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ABSTRACT

The use of idiographic research techniques has gained popularity within psychological research
and network analysis in particular. Idiographic research has been proposed as a promising
avenue for future research, with differences between idiographic results highlighting evidence
for radical heterogeneity. However, in the quest to address the individual in psychology, some
classic statistical problems, such as those arising from sampling variation and power limitations,
should not be overlooked. This article aims to determine to what extent current tools to com-
pare idiographic networks are suited to disentangle true from illusory heterogeneity in the
presence of sampling error. To this end, we investigate the performance of tools to inspect het-
erogeneity (visual inspection, comparison of centrality measures, investigating standard devia-
tions of random effects, and GIMME) through simulations. Results show that power limitations
hamper the validity of conclusions regarding heterogeneity and that the power required to
assess heterogeneity adequately is often not realized in current research practice. Of the tools
investigated, inspecting standard deviations of random effects and GIMME proved the most
suited. However, all tools evaluated leave the door wide open to misinterpret all observed vari-
ability in terms of individual differences. Hence, the current paper calls for caution in the use
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and interpretation of new time-series techniques when it comes to heterogeneity.

Ever since Molenaar (2004) aimed to bring back the
individual into scientific psychology once and for all
with his classic manifesto, there has been a rise in
idiographic research. This rise is mainly fueled by the
realization that inter-individual (nomothetic) and
intra-individual (idiographic) levels of analysis do not
necessarily yield similar results—a concern that has
been pointed out numerous times (Bos & Wanders,
2016; Fisher et al., 2018; Hamaker et al., 2005; Kievit
et al., 2013; Schuurman et al., 2015; Simpson, 1951).
Population heterogeneity is often brought forward as
a reason for this lack of overlap: for instance, individ-
uals may differ from each other not only quantita-
tively but qualitatively, and current research practice
struggles to take these differences into account.

Over the years, network analysis has rapidly gained
popularity within psychology (for an overview of the
literature, see Fried et al, 2017; Robinaugh et al,
2020). In network analysis, psychological constructs

are represented by nodes and edges. Nodes indicate
variables that play a role in the psychological con-
struct of interest, e.g., symptoms, where edges repre-
sent the statistical relationship between these nodes
(Borsboom, 2017; Borsboom & Cramer, 2013; Cramer
et al,, 2010). This statistical relationship depends on
the method used: often, edges represent partial corre-
lations or (logistic) regression coefficients. The most
common way to estimate a network is by applying a
Gaussian Graphical Model (GGM; Lauritzen, 1996)—
an undirected network model with partial correla-
tions—to cross-sectional data (Epskamp et al., 2016;
Robinaugh et al., 2020). As such, the edges in these
types of networks represent the strength of the statis-
tical association between two nodes while controlling
for every other node in the network."

Recently, the network paradigm has converged with
the intra-individual modeling tradition, as the estima-
tion of individual network models based on time series
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data has become in favor. In this approach, a single
individual is measured frequently over an extended
period of time, after which a subject-specific network
is estimated (Epskamp et al., 2018c). The temporal
ordering of time-series data adds two challenges to
network estimation: on the one hand, because con-
secutive time points violate independence assump-
tions, standard GGM estimation techniques for cross-
sectional data cannot be used, and on the other hand,
the temporal information allows for identifying rela-
tionships over time, providing insight into Granger
causality (Granger, 1969). Statistical complications
arising from violations of independence can be
resolved by estimating a temporal network—a network
with directed edges that provides information regard-
ing patterns among variables as they unfold over
time—in addition to an undirected network contain-
ing partial correlations. This latter network is referred
to as the contemporaneous network and may provide
insight into patterns that occur at a time scale differ-
ent from the one defined by the spacing of the meas-
urement occasions. Especially within clinical practice,
a detailed understanding of the individual and their
development over time is deemed to be important,
and to this end, these types of networks are seen as a
promising tool (Burger et al., 2020).

Intra-individual research using network models has
regularly claimed evidence for heterogeneity when
comparing individual networks (e.g., Beck & Jackson,
2020; De Vos et al, 2017; Levinson et al, 2022;
Piccirillo & Rodebaugh, 2022; Reeves & Fisher, 2020).
A common way to analyze heterogeneity within net-
work analysis is by estimating intra-individual net-
work models and using tools to compare the
individual network models to one another. In accord-
ance, the observation that network models appear to
show differences across individuals is often seen as a
vindication of the N=1 paradigm, as it seems to sup-
port the idea that understanding intra-individual proc-
esses requires intra-individual data, so that “[I]f one
wants to know what happens in a person, one must
study that person” (Borsboom et al., 2003).

However, this type of research runs the risk of mis-
taking noise for heterogeneity by directly interpreting
all observed variability in individual network struc-
tures in terms of individual differences. After all, not
all variability is due to individual differences; some
variability is caused by fluctuations within the data
due to sampling error and variance sources unrelated
to the constructs of interest. As of yet, it is unclear
precisely to what extent current metrics used to detect
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heterogeneity within network analysis are sensitive to
such sources of variance.

Therewith, the aim of this paper is twofold: we (1)
demonstrate how easily noise can be mistaken for het-
erogeneity, and (2) we shed light on whether popular
tools within network analysis can separate heterogen-
eity from sampling variation. First, we illustrate the
influence of sampling variation when comparing indi-
vidual network models by means of a thought experi-
ment. Second, we investigate the ability of four
“heterogeneity metrics” to separate real from illusion-
ary heterogeneity by means of a simulation study. We
provide the reader with a measure to calculate the
expected overlap between two estimated networks and
leave suggestions for future assessments of network
heterogeneity.

Network heterogeneity: a thought experiment

To illustrate the influence of sampling variation within
network analysis and its relation to power and hetero-
geneity, let us conduct a simple thought experiment.
Imagine that we have two data-generating network
models: One fully connected network containing five
nodes and 10 edges and one empty network with the
same number of nodes.” We refer to these networks
as our true underlying networks. For a graphical rep-
resentation of the two networks, see the left upper
and lower panel in Figure 1. Further, assume all edges
in the network are of equal strength, and our hypo-
thetical sample is entirely homogeneous, ie., each
individual making up our sample has the same true
underlying network structure. Now suppose we have a
sensitivity of 50% and a specificity of 90%. That is, we
have a probability of 50% to detect an edge that is
truly present within our network, and we have a prob-
ability of 90% to reject an edge that is not truly pre-
sent in our network. These numbers are what can be
expected when t=50 given previous simulation stud-
ies on individual network models (Epskamp et al,
2018c; Mansueto et al., 2022).

With these assumptions in hand, let us focus on
the fully connected network first. Given a sensitivity
of 50%, we can expect to pick up, on average, five out
of the 10 true edges. Assuming all edges are equal in
strength, roughly 50% of the edges will show up in
our generated network model at random. Now the
question is, if we randomly select three individuals

2For simplicity, we will use undirected contemporaneous networks and
ignore temporal effects by assuming temporal networks are empty. The
thought experiment could easily be extended to temporal networks as
well, as the same logic holds.
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Figure 1. Graphical representation of the thought experiment. The left upper and lower panel show the data-generating network
models containing five nodes, with, in the upper panel 10 edges, i.e,, a fully connected network, or, in the lower panel, zero
edges, i.e., an empty network. We refer to these two networks as the true data-generating networks. For both true underlying net-
work structures, three network structures were randomly generated, yielding a sensitivity of 50% and a specificity of 90%. For sim-
plicity, edge weights are of equal strength. Solely based on a visual comparison of the three randomly generated network
structures, not knowing the true underlying network, one may be tempted to conclude that these three networks are very differ-
ent, i.e, there is a great amount of heterogeneity present. In fact, all of this perceived “heterogeneity” is caused by sampling vari-

ation. (a) Fully connected case and (b) Empty case.

from our homogeneous sample, how much overlap
between these three individual network models do we
expect to see?

When visually inspecting the individual networks
(upper panel Figure 1), one may be tempted to con-
clude there are plenty of individual differences, as
none of the resulting networks look similar to one
another. To calculate the overlap between the esti-
mated edges, we could take the number of shared
edges between two networks, divided by the number
of possible edges (n(n —1)/2, in which n stands for
the number of nodes). Multiply by 100 to convert
the ratio to a percentage. Using this as a metric to
calculate the resemblance between two individual
networks, the overlap between network A and B is
20%, the overlap between network A and C is 10%,
and between B and C is 40%. If we were to repeat
this scenario, on average, we expect to see an overlap
of 25% between two randomly selected estimated
individual networks, even though the true underlying

data generating network structure is exactly
the same.

Moving on to the case where our true underlying
network is empty, we see even less of an overlap
between the generated individual network models (see
lower panel Figure 1). Remember, we operate with a
specificity of 90%. This implies we have a 10% chance
of finding an edge that is absent in reality. The fact
that there are 10 potential edges means we expect, on
average, one false edge to be included in each esti-
mated network model. Here again, assuming all edges
are equal in strength, this erroneous edge can show
up anywhere in our network. Once more, let us gen-
erate a network for three individuals, see the lower
panel Figure 1. When visually inspecting these net-
works, again, our initial conclusion would be that
there is a great deal of variety in the resulting net-
works. If we were to calculate the overlap between the
networks, as we did for our fully connected case, we

would now find an overlap between our three



networks of 0%. If we were to repeat this scenario, on
average, we expect to see an overlap of 10% between
any two random individuals.

Analytically, we can derive the probability of
obtaining the same network twice in both conditions
of our thought experiment (i.e., the true fully con-
nected case and the true empty case) to be:

S(Eymap i)

m=0

in which n is the number of nodes, k is the total
number of possible edges (i.e., n(n — 1)/2), and p rep-
resents the sensitivity in the fully connected network
case and 1 — specificity in the empty network case.
Using this expression, we can calculate that the prob-
ability of obtaining the exact same network twice in
the thought experiment where the true network is a
fully connected, with n=5 nodes and sensitivity of
p=0.5 to be less than 0.1%. Likewise, we can see that
in the case of an empty network with a specificity of
0.9 (i.e., p=0.1) the probability of obtaining two iden-
tical networks is 13.7%.

This thought experiment shows that we can find a
great deal of variety in individual networks when visu-
ally comparing them, despite our true underlying net-
work model being invariant over individuals. This
exposes how prone visual inspection of network mod-
els is to error. In addition, often only the number of
present edges is taken into account in order to deter-
mine overlap between two networks, but if we were
to, for example, base the overlap between two net-
works not only on the estimated edges but also on the
absent edges, the overlap between the networks in our
fully connected case would rise to 50% and in the
empty case to an astonishing 90%. Given our homoge-
neous sample, another way to increase the estimated
overlap between two individual network models could
be established by increasing sensitivity. Sensitivity (i.e.,
the power to detect an existing edge) increases as the
number of time points increases. Suppose we increase
our sensitivity to 90%. In the case of a fully connected
network, this means that if we were to draw two ran-
dom networks to compare, we would expect an aver-
age overlap of 80%, and the chance of two randomly
chosen estimated network models to be exactly alike
would be 13.7%.

In order to increase power without inflating the
Type-1 error rate—i.e., increasing sensitivity while
keeping specificity high—there is only one solution:
we need to collect more data. But how much more
data? Much work has been dedicated to identifying
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the minimum amount of data required when perform-
ing ideograph analysis, (e.g., Epskamp et al., 2018c;
Lane & Gates, 2017; Mansueto et al., 2022; Nestler &
Humberg, 2021),> however, a considerable variety of
results has been reported, likely as a function of simu-
lation and estimation details as well as variation in the
network structure simulated from, and were not
always viewed in light of perceived heterogeneity.
Therefore, it is unclear how much data is needed in
order to achieve the preferred sensitivity to make a
valid claim about heterogeneity in individual net-
work analysis.

The scenario sketched in our thought experiment is
merely a hypothetical one. In reality, we deal with
various edge strengths and differences in network
structures, such as a more sparse or a more densely
connected network structure. There is a delicate inter-
play between edge weights, network structure, proper-
ties of the data (such as sample size and effect size),
and the estimation technique used. To shed light on
this interplay, we turn to a simulation study to deter-
mine the effects of sampling variation on detecting
heterogeneity in individual networks under different
network using three popular estima-
tion techniques.

structures

Beyond thought experiments: Network
heterogeneity in estimated network structures

To further illustrate the main point of this paper—be
careful with the interpretation of all variability as evi-
dence for individual differences—we conducted a
simulation study in which we applied three idio-
graphic network estimation techniques (graphical
VAR (graphicalVAR), multilevel VAR (mIVAR) and
Group Iterative Multiple Model Estimation (GIMME))
to estimate individual network structures from simu-
lated homogeneous data. This simulation study aims
to answer the question to what extent current net-
work-based tools to detect heterogeneity yield valid
results to determine the amount of heterogeneity pre-
sent. Throughout this paper, we have defined the con-
cept of heterogeneity to mean the absence of
homogeneity. This is a strong stance on heterogeneity,
as the slightest difference is taken as a sign of hetero-
geneity. Within the network literature, the operation-
alization of heterogeneity differs. Therefore, it is

3The work of Epskamp et al. (2018c) shows t=100 is sufficient when
performing a grpahicalVAR analysis, while the work of Mansueto et al.
(2022) shows sufficient sensitivity when t=500. In addition, Lane and
Gates (2017), show t>60 is suitable for GIMME to pick up small to
moderate effects while the work of Nestler and Humberg (2021) shows
t > 100 for GIMME to perform well.
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crucial to have an understanding of different individ-
ual network modeling techniques that can be used to
operationalize heterogeneity in order to explore if and
how these methods account for normal fluctuations
within the data. To this end, we provide a brief over-
view of the most commonly used idiographic network
estimation tools.

An overview of idiographic network
estimation tools

The most common way to estimate individual net-
works is with some type of Vector Autoregression
(VAR) model. There are two modeling frameworks
that extend the VAR model to incorporate both tem-
poral and contemporaneous network structures: the
graphical VAR model (GVAR; Epskamp et al., 2018c)
and the structural VAR model (SVAR; G. Chen et al,,
2011). The GVAR model represents the contemporan-
eous network using undirected effects, whereas the
SVAR model represents the contemporaneous net-
work using direct effects. Several methods exist for
estimating model parameters (edge weights) coupled
with model structure (presence or absence of edges)
for both modeling frameworks and for N=1 and
N> 1 datasets.

In N=1 settings, the GVAR model can be esti-
mated through iterative regularized estimation by
using the multivariate regression with covariance esti-
mation algorithm (MRCE; Abegaz & Wit, 2013; Guo
et al., 2010), which is implemented in the R packages
graphical VAR and sparseTSCGM, or it can be esti-
mated through maximum likelihood estimation as
implemented in the psychonetrics R  package
(Epskamp, 2020a, 2020b). The SVAR model can be
estimated in the N=1 setting through model search
using generic structural equation modeling software
such as the R package lavaan (Rosseel, 2012). In the
N>1 setting, each of the N=1 methods can be used
separately for each individual, a practice investigated
in this paper.

In addition to estimating a network model for each
individual separately, methods exist that allow one to
borrow information across participants. In particular
multi-level estimation is often used with the GVAR
model by using the two-step multi-level GVAR algo-
rithm as implemented in the R package mIVAR
(Epskamp et al., 2018c; 2020), or Bayesian estimation
as implemented in Mplus version 8 and higher
(Schultzberg & Muthén, 2018). The SVAR model is
often estimated in N>1 settings using GIMME
(Gates & Molenaar, 2012), which is implemented in

the R package gimme (Lane et al., 2020). For details
on the modeling frameworks used in this simulation
study and the estimation techniques wused, see
Supplement A.

In this paper, we focus on three methods for
GVAR and SVAR estimation: MRCE using
graphical VAR, two-step multi-level estimation using
mlVAR, and Group Iterative Multiple Model
Estimation using gimme. We focus on these methods
because they have been used for the purpose of esti-
mating individual networks and detecting heterogen-
eity in existing research (e.g., Beck & Jackson, 2020;
Beltz et al., 2016; Bringmann et al., 2013; Reeves &
Fisher, 2020; Rodriguez et al., 2022). To simplify the
description of results below, we will refer to each of
these three methods by referring to their correspond-
ing R packages: graphicalVAR,* mIVAR and GIMME.
We expect results from other methods, such as max-
imum likelihood estimation of N=1 GVAR models
or Bayesian multi-level estimation of N> 1 models, to
align, as these methods perform similarly in estimat-
ing network structures from data (e.g., Mansueto
et al, 2022 shows a strong overlap between the
graphical VAR and psychonetrics packages). In the fol-
lowing sections, we will discuss these three methods,
the tools used to detect heterogeneity, and examples
of their use in practice for each method separately.

Regularized estimation using graphicalVAR

The graphical VAR package uses the MRCE algorithm
to estimate the GVAR model (Epskamp, 2020a). This
algorithm makes wuse of LASSO regularization
(Tibshirani, 1996), which iteratively estimates tem-
poral coefficients (regression weights between t—1
and t) through regularized regression, and contempor-
aneous coefficients (partial correlations after control-
ling for temporal effects) through the graphical
LASSO algorithm (Friedman et al., 2008). The algo-
rithm utilizes two LASSO penalty parameters, which
are chosen by optimizing the extended BIC (EBIC; J.
Chen & Chen, 2008; Abegaz & Wit, 2013; Epskamp
et al., 2018¢).

It is important to note that as of yet there are no
techniques available that are developed specifically to
detect heterogeneity using graphical VAR estimates.
The detection of heterogeneity after estimating a
GVAR model through graphicalVAR 1is currently
mainly based on (1) differences in network topology,
(2) differences in network density, and (3) differences

“GraphicalVAR therefore refers to the MRCE method implemented in the
graphicalVAR R package, not to the GVAR modeling framework, which can
also be estimated using other methods.



in node connectivity measures (i.e., measures that are
often used to assess the relative importance of nodes
within the network?).

De Vos et al. (2017) can be taken as an example of
how visual inspection of individual network models is
used to detect heterogeneity. De Vos et al. (2017) esti-
mated individual network models for people diag-
nosed with Major Depressive Disorder (MDD) and
healthy controls. Participants completed a question-
naire assessing seven positive and negative affect items
(e.g., “Feeling cheerful” and “Feeling irritated”) three
times a day over a period of 30days. Using visual
inspection De Vos et al. concluded that individual
networks did not resemble each other in terms of
density and topology, taking this as an indication for
a strong level of heterogeneity. Fisher et al. (2017)
took a somewhat similar approach. The authors esti-
mated individual network models for people with
Generalized Anxiety Disorder (GAD) and MDD and
for individuals who presented a comorbid clinical pic-
ture of both GAD and MDD. Forty participants com-
pleted questions on anxiety and depression symptoms
(e.g., “Feeling hopeless,” “Loss of interest or pleas-
ure”), positive and negative affect, rumination, behav-
ioral avoidance, and reassurance seeking four times a
day for at least 30 days. In addition to examining the
network topology, Fisher et al. examined strength cen-
trality. Results showed that node centrality metrics
differed strongly between individuals. The authors
interpret these differences as an indication for hetero-
geneity among individuals with GAD, MDD, or a
comorbid presentation of GAD and MDD. The two
studies described here should be taken merely as
examplementary. Given the importance of the ques-
tion of whether individuals differ from one another
(and from the between network structure), more stud-
ies with similar interests and set-up can easily be
found. For some more recent examples see Jongeneel
et al. (2020), Levinson et al. (2022), and Rodriguez
et al. (2022).

Multilevel estimation using mIVAR

The second method we discuss is two-step multi-level
GVAR estimation using the mIVAR package
(Epskamp et al., 2020), which is based on the multi-
level VAR models proposed by Bringmann et al.
(2013). This package first estimates temporal coeffi-
cients by performing a series of multi-level node-wise
regressions between time points t—1 and t. Within-
person centering of predictors is used in each of the

SFor an overview of connectivity measures often used in psychological
networks see Costantini et al. (2015) and Robinaugh et al. (2016).
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regressions, and person-wise means are included as
between-person predictors, such that within- and
between-person effects can be separated (Hamaker &
Grasman, 2015). This separation also leads to
between-person effects, that are gathered in a
between-persons network, which we do not use in the
present paper. Next, in a second step, another series
of node-wise regressions are performed on the resid-
uals of the first series of node-wise regressions, lead-
ing to estimates of contemporaneous networks.

As such, the mIVAR package leads to the estima-
tion of three network structures: (a) a contemporan-
eous network (per subject and fixed-effect structures
over all subjects), (b) a temporal network (per subject
and fixed-effect structures over all subjects), (c) a
between-subjects network (fixed-effects only). In add-
ition, the standard deviations of random effects across
the population on the temporal and contemporaneous
network parameters are also returned and can be
visualized as networks, leading to two more networks:
(d) a temporal network of random effects and (e) a
network of the standard deviations from the ran-
dom effects.

In contrast to fully idiographic N=1 estimation,
for example, by using the graphicalVAR package,
multilevel estimation offers a systematic approach to
detect heterogeneity. Because of the multilevel struc-
ture of the model, one can inspect the network of
standard deviations of random effects. These standard
deviations show the degree to which network parame-
ters exhibit individual differences. Bringmann et al.
(2013) recommend a cutoff of one standard deviation
for the resulting edge weights to represent “large
inter-individual differences.” This means that every
edge with a weight above one standard deviation can
be seen as truly heterogeneous. In addition, individual
differences can also be observed by visually inspecting
personalized networks obtained by adding the fixed
and random effects.

Bringmann et al. applied multilevel VAR, on which
the mIVAR package is based, to ESM data from 129
participants with depressive symptoms. Participants’
mood was assessed by a questionnaire containing six
mood variables (e.g., “Cheerful” and “Fearful”) 10
times a day over a period of 6 days. Bringmann et al.
inferred a network of inter-individual differences by
examining standard deviations of the random effects.
Results indicated a high level of individual variability
on the self-loop for worry, as on the self-loops for
cheerful, sad, relaxed, and fearful. Furthermore, vari-
ability in the relations between cheerful and relaxed,
cheerful and sad, and fearful and worry was found,
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from which the authors concluded that a fair
amount of heterogeneity in mood between the par-
ticipants with depressive symptoms was present. As
opposed to tools used to assess heterogeneity for
graphical VAR models, the tool used to assess het-
erogeneity for multilevel VAR—inspecting standard
deviations from the random effects—operationalizes
heterogeneity in terms of edge weight differences.

Group iterative multiple model estimation (GIMME)
The third method we evaluate is GIMME (Gates &
Molenaar, 2012; Lane et al., 2020), as implemented in
the gimme package, which is a method for estimating
SVAR models in N> 1 datasets (Beltz & Gates, 2017;
Lane & Gates, 2017). GIMME makes use of stepwise
model search strategies through structural equation
models, for example, by utilizing the lavaan package
for R. Similar to multilevel modeling, GIMME aims to
combine the worlds of nomothetic and idiographic
research. However, where multi-level modeling aims
to search for quantitative similarity across people
(what is the edge-weight?), GIMME aims to search
for qualitative similarity across people (which edges
are included?). GIMME does this by creating person-
specific as well as group-level edges. Group models
are estimated by an iterative search procedure that
identifies temporal and contemporaneous relation-
ships that would significantly improve model fit for
most individuals. After obtaining group-level effects,
GIMME will then search for temporal and contem-
poraneous individual-level effects, continuing this
process until an optimal fit is ensured. In addition to
individual model output, this leads to a model con-
taining both temporal and contemporaneous group-
level edges and temporal and contemporaneous indi-
vidual-level edges, where the width of the edge corre-
sponds to the number of individuals this edge was
estimated for.

The detection of heterogeneity can be executed by
inspecting the number of individual paths. Group-
level paths reflect homogeneity, as these edges need to
be present in at least 75% of the sample, whereas indi-
vidual paths reflect heterogeneity (Beltz et al., 2016;
Beltz & Gates, 2017). This means heterogeneity is
operationalized in terms of the number of individual
level edges, i.e., edges that did not improve model fit
for most individuals but did improve model fit so for
specific individuals. Beltz et al. (2016) applied
GIMME to data from 25 individuals with personality
pathology. Participants were instructed to complete an

Which is indirectly related to network topology and density.

online survey on related clinically relevant behaviors
for 100 consecutive evenings. Sixteen items from the
daily surveys concerning behavioral manifestations of
personality disorders were used to take four personal-
ity facets into account: negative affect, detachment,
disinhibition, and hostility. Results revealed some
group-level contemporaneous relations indicating
some homogeneity, however, weights for these rela-
tions differed across participants. In addition, partici-
pants showed different relations on the individual
level, reflecting heterogeneity.

In sum, several tools are used to assess the amount
of heterogeneity for individual network models.
However, the question remains how suitable these
metrics are to reveal the prevalence of heterogeneity
when sampling variation is taken into account. Our
ability to disentangle sampling variation from the true
effects in our data, i.e., power, is closely related to our
ability to detect heterogeneity. A question that arises
is whether, with current tools, we have enough power
to separate sampling variation from true heterogen-
eity. To what degree can we be confident that we are
looking at heterogeneity and not just normal fluctua-
tions in our data that arise as a function of sampling
variance? We investigate this question in simulation
studies reported below.

Simulation study

Methods

Network structures. Homogeneous data were gener-
ated based on three network structures: a synthetic-
data network structure, a more sparse network struc-
ture estimated from data of one clinical patient, and a
dense network structure estimated from data of mul-
tiple patients. We will refer to the first network struc-
ture as the synthetic-data network, the second as the
case-data network and the third as the Geschwind-
data network.”

The synthetic-data network structure is a sparse
chain graph, eg., 1-2, 2-3, etc, containing eight
nodes, with a network density (the number of present
edges divided by the number of possible edges) of
29% for the contemporaneous network and 14% for
the temporal network. The average absolute edge
weights are M = 0.34 and M = 0.32 for the contem-
poraneous and temporal effects respectively. For the
data generating PDC and PCC matrices see

"As these data generating matrixes are based on GVAR models, while
GIMME operates under a SVAR model, we have included an additional
SVAR network structure and preformed the simulation set up as described
in this section. For more details on the SVAR network structure,
simulaiton set up and results see Supplement B.



Supplementary material B.* We included this syn-
thetic-data network model as previous simulation
studies have shown that network estimation works
well under this structure (Epskamp et al., 2018c). For
a graphical representation of the synthetic-data net-
work structure, see Figure 2 panel (a).

In an attempt to create networks that approximate
reality, the other two network structures that were
used as data-generating structures are estimated from
clinical data. The case-data network is estimated from
data of one clinical patient (+=47) measured over a
period of two weeks. The original network was esti-
mated using graphical VAR and contains seven nodes
about the patient’s mood such as “Relaxed,” “Sad”
and “Nervous.” For more information on the data, see
Epskamp et al. (2018a).” The density of the network is
48% and 10%, with an absolute average edge weight
of M =0.11 and M = 0.16 for the contemporaneous
and temporal networks respectively. For the data gen-
erating PDC and PCC matrices, see Supplementary
material B; for a graphical representation of the case-
data network, see Figure 2, panel (b).

The Geschwind-data network is estimated from
data of multiple patients (n=129) measured over a
period of six days (mean t = 60). For more informa-
tion on the data set, see Geschwind et al. (2011).°
The original network was estimated using mIVAR and
contains six nodes such as “Cheerful,” “Sad,” and
“Relaxed.” For this simulation study, the average con-
temporaneous and temporal networks were taken as
the network structure of one subject. The density of
the contemporaneous network and temporal network
are 62% and 63%, with an average absolute edge
weight of M = 0.16 and M = 0.06 for the contempor-
aneous and temporal effects respectively. For the data
generating PDC and PCC matrices, see Supplementary
material B and for a graphical representation of the
Geschwind-data network, see Figure 2, panel (c).

Simulation procedure. Taking these three underlying
network structures as the true data generating model
for each individual, we simulated homogeneous data
in which any apparent individual differences are due

®In addition to a synthetic-data network structure with 8 nodes, a sparse
chain graph containing 16 nodes was generated in similar fashion to
inspect the effect of the size of the network. Results for this large
network structure can be found in the Supplementary Material B.

°The dataset used for generating the network used in the current
simulation study can be found in the supplementary materials of
Epskamp et al. (2018a).

"The dataset used for generating the network used in the current
simulation study can be found in the supplementary materials of
Bringmann et al. (2013).
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to sampling variation. Details on the parameter values
under which we simulated can be found in supple-
mentary material B. In addition to network structure,
we varied the number of participants, n € {50, 100,
200}, and the number of time points, t € {50, 100,
200, 400}, These time points were chosen to represent
plausible values, t € {50, 100}, potentially ideal values,
t € {200, 400}, to include scenarios in the simulation
where the methods should be expected to function
well. We used three different estimation routines
(grapical VAR, mlVAR, and GIMME) to estimate the
resulting network models, in total, creating a 3 x 3 x
4 design. Each condition was repeated 100 times.

In line with common practice, in order to deter-
mine the amount of heterogeneity present in esti-
mated network models through graphicalVAR, we
evaluated topology of the resulting networks by visu-
ally inspecting three randomly chosen estimated net-
work structures. For these individuals, we compared
network density, i.e., the number of actual edges div-
ided by the number of possible edges. Furthermore,
across the entire sample, we computed the node cen-
trality measure strength for each individual network.
Strength centrality is defined as the sum of the edge
weights of a given node (in absolute value). For tem-
poral networks, strength is divided into in-strength,
the sum of absolute incoming edge-weights, and out-
strength, the sum of absolute outgoing edge weights.
Centrality measures have been taken as an indication
of the importance of individual nodes in a network
(Costantini et al., 2015; Opsahl et al., 2010). To deter-
mine the amount of resemblance in strength measures
across individuals, we correlated the centrality meas-
ures for each possible pair of individuals. The distri-
bution of these correlations gives us an idea of the
spread of the strength of the association between cen-
trality measures. If centrality measures are in fact a
suitable measure for separating sampling variation
from heterogeneity, we would expect a narrow distri-
bution peaked around a strong positive correlation,
because all samples are drawn from completely homo-
geneous populations.

For mlVAR estimates, we inspected the distribution
of standard deviations of estimated random effects,
both for contemporaneous and temporal networks. In
line with Bringmann et al. (2013) we used a cutoff
score of one standard deviation. Edges from the
standard deviation network with a weight above this
cutoff are taken to represent” large” heterogeneous
effects, whereas edges below this cutoff are taken to
be sampling error. In order to compare edge weights
estimations from the different network structures,



770 (&) R.H.A. HOEKSTRA ET AL.

Contemporaneous Temporal

QQ
Q XCQ
~ e

(a) Synthetic-data network

Contemporaneous Temporal

O
O @ O O

O O o O
d O O 0

(b) Case-data network

Contemporaneous Temporal

O
O O O

O O O Q
O )

(¢) Geschwind-data network

Figure 2. Contemporaneous and temporal data generating network models for each individual. The upper panel shows the syn-
thetic-data network with eight nodes simulated to be a chain graph, i.e.,, 1-2, 2-3, etc. The middle panel shows the case-data net-
work containing seven nodes estimated from clinical data of one subject measured over time. The lower panel shows the
Geschwind-data network containing six nodes, estimated from clinical data of multiple subjects. The average contemporaneous and
temporal networks are taken as the data-generating network structure for each individual in this study. Edges across networks are
scaled to a maximum of 0.69, therewith edges between networks can be visually compared to one another. (a) Synthetic-data net-
work, (b) Case-data network, and (c) Geschwind-data network.



edge weights of the standard deviation networks for
both contemporaneous and temporal networks were
standardized.

To our knowledge, for GIMME, there is no cutoff
or rule of thumb that has been proposed in the litera-
ture to determine whether a sample is homogeneous.
We suggest taking the percentage of homogeneous
edges as an indication of the amount of homogeneity.
GIMME provides group-level output in which group-
level effects are indicated by black edges, and individ-
ual effects are indicted with grey edges (Lane & Gates,
2017). Group level edges are seen as homogeneous,
whereas individual level edges are seen as heteroge-
neous (Beltz & Gates, 2017). To assess the amount of
estimated homogeneity, we propose to take the per-
centage of estimated group level edges, i.e., the num-
ber of group level edges divided by the total number
of edges estimated in the group level network:'’

% of homogeneous edges =

#of level ed
of group level edges 100

#of group level edges + # of individual level edges

Data was generated based on the three previously
described network structures using the
graphicalVARsim function from the graphicalVAR
package in R (Epskamp, 2020a) which simulates data
from a graphical VAR model. Network models were
estimated from the simulated data using the R pack-
ages: graphivalVAR (Epskamp, 2020a), mlVAR
(Epskamp et al, 2020), and GIMME (Lane et al,
2020). The simulation study was performed in R, ver-
sion 4.0.2 (R Core Team, 2015). R code for the simu-
lation set-up is included as supplementary materials.
In addition, a sensitivity analysis was performed for
graphical VAR, multilevel VAR, and GIMME to
inspect the resemblance between the data generated
networks to the estimated networks. Results for the
sensitivity analysis can be found in Appendices B, C
& D, for graphical VAR, multilevel VAR, and
GIMME, respectively.

Results

Across all tools, sensitivity was often too low to make
valid claims about heterogeneity (for sensitivity ana-
lysis of graphical VAR see Figure Bl in Appendix B,
for mlVAR see Figure Cl in Appendix C, and for

"It is important to note that individual effects can be both
contemporaneous and temporal. If an individual effect was estimated
both as contemporaneous for some individuals and temporal for others,
this was taken to mean there is some level of heterogeneity, and both
edges added up to the total number of individual edges.
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GIMME see Figure D1 in Appendix D).'? In addition,
sensitivity was dependent on network structure for the
graphical VAR and the ml VAR method, as well as
the estimation technique. Sensitivity was highest when
the network structure was sparse (i.e., with relatively
few edges) and the edges present were relatively
strong as is the case for the synthetic-data network
structure. When the network structure was denser, as
is the case for the Geschwind-data network, or
showed relatively weak edges, sensitivity started to
decline. This latter effect was particularly strong when
estimating temporal networks using the graphical
VAR method, and when estimating contemporaneous
networks using GIMME.

To illustrate the lack of sensitivity and its implica-
tions for the validity of claims on heterogeneity, we
randomly drew three individual networks estimated
using the graphical VAR method, from the 5,000
simulated networks for the synthetic-data network
condition (see Figure 3 panel a and ¢ to visually com-
pare the three networks). It is important to note that
these networks were chosen to convey how the visual
comparison of individual networks can go wrong,
especially when sensitivity is low. For =50 the indi-
vidual contemporaneous and temporal networks did
not differ much with respect to overall edge weight
(Average edge weight and standard deviation for the
estimated contemporaneous network model of indi-
vidual 1: M =0.11(SD = 0.09), individual 2: M =
0.15(SD =0.11), and individual 3: M = 0.14(SD =
0.12); Temporal network of individual 1: M =
0.13(SD = 0.09), individual 2: M = 0(SD =0), and
individual 3: M = 0.16(SD = 0.14)). However, indi-
vidual networks differed with respect to network
density (network density for estimated contemporan-
eous networks: 36%, 14%, 46% and temporal network:
44%,0%,32%, of individuals 1, 2, and 3 respectively.),
and in detected edges. Few similarities could be found
in terms of detected edges; in addition, the strength of
these edges varied across the three exemplary individ-
ual networks.

Perceived heterogeneity vanished when visually
inspecting the estimated network structures using
graphical VAR when ¢ =400, see panels (b) and (d) in
Figure 3. When visually inspecting the individual

2Sensitivity analysis for GIMME was infeasible for the original three data
generating network structures as the data generating model for a GVAR
model does not directly correspond to one SVAR model (the modeling
framework used by GIMME to estimate networks). However, one SVAR
does directly correspond to a unique GVAR model. Therefore, a SVAR data
generating network is added to the simulation study, see Supplement B
for further details on the data generating network structure and the full
simulation study results.
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(d) Temporal networks for individual 1, 2, and. 3 when ¢ = 400

Figure 3. Output from graphical VAR. Three randomly selected individual networks estimated using the graphical VAR method,
generated under the same synthetic-data network structure (for a visualization of the synthetic-data network see Figure 2 panel
(b)) for two different time points (t=50 and t=400). Panel (a) shows the three individual contemporaneous networks when
t=>50, panel (b) for t =400, panel (c) shows their corresponding temporal networks when t=50, and panel (d) for t=400. (a)
Contemporaneous networks for individual 1, 2, and 3 when t=50, (b) Contemporaneous networks for individual 1, 2, and 3 when
t=400, (c) Temporal networks for individual 1, 2, and 3 when t=50, and (d) Temporal networks for individual 1, 2, and. 3
when t =400.



contemporaneous networks, the networks showed sig-
nificant resemblance. Note that sensitivity is high for
the contemporaneous networks; all seven data gener-
ating edges were estimated for each of the individual
networks. However, in terms of network density, we
still found notable differences. For the contemporan-
eous networks density differed (32%, 43%, 29%, for
t=400 for individuals 1, 2, and 3 respectively), as net-
works A and B showed a few weak erroneous edges.
These edges can be disregarded in terms of edge
weight in comparison to the other edges present. In
terms of overall edge weight we found slight differen-
ces (average edge weight and standard deviation for
the estimated contemporaneous network model of
individual 1: M = 0.18(SD = 0.14), individual 2: M =
0.18(SD = 0.14), and individual
3: M = 0.22(SD = 0.12)).

Although sensitivity for temporal networks as esti-
mated with graphical VAR was high at t=400, the
exemplary temporal networks of individual 1, 2, and 3
showed a larger range of network density than for
their contemporaneous networks (network density of
63%, 57%, 37%, for the estimated temporal networks
of individual 1, 2 and 3 respectively). In terms of
overall absolute edge weight, we found small differen-
ces (temporal network individual 1: M = 0.15(SD =
0.13), individual 2: M = 0.14(SD = 0.13), individual
3: M = 0.20(SD = 0.13)). Heterogeneity in terms of
estimated edges, network density, and edge weights
was more pronounced for the case-data and the
Geschwind-data network structures. Examples of three
networks estimated under the case-data and the
Geschwind-data network structure can be found in
Figures Al and A2 in Appendix A.

Moving forward, we investigated the use of central-
ity measures as an indication of individual differences
between networks. For the entire sample, based on
each individual network as estimated with the graph-
ical VAR method, node centrality strength was com-
puted. For contemporaneous networks, we computed
one measure: strength (the sum of all absolute edge
weights connected to the node), for temporal net-
works, this measure is divided in in-strength (the sum
of all absolute incoming edge-weights) and out-
strength (the sum of all absolute outgoing edge
weights). For all possible pairs of individual networks
within the sample, the strength estimates were corre-
lated in order to give an indication of the resemblance
in strength centrality. Figure 4 shows the distributions
of the correlation of these strength measures for the
entire sample. Regardless of network structure,
strength measures correlated more with one another
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for contemporaneous and temporal networks as the
number of time points increased. Furthermore,
strength measures showed a higher correlation for
contemporaneous networks than for temporal net-
works. For all three network structures, the correlation
of strength measures for the contemporaneous net-
work are somewhat similar from  roughly
t=200 onward.

The median correlation for in- and out-strength for
the Geschwind-data network remained low in all
cases, in-strength: r = 0.23, out-strength: r = —0.002.
For the case-data network the median correlation for
in-strength and out-strength increased from r=
—0.13 and r= —-0.009, to r=0.86 and r=0.94
respectively. For the synthetic-data network the
median correlation for in- and out-strength increased
from r=5.14 and r=0.15 to r=0.67 and r=20.63.
Surprisingly, in- and out- strength correlation
increased most for the case-data network as opposed
to the synthetic-data network.

It is important to note here that the correlation
between node strengths, although regularly used in
the literature, is a problematic measure of similarity
(Borsboom et al., 2017; Forbes et al., 2017a). This is
because, in general, weak correlations may be the
result of low variance in estimated edge weights (i.e.,
a situation in which all edge weights are approxi-
mately the same). If the variance in individual central-
ity measures is low this can lead to very weak
correlations (around zero) between two individual
centrality measures, even when measures are similar.
This means a high correlation could be an indication
of similarity in strength centrality, while a weak cor-
relation may also be an indication of similarity—mak-
ing the interpretation of correlations asymmetric and
less intuitive. In this particular case, however, weak
correlations did not result because of a lack of vari-
ance, but rather because of a lack of a linear relation
between individuals’ centrality measures. Therefore,
here we may safely interpret weak correlations as an
indication of a lack of resemblance.

For mIVAR estimation results, we inspected the
standard deviation of random effects for the contem-
poraneous and temporal effects. We took a cutoff of
one standard deviation for the edge weights to deter-
mine whether population heterogeneity was present.
In order to compare the edge weights of the different
network structures and their standard deviations, edge
weights were standardized. Standardized density dis-
tributions of the standard deviation of random effects
for the contemporaneous and temporal effects can be
found in Figure 5.
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Figure 4. Correlations between node strength centrality calculated from individual networks estimated with graphical VAR. For the
contemporaneous network, the correlation between strength centrality is depicted. For temporal networks, the correlations for two
strength measures were computed: in-strength and out-strength. Correlations between strength measures of contemporaneous
networks are highest for networks estimated under the Geschwind-data structure, while the in- and out-strength correlations are

highest for networks generated under the synthetic-data structure.

For contemporaneous network structures, the esti-
mation of large heterogeneous effects was limited with
relatively small sample sizes n=50 and t=50. For
each of the three data generating network structures,
no heterogeneous edges were detected when the num-
ber of individuals increased to n =200 and the num-
ber of time points per subject to t=400. For all
temporal network structures with n =50, the estima-
tion of heterogeneous edges was limited. Fewer differ-
ences were detected for the synthetic-data network
structure and the case-data network structure than

under a Geschwind-data network structure. When
increasing time points to =200 per individual, even
less heterogeneity was detected.

In contrast to mlVAR, to the best of our knowledge,
for GIMME there has been no cutoff recommended in
the literature. We decided to inspect the percentage of
homogeneous edges and take this as an indication of
the amount of heterogeneity present, see Figure 6. The
percentage of homogeneous edges was 7%(SD =
0.33%),9%(SD = 0.33%), 10%(SD = 0.64%) for
n=>50 and t=50 for the synthetic-data, case-data and
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Geschwind-data network structures respectively. This
percentage increased as the number of time points
increased. When t=400 the median percentage of
homogeneous edges was 97%(SD = 4.45%), 64%(SD =
5.48%),64%(SD = 8.63%) for synthetic-data, case-data
and Geschwind-data network structures. Interestingly,
we found that the percentage of homogeneous edges
detected decreased as the number of participants
increased. The same pattern was found for a larger
synthetic-data network structure, see Figure S10 in sup-
plementary materials B.

Discussion

The present paper aimed to expose effects of sampling
variation and power limitations in the investigation of
heterogeneity in idiographic network models. We
have shown that, even if the underlying network
model is individuals, limitations
regarding specificity and sensitivity can impose a great
deal of variety in individual network structures esti-
mated from the data, especially when the number of
time points is small. In a simulation study, we

invariant across
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Figure 6. Percentage of homogeneous edges as estimated through GIMME for the synthetic-data, case-data, and Geschwind-data

network structures.

evaluated four different network tools for assessing het-
erogeneity: visual inspection, comparing centrality
measures, inspecting random effect standard deviations,
and applications of GIMME. Results showed that low
statistical power places considerable limits on the valid-
ity of conclusions regarding heterogeneity for all tools.
At low sample sizes, an applied researcher is likely to
erroneously conclude that a sample is heterogeneous
even if it is in fact, homogeneous. Under the right cir-
cumstances (high sample size and favorable generating
network structures), inspecting the standard deviation
of random effect using multilevel VAR modeling and
GIMME proved most suited for detecting heterogen-
eity, but these circumstances are currently not realized
in the great majority of designs in many relevant fields,
such as psychopathology research.

Many lower-powered analyses versus one high-
powered analysis

When comparing idiographic network models, an
important pitfall lies in the tendency to interpret all
variability in resulting networks as heterogeneity
between people, while some of this variability is the
result of fluctuations in the data created by noise—
e.g., sampling variation. Combining sampling vari-
ation with overall conservative estimation procedures

(high specificity and lower sensitivity at low sample
sizes) will inevitably lead to a mismatch in the pres-
ence and absence of estimated edges in addition to
varying edge weights across individuals. Of course, the
most straightforward way to combat these problems is
to collect more data in an effort to increase statistical
power without inflating the Type I error (i.e., increas-
ing sensitivity while keeping specificity high).
Importantly, the number of time points needed to
estimate robust idiographic network models is
dependent on the network structure (e.g., a more
sparse or dense network structure) and the estimation
technique used. However, we found that even when
we simulated under ideal conditions—a sparse net-
work structure with strong edges—at least 200 time
points per individual may be needed to obtain net-
work structures that are sufficiently robust to support
comparisons between individuals. The amount of time
series data needed quickly adds up if the network
structure is less than optimal, such as when one is
dealing with a sparse or dense structure with weak
edges. In these cases, the number of time points one
needs per individual may exceed 400. This amount of
data is often not realized in current research practice
typical applications in, e.g., psychopathology research.
Although some cases have been known to feature suf-
ficiently intense measurement schemes in this respect



(Kossakowski et al., 2017), one rarely encounters time
series of this length in, for instance, ESM designs.

In practice, we may see only about 60 observations
per individual (e.g., Beck & Jackson, 2020; Jongeneel
et al., 2020; Rodriguez et al., 2022), which might seem
like a large amount of data given the difficulty of col-
lecting it, but this may not be enough to estimate a
robust individual network. If longer time series cannot
be obtained per individual, then the only other solution
is to step down from fully idiographic research (esti-
mate one model per person) and instead use an ana-
lysis strategy that borrows information from other
participants (e.g., multi-level modeling or GIMME).
This may then lead to performing one well-powered
analysis rather than a sequence of lower-powered anal-
yses at the idiographic level. Such methods performed
best in our simulations as well. However, both methods
still showed a great deal of illusionary heterogeneity
(few common edges in GIMME and relative large ran-
dom effect sizes in multi-level VAR modeling) and
come with their own disadvantages, such as the
assumption of heterogeneity, or in the case of multi-
level modeling, pulling individual estimations toward
the group mean (Bringmann et al., 2013).

Comparing centrality across individuals

There is an ongoing debate on the use and interpret-
ation of centrality measures in network analysis
(Bringmann et al., 2019; Dablander & Hinne, 2018;
Hallquist et al., 2021). Our results add to the discus-
sion by showing that if one wants to use centrality
measures as a way to determine heterogeneity, one
should proceed with caution. Here we share four con-
siderations to illustrate this. First, as we showed in
our simulation study, it is possible to find negative
correlations between estimated strength measures for
two generated networks with the same true underlying
network structure when the number of observations is
less than =100 per individual. Second, although add-
ing data leads to a stronger correlation of strength
centrality measures between individuals in most set-
tings, we showed that it is possible that the correlation
between centrality coefficients is low even with a large
number of data points per individual (¢# > 200). Third,
while weak correlations between strength centrality
can be the result of a lack of overlap between two net-
works, this need not be the case because weak correla-
tions between strength centrality can also be the result
of low variance. While strong correlations between
centrality measures are an indication of similarities
between strength centrality, weak correlations do not

MULTIVARIATE BEHAVIORAL RESEARCH @ 777

necessarily have to be an indication of dissimilarity in
strength centrality, making the interpretation of corre-
lations between strength centrality counterintuitive;
this warrants even more caution in the interpretation
of these correlations. Fourth and last, the supposed
difference in centrality measures could be due to sam-
pling variation; hence, in the absence of systematic
ways to statistically assess the correlation between cen-
trality measures, it does not provide any way to differ-
entiate between real heterogeneity and random
fluctuations in the data.

Importantly, this does not mean that centrality
coefficients cannot be used to study network topology
or individual differences therein. Instead, it means
that, just like with any other statistic, inspecting cen-
trality estimates must always be assisted by assess-
ments of precision and robustness (e.g., confidence or
credibility intervals and other functions of sampling
distributions). Such assessments have now become
standard in cross-sectional network analysis (Epskamp
et al, 2018b). Future research should investigate
extending such methods for application to time-series
data. Until suitable measures of precision have
become available, the use of visual inspection of dif-
ferences in centrality measures to detect heterogeneity
in network analysis must be considered questionable.

Network heterogeneity and replicability

The discussion of heterogeneity in idiographic net-
work models both resembles and mirrors the discus-
sion on network replicability in cross-sectional
network studies (Borsboom et al., 2017; Forbes et al.,
2017a). In cross-sectional network analysis, it has
been recognized that there may be a great deal of
sampling variation in the estimated network struc-
tures, which, combined with conservative estimation
methods, may by itself lead to differences in estimated
network models (Fried et al., 2021). In addition, it has
been recognized that fluctuations in centrality meas-
ures may be due to sampling variation even at high
sample sizes, depending on the generating network
structure and the centrality measure chosen (Epskamp
et al., 2018b). To this end, data-driven sampling meth-
ods or more sophisticated statistical methods are rou-
tinely used together with presented results to assess
accuracy and stability in a sample as well as to statis-
tically compare network structures of different sam-
ples (Epskamp et al., 2018b; Van Borkulo et al., 2017;
Williams et al., 2020), as presumably, both sampling
variation and heterogeneity lead to differences in esti-
mated network structures.
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In the literature on cross-sectional network models,
differences between estimated network structures are
sometimes highlighted as evidence for limited replic-
ability of network models (Forbes et al., 2017a; 2017b).
However, these differences should be expected to arise
partly due to the expected replicability of a method
given its sensitivity and specificity (Williams et al,
2020). When studying genuine heterogeneity over dif-
ferent samples used for network analysis, assessments
of heterogeneity cannot be assessed without taking
sampling variation into account (Isvoranu et al.,, 2020).
This also holds true for network models (or any other
statistical model) estimated from time-series data. Of
note, even though we simulated 400 data points as our
largest sample size, such a sample size is not deemed
very large when estimating a cross-sectional network
of, for example, 10 nodes (featuring 45 parameters).
Time-series data features auto-correlations due to tem-
poral ordering of the data, which both require more
parameters to be estimated (145 in total for a graphical
VAR model) and leads to effectively less information
per observation. Both factors lead to a lower expected
“replicability” of the network structures, which is high-
lighted in our simulation results.

Limitations and future directions

At least two limitations of the current simulations
need to be addressed here. First, although GIMME
performed well with sufficient amounts of data, there
is reason to believe the current simulation setup might
put GIMME at a disadvantage. In our simulation
study, we generated data based on graphical VAR
models, GIMME, however, operates under a structural
VAR (SVAR) model. Running simulation conditions
using a SVAR model underlying the data yielded simi-
lar results as for the GVAR models. However, our
simulation study highlighted the influence of the net-
work structure on the results. As GIMME was eval-
uated under just one SVAR structure, generalizations
must be made cautiously. Thus, the present findings
speak to the effectiveness of using GIMME when
assessing heterogeneity in data that arise from a given
VAR model as specified in this paper but have less
bearing on the general quality of GIMME as a statis-
tical procedure operating within its own data space.
Second, although the most common way to estimate
individual networks is by using some type of VAR
model, it should be noted that many more estimation
procedures exist, for example, based on other types of
autoregressive (AR) models than the VAR model,
such as AR Moving Average (ARMA) or integrated

ARMA (ARIMA) (Box et al., 1970; for an overview of
these techniques see: Hamaker and Dolan (2009)).
However, we found that most of the network model
papers focusing on the detection of heterogeneity
made use of the techniques evaluated in this paper.
We conclude by highlighting future avenues for the
comparison of individual networks regarding hetero-
geneity. The current paper has shown that several tech-
niques used to compare individual network models are
of limited usefulness in disentangling true heterogeneity
from noise. Therefore, there is a pressing need for the
development of tools that can do so effectively. A first
possible route for future research is to rely more on
hierarchical or multi-level models in which heterogen-
eity across individuals can explicitly be included in the
model as random effects and tested to feature non-zero
variance. Currently, the mIVAR package, which can be
used for multi-level graphical VAR estimation, does not
allow for this comparison. An alternative is to use the
Dynamical Structural Equation Modeling (DSEM)
module in MPlus (Schultzberg & Muthén, 2018), which
allows for estimating multi-level VAR models, but with
marginal correlations rather than partial correlations
between innovation terms. This will allow for assessing
random effects on temporal structures but not on con-
temporaneous partial correlation networks. A second
option is to extend data-driven methods used to inves-
tigate differences in cross-sectional networks to results
from time-series models (Van Borkulo et al, 2017). A
problematic aspect here, however, is that resampling
techniques cannot readily be applied as the temporal
ordering of the data plays an important role in the ana-
lysis as well. Finally, promising Bayesian methods have
been developed to assess not only evidence for differen-
ces but also evidence for the similarity between differ-
ent samples (Williams et al, 2020). Such methods
could perhaps also be expanded for time-series analysis.

Conclusion

In the quest to address the individual within psych-
ology, some concerns arising from the use of these
individual models are in danger of being overlooked,
including common statistical problems that arise due
to sampling variation. Although research within the
field of individual network analysis is promising, it is
vital to recognize the core principle of statistical ana-
lysis: accounting for the uncertainty that arises as a
result of sampling variation. Sampling variation alone
can lead to striking differences (illusory heterogeneity)
in estimated models from different subjects, even if
these subjects are identical (fully homogeneous). This



article aimed to function as a wake-up call, addressing
some of the concerns regarding analyzing the individ-
ual and calls for caution in the use and interpretation
of these new time series techniques when making
claims about heterogeneity.
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A2) to visually compare the three networks for t=>50.
Where in the synthetic-data condition, the perceived hetero-
geneity vanished when visually inspecting the estimated net-
work structures for t =400 (see panel (b) and (d) Figure 3),
there still seemed to be considerable heterogeneity present
when visually inspecting the estimated network structures
for the case-data and Geschwind-data network structures
when t =400 (see Figures Al and A2 panel b and d).
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Figure A1. Output from graphical VAR. Three individual networks (contemporaneous and temporal) were generated under the
same case-data network structure. Panel (a) shows the contemporaneous networks for t =50, (b) for t =400, (c) their correspond-
ing temporal networks with t=50, and (d) for t=400. (a) Contemporaneous network for individual 1, 2, and 3 when t=50, (b)
Contemporaneous network for individual 1, 2, and 3 when t =400, (c) Temporal network for individual 1, 2, and 3 when t =50,
and (d) Temporal network for individual 1, 2, and 3 when t=400.
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Figure A2. Output from Graphical VAR. Three individual networks (contemporaneous and temporal) were generated under the
same Geschwind-data network structure. Panel (a) shows the contemporaneous networks for t =50, (b) for t =400, (c) their corre-
sponding temporal networks with t =50, and (d) for t =400. (a) Contemporaneous network for individual 1, 2, and 3 when t =50,
(b) Contemporaneous network for individual 1, 2, and 3 when t =400, (c) Temporal network for individual 1, 2, and 3 when t=50,
and (d) Temporal network for individual 1, 2, and 3 when t = 400.
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Appendix B
Sensitivity analysis graphical VAR
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Figure B1. Sensitivity results for graphical VAR. Correlation, sensitivity, and specificity for contemporaneous and temporal individ-

ual networks for synthetic-data, case-data, and Geschwind-data network structures.
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Appendix C

Sensitivity analysis multilevel VAR
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Figure C1. Sensitivity results for multilevel VAR. Correlation, sensitivity, and specificity are depicted for contemporaneous and temporal indi-
vidual networks for synthetic-data, case-data, and Geschwind-data network structures. In line with previous simulation study results, sensitivity
is 100% and specificity 0% as a result of all edges being estimated (see Epskamp et al. (2018a). Therewith, the correlation between the data
generating network model and the estimated network model is a better indication of the power of the estimation technique.
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Appendix D

Sensitivity analysis GIMME
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Figure D1. Sensitivity results for GIMME. Correlation, sensitivity, and specificity are depicted for contemporaneous and temporal
individual networks as simulated under a structural VAR network and estimated using GIMME. More details on the simulation pro-
cedure and parameter values of the data generating network structure can be found in supplement B. Important to note here is
that the diagonal of the temporal matrix is taken into account when computing the sensitivity to make the comparison between
sensitivity results for GIMME, graphicalVAR, and mIVAR more straightforward.
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