phases rather than the simulated trajectories.
In the case of the panic disorder model, for example,
the problem of non-clinical panic attacks can be dir-
ectly attributed to the geometric stability of the
healthy phase (i.e., its landscape on the AS direction is
too flat). Also, because of the close link between the
potential landscape and the dynamic functions, chang-
ing the landscape of the system is usually not difficult,
making it straightforward to solve the identified prob-
lems. In this work, we proposed a way of modification
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for the panic disorder model based on its potential
landscape. There is also a possible theoretical explan-
ation for this modification, namely fear extinction.
After the association (arousal schema, AS) between
physical arousal (A) and perceived threat (PT) is
learned, even when there are no new fear-inducing
events, the strength of this association still decreases
(Mattera et al, 2020; Milad & Quirk, 2012). It is
important to emphasize that the decision to add a
negative value to the AS time derivative in the AS
extinction modification was inspired by the potential
landscape of the model, not based on a theoretical
analysis. Nevertheless, it later helps to point out a dir-
ection in which researchers could search for rele-
vant theories.

Limitations and possible pitfalls

Despite the advantages of the method discussed above,
we also want to point out several limitations and pos-
sible pitfalls of our method. First, the potential land-
scape is calculated from a generalized potential
function. This means that it does not contain all the
dynamic information of the model. In other words,
psychological systems are not totally the same as a
ball on a landscape. Some additional non-gradient
forces also influence the system, which can drive it in
a different direction instead of the direct path toward
the most stable state. For example, in the landscape of
E and fear, there are two paths connecting two phases
of the system. We suppose these paths are different in
directions (i.e., the system state goes through one path
to the healthy phase and the other path to the panic
phase). However, the choice of which path to take is
influenced by some non-gradient forces, which are
not shown in the potential landscape. In psychology,
non-gradient forces may be related to emotional or
behavioral inertia, which means that some emotional
or behavioral variables in the system may be more
resistant to change (e.g., E and fear in the panic dis-
order model; Alds-Ferrer et al, 2016; Kuppens et al.,
2010). These non-gradient forces are canceled out
when calculating the stability of states. Nevertheless,
researchers should be aware of their existence and
investigate their influences if the dynamic properties
of the system are also a concern.

Second, to ensure the ergodicity in the Monte
Carlo simulation, we added some noise terms to the
original model. We suggest that researchers do the
same if their simulation is difficult to converge.
However, we want to point out that for some systems
these noise terms can affect the stability of phases. For

example, Van den Broeck et al. (1994) showed that
for a specific kind of dynamic system, an ordered
phase only exists if the noise is in a certain range. The
conditions under which noise terms can affect the sta-
bility of phases are not yet clear. Further investiga-
tions on this issue are needed.

Third, although psychological models usually have
a large number of variables, the potential landscape
can only be visualized in a lower (up to three) dimen-
sional space. This means one phase or transition path
on the landscape can actually be several ones in the
high-dimensional space. For example, there is only
one pathway between the healthy phase and the panic
phase in the landscape of A and PT, but two pathways
in the landscape of fear and E. Therefore, we suggest
researchers look into different combinations of varia-
bles and investigate how the phases and paths in those
low dimension landscapes correspond.

Fourth, the potential landscape can only show the
stability of individual states. For a system that has peri-
odic or chaotic phases (e.g., Schiepek et al., 2017), the
potential landscape may not be able to clearly represent
its stability. In these cases, some preprocessing of the
original variables may be needed. For example, if two
phases of a system have similar mean values but differ
in their variation, then the moving-window standard
deviation can be used to construct the landscape instead
of the original variable values. The suitable way of trans-
formation depends on the exact system of interest.

Future directions

Incorporating the potential landscape method opens
up new avenues for psychological (modeling) research.
Here we want to point out several possible directions.
First, there is still much room to further develop the
potential landscape method for psychological models.
Apart from the generalized potential function used in
our work, there are also several other potential func-
tions that have different definitions and calculation
methods (see Zhou & Li, 2016, for a review). These
methods may have a higher requirement for the form
of dynamic functions, but they also have strengths in
representing other aspects of stability (e.g., the quasi-
potential landscape by Zhou et al., 2012, emphasizes
more on the transition path between states). We
encourage future research to test the use of those
methods for psychological models.

Second, we encourage modelers to further explore
the usage of this method and apply this method to
different kinds of models. In this paper, we showed
several applications of the potential landscape



methods, namely representing stability, investigating
the influence of parameters, and guiding modifica-
tions, and the formal model we used is an emotion-
cognition-behavior model of a mental disorder.
However, we are confident that the usage of this
method is not limited to this range. For example, it
may be possible to draw a phase diagram to show the
parameter ranges where different phases exist and use
the potential landscape as a way to choose parameter
values systematically. Some cognitive models also have
multistability (e.g., Kogo et al., 2011), which can pos-
sibly be analyzed with this method. We look forward
to future researchers exploring those possibilities.

Third, potential landscapes can also be helpful in
clinical practice. Understanding individual differences
of psychological phases and clinical change processes
is critical to establish more effective therapies. From
the potential landscape perspective, the difference in
people’s parameter values makes them differ in their
vulnerability to mental disorders, and successful thera-
pies are related to changes in parameter values. This
idea can be better understood if we can construct
landscapes with different parameters to represent dif-
ferent individuals or different therapeutic stages. We
illustrated how systems with different AS and hy g
values differ in the stability of the healthy phase and
the panic phase. These AS and hy y values may cor-
respond to different individuals and/or stages. Apart
from panic disorder, this approach can also be readily
applied for conceptualizing other mental disorders.
Constructing landscapes from empirical data, how-
ever, requires future methodological development.
Previous research found that recovering the psycho-
logical dynamics from experience sampling data is dif-
ficult, while the distribution of psychological variables
is more assessable (Haslbeck & Ryan, 2021). The gen-
eralized potential landscape is defined from the
steady-state distribution of the system, which can be
possibly estimated from the observed variable distri-
bution. Therefore, maybe fitting the potential land-
scape directly from empirical data is a possible
alternative to fitting the dynamic functions.

Finally, we want to note that, in the abstract sense,
the form of psychological formal models does not differ
much from many dynamic models in biology, chemistry,
and other natural science fields. For example, we coinci-
dentally found out that the panic disorder model also
has an equivalent form represented by chemical reac-
tions (see S4. Equivalent chemical representations in the
Supplementary Materials). While formalizing psycho-
logical theory is a new trend in psychology, the same
effort has been undertaken in many fields, with various
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analytical methods readily available. With the current
work as an example, we would encourage further inter-
disciplinary cooperation in the psychological modeling
field. We hope the insights from expertise in all fields of
science can somehow come together, helping us to bet-
ter understand human psychology, a complex yet fasci-
nating subject.

Conclusion

The stability of states and phases is an important
property for psychological formal models, yet not con-
cretely addressed with the common case simulation
method. By incorporating the generalized potential
function by Wang et al. (2008) and Monte Carlo
simulation, we developed a method to construct the
potential landscape for multivariate psychological
dynamic models. This method can contribute to a bet-
ter understanding of the stability concept, the influ-
ence of model parameters, and the way to modify a
model. We hope this method can help researchers to
better evaluate and develop their models and ultim-
ately help to guide clinical practice in the future.
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