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ABSTRACT
The multilevel hidden Markov model (MHMM) is a promising method to investigate intense
longitudinal data obtained within the social and behavioral sciences. The MHMM quantifies
information on the latent dynamics of behavior over time. In addition, heterogeneity
between individuals is accommodated with the inclusion of individual-specific random
effects, facilitating the study of individual differences in dynamics. However, the performance
of the MHMM has not been sufficiently explored. We performed an extensive simulation to
assess the effect of the number of dependent variables (1–8), number of individuals (5–90),
and number of observations per individual (100–1600) on the estimation performance of a
Bayesian MHMM with categorical data including various levels of state distinctiveness and
separation. We found that using multivariate data generally alleviates the sample size needed
and improves the stability of the results. Moreover, including variables only consisting of ran-
dom noise was generally not detrimental to model performance. Regarding the estimation of
group-level parameters, the number of individuals and observations largely compensate for
each other. However, only the former drives the estimation of between-individual variability.
We conclude with guidelines on the sample size necessary based on the level of state dis-
tinctiveness and separation and study objectives of the researcher.
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Introduction

Due to technological advances such as smartphones
and smartwatches, sensors, and automatic coding of
video recordings, it has become relatively easy and
affordable to collect data on groups of individuals
with a high temporal resolution (see, for example,
Ariens et al., 2020; Cabrera-Quiros et al., 2021;
Hamaker & Wichers, 2017; Lemaignan et al., 2018;
Orfanos et al., 2017; Shiffman et al., 2008; Walls &
Schafer, 2012). This novel type of data, obtained using
methods such as experience sampling, ecological
momentary assessment, daily dairy studies, or ambula-
tory assessments, receives the name of intensive longi-
tudinal data (ILD). ILD is increasingly common: from
54 publications indexed on PubMed including one of
these terms in the title or abstract in 2000, rising to
984 and 1203 publications in 2020 and 2021, respect-
ively. The steep increase in use of ILD reflects that
researchers recognize the unique value these data have

for studying behavioral phenomena that unfold over
time (see e.g., Hamaker & Wichers, 2017; Shiffman
et al., 2008; Walls & Schafer, 2012). ILD avoids the
risk of recall bias that is characteristic of traditional
survey methodologies such as retrospective self-
reported diaries, and ecological validity is increased
compared to traditional experimental designs (Ebner-
Priemer & Trull, 2009; Mehl & Conner, 2012). In
addition, ILD facilitates the assessment of contextual
relationships between factors influencing the process
under study as it develops over time (Shiffman et al.,
2008). Most importantly, due to the high sampling
frequency of ILD, individual differences on the
dynamics of social and behavioral phenomena can be
assessed (Hamaker & Wichers, 2017; Walls et al.,
2006). The increasing availability of this novel type of
data spurred the development of new and expanding
existing modeling techniques to fully exploit the
wealth of information contained within ILD.
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One such technique is the hidden Markov model
(HMM; Rabiner, 1989; Zucchini et al., 2017). The
HMM is a probabilistic method that can be used to
study processes characterized by switches between dis-
crete latent (hidden) states. Since the objects of study
of social and behavioral research often consist of proc-
esses that cannot be directly observed, the inclusion of
a (discrete) latent process provides a promising frame-
work. In addition, multiple observed variables can
link to the hidden states, often present when inferring
latent constructs in social and behavioral processes.
The HMM has a long record of success in the analysis
of sequence (e.g., intense longitudinal) data in varying
fields of research, such as speech recognition
(Rabiner, 1989), human activity recognition (Ronao &
Cho, 2017), animal behavior (Bode & Seitz, 2018),
and DNA labeling (Rueda et al., 2013). When applied
to social and behavioral processes, the HMM can be
used to quantify information on the latent temporal
dynamics of behavior into two sets of parameters: (1)
the probability of transitioning between each of the
hidden states and (2) the probability of emitting an
observation given the current hidden state.

Recently, HMMs have been extended to the multilevel
framework and take the name of multilevel HMMs
(MHMMs, also known as mixed HMMs; Altman, 2007).
The multilevel framework is particularly useful in social
and behavioral processes, as individual level heterogen-
eity is to be expected in many applications. Within this
framework, the overall temporal dynamics are reflected
by a set of group-level parameters, and variability
between individuals is accommodated by the inclusion of
individual level random effects (Gelman et al., 2013).
Additionally, quantifying the variability between individ-
uals poses the invitation to explain the observed hetero-
geneity by including time-invariant (i.e., measured at the
individual level) or time-variant (i.e., measured at the
occasion level) covariates. All this combined, MHMMs
constitute a powerful vehicle to study the temporal
dynamics of social and behavioral processes and can be
used in a wide range of applications. For example, to gain
insights on the dynamics between “positive,” “neutral,”
or “negative” interactions between adolescents and their
parents in interviews (de Haan-Rietdijk et al., 2017),
stages of drinking behavior (Shirley et al., 2012), patterns
of bird behavior (“resting,” “minimal activity,”
“moderate activity,” and “flying”; McClintock et al.,
2020), or “good” and “poor” driving behavior (Jackson
et al., 2015). On a comprehensive simulation study,
McClintock (2021) showed that accommodating con-
tinuous random effects within the model is valuable: ran-
dom effects accounting for unexplained individual

variation can improve estimation of state transition prob-
abilities and measurable covariate effects, but discrete
random effects can be a relatively poor (and potentially
misleading) approximation for continuous variation.

However, to be able to reliably use this novel
method, a sufficient amount of data needs to be col-
lected. In the MHMM, the amount of data is a com-
posite of the number of observations per individual,
the number of individuals, and the number of out-
come variables measured. As the MHMMs are rela-
tively novel models, what constitutes a sufficient
amount in the context of ILD is still largely unex-
plored. An overview of previous Monte Carlo studies
examining model performance of the MHMM is pro-
vided in Table 1. The majority of Monte Carlo studies
either concern longitudinal data (i.e., a large number
of individuals combined with few longitudinal meas-
urements; see number 1–9 in Table 1), or were
designed to validate a specific MHMM for a given
empirical application without manipulating any of the
conditions (i.e., number 1–9 and 15 in Table 1).

Our study aims to set a primer for the construction
of systematic guidelines concerning the number of
dependent variables, individuals and observations per
individual required to ensure reliable results fitting a
MHMM. We focus on intense longitudinal data tailored
to social and behavioral processes characterized by cat-
egorical observations, and factor in various levels of
noisiness in the data. To this end, we explore the effect
of three design factors (number of dependent variables
measured, number of individuals, and number of
observations per individual) on the accuracy of the
MHMM with data of different levels of state distinctive-
ness and separation. Our Monte Carlo simulation is
designed to address the following research questions:
RQ1: How does state distinctiveness and separation
impact the estimation performance of the Bayesian
MHMM? RQ2: How does the use of multivariate data
impact the estimation performance of the Bayesian
MHMM?, and RQ3: How does the estimation perform-
ance of the Bayesian MHMM vary with sample size (i.e.,
number of individuals and observations)?

Over the next sections we examine the previous work
done on each of these factors and draw hypotheses in rela-
tion to the estimation performance of theMHMM.

State distinctiveness and separation

The reliability of the estimated parameters of an
HMM depends on the level of state distinctiveness
and separation. The level of state distinctiveness in an
HMM reflects the amount of randomness or
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variability in the observed data within a state. This
“noise” is reflective of how well the observed data fit
the underlying state conditional probability distribu-
tion. High state distinctiveness means that the emis-
sion distribution of a state has a clear, recognizable,
and predictable signal, which generally reflects a low
level of noise in the emission distribution. In the con-
text of categorical data, this is evident when one or a
few categories display a high state-dependent emission
probability, while all other categories exhibit near-zero
emission probabilities. On the other hand, low state
distinctiveness implies that the observed data is less
predictable for a state, indicating a high amount of
noise in the emission distribution. In categorical data,
this is evident when there is a reduced difference
between state-dependent emission probabilities.

The degree of state separation in an HMM refers to the
extent to which the probability densities of the observed
data generated by those states overlap. When two or more
states have similar emission probability distributions, their
overlap is high and state separation low, which can nega-
tively impact the estimation performance of the HMM as
the states are harder to infer. Although this concept is gen-
erally accepted in the literature, few studies have examined
this effect in a simulation study (e.g., Beyer et al., 2013;
Jonsen, 2016; McClintock, 2021; Ruiz-Suarez et al., 2022).
The one study in Table 1 that examined such an effect,
McClintock (2021), found that the degree of state separ-
ation was the most important factor affecting state estima-
tion, with the performance of each model declining as state

separation decreased. Additionally, low state separation
appeared to have a negative, albeit more moderate, effect
on the estimation of transition and emission parameters,
particularly for smaller sample sizes.

The effect of the degree of state distinctiveness and
separation on the estimation performance of HMM
parameters depend on several factors, such as the num-
ber of hidden states, the size of the data set, and the
type of algorithm used for parameter estimation
(McClintock, 2021; Ruiz-Suarez et al., 2022). We expect
that for data with a lower degree of state distinctiveness
and separation, the model will require a larger sample
size to produce the same degree of accuracy in the esti-
mation of parameters compared with data with a higher
degree of state distinctiveness and separation.

Using multivariate data

One component that defines the estimation perform-
ance in latent variable methods, and possibly the
MHMM, is the number of dependent variables observed
(also known as indicators or outcome variables) used to
train the model. To the best of our knowledge, none of
the previous simulation studies explored the effect of
the number of dependent variables on the estimation of
the MHMM (i.e., all studies in Table 1 concerning ILD
considered univariate data. Study 2, 6, and 8 in Table 1
concerning longitudinal data did contain multivariate
data but did not vary the number of dependent varia-
bles). Notwithstanding, empirical applications of

Table 1. Previous literature of Monte Carlo simulations concerning the multilevel hidden Markov model.

Reference
Estimation
framework

Number of
data sets

Number of
individuals

Number of
observations per

individual
Number of

states
Emission

distribution

Number of
dependent
variables

Between ind.
variance

Longitudinal data
1 Altman (2007) ML 200 30 20 2 Count 1 N.A.
2 Jackson et al. (2015) ML 1000 60 20 2 Binary and

count
2 1.00

3 Maruotti and Ryd�en
(2009)

ML 250 100, 500, 1000 10 2 Count 1 0.10, 0.50

4 Xia et al. (2016) ML 100 500, 1000 4, 5, 10 2 Binary 1 N.A.
5 Lin et al. (2020) Bayesian 100 100 10 2 Continuous 1 1.00
6 Xia and Tang (2019) Bayesian N.A. 100, 300, 400,

500, 800, 1000
4 2 Continuous 6 N.A.

7 Kang et al. (2019) Bayesian 100 700 9 2 Continuous 1 N.A.
8 Raffa and Dubin

(2015)
Bayesian 200 354 6 3 Binary and

continuous
2 N.A.

9 Zhang et al. (2014) Bayesian 100 400 6 2 Binary 1 1.00
Intense longitudinal data
10 Brekkan et al. (2019) ML 100 500 60 2 Continuous 1 N.A.
11 Inaba (2017) ML 300 10 5, 10, 20, 30, 40 2 Count 1 1.10
12 McClintock (2021) ML 400 5, 15, 30,

50, 100
30–250 2 Continuous 1 0.20, 0.42

13 Chiang et al. (2018) Bayesian N.A. 100 10–100 3 Count 1 0.01
14 Park (2012) Bayesian N.A. 10, 20, 30, 40 20, 40, 60, 80, 100 2 Continuous 1 N.A.
15 Rueda et al. (2013) Bayesian 100 25 150 3 Continuous 1 0.10–1.00

Note: Studies were classified on “longitudinal data” and “intense longitudinal data” depending on a number of observations per individual <20 or � 20,
respectively; in column “estimation framework,” “ML” refers to maximal likelihood estimation, “Bayesian” refers to Bayesian estimation; “N.A.” refers to
“not available” which indicates that the corresponding value was not reported.
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MHMMs in the literature have considered a range
between 1 (de Haan-Rietdijk et al., 2017; Jackson et al.,
2015; Schafer et al., 2020; Shirley et al., 2012) and 7
(DeRuiter et al., 2017) dependent variables.

Evidence for the benefits of increasing the number
of dependent variables linked to the state on model
performance is present in closely related literature: a
number of studies belonging to the field of latent vari-
able modeling (i.e., without a time component) inves-
tigated the effect of the number of latent class
indicators (i.e., dependent variables) on several aspects
of the estimation performance. On the one hand, the
inclusion of a larger number of indicators makes for a
more complex model with more response pattern pos-
sibilities, which has been shown to lead to boundary
parameter estimation issues in latent class analysis
under certain circumstances (Galindo Garre &
Vermunt, 2006), and can cause numerical problems in
estimation algorithms (Vermunt & Magidson, 2004).

However, increasing the number of indicators also
has been shown to reduce bias and convergence issues
in structural equation models (Marsh et al., 1998),
improve classification accuracy and parameter cover-
age in multilevel latent class analyses (Finch &
French, 2014), and improve convergence and reduce
bias in latent class analysis (Wurpts & Geiser, 2014).
In these studies, the number of indicators and the
sample size compensated for each other, with the
most beneficial effect of the number of indicators for
smaller sample sizes. In addition, in the field of latent
transition analysis, Collins and Wugalter (1992) show
that increasing the number of indicators reduces
standard errors and improve parameter recovery.

We hypothesize that increasing the number of
dependent variables will have a positive effect over the
estimation performance of the model, since more
information is available to ensure an accurate infer-
ence of the hidden states.

Number of individuals and number of
observations

The number of individuals and the number of obser-
vations per individual are well known factors that can
affect the estimation performance of MHMMs and
longitudinal latent variable models in general.
Although a compensation effect between the two has
been documented in longitudinal latent variable mod-
els such as continuous time models (Hecht &
Zitzmann, 2021) and dynamic structural equation
modeling (Schultzberg & Muth�en, 2018), the effect of
sample size on both levels and how they compensate

for each other in MHMM parameter estimation is far
from well understood. A number of studies have
explored the relationship between the number of indi-
viduals and number of observations per individual
over the estimation performance of MHMMs with
simulation studies (i.e., rows 3, 4, 6, 11, 12, and 14 in
Table 1). However, most studies only concerned a
limited number of manipulated factors and selected
levels, none of the studies considered categorical
observations, and the studies were restricted to rela-
tively short time series of maximally 250 observations
per individual.

For example, Park (2012) introduced and exam-
ined the MHMM as a tool to track and describe the
existence of hidden changes in panel data analysis,
manipulating the number of observations up to 100.
Simulated data sets consisted of two hidden regimes
with only one transition occurring between regimes
over the entire sequence. Both Inaba (2017) and
Chiang et al. (2018) studied model performance of
the MHMM for clinical research, including up to 40
and 100 occasions, respectively, lower than the num-
ber of observations we envision (i.e., � 100). In add-
ition, the number of individuals was kept constant at
10 and 100, respectively. Inaba (2017) concluded that
for the studied scenarios, model performance was
acceptable when the number of observations was at
least 20.

In the field of ecology, McClintock (2021) pub-
lished the single large comprehensive Monte Carlo
simulation regarding the effects of sample size on the
estimation performance of a (frequentist) MHMM.
Although the study’s scenarios focus solely on a uni-
variate continuous distribution (specifically, a Gamma
distributed variable), and the random effects only con-
cern the probabilities of transitioning between states,
some general insights into the impact of sample size
can be distilled. Based on the simulation results pre-
sented in the study, it appears that larger sample sizes,
both in terms of the number of individuals and the
number of observations per individual, tend to result
in more accurate state assignment and parameter esti-
mation (specially for data with a highly overlapped
emission distribution). A compensation effect between
the two factors is also supported by the results. In
addition, reliable estimation of between-animal vari-
ation (i.e., individual-specific random effects) requires
at least 50 animals in the studied conditions, with
scenarios characterized by high between-animal vari-
ation showing the best performance in this regard.

We hypothesize that increasing the sample size in
terms of number of individuals and number of
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observations per individual will have a positive impact
on the estimation of the model. We expect a compen-
sation effect between the two, with the number of
individuals, the most important factor for the estima-
tion of between individual variances. The remainder
of the paper is organized as follows: to begin, we
introduce the HMM and MHMM. We then conduct a
large scale simulation study evaluating the perform-
ance of the MHMM under various sampling and data
outcome conditions. An empirical example illustrating
the application of the MHMM on non-verbal patient-
therapist communication is also presented. We con-
clude with findings and recommendations.

The hidden Markov and multilevel hidden
Markov model

In this section we present a brief introduction to the
HMM and describe approaches to apply the HMM to
a group of individuals. Subsequently, we show how
the MHMM extends the modeling capabilities of the
HMM and discuss inference of the MHMM using
Bayesian estimation.

The hidden Markov model

The HMM is a statistical method that is used to infer
a sequence of latent or hidden states St 2 ð1, 2, :::,MÞ
for time points t ¼ 1, :::,T which are defined by the
probability to observe an outcome Yt, and account for
the dynamics of the observations in terms of the
dynamics of the hidden states. The former is based on
the assumption that a given observation Yt in the
sequence is generated by an underlying, latent state St.
The latter is based on the assumption that the hidden
states are not identically and independently distrib-
uted, but they instead follow a Markov process. That
is, the probability of switching from state i at time
point t to state j at tþ 1 only depends on the depart-
ing state i at time point t. Figure 1 details the general
structure of a basic HMM.

The likelihood function LT of the HMM is defined
by three sets of parameters: the initial state probabil-
ities p, the transition probability matrix (TPM) C and
the state-dependent emission distributions p(y). If we
write the set of emission distributions in matrix nota-
tion PðYÞ, such that PðYÞ is a M by M diagonal
matrix with ith diagonal element the state-dependent
emission probability density piðyÞ, the likelihood
function has a convenient matrix notation:

LT ¼ pPðY1ÞCPðY2ÞCPðY3Þ:::PðYTÞ10: (1)

The initial probability pi ¼ PðS1 ¼ iÞ denote the
probability of each state S 2 ð1, 2, :::,MÞ for t¼ 1.
Often, the initial probabilities of the states are not
estimated freely but are assumed to be the stationary
distribution implied by the transition probability
matrix C, which we will adhere to for this study as
well. The transition probability matrix C with transi-
tion probabilities

cij ¼ PðStþ1 ¼ jjSt ¼ iÞ (2)

denote the probability of switching from state i 2
ð1, 2, :::,MÞ at time t to state j 2 ð1, 2, :::,MÞ at time
tþ 1. Here, we follow the implementation in Altman
(2007) to facilitate the inclusion of random effects in
subsequent multilevel models below, which assumes
that the rows of the transition probability matrix C
are independent of each other, and are modeled using
a multinomial logit model

cij ¼
exp ðaijÞ

1þPm
l¼2 exp ðailÞ

: (3)

The numerator is set equal to 1 for j¼ 1, making
the first state of every row of the transition probability
matrix C the baseline category. Hence, the probability
to transition from hidden state i 2 ð1, 2, :::,MÞ to state
j 2 ð1, 2, :::,MÞ at time t is modeled with M batches of
fixed intercepts ai:, each containing M� 1 ele-
ments, ai2, :::, aiM:

In this paper we focus on categorical data, as such
the state-dependent emission distribution

piðyÞ ¼ PðYt ¼ yjSt ¼ i, hiÞ ¼ PðYt ¼ qjSt ¼ i, hiÞ ¼ hiq

(4)

denotes the probability of observing category q 2
1, :::,Q for Y given the hidden state i 2 1, :::,M at
time t with parameter set hi: Given the categorical
nature of the data, hi ¼ ðhi1, hi2, :::, hiQÞ is a vector of
multinomial emission probabilities. Similar to the
transition probabilities cij, the emission probabilities
hiq are modeled using a multinomial logit model

hiq ¼
exp ðbiqÞ

1þPQ
l¼2 exp ðbilÞ

: (5)

The numerator is set equal to 1 for q¼ 1, making
the first category the baseline category. Hence, the
probability to observe yq 2 ð1, 2, :::,QÞ given the state
i 2 ð1, 2, :::,MÞ at time t is modeled with M batches of
fixed intercepts bi:, each containing Q� 1 elements,
bi2, :::, biM: However, note that the shape of the emis-
sion distributions is flexible and depends on the data
observed (e.g., Normal for continuous data, or
Poisson for count data).
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To extend the HMM framework to accommodate
multivariate data, it is necessary to specify a joint dis-
tribution PðYt1 ¼ yt1,Yt2 ¼ yt2, :::,Ytk ¼ ytKÞ for the
k 2 ð1, 2, :::,KÞ state-dependent emission distributions.
Here, the shape of the emission distributions can vary
over the dependent variables, which are typically
assumed to be conditionally independent given the
sequence of hidden states (Zucchini et al., 2017).
Thus, the joint distribution can be expressed as the
product of the K marginal state-dependent emission
probability densities pkiðyÞ ¼ PðYtk ¼ ytkjSt ¼ iÞ :

PðYt1 ¼ yt1,Yt2 ¼ yt2, :::,Ytk ¼ ytkÞ

¼
YK

k¼1

PðYtk ¼ ytkjSt ¼ iÞ (6)

As a result, the likelihood of the multivariate
HMM takes the form:

LT ¼
YK

k¼1

pPkðY1kÞCPkðY2kÞ:::PkðYTkÞ10: (7)

In this paper, all observed outcome variables are
composed of categorical data. As such, the vector of
multinomial emission probabilities hi and the used
multinomial logit model given in Equation (11)
become outcome variable k dependent in the multi-
variate case

hkiq ¼
exp ðbkiqÞ

1þPQ
l¼2 exp ðbkilÞ

: (8)

Hence, the probability to observe ykq 2 ð1, 2, ::,QÞ
given the state i 2 ð1, 2, ::,MÞ for outcome variable

k 2 ð1, 2, :::,KÞ at time t is modeled with K�M
batches of fixed intercepts bki:, each containing Q� 1
elements, bki2, :::, bkiM: Figure 2 details the structure of
a multivariate HMM.

Note that in the HMM, the number of states is to
be determined a priori by the researcher. When a the-
oretical justification for a specific number of hidden
states is lacking, deciding on the number of states
becomes a model selection problem for which stand-
ard model selection criteria are often used (e.g., the
AIC or BIC). However, currently there is no consen-
sus on the optimal way of selecting the number of
hidden states used; see Pohle et al. (2017) for a discus-
sion on this matter.

In addition, note that the HMM is also known as
the latent Markov model (LMM; Vermunt et al., 1999;
Wiggins, 1973) and latent transition analysis (LTA;
Hagenaars & McCutcheon, 2002; Nylund-Gibson
et al., 2022). Although the names refer to the same
model type, there are some key differences important
to our study. Both LMMs and LTA models have pre-
dominantly been applied to longitudinal data (e.g., a
large number of individuals combined with few longi-
tudinal measurements), also referred to as panel data.
As such, computing the likelihood and parameter esti-
mation also proceeds differently (see e.g., Visser,
2011). In addition, LMMs have predominantly been
applied to take measurement error into account, and
in LTA the probability to transition between hidden
states is generally estimated separately for each point
in time, feasible as only a small number of transitions
over time are inferred. In this paper, we focus on the
application of the HMM in data with long sequences
of observations (e.g. �100), the number of observa-
tions per individual outnumbering the number of
individuals measured, the hidden states resembling a
theoretical construct beyond measurement error
reduction, and the probability to transition between
states assumed to be time-homogeneous.

HMMs applied to a group of individuals

Traditionally, HMMs were applied to single time-ser-
ies such as speech (e.g., Rabiner, 1989) or DNA and
amino-acidic sequences to accomplish a labeling task
(e.g., Rueda et al., 2013). In contrast, social and
behavioral data often consist of sequential observa-
tions collected for several individuals. When applying
the HMM to multiple sequences of data, researchers
can fit a “complete pooling” standard HMM assuming
a common set of parameters shared among the N
individuals. When explanatory individual covariates

Figure 1. Directed acyclic graph of a basic hidden Markov
model with a univariate emission distribution. Each hidden
state S, depicted with circles, depends only on the state at the
previous time point. The observed data Y, depicted with
squares, depends only on the value of the current latent state
S. Superimposed are the model parameters, with transition
probabilities cij and emission probabilities hiq, and the multi-
nomial logit intercepts ai: and bi: pertaining to the transition
probabilities and the emission probabilities, respectively.

22 S. MILDINER MORAGA AND E. AARTS



are available, model parameters can be made condi-
tional on these attributes. With this approach,
(residual unexplained) individual variation is not
accounted for or quantified. On the other side of the
spectrum, one can accommodate generic individual
heterogeneity in HMMs by fitting a separate model
for each individual. However, fitting a separate HMM
for each individual results in inefficient use of the col-
lected data: in fitting the HMM on one individual,
information available for the other individuals is dis-
carded (Gelman & Carlin, 2014; Gelman et al., 2013).
Moreover, nothing ensures that the content of the
states is similar across models, making individual
comparisons cumbersome. A related approach is the
individual fixed effects model (e.g., Jonsen, 2016;
McClintock & Michelot, 2018), in which for one of
the components of the model the heterogeneity
between individuals is handled using individual fixed
effects (“no pooling”) whereas for the other, the
parameters are restricted to be the same across indi-
viduals (“complete pooling”). These approaches lead
to highly parameterized models that avoid distribu-
tional assumptions but are hard to interpret. An inter-
mediate approach to accommodate individual
variation that improves on the parameterization bur-
den is to use a mixture Markov model. In the mixture
HMM a number of latent classes that differ with
regard to the model parameters are specified, while
individuals within each class are restricted to share a

common set of parameters (e.g., Bartolucci &
Farcomeni, 2015; Bartolucci et al., 2012; DeRuiter
et al., 2017; Langrock et al., 2012; Maruotti, 2011;
Maruotti et al., 2022; Maruotti & Rocci, 2012;
McKellar et al., 2015; Towner et al., 2016). Hence, the
mixture HMM assumes that the data contains a lim-
ited number of homogeneous subgroups, and is equal
to including a set of discrete, non-parametric random
effects. However, McClintock (2021) showed that
approximating individual level effects with a finite
mixture HMM is a relatively poor and potentially mis-
leading approximation in case that variation between
individuals is continuous.

Neither of these three approaches quantify the het-
erogeneity between individuals, and, in case of the lat-
ter two, ignore the unique opportunity of ILD to
obtain an individual description of each person’s pro-
cess. To fully exploit the information contained within
ILD, a method that includes these features is key (for
a discussion on this topic we refer to Hamaker &
Wichers, 2017). The HMM within the multilevel
framework, discussed in the next section, does include
these opportunities.

The multilevel hidden Markov model

Altman (2007) proposed a multilevel HMM (also
mixed-effects HMM) to simultaneously model the
sequences of multiple individuals. Her approach con-
sists of a frequentist, hierarchical implementation that
allows for estimating a group-level set of parameters,
while accommodating the variability at the individual
level parameters through (independent and identically
distributed normal) random effects. In addition, the
variability observed between individuals can be further
explained by including time-varying and time-invari-
ant covariates. This model is indistinctly referred to as
the mixed-effects HMM or the multilevel HMM
(MHMM), the latter name we use throughout this
study. Figure 3 details the structure of a multivariate
MHMM.

Within the multilevel framework, the intercepts of
the multinomial logit model pertaining to transition
probabilities cij (see Equation 11) are allowed to vary
over individuals, resulting in individual n specific
transition probabilities cnij

cnij ¼
exp ðanijÞ

1þPM
s¼2 exp ðanisÞ

, (9)

where

anij ¼ �aij þ �½a�nij (10)

Figure 2. Directed acyclic graph of a basic hidden Markov
model with a multivariate emission distribution. Each hidden
state S, depicted with circles, depends only on the state at the
previous time point. The observed data Y1, :::, YK for outcome
variables k 2 ð1, 2, :::, KÞ, depicted with squares, depends only
on the value of the current latent state S. Superimposed are
the model parameters, with transition probabilities cij and
emission probabilities hkiq, and the multinomial logit intercepts
ai: and b1i:, … , bKi: pertaining to the transition probabilities
and the emission probabilities of the K dependent variables,
respectively.
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for each individual n 2 ð1, :::,NÞ and each i, j 2
ð1, :::,MÞ, with �aij being the (group-level) average
logit for transitioning from state i to state j, and �½a�nij
denoting the individual n’s deviation from that aver-
age. The individual level random effects �½a�nij follow a
state i dependent multivariate normal distribution
with zero mean vector of length ðM � 1Þ and covari-
ance matrix R½a� with ðM � 1Þ rows and columns.
Throughout the remainder of this text we refer to the
group-level average logit �aij as the TPM group-level
fixed effects, and the (diagonal) variance components
r2½a�ij from the covariance matrix R½a� as the TPM indi-
vidual random effects.

For the individual categorical emission probabilities
hnkiq we follow an identical specification

hnkiq ¼
exp ðbnkiqÞ

1þPQ
l¼2 exp ðbnkilÞ

: (11)

where

bnkiq ¼ �bkiq þ �½b�nkiq (12)

with �bkiq being the (group-level) average logit for
observing outcome category q within state i for out-
come variable k, and �½b�nkiq denoting the individual
n’s deviation from that average. The individual level
random effects �½b�nkiq follow a state i and outcome
variable k dependent multivariate normal distribution
with zero mean vector of length ðQ� 1Þ and

covariance matrix R½b� with ðQ� 1Þ rows and col-
umns. We refer to the group-level average logit �biq as
the EPM group-level fixed effects, and the variance
components r2½b�kiq from the covariance matrix R½b� as
the EPM individual random effects.

Bayesian estimation of the MHMM

We focus on Bayesian estimation of the model param-
eters, as it poses several advantages over classical (fre-
quentist) estimation methods (e.g., maximization of
the likelihood by either direct numerical maximization
or the expectation maximization (EM) algorithm
Dempster et al. (1977), known as the Baum–Welch
algorithm in the context of HMMs (Baum et al., 1970;
Rabiner, 1989). See Capp�e et al. (2005) for a review of
estimation methodologies, and Ryd�en (2008) for a
comparison on frequentist and Bayesian approaches
for the HMM.

While Altman (2007) showed that estimation of the
MHMM is feasible using frequentist methods, the
dimensions of the integral in the MHMM make fitting
these methods largely intractable for more complex
models (e.g., including more than two states or
including more than three or four random effects). As
such, frequentist applications accommodating individ-
ual level variation typically limit the random effects to
a set of discrete, non-parametric random effects

Figure 3. Directed acyclic graph of a multilevel hidden Markov model with a multivariate emission distribution. Each hidden state
Sn for individual n 2 ð1, 2, :::,NÞ, depicted with circles, depends only on the state at the previous time point. The observed data
Yn1, :::, YnK for outcome variables k 2 ð1, 2, :::, KÞ, depicted with squares, depends only on the value of the current latent state Sn.
Superimposed are the model parameters, with individual n specific transition probabilities cnij and emission probabilities hnkiq, and
the individual specific multinomial logit intercepts ani: and bn1i:, … , bnKi: pertaining to the transition probabilities and the emission
probabilities of the K dependent variables, respectively. Also depicted are the group-level mean �a i: and covariance R½a�i: of the
Normal distribution on ani:, and the group-level means �b1i:, … , �bKi: and covariances R½b�1i:, … , R½b�Ki: of the Normal distribution
on bn1i:, … , bnKi::
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within the framework of mixture HMMs as described
above. In contrast, the estimation of continuously dis-
tributed random effects is commonplace in the
Bayesian framework (Gelman et al., 2013), achieved
by implementing hierarchical priors in a multilevel
(hierarchical) structure. Bayesian estimation of the
MHMM with multiple continuous random effects was
first introduced by Zhang et al. (2010), who showed
that it was attainable and efficient. Hence, the
Bayesian framework enables the inclusion of continu-
ous random effects for both the parameters of the
transition distribution and the emission distribution
simultaneously while retaining a computationally feas-
ible model.

In addition to the computational advantage,
Bayesian estimation of MHMMs poses five additional
advantages we believe relevant to social and behavioral
research. First, preliminary information and researcher
beliefs can be structurally included in the model
through its hierarchical priors (Gelman et al., 2013;
Lynch, 2007; McElreath, 2020). As a result, previous
evidence on the process under study can be combined
with novel data to train the model and extract new
insights. Nevertheless, non-informative and weakly
informative priors can also be chosen. Second, the
hierarchical priors produce a regularization of
the individual-level parameters, pooling them toward
the group-level means making the model more robust
to outliers (Gelman et al., 2013; Lemoine, 2019).
Third, Bayesian estimation does not rely on asymp-
totic assumptions making it more suitable for infer-
ence on small samples (van de Schoot & Mio�cevi�c,
2020). Fourth, Bayesian estimation of the model pro-
duces valuable by-products such as parameters’ stand-
ard errors and local decoding of the sequence of
hidden states (Scott, 2002). A fifth valuable feature of
the Bayesian framework is the possibility to assess the
goodness of fit of the model to the data by posterior
predictive checks (PPCs; see e.g., Gelman & Carlin,
2014; Lynch & Western, 2004). That is, PPCs allow
the researcher to assess whether the model recovers
the data correctly on an array of characteristics and
can aid in revealing model missspecification.

Given that some traditional SEM-derived fit indices
such as the Likelihood ratio test may not be appropri-
ate for multilevel longitudinal data (Wu et al., 2009),
evaluating model fit with PPCs is particularly relevant.
To perform a PPC, we first fit a MHMM to the data
and generate simulated data sets based on the
obtained parameter estimates. For each simulated data
set, summary statistics of interest, such as the mean
or variance, are then calculated and compared to

those of the observed data. An empirical posterior
predictive value (PPV) can be constructed ranging
from 0 to 1. The PPV takes intermediate values if the
observed and simulated data sets produce similar
summary statistics, indicating a good model fit, and
extreme values (i.e., <0.025 or >0.975) if the observed
and simulated data sets differ significantly, suggesting
a poor fit. Posterior predictive checks can be used to
assess model fit at both the individual and group-lev-
els in multilevel models, allowing us to determine
whether the model captures different aspects of the
data for individuals and groups (e.g. in MHMMs: de
Haan-Rietdijk et al., 2017; Shirley et al., 2012).

One specific issue that may arise with Bayesian
estimation of the MHMM is a phenomenon known as
“label switching”. Because the posterior distribution of
the states is not identifiable, when a considerable
overlapping exists between hidden states, the labels of
the hidden states can switch around while sampling
from the Markov chain Monte Carlo (MCMC).
Notice that this occurs even though the complete data
likelihood remains the same (Allman et al., 2009; Jasra
et al., 2005). The occurrence of label switching makes
interpreting the posterior parameter estimates mean-
ingless. To reduce the chances of label switching,
users can follow one or more of the following strat-
egies: (a) choose a sensible set of starting values for
the MCMC, (b) implement a constraint on the order
of the emission distribution (e.g., ordering the means),
or (c) use (weakly) informative priors to introduce a
distinction on the likelihood of the states. Here we
follow the approach (a).

A second issue that may arise with Bayesian esti-
mation –and Markov chain Monte Carlo methods in
a broader sense– is the lack of convergence of model
parameters over the iterations of the MCMC. That is,
when training a Bayesian model using different sets of
starting values for the Markov chains and they fail to
converge toward the same parameter estimates.
Improving the likelihood of parameter convergence
can be often achieved by choosing a sensible set of
starting values for the MCMC. For example, basing
the starting values on theoretical likely state composi-
tions and transitions giving the studied process and
small variations hereof, or using starting values based
on the maximal likelihood estimates of a single-level
expectation-maximization HMM trained on the full
data set (i.e., a “complete pooling” standard HMM).

When using sensible starting values does not suf-
fice, lack of convergence in model estimation can
indicate either trying to estimate a model that is too
complex for the available data or model
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misspecification (Gelman & Hill, 2006, Ch. 19). To
address the former, researchers may need to reduce
the complexity of the model by, for example, decreas-
ing the number of hidden states or constraining some
parameters in the model. If all remedies fail, research-
ers may need to use a single-level (completely pooled)
HMM with covariates to explain variability between
individuals, but this comes at the cost of losing the
ability to measure individual-specific parameters and
may not ensure convergence of the parameters. To
address the latter, exploring potential sources of mis-
specification through simulation and model fit evalu-
ation, such as PPCs, prior predictive checks, and
cross-validated probability integral transforms, can be
helpful (for a review on these methods, we refer the
reader to Conn et al., 2018). Misspecification can for
example arise from selecting the wrong number of
states, assuming conditional independence between
variables that do not hold in the data, or falsely
assuming a homogeneous transition distribution.

Simulation

The aim of the Monte Carlo simulation study was to
empirically assess the performance of the MHMM on
data of varying levels of state distinctiveness and sep-
aration, number of dependent variables, and sample
sizes. For the main simulation (which we call
“baseline” for the remainder of the text) we manipu-
lated two outcome and three design factors in a fully
factorial design. The outcome factors are defined by
the degree of state distinctiveness and separation. The
design factors concern the number of dependent vari-
ables measured and the sample size as defined by the
number of individuals and number of observations
per individual. A description of each of their levels
follows below.

State distinctiveness and separation

The degree of state distinctiveness and separation
both include three levels: high, moderate and low. In
case of multivariate data, the level of state distinctive-
ness and separation is equal over the dependent varia-
bles. Within our simulation study the emission
distributions are composed such that only one or two
categories have a high emission probability for a given
state S. We call these the “defining categories” of a
state. We quantify the level of state separation by how
many categories represent a defining category for
multiple states (see Figure 4a). State separation is
defined as follows in the first dependent variable.

High state separation corresponds to each defining
category uniquely characterizing one state only. In
moderate state separation, the third category repre-
sents a defining category for both state two and three.
In low state separation, the second category represents
a defining category for states one and two, and the
third category, is a defining category for states two
and three. The identity of the states sharing the popu-
lation-level emission distribution and the specific
defining categories are reshuffled in the remaining the
dependent variables, but follow the same pattern (see
Table S1 of the Supplementary Materials).

In the context of a categorical emission distribu-
tion, the degree of state distinctiveness refers to the
magnitude of the probabilities for the non-defining
categories within a state. Given that all emission prob-
abilities within a state sum to one, larger noise proba-
bilities inevitably result in lower probabilities for the
defining categories and hence lower state distinctive-
ness (see Figure 4b). As such, the noisiness can be
seen as a signal to noise ratio of the defining category.
We manipulate the level of state distinctiveness with
the inclusion of the factor k in the emission distribu-
tion probability matrix, allowing us to include noise
by adding or subtracting fixed quantities from each
emission probability. For the levels high, moderate
and low state distinctiveness in the probability scale,
k ¼ f0:03, 0:09, 0:15g, respectively. See Table S1 for
an overview of the parameter values for the emission
distributions of each of the dependent variables.

Number of dependent variables

For the “baseline” scenarios we manipulated the num-
ber of dependent variables (Ndep) to assess whether
increasing Ndep to infer the hidden state sequence on
alters model performance. We included three levels
for number of dependent variables Ndep 2 ð1, 2, 4Þ
across the factorial design, and fourth level, Ndep ¼ 8,
only for the boundary scenarios with low and high
state distinctiveness and separation in the emission
distributions (see below). In the literature, the
MHMM was fit using between 1 (de Haan-Rietdijk
et al., 2017; Jackson et al., 2015; Schafer et al., 2020;
Shirley et al., 2012) and 7 (DeRuiter et al., 2017)
dependent variables. The observed data for each of
the dependent variables are composed of Q¼ 5 cate-
gories each. We defined the emission distribution for
each of the dependent variables to have a unique pat-
tern within each of the states such that all dependent
variables contribute unique information to the model.
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In addition, we considered the effect of adding a
second set of dependent variables Ndep 2 ð1, 2, 4Þ only
consisting in random noise on top of the same level
of number of dependent variables in the baseline, only
for the boundary scenarios with low and high state
distinctiveness and separation in the emission distri-
butions. We call this condition “noise,” and refer to
them as Ndep 2 ð1þ 1, 2þ 2, 4þ 4Þ: See Table S1 in
the Supplementary Materials for an overview of par-
ameter values for each of the emission distributions
relating to the dependent variables.

Number of individuals and number of observations

Based on the ILD literature, we considered three levels
for the number of individuals Nind 2 ð5, 30, 90Þ and
four levels for the number of observations per individual
Nobs 2 ð100, 400, 800, 1600Þ: In the literature on
MHMM the range for the number of individuals was 6
to 500. We used a number of individuals of 5 to repre-
sent a smaller number of individuals (e.g., Schafer et al.,
2020), although this number is generally too small to
provide reliable inferences on the magnitude of individ-
ual variation in multilevel models (Hox et al., 2018). A
number of individuals of 30 roughly represents the
median number used in applications of the MHMM
(e.g., Altman, 2007; Holsclaw et al., 2017; Jackson et al.,
2015; Rueda et al., 2013). Limited by the computational
intensiveness of the model, we set the upper limit of
number of individuals to 90 to represent the inclusion

of many individuals (e.g., Chiang et al., 2018; de Haan-
Rietdijk et al., 2017; Shirley et al., 2012).

With respect to the number of observations per
individual, applications of the MHMM exhibit a wide
variability: in Altman (2007) Nobs ranged from 1 to
24, in Shirley et al. (2012) Nobs was set to 168, Nobs ¼
539 in de Haan-Rietdijk et al. (2017), Nobs ¼ 365–
3003 in Chiang et al. (2018), and Nobs was over 7000
in Schafer et al. (2020). Such a wide range makes it
hard to come with a one-fits-all approach. In our
Monte Carlo study we focus on applications suitable
to investigate the temporal dynamics at an individual
level, which requires a relatively large number of
observations per individual. As such we have set the
lower limit of number of observations per individual
to 100. Limited by computational constraints, we set
the upper level for the number of observations per
individual to 1600.

Data generation and model fitting

For each of the 324 scenarios on the baseline and 168
additional scenarios (Ndep ¼ 8 and “noise” dependent
variables) we generated 100 simulated data sets. We
limited the number of simulated data sets to 100 due
to computational constraints. Data was generated fix-
ing the number of hidden states at m¼ 3, with self
transition probabilities �c11 ¼ 0:90,�c22 ¼ 0:70,�c33 ¼
0:50: Transition distribution individual random effects
were drawn from a Normal distribution with mean

Figure 4. Emission probabilities for five observation categories for data with different levels of state separation and distinctiveness
in its emission distribution. Panel (a) shows three levels of state separation (“high,” “moderate,” “low”) on the emission probabil-
ities of five observation categories, for a fixed state distinctiveness (“high”); panel (b) shows three levels of state distinctiveness
(“high,” “moderate,” “low”) on the emission distribution, for a fixed state separation (“high”).
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zero and variance ranging r2½a�ij 2 f0:13� 1:12g on the
logit scale, which translate to standard deviations on
the self-transitions rc11 ¼ rc22 ¼ rc33 ¼ 0:10 in the
probability scale. The same sampling scheme was fol-
lowed for the individual random effects of the emis-
sion probability matrix on each dependent variable. A
variance ranging r2½b�ij 2 f0:11� 1:01g was used, so
that the standard deviation of the defining categories
also equaled 0.10 in the probability scale. In fitting the
model, non-informative normal hyper-priors were
specified for all group-level parameters (refer to
Section S3: Model specification on the Supplementary
materials for the full hierarchical Bayesian specifica-
tion of the model).

Simulating data and fitting of models is done in
the statistical software R (R Core Team, 2021) using
the package “mHMMbayes” specifically tailored to
MHMMs using Bayesian estimation (Aarts, 2019).
Corresponding R code to reproduce and analyze the
simulation study can be found in Mildiner Moraga
and Aarts (2022). In the mHMMbayes package, mod-
els are fitted using a hybrid Metropolis within Gibbs
MCMC algorithm, and expands on the HMM imple-
mentation using Bayesian estimation as outlined in
Scott (2002). That is, parameters are estimated using a
forward pass of the forward backward algorithm
(Baum & Petrie, 1966) to obtain the (forward) proba-
bilities of each of the states for every time point in
the sequence given the observed data, followed by
sampling the hidden state sequence in a backward
pass from their full conditional posteriors given the
(current) parameters of the model. Conditional on the
sampled hidden state sequence, the parameter esti-
mates are updated by sampling them from their full
conditional posteriors using either a Gibbs or a ran-
dom walk Metropolis–Hastings step.1 We used a total
of 4000 MCMC iterations to train a three-state
MHMM and dropped the first 2000 to attenuate the
effect of the starting values (burn-in). To check con-
vergence of the model parameters, for three randomly
selected repetitions of each scenario an additional
chain was fitted using different starting values. The
convergence of the parameters of interest was assessed
analytically with the multivariate potential scale reduc-
tion factor (MPSRF; Brooks & Gelman, 1998) using
two different convergence criteria. Under the strict
criterion-I, we considered that a model failed to con-
verge if at list one of the group-level parameters of
interest presented a MSRF > 1.2. Under the less
restrictive criterion-II, we considered that a model

failed to converge when the group-level parameters of
interest presented a mean MSRF > 1.2, averaged sep-
arately for transitions and emission parameters and
fixed and random effects. Finally, we note that model
misspecification was not evaluated in this study, as
the number of states used to simulate and fit the
models were fixed at three.

Model performance was evaluated based on mean
and relative mean bias, precision (empirical standard
error), and coverage of the 95% confidence interval
(CI) for the group-level parameters and the individual
random effects on both components in the model.
Model performance of the group-level parameters �aij
and �bij is presented on the probability domain (�cij
and �hiq) to aid interpretation. Note however that par-
ameter estimation is on the logit domain. Model per-
formance of the variance of the individual level
random effects r2½a�ij and r2½b�ij are presented on the
logit domain. The mean proportion of hidden states
correctly assigned by the Viterbi algorithm (Viterbi,
1967), also known as global state decoding, along with
the mean proportion of instances in which the decod-
ing probability of the true state was � 0:2 were used
as measures of the model performance for inference
at the individual level. Kappa statistic was used to
control for the expected classification accuracy due to
random chance (Cohen, 1960). Part of the simulation
results is presented using the nested loop plot (R€ucker
& Schwarzer, 2014). These novel plots offer a way of
displaying a large number of simulation results.
Scenarios are presented in a lexicographical order,
arranged consecutively along the horizontal axis, while
the evaluation metric is plotted on the vertical axis.

Results

The majority of the scenarios lead to accurate estima-
tions of the group-level parameters of the transition
probabilities and the emission distributions, see Figure
5a,b. Across all scenarios the relative bias was below
610% for 70.6% and 75.8% of the defining categories
of the group-level transition probabilities and the emis-
sion distributions, respectively. As expected, an increased
state distinctiveness and separation and increments in
Ndep, Nind, and Nobs resulted in better model perform-
ance in terms of point estimation of parameters. When
bias was present, bias displayed a directional pattern,
with high probabilities typically being underestimated,
such as probabilities for self-transitioning and observing
a defining category within a state, and low probabilities
generally being overestimated, such as off-diagonal val-
ues of the TPM and probabilities for non-defining

1For a detailed description of estimation algorithm, see https://cran.r-
project.org/web/packages/mHMMbayes/vignettes/estimation-mhmm.pdf
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categories of the emission distribution. Additionally, esti-
mating parameters close to the boundary of the prob-
ability domain (i.e., values near 0 and 1) was more
challenging and thus more prone to bias. For example,
the first state’s transitions with probabilities c1: ¼
ð0:9, 0:05, 0:05Þ exhibited more extreme and biased
behavior compared to the remaining two states (e.g.,
third state, c3: ¼ ð0:2, 0:3, 0:5Þ).

The variance of the individual level random effects
tended to be overestimated and was more challenging
compared with accurate estimation of group-level
parameters, as shown in Figure 5c,d. The accuracy of
the estimation improved for larger values of the param-
eter, such as the individual random effects for transi-
tions from the first state (r2½a�1: ¼ 1:12), compared to
random effects for transitions from state two
(r2½a�2: ¼ 0:16) and state three (r2½a�3: ¼ 0:13). Increasing
Nind improved the accuracy of estimates of individual
level variance, and to a lesser extent with increased Ndep

and Nobs, and increased state distinctiveness and
separation.

The following sections first describe model conver-
gence, followed by a detailed discussion on model per-
formance as a function of the level of state
distinctiveness and separation, the number of depend-
ent variables Ndep, and the number of individuals Nind

and observations Nobs. Model performance will be dis-
cussed with respect to bias, the empirical standard
error (precision), coverage, and state decoding accur-
acy. Due to the large number of conditions we only
present a subset of them, although results presented
are indicative of the general set of results.

Model convergence

Overall, parameter convergence was achieved for all
group-level parameters in 52.8% of the main 324 scen-
arios assessed (convergence criterion-I). Meanwhile,
77.9% of the scenarios presented convergence meas-
ured as models with a mean MPSRF � 1.2 averaged
separately for transitions and emission parameters and
fixed and random effects (convergence criterion-II).
However, overall low convergence rates were to be
expected, as we explored the minimum amount of
data required to obtain reliable parameter estimates
for the model’s complexity level and data characteris-
tics, pushing the boundaries. When a sufficient
amount of information is present within the data
(Nobs � 800 and Ndep � 4), more than 95% of the
models met the convergence requirements on all their
group-level parameters.

Hence, lack of convergence in at least one model
parameter varied across the simulation design. Rates
of model convergence generally improved with
increasing Ndep and Nobs and a increased state dis-
tinctiveness and separation (Figure S1, Supplementary
materials). Ndep appears to be the most relevant factor
in ensuring the convergence of the model. Aggregated
over the remaining factors, model convergence for all
parameters in a model (criterion-I) within levels of
Ndep ranged from 17.0% (Ndep ¼ 1) to 89.6% (Ndep ¼
4), within levels of Nobs, from 40.2% (Nobs ¼ 100) to
66.7% (Nobs ¼ 1600), and within levels of Nind, from
52.4% (Nind ¼ 90) to 60.2% (Nind ¼ 5). Adding non-
informative (noise) additional dependent variables did
not affect convergence of the models in a meaningful
way. On the contrary, it appeared to improve the like-
lihood of convergence of the parameters, as 75.3% of
scenarios achieved convergence in all their parameters
(criterion-I), while 91.7% of them presented a mean
MSPRF � 1.2 averaged over parameters (criterion-II).

State distinctiveness and separation

Bias
In scenarios in which states are well-defined and well-
separated, bias in the group-level model parameters is
generally small over all other varied factors. That is,
univariate data with a minimum sample size of Nind �
30 and a number of observations Nobs � 400 resulted in
little (absolute) bias for all group-level model parame-
ters (see Figure S3 and Table S2 of the Supplementary
materials). In scenarios with a low state distinctiveness
and separation, accurate estimation of model parame-
ters proved more difficult: more data by expanding
either Ndep, Nind, or Nobs is required to obtain acceptable
bias as detailed below (see Figure 6, and Tables S4 and
S5). Compared to the group-level model parameters,
the effect of low state distinctiveness and separation on
accurate estimation is less pronounced in the variance
of the individual random effects (see Figure S4, and
Tables S4 and S5). However, the beneficial effect of
increasing the amount of data by expanding either Ndep,
Nind, or Nobs is larger for scenarios where states are
well-defined and well-separated compared to low state
distinctiveness and separation scenarios (see Figure S4).
Hence, obtaining accurate parameter estimates for indi-
vidual random effects is more difficult in the latter.

Empirical standard error
The level of distinctiveness and separation of the
states has a large effect on the precision of the group-
level transition and emission parameters (see Tables
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Figure 5. Nested loop plot. Mean relative bias in the point estimation of the group-level parameter estimates (panels a and b)
and variance of the individual level random effects (panels c and d) over the 324 scenarios. Scenarios are ordered from outer to
inner loops by scenarios values for the state separation (“high,” “moderate,” “low”), state distinctiveness (“high,” “moderate,” “low”),
number of dependent variables Ndep ¼ ð1, 2, 4Þ, number of individuals Nind ¼ ð5, 30, 90Þ, and number of observations per individ-
ual Nobs ¼ ð100, 400, 800, 1600Þ: To avoid overcrowding of the plot, displayed results are limited to the parameters corresponding
to the diagonal of the transition distribution and the defining categories of the emission distribution. The horizontal dashed lines
indicate a relative bias of 610% on the estimation of parameters. Notice that because the defining categories of the emission dis-
tribution change between levels of overlap, a special notation (e.g., �h1I and �h1II) was used. Note that the results for scenarios with
Ndep ¼ 8 were left our of this Figure, since they were only tested for the extreme conditions of high and low state distinctiveness
and separation.
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S2–S7). In data scenarios in which states are well-
defined and well-separated, all empirical SE values of
the transition parameters are below 0.07, which rises
to a value of maximum 0.15 in scenarios with low
state distinctiveness and separation. In addition, in
data scenarios in which states are well-defined and
well-separated, the precision of the group-level emis-
sion parameters is worse for the defining than for the
non-defining categories. This pattern is not seen when
state distinctiveness and separation is low. For the
variance of the transition parameters’ individual ran-
dom effects, decrements in state distinctiveness and
separation resulted in decreased precision. A direct
comparison on precision between high and low levels
of state distinctiveness and separation and the emis-
sion parameters’ individual random effects is difficult,
as the true parameter values differ over the scenarios.

Coverage
In scenarios in which states are well-defined and well-
separated, average 95%CI coverage of the group-level
model parameters of both transitions and emissions
was generally acceptable (range: 80–100%; Tables S2
and S3). However, in scenarios with a low state dis-
tinctiveness and separation, average 95%CI coverage
was lower (range: 22–99%; see Figure 7) and required
more data in the form of more dependent variables or
more observations as detailed below. Under-coverage
was more severe for group-level parameters of the
transition distribution and for parameters with proba-
bilities close to 0 and 1 (e.g., transitions from the first
state; see Tables S4, S5, and S7). As described above,
individual random effects were generally overesti-
mated by the model (see Figure 5c,d), leading to
under-coverage in the majority of simulation scenarios
with data of any level of distinctiveness and separation
of the states (Tables S2–S7). Extreme under-coverage
occurred for individual random effects with smaller
true parameter values (e.g., r2½a�2j ¼ 0:16 and
r2½b�2q ¼ 0:11). However, for individual random effects
with larger true parameter values (e.g., r2½a�2j ¼ 1:12
and r2½b�2q ¼ 1:01), 95% coverage was generally better.

State decoding
Overall, the percentage of correct state assignment
aggregated over all the main scenarios was 76.4%
(range: 32.3–98.8%), with an accuracy of at least 80%
obtained for 50.3% of the scenarios. The level of dis-
tinctiveness and separation of the states’ distributions
had an profound effect on state decoding, with the
distinctiveness having a larger effect (see Figure 8 and
Figure S7). In scenarios in which states are well-

defined and well-separated, the average percentage of
correct state assignment aggregated over all other fac-
tors was 87.4% (range: 54.0–97.8%), and an accuracy
of at least 80% was obtained for 97.2% of the scen-
arios. In comparison, in data with low state distinct-
iveness and separation, the average percentage of
correct state assignment aggregated over all other fac-
tors was 23.7% (range: 1.1–53.2%).

Interestingly, the state forward probabilities appear
to capture the uncertainty on the state decoding
(Figure 8), as on average 88.7% (range: 63.3–99.4%) of
the times the correct state probability took a value of
at least 0.2. The decoding accuracy varied over the
states, and was better for states with a longer persist-
ence (i.e., higher self-transitions). Aggregated over all
simulation scenarios, the percentage of correct decod-
ing for state 1 (�c11 ¼ 0:9) was 84.3% (range: 29.0–
99.2%); for state 2 (�c22 ¼ 0:7), 66.5% (range: 20.4–
98.4%); and state 3, with the lowest self-transitions
(�c33 ¼ 0:5), 58.1% (range: 13.2–97.6%).

Number of dependent variables

Bias
In scenarios with a low level of state distinctiveness
and separation, including multivariate data substan-
tially reduces bias in the point estimates of the group-
level transitions’ and emissions’ parameters, especially
when Nind and Nobs are low (see Figure 6). Moving
from Ndep ¼ 4 to Ndep ¼ 8 does not appear to have a
substantial impact on the parameter bias of the
group-level parameters (see also Tables S3–S7). In the
variance of the individual random effects, expanding
the data beyond univariate observations only had a
negligible effect on model performance over all used
levels of state distinctiveness and separation (Tables
S2 and S3 and Figure S4).

In comparison to the baseline scenarios, the models
with additional random noise dependent variables did
not present substantial differences with respect to the
bias of the group-level parameters. That is, a slight
increase was observed in the bias of the group-level
transitions (Dmean abs: bias ¼ 0:01 over parameters)
and emissions (Dmean abs: bias ¼ 0:02 over parame-
ters) for data of both high and low levels of state dis-
tinctiveness and separation (see Figure S3). The
increase in bias was the largest for the scenarios with
the smaller sample size (Ndep ¼ 1 and Nobs ¼ 100) in
data of both high and low levels of state distinctive-
ness and separation. The opposite happened for the
estimation of individual random effects, with a mod-
erate decrease in bias of (Dmean abs: bias ¼ �0:14)
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Figure 6. Trellis plot. Mean bias on the estimation of group-level parameters of the transition distribution (panels a–c) and the emission
distribution (panels d–f) for the subset of scenarios with low state distinctiveness and separation over levels of number of dependent vari-
able Ndep, number of individuals Nind and number of observations per individual Nobs. Line color indicates the value for the number of
dependent variables Ndep of the scenario; item shape indicates the value for the number of individuals Nind of the scenario. Parameters
are displayed on the probability domain to aid interpretation. For the emission distribution, only parameters �h i2, �h i3, and �h i4 are shown,
as parameters �h i1 and �h i5 relate to noise categories within the scenarios concerning low state distinctiveness and separation.
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Figure 7. Trellis plot. Mean coverage for group-level parameters of the transition distribution (panels a–c) and the emission distribution
(panels d–f) for the subset of scenarios with a low level of state distinctiveness and separation in the emission distributions, over levels
of number of dependent variable Ndep, number of individuals Nind and number of observations per individual Nobs. Line color indicates
the value for Ndep of the scenario; item shape indicates the value for the number of individuals Nind of the scenario. Coverage corre-
sponding to parameters on the probability domain to aid interpretation. For the emission distribution, only parameters �h i2, �h i3, and �h i4
are shown, as parameters �h i1 and �h i5 relate to noise categories within the scenario concerning low state distinctiveness and separation.
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for the transitions and (Dmean abs: bias ¼ �0:25) for
the emissions of models with additional noise varia-
bles compared to the baseline (see Figure S4).

Empirical standard error
Using multivariate data has a significant effect on the
precision of the estimation of group-level parameters,
especially in case of data with low state distinctiveness
and separation (Tables S4 and S5). However, increasing
Ndep beyond 4 to Ndep ¼ 8 only slightly further reduces
the empirical SE of the group-level parameters (see
Tables S5 and S7). Regarding the empirical SE values for
the variance of the individual level random effects, Ndep

effects the precision of the estimation to a lesser extent.
In comparison to the baseline scenarios, the models with
additional random noise dependent variables did not
present substantial differences with respect to the empir-
ical SE of the group-level parameters. For the individual
random effects, a more substantial decrease in the empir-
ical SE of (Dmean abs: bias ¼ �0:13) was observed for
the transitions and (Dmean abs: bias ¼ �0:14) for the
emissions of models with additional noise variables.

Coverage
Increments on Ndep were most effective at increasing
the coverage of group-level parameters of all varied
design factors. In scenarios in which states are well-

defined and well-separated, average 95%CI coverage of
the group-level model parameters of both transitions
and emissions increased from a range of 80–98% with
univariate data to 92–100% with four dependent varia-
bles (Tables S2 and S3). In scenarios with a low level of
state distinctiveness and separation, average 95%CI
coverage of the group-level model parameters increased
from a range of 22–98% with univariate data to 63–99%
with four dependent variables; see Figure 7. For the
individual random effects, 95%CI coverage tended to
improve with increments in the number of dependent
variables as well (Tables S2 and S6).

The models with Ndep ¼ 8 generally presented lower
coverage on both the group-level transition and emis-
sion parameters compared to the models with Ndep ¼ 4,
for both the group-level effects as well as for the indi-
vidual random effects (see Tables S6 and S7). This pos-
sibly occurred as a result of the reduced empirical SE of
the model parameters which leads to narrower, more
restrictive confidence intervals. A similar pattern of
decline in the coverage was seen for the scenarios with
additional random noise dependent variables, with
respect to the baseline (see Figures S6 and S7).

State decoding
State decoding accuracy improved with increasing
Ndep (see Figure 8 and Figure S7). In scenarios in

Figure 8. Nested loop plot. Three metrics of accuracy of global state decoding with Viterbi algorithm averaged over individuals
and repetitions of a scenario, shown over the 324 scenarios. Line color indicates: mean Cohen’s j (in red), mean proportion of
states correctly assigned (in green), and mean proportion of true states with a state probability � 0:2 (in blue). Scenarios are
ordered from outer to inner loops by scenarios values for the state separation (“high,” “moderate,” “low”), state distinctiveness
(“high,” “moderate,” “low”), number of dependent variables Ndep ¼ ð1, 2, 4Þ, number of individuals Nind ¼ ð5, 30, 90Þ, and number
of observation per individual Nobs ¼ ð100, 400, 800, 1600Þ: The horizontal dashed line indicates an accuracy of 90%. Note that the
results for scenarios with Ndep ¼ 8 were left our of this Figure, since they were only tested for the extreme conditions of a low
and high level of state distinctiveness and separation.
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which states are well-defined and well-separated, hav-
ing Ndep ¼ 1, 2, 4, or 8 increased accuracy from 86.3%
to 94.3% to 98.7% to 99.8%. In scenarios with a with
a low level of state distinctiveness and separation,
accuracy increased from 46.3% to 55.2% to 69.4% and
slightly decreased to 67.5% with Ndep ¼ 1, 2, 4, and 8,
respectively.

The scenarios with additional non-informative
(noise) dependent variables did not fare worse in
terms of decoding accuracy, with the single exception
of the scenarios with Nobs ¼ 100 and single inform-
ative dependent variable (Figure S5). In scenarios with
a low level of state distinctiveness and separation, the
mean percent Cohen0 sj averaged over all the other
factors improved slightly with added noise variables
from 23.7% to 32.8% (range: 0.4–68.9%).

Number of individuals and number of observations

Bias
In scenarios containing a low distinctiveness and sep-
aration between states, increments in Nind beyond 30
only appeared to reduce bias slightly in the group-
level parameters. Increments on the Nobs result in bet-
ter model performance over all specified levels (albeit
improvement was limited for the higher end of Nobs;
see Figure 6). However, in some of the transition
parameters, no combination of number of individuals
or number of observations produced acceptable bias
in case of univariate data, while in multivariate data
(Ndep � 2) an acceptable level of bias in all transitions
(and emissions) was observed with Nind � 30 in com-
bination with Nobs � 400: For the emissions, Nind �
30 with Nobs � 1600 appeared to be sufficient for uni-
variate data.

For accurate estimation of the variance of the indi-
vidual random effects, model performance was most
affected by the number of individuals Nind compared
with the number of observations Nobs. That is, model
performance improved with increments in Nind for
both the transition probability parameters r2½a�ij and
emission distribution parameters r2½b�iq: For data with
well-defined and well-separated states, increments
over a minimum of 400 observations had a negligible
effect on the estimation performance (Tables S2 and
S3). For data with a low state distinctiveness and sep-
aration, the positive effect of increments in all levels
Nobs translated to improvements on the estimation
performance (Tables S4 and S5), albeit less pro-
nounced compared to the effect of the number of
individuals Nind.

Empirical standard error
For the precision of the group-level estimations, Nind

was a more influential factor when the states were
well-defined and well-separated (Tables S2 and S3).
Here, including Nind � 30 and Nobs � 400 resulted in
empirical SE values to dive below 0.04 and 0.02 for
the transition and emission parameters, respectively.
In scenarios with a low distinctiveness and low separ-
ation between states, the empirical SE declined with
increments in Nind and Nobs to values below 0.05.

Regarding the empirical SE for the variance of the
individual level random effects, results supported the
notion that Nind is the primary driver of accurate and
reliable estimation of random effects in the model. In
contrast, the effect of Nobs appeared to be negligible.
Empirical SE values declined noticeably with an incre-
ment in the number of individuals from Nind ¼ 5 to
Nind ¼ 30 for both transition and emission probability
parameters for both low and high levels of distinctive-
ness and separation between states (Tables S2–S7). An
additional increment in Nind only showed a negligible
effect on the empirical SE.

Coverage
After the number of dependent variables Ndep, incre-
ments in Nobs were most effective at increasing the
coverage of group-level parameters. Coverage declined
with increments in Nind, possibly due to narrower
arms on the 95% confidence intervals. Using at least
800 observations per individual and bivariate data
ensured an average coverage of 74% (range: 51–91%)
for transition group-level parameters. Meanwhile,
even 400 observations per individual and univariate
data appeared to be sufficient to ensure a coverage of
86% (range: 73–96%) on emission group-level
parameters.

State decoding
The decreased correct state assignment and accuracy
obtained in data with a low level of state distinctive-
ness and separation could partially be alleviated by
increments in Nobs (see Figure 8 and Figure S7).
Meanwhile, increments in Nind only had a marginal
effect on state decoding accuracy, except for settings
in which Nobs ¼ 100.

Empirical application

The empirical example is part of a study by Hale
(n.d.) on nonverbal communication between adoles-
cents diagnosed with a mood disorder and their thera-
pists. The data consists of five categorical variables
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observed for both the patient and the therapist, for
Nind ¼ 39 patient-therapist dyads with Nobs ¼ 900
(that is, behavior was recorded for 15min at a fre-
quency of 1 observation per second for each couple).
We focus on two of these variables, namely: vocalizing
(three categories: speaking, silent, backchanneling)
and looking (binary: looking and not looking at the
other). To keep our illustration simple, no covariates
to explain possible heterogeneity between dyads were
included in the model.

We analyzed the data by fitting MHMMs with two
to six hidden states using the R package mHMMbayes
(Aarts, 2019; for R code, see Mildiner Moraga &
Aarts, 2022). For each model we fit four chains of
4000 iterations with a burn-in period of 2000, and dif-
ferent starting values based on the maximal likelihood
estimates of the corresponding parameters on a sin-
gle-level HMM fit with the R package depmixS4
(Visser et al., 2009). Only models with two and three
hidden states passed the convergence criterion
(MPSRF � 1:05 on all the group-level model parame-
ters; Brooks & Gelman, 1998). We selected the model
with three hidden states based on its lower AIC
(AICM¼2 ¼ 3333:7 and AICM¼3 ¼ 3315:6).

In our model, states 1 and 3 describe situations
where either the therapist or the patient speak while
the other is looking at the speaker, respectively (see
Figure 9). In state 2, both therapist and patient have a
moderate probability of speaking, whether with over-
lapping vocalizations or not. In addition, we also
observe a significant proportion of back channeling by
the patient in state two. Visual inspection of the indi-
vidual specific posterior densities of vocalizing (Figure
10) reveals that the composition of the mixed state
(state two) varies considerably across dyads. On the
contrary, patient and therapist vocalizing within the
state that that either of them dominates (states one
and three) are quite uniform across dyads.

Group-level point estimates for the probabilities of
transitioning between the states are presented in Table
2, along with the range of dyadic-specific TPM over
the 39 dyads. The self-transitions took higher values
than the off-diagonal transitions, signaling that behav-
ioral states tend to persist in time once they start.
States one and three, in which a single member of the
dyad has a high probability of taking the word tend to
be more persistent in time. The mean expected dur-
ation2 of these two states was 14.3 and 14.5 s,

respectively, while state two is expected to last only
3.6 s. In addition, transitions from the second state
presented a larger variability between dyads than tran-
sitions from the other two states (see ranges in Table
2). As such, state two not only has a more heteroge-
neous composition (see Figure 10), but also its
dynamics and persistence are relatively heterogeneous
between dyads. On the contrary, dynamics, persistence
and composition of the other two states appear to be
relatively homogeneous between dyads.

Posterior predictive checks (PPCs) generally indi-
cate an adequate fit of the three-state MHMM to the
patient-therapist data. In the PPCs, Nsim ¼ 500 new
data sets were simulated using the parameter estimates
obtained in the fitted three-state MHMM, and the
extent to which a set of summary statistics over the
simulated data sets recapture the values in the empir-
ical data was assessed. For a more detailed explan-
ation, we refer the reader to Lynch (2007), Gelman
et al. (2013), and Gelman and Carlin (2014). The first
posterior predictive check (PPC1) aimed to assess
whether the model could adequately reproduce the
mean proportions of observation categories (over
dyads) for the four dependent variables. Figure 11
shows the mean proportion of each category of obser-
vation on the empirical data (bars), and the simulated
data sets (medians and 95% credibility intervals).
Overall, Figure 11 and the corresponding posterior
predictive values (PPV) show that the MHMM is able
to recover the general trend of observed proportions
of the empirical set, which is a indicator of adequate
fit to the data (i.e., :025 � ppv½rep > true� � :975 for
all but two of the observation categories). However,
the model overestimates the proportion of events of
“backchanneling” for both patient and therapist (pro-
ducing extreme posterior predictive values of
ppv½rep > true� ¼ :976 and ppv½rep > true� ¼ :994 for
the patient and the therapist, respectively).

The second PPC (PPC2) aimed to explore whether
the model was able to reproduce the proportion of
events in which one, both, or neither therapist and
patient vocalized in the same time. We labeled the
data according to who displayed a vocalizing behavior
at each t on each dyad. As labels, we used the catego-
ries “both,” “patient,” “therapist,” and “none” when
both were silent. The visual representation of PPC2
on Figure 12 indicates that the model adequately
reproduces the pattern of sources of vocalizations in
the data (i.e., :025 � ppv½rep > true� � :975), although
the proportion of observation in which neither is
speaking tended to be underestimated
(ppv½rep > true� ¼ :046). The later is likely a

2The MHMM implicitly assumes a geometric distribution for the state
duration. To ease interpretation, we can approximate the geometric
distribution with the exponential distribution using k ¼ �c ii , and obtain
the expected duration of a state by 1/(1 � �c ii).
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consequence of underestimating the proportion of
times the patient is silent during a session (see PPC1
in Figure 11, results for the variable “patient
vocalizing”).

This empirical application provides an example of
how the dynamics over time in behavioral data are
summarized using the MHMM. Multivariate data with
four dependent variables is collapsed in a data-driven
manner into three non-verbal communication states
over time, were the composition of the obtained non-
verbal communication states have a clear behavioral
interpretation. Dynamics over time are captured in
the transition probabilities, which also shed light on
the time persistence of each of the non-verbal

communication states. Variability between dyads is
captured in the model, and can be visualized intui-
tively. In addition, the PPCs show the versatility of
the Bayesian method to assess the goodness of fit of
the model.

Discussion

In the current study, we have investigated factors that
influence parameter estimation performance of the
MHMM for categorical data. Investigating parameter
estimation performance in the MHMM is crucial to
ensure reliable and replicable results in applying the
MHMM and a first step toward defining a set of data-

Figure 9. Mosaic plot. Composition of hidden states: maximum a posteriori estimations of the group-level emission probabilities
over the states for the four dependent variables. Panel (a) displays the emission probabilities for “patient vocalizing” and “therapist
vocalizing”; panel (b), for “patient looking” and “therapist looking.” Color fill indicates the observation category of the correspond-
ing dependent variables. State 1 and state 3 are dominated by either patient or therapist (correspondingly), while for state 2 both
have a moderate probability of speaking (mixed state).

Figure 10. Density plot. Posterior distributions of the emission probabilities of “patient vocalizing” and “therapist vocalizing” over
the three hidden states. Thick lines indicate group-level emission probabilities, and thin lines, individual-specific emission probabil-
ities. Color fill indicates the observation category of the corresponding dependent variables. The composition of state 2 (mixed
state) is more variable across dyads than the composition of the state 1 and 3.
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requirement guidelines. Simulation scenarios included
varying levels of number of dependent variables, sam-
ple sizes, and level of state distinctiveness and separ-
ation in the emission distributions. The fitted MHMM
included individual random effects that allow for the
quantification of heterogeneity between individuals on
both the parameters of the transition probabilities and
the parameters of the emission distribution. Our
results provide insights about the data requirements
of the model and show that it is feasible to obtain
accurate group-level estimates with the MHMM even
on conditions of low state distinctiveness and
separation.

In the following, we summarize our findings, give
guidelines for social and behavioral researchers who
would like to apply the MHMMs, and discuss how
further research could shed more light on the poten-
tial of using MHMMs.

Main findings

Using multivariate data
In general, including multivariate data (Ndep � 2)
appears to benefit the convergence of the model
parameters, the estimation of group-level parameters
and individual random effects in both transition and
emission distribution, and the accuracy of hidden
state decoding. The beneficial effect of multivariate
data is especially noticeable when dealing with states
whose distribution is not so well separated. The model
can use any complementary information encoded in
the variables to map different aspects of the latent
process, which leads to a better identification of hid-
den states, generally improving model performance.
This also explains why, for data containing low levels
of state distinctiveness and separation in the emission
distributions, using multiple dependent variables pro-
duced a better model performance than an equivalent
increase in the number of observations per individual
for a single variable (i.e., models with bivariate data
and 400 observations per individual produced better
estimations than models with 800 univariate observa-
tions per individual).

These results go in line with previous research on
the number of indicators (here, dependent variables)
on latent class analysis (Wurpts & Geiser, 2014),
structural equation modeling with continuous latent
variables (Marsh et al., 1998), and latent transition
analysis (Collins & Wugalter, 1992), showing that the
benefits over the estimation performance of the model
of including additional indicators appear to over-
weight any detrimental effects due to increments in
the complexity of the model. This is more so the case
for the HMM, because of the assumption of condi-
tional independence between dependent variables
(indicators). As a result, no variance-covariance
matrix is modeled between them, which avoids sparse-
ness issues on response patterns. Also in line with
these studies, our results indicate that the beneficial
effect of multivariate data is more pronounced for
data sets with smaller sample sizes, where only limited
information is available for the identification of the
hidden states.

Thus, multivariate data can alleviate the negative
effect of low separation between states, a relevant
finding considering that sometimes the Nobs is con-
strained by the type of empirical application (i.e.,
behavioral processes such as therapy sessions often
have a maximal duration). Notwithstanding, when the
states are well separated, and a sufficient Nobs is given,
using multivariate data does not have a significant
effect over the group-level parameters. Only when
Nobs is insufficient –for instance, Nobs ¼ 100 in our
simulation– using multivariate data appears to
improve the estimation of group-level parameters
through compensation.

Interestingly, the scenarios with additional random
noise dependent variables revealed that the model is
relatively robust to the inclusion of variables that do
not contain information for mapping to the hidden
states. Overall, the inclusion of these variables only
had a moderate detrimental effect on parameter
coverage, and which also extended to bias in scenarios
with smaller sample size (Ndep ¼ 1 and Nobs ¼ 100).
Moreover, the inclusion of the additional random
noise variables had no substantial impact on the
accuracy of state decoding. Even though it is reassur-
ing that the model can generally handle this type of
miss-specification, in practice these variables would
rarely be included in the model, as one can use theory
and model selection techniques to choose which varia-
bles to include or leave out. Although our results did
not reveal a tipping point after which including add-
itional dependent variables has a marked detrimental
effect over the stability of the results, it is possible

Table 2. Maximum a posteriori estimates of the transition
group-level parameters on the patient-therapist data (range of
the dyad-specific transition probabilities indicated in
parentheses).

Transition to

State 1 State 2 State 3

From State 1 0.93 (0.86–0.97) 0.05 (0.01–0.12) 0.02 (0.01–0.09)
State 2 0.16 (0.05–0.28) 0.73 (0.52–0.92) 0.11 (0.03–0.27)
State 3 0.03 (0.01–0.15) 0.04 (0.01–0.10) 0.93 (0.81–0.96)
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that under certain conditions the estimation cost of
additional variables outweighs their benefits (e.g.,
dependent variables not related to the latent process
under study, variables with sources of variability
unaccounted for in the model, or that present high
levels of multicollinearity to the point of harming par-
ameter estimation).

Number of individuals and number of observations
In line with previous simulations in multilevel latent
variable models, both the number of individuals and
the number of observations per individual play an
important part in the estimation of group-level
parameters on the MHMM, albeit their effect and
relevance are not the same (e.g., Finch & French,
2014; McClintock, 2021; Schultzberg & Muth�en,
2018). In particular, having a small number of obser-
vations per individual (Nobs ¼ 100) appears to be

more detrimental than a small number of individuals
(Nind ¼ 5). Also in line with these studiers, our results
show that a large number of observations per individ-
ual or number of individuals can partly compensate
for a small number on the other (e.g., Schultzberg &
Muth�en, 2018). A large number of observations per
individual improves the precision of the individual-
level parameters, which results in a better estimation
of group-level parameters. A large number of individ-
uals implies that even if the individual-level estima-
tions were not so accurate, the group-level average
would approach the population value. However, for
accurate estimation of the group-level parameters,
both the number of observations per individual and
the number of individuals need to be of a sufficient
amount (Nobs > 100 and Nind > 5). Regarding the
estimation of individual random effects, it is clear that
the number of individuals is the most important

Figure 11. Bar plot. Results of posterior predictive check 1 (PPC1) for the group-level emission parameters. The bars represent the
mean proportion of each category of observation (over dyads) on the empirical data. The point and range, the median and 95%
credibility interval (95%CI) of the mean proportions (over dyads) aggregated over the Nrep ¼ 500 simulated data sets (model pre-
dictions). Overlapping of the 95%CI arms with the empirical means indicate good fit to the data. The model is generally able to
capture the group-level emission parameters, although it overestimates the incidence of “backchanneling” in the data.

Figure 12. Histogram. Who is talking? Results of posterior predictive check 2 (PPC2) on the group-level emission probabilities of
the dyads. The red lines represent the empirical mean of the proportion of observations over sessions in which “patient,”
“therapist,” “both,” or “none” vocalized. The histograms represent the model predictions for the mean proportions over the Nrep ¼
500 simulated data sets. Overlapping of the histogram with the vertical line indicates good fit. The model is generally able to cap-
ture the frequency of each category of observation, slightly overestimating the incidence of instances of “both” speaking, and
underestimating the incidence of “none” speaking.
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factor, and cannot be compensated by the number of
observations per individual. This result goes in line
with previous research on multilevel models: the num-
ber of individuals is usually considered the main driver
on the estimation of random effects in multilevel mod-
els (e.g., Finch & French, 2014; McNeish, 2019;
Schultzberg & Muth�en, 2018). For decoding of the
sequence of hidden states, our results show that ensur-
ing a sufficient number of observations per individual
appears to be more relevant than increasing the num-
ber of individuals in the data. When data for more
individuals is available, the group-level parameters can
be estimated more accurately.

Hence, whether a large number of observations per
individual or a large number of individuals is to be
preferred depends both on the costs related to sam-
pling on either level, and whether one is mainly inter-
ested in the overall, group-level temporal dynamics, in
the between-individual variation (measured by the
individual random effects), or in accurately uncover-
ing each individuals states sequences.

General findings in parameter estimation
Our results revealed a few additional aspects about of
the parameter estimation in the MHMM.

Generally, estimating parameters closer to the
boundary of the parameter space (i.e., probabilities
close to zero and one) is more challenging than esti-
mating parameters that take intermediate values
(Beyer et al., 2013; Jonsen, 2016; McClintock, 2021).
Our results confirmed this notion: the state with the
lowest self-transition in these results led to the most
accurate results in both self-transitions and off-diag-
onal transitions. This result indicates that data sets
with a transition distribution that is not so extreme
require a smaller amount of data to deliver accurate
estimation. Notwithstanding, higher self-transitions
(longer persistence) also lead to more accurate decod-
ing of the sequence hidden states. Because states with
a longer persistence occur more frequently in the
data, the model counts with more information to cor-
rectly identify them.

In addition, estimation of group-level parameters of
the transition probability matrix was downwardly
biased for the self-transitions and upwardly biased for
the off-diagonal transitions. That is, the MHMM gen-
erally underestimated parameters in the probability
scale with a value close to one, and it overestimated
low-probability parameters whose values lye close to
zero. The bias size was comparable for the two types
of transitions departing from the same hidden state,
but naturally resulted in a larger relative bias in the

estimation of off-diagonal transitions. Off-diagonal
transitions were likely harder to estimate because of
their relative infrequent occurrence in the data.

Furthermore, the estimation of group-level parame-
ters was more accurate compared to estimation of
random effects. This result goes in line with the previ-
ous evidence for multilevel models and multilevel
time-series (see e.g., Asparouhov et al., 2018; Hox
et al., 2018; Landau & Stahl, 2013; McClintock, 2021).
In particular, the model tended to overestimate the
transition probabilities’ random effects across scen-
arios. The overestimation is likely a consequence of
using a scaled Inverse-Wishart distribution to sample
the variance-covariance matrices of random effects,
which has a low density around zero (Gelman, 2006;
Lemoine, 2019). The estimation of variances can per-
form poorly when variances are small relative to
means, constraining variances upwards and correla-
tions downwards (Alvarez et al., 2014). As a result,
sampling from the Inverse-Wishart can lead to slight
to moderate overestimation of the posterior variance-
covariance matrix (Alvarez et al., 2014; Lemoine,
2019). As such, researchers interested in the between-
individual variability can expect to require a larger
Nind than those mainly interested in group-level
parameters. However, the number of individuals
needed can partly be alleviated by the use multivariate
data.

Using MHMM for modeling intensive longitudinal
data: guidelines for applied researchers

We base the following guidelines on the variety of
scenarios that applied researchers may encounter
depending on their interests and variations in the out-
come variable (that is, in the levels of state distinctive-
ness and separation in the emission distributions). We
remind the readers that the guidelines are based on
our simulation, which assumed data with relatively
high self-transitions, and in which all dependent varia-
bles contribute partly unique information. For data
sets with lower self-transitions, the model would likely
require less data to produce accurate estimates.

When the focus is on the group-level parameters
Research focusing on the group-level parameters of
any of the two components of the model should pri-
oritize using multivariate data and ensuring a suffi-
cient number of observations per individual. As such,
expanding the number of individuals in the data is of
a lesser importance. Here, it is important to note that
the temporal design (e.g., measurement timing,
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frequency, and spacing) should be based on the time-
frame at which the underlying process under study is
assumed to change, rather than the required number
of observations per individual, as a miss-match
between the sampling frequency and the process
under study can lead to misleading results (Ariens
et al., 2020; Collins, 2006; Hamaker & Wichers, 2017).
Researchers should also note that, as mentioned
before, the relative estimation performance is better
for self-transitions compared to off-diagonal transi-
tions. Upward bias can be expected on the off-diag-
onal transitions in data sets with very high self-
transitions, which is characteristic in data sets with
high measurement frequency.

The specific guidelines on the Nind, Nobs, and Ndep,
depend on the amount of state distinctiveness and
separation in the emission distributions. For instance,
in a data set where the states are distinctive and well
separated, estimating the transition probabilities reli-
ably would minimally require: (a) 400 observations for
two dependent variables on five individuals, (b) 800
observations for one dependent variable on five indi-
viduals, or (c) 400 observations for one dependent
variable in 30 individuals (see Figure 5). However,
obtaining a given level of accuracy with a simpler
model (e.g., two hidden states) or less complex data
(e.g., states well separated, low between-individual
variability, continuous data) will likely require less
data.

In contrast, for a data set on the lower end of level
of state distinctiveness and separation on the emission
distributions, the acceptable estimation accuracy of
the group-level parameters would require at least: (a)
800 observations for four dependent variables on five
individuals, (b) 1600 observations for two dependent
variables on five individuals, or (c) 1600 observations
for one dependent variable in 30 individuals (see
Figure 5).

When the focus is on the individual random effects
Researchers focusing on the random effects should
prioritize increasing the number of individuals Nind

over the number of observations per individual Nobs,
as the former is the main factor driving the estimation
of these effects. In addition, researchers are encour-
aged to include multivariate data whenever possible.
As previously discussed, we note that researchers can
expect an overestimation of the individual random
effects. In our setting, almost none of the combina-
tions of researcher-controlled factors were sufficient to
produce acceptable levels of bias for these parameters.
However, we notice that a Nind ¼ 30 combined with

Ndep ¼ 2 offers a significant improvement on both
bias and precision for data over all levels of state dis-
tinctiveness and separation in the emission distribu-
tions. The estimation improves even further with Nind

¼ 90 and Ndep ¼ 4, but with a decreasing marginal
gain. Based on our results, they can also expect esti-
mation of individual random effects to become more
reliable in data sets with a larger between-individual
variability.

When the focus is on the state decoding
Researchers especially interested on the decoding of
the sequence of hidden states on the data are encour-
aged to prioritize multivariate data, and to a lesser
extent, increasing the number of observations per
individual. For data in which states are well-defined
and well-separated, a decoding accuracy � 90% was
achieved with multivariate data (Ndep � 2) and 100
observations per individual in our results. For data
with a low level of state distinctiveness and separation,
four dependent variables and 400 observations per
individual were sufficient to achieve a decoding accur-
acy � 70% in our results. While these guidelines offer
a general perspective on the sample size required,
researchers can expect some variability on the data
requirements as a consequence of the characteristics
of each specific data set. For instance, for data with
continuous or count observations, researchers can
expect to obtain the same level of decoding accuracy
with a smaller data requirement. Finally, we note that
a more accurate decoding is to be expected for states
with higher self-transitions.

Conclusion

Our study demonstrates that the MHMM can effect-
ively handle the data requirements needed to model
complex data using current standards. By utilizing
multivariate data, we found that it is possible to miti-
gate the negative effects of data containing states with
varying degrees of distinctiveness and separation.
Additionally, the number of individuals and the num-
ber of observations per individual can complement
each other when estimating group-level parameters.
By implementing efficient data usage in analysis
design, researchers can extract valuable insights on
complex processes using the MHMM in a reliable and
replicable manner. These findings can assist research-
ers in making informed decisions when analyzing
their intensive longitudinal data.
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