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ABSTRACT 
Accounting for the complexity of psychological theories requires methods that can predict 
not only changes in the means of latent variables – such as personality factors, creativity, or 
intelligence – but also changes in their variances. Structural equation modeling (SEM) is the 
framework of choice for analyzing complex relationships among latent variables, but the 
modeling of latent variances as a function of other latent variables is a task that current 
methods only support to a limited extent. In this article, we develop a Bayesian framework 
for Gaussian distributional SEM, which broadens the scope of feasible models for latent het
eroscedasticity. We use statistical simulation to validate our framework across four distinct 
model structures, in which we demonstrate that reliable statistical inferences can be 
achieved and that computation can be performed with sufficient efficiency for practical 
everyday use. We illustrate our framework’s applicability in a real-world case study that 
addresses a substantive hypothesis from personality psychology.
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1. Introduction

Structural equation modeling (SEM) is a widely-used 
statistical framework that can be regarded as an exten
sion of regression models: it allows modeling multiple 
dependent variables simultaneously, including rela
tionships among them, as well as the introduction of 
measurement error and unobserved (latent) variables 
(for a comprehensive introduction see Bollen, 1989; 
Kline, 2016). As with regression, the classic formula
tion of SEM presents an idealized setting where, 
among other simplifications, it is assumed that the 
model’s parameters (intercepts, coefficients and (co- 
)variances) all take on values that are constant across 
people, conditions, etc. Such an assumption often 
does not hold in practice and this has motivated a 
rich literature on methods for handling non-invariant 
parameters (see below). Extending this line of 
research, we develop a Bayesian framework for 
Gaussian distributional SEMs, which, compared to 
past approaches, supports more flexible models of 
latent heteroscedasticity when dependencies on other 
latent variables are involved. We demonstrate our 
framework’s statistical validity and usefulness through 
simulation studies on four distinct structural models 

and a real-world case study applied to a research 
question from personality psychology.

1.1. Related work

The problem of invariance has received attention since 
the early days of factor analysis, initially focusing on 
invariance of the covariance matrix of observed data 
across selected subgroups of some larger population 
(Thomson & Lederunn, 1939). The introduction of 
the multiple-group model methodology in J€oreskog 
(1971) marked the shift in focus to the invariance of 
model parameters that prevails today. It was followed 
by the development of moderated factor analysis 
(MFA), which enabled modeling parameter values via 
known functions of observed variables (moderators), 
including continuous ones; this meant that evaluation 
of invariance stopped being limited to comparisons 
over discrete groups (Bauer & Hussong, 2009). A fur
ther extension, local structural equation modeling 
(LSEM), fits the model multiple times over the mod
erators’ range in combination with an observation 
weighting scheme to produce a nonparametric esti
mate of the moderation functions, thereby avoiding 
the assumption of a known functional form 
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(Hildebrandt et al., 2016). There are additional 
approaches that are particularly suited for assessment 
of non-invariance under specific assumptions of mag
nitude or structure (for an overview see Leitg€ob et al., 
2023), but we do not discuss them here as they are 
less related to our proposed framework.

The above-mentioned techniques already provide a 
great deal of flexibility for modeling varying parame
ters within the SEM framework, but they all share the 
requirement that the moderator be an observed vari
able. A set of related approaches known as heterosce
dastic factor models use MFA-like regressions on 
residual item variance and factor loading parameters 
together with skewed latent variable distributions 
(Molenaar et al., 2010, 2011). Another approach intro
duced in Molenaar (2015) is to use latent skewed dis
tributions to allow the model to account for the 
effects of continuous latent moderators on the latent 
trait of interest. However, it achieves so by effectively 
marginalizing over the moderator and hence is not 
applicable when one wishes to include a measurement 
model for the latent moderator. In his discussion, 
Molenaar mentions this limitation and notes that 
models with explicit latent moderators would consti
tute a useful addition to the literature, citing methods 
for investigating latent heteroscedasticity (Molenaar 
et al., 2012) and latent variable interactions (Klein & 
Moosbrugger, 2000) as examples.

Indeed, one can already find some developments 
toward the use of latent predictors for latent varian
ces. For instance, the works of Nestler (2020) and 
Martin and Rast (2022), motivated from the perspec
tive of measurement reliability, provide techniques for 
modeling the variance of measurement errors (which 
can be conceived of as a special type of latent vari
able) as dependent on other latent variables. The ori
ginal formulation of MFA (Bauer & Hussong, 2009) 
also received an extended treatment in Bauer (2017), 
where it is emphasized that the method can be used 
to assess measurement invariance and differential item 
functioning, including the case of both observed and 
latent moderators of item-level residual variances. 
Moving beyond heteroscedastic errors, modeling of 
the residual variance of a structural latent variable has 
also been demonstrated under a frequentist framework 
in a simple latent regression setting (i.e. one exogen
ous latent variable predicting one endogenous latent 
variable; de Kort et al., 2017).

One key challenge in maximum likelihood estima
tion of SEM is that latent variables can be regarded as 
incidental (Neyman & Scott, 1948) or nuisance (Basu, 
1977) parameters, which means that they must be 

marginalized out of the likelihood in order for con
sistent estimates to be obtainable. When latent hetero
scedasticity is introduced, a closed-form expression of 
the marginal likelihood will generally not be available 
and numerical integration has to be performed at 
each step of the maximization procedure (e.g. Hessen 
& Dolan, 2009). Such an approach is sometimes called 
Marginal Maximum Likelihood (MML) and corre
sponds to an application of the more general expect
ation-maximization (EM) algorithm (Bock & Aitkin, 
1981). As the quadrature methods that are commonly 
used to approximate the integral do not scale well 
with dimension (which in turn grows with the num
ber of latent variables), de Kort et al. (2017) have sug
gested that Bayesian procedures could provide a viable 
alternative to MML for estimation of larger models 
with latent heteroscedasticity. To our knowledge, a 
systematic assessment of such an approach has not yet 
been conducted.

1.2. Our contributions

We develop and validate a Bayesian approach to sup
port latent moderators of latent variances, which 
works by including latent variables as parameters to 
sample from instead of marginalizing over them. Such 
an approach has been termed conditional likelihood in 
the latent variable literature (e.g. Merkle et al., 2019), 
and it was favored in earlier methods for obtaining 
full posterior distributions in Bayesian SEM as it 
enabled the use of Gibbs sampling (Lee, 2007). With 
the development of algorithms such as Hamiltonian 
Monte Carlo (HMC; Neal, 2012; Betancourt, 2018), it 
was no longer necessary to use conditional distribu
tions that could be sampled from and contemporary 
Bayesian SEM software has moved to use marginal 
likelihoods due to the increased sampling efficiency 
gained by not having the latent variables as additional 
parameters (Merkle et al., 2021). As mentioned above, 
however, latent moderators cannot be handled in full 
generality when using marginal likelihoods, which is 
why we adopt a conditional likelihood approach in 
this paper.

We implement our framework in the probabilistic 
programming language Stan, which provides 
an expressive syntax and powerful algorithms to spe
cify and fit open-ended Bayesian models (Stan 
Development Team, 2023). To avoid users having to 
interact with Stan directly, we extended the R package 
brms, designed to simplify the process of fitting 
Bayesian regression models in Stan while still provid
ing access to advanced regression techniques that can 
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be combined in a modular fashion (R Core Team, 
2023; B€urkner, 2017). We realize latent variable mod
els with moderators in brms by utilizing its function
ality for model-based imputation and distributional 
regression models, models predicting distributional 
parameters beyond the mean, for example, also var
iances or standard deviations (see Fahrmeir et al., 
2021, Chapter 10; B€urkner, 2018, 2021). By represent
ing latent variables as missing observations and plac
ing them as predictors of distributional parameters, 
we obtain an MFA-like procedure that admits latent 
moderators with more flexibility than methods based 
on marginal likelihoods.

In the remainder of this article we describe and 
evaluate our conditional likelihood approach for con
tinuous latent moderators on both latent means and 
variances. In Section 2, we formally introduce the 
model and establish the corresponding notation. In 
Section 3, we present are large-scale simulation study 
to evaluate our approach, with results showing good 
convergence and parameter recovery in all investi
gated models. We demonstrate an application to a 
substantive hypothesis from personality psychology in 
Section 4. Finally, in Section 5, we discuss limitations 
and future directions.

2. Model description

Below, we formally introduce the developed SEM 
framework. Going forward, we will make an impor
tant simplifying assumption: all the variables in the 
model are conditionally normally distributed. This is 
not an inherent limitation of the approach we present, 
as it allows the specification of any continuous distri
bution for the latent variables, with moderation on 
other parameters beyond the mean. However, we find 
that this simplified setting already involves enough 
complexity for a rich discussion and practical rele
vance, so we omit a more general treatment in order 
to keep a reasonable scope for this paper. 
Additionally, we will omit structural manifest variables 
and fixed covariates from the following exposition as 
their inclusion is straightforward and our interest here 
is to discuss latent-to-latent regressions.

2.1. Model likelihood

We begin by describing the general structure of the 
model. Let I be some set indexing individual observa
tions over the relevant units of analysis (e.g. institu
tions, individuals, time points, etc.). For each i 2 I; we 
have a vector fi ¼ ðf1i, :::, fli, :::, fLiÞ of latent variables 

and for each fli; the vector yli ¼ ðyl1i, :::, ylmi, :::, yLMiÞ

holds the corresponding manifest indicator variables. 
Here, M denotes the number of manifest variables of 
the lth factor, with M being allowed to vary over l. 
Then, the distribution of the variables can be 
written as

flijfi � Normalðlli, rliÞ

ylmijfli � Normalð�lm þ klmfli, slmÞ,
(1) 

where �lm is the intercept of the manifest variable and 
klm is its factor loading. Both the mean lli and stand
ard deviation rli of each latent variable can depend on 
other latent variables. We consider dependencies of 
the form given by a generalized additive predictor

ghl i ¼
XKhl

k¼0
bkhl

fkhlðfiÞ, (2) 

where h stands for the likelihood parameter of interest 
(l or r) and bkhl 

are the coefficients for each continu
ous (possibly non-linear) transformation fkhl of the 
latent variables. For clarity, we point out that if one 
wishes to include an intercept in the model, this can 
be done by setting f0hl ¼ 1 and incorporating fixed 
covariates more generally is a matter of putting their 
values as a constant part in the fkhl : With this nota
tion, each parameter is related to its predictor via the 
appropriate link function:

lli ¼ identityðgll iÞ ¼ gll i,
rli ¼ exp ðgrl iÞ:

(3) 

Let us set hf ¼ ðb1l1
, :::, bKlL

, b1r1
, :::, bKrL

Þ to 
denote the vector of structural parameters and hy ¼

ð�11, :::, �LM , k11, :::, kLM, s11, :::, sLMÞ to denote the vec
tor of measurement model parameters. Then, the full 
likelihood can be written as

pðy, fjhf, hyÞ: (4) 

Following terminology from the latent variable 
model literature (e.g. Merkle et al., 2019), one could 
obtain the marginal likelihood by integrating out the 
latent variables:

pðyjhf, hyÞ ¼

ð

pðy, fjhf, hyÞdf: (5) 

The use of marginal likelihoods is a necessity in 
frequentist settings as latent variables play the role of 
incidental parameters, which results in inconsistent 
estimates if they are included in the estimation pro
cess (Neyman & Scott, 1948; also see discussion at the 
end of Hessen & Dolan, 2009). On the other hand, 
there are no formal impediments for performing 
Bayesian inference while including latent variables as 
part of the model parameters. The form of the 
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likelihood in which latent variables are explicitly 
included is called the conditional likelihood, as one 
can decompose Equation (4) into a likelihood for the 
indicator variables conditioned on the latent variables, 
and a likelihood for the latent variables themselves:

pðy, fjhf, hyÞ ¼ pðyjf, hyÞpðfjhfÞ: (6) 

As discussed in Section 1, we use conditional likeli
hoods in this paper because marginalization would 
not produce a closed-form expression in the presence 
of latent predictors for latent variances.

Because we use the Bayesian framework for infer
ence (see the Estimation section for more informa
tion), a complete specification must also include 
priors for the parameters. We can write the resulting 
joint posterior as

pðf, hf, hyjyÞ / pðyjf, hyÞpðfjhfÞpðhyÞpðhfÞ

¼
YL

l¼1
pðyljfl, hyÞpðfljPAðflÞ, hfÞ

" #

pðhyÞpðhfÞ,

(7) 

where PAðflÞ � f−l denotes the parents of latent vari
able fl among the set of all other latent variables f−l;

that is, all latent variables that contribute to the addi
tive predictors ll or rl:

2.2. Identification

The model as given above is underidentified. Unless 
otherwise noted, identification for models in this 
paper is obtained by setting the expectation of all 
latent variables to 0, which identifies their mean, and 
the loading factor of one item to 1, which identifies 
their scale (see (Bollen, 1989, p. 238) for an introduc
tion to identification in SEM). Our model additionally 
introduces coefficients for the latent variance linear 
predictor, so it is valid to ask whether these parame
ters are identified too. Below, we provide a formal 
argument demonstrating that a link from observed 
data to parameter values can be drawn without the 
need for any new constraints, thus showing 
identification.

To start with, consider the simplified scenario 
where we assume the latent values to be observed dir
ectly. Let f0 be the variable whose variance we are 
interested in predicting based on the values of 
f1, :::, fK so that

Var f0 ¼ exp RK
k¼1bkfk

� �
, (8) 

which means that the coefficients are related to the 
ratio of variances given a unit increase in one of the 
predictors. Without loss of generality, consider 

increasing f1 by one. Then, we find

Var f0jðf1 þ 1Þ, ff2, :::, Kg
� �

Var f0jf1, ff2, :::, Kg
� � ¼

exp ðb1ðf1 þ 1Þ þ RK
k¼2bkfkÞ

exp ðb1f1 þ RK
k¼2bkfkÞ

 !

¼ exp ðb1Þ,

(9) 

thus showing identification of the coefficients 
b1, :::, bK if there is variation in the corresponding 
latent variables. Estimation of the coefficients in such 
a model is a well-studied topic (e.g. Harvey, 1976) 
and can be regarded as a particular case of the more 
general distributional regression framework (e.g. see 
Chapter 10 of Fahrmeir et al., 2021).

Coming back to our non-simplified model, we do 
not actually observe the latent variables but rather 
noisy measurements as defined in Equation (1), and 
we want to show whether it’s possible to infer changes 
in the latent variance from those available observa
tions. For this purpose, a more helpful way of writing 
the measurement model is

ylm ¼ klmfl þ elm, elm � Normalð0, slmÞ, (10) 

which can be combined with Equation (8) to untangle 
the latent variance from the error variance. Let us 
examine the observed variance of some measurement 
y0m of f0; conditional on observed measurements 
yf1, :::, Kgm for the latent predictors. For simplicity, and 
without loss of generality, we take a single measure
ment per latent variable so the m subscript is 
dropped. This gives us

Var y0jyf1, :::, Kg, ef1, :::, Kg
� �

¼ Var k0f0 þ e0½ �

¼ k2
0Varf0 þ s2

0
(11) 

¼ k2
0 exp ðRK

k¼1bkfkÞ þ s2
0

¼ k2
0 exp ðRK

k¼1bkðyk − ekÞ=kkÞ þ s2
0:

(12) 

The last expression still contains unobserved varia
bles in the form of the error terms ef1, :::, Kg; but we 
can apply the law of iterated expectations to deal with 
them. We use Equations (11) and (12) to work in 
terms of the latent variance we are interested in:

Var f0jyf1, :::, Kg
� �

¼ Ee Var f0jyf1, :::, Kg, ef1, :::, Kg
� �� �

¼ Ee exp ðRK
k¼1bkðyk − ekÞ=kkÞ

� �

¼ exp ðRK
k¼1bkyk=kkÞEe exp ð−RK

k¼1bkek=kkÞ
� �

¼ exp ðRK
k¼1bkyk=kkÞ exp ðRK

k¼1b
2
ks

2
k=2k2

kÞ

(13) 

where the last step uses the fact that the expectation 
of the exp-sum of error terms is equivalent to the 
product of expectations of independent log-normal 
random variables.
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With Equations (11) and (13), we can obtain an 
expression that is analogous to Equation (9), but fully 
expressed in terms of observable measurements (com
mon factors are omitted):

Var y0jðy1 þ 1Þ, yf2, :::, Kg
� �

− s2
0

Var y0jy1, yf2, :::, Kg
� �

− s2
0
¼

Var f0jðy1 þ 1Þ, yf2, :::, Kg
� �

Var f0jy1, yf2, :::, Kg
� �

¼
exp ðb1ðy1 þ 1Þ=k1 þ RK

k¼2bkyk=kkÞ

exp ðb1y1=k1 þ RK
k¼2bkyk=kkÞ

¼ exp ðb1=k1Þ:

(14) 

Hence, observable changes in the variance of the 
measurement y0 across measurements yk of the latent 
variance predictors provide sufficient information to 
estimate the coefficients and no additional identifica
tion constraints are required because s2

0 and k1 are 
already identified by the usual constraints on the 
measurement model.

2.3. Estimation

We use Bayesian inference for model fitting. At a 
high level, the process consists of first specifying a 
prior distribution (further discussed in the next sub
section), which describes our state of knowledge 
before seeing the data, and combining it with the 
data-informed model likelihood to obtain a posterior 
distribution, which represents our updated state of 
knowledge about the parameters’ values. An accessible 
introduction to Bayesian inference can be found in 
Johnson et al. (2022).

Calculating the posterior distribution is the main 
challenge during inference as the expression involves 
a high-dimensional integral which will not have a 
closed-form beyond a few special cases; hence, it 
becomes necessary to resort to numerical methods. 
We use Markov chain Monte Carlo (MCMC), specif
ically adaptive Hamiltonian Monte Carlo as imple
mented in the Stan probabilistic programming 
language (Hoffman et al., 2014; Stan Development 
Team, 2023). Adaptive HMC is a class of efficient 
algorithms that can accurately sample complicated 
parameter spaces and Stan is a well-tested project that 
is freely available for all major operating systems. All 
MCMC algorithms produce sequences of samples 
(known as chains) from the target distribution as its 
output, which we can then directly use to obtain esti
mates of parameter means, credibility intervals, trans
formations, and other quantities of interest (Gelman 
et al., 2014).

2.4. Prior specification

In the ideal Bayesian workflow, all model parameters 
are given priors that represent some state of know
ledge which will be updated through the likelihood as 
new data arrives. The purpose of this paper, however, 
is to investigate the set of conditions under which our 
approach can produce useful results. Hence, we adopt 
the minimalist position (Gelman et al., 2017) for all 
simulations, i.e. we attempt to identify the weakest 
priors for each model that will still produce reliable 
inferences. The criteria we use to assess reliability are 
described in Section 3.1 and the specific priors are 
introduced along with their corresponding models in 
Section 3.3. Readers looking for practical advice on 
how to set priors for SEM can find an excellent 
resource in van Erp (2020) and Winter and Depaoli 
(2023).

3. Simulations

We investigated the viability of our approach through 
statistical simulation. Specifically, we tested four struc
tural models that are likely to be relevant for practi
tioners: a simple two-factor model, a model with 
mediators, a model with interactions and a model 
with a sequential structure. The metrics used for 
assessment are introduced next, followed by a descrip
tion of the computational setup, and then each model 
is presented together with the respective results.

3.1. Model diagnostics

3.1.1. Convergence
While MCMC methods can work well in practice, 
convergence to a target distribution is an asymptotic 
property, so it is always necessary to verify conver
gence empirically (B€urkner et al., 2023). This can be 
achieved by running multiple chains with randomized 
initial values and then examining whether they exhibit 
similar distributions; one commonly recommended 
convergence diagnostic is the potential scale reduction 
factor R̂ (often just called “Rhat”). Briefly, it compares 
the variance between and within chains as a proxy for 
convergence and returns a value in ½1,1Þ; where val
ues closer to 1 indicate the chains have more similar 
distributions. A detailed treatment can be found in 
Vehtari et al. (2021), where they also provide the rec
ommendation to consider R̂ � 1:01 as a reliable indi
cator of convergence. For the purpose of our 
simulation study, we relaxed the threshold to 1.05, as 
we have access to the ground truth values and 
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therefore were able to verify that posterior estimates 
retained acceptable quality up to that point.

3.1.2. Calibration
Convergence alone does not tell us whether our 
MCMC draws provide a good approximation to the 
true posterior distribution. However, we can use the 
draws themselves to diagnose the quality of our 
approximation if we also have knowledge of the true 
data-generating distribution; this is the key idea 
behind Simulation-Based Calibration (SBC; Talts et al., 
2020). For this method, one samples parameters from 
the prior which are passed to the likelihood for data 
generation, the model is then fit over the resulting 
datasets, and the sum of ranks of the posterior draws 
relative to the true value is calculated; when a uniform 
distribution of rank sums is recovered, our posterior 
is said to be calibrated (explained below). To assess 
uniformity, we used the graphical tests proposed by 
S€ailynoja et al. (2022) (see Figure 1).

Calibration in the context of SBC is, strictly speak
ing, a statement about the expected coverage of pos
terior intervals over the joint distribution of data and 
parameters. In practice, this means that it can readily 
detect posterior approximations that consistently 
under-/overestimate the location or uncertainty that 
the true posterior would output for a given parameter; 
however, it can miss less obvious mismatches and 
hence does not provide a global guarantee of correct
ness (Modr�ak et al., 2023). Fortunately, the procedure 
can be augmented with data-dependent quantities to 
provide a more stringent test; in particular, we also 
test the model likelihood, which greatly increases the 

sensitivity of the test as also demonstrated by 
Modr�ak et a.

3.1.3. Effective sample size and efficiency
Even if the model is calibrated and has converged, we 
only have a finite sample of MCMC draws from the 
posterior, so we must ensure that the estimation error 
is small enough to give us reliable inference. It is also 
necessary to account for the autocorrelation that is 
often present in the chains as this further reduces 
their information content; Effective Sample Size (ESS) 
is a diagnostic that addresses this by estimating the 
number of independent draws that the information in 
our chains is equivalent to Section 11.5, Gelman et al. 
(2014). We consider an ESS of at least 100 per inde
pendent MCMC chain to be sufficient for reliable esti
mation and separately report bulk ESS and tail ESS, as 
suggested by Vehtari et al. (2021).

As having a high enough ESS is a prerequisite for 
accurate inference, a question of practical importance 
is how long one has to run a model for in order to 
achieve the desired precision. We calculate ESS per 
second (ESS/s), as it provides a simple measure of 
sampling efficiency for each model. However, this will 
vary considerably depending on the priors used, the 
data at hand, and the computer one uses to fit the 
model; the intent here is only to determine whether 
the models can run in a reasonable time.

3.1.4. Parameter recovery
To evaluate parameter recovery, we use bias and the 
Root Mean Squared Error (RMSE). Given a set hðsÞ of 
S posterior draws and a true value h�; we have

Figure 1. Simulation-based rank histograms (top) and corresponding empirical cumulative distribution function (ECDF) difference 
plots (bottom) for three hypothetical quantities of interest. The blue areas in the ECDF difference plots indicate 95%-confidence 
intervals under the assumptions of uniformity and thus allow for a null-hypothesis significance test of self-consistent calibration. 
Left: A well-calibrated quantity. Center: A miscalibrated quantity with too many lower ranks indicating a positive bias in the esti
mated posteriors. Right: A miscalibrated quantity with too many extreme ranks indicating overconfident posteriors (i.e. variance 
underestimated).
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Bias ¼
1
S

XS

s¼1
hðsÞ − h�, (15) 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
S

XS

s¼1
ðhðsÞ − h�Þ

2

v
u
u
t : (16) 

Posterior means will almost surely (in the formal 
sense) have non-zero bias whenever proper priors are 
used. However, they are also consistent estimators and 
we show that, for our models, and this leads to the 
bias being negligible. As bias does not account for 
posterior uncertainty, we also report RMSE because it 
provides an overall indication of estimation error by 
incorporating both posterior bias and variance into a 
single measure. This relation can be shown explicitly 
by rearranging Equation (16): 

RMSE2 ¼
1
S

XS

s¼1
ðhðsÞ − �hÞ

2

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Variance

þð�h − h�Þ
2

|fflfflfflfflffl{zfflfflfflfflffl}
Bias2

, (17) 

where �h ¼ ð1=SÞRS
s¼1h

ðsÞ is the posterior mean.

3.2. Computational setup

The workflow of our simulation study can be sum
marized in four key steps:

1. For each model, we found a relatively tight gen
erative prior distribution, such that parameter 
vectors drawn from the joint prior could be used 
to simulate datasets without degeneracies (e.g. 
without values close to zero for variances or fac
tor loadings) with high probability.

2. We drew 250 parameter vectors from the genera
tive prior and with each of these, we subsequently 
generated a dataset of 500 observations from the 
model likelihood.

3. We fitted the model twice, using two different 
priors, for each of the generated datasets: first 
with the generative prior itself and second with a 
much wider, weakly informative prior.

4. Finally, we processed the resulting posterior sam
ples to obtain model diagnostics in the following 
manner:

� Convergence was examined in both sets of models. 
Below, we only report convergence for the models 
with the weakly informative prior, as convergence 
for the models with the generative prior was 
always superior (see Appendix A).

� Calibration was assessed on the models that used 
the generative prior, because only there SBC is 
valid.

� Metrics for parameter recovery and sampling effi
ciency were calculated from the models with the 
weakly informative prior. We excluded models 
with any R̂ > 1:05 from this calculation to avoid 
artifacts caused by clear non-convergence.

Our simulations were fully implemented using the R 
programming language (R Core Team, 2023). We 
specified our models in the brms package (B€urkner, 
2017), which provides a user-friendly interface for gen
eration of Stan code, and wraps the cmdstanr and 
posterior packages, which respectively provide 
functions for interfacing with Stan itself and for 
extracting model diagnostics (Gabry et al., 2025; 
B€urkner et al., 2023a). Functions needed for dataset 
generation, linking true parameter values to specific fits 
and plotting calibration diagnostics were provided by 
the SBC package (Kim et al., 2023). To facilitate repro
ducibility, the simulation pipeline itself was built to run 
via the targets package (Landau, 2021). The full 
code is available at an online repository.1 The complete 
pipeline was run on a MacBook Pro with M2 chip, 
where it took approximately 42 h to complete.

3.3. Results

To aid visualization of the models that follow, we 
introduce a novel graphical representation to comple
ment the previously established notation. As our mod
els allow the mean (l) and standard deviation (r) of a 
latent variable distribution to be independently influ
enced by other latent variables, we extend the usual 
path diagram notation to show both of these parame
ters explicitly.

The diagram for a single latent variable with a five- 
item measurement model is shown in Figure 2. This 
corresponds to the following statistical model:

f1 � Normalðl1, r1Þ

y1mi � Normalðk1m f1i, s1mÞ,
(18) 

with m 2 f1, :::, 5g and k11 ¼ 1 for identification. All 
the models in this section use five items per latent vari
able and a unit factor loading identification constraint, 
as in the example above. For brevity, we omit the 
measurement models in the descriptions that follow.

1See the folder simulation-study at https://github.com/bdlvm-project/ 
gdsem-paper
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3.3.1. Two-factor model
We start with a two-factor model as this is the sim
plest setup where we can have a latent variance that is 
conditional on the value of another latent variable. 
The mathematical notation for the model is

f1 � Normalð0, r1Þ

f2 � Normalðl2, r2Þ

l2 ¼ b1l2
f1

log r2 ¼ b0r2
þ b1r2

f1:

(19) 

The path diagram representation is shown in 
Figure 3. The priors used for generation and fitting 
are described in Table 1.

The calibration plots in Figure 4(a) show that all 
model parameters and the log-likelihood are well- 
calibrated.

The heatmap in Figure 4(b) shows that about two- 
thirds of the simulations produced estimates with R̂ 
between 1.00 and 1.01. Factor loadings (k) appear to 
be the parameters most likely to present suboptimal 
convergence but major problems are rare, with only 
two simulations having R̂ > 1.05. We did not find 
any feature of the simulations that distinctly explained 
the variation in R̂ which suggests it is primarily 
caused by variations in the random initializations of 
parameter values. Such occasional convergence issues 
are known to occur when fitting Bayesian SEMs in 
general so attempting to refit with a different seed is 
an advisable first step.2

Finally, our parameter recovery plots (Figure 4(c)) 
show that bias is negligible across all model parame
ters. The values for RMSE need to be interpreted in 
the context of each parameter’s relevant scale: for the 
slope on the standard deviation b1r; the parameter we 
are most interested in, an RMSE of 0.05 is low enough 
to expect that the model can be usefully employed to 
obtain directional estimates. This result is encouraging 
given that it comes from datasets with only 500 obser
vations; studies with a larger sample size would be 
able to produce even more precise inferences.

3.3.2. Mediation model
One common use of SEM is mediation analysis, which 
allows researchers to quantify direct and indirect 
effects for a given variable. We show that our 
approach allows investigating mediation for effects on 
both means and standard deviations by fitting the fol
lowing model:

f1 � Normalð0, r1Þ

f2 � Normalðl2, r2Þ

l2 ¼ b1l2
f1

log r2 ¼ b0r2
þ b1r2

f1

f3 � Normalðl3, r3Þ

l3 ¼ b1l3
f1

log r3 ¼ b0r3
þ b1r3

f1

f4 � Normalðl4, r4Þ

l4 ¼ b1l4
f1 þ b2l4

f2

log r4 ¼ b0r4
þ b1r4

f1 þ b2r4
f3:

(20) 

Here, f1 has a direct effect on the l and r for f2;

f3; and f4: Additionally, it has an indirect effect on l 

Figure 2. Extended path diagram notation which explicitly 
shows the parameters (l and r) that determine the latent var
iable’s distribution.

Figure 3. Two-factor model. f1 influences both the mean and 
standard deviation of f2:

Table 1. Prior specifications for the two-factor model.

Parameter type Notation
Generative  

prior
Weakly informative  

prior

Latent mean
Slope b1l2

Normal (1, 0.3) Normal(0, 2.5)
Latent std. dev.

Initial r1 Gamma½0:7,1Þð11, 11Þ Gamma(5, 5)
Intercept b0r2

Exp-Gammað11, 11Þ Exp-Gamma(5, 5)
Slope b1r2

Normal(0.15, 0.05) Normal(0, 0.5)
Item parameters

Factor loadings k Normal(1, 0.3) Normal(0, 2.5)
Error std. dev. s Normal½0:3,1Þð0:5, 0:15Þ Gamma(2.5, 5)

2For instance, this is also recommended in the documentation for 
Bayesian SEM package blavaan.
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of f4 through f2 and an indirect effect on r of f4 
through f3: The path diagram is shown in Figure 5. 
Priors for this model are shown in Table 2.

The calibration plots in Figure 6(a) show good 
calibration across all test quantities. Convergence in 
Figure 6(b) again appears to be good in general; 
there are 17 simulations with R̂ > 1.05, but we 
traced these cases back to generated datasets that 
produced very small variances in f3; which led to 
unstable estimates for factor loadings and error var
iances. We verified that refitting these cases with a 
different initialization was sufficient to resolve the 
issue (results not shown).

Results for parameter recovery in Figure 6(c) show 
no significant bias and RMSE is only slightly 
increased for all slopes (on both l and r) in the 
model compared to the previous two-factor model. 
This is an expected consequence of including media
tors in the model, as having multiple paths for a 
given effect widens the range of coefficient values 
that are compatible with the data. In general, assess
ing mediation imposes increases in sample size and 
methodological complexity (Rohrer et al., 2022; 
Montoya, 2023).

3.3.3. Interaction model
We have mentioned in the Introduction that the abil
ity to study moderation in general is a feature of 
interest for users of SEM frameworks. Our approach 
was created with the intent of providing more flexible 
models for moderation on latent variances, but we 

Figure 4. Simulation diagnostics for the two-factor model. (a) ECDF difference plots. Curves are overlaid when there are multiple 
parameters of the same type. (b) Heatmap showing the average R̂ for each parameter type in each simulation. Simulations are 
arranged in ascending order across the x-axis according to their overall mean R̂: (c) Box plots of the error distribution for average 
bias and average RMSE per simulation and parameter type. Simulations with convergence issues (any parameter with R̂ > 1:05) 
were excluded.

Figure 5. Mediation model. f1 has direct and indirect effects 
on both of f4‘s parameters.

Table 2. Prior specifications for the mediation model.

Parameter type Notation
Generative  

prior

Weakly  
informative  

prior

Latent mean
Slope b�1l Normal(1, 0.3) Normal(0, 2.5)

Latent std. dev.
Initial r1 Gamma½0:7,1Þð11, 11Þ Gamma(5, 5)
Intercept b0r2

, b0r3
, b0r4

Exp-Gammað11, 11Þ Exp-Gamma(5, 5)
Slope b1r2

, b1r3
, b2r4

Normal(−0.15, 0.05) Normal(0, 0.5)
b1r4

Normal(0.15, 0.05)
Item parameters

Factor loadings k Normal(1, 0.3) Normal(0, 2.5)
Error std. dev. s Normal½0:3,1Þð0:5, 0:15Þ Gamma(2.5, 5)
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found that it can also accommodate moderation on 
structural paths with ease, since it can be represented 
through interactions between variables on the same 
linear predictor. We show this by fitting the moder
ation model depicted in Figure 7, mathematically 
expressed as:

f1 � Normalð0, r1Þ

f2 � Normalð0, r2Þ

f3 � Normalð0, r3Þ

f4 � Normalðl4, r4Þ

l4 ¼ b1l4
f1 þ b2l4

f1f2

log r4 ¼ b0r4
þ b1r4

f1 þ b2r4
f1f3:

(21) 

The priors used to fit this model are given in 
Table 3.

The results in Figure 8 show that the model is 
well-calibrated and has good convergence overall. 
Parameter recovery is in line with the previous 
models, showing no evidence of bias as well as low 
RMSE.

3.3.4. Sequential model
Model structures that contain longer sequences of 
latent variables can be relevant in studies that involve 
measurements over time (Asparouhov et al., 2018) or 
in those which seek to study detailed causal structures 
(Zugna et al., 2022). A thorough investigation of mod
els in that space is well beyond the scope of this 
paper, but we considered it relevant to at least explore 
whether issues with our approach could become 

Figure 6. Simulation diagnostics for the mediation model. (a) ECDF difference plots. Curves are overlaid when there are multiple 
parameters of the same type. (b) Heatmap showing the average R̂ for each parameter type in each simulation. Simulations are 
arranged in ascending order across the x-axis according to their overall mean R̂: (c) Box plots of the error distribution for average 
bias and average RMSE per simulation and parameter type. Simulations with convergence issues (any parameter with R̂ > 1:05) 
were excluded.

Figure 7. Interaction model. Dashed lines represent determin
istic transformations; in this case, taking the product of two 
latent variables.

Table 3. Prior specifications for the interaction model.

Parameter type Notation Generative prior
Weakly informative  

prior

Latent mean
Slope b1l4

Normal(1, 0.3) Normal(0, 2.5)
b2l4

Normal(0.5, 0.3)
Latent std. dev.

Initial r1, r2, r3 Gamma½0:7,1Þð11, 11Þ Gamma(5, 5)
Intercept b0r4

Exp-Gammað11, 11Þ Exp-Gamma(5, 5)
Slope b1r4

Normal(0.1, 0.05) Normal(0, 0.5)
b2r4

Normal(0.05, 0.05)
Item parameters

Factor loadings k Normal(1, 0.3) Normal(0, 2.5)
Error std. dev. s Normal½0:3,1Þð0:5, 0:15Þ Gamma(2.5, 5)
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apparent only when fitting a longer sequence of 
dependencies between latent variables. The model we 
constructed additionally shows that transformations of 
latent variables are also supported in this approach 
(Figure 9). Using mathematical notation:

f1 � Normalð0, r1Þ

fj � Normalðlj, rjÞ

lj ¼ b1lj
fj−1

log rj ¼ b0rj
þ b1rj

f2
j−1,

(22) 

where j 2 f2, 3, 4, 5g for this case. Model priors are 
shown in Table 4.

Readers familiar with time series may note that set
ting an equality constraint on the coefficients would 
give the form of an autoregressive model, but testing 
this for lengths of time series representative of real 
applications would involve computational challenges 
that we do not aim to tackle here.

The sequential structure of this model meant that, 
for certain parameter draws from the generative prior, 
there was a runaway increase in latent variance. 

Therefore, we had to drop one out of the 250 datasets 
due to overflowing variances which caused numerical 
errors. Similarly to the mediation model, there were 
also 18 datasets with unrealistic values for the variance 
parameters, which is reflected as a larger fraction of 
models with convergence issues in Figure 10. 
Nonetheless, calibration for this model was good, the 
vast majority of simulations converged well, and esti
mates don’t show any major sign of bias. We did note 
a longer tail of high-RMSE estimates for the b�1r 

Figure 8. Simulation diagnostics for the interaction model. (a) ECDF difference plots. Curves are overlaid when there are multiple 
parameters of the same type. (b) Heatmap showing the average R̂ for each parameter type in each simulation. Simulations are 
arranged in ascending order across the x-axis according to their overall mean R̂: (c) Box plots of the error distribution for average 
bias and average RMSE per simulation and parameter type. Simulations with convergence issues (any parameter with R̂ > 1:05) 
were excluded.

Figure 9. Sequential model.

Table 4. Prior specifications for the sequential model.

Parameter type Notation Generative prior
Weakly informative  

prior

Latent mean
Slope b1l Normal(0, 0.2) Normal(0, 2.5)

Latent std. dev.
Intercept b0r1

Gamma½0:7,1Þð11, 11Þ Gamma(5, 5)
Intercept b0r�2

Exp-Gammað11, 11Þ Exp-Gamma(5, 5)
Slope b1r Normal(0, 0.05) Normal(0, 0.5)

Item parameters
Factor loadings k Normal(1, 0.3) Normal(0, 2.5)
Error std. dev. s Normal½0:3,1Þð0:5, 0:15Þ Gamma(2.5, 5)
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coefficients, but the bulk of simulations remained at 
levels comparable to the previously tested models.

3.3.5. Comparing ESS
All the diagnostics discussed so far are based on a 
finite amount of samples drawn from the posterior 
and so, in principle, are subject to estimation error. 
The left side of Figure 11 shows that across all models 
and parameters, the resulting ESS was well above the 
recommended threshold of 100 samples per chain, 
both for bulk and tail estimates, which establishes that 
our sample-based diagnostics are providing reliable 
information.

On the top right side of Figure 11, we depict the 
ESS per second, which is a measure of the sampling 
efficiency of our models. As expected, increasing the 
number of latent variables in the model generally 
leads to decreases in sampling efficiency. Available 
alternatives for SEM based on marginal likelihoods do 
not allow latent moderation to be modeled with the 
same degree of flexibility as our approach, so a direct 
comparison cannot be made, but we consider that our 
conditional likelihood models are sufficiently fast for 
practical everyday use: the lower right corner of 
Figure 11 shows that the vast majority of models took 
less than a minute to fit.

4. Case study

We sought to address a substantively relevant research 
question using dataset from a real study in order to 
demonstrate the usefulness and flexibility of our 
model. We reached out to the authors of Mader et al. 
(2023), as their paper investigates the association 
between neuroticism and intra-person variation in 
negative affect, both of which can be conceptualized 
as latent variables.

A key finding of Mader et al. is that floor effects 
must be accounted for to reliably detect the neuroti
cism-emotional variability association. They used a 
hierarchical distributional regression model, where 
each individual’s mean negative affect score was 
treated as a censored outcome and both its mean and 
variance were regressed against their mean neuroti
cism score. This is already quite an advanced model, 
but it has some shortcomings as it ignores the uncer
tainty in the score means and assumes every item 
should be weighted equally. However, methods avail
able at the time would not have allowed to properly 
model the latent nature of neuroticism and negative 
affect while simultaneously estimating how one affects 
the variability of the other.

One of the authors kindly provided us with access 
to a subset of the Goettingen Ovulatory Cycle Diaries 2 

Figure 10. Simulation diagnostics for the sequential model. (a) ECDF difference plots. Curves are overlaid when there are multiple 
parameters of the same type. (b) Heatmap showing the average R̂ for each parameter type in each simulation. Simulations are 
arranged in ascending order across the x-axis according to their overall mean R̂: (c) Box plots of the error distribution for average 
bias and average RMSE per simulation and parameter type. Simulations with convergence issues (any parameter with R̂ > 1:05) 
were excluded.
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dataset.3 The recruitment and data collection process 
is described in Arslan et al. (2021). Briefly, women 
filled out a form upon recruitment, which included a 
personality questionnaire, and were subsequently 
invited to fill out an online diary every day for 
70 days, which included items on loneliness, irritabil
ity, self-esteem, stress and mood. We used this set of 
items as measurements for the emotional affect con
struct and the personality items in the initial question
naire for the neuroticism construct. The study used a 
planned missingness design, which allows us to drop 
all incomplete observations without risk of bias. This 
leaves a total of 1039 women, each observed between 
1 and 11 times (mean: 2.5).

We aim to follow the model given in Mader et al. 
(2023) as closely as possible. Therefore, we consider 
item responses at the extremes of the scale as cen
sored and use a hierarchical structure to account for 
the repeated within-person observations. Abbreviating 
neuroticism as Ne and emotional affect as Em, our 

model can be notationally expressed as

fNe, i � NormalðlNe, rNeÞ

fEm, i, j � NormalðlEm, i, rEm, iÞ

lEm, i ¼ b0lEm
þ b1lEm

fNe, i þ clEm, i

log rEm, i ¼ b0rEm
þ b1rEm

fNe, i þ crEm, i

clEm, i � Normalð0, rlEmÞ

crEm, i � Normalð0, rrEmÞ

y�Ne, n, i � Normalð�Ne, n þ kNe, n fNe, i, sNe, nÞ

yNe, n, i ¼

1y�Ne, n, i � 1
y�Ne, n, i1 < y�Ne, n, i < 5
55 � y�Ne, n, i

8
><

>:

y�Em, m, i, j � Normalð�Em, m þ kEm, m fEm, i, j, sEm, mÞ

yEm, m, i, j ¼

0y�Em, m, i, j � 0
y�Em, m, i, j0 < y�Em, m, i, j < 4
44 � y�Em, m, i, j

8
>><

>>:

(23) 

where i indexes individual participants, j indexes their 
responses over the study duration, n 2 f1, :::, 8g

Figure 11. Top two plots show the distribution of average effective sample size (ESS) and average ESS per second overal simula
tions, after excluding those with convergence issues (any parameter with R̂ > 1:05). Lower right corner is the distribution of wall 
time of those simulations.

3Codebook available at https://rubenarslan.github.io/gocd2/
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indexes the items measuring neuroticism, m 2
f1, :::, 5g indexes the items measuring emotional 
affect, c represents person-specific random intercepts, 
and y represents the observed (censored) responses to 
the questionnaires. The corresponding path diagram is 
shown in Figure 12.

To obtain an identified model, we set lNe ¼

b0lEm
¼ 0 and rNe ¼ kEm, 1 ¼ 1: We chose the variance 

identification constraints pragmatically by fitting each 
latent variable in a separate model under each possible 
choice of constraint and picking the one, which 
resulted in higher ESS for the remaining parameters, 
but in general one should also keep in mind the way 
constraints interact with priors (Graves & Merkle, 
2022).

We fit the model using weakly informative priors 
for all parameters as described in Table 5. It was 

implemented using the brms package and code is 
available online.4 Posterior means and credible inter
vals are shown in Figure 13. The key parameter of 
interest br was well-estimated with an Rhat of 1.00 
and ESS above 1200 for bulk and tail, and had a pos
terior mean of 0.11 with a [0.05, 0.18] 95% credible 
interval; this is consistent with Mader et al. (2023), 
which pooled 13 studies to produce an estimate of 
0.10 [0.07, 0.13]. Strictly speaking, the parameters can
not be directly compared as the free factor loadings in 
our model lead to items being weighed differently, but 
investigating measurement invariance is beyond the 
scope of this example (however, see Robitzsch & 
L€udtke, 2023).

This case study illustrates how our approach opens 
the door for more truthful modeling of measurement 
processes. The results show that the latent parameters 
can be well-estimated even as part of a more complex 
model structure. Furthermore, the implementation cost 
of adding censoring and varying intercepts for this ana
lysis was essentially negligible as these features were 
already available in the brms package. This extensibil
ity arises from the underlying conditional likelihood 
formulation of the latent variable model and it should 
offer more flexibility for researchers who wish to build 
sophisticated models without the need to develop dis
tinct, SEM-specific implementations.

Figure 12. For subject i, the baseline measurement of neuroticism is used to predict the mean and variance of the emotional 
affect measurement taken at each time j.

Table 5. Prior specification for the case study.
Parameter type Notation Prior

Latent mean
Slope b1lEm

Normal(0, 2)
Std. dev. for varying intercept rlEm

Half-normalþð0, 0:25Þ
Latent std. dev.

Intercept b0rEm
Normal(0, 0.25)

Slope b1rEm
Normal(0, 0.25)

Std. dev. for varying intercept rrEm Half-normalþð0, 0:25Þ
Item parameters

Intercepts (centered) � Student-t(3, 0, 2.5)
Factor loadings k Normal(0, 2)
Error std. dev. s Gamma(5, 5)

4See the folder case-study at https://github.com/bdlvm-project/gdsem- 
paper
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5. Discussion

In this article, we developed a Gaussian distributional 
SEM framework for the flexible estimation of latent vari
able models that include latent moderators of both latent 
means and latent variances. We achieved this by using a 
Bayesian framework, which confirms the suggestion put 
forward by de Kort et al. (2017) that Bayesian estimation 
should be a viable approach for handling latent hetero
scedasticity within more complex model structures.

Our simulation study used four distinct model struc
tures to test the reliability of the estimates obtained 
through the conditional likelihood approach. Although 
our results show that all model parameters were well- 
calibrated, we wish to emphasize that the SBC procedure 
only provides information for the parameter region cov
ered by the generative prior, and the ones we used were 
relatively narrow. We did not systematically investigate 
wider generative priors because they produced datasets 
with unrealistic properties and, as a result, lead to con
vergence issues too often to be reliably fitted. However, 
we did employ weakly informative priors for the assess
ment of convergence and parameter recovery with favor
able results. Therefore, we anticipate our framework to 
function well across a broad range of prior specifications. 
That said, it is highly recommended that users employ 
prior predictive checks to ensure the appropriateness of 
their choices in any particular analysis (Winter & 
Depaoli, 2023, provide a practical illustration of this 
technique in the specific context of SEM).

One important practical consideration that we did not 
address here is the impact of model misspecification on the 
resulting inferences. Results from de Kort et al. (2017) 
show that biased estimates will be obtained in situations 
where heteroscedasticity and nonlinearity are simultan
eously present. Given that the model examined by de Kort 
et al. can be seen as a special case of the structures we have 
considered here, we expect the same caveats to carry over.

For future research, the analogy with distributional 
regression directly suggests the possibility of using condi
tional likelihood SEMs to explore non-Gaussian distribu
tions for latent variables, including the specification of 
moderators on distributional parameters beyond the 
variance. As mentioned above, we also faced the chal
lenge of specifying sensible generative priors while 
designing our simulation study. It has already been high
lighted by Merkle et al. (2023) that the default approach 
of using non-informative priors implies data-generating 
processes that are incompatible with the patterns that 
would motivate using SEM in the first place. However, 
during model validation (e.g. when performing SBC), 
one would also like to cover as much of the parameter 
space as possible. Therefore, a relevant direction may be 
to move away from the usual approach of specifying pri
ors on each individual model parameter and instead 
explore methods that use information expressed on 
more intuitive scales to construct the implied prior on 
the parameter scale (e.g. Aguilar & B€urkner, 2023; 
Bockting et al., 2023). Another possibility that we 
recently became aware of is to keep non-informative 

Figure 13. Posterior means and credible intervals (thick line: 50%, thin line: 95%) for model 23.
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priors while simultaneously introducing imaginary data 
in order to produce an updated prior (for an overview of 
the approach see Ibrahim et al., 2015; we demonstrate an 
application to SEM in Fazio et al., 2024).

Finally, while we have shown that the performance of 
our Gaussian distributional SEMs is sufficient for practical 
everyday applications, there is certainly room for further 
optimization. For this paper we used the brms-generated 
Stan code as-is, but we are aware that applying a non-cen
tered parametrization (Papaspiliopoulos et al., 2007) to 
the latent variables leads to noticeable performance gains, 
so it would be helpful to implement this as an option in 
brms itself. Alternatively, variational approximations can 
be used in place of MCMC for fast posterior estimation. 
Initial results for SEM estimation have been encouraging 
(Dang & Maestrini, 2022), but the statistical performance 
of these approximate methods still needs to be studied in 
a wider range of scenarios. Another promising set of 
approaches is those from the field of simulation-based 
inference, in particular, machine learning-based methods 
of posterior estimation and amortized inference (Cranmer 
et al., 2020; Radev et al., 2022; Zammit-Mangion et al., 
2024). These techniques offer much faster inference-time 
results at the upfront cost of an initial training phase, but 
we have not found works that show their specific applica
tion to SEM estimation at this time.
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Appendix A. Additional diagnostics

Figure A1. Convergence and parameter recovery results for fits with the generative prior.
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