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ABSTRACT

Accounting for the complexity of psychological theories requires methods that can predict
not only changes in the means of latent variables - such as personality factors, creativity, or
intelligence - but also changes in their variances. Structural equation modeling (SEM) is the
framework of choice for analyzing complex relationships among latent variables, but the
modeling of latent variances as a function of other latent variables is a task that current
methods only support to a limited extent. In this article, we develop a Bayesian framework
for Gaussian distributional SEM, which broadens the scope of feasible models for latent het-
eroscedasticity. We use statistical simulation to validate our framework across four distinct
model structures, in which we demonstrate that reliable statistical inferences can be
achieved and that computation can be performed with sufficient efficiency for practical
everyday use. We illustrate our framework’s applicability in a real-world case study that
addresses a substantive hypothesis from personality psychology.

1. Introduction and a real-world case study applied to a research

Structural equation modeling (SEM) is a widely-used question from personality psychology.

statistical framework that can be regarded as an exten-
sion of regression models: it allows modeling multiple
dependent variables simultaneously, including rela-
tionships among them, as well as the introduction of

1.1. Related work

The problem of invariance has received attention since
the early days of factor analysis, initially focusing on

measurement error and unobserved (latent) variables
(for a comprehensive introduction see Bollen, 1989;
Kline, 2016). As with regression, the classic formula-
tion of SEM presents an idealized setting where,
among other simplifications, it is assumed that the
model’s parameters (intercepts, coefficients and (co-
)variances) all take on values that are constant across
people, conditions, etc. Such an assumption often
does not hold in practice and this has motivated a
rich literature on methods for handling non-invariant
(see below).
research, we develop a Bayesian framework for
Gaussian distributional SEMs, which, compared to
past approaches, supports more flexible models of
latent heteroscedasticity when dependencies on other
latent variables are involved. We demonstrate our

parameters Extending this line of

framework’s statistical validity and usefulness through
simulation studies on four distinct structural models

invariance of the covariance matrix of observed data
across selected subgroups of some larger population
(Thomson & Lederunn, 1939). The introduction of
the multiple-group model methodology in Joreskog
(1971) marked the shift in focus to the invariance of
model parameters that prevails today. It was followed
by the development of moderated factor analysis
(MFA), which enabled modeling parameter values via
known functions of observed variables (moderators),
including continuous ones; this meant that evaluation
of invariance stopped being limited to comparisons
over discrete groups (Bauer & Hussong, 2009). A fur-
ther extension, local structural equation modeling
(LSEM), fits the model multiple times over the mod-
erators’ range in combination with an observation
weighting scheme to produce a nonparametric esti-
mate of the moderation functions, thereby avoiding
the assumption of a known functional form
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(Hildebrandt et al, 2016). There are additional
approaches that are particularly suited for assessment
of non-invariance under specific assumptions of mag-
nitude or structure (for an overview see Leitgob et al,,
2023), but we do not discuss them here as they are
less related to our proposed framework.

The above-mentioned techniques already provide a
great deal of flexibility for modeling varying parame-
ters within the SEM framework, but they all share the
requirement that the moderator be an observed vari-
able. A set of related approaches known as heterosce-
dastic factor models use MFA-like regressions on
residual item variance and factor loading parameters
together with skewed latent variable distributions
(Molenaar et al., 2010, 2011). Another approach intro-
duced in Molenaar (2015) is to use latent skewed dis-
tributions to allow the model to account for the
effects of continuous latent moderators on the latent
trait of interest. However, it achieves so by effectively
marginalizing over the moderator and hence is not
applicable when one wishes to include a measurement
model for the latent moderator. In his discussion,
Molenaar mentions this limitation and notes that
models with explicit latent moderators would consti-
tute a useful addition to the literature, citing methods
for investigating latent heteroscedasticity (Molenaar
et al., 2012) and latent variable interactions (Klein &
Moosbrugger, 2000) as examples.

Indeed, one can already find some developments
toward the use of latent predictors for latent varian-
ces. For instance, the works of Nestler (2020) and
Martin and Rast (2022), motivated from the perspec-
tive of measurement reliability, provide techniques for
modeling the variance of measurement errors (which
can be conceived of as a special type of latent vari-
able) as dependent on other latent variables. The ori-
ginal formulation of MFA (Bauer & Hussong, 2009)
also received an extended treatment in Bauer (2017),
where it is emphasized that the method can be used
to assess measurement invariance and differential item
functioning, including the case of both observed and
latent moderators of item-level residual variances.
Moving beyond heteroscedastic errors, modeling of
the residual variance of a structural latent variable has
also been demonstrated under a frequentist framework
in a simple latent regression setting (i.e. one exogen-
ous latent variable predicting one endogenous latent
variable; de Kort et al., 2017).

One key challenge in maximum likelihood estima-
tion of SEM is that latent variables can be regarded as
incidental (Neyman & Scott, 1948) or nuisance (Basu,
1977) parameters, which means that they must be
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marginalized out of the likelihood in order for con-
sistent estimates to be obtainable. When latent hetero-
scedasticity is introduced, a closed-form expression of
the marginal likelihood will generally not be available
and numerical integration has to be performed at
each step of the maximization procedure (e.g. Hessen
& Dolan, 2009). Such an approach is sometimes called
Marginal Maximum Likelihood (MML) and corre-
sponds to an application of the more general expect-
ation-maximization (EM) algorithm (Bock & Aitkin,
1981). As the quadrature methods that are commonly
used to approximate the integral do not scale well
with dimension (which in turn grows with the num-
ber of latent variables), de Kort et al. (2017) have sug-
gested that Bayesian procedures could provide a viable
alternative to MML for estimation of larger models
with latent heteroscedasticity. To our knowledge, a
systematic assessment of such an approach has not yet
been conducted.

1.2. Our contributions

We develop and validate a Bayesian approach to sup-
port latent moderators of latent variances, which
works by including latent variables as parameters to
sample from instead of marginalizing over them. Such
an approach has been termed conditional likelihood in
the latent variable literature (e.g. Merkle et al., 2019),
and it was favored in earlier methods for obtaining
full posterior distributions in Bayesian SEM as it
enabled the use of Gibbs sampling (Lee, 2007). With
the development of algorithms such as Hamiltonian
Monte Carlo (HMC; Neal, 2012; Betancourt, 2018), it
was no longer necessary to use conditional distribu-
tions that could be sampled from and contemporary
Bayesian SEM software has moved to use marginal
likelihoods due to the increased sampling efficiency
gained by not having the latent variables as additional
parameters (Merkle et al., 2021). As mentioned above,
however, latent moderators cannot be handled in full
generality when using marginal likelihoods, which is
why we adopt a conditional likelihood approach in

this paper.
We implement our framework in the probabilistic
programming language Stan, which  provides

an expressive syntax and powerful algorithms to spe-
cify and fit open-ended Bayesian models (Stan
Development Team, 2023). To avoid users having to
interact with Stan directly, we extended the R package
brms, designed to simplify the process of fitting
Bayesian regression models in Stan while still provid-
ing access to advanced regression techniques that can
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be combined in a modular fashion (R Core Team,
2023; Burkner, 2017). We realize latent variable mod-
els with moderators in brms by utilizing its function-
ality for model-based imputation and distributional
regression models, models predicting distributional
parameters beyond the mean, for example, also var-
iances or standard deviations (see Fahrmeir et al,
2021, Chapter 10; Biirkner, 2018, 2021). By represent-
ing latent variables as missing observations and plac-
ing them as predictors of distributional parameters,
we obtain an MFA-like procedure that admits latent
moderators with more flexibility than methods based
on marginal likelihoods.

In the remainder of this article we describe and
evaluate our conditional likelihood approach for con-
tinuous latent moderators on both latent means and
variances. In Section 2, we formally introduce the
model and establish the corresponding notation. In
Section 3, we present are large-scale simulation study
to evaluate our approach, with results showing good
convergence and parameter recovery in all investi-
gated models. We demonstrate an application to a
substantive hypothesis from personality psychology in
Section 4. Finally, in Section 5, we discuss limitations
and future directions.

2. Model description

Below, we formally introduce the developed SEM
framework. Going forward, we will make an impor-
tant simplifying assumption: all the variables in the
model are conditionally normally distributed. This is
not an inherent limitation of the approach we present,
as it allows the specification of any continuous distri-
bution for the latent variables, with moderation on
other parameters beyond the mean. However, we find
that this simplified setting already involves enough
complexity for a rich discussion and practical rele-
vance, so we omit a more general treatment in order
to keep a reasonable scope for this paper.
Additionally, we will omit structural manifest variables
and fixed covariates from the following exposition as
their inclusion is straightforward and our interest here
is to discuss latent-to-latent regressions.

2.1. Model likelihood

We begin by describing the general structure of the
model. Let I be some set indexing individual observa-
tions over the relevant units of analysis (e.g. institu-
tions, individuals, time points, etc.). For each i € I, we
have a vector {; = ({4, - Gy -+, (1) Of latent variables

and for each (;, the vector y,; = (Vitis o> Yimi> - > YLMi)
holds the corresponding manifest indicator variables.
Here, M denotes the number of manifest variables of
the Ith factor, with M being allowed to vary over L
Then, the distribution of the variables can be
written as

{3i¢; ~ Normal(uw;, o)
Vimi|Cii ~ Normal(vi, + Aim i Tim )

(1)

where vy, is the intercept of the manifest variable and
Aim is its factor loading. Both the mean u; and stand-
ard deviation oy; of each latent variable can depend on
other latent variables. We consider dependencies of
the form given by a generalized additive predictor

KHZ

Noi = Z Bro, fro,(8:), (2)
k=0

where 0 stands for the likelihood parameter of interest
(u or ) and fyy, are the coefficients for each continu-
ous (possibly non-linear) transformation fis, of the
latent variables. For clarity, we point out that if one
wishes to include an intercept in the model, this can
be done by setting fpp, =1 and incorporating fixed
covariates more generally is a matter of putting their
values as a constant part in the fiy,. With this nota-
tion, each parameter is related to its predictor via the
appropriate link function:

Wi = identity(if]wi) = Nyi> (3)
o = €xXp (’7611‘)‘

Let us set O; = (B> Bry> Pioy -+ Broy) tO
denote the vector of structural parameters and 0, =

(V115 - VIM> A11> -0 ALM> T115 -+ Ty ) tO denote the vec-
tor of measurement model parameters. Then, the full
likelihood can be written as

p(y€l0c, 0y). (4)

Following terminology from the latent variable
model literature (e.g. Merkle et al.,, 2019), one could
obtain the marginal likelihood by integrating out the
latent variables:

p(yl0, 0,) = jp(y,c|0¢,0y>dc. )

The use of marginal likelihoods is a necessity in
frequentist settings as latent variables play the role of
incidental parameters, which results in inconsistent
estimates if they are included in the estimation pro-
cess (Neyman & Scott, 1948; also see discussion at the
end of Hessen & Dolan, 2009). On the other hand,
there are no formal impediments for performing
Bayesian inference while including latent variables as
part of the model parameters. The form of the



likelihood in which latent variables are explicitly
included is called the conditional likelihood, as one
can decompose Equation (4) into a likelihood for the
indicator variables conditioned on the latent variables,
and a likelihood for the latent variables themselves:

p(y,£10¢, 0y) = p(y[L, 0y)p(E|0;). (6)

As discussed in Section 1, we use conditional likeli-
hoods in this paper because marginalization would
not produce a closed-form expression in the presence
of latent predictors for latent variances.

Because we use the Bayesian framework for infer-
ence (see the Estimation section for more informa-
tion), a complete specification must also include
priors for the parameters. We can write the resulting
joint posterior as

p(& 0, 0y]y) x p(y[S 0y)p(E|0)p(0y)p(0;)
= al(ylléz, ey)P(Cz|PA(Cz)»9;)11’(9&1?(9@),
I=1

(7)

where PA((;) C {_; denotes the parents of latent vari-
able {; among the set of all other latent variables {_;,
that is, all latent variables that contribute to the addi-
tive predictors g; or ;.

2.2. Identification

The model as given above is underidentified. Unless
otherwise noted, identification for models in this
paper is obtained by setting the expectation of all
latent variables to 0, which identifies their mean, and
the loading factor of one item to 1, which identifies
their scale (see (Bollen, 1989, p. 238) for an introduc-
tion to identification in SEM). Our model additionally
introduces coefficients for the latent variance linear
predictor, so it is valid to ask whether these parame-
ters are identified too. Below, we provide a formal
argument demonstrating that a link from observed
data to parameter values can be drawn without the
need for any new constraints, thus showing
identification.

To start with, consider the simplified scenario
where we assume the latent values to be observed dir-
ectly. Let {, be the variable whose variance we are
interested in predicting based on the values of
{15 .. {k so that

Var (o = exp (Z5_, Bcli)s (8)

which means that the coefficients are related to the
ratio of variances given a unit increase in one of the
predictors. Without loss of generality, consider
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increasing {; by one. Then, we find

Var[{o](6 + 1), (g, k3] _ [ exp By (G +1) + EE,Bele)
Var[6]¢n ...y exp (B181 + Zi, Bilk)
= exp (B1),

)

thus showing identification of the coefficients
B>, B if there is variation in the corresponding
latent variables. Estimation of the coefficients in such
a model is a well-studied topic (e.g. Harvey, 1976)
and can be regarded as a particular case of the more
general distributional regression framework (e.g. see
Chapter 10 of Fahrmeir et al., 2021).

Coming back to our non-simplified model, we do
not actually observe the latent variables but rather
noisy measurements as defined in Equation (1), and
we want to show whether it’s possible to infer changes
in the latent variance from those available observa-
tions. For this purpose, a more helpful way of writing
the measurement model is

Yim = Jam1 + €m>  &m ~ Normal(0, ty), (10)

which can be combined with Equation (8) to untangle
the latent variance from the error variance. Let us
examine the observed variance of some measurement
Yom of {,, conditional on observed measurements
Y{1,...k}ym for the latent predictors. For simplicity, and
without loss of generality, we take a single measure-
ment per latent variable so the m subscript is
dropped. This gives us

= Var[4o{, + &
= JgVar(, + 2
= Jgexp (B, Bili) + 15

= Joexp (2, Belyk — &)/ 24) + T3

The last expression still contains unobserved varia-
bles in the form of the error terms &, x}, but we

Var[yobl{l’--wK}’S{I)W’Kﬂ (11)

(12)

can apply the law of iterated expectations to deal with
them. We use Equations (11) and (12) to work in
terms of the latent variance we are interested in:

Var [Golyq,..xy] = Be[Var[Golyq, .. k) 41,k |
= E.[exp (55, Bk — &)/ 7)]

= exp (T, Bun/ ) Ee [exp (=Z5, Brew/ )]
exp (S5, B/ ) exp (Zi_, Bitr/227)

(13)

where the last step uses the fact that the expectation
of the exp-sum of error terms is equivalent to the
product of expectations of independent log-normal
random variables.
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With Equations (11) and (13), we can obtain an
expression that is analogous to Equation (9), but fully
expressed in terms of observable measurements (com-
mon factors are omitted):

Val‘[)’o|(}’1 + 1)»}’{2,,“,1@] -1 B Var[Co\(yl + 1)’)’{2,...,K}}
Var[yolyt. vy =% Var[lolyuyp..x]
_exp (Bin + 1)/ 20 + T, B/ )
a exp (B /71 + lefzzﬁk)’k//lk)
exp (B /1)

(14)

Hence, observable changes in the variance of the
measurement y, across measurements y; of the latent
variance predictors provide sufficient information to
estimate the coefficients and no additional identifica-
tion constraints are required because t2 and /1, are
already identified by the usual constraints on the
measurement model.

2.3. Estimation

We use Bayesian inference for model fitting. At a
high level, the process consists of first specifying a
prior distribution (further discussed in the next sub-
section), which describes our state of knowledge
before seeing the data, and combining it with the
data-informed model likelihood to obtain a posterior
distribution, which represents our updated state of
knowledge about the parameters’ values. An accessible
introduction to Bayesian inference can be found in
Johnson et al. (2022).

Calculating the posterior distribution is the main
challenge during inference as the expression involves
a high-dimensional integral which will not have a
closed-form beyond a few special cases; hence, it
becomes necessary to resort to numerical methods.
We use Markov chain Monte Carlo (MCMC), specif-
ically adaptive Hamiltonian Monte Carlo as imple-
mented in the Stan probabilistic
language (Hoffman et al, 2014; Stan Development
Team, 2023). Adaptive HMC is a class of efficient
algorithms that can accurately sample complicated
parameter spaces and Stan is a well-tested project that
is freely available for all major operating systems. All
MCMC algorithms produce sequences of samples
(known as chains) from the target distribution as its
output, which we can then directly use to obtain esti-
mates of parameter means, credibility intervals, trans-
formations, and other quantities of interest (Gelman
et al., 2014).

programming

2.4. Prior specification

In the ideal Bayesian workflow, all model parameters
are given priors that represent some state of know-
ledge which will be updated through the likelihood as
new data arrives. The purpose of this paper, however,
is to investigate the set of conditions under which our
approach can produce useful results. Hence, we adopt
the minimalist position (Gelman et al., 2017) for all
simulations, i.e. we attempt to identify the weakest
priors for each model that will still produce reliable
inferences. The criteria we use to assess reliability are
described in Section 3.1 and the specific priors are
introduced along with their corresponding models in
Section 3.3. Readers looking for practical advice on
how to set priors for SEM can find an excellent
resource in van Erp (2020) and Winter and Depaoli
(2023).

3. Simulations

We investigated the viability of our approach through
statistical simulation. Specifically, we tested four struc-
tural models that are likely to be relevant for practi-
tioners: a simple two-factor model, a model with
mediators, a model with interactions and a model
with a sequential structure. The metrics used for
assessment are introduced next, followed by a descrip-
tion of the computational setup, and then each model
is presented together with the respective results.

3.1. Model diagnostics

3.1.1. Convergence

While MCMC methods can work well in practice,
convergence to a target distribution is an asymptotic
property, so it is always necessary to verify conver-
gence empirically (Biirkner et al., 2023). This can be
achieved by running multiple chains with randomized
initial values and then examining whether they exhibit
similar distributions; one commonly recommended
convergence diagnostic is the potential scale reduction
factor R (often just called “Rhat”). Briefly, it compares
the variance between and within chains as a proxy for
convergence and returns a value in [1,00), where val-
ues closer to 1 indicate the chains have more similar
distributions. A detailed treatment can be found in
Vehtari et al. (2021), where they also provide the rec-
ommendation to consider R < 1.01 as a reliable indi-
cator of convergence. For the purpose of our
simulation study, we relaxed the threshold to 1.05, as
we have access to the ground truth values and
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Figure 1. Simulation-based rank histograms (top) and corresponding empirical cumulative distribution function (ECDF) difference
plots (bottom) for three hypothetical quantities of interest. The blue areas in the ECDF difference plots indicate 95%-confidence
intervals under the assumptions of uniformity and thus allow for a null-hypothesis significance test of self-consistent calibration.
Left: A well-calibrated quantity. Center: A miscalibrated quantity with too many lower ranks indicating a positive bias in the esti-
mated posteriors. Right: A miscalibrated quantity with too many extreme ranks indicating overconfident posteriors (i.e. variance

underestimated).

therefore were able to verify that posterior estimates
retained acceptable quality up to that point.

3.1.2. Calibration

Convergence alone does not tell us whether our
MCMC draws provide a good approximation to the
true posterior distribution. However, we can use the
draws themselves to diagnose the quality of our
approximation if we also have knowledge of the true
data-generating distribution; this is the key idea
behind Simulation-Based Calibration (SBC; Talts et al.,
2020). For this method, one samples parameters from
the prior which are passed to the likelihood for data
generation, the model is then fit over the resulting
datasets, and the sum of ranks of the posterior draws
relative to the true value is calculated; when a uniform
distribution of rank sums is recovered, our posterior
is said to be calibrated (explained below). To assess
uniformity, we used the graphical tests proposed by
Sailynoja et al. (2022) (see Figure 1).

Calibration in the context of SBC is, strictly speak-
ing, a statement about the expected coverage of pos-
terior intervals over the joint distribution of data and
parameters. In practice, this means that it can readily
detect posterior approximations that consistently
under-/overestimate the location or uncertainty that
the true posterior would output for a given parameter;
however, it can miss less obvious mismatches and
hence does not provide a global guarantee of correct-
ness (Modrdk et al., 2023). Fortunately, the procedure
can be augmented with data-dependent quantities to
provide a more stringent test; in particular, we also
test the model likelihood, which greatly increases the

sensitivity of the test as also demonstrated by
Modrak et a.

3.1.3. Effective sample size and efficiency

Even if the model is calibrated and has converged, we
only have a finite sample of MCMC draws from the
posterior, so we must ensure that the estimation error
is small enough to give us reliable inference. It is also
necessary to account for the autocorrelation that is
often present in the chains as this further reduces
their information content; Effective Sample Size (ESS)
is a diagnostic that addresses this by estimating the
number of independent draws that the information in
our chains is equivalent to Section 11.5, Gelman et al.
(2014). We consider an ESS of at least 100 per inde-
pendent MCMC chain to be sufficient for reliable esti-
mation and separately report bulk ESS and tail ESS, as
suggested by Vehtari et al. (2021).

As having a high enough ESS is a prerequisite for
accurate inference, a question of practical importance
is how long one has to run a model for in order to
achieve the desired precision. We calculate ESS per
second (ESS/s), as it provides a simple measure of
sampling efficiency for each model. However, this will
vary considerably depending on the priors used, the
data at hand, and the computer one uses to fit the
model; the intent here is only to determine whether
the models can run in a reasonable time.

3.1.4. Parameter recovery

To evaluate parameter recovery, we use bias and the
Root Mean Squared Error (RMSE). Given a set 0¥ of
S posterior draws and a true value 0°, we have
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1 S
Bias — E; 0% — ¢, (15)

RMSE =

-

S
> (09 -0 (16)
s=1

Posterior means will almost surely (in the formal
sense) have non-zero bias whenever proper priors are
used. However, they are also consistent estimators and
we show that, for our models, and this leads to the
bias being negligible. As bias does not account for
posterior uncertainty, we also report RMSE because it
provides an overall indication of estimation error by
incorporating both posterior bias and variance into a
single measure. This relation can be shown explicitly
by rearranging Equation (16):

1 _ _
RMSE? = EZ (0% = 0)* +(0-07), (17)
! Bias?
Variance

where 0 = (1/ S)Zsszlﬂ(s) is the posterior mean.

3.2. Computational setup

The workflow of our simulation study can be sum-
marized in four key steps:

1. For each model, we found a relatively tight gen-
erative prior distribution, such that parameter
vectors drawn from the joint prior could be used
to simulate datasets without degeneracies (e.g.
without values close to zero for variances or fac-
tor loadings) with high probability.

2. We drew 250 parameter vectors from the genera-
tive prior and with each of these, we subsequently
generated a dataset of 500 observations from the
model likelihood.

3. We fitted the model twice, using two different
priors, for each of the generated datasets: first
with the generative prior itself and second with a
much wider, weakly informative prior.

4. Finally, we processed the resulting posterior sam-
ples to obtain model diagnostics in the following
manner:

e Convergence was examined in both sets of models.
Below, we only report convergence for the models
with the weakly informative prior, as convergence
for the models with the generative prior was
always superior (see Appendix A).

e Calibration was assessed on the models that used
the generative prior, because only there SBC is
valid.

e Metrics for parameter recovery and sampling effi-
ciency were calculated from the models with the
weakly informative prior. We excluded models
with any R > 1.05 from this calculation to avoid
artifacts caused by clear non-convergence.

Our simulations were fully implemented using the R
programming language (R Core Team, 2023). We
specified our models in the brms package (Biirkner,
2017), which provides a user-friendly interface for gen-
eration of Stan code, and wraps the cmdstanr and
posterior packages, which respectively provide
functions for interfacing with Stan itself and for
extracting model diagnostics (Gabry et al, 2025;
Biirkner et al., 2023a). Functions needed for dataset
generation, linking true parameter values to specific fits
and plotting calibration diagnostics were provided by
the SBC package (Kim et al., 2023). To facilitate repro-
ducibility, the simulation pipeline itself was built to run
via the targets package (Landau, 2021). The full
code is available at an online repository.! The complete
pipeline was run on a MacBook Pro with M2 chip,
where it took approximately 42h to complete.

3.3. Results

To aid visualization of the models that follow, we
introduce a novel graphical representation to comple-
ment the previously established notation. As our mod-
els allow the mean (i) and standard deviation (o) of a
latent variable distribution to be independently influ-
enced by other latent variables, we extend the usual
path diagram notation to show both of these parame-
ters explicitly.

The diagram for a single latent variable with a five-
item measurement model is shown in Figure 2. This
corresponds to the following statistical model:

{; ~ Normal(u,,a;) (18)
Vimi ~ Normal(ilm 511‘) Tlm)a

with m € {1,...,5} and A;; =1 for identification. All
the models in this section use five items per latent vari-
able and a unit factor loading identification constraint,
as in the example above. For brevity, we omit the
measurement models in the descriptions that follow.

See the folder simulation-study at https:/github.com/bdlvm-project/
gdsem-paper
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Figure 2. Extended path diagram notation which explicitly
shows the parameters (1 and o) that determine the latent var-
iable’s distribution.

Figure 3. Two-factor model. {; influences both the mean and
standard deviation of {,.

Table 1. Prior specifications for the two-factor model.

Generative Weakly informative

Parameter type Notation prior prior
Latent mean

Slope By Normal (1,0.3) Normal(0, 2.5)
Latent std. dev.

Initial ] Gammap7,.)(11,11) Gamma(5, 5)

Intercept Bos, Exp-Gamma(11,11) Exp-Gamma(5, 5)

Slope B,  Normal(0.15,0.05) Normal(0, 0.5)
Item parameters

Factor loadings A Normal(1,0.3) Normal(0, 2.5)

Error std. dev. T Normal[o_gyw)(0.5,0.15) Gamma(2.5, 5)

3.3.1. Two-factor model

We start with a two-factor model as this is the sim-
plest setup where we can have a latent variance that is
conditional on the value of another latent variable.
The mathematical notation for the model is

{; ~ Normal(0, g;)

{, ~ Normal(u,, ;)
Hy = ﬁ1,42<1

log g, = Bos, + Bis,C1-

(19)

The path diagram representation is shown in
Figure 3. The priors used for generation and fitting
are described in Table 1.
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The calibration plots in Figure 4(a) show that all
model parameters and the log-likelihood are well-
calibrated.

The heatmap in Figure 4(b) shows that about two-
thirds of the simulations produced estimates with R
between 1.00 and 1.01. Factor loadings (1) appear to
be the parameters most likely to present suboptimal
convergence but major problems are rare, with only
two simulations having R > 1.05. We did not find
any feature of the simulations that distinctly explained
the variation in R which suggests it is primarily
caused by variations in the random initializations of
parameter values. Such occasional convergence issues
are known to occur when fitting Bayesian SEMs in
general so attempting to refit with a different seed is
an advisable first step.”

Finally, our parameter recovery plots (Figure 4(c))
show that bias is negligible across all model parame-
ters. The values for RMSE need to be interpreted in
the context of each parameter’s relevant scale: for the
slope on the standard deviation f,,, the parameter we
are most interested in, an RMSE of 0.05 is low enough
to expect that the model can be usefully employed to
obtain directional estimates. This result is encouraging
given that it comes from datasets with only 500 obser-
vations; studies with a larger sample size would be
able to produce even more precise inferences.

3.3.2. Mediation model
One common use of SEM is mediation analysis, which
allows researchers to quantify direct and indirect
effects for a given variable. We show that our
approach allows investigating mediation for effects on
both means and standard deviations by fitting the fol-
lowing model:

{; ~ Normal(0, )

{, ~ Normal(u,, ;)

Hy = ﬁl,uzgl

logaz = ﬁOUZ + ﬁlJZCI

{3 ~ Normal(u,, g3)

M3 = ﬂ1y3C1

logas = fos, + P10, Ca

{4 ~ Normal(u,, 04)

Ky = ﬂ1H4C1 + ﬂzmgz

log gy = Pog, + 16,81 + P, 5

Here, {; has a direct effect on the u and ¢ for {5,
{3, and {,. Additionally, it has an indirect effect on u

(20)

2For instance, this is also recommended in the documentation for
Bayesian SEM package blavaan.
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Figure 4. Simulation diagnostics for the two-factor model. (a) ECDF difference plots. Curves are overlaid when there are multiple
parameters of the same type. (b) Heatmap showing the average R for each parameter type in each simulation. Simulations are
arranged in ascending order across the x-axis according to their overall mean R. (c) Box plots of the error distribution for average
bias and average RMSE per simulation and parameter type. Simulations with convergence issues (any parameter with R > 1.05)

were excluded.

Figure 5. Mediation model. {; has direct and indirect effects
on both of {,'s parameters.

of {, through {, and an indirect effect on ¢ of {,
through (3. The path diagram is shown in Figure 5.
Priors for this model are shown in Table 2.

The calibration plots in Figure 6(a) show good
calibration across all test quantities. Convergence in
Figure 6(b) again appears to be good in general;
there are 17 simulations with R > 1.05, but we
traced these cases back to generated datasets that
produced very small variances in {3, which led to
unstable estimates for factor loadings and error var-
iances. We verified that refitting these cases with a
different initialization was sufficient to resolve the
issue (results not shown).

Table 2. Prior specifications for the mediation model.

Weakly
Generative informative
Parameter type Notation prior prior
Latent mean
Slope :Bzm Normal(1,0.3) Normal(0, 2.5)
Latent std. dev.
Initial a1 Gammayg7,+)(11,11) Gamma(5, 5)
Intercept Bosyr Bosys Pos,  Exp-Gamma(11,11) Exp-Gamma(5, 5)
Slope 1631 B1oy1 Bag,  Normal(—0.15, 0.05) Normal(0, 0.5)
164 Normal(0.15, 0.05)
Item parameters
Factor loadings A Normal(1,0.3) Normal(0, 2.5)
Error std. dev. T Normaljo 3 )(0.5,0.15)  Gamma(2.5, 5)

Results for parameter recovery in Figure 6(c) show
no significant bias and RMSE is only slightly
increased for all slopes (on both p and o) in the
model compared to the previous two-factor model.
This is an expected consequence of including media-
tors in the model, as having multiple paths for a
given effect widens the range of coefficient values
that are compatible with the data. In general, assess-
ing mediation imposes increases in sample size and
methodological complexity (Rohrer et al, 2022;
Montoya, 2023).

3.3.3. Interaction model

We have mentioned in the Introduction that the abil-
ity to study moderation in general is a feature of
interest for users of SEM frameworks. Our approach
was created with the intent of providing more flexible
models for moderation on latent variances, but we
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Figure 6. Simulation diagnostics for the mediation model. (a) ECDF difference plots. Curves are overlaid when there are multiple
parameters of the same type. (b) Heatmap showing the average R for each parameter type in each simulation. Simulations are
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were excluded.

Figure 7. Interaction model. Dashed lines represent determin-
istic transformations; in this case, taking the product of two
latent variables.

found that it can also accommodate moderation on
structural paths with ease, since it can be represented
through interactions between variables on the same
linear predictor. We show this by fitting the moder-
ation model depicted in Figure 7, mathematically
expressed as:

{1 ~ Normal(0, 61)
{, ~ Normal(0, ;)
{3 ~ Normal(0, 63)

1)

{4 ~ Normal(p, 04)
s = B, &+ B2, 616
logas = Pos, + Bis,l1 + Bas, (1G5

Table 3. Prior specifications for the interaction model.

Weakly informative

Parameter type Notation Generative prior prior
Latent mean
Slope BM Normal(1,0.3) Normal(0, 2.5)

Normal(0.5, 0.3)

24,
Latent std. dev.

Initial 01,02,03 Gammap;,.)(11,11)  Gammal(s, 5)
Intercept Bos,  Exp-Gamma(11,11) Exp-Gamma(5, 5)
Slope 1oa Normal(0.1, 0.05) Normal(0, 0.5)

204 Normal(0.05, 0.05)
Item parameters
Factor loadings A

Error std. dev. T

Normal(1,0.3) Normal(0, 2.5)
Normalj 3 +)(0.5,0.15) Gamma(2.5, 5)

The priors used to fit this model are given in
Table 3.

The results in Figure 8 show that the model is
well-calibrated and has good convergence overall.
Parameter recovery is in line with the previous
models, showing no evidence of bias as well as low
RMSE.

3.3.4. Sequential model

Model structures that contain longer sequences of
latent variables can be relevant in studies that involve
measurements over time (Asparouhov et al., 2018) or
in those which seek to study detailed causal structures
(Zugna et al,, 2022). A thorough investigation of mod-
els in that space is well beyond the scope of this
paper, but we considered it relevant to at least explore
whether issues with our approach could become
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Figure 8. Simulation diagnostics for the interaction model. (a) ECDF difference plots. Curves are overlaid when there are multiple
parameters of the same type. (b) Heatmap showing the average R for each parameter type in each simulation. Simulations are
arranged in ascending order across the x-axis according to their overall mean R. (c) Box plots of the error distribution for average
bias and average RMSE per simulation and parameter type. Simulations with convergence issues (any parameter with R > 1.05)

were excluded.

Figure 9. Sequential model.

apparent only when fitting a longer sequence of
dependencies between latent variables. The model we
constructed additionally shows that transformations of
latent variables are also supported in this approach
(Figure 9). Using mathematical notation:

{; ~ Normal(0, 1)
{~ Normal(uj, aj)
= ﬁlujcj

ﬂOo‘ +/31aj -1

where j € {2,3,4,5} for this case. Model priors are
shown in Table 4.

Readers familiar with time series may note that set-
ting an equality constraint on the coefficients would
give the form of an autoregressive model, but testing
this for lengths of time series representative of real
applications would involve computational challenges
that we do not aim to tackle here.

The sequential structure of this model meant that,
for certain parameter draws from the generative prior,
there was a runaway increase in latent variance.

(22)

loga; =

Table 4. Prior specifications for the sequential model.

Weakly informative

Parameter type Notation Generative prior prior
Latent mean
Slope /31” Normal(0,0.2) Normal(0, 2.5)
Latent std. dev.
Intercept Bos,  Gammap7,)(11,11)  Gamma(5,5)
Intercept Bos.,  Exp-Gamma(11,11) Exp-Gamma(5, 5)
Slope B, Normal(0,0.05) Normal(0, 0.5)
Item parameters
Factor loadings A Normal(1,0.3) Normal(0, 2.5)
Error std. dev. T Normaljo 3 »)(0.5,0.15) Gamma(2.5,5)

Therefore, we had to drop one out of the 250 datasets
due to overflowing variances which caused numerical
errors. Similarly to the mediation model, there were
also 18 datasets with unrealistic values for the variance
parameters, which is reflected as a larger fraction of
with convergence in Figure 10.
Nonetheless, calibration for this model was good, the
vast majority of simulations converged well, and esti-

models issues

mates don’t show any major sign of bias. We did note
a longer tail of high-RMSE estimates for the f.,,
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Figure 10. Simulation diagnostics for the sequential model. (a) ECDF difference plots. Curves are overlaid when there are multiple
parameters of the same type. (b) Heatmap showing the average R for each parameter type in each simulation. Simulations are
arranged in ascending order across the x-axis according to their overall mean R. (c) Box plots of the error distribution for average
bias and average RMSE per simulation and parameter type. Simulations with convergence issues (any parameter with R > 1.05)

were excluded.

coefficients, but the bulk of simulations remained at
levels comparable to the previously tested models.

3.3.5. Comparing ESS

All the diagnostics discussed so far are based on a
finite amount of samples drawn from the posterior
and so, in principle, are subject to estimation error.
The left side of Figure 11 shows that across all models
and parameters, the resulting ESS was well above the
recommended threshold of 100 samples per chain,
both for bulk and tail estimates, which establishes that
our sample-based diagnostics are providing reliable
information.

On the top right side of Figure 11, we depict the
ESS per second, which is a measure of the sampling
efficiency of our models. As expected, increasing the
number of latent variables in the model generally
leads to decreases in sampling efficiency. Available
alternatives for SEM based on marginal likelihoods do
not allow latent moderation to be modeled with the
same degree of flexibility as our approach, so a direct
comparison cannot be made, but we consider that our
conditional likelihood models are sufficiently fast for
practical everyday use: the lower right corner of
Figure 11 shows that the vast majority of models took
less than a minute to fit.

4, Case study

We sought to address a substantively relevant research
question using dataset from a real study in order to
demonstrate the usefulness and flexibility of our
model. We reached out to the authors of Mader et al.
(2023), as their paper investigates the association
between neuroticism and intra-person variation in
negative affect, both of which can be conceptualized
as latent variables.

A key finding of Mader et al. is that floor effects
must be accounted for to reliably detect the neuroti-
cism-emotional variability association. They used a
hierarchical distributional regression model, where
each individual’s mean negative affect score was
treated as a censored outcome and both its mean and
variance were regressed against their mean neuroti-
cism score. This is already quite an advanced model,
but it has some shortcomings as it ignores the uncer-
tainty in the score means and assumes every item
should be weighted equally. However, methods avail-
able at the time would not have allowed to properly
model the latent nature of neuroticism and negative
affect while simultaneously estimating how one affects
the variability of the other.

One of the authors kindly provided us with access
to a subset of the Goettingen Ovulatory Cycle Diaries 2
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Figure 11. Top two plots show the distribution of average effective sample size (ESS) and average ESS per second overal simula-
tions, after excluding those with convergence issues (any parameter with R > 1.05). Lower right corner is the distribution of wall

time of those simulations.

dataset.” The recruitment and data collection process
is described in Arslan et al. (2021). Briefly, women
filled out a form upon recruitment, which included a
personality questionnaire, and were subsequently
invited to fill out an online diary every day for
70 days, which included items on loneliness, irritabil-
ity, self-esteem, stress and mood. We used this set of
items as measurements for the emotional affect con-
struct and the personality items in the initial question-
naire for the neuroticism construct. The study used a
planned missingness design, which allows us to drop
all incomplete observations without risk of bias. This
leaves a total of 1039 women, each observed between
1 and 11 times (mean: 2.5).

We aim to follow the model given in Mader et al.
(2023) as closely as possible. Therefore, we consider
item responses at the extremes of the scale as cen-
sored and use a hierarchical structure to account for
the repeated within-person observations. Abbreviating
neuroticism as Ne and emotional affect as Em, our

3Codebook available at https://rubenarslan.github.io/gocd2/

model can be notationally expressed as

{Ne,i ~ Normal (s, oxe)
CEm,ij ™ Normal(tgy, i> OEm, )

Hgm,i = ﬁO,uEm + ﬂlyﬁmgNe,i + qum,i

10g 0Em,i = Bogy,, t Prowm Nevi T Vogm i

qum

i ~ Normal(0,5,, )

Vogn,i ~ Normal(0, o4, )

Yemi ~ Normal(vne, n + ANe,n {Ne,is TNe,n)

YNe,n,i —

lyltle,n,i S 1

55 S yIiIe,n,i

ylile,n,il < yIj:Ie,n,i <5

yEm,m,i,j ~ Norma1<VEm,m + /lEm,m CEm,i,j) TEm,m)

YEm, m,i,j =

OyEm,m,i,j S 0

* k
Vemmij0 < Vemym,ij < 4

44 S yEm,m,i,j

(23)

where i indexes individual participants, j indexes their
responses over the study duration, n € {I,...,8}
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Figure 12. For subject j, the baseline measurement of neuroticism is used to predict the mean and variance of the emotional

affect measurement taken at each time j.

Table 5. Prior specification for the case study.

Parameter type Notation Prior
Latent mean

Slope /KMEm Normal(0, 2)

Std. dev. for varying intercept Ot Half-normal™ (0, 0.25)
Latent std. dev.

Intercept Booen Normal(0, 0.25)

Slope 106 Normal(0, 0.25)

Std. dev. for varying intercept Ooen Half-normal™ (0, 0.25)
Item parameters

Intercepts (centered) v Student-t(3,0, 2.5)

Factor loadings i Normal(0, 2)

Error std. dev. Gamma(5, 5)

indexes the items measuring neuroticism, m €
{1,...,5} indexes the items measuring emotional
affect, y represents person-specific random intercepts,
and y represents the observed (censored) responses to
the questionnaires. The corresponding path diagram is
shown in Figure 12.

To obtain an identified model, we set py, =
Bouﬁm =0 and one = Agm,1 = 1. We chose the variance
identification constraints pragmatically by fitting each
latent variable in a separate model under each possible
choice of constraint and picking the one, which
resulted in higher ESS for the remaining parameters,
but in general one should also keep in mind the way
constraints interact with priors (Graves & Merkle,
2022).

We fit the model using weakly informative priors

for all parameters as described in Table 5. It was

implemented using the brms package and code is
available online.* Posterior means and credible inter-
vals are shown in Figure 13. The key parameter of
interest f, was well-estimated with an Rhat of 1.00
and ESS above 1200 for bulk and tail, and had a pos-
terior mean of 0.11 with a [0.05, 0.18] 95% credible
interval; this is consistent with Mader et al. (2023),
which pooled 13 studies to produce an estimate of
0.10 [0.07, 0.13]. Strictly speaking, the parameters can-
not be directly compared as the free factor loadings in
our model lead to items being weighed differently, but
investigating measurement invariance is beyond the
scope of this example (however, see Robitzsch &
Ludtke, 2023).

This case study illustrates how our approach opens
the door for more truthful modeling of measurement
processes. The results show that the latent parameters
can be well-estimated even as part of a more complex
model structure. Furthermore, the implementation cost
of adding censoring and varying intercepts for this ana-
lysis was essentially negligible as these features were
already available in the brms package. This extensibil-
ity arises from the underlying conditional likelihood
formulation of the latent variable model and it should
offer more flexibility for researchers who wish to build
sophisticated models without the need to develop dis-
tinct, SEM-specific implementations.

“See the folder case-study at https:/github.com/bdlvm-project/gdsem-
paper
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Figure 13. Posterior means and credible intervals (thick line: 50%, thin line: 95%) for model 23.

5. Discussion

In this article, we developed a Gaussian distributional
SEM framework for the flexible estimation of latent vari-
able models that include latent moderators of both latent
means and latent variances. We achieved this by using a
Bayesian framework, which confirms the suggestion put
forward by de Kort et al. (2017) that Bayesian estimation
should be a viable approach for handling latent hetero-
scedasticity within more complex model structures.

Our simulation study used four distinct model struc-
tures to test the reliability of the estimates obtained
through the conditional likelihood approach. Although
our results show that all model parameters were well-
calibrated, we wish to emphasize that the SBC procedure
only provides information for the parameter region cov-
ered by the generative prior, and the ones we used were
relatively narrow. We did not systematically investigate
wider generative priors because they produced datasets
with unrealistic properties and, as a result, lead to con-
vergence issues too often to be reliably fitted. However,
we did employ weakly informative priors for the assess-
ment of convergence and parameter recovery with favor-
able results. Therefore, we anticipate our framework to
function well across a broad range of prior specifications.
That said, it is highly recommended that users employ
prior predictive checks to ensure the appropriateness of
their choices in any particular analysis (Winter &
Depaoli, 2023, provide a practical illustration of this
technique in the specific context of SEM).

One important practical consideration that we did not
address here is the impact of model misspecification on the
resulting inferences. Results from de Kort et al. (2017)
show that biased estimates will be obtained in situations
where heteroscedasticity and nonlinearity are simultan-
eously present. Given that the model examined by de Kort
et al. can be seen as a special case of the structures we have
considered here, we expect the same caveats to carry over.

For future research, the analogy with distributional
regression directly suggests the possibility of using condi-
tional likelihood SEMs to explore non-Gaussian distribu-
tions for latent variables, including the specification of
moderators on distributional parameters beyond the
variance. As mentioned above, we also faced the chal-
lenge of specifying sensible generative priors while
designing our simulation study. It has already been high-
lighted by Merkle et al. (2023) that the default approach
of using non-informative priors implies data-generating
processes that are incompatible with the patterns that
would motivate using SEM in the first place. However,
during model validation (e.g. when performing SBC),
one would also like to cover as much of the parameter
space as possible. Therefore, a relevant direction may be
to move away from the usual approach of specifying pri-
ors on each individual model parameter and instead
explore methods that use information expressed on
more intuitive scales to construct the implied prior on
the parameter scale (e.g. Aguilar & Biirkner, 2023;
Bockting et al, 2023). Another possibility that we
recently became aware of is to keep non-informative



priors while simultaneously introducing imaginary data
in order to produce an updated prior (for an overview of
the approach see Ibrahim et al.,, 2015; we demonstrate an
application to SEM in Fazio et al., 2024).

Finally, while we have shown that the performance of
our Gaussian distributional SEMs is sufficient for practical
everyday applications, there is certainly room for further
optimization. For this paper we used the brms-generated
Stan code as-is, but we are aware that applying a non-cen-
tered parametrization (Papaspiliopoulos et al., 2007) to
the latent variables leads to noticeable performance gains,
so it would be helpful to implement this as an option in
brms itself. Alternatively, variational approximations can
be used in place of MCMC for fast posterior estimation.
Initial results for SEM estimation have been encouraging
(Dang & Maestrini, 2022), but the statistical performance
of these approximate methods still needs to be studied in
a wider range of scenarios. Another promising set of
approaches is those from the field of simulation-based
inference, in particular, machine learning-based methods
of posterior estimation and amortized inference (Cranmer
et al, 2020; Radev et al, 2022; Zammit-Mangion et al.,
2024). These techniques offer much faster inference-time
results at the upfront cost of an initial training phase, but
we have not found works that show their specific applica-
tion to SEM estimation at this time.
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Appendix A. Additional diagnostics

Two-factor model
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Figure A1. Convergence and parameter recovery results for fits with the generative prior.
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