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ABSTRACT

This study introduces a new multi-process analytical framework based on the ideal point
assumption for analyzing Likert scale data with three newly developed Unfolding Tree
(UTree) models. Through simulations, we tested the performance of proposed models and
existing Item Response Tree (IRTree) models across various conditions. Subsequently, empir-
ical data were utilized to analyze and compare the UTree models relative to IRTree models,
exploring respondents’ decision-making processes and underlying latent traits. Simulation
results showed that fit indices could effectively discern the correct model underlying the
data. When the correct model was employed, both IRTree and UTree accurately retrieved
item and individual parameters, with the recovery precision improving as the number of
items and sample size increased. Conversely, when an incorrect model was utilized, the mis-
specified model consistently returned biased results in estimating individual parameters,
which was pronounced when the respondents followed an ideal point response process.
Empirical findings highlight that respondents’ decisions align with the ideal point process
rather than the dominance process. The respondents’ choices of extreme response options
are more driven by target traits than by extreme response style. Furthermore, evidence indi-
cates the presence of two distinct but moderately correlated target traits throughout the
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different decision stages.

Introduction
Background

Originating from early 20th-century psychometrics, the
Likert scale has become an indispensable tool in both
psychology and education fields. Whether in measure-
ment scales of psychology and education or large-scale
international educational quality assessment projects
such as NAEP, PISA, and TIMSS, a multitude of
researchers and programs have employed the Likert
scale. By presenting a situational description of a certain
subject, respondents are asked to choose from several
options the one that is most suitable to their situations,
thereby measuring their target traits (Likert, 1932).
However, numerous researchers have identified that
respondents frequently exhibit response styles (there-
fore, response bias) when interacting with these scales

(Austin et al., 2006; Wetzel et al., 2013; Zeng et al,,
2020). This pertains to the respondents’ consistent
inclination to favor certain items based on criteria
divergent from the intended measurement traits
(Paulhus, 1991). Among these, the extreme response
style (ERS) stands out as the most prevalent, represent-
ing a systematic proclivity to choose extreme options,
such as “strongly agree” or “strongly disagree”, irre-
spective of the test content (Van Vaerenbergh &
Thomas, 2013). Such preferences may either underesti-
mate or overestimate the actual levels of respondents’
target traits (Kim & Bolt, 2021). Concurrently, these
styles have the potential to alter the intrinsic dimen-
sions of the scale (Arce-Ferrer & Ketterer, 2003;
Baumgartner & Steenkamp, 2001; Moors, 2003), as a
result, reducing the reliability of the questionnaires
(Clarke, 2001; Hui & Triandis, 1989). This, in turn, can
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negatively influence the scale’s validity (Arce-Ferrer &
Ketterer, 2003; Zeng et al., 2020; Zeng et al., 2024).

To identify the extreme response styles effectively in
Likert scale measurements, researchers have employed
multiple analytical methods, including descriptive sta-
tistics (Greenleaf, 1992), Confirmatory Factor Analysis
(Billiet & McClendon, 2000; Zeng et al., 2020), and
Latent Class Analysis (Moors, 2003). In recent years,
scholars have introduced assessment methods for
response styles based on Item Response Theory (IRT),
such as the Multi-dimensional Nominal Response
Model (Johnson & Bolt, 2010) and the Mixture Partial
Credit Model (Austin et al., 2006). Compared to tradi-
tional measurement models, IRT models enable the
estimation of response style biases at person levels.
However, while utilizing these IRT models, it becomes
challenging to observe the cognitive decision-making
processes that respondents might undergo at various
stages, making it difficult to effectively separate
response styles from target traits. To measure the cog-
nitive processing of respondents during their responses
and more effectively discern response style biases, a
multi-process tree-structured IRT model, called Item
Response Tree (IRTree) model subsequently emerged.

Limitations of previous research

There are several gaps in existing research on Likert
scale data analysis under multi-process IRT framework.
Firstly, previous research employs IRTree models that
are based on the assumption of the dominance
response process to analyze Likert scales. However,
numerous studies found that when respondents answer
the Likert scales, they often follow an ideal point deci-
sion-making process. In such cases, utilizing IRT mod-
els based on the dominance response can lead to
significant biases when estimating respondent abilities
(Fang, 2020). Conversely, employing unfolding models
may effectively address this issue (Chernyshenko et al.,
2007; Guo et al.,, 2006; Stark et al,, 2006; Tay et al,
2009). However, multi-process decision analysis mod-
els are rarely founded on unfolding models in the lit-
erature (Jin et al., 2022), making it challenging to delve
into whether and how respondents follow an ideal
point process in their multi-stage decision-making
when answering Likert scales. Therefore, it’s necessary
to develop Unfolding Tree (UTree) models anchored
in the unfolding framework, and further discern
whether respondents are basing their decisions to agree
or disagree with item statements on a dominance or an
ideal point process.
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Furthermore, once the latent decision-making pro-
cess is determined, many studies typically assume that
respondents choose extreme phrasing options in the
second stage based on extreme response styles
(Bockenholt, 2017; Jin et al., 2022; LaHuis et al., 2019;
Park & Wu, 2019). However, this assumption may not
be universally valid, for example, Kim and Bolt (2021)
found using data from the Trends in International
Mathematics and Science Study 2015 that only 32% of
students responded to the questionnaire based on
extreme response style, whereas a larger proportion,
68%, responded based on target traits. Although a few
researchers have begun to explore the use of unfolding
models within IRTree frameworks, these attempts
have primarily focused on singular ERS-based models
(Jin et al., 2022). This overlooks that different nodes
might be based on target traits (Kim & Bolt, 2021).
Additionally, the reliance on single-parameter settings
may limit the models’ flexibility and interpretability
(Li et al., 2025). Moreover, the performance of this
type of model under various measurement conditions,
such as different test lengths, trait correlations, and
small sample sizes, has not been thoroughly investi-
gated, and its efficacy remains to be validated (Jin
et al, 2022). In reality, respondents might select
extreme options like “strongly agree” because their
trait level is very close to the item location. Misusing
models built on ERS in the second decision-making
stage, by misinterpreting the target trait as extreme
response styles, is conceptually incorrect. The esti-
mated parameters fundamentally lose their real-world
relevance in such instances. Hence, there is a need to
consider ordinal models based on target traits for the
second decision-making stage. These models can help
us understand whether respondents choose extreme
descriptive options based on ERS or the target trait.

Continuing with this scenario, if respondents base
their choices in the second decision-making stage on
the target trait, the analysis would require a more
detailed examination. The respondents might rely on
the same single latent target trait in both stages, or
they could rely on two different types of target traits
in each stage. For instance, in the first stage, they
might choose “agree” or “disagree” based on the
agreement trait, and in the second stage, they might
select “strongly agree/disagree” or “somewhat agree/
disagree” based on the degree of agreement (Jeon
et al., 2017). If respondents possess two different tar-
get traits, relying on a model that assumes a single
trait would substantially obscure the diversity of
respondents’ latent traits, resulting in misleading
interpretations of their actual decision-making process
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and the underlying traits. This can cause substantial
errors in the interpretation of the results, greatly
reducing the validity of conclusions. Therefore, it is
crucial to determine whether the decisions across the
two stages rely on the same target trait or two slightly
different traits. However, the answer to this question
is still unclear, especially within the context of the
ideal point response process. To address this uncer-
tainty, we need to consider models that either
hypothesize the existence of a single target trait or
propose two distinct target traits. A subsequent com-
parison of these models is paramount to determine
whether respondents’ decisions across the stages stem
from a single target trait or two distinct ones.
Moreover, once models that align with respondents’
decision-making processes and the underlying latent
trait types are established, questions arise about the
stability and accuracy of the estimation results from
these multi-process models under different conditions,
especially with the new Unfolding Tree model. The
uncertainties surrounding these factors present signifi-
cant challenges and difficulties in using the models
correctly (Jin et al., 2022). A major concern is the
unknown impact on individual latent trait estimations
when an incorrect model is used. Gaining insight into
the extent and nature of these effects is crucial,
emphasizing the importance of employing the appro-
priate model and ensuring its rational and efficient
application. Lastly, the majority of research on multi-
process IRT models predominantly adopts Markov
Chain Monte Carlo estimation methods. This
approach can be time-intensive, potentially compro-
mising the models’ practicality and accessibility.

Objectives of this study

Building on the foundation of existing IRTree models
and integrating the unfolding model, this study aims
to establish a set of multi-process IRT models using
an unfolding approach. Based on this groundwork, we
will create three distinct types of Unfolding Tree mod-
els. Our initial objective is to evaluate the performance
of both the traditional IRTree and the newly devel-
oped UTree models through rigorous simulation stud-
ies, thereby elucidating the conditions, importance,
and necessity for the accurate and judicious use of
these models. Following the simulations, empirical
research will contrast traditional IRTree models with
the UTree models. The central aim is to discern the
specific traits upon which respondents base their
responses to Likert scales and to illuminate the under-
lying decision-making processes. Ultimately, we seek

to determine which multi-process IRT models most
closely approximate the actual response patterns of
the participants.

To answer the overarching research objectives, this
study aims to address the following research
questions:

1. How do the IRTree and UTree models perform
under different conditions? What factors influence
the performance of these models?

2. What are the consequences for estimations when
a model misaligned with respondents’ true deci-
sion-making process is used?

3. When responding to Likert scales in real-world
scenarios, do respondents rely on the dominance
or the ideal point decision-making process? In the
second decision-making stage, when opting for

responses, are respondents’ choices

driven by an extreme response style or by specific
target traits? If the latter, are these target traits
consistent across varied decision-making stages?

extreme

The rest of this paper is organized as follows:
Section 2 presents a literature review on the existing
IRTree and unfolding models. Section 3 proposes the
unfolding approach-based multi-process IRT models.
Section 4 details the simulation study, aiming to
evaluate the performance of various IRTree and
UTree models under diverse conditions and examine
the repercussions of employing incorrect models.
Section 5 describes the empirical application, wherein
the alignment of the models with real-world Likert
scale response data is assessed, and the potential
response processes and underlying latent traits are
investigated. Finally, Section 6 provides a discussion
that summarizes the key findings of the research and
offers a deeper interpretation and discussion of these
insights.

Literature review
Item response tree model

The central premise of the tree-structured IRT model
revolves around a tree-like structure, akin to decision
trees, which breaks down respondents’ answers on the
Likert scale into multiple stages. This design captures
the sequential or nested multi-stage cognitive deci-
sion-making processes of respondents (Bockenholt,
2012; De Boeck & Partchev, 2012; Jeon & De Boeck,
2016). Consequently, it is often referred to as the Item
Response Tree model or the multi-process IRT Model.
The model’s most notable strength lies in its ability to



segment response behaviors into various decision
processes. By allowing respondents to provide distinct
responses at different processing stages, the model
facilitates the isolation of response styles from target
traits. Consequently, this results in an enhanced
accuracy in estimating target traits. Furthermore,
beyond its precision, the model is also characterized
by its significant flexibility and interpretability
(Bockenholt, 2012; Jeon & De Boeck, 2016).

The IRTree model primarily comprises three dis-
tinct types: linear, nested, and mixed multi-node
IRTree (Jeon & De Boeck, 2016). Among them, the
nested model is considered the most suitable IRTree
model for analyzing the cognitive decision-making
process in Likert scales with an even number of
response options for agreement. Researchers predom-
inantly employ this model for the analysis of response
styles in Likert scales, including two typical models:
the Extreme Response Style IRTree (ERS) Model and
the Ordinal IRTree (ORD) Model.

Extreme response style IRTree model

The ERS IRTree model refers to the IRTree model
designed to measure extreme response styles. This
model categorizes respondents’ responses into mul-
tiple cognitive decision-making stages. Using a four-
point Likert scale as an example, the ERS model can
divide respondents’ answers into two cognitive deci-
sion-making stages: (1) Stage 1: Respondents decide
whether they agree or disagree with the statement of
the item, representing the level of their attitudes. (2)
Stage 2: Respondents choose to either agree or dis-
agree with an extremely phrased statement, such as
selecting options like “strongly disagree” or “strongly
agree”, indicating the intensity of their extreme
response style (Bockenholt, 2017; Jeon & De Boeck,
2019a; Jeon & De Boeck, 2019b; Park & Wu, 2019), as
illustrated in Figure 1.

Stage 1

OO RO RO

Figure 1. Decision tree diagram of responses on a four-point
Likert scale under the ERS IRTree model.
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Specifically, we can transform answers from a four-
point Likert scale into pseudo-item scores across three
distinct decision nodes: Node 1 relates to decision
Stage 1, while Nodes 2 and 3 pertain to decision Stage
2. Assuming the response chosen by individual j for
item i is represented as Yj;;: In Node 1 (Yj), respond-
ents are scored ‘1’ if they agree with the item’s state-
ment and ‘0’ if they disagree. In Node 2 (Yj,), among
those disagreeing with the statement, a ‘1’ score is
attributed for selecting “strongly disagree” and a ‘0
for opting for “somewhat disagree”. Conversely, in
Node 3 (Yj3), for those agreeing with the statement,
they receive a score of ‘1’ if they choose “strongly
agree” and ‘0’ if they select “somewhat agree”. The
scoring method for the four-point Likert scale trans-
formed into pseudo-items is delineated in Table 1.

In Node 1 (k = 1), Yj;; equal to 1 indicating agree-
ment with the item statement. Using a two-parameter
IRT (2PL) model (Lord, 1952), the probability of indi-
vidual j agreeing to item i is calculated as:

explotik (0 — )]

P(Yy = 1)6;) = O =Pl
1+ explo (0; — Pi)]
For Nodes 2 and 3 (k=2 or 3), the probability of

individual j choosing the extreme phrasing option

(“strongly disagree” and “strongly agree”) when
answering item i is

(1)

exploik ('7]‘ - Bik)]
1+ explok (1 = )]

Herein, exp refers to the exponential function with
base e. f; denotes the item difficulty parameter for
item i at node k. 0; represents the target trait level of
individual j, while 7; indicates the extreme response
style level of individual j. A larger value of 0; implies
that the respondent is more inclined to agree with the
item statement and a greater value of #; suggests a

P(Yi = 1|n;) =

(2)

stronger extreme response style. Typically, 0; and 7; are
assumed to jointly follow a standard multivariate nor-
mal distribution, where the mean of the distribution is
zero and its covariance matrix is the identity matrix.
Ultimately, the probability of individual j choosing
each option for item i is the product of the response
probabilities across the three nodes, expressed as:

Table 1. Scoring method for the four-point Likert scale trans-
formed into pseudo-items in the ERS IRTree model.

Response (Yj) Node 1 (V) Node 2 (V) Node 3 (Y3)
1 (Strongly disagree) 0 1 -
2 (Somewhat disagree) 0 0 -
3 (Somewhat agree) 1 - 0
4 (Strongly agree) 1 - 1
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P(Y; = 1|0}, n;) = P( ,]1_0|9) ><P( ,]2_1|nj)
P(Y;; = 2|0;,m;) = P(Yi = 0[0;) x P(Yy2 = Oln;)
P(Y;; = 3|0}, ;) = P(Yyu = 1|0;) x P(Yys = Oln;)
P(Y; = 4/0;,n;) = P( ,]1_1|0)><P( Yi3 = 1ln;)

It is important to note that the IRTree model is a
type of conditional response model, where the prob-
ability of an individual ultimately selecting a specific
option is a conditional probability. For example, in
the ERS model, the probability of an individual select-
ing a particular option is conditional on the choice
made at Node 1 based on 0}, and the specific choice
at Node 2 based on the extreme response style #;. For
instance, the probability of an individual selecting the
“strongly disagree” option is the probability of choos-
ing “disagree” at Node 1, under the condition that the
individual then enters Node 2 and chooses an extreme
response option. This probability can also be
expressed as P(Y; =1|0;,n;) P(Yio =1l Yy =
0, 0;). However, it is important to note that the prob-
ability of an individual choosing either “0” or “1” at
each node is independent of other node selections.
Except for the ERS model, other IRTree models follow
a similar logic. Clarifying this point may help in better
understanding the inherent logic of this model.

Although the above ERS model has a solid con-
struct, it makes a strong assumption that respondents
choose extreme responses in Nodes 2 and 3 due to an
extreme response style. In reality, however, respond-
ents might opt for more extreme options because of a
particularly high or low level of the target trait. The
ERS model in Nodes 2 and 3 only accounts for
extreme response style, failing to capture the response

process based on the target traits. As a result,
researchers have suggested considering the use of the
Ordinal IRTree model (Kim & Bolt, 2021).

Ordinal IRTree model

The ORD IRTree model is similar to the ERS IRTree
model. However, the ORD model posits that respond-
ents’ decisions in Nodes 2 and 3 are based on the
measured target trait rather than the extreme response
style (Kim & Bolt, 2021). In this manner, the ORD
model can more accurately capture instances where
respondents, due to a particularly strong or weak tar-
get trait, opt for extreme options. Consequently, the
scoring method in Node 2 of the ORD model is the
exact opposite of the ERS model’s method, as detailed
in Figure 2.

Building on this, we can derive the transformed
pseudo-item scoring as presented in Table 2. In this
model, options representing a higher intensity of
agreement in Nodes 2 and 3 (i.e., “somewhat disagree”
and “strongly agree”) are scored as ‘1’, while the
remaining options, representing a lower degree of
agreement, are scored as ‘0.

In all nodes (k = 1, 2, and 3), the probability of
individual j selecting an option representing a higher
degree of agreement for item i is given by:

Table 2. Scoring method for the four-point Likert scale trans-
formed into pseudo-items in the ORD IRTree model.

Response (Yj) Node 1 (V1) Node 2 (V) Node 3 (V3)
1 (Strongly disagree) 0 0 -
2 (Somewhat disagree) 0 1 -
3 (Somewhat agree) 1 - 0
4 (Strongly agree) 1 - 1

Figure 2. Decision tree diagram of responses on a four-point Likert scale under the ORD IRTree model.



exp| i (9]' - ﬁik)]
1 + explok (Hj - Bik)] .

P(Yy = 110;) = (4)

Ultimately, the probability of individual j choosing
a specific option for item i is:

P(Y;; = 1|6;) = P(Y; = 0[6;) x P(Y;; = 0[0))
P(Y;; = 2|0;) = P(Y; = 0[6;) x P(Y = 1[6)) )
P(Y; = 3[0;) = P(Yy = 1|0;) x P(Yy = 0]0;)
P(Y;; = 4|0;) = P(Y; = 1]0;) x P(Yy = 1[0))

The ORD model posits that a single latent trait,
denoted as ‘0 and assumed to follow a standard nor-
mal distribution with a mean of zero and a standard
deviation of one, governs decision-making across two
decision stages. This is a critical departure from the
ERS model, which presupposes distinct latent traits (0
and 1;) for different decision stages, representing fun-
damentally different conceptualizations of respondent
characteristics.

However, the ORD model’s assumption that only one
latent trait 0; exists across two decision stages is a very
strong assumption. Previous research found that in the
IRTree model, respondents might make decisions at dif-
ferent stages based on different target traits (Jeon et al.,
2017). For instance, Stage 1 typically represents the latent
trait of the degree of agreement with the item statement,
whereas Stage 2 (encompassing both Nodes 2 and 3) rep-
resents the ‘intensity of agreement’ trait. Yet, there cur-
rently exists no ORD model that allows for different
target traits to be the basis for decisions at different
stages. This poses significant difficulties and challenges
for researchers aiming to explore and interpret decision-
making processes based on varying target traits.

In real-world scenarios where respondents’ behav-
iors across different decision-making stages are based
on various target traits, there would be two or more
distinct types of target traits. In such cases, relying
solely on an ORD model that assumes a single target
trait is limited. Firstly, assuming only one target trait,
unfortunately, leads to a loss of information about the
respondents’ target traits. For instance, respondents
might go through a two-stage decision-making process
when answering items related to attitudes toward pur-
chasing certain products. The first stage might be
based on whether the product’s price falls within their
consumption range and the second stage might
involve further determination of purchase intent based
on product quality. At this point, there exist two dif-
ferent latent traits based on the judgment of the prod-
uct’s price and quality, corresponding to the attitude
of agreement to purchase and the intensity of that
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attitude. Simplistically attributing respondents’ deci-
sions to a single latent attitude trait ignores the actual
multi-stage decision-making process and loses the
diverse latent trait information.

More importantly, an ORD model assuming a single
latent trait could result in a misleading interpretation of
what is happening in reality (De Boeck & Partchev,
2012). If we simplistically attribute respondents’ atti-
tudes toward purchasing products to a general purchas-
ing willingness, it fails to capture the two distinct target
traits based on product price and quality, as well as the
interaction between these traits. For example, some
products might be expensive but of high quality, and
despite the cost, the complementary nature of these fac-
tors might still incline respondents to purchase.
However, using a general purchasing attitude makes it
difficult to explain such phenomena, leading to confu-
sion and challenges in interpreting and analyzing why
respondents make such decisions. This results in mis-
leading guidance on the respondents’ true decision-
making process, which is vastly different from the
actual situation.

Nevertheless, if we allow the ORD model to assume
different types of target traits at various decision-mak-
ing nodes, it becomes possible to estimate latent traits
based on judgments of product price and quality at
respective stages. This approach allows for a more
accurate and objective interpretation of the respond-
ents’ decision-making process, and better explains the
moderate attitudes toward purchasing products that
are either high in price but good in quality or low in
price but poor in quality, thereby offering a more
nuanced understanding of the multi-trait decision-
making process of respondents.

Hence, in the present study, we propose an ORD
model that allows for different target traits across the
two decision-making stages. To differentiate it from the
existing ORD model that assumes a single decision-
making trait, we name the model that allows for two
target traits as the “ORD.2” model, and the model that
assumes a single target trait as the “ORD.1” model.
While the ORD.2 model aligns with the ORD.1 model
in terms of the pseudo-item scoring conversion, their
specific calculation model configurations differ.

In Node 1 (k=1), the probability of individual j
selecting agreement for item i is given by:

expoik (9;'1 - ﬁik)]
1+ exp[aik(ejl - ﬂik)] '
In Nodes 2 and 3 (k = 2 or 3), the probability of

individual j responding to item i with “somewhat dis-
agree” or “somewhat agree” is:

(6)
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_ exp[fxik (9]‘ - Bik)}
1+ explogk (02 — Bu)]

where 0;; represents the agreement with the statement
and 0, represents the intensity of agreement. A larger
0;1 suggests that the respondent is more likely to agree
with the item statement. A larger 0, indicates a stron-
ger agreement intensity: respondents in Node 2 are
more likely to choose the “somewhat disagree” option,
while those in Node 3 are more likely to choose the
“strongly agree” option. Typically, 0; and 0;, are pre-
sumed to jointly follow a standard multivariate nor-
mal distribution. The probability of individual j
selecting option m for item i in the ORD.2 model is
similar to that in the ORD.1 model, and is therefore
not elaborated further here.

(7)

P(Yjix = 1]0;)

Unfolding model

However, these IRTree models such as ERS or ORD
were all constructed based on the IRT models, which
hypothesize respondents answer the scales according to
a dominant response process. This means that the prob-
ability of a positive response from respondents increases
monotonically with the level of the target trait, as
depicted in the left picture of Figure 3. However,
numerous studies found that the response process of
participants on Likert attitude scales might not adhere
to this dominant response process, but the ideal point
response  process (right picture of Figure 3)
(Chernyshenko et al., 2001; 2007; Roberts et al., 2000;
Roberts & Laughlin, 1996).

Using a four-point Likert scale as an example, which
requires individuals to choose the option that best
reflects their situation based on the item statement.
interest in learning

e I have a moderate

mathematics.

Domiance Process

1.0

0.6 0.8

0.4

Probability of Positive Response
0.2

0.0
!

-3 -2 -1 0 1 2 3
Latent Trait

(1) strongly disagree (2) somewhat disagree (3)
somewhat agree (4) strongly agree

The dominant response process posits that as a
participant’s intrinsic interest in mathematics grows,
they are more inclined to select the “strongly agree”
option. However, this might not truly mirror the par-
ticipant’s decision-making process. Researchers found
that those with a moderate interest in math—espe-
cially when their interest aligns directly with the
item’s description—would usually be most likely to
opt for the “strongly agree” option (Chernyshenko
et al.,, 2001; 2007). This presents a conundrum where
the IRTree model, grounded in the IRT model’s dom-
inant response process, may not be optimal for ana-
lyzing Likert scales.

To more accurately capture such decision processes
of participants when responding to Likert scales,
researchers have advanced the concept of an ideal
point response process and the unfolding model
grounded in it. Contrary to the dominant response
process, the ideal point decision-making process
hypothesizes that respondents are more inclined to
agree with items that closely align with their target
trait level (Chernyshenko et al., 2001; 2007; Coombs,
1950; Roberts et al., 2000; Roberts & Laughlin, 1996;
Thurstone, 1928). To elucidate, consider a neutral
item: this model postulates that a participant’s likeli-
hood of agreement peaks when their target trait level
aligns perfectly with the item parameters, termed the
“ideal point”. This likelihood diminishes when the
participant’s trait level veers too high or too low from
this ideal point (Chernyshenko et al., 2001), as illus-
trated in the right side of Figure 3.

Using the aforementioned four-point Likert scale
for illustration, the unfolding model, grounded in the
ideal point process, hypothesizes that when a partici-
pant’s interest in mathematics aligns perfectly with the
item’s  description (i.e, moderate interest in

Ideal Point Process

0.8

Probability of Positive Response
0.2 0.4

0.0

T T T T T T T

-3 -2 -1 0 1 2 3
Latent Trait

Figure 3. The example of probability of positive response for the IRT model (left) and unfolding model (right).



mathematics), they are most inclined to select the
“strongly agree” option. If their interest either
increases or decreases significantly, deviating from the
central theme of the item (such as higher or lower
interest), they are more likely to select the “somewhat
agree” option. As the discrepancy between their inter-
est level and the item’s theme grows (e.g., very high
or very low interest), they tend to choose the
“somewhat disagree” option. Finally, when their inter-
est level is in stark contrast to the item’s statement
(either extremely high or extremely low), they are
most likely to choose the “strongly disagree” option.
This behavior aligns well with the observed response
processes of participants interacting with attitude-ori-
ented Likert scales (Cao et al., 2015; Drasgow et al.,
2010; Tay et al., 2009).

Ample studies have underscored the validity of the
unfolding model for attitude and personality Likert
scales (Cao et al., 2015; Guo et al., 2006; Stark et al.,
2006; Tay et al., 2009). For instance, when the unfold-
ing model was employed to analyze the two-point
scaled 16PF personality questionnaire, it was found to
fit the data more accurately than the dominance IRT
model (Stark et al., 2006). Additionally, the ideal point
model also exhibits some unique advantages. This
model demonstrates psychometric benefits over the
dominance model, such as accurately identifying the
dimensionality of scales (Tay & Drasgow, 2012).
Moreover, it enhances measurement precision and
provides more information for individuals with rela-
tively extreme personality traits when neutral items
are utilized (Cao et al, 2015; Drasgow et al., 2010).
Given this, researchers may consider adopting the
unfolding model when constructing an IRTree model.
This would lead to the development of an unfolding

P(Y; = yl0;, 65 0, Tis)
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performance. As the field has advanced, numerous
unfolding models have been proposed, both for
dichotomous and polytomous response data. The pri-
mary dichotomous models include the Squared Simple
Logistic Model (SSLM) (Andrich, 1988), PARELLA
model (Hoijtink, 1991), and Hyperbolic Cosine Model
(HCM) (Andrich & Luo, 1993). In contrast, polyto-
mous unfolding models chiefly comprise the Graded
Unfolding Model (GUM) (Roberts & Laughlin, 1996)
and the Generalized Graded Unfolding Model
(GGUM) (Roberts et al., 2000).

The GGUM, in particular, stands out due to its
flexibility. It allows for the unconstrained estimation
of the discrimination parameter and can be applied to
both dichotomous and polytomous data, thus offering
an advantage in practice. Numerous studies have also
underscored the GGUM model’s standout perform-
ance in both simulated and real-world scenarios when
evaluating personality Likert data (Chernyshenko
et al., 2007; Stark et al., 2006), notably with two-point
scales (Guo et al., 2006).

Given the flexibility and excellent performance of
the GGUM model, the current study intends to use
this model to construct the UTree model. Before
doing so, let us first introduce the GGUM model. The
model categorizes the respondents’ reactions into four
groups:  “strongly  agree”, “somewhat  agree”,
“somewhat disagree”, and “strongly disagree”. Among
them, “strongly agree” stands alone, while the remain-
ing categories each contain symmetric directions on
both the left and right sides. The GGUM centers
around the axis 0; — é; = 0. Respondents whose dis-
tances from the central axis are equal will have identi-
cal probabilities of selecting the same option.

The GGUM model is formulated as:

exp{oc,- [y(()j — ;) — ZfZOTiS} } + exp{oc,- [(M -)(0;-9) - Zfzor,-s} } ®)

Tree model. Such a model might be better equipped
to capture the ideal point response process of partici-
pants’ reactions to attitude Likert scales, providing a
more precise estimation of both potential response
styles and the participants’ target traits.

To construct a UTree model, it is essential to select
an apt unfolding model with commendable estimation

Eizo{exp{cx,« {W(@j —0;) — ZZV:O‘C,*S} }} + exp{oci [(M —w)(0;—0;) — Z:V:Oﬂs] } :

where Yj; (0,1,2...C) represent the degree of agree-
ment of individual j on the specific options in item i,
and the value ranges from 0 to C, where Yj; =0
means strongly disagree, Y;; = C means strongly agree;
o; represents the discrimination of item i; J; repre-
sents the position of item i on the continuum; 0; rep-
resents the position of person j on the continuum; 7
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represents the threshold limit value of the sth subject-
ive category corresponding to the location of the ith
item, 0; — 6; = 0 is the axis of symmetry, and the val-
ues on both sides of the axis are the same, ;0 = 0.
The probability of agreeing symmetrically mirrors on
either side of the axis where 0;—6; =0. M is the
number of possible response categories, M = 2C + 1;
w represents the subjective response category.

Given the apparent complexity of this model, Luo
(2001) proposed a more streamlined general expression:

l10(7:1'3)

p Yi':16'>5i; i> Lis) = 9
U= n2e) =5 @] + o)
where the link function y(.) can be expressed as:
h[(2CtL 4 1 —
TP e et T

cosh [(ZCT“ - s)x]

Considering the simplicity of this expression and its
ability to avoid the understanding difficulties caused by
complex mathematical formulas, we will use it to repre-
sent unfolding models in the following sections.

Proposed model: unfolding tree models

Based on the three types of IRTree models discussed
in Section 2, we employ the GGUM model (Roberts
et al., 2000), which allows for the free estimation of
three parameters (J;, %, 7;s), to construct three UTree
models that represent potential ideal point decision
processes. These models are named: ERSUTree,
ORDUTree.1, and ORDUTree.2. While we opt for the
freely estimated three-parameter GGUM in this study,
it is entirely possible to employ a GGUM with a dif-
ferent number of freely estimated parameters or
replace it with a different unfolding model, such as
the SSLM, PARELLA, HCM, or GUM, as needed.
Additionally, although this paper uses a 4-point Likert
scale as an example for model construction, the model
can be flexibly applied to more granular scoring
scales, such as 5, 7, or 9-point Likert scales, thereby
enabling the analysis of three or even more nodes of
binary outcomes. This highlights the adaptability and
flexibility inherent in constructing UTree models.
Currently, Jin et al. (2022) and Li et al. (2025) made
preliminary attempts to apply the multi-process model
to unfolding models and used it to analyze extreme
response styles, finding that individual responses to
Likert scales are more likely based on the ideal point
process. However, these modeling efforts primarily
focused on using the ERS assumption in Nodes 2 and 3,
neglecting the possibility that individuals at these nodes
might base their responses on target traits (Kim & Bolt,

2021), and some models are based on single-parameter
settings (Li et al, 2025), which may limit the model’s
flexibility. This paper takes a more comprehensive
approach by considering the possibility of both ERS and
target traits, while allowing the item parameters and
traits of different nodes to be freely estimated, thus
resulting in the development of ERSUTree, which allows
for the free estimation of ERS and 0, as well as
ORDUTree.l and ORDUTree.2, which include both a
single trait and two target traits.

Extreme response style unfolding tree model

The ERSUTree model, similar to the ERS model, pos-
its that individuals use a target trait (0), which repre-
sents their attitude toward the item, to decide whether
to agree or disagree with an item at Node 1. At
Nodes 2 and 3, individuals base their choices on their
extreme response style (1), opting for either extreme
expression options (“strongly agree” or “strongly dis-
agree”). This model hypothesizes that respondents
adhere to the ideal point response process, implying
that at Node 1, responses are constructed using the
GGUM based on the ideal point process. When a par-
ticipant’s latent trait aligns more closely with the
item’s position, they are more likely to agree with the
item’s statement. A schematic representation of the
response probability can be seen in Figure 4A.

At Nodes 2 and 3, since participants base their
choices on their extreme response style, the probability
of a participant opting for an extreme expression option
increases as the level of extreme response style increases.
This increment follows a monotonically increasing dom-
inance response process. The response probability’s sche-
matic representation can be depicted as Figure 4B.
Subsequently, Nodes 2 and 3 retain the monotonically
increasing IRT model in the ERSUTree model, echoing
the logic applied in the IRTree model (Jin et al., 2022).

Combining the aforementioned details, when the
four-point Likert scale is transformed into three-node
data (as shown in Figure 1), the response probabilities
at each node are as follows:

In Node 1 (k = 1), the probability of person j
choosing to agree with item i is calculated as:

¥ (Tix)
P = 116) Yo (0; = 0u) | + W (Tir) (1)

For the individual j responding to item i, the prob-
ability of choosing extreme expression items such as
“strongly disagree” or “strongly agree” is given by:

expl (1, )]

P(Yy = 1ln;) = 1+ explok (1, — P )] . "




MULTIVARIATE BEHAVIORAL RESEARCH 907

A
Stage 1
= .
- g — ifimq e Y0 e
«©
@
2 e
= o
=
©
E=
e < |
o o
o~
8
o
24
T T T T T T T
3 -2 1 0 1 2 3
Agreement
B C
e | e |
«© «©
o 7 S ]
2 @ 2 @]
= o = o
= =
3 3
o = e =
£ 3 g S
N N
o o
o o
o 1 =

Extreme Response Style

Strength of Agreement

Figure 4. Diagram illustrating response probabilities across decision stages for the ERSUTree and ORDUTree models. Note. In Stage
1, all UTree models follow the same ideal point process where Y = 1 denotes a tendency to agree with the item statement, and
Y = 0 indicates a tendency to disagree. In Stage 2, the ERSUTree model hypothesizes decisions based on ERS: M = 1 signifies
extreme expression options (“strongly agree” or “strongly disagree”), while M = 0 represents non-extreme expressions (“somewhat
agree” or “somewhat disagree”). The ORDUTree model hypothesizes decisions based on the target trait: N = 1 denotes options
with a stronger intensity of agreement (“somewhat disagree” or “strongly agree”), and N = 0 indicates options with a lower inten-

sity of agreement (“strongly disagree” or “somewhat agree”).

In general, the probability of individual j to choose
a specific option in item i is as follows:

P(Yy = 1]0;,1;) = P(Yii = 0[0;) x P(Yyo = 1|n;)
P(Y; = 2/0;,n;) = P(Yin = 0]0;) x P(Yi, = 0|n))
P(Yy = 3[0;,n;) = P(Yin = 1]0;) x P(Yy = 0[n;)
P(Y;; = 4|0}, ;) = P(Yyu = 1]0;) x P(Yys = 1]n;)
(13)

Ordinal unfolding tree model

The ORDUTree model, akin to the ORD model, fol-
lows an ordinal process but is distinctively built on
the ideal point response process across two stages,
leading to significant differences in its foundational
concepts and response mechanisms. This model is
divided into two distinct types. The first,
ORDUTree.1, assumes respondents base all decision
stages on a singular target trait. The second,
ORDUTree.2, posits that respondents possess two dif-
ferent target traits during different decision stages. In

the following sections, we will delve into both of these
model types in detail.

ORDUTree.1 model

This model hypothesizes that there is one latent trait,
0, influencing decision-making across multiple stages.
This is similar to the ORD.1 model, but in this model,
respondents adhere to the ideal point cognitive deci-
sion-making process at all three nodes, which is fun-
damentally different from the response process
assumed by the ORD IRTree. In this multi-process
model, individuals make decisions across two stages,
where respondents decide between agreeing or dis-
agreeing with the item statement at Node 1, and
choose between two options that represent a higher
degree of agreement (“somewhat disagree” or
“strongly agree”) and a lower degree of agreement
(“strongly disagree” or “somewhat agree”) at Nodes 2
and 3, based on the same target traits. This means
that the individual’s choices on whether to agree with
the item and the degree of agreement are highly
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Figure 5. Diagram explaining the two-stage response process
of a 4-point Likert scale with Ordinal Unfolding Tree model.
Note. The Ordinal Unfolding Tree Model assumes that individu-
als undergo a two-stage decision-making process. In Stage 1,
individuals decide whether to agree with the item statement,
with the vertical range in Stage 1 representing a tendency to
choose the ‘agree’ option. In Stage 2, the decision is about the
degree of agreement, where the vertical range in Stage 2 indi-
cates a tendency to choose the stronger agreement option of
‘strongly agree’.

consistent, such as showing a high degree of agree-
ment at Node 1 and similarly strong agreement at
Node 3, indicating a strong preference for the
“strongly agree” option; similarly, a strong preference
for “strongly disagree” might show a similar pattern.
This shows that when the target traits influencing
choices in these two stages are highly correlated or
consistent, using one target trait (0) can adequately
represent this similar two-stage decision process,
which is also quite common and entirely possible in
practice.

However, particularly, since this model involves
only one target trait following the ideal point process
across different decision stages, when the trait level is
very close to the item location, the individual tends to
agree with the statement at Node 1 and shows a very
high degree of agreement at Node 3, eventually opting
for the “strongly agree” option; conversely, when the
trait level is very far from the item location, the indi-
vidual shows a very low degree of agreement at Nodes
1 and 2, tending to choose the “strongly disagree”
option. Combining the above, we find that this trait

level aligns with our traditional understanding of the
unfolding model. Therefore, we define this target trait
similarly to the “attitudes towards the statement” in
the unfolding model, where a smaller distance
between the trait 0 and the item location indicates a
higher degree of agreement with the statement
(strongly agree), and a larger distance indicates a
lower degree of agreement (strongly disagree). The
probabilities of respondents’ choices across both deci-
sion-making stages are depicted specifically in Figure
4A and 4C. The slight distinction from the illustra-
tions is that this model assumes respondents base
their decisions at all stages on the same target trait.

In the ORDUTree.1 model, as per the ORD model,
the four-point Likert scale can be transformed into
three-node pseudo item data (see Figure 2). After
transformation, across all nodes (k = 1, 2, and 3), the
probability for individual j to choose an option repre-
senting a higher degree of agreement when respond-
ing to item i is as follows:

W (Tik)
Yo (0; = 0u) | + W (Tar)

Ultimately, the probability for individual j to
choose a specific option when responding to item i is
as follows:

(

P(Yie = 110;) =

(14)

(15)

ORDUTree.2 model

While the ORDUTree.1 model is suitable for individu-
als who make decisions based on highly similar or
consistent target traits across stages, it becomes
inappropriate when the individual’s choices in the two
stages are based on inconsistent target traits. For
instance, if an individual tends to agree with the state-
ment at Node 1, indicating a close distance to the
item location with 0;, but opts for a lower degree of
agreement, such as “somewhat agree” at Node 3,
which reflects a greater distance from the item loca-
tion with 0,, this discrepancy indicates a clear incon-
sistency between the two target traits, rendering the
ORDUTree.1 assumption of a single trait inappropri-
ate. Similarly, if an individual tends to disagree with
the statement at Node 1 but opts for a higher degree
of disagreement, like “somewhat disagree,” at Node 2,
this also demonstrates a significant difference in the
latent traits at the two nodes.



Consequently, we introduce the ORDUTree.2
model, which allows respondents to base their deci-
sions on different target traits at different stages. This
model effectively accommodates the complexity of
unfolding decision processes by separately estimating
the different latent traits that influence various aspects
of response behavior. In this model, individuals decide
whether to agree or disagree with the item statement
at Node 1, determining the overall direction of agree-
ment or disagreement. Thus, we define the first stage’s
trait, 0;, as the “direction of agreement”. When 0, is
close to the item location, the individual tends to
agree with the statement; conversely, when it is dis-
tant, the tendency is to disagree. At Nodes 2 and 3,
after determining the direction of agreement, the indi-
vidual selects options that indicate either a higher or
lower degree of agreement. At this stage, when 0, is
close to the item location, the individual expresses a
higher degree of agreement, choosing options indica-
tive of strong agreement (such as “strongly agree” or
“somewhat disagree”). Therefore, defining the target
trait 0, as the “degree of agreement” at this stage is
appropriate. The closer 0, is to the item location, the
higher the degree of agreement; conversely, the farther
it is, the lower the degree of agreement. These two
distinct target traits might be related, or they could be
unrelated. The decision-making process and the prob-
ability calculations by which respondents choose a
specific option in this model are identical to those in
the ORDUTree.l model; however, the target trait
upon which decisions are based varies by stage, as
specifically depicted in Figures 4A & 4C.

The ORDUTree.2 model uses the same method of
transforming a four-point Likert item to pseudo-items
as the ORDUTree.l model.

In Node 1 (k=1), the probability that individual j
chooses to agree when responding to item i is given by:

W (tik)
W (o (01 — Oix) | + ¥ (Tir)

In Nodes 2 and 3 (k = 2 or 3), the probability that
individual j responds to item i by choosing the option
representing a higher degree of agreement (“somewhat
disagree” or “somewhat agree”) is given by:

¥ (Tik)
Yok (012 = O) | + ¥ (Tir)

Meanwhile, 0;; represents the direction of agree-
ment, while 0, represents the degree of agreement.
Respondents are more likely to choose the option
indicating a higher degree of agreement when their

P(Yijk = 1|9j1) = (16)
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position parameters 0;; and 0;, are closer to the item’s
position parameters o.
Under the ORDUTree.2 model, the probability of

respondent j selecting option m for item i is as fol-

lows:
P(Yij = 1|9j1’9j2) =P Yijl = 0|9]1 x P Yij2 = 0‘012
P(Yij = 2|9j1>0j2) =P Yijl = 0|0j1 X P Yij2 = 1‘6]'2
P(Yij = 3|9j1>9j2) =P Yijl = 1|9j1 X P Yij3 = O‘sz

(18)

This probability function is akin to that in the
ORDUTree.l model. The primary difference lies in
the basis of decisions at different nodes: decisions at
Node 1 are predicated on the trait 0;;, while decisions
at Nodes 2 and 3 rely on 0j,.

The ORDUTree model, akin to the ORD model,
adheres to an ordinal process but is distinctively built
on the ideal point response process across two stages,
introducing significant differences in its foundational
concepts and response mechanisms. The ORD models
assume that a larger value of 0 inclines individuals
toward options with a higher degree of agreement. In
contrast, the ORDUTree model follows the ideal point
response process, where the smaller the distance
between 0 and the item location, the higher the degree
of agreement selected, reflecting significant differences
in underlying hypotheses and latent response process.

Simulation research

To evaluate the performance of the UTree models in
comparison to IRTree models, this section intends to
generate response data under various conditions
through simulations. The generated data are then ana-
lyzed across a total of six models. Subsequently, the
performances of these models are assessed with estab-
lished metrics. The primary research questions to be
addressed include: Firstly, can the magnitude of fit
accurately determine which measurement
model aligns best with the response data? Secondly,
when the estimation model mirrors the true model,
can the IRTree and UTree models accurately recover
the parameters? And if a mis-specified model is
applied, what repercussions ensue from utilizing such
a misaligned model? Finally, how do the IRTree and
UTree models
which
performance?

indices

fare under varied conditions, and

factors might potentially impact their
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Data generation

To assess the performance of UTree models under
various conditions, including those of IRTree and
UTree, and to more accurately gauge the properties
and stability of these models, as well as to determine
if fit indices can accurately discern the models that
better fit the response data, we generated simulated
data based on all six models—ERS, ORD.1, ORD.2,
ERSUTree, ORDUTree.1, and ORDUTree.2—under a
range of conditions.

It is worth further explaining that the primary
objective of this study is to discuss the differences
between UTree and nested IRTree models. Although
many studies have found that the nested IRTree mod-
els outperform traditional single-decision GRM and
linear IRTree models in Likert scales (Bockenholt &
Meiser, 2017; Jeon & De Boeck, 2016; LaHuis et al.,
2019; Tijmstra et al., 2018). Among the few existing
IRTree models considering the ideal point decision
process, this model also outperforms single-decision
GGUM and GRM models (Jin et al, 2022).
Considering the above and the text length, GRM,
GGUM, and linear IRTree models were not included
in the comparisons within the simulation and empir-
ical studies of this paper. These models can be further
explored in future research.

Simulation conditions

This study uses a four-point Likert scale as its founda-
tion. For the four models that contain two latent
traits, namely ERS, ORD.2, ERSUTree, and
ORDUTree.2, we simulate response data under a total
of 27 different conditions for each model, broken
down as 3 (sample size) x 3 (test length) x 3 (latent
trait correlation). For the ORD.1 and ORDUTree.l
models, which contain only one latent trait, there is
no need to consider the factor of latent trait correl-
ation. Thus, for each of these models, response data
was simulated under 9 different conditions, delineated
as 3 (sample size) x 3 (test length). The detailed
simulation conditions are as follows:

Sample size (N). Three levels are considered: small
(500 respondents), medium (1,000 respondents), and
large (2,000 respondents). These conditions align with
existing unfolding model research (Roberts &
Laughlin, 1996).

Test length (I). Three lengths are considered: short
(5 items), medium (10 items), and long (20 items).
Given that test length can significantly influence the
estimation accuracy of unfolding models (Roberts &
Laughlin, 1996), this study has set up scenarios with
three different test lengths.

Latent trait correlation (p). Three degrees of correl-
ation are explored: no correlation (py,g,(,) = 0), low
correlation  (pg,9,(,) = 0.3), and high correlation
(Po,0,(p) = 0.6). Some previous research considered
correlations between different traits at different nodes
(Bockenholt, 2017; Bockenholt & Meiser, 2017), while
other studies operated under the assumption of no
correlation (Kim & Bolt, 2021). Thus, this study con-
siders various correlation extents to assess model
efficacy.

Subsequently, based on this foundation, we deter-
mine the distribution of each parameter for the simu-
lated data.

Discrimination parameter (a). Parameters are drawn
from a uniform normal distribution in the range [0.5,
2.0], as outlined in the study by Kim & Bolt (2021).

Item location parameter (0 or [5). Parameters are
generated from a truncated normal distribution in the
range [—2, 2], which is similar to the parameter
ranges suggested in previous studies (Andrich, 1988;
Kim & Bolt, 2021; Roberts & Laughlin, 1996).

Threshold parameter (t). Parameters for threshold
values are selected from a uniform distribution
between [—2, —0.5], mirroring the findings from
unfolding models in previous research (Roberts &
Laughlin, 1996).

Person location (0) and extreme response style par-
ameter (n). Parameters are generated from a normal
distribution with a mean of 0 and a standard devi-
ation of 1, consistent with prior research (Andrich,
1988; Kim & Bolt, 2021; Roberts & Laughlin, 1996).

Data generation process

After determining the simulation conditions and the
distribution of each parameter, simulated datasets are
generated through the following steps:

Step 1: Following the pre-determined sample size, test
length, and latent trait conditions,
respondents are generated under each condition
based on the six different models.

Step 2: Following the established parameter condi-

correlation

tions, the three-node discrimination parameter, item
location parameter, threshold parameter, person
location parameter, and response style parameter are
generated.

Step 3: Based on the six different types of IRTree and
UTree models, apply the parameters and conditions
generated in Step 1 and Step 2 to the specific mod-
els. Compute the probability for each respondent to
choose different category options m (m = 1,2,3,4).



The formula for probability calculation can be found
in the model settings section.

Step 4: Based on the option probabilities from the
previous step, generate multinomial responses.

Step 5: Convert the simulated response data into
three-node pseudo-items based on the analysis
model settings. Use the conversion methods outlined
in Table 1 for ERS and ERSUTree, and Table 2 for
ORD and ORDUTree models.

Step 6: Repeat Steps 4 and 5, generating 100 datasets
under each condition for replication analysis
purposes.

Analysis procedure

We analyze the simulated datasets using the standard
EM algorithm with fixed quadrature via the mirt
1.38.1 package in R (Chalmers, 2012). Following the
approach of Li et al. (2025), we wrote the data simula-
tion and analysis code for all six IRTree and UTree
models, which is hosted on the Open Science
Framework (available at: https://osf.io/t8znm/). Model
fit metrics, item parameter recovery, and the propor-
tion of true values contained within the 95% confi-
dence intervals for 0 and 7 estimated parameters are
chosen as evaluation metrics. The chosen method of
estimation significantly reduces computation time.
Even for the most complex UTree models, conver-
gence is usually achieved within a few to tens of
minutes. This greatly enhances computational effi-
ciency, increasing the practicality and operability of
both the IRTree and UTree models. In contrast, the
Bayesian Markov Chain Monte Carlo method, used by
other studies (Jin et al.,, 2022; Kim & Bolt, 2021), typ-
ically requires several hours for estimation, e.g., 9h
for the complex UTree models.

In the model evaluation metrics, fit metrics primarily
consist of the Akaike Information Criterion (AIC)
(Akaike, 1974), Bayesian Information Criterion (BIC)
(Schwarz, 1978) and the Sample-Size Adjusted Bayesian
Information Criterion (SABIC) (Sclove, 1987). It is
worth noting that compared to the commonly used
BIC, the SABIC places a penalty for adding parameters
based on sample size, and previous research has demon-
strated that SABIC is particularly suitable for model
comparison and should be prioritized in such contexts
(Chen et al, 2017; Enders & Tofighi, 2008; Jeon & De
Boeck, 2019a; Jeon & De Boeck, 2019b). Therefore, we
will utilize this metric in our study.

The item parameter recovery is mainly used to assess
the accuracy and precision of the parameters estimated
by the model, including both Bias and RMSE values.
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The accuracy of individual parameter estimates, specific-
ally for 0 and 7, is gauged by the proportion of times
the true values are encompassed within the 95% confi-
dence interval of these estimates (Kim & Bolt, 2021).
Essentially, a higher proportion indicates that the esti-
mated confidence intervals are consistently capturing the
true values, denoting a reliable estimation process.
Additionally, the Bias and RMSE of these person param-
eter estimates will also be presented to describe the pre-
cision of these models.

It is noteworthy that throughout the estimation
process of the UTree model, we employ the GGUM
model at each stage. This model exhibits the charac-
teristic of reflective invariance. This means that the
likelihood of a set of responses, given 0 and J vectors,
is identical to the likelihood given vectors —0 and —9
(Bafumi et al., 2005). Therefore, when employing
Bayesian estimation for unfolding models, estimating
with one set of response data can potentially lead to
two scenarios: one with 0 and ¢ and another with —0
and —J, which lead to non-convergent estimation
results and identification issues (Duck-Mayr &
Montgomery, 2023). Such challenges severely compli-
cate the estimation and application of the GGUM
model. Yet, the existing research on unfolding models
rarely addresses this issue (de la Torre et al., 2006; Jin
et al., 2022; Roberts et al., 2000; Roberts & Laughlin,
1996).

The mirt package utilizes the standard EM algorithm
and achieves stable and convergent results when analyz-
ing the GGUM model (Chalmers, 2012). However, there
can still be instances where our simulated data uses 0
and 0, but the estimation may result in —0 and —d. To
obtain reliable results regarding the accuracy of the esti-
mated positions for both individuals and items, we drew
upon existing research addressing reflective invariability
(Duck-Mayr & Montgomery, 2023; Stephens, 1997).
Our approach involves first calculating the overall cor-
relation between all estimated individual parameters 0
(n) and all item parameters 6 with their respective true
values. Then, based on the sign of the correlation, we
adjust the estimated values to align with the direction of
the true values (by multiplying them by either 1 or —1).
Finally, we compute the Bias and RMSE values, enabling
us to assess the genuine accuracy of our estimations.

Results

Fit indices

Initially, based on the data generated from six distinct
models, Table 3 presents the average values of AIC
and SABIC for each model across all conditions over
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Table 3. Average fit index values (AIC and SABIC) and the percentage of times each model exhibits the lowest fit index values

across all conditions for six models.

Data generation model

Fitted model Index ERS ORD.1 ORD.2 ERS UTree ORD UTree.1 ORD UTree.2
ERS AIC 30697.14 20677.56 31718.33 31514.02 34320.08 34606.69
(99%) (0%) (0%) (2%) (1%) (0%)
SABIC 30820.11 20763.84 31841.31 31637.00 34443.05 34729.66
(100%) (0%) (0%) (4%) (1%) (0%)
ORD.1 AIC 32203.81 20042.20 31635.71 32757.35 34110.49 34686.63
(0%) (100%) (0%) (0%) (4%) (0%)
SABIC 32325.05 20126.85 31756.95 32878.59 34231.73 34807.87
(0%) (100%) (0%) (0%) (4%) (0%)
ORD.2 AIC 31743.72 - 30675.23 32437.13 34096.46 34416.04
(0%) (100%) (0%) (1%) (0%)
SABIC 31866.69 - 30798.20 32560.11 34219.43 34539.02
(0%) (100%) (0%) (1%) (2%)
ERSUTree AIC 30741.74 - 31765.79 30991.75 - 34108.68
(1%) (0%) (98%) (0%)
SABIC 30884.92 - 31908.97 31134.93 - 34251.86
(0%) (0%) (96%) (0%)
ORDUTree.1 AIC 31189.48 20119.18 31001.46 31637.21 32688.64 33993.89
(0%) (0%) (0%) (0%) (95%) (0%)
SABIC 31371.35 20246.14 31183.33 31819.08 32870.51 34175.75
(0%) (0%) (0%) (0%) (94%) (0%)
ORDUTree.2 AIC 30803.08 - 30814.21 31063.20 - 33376.22
(0%) (0%) (0%) (99%)
SABIC 30986.67 - 30997.80 31246.80 - 33559.81
(0%) (0%) (0%) (98%)

Note. Each condition was replicated 100 times (consistent with the subsequent simulation analysis).

100 replications. Furthermore, the table showcases the
proportion of instances where the AIC and SABIC
values for a particular model are the lowest among
the six models, indicating the best model fit. Statistical
power denotes the frequency with which the true
model is accurately identified. A value approaching 1
(or 100%) signifies superior statistical efficacy. The
data in Table 3 demonstrates that regardless of
whether the data originates from the IRTree or UTree
models, both AIC and SABIC consistently exhibit
high power across varied item numbers, sample sizes,
and trait correlations. They consistently return the
smallest estimated values, correctly identifying the
genuine data model. Even for the data generated from
the more intricate UTree model, the AIC and SABIC
maintain a power close to 1, accurately discerning the
correct model that aligns with the respondent’s deci-
sion-making process. This underscores the viability of
AIC and SABIC in pinpointing the true model under-
lying response data. We also presented the BIC esti-
mates in Appendix A (Table Al). While this metric
performed well in estimating IRTree models, it
showed much poorer performance in estimating
the more complex UTree models, especially for the
ERSUTree and ORDUTree.2 models. Even when the
correct model was used, the misclassification rate was
as high as 11%. Therefore, we chose not to use this
metric as a model selection criterion in the subsequent
analysis.

Interestingly, whether the data is generated from
IRTree or UTree model based on a single trait, UTree
models that assume two different latent traits
(ERSUTree and ORDUTree.2) exhibit excellent sensi-
tivity, which refers to their capacity to correctly iden-
tify when response data does not conform to the
measurement assumptions of the model. We found
that these two model types often suffer from compu-
tation issues under the single trait data generation
condition, reporting estimation errors and conver-
gence problems. This observation indicates there is no
need for further examination of AIC and SABIC val-
ues for these models and directly indicates that
respondents’ answers are not based on two latent
traits under conditions where data is generated from a
single trait. Notably, UTree models that assume two
traits struggle due to a lack of information in the
second dimension to estimate parameters beyond
those defined by the data generation model (which
involves a single latent trait). As a result, the estima-
tion algorithm becomes stuck on a likelihood plateau,
making it extremely difficult, if not nearly impossible,
to achieve accurate estimates and avoid convergence
problems. Additionally, from a more rigorous perspec-
tive, the validity of this indicator in Bayesian estima-
tion needs further examination. Therefore, sensitivity
can be used as an auxiliary judgment tool, while fit
indices might still be the more crucial indicators for
determining whether the model matches the data.



In contrast, the sensitivity of IRTree models that
assume two latent traits falls short. The ERS model
cannot directly indicate during its estimation whether
the respondents are answering based on a single latent
trait through the estimation process. Instead, further
evaluation and comparison of AIC and SABIC values
with other models are required. The ORD.2 model
can encounter estimation errors and convergence
issues and such incidences indicate the respondents’
answers may not be based on two latent traits only
when respondents are based on a single trait and fol-
low a dominance process (i.e., the ORD.1 model).
However, when respondents answer based on a single
trait but follow an ideal point process (i.e., the
ORDUTree.1 model), this model cannot directly diag-
nose whether the respondents’ answers are based on a
single latent trait. This necessitates additional scrutiny
of AIC and SABIC and comparison with other models
to make such a determination, such as Table 3, ren-
dering the process less efficient.

Item parameter recovery

Based on data generated from six distinct models, we
compute the average Bias and RMSE estimation
results for all models. It is important to note that
because the six models have different model settings
at various decision stages, the item parameters differ
in meaning and are therefore not directly comparable.
Consequently, we only present item parameter recov-
ery results where the data generation model matches
the estimation model. The estimation results for the
six models with consistent data generation and esti-
mation can be found in Figures 6 and 7. To ensure
that the graphics are both concise and readable, we
display two figures showcasing the average Bias and
RMSE values for the item parameters in each model
under various conditions of test length, sample size,
and latent trait correlations. Specific numerical details
are provided in Appendix B (Tables B1-B5). For
more granular Bias and RMSE estimation results for
each item parameter within each model, please refer
to Appendix C (Tables C1).

Overall, combining the aforementioned results, we
observe that when the estimation model matches the
data generation model (i.e., the correct model), all
IRTree and UTree models can accurately retrieve item
parameters. The average Bias value for each item par-
ameter approaches zero, and RMSE values typically
range between 0.1 and 0.2. The distribution of differ-
ent item parameters is also relatively concentrated,
with no item parameters exhibiting particularly high
Bias and RMSE. Even for the UTree model which is
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complex in its formulation, its parameter recovery
remains commendable. The Bias for its parameters is
close to zero, and RMSE is stable around 0.18, sug-
gesting satisfactory recovery of data-generating values
of the model parameters.

Next, we delve deeper into the influence of differ-
ent conditions on the performance of IRTree and
UTree models. Under varying test length conditions,
with increasing numbers of items, almost all six mod-
els show a significant downward trend in RMSE, and
their distributions become more concentrated. This
indicates that the absolute deviations in the estimation
of different items are generally reduced, leading to
more accurate estimation results. Regarding Bias, the
average Bias in IRTree models remains relatively
unchanged, but the distribution of Bias values across
different items becomes wider, especially when the
number of items reaches 20. It is important to note
that the ORD.1 model encounters computational
issues and reports convergence problems when the
number of items is 20 and the sample sizes are 1000
or 2000 (as detailed in Appendix Table B2).
Consequently, only results for the sample size of 500
are presented under the 20-item condition. Although
the Bias and RMSE values in this condition remain
relatively high, they still exhibit a downward trend
compared to the conditions with 5 or 10 items, align-
ing with the overall patterns observed in other mod-
els. As for UTree models, the mean and distribution
of Bias are stable, indicating that the relative bias of
these models is less affected by changes in the number
of items and remains consistent. Although UTree
models may seem significantly more complex than
IRTree models, their stability and estimation accuracy
are particularly noteworthy. Overall, with 10 items,
most IRTree and UTree models can achieve smaller
Bias and RMSE results, demonstrating their effective-
ness across a range of configurations.

Across different sample sizes, as the sample size
increases, all IRTree and UTree models show a signifi-
cant downward trend in both Bias and RMSE values,
with their distributions becoming more concentrated,
indicating a general reduction in overall item devia-
tions. When the sample size reaches 1000, the RMSE
for IRTree models drops to around 0.15, while the
more complex UTree models maintain an excellent
RMSE of about 0.18. The mean Bias values for all
these models hover around zero, with minimal differ-
ences between items, indicating that these models can
provide quite accurate estimates.

In scenarios with varying latent trait correlations,
both IRTree and UTree models show little change in
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Figure 6. Average Bias of estimated item parameters across all simulated conditions when the estimated model and data gener-

ation model are consistent.

the mean and distribution of RMSE and Bias. The
RMSE means stay around 0.15 for IRTree and 0.18
for UTree, with Bias concentrated near zero. This
indicates that these models, which can freely estimate
different traits at different stages, can effectively han-
dle parameter estimation under various trait correl-
ation conditions, returning accurate item parameters.

Proportion of 95% confidence intervals of estimated
0 and 1 parameters containing true values

Table 4 presents the average proportion, across all
simulated conditions, of the 95% confidence intervals
for 6 and 5 parameter estimates that encompass the

true values. When the estimation model is the correct
one, all six models can accurately retrieve respond-
ents’ target traits or response style parameters, with
the proportion of 95% confidence intervals containing
the true values being exceptionally high. Additionally,
it is worth noting that the results in Table 4 indicate
that the standard errors (SEs) obtained from the cor-
rectly specified model estimates are relatively low
across all six models. However, the fact that the 95%
confidence intervals formed from these estimates
encompass the true values at the highest proportion
suggests that this is not due to large estimated stand-
ard errors. Rather, it indicates that the target traits
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Figure 7. Average RMSE of estimated item parameters across all simulated conditions when the estimated model and data gener-
ation model are consistent.

Table 4. Average percentage of 95% confidence interval for estimated 6 and # includes the true value across all conditions and
replications.

Fitted model
ERS ORD.1 ORD.2 ERS UTree ORD UTree.1 ORD UTree.2
Data generation model 0 n 0 0, 0, 0 n 0 0, 0,
ERS 0.95 0.95 0.91 0.95 0.92 0.89 0.95 0.58 0.88 0.92
(0.53) (0.53) (0.5) (0.53) (0.64) (0.6) (0.53) (0.44) (0.6) (0.52)
ORD.1 0.94 0.95 0.95 - - - - 0.85 - -
(0.51) (0.54) (0.46) (0.55)
ORD.2 0.95 0.92 0.79 0.95 0.95 0.86 0.91 0.60 0.82 0.82
(0.53) (0.64) (0.48) (0.53) (0.53) (0.62) (0.64) (0.52) (0.69) (0.67)
ERSUTree 0.89 0.95 0.79 0.88 0.93 0.94 0.95 0.70 0.94 0.92
(0.68) (0.56) (0.61) (0.68) (0.66) (0.56) (0.55) (0.48) (0.56) (0.52)
ORDUTree.1 0.88 0.89 0.82 0.84 0.84 - - 0.94 - -
(0.62) (0.65) (0.58) (0.61) (0.62) (0.45)
ORDUTree.2 0.88 0.90 0.79 0.88 0.86 0.94 0.90 0.80 0.94 0.94
(0.68) (0.73) (0.63) (0.69) (0.69) (0.57) (0.72) (0.56) (0.57) (0.56)

Note. The value in parentheses next to each 0 and 5 represents the standard error (SE) of the latent traits obtained from the MCMC estimation.
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estimated by these models are relatively accurate.
Furthermore, when we delve deeper into different
numbers of items, sample sizes, and latent trait cor-
relation conditions, the proportion of 95% confi-
dence intervals from the correct model containing
the true values remains stable between 0.94 and
0.95. They effectively capture respondents’ target
traits or extreme response style parameters under
almost all conditions, even when the number of
items is very few (I=5) or the sample size is quite
low (N=500).

However, when an incorrect estimation model is
used, the proportion of the 95% confidence intervals
for estimated 0 and # parameters that cover the true
values drops significantly. This drop is particularly
evident when there is a misconception about the
respondents’ decision-making process. For instance, if
respondents follow an “ideal point” response process
but the “dominance” process-based IRTree model is
erroneously used, the proportion of 95% confidence
intervals containing the true personal parameter val-
ues is much lower. Additionally, if individuals make
decisions based on two different types of target traits
(0, and 0,) and mistakenly use models like ORD.1 or
ORDUTree.1 that assume a single target trait, the pro-
portion of 95% confidence intervals containing the
true values for target trait 0 also drops substantially.
This indicates a significant bias in the estimation of
respondents’ latent abilities, making the results unreli-
able. These findings further attest to the importance
of choosing the right model for estimating respond-
ents’ latent traits. Using an incorrect model can lead
to biased estimation outcomes, greatly affecting
researchers’ accurate judgment of respondents’ true
latent traits.

Furthermore, to substantiate the validity of these
model estimates in assessing target traits, we have
included in Appendix D the recovery conditions for 0
and 7 across all six models. The results in the table
demonstrate that when the estimation model aligns
with the data generation model, the RMSE values for
the estimates of 0 and 5 are the smallest. This is con-
sistent with the highest proportions of 95% confidence
intervals covering the true values, further affirming
the reliability of using the correct model to estimate
target traits.

Summary and discussion

Based on the above simulation results, we found that
the AIC and SABIC indices demonstrate high statis-
tical power in accurately identifying the correct model

that represents the response process of response data.
Furthermore, the ERSUTree and ORDUTree.2 models
show a high level of sensitivity by promptly reporting
estimation errors and convergence issues during the
estimation process for respondents’ data under a sin-
gle trait condition. This direct detection capability
allows us to ascertain that the responses are not based
on two latent traits, thereby avoiding the additional
time and resource expenditure that would be required
for further AIC and SABIC comparisons.

When the correct model is utilized, all six catego-
ries of IRTree and UTree models adeptly retrieve item
parameters. Additionally, as both the number of items
and the sample size increase, there is a notable
improvement in the precision of these models” estima-
tions. These models also consistently maintain their
stability across varying conditions of latent trait cor-
relation. Moreover, we found that when the correct
model is employed, both IRTree and UTree models
are capable of accurately estimating respondents’
latent traits, with the 95% confidence intervals for the
0 and n parameter estimations substantially covering
the true values, and exhibiting low Bias and RMSE
values. Conversely, employing an incorrect model
markedly reduces the accuracy of these intervals and
introduces severely biased latent trait estimations for
respondents. This issue is particularly pronounced
when an erroneous response process model is used,
such as applying IRTree models to data where
respondents are answering based on an ideal point
process.

Real data application

Through the analysis of responses from two empirical
Likert-scale surveys, we aim to evaluate the perform-
ance of various IRTree and UTree models, and based
on this, determine which model is best aligned with
the empirical data. On this foundation, we seek to
identify possible potential decision-making processes
that respondents use in actual Likert-scale scenarios.
Specifically, do they base their decisions on a domin-
ance or an ideal point approach? When opting for
extreme options in the second decision phase, is their
choice driven by an extreme response style or specific
target traits? And if it is the latter, do these target
traits vary across different decision stages? With these
insights in hand, we then delve deeper into item
parameters and respondents’ latent traits, utilizing the
most fitting model to explore the intricacies of
respondents’ item response behaviors.



Example 1: reading interest

Datasets and analytical procedure

We utilize data from the “Reading Interest” section of
the 2018 Programme for International Student
Assessment  (PISA)  Middle  School  Student
Questionnaire, which is publicly accessible via the
official PISA website (OECD, 2018). This “Reading
Interest” section comprises five items designed to
gauge students’ attitudes toward reading. Participants
rated each item on a 4-point Likert scale: 1 = strongly
disagree, 2=disagree, 3 =agree, and 4 =strongly
agree. Three of the items had a negative connotation
(e.g., “For me, reading is a waste of time”), while the
remaining two were phrased positively (e.g., “Reading
is one of my favorite hobbies”). Students are likely to
agree with items when their reading interest aligns
closely with the item’s statement. Previous research
also found that employing the unfolding model for
analyzing some of Likert scale data in PISA is more
appropriate (National Center for Education Statistics,
2008). This model may better explain the data by cap-
turing the ideal point response process and nuanced
attitudes toward statements. For analytical consistency,
we adjusted the scores of negatively framed items to
align all item scores in the same direction.

In this study, we considered the responses from the
students in Mainland China, resulting in a dataset of
11,832 student responses. We randomly selected 2,000
students out of 11,832 respondents for ease of estima-
tion. Our earlier simulation study demonstrated that
both the IRTree and UTree models perform well for a
small number of items (I=5), with sample sizes of
n=1,000 and 2,000.

All six models are applied to analyze the dataset
using the “mirt 1.38.1” package in R. We employ rela-
tive fit indices (AIC and SABIC), absolute fit indices
(h*), item parameters, and latent traits to probe the
effectiveness of the models and to delve into the stu-
dents’ response processes.

Results
Fit indices. Table 5 presents the relative fit indices for
the six models. The UTree models display notably
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lower fit indices than the IRTree models, suggesting
that the ideal point response process is more appro-
priate. Particularly, the ORDUTree.2 model boasts the
smallest AIC and SABIC values, underscoring its
prominence as the best-fitting model. Figure 8
presents the results of the absolute fit indices for six
models. It’s worth noting that common absolute fit
indices such as M,, S-X?, RMSEA, and SRMR require
that individuals have no missing response data
(Chalmers, 2012). However, all IRTree and UTree

Reading Interest Questionnaires
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Figure 8. Absolute fit indices (h?) for different IRTree and

UTree models in “reading interest” and “appealing to sexual
practices” questionnaires.
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Table 5. Relative fit indices for the six estimated models in the “reading interest” and “appeal to sexual practices” questionnaires.

ERS ORD.1 ORD.2 ERS UTree ORD UTree.1 ORD UTree.2
Reading interest
AIC 18420.45 19722.29 19582.05 17440.69 17634.52 17386.74
SABIC 18495.58 19795.00 19657.19 17527.95 17743.59 17498.24
Appeal to sexual practices
AIC 34101.32 34898.37 34116.97 33659.12 33834.53 32763.38
SABIC 34289.28 35084.26 34304.92 33878.06 34113.37 33044.28
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model simulations utilize pseudo-item data where all
individuals have missing data in either Node 2 or
Node 3, making it impossible to calculate these indi-
ces. Therefore, we chose to report h? values (Factor
Communality), where higher h”> values represent
greater explanatory power of the latent traits, which
can more effectively explain the shared variance of the
manifest items, indicating that the latent traits and
the model construction are better able to explain the
responses of the manifest items, thus suggesting a bet-
ter fit. Figure 8 illustrates the fit distribution for all
items across the six models through box plots, indicat-
ing that the ORDUTree.2 model also had the highest
K2 values across both datasets, with most items exhib-
iting high h? values. This suggests that the two factors
of this model have the highest explanatory power,
confirming that this model is the most congruent with
the data in terms of data-factor fit.

This outcome indicates that when respondents
select extreme options like “strongly agree” or
“strongly disagree”, their decisions are not primarily
influenced by an extreme response style, but rather by
target traits associated with reading interest.
Additionally, respondents do not rely on a single
reading interest-related target trait when responding
to this questionnaire; they employ different target
traits across decision-making phases. This finding sug-
gests that for the “Reading Interest” questionnaire,
student responses are influenced by two discrete latent
traits associated with reading interest: a general agree-
ment tendency in Node 1 and the degree of this
agreement in Nodes 2 and 3.

Drawing from our simulation study’s insights, if
the data is premised on a sole latent target trait—be it
through a dominant or ideal point response process—
the ORDUTree.2 model suffers from serious estima-
tion difficulties, often resulting in terminating compu-
tation. However, we were able to retrieve estimation
results from this model. This indirectly reaffirms that,
in this dataset, respondents do not hinge their
responses on a singular target trait; instead, they base
their answers on two distinct latent traits.

Item parameters and latent traits. With the
ORDUTree.2 model proving the best fit, we delve into
its estimated item parameters and student latent traits,
as presented in Table 6. Most items display strong dis-
crimination across all three nodes. In Node 1, the trait
representing students’ agreement with reading interest
is moderate (0; = —0.004). This alignment between the
student trait and the item and threshold parameters
suggests a relatively high level of interest in reading. In
Node 2, the degree of students’ agreement (0,= 0.559)

Table 6. Average estimated item parameters from
ORDUTree.2 model for “reading interest” and “appeal to sex-
ual practices” questionnaires.

a, ap (31 52 T T 91 (SE) 02 (SE)
Reading interest
Node 1 4.07 -0.31 1.06 —0.004
(—0.002)

Node 2 2.83 -1.36 1.71 0.559
Node 3 3.1 1.45 0.80 (0.482)
Appeal to sexual practices

Node 1 4.23 0.22 0.57 —0.00

(—0.009)
Node 2 4,99 -0.17 0.38 0.515
Node 3 246 1.18 0.69 (0.509)

Note. This table presents the average item parameter values for each node,
after converting each item into three pseudo-items for each questionnaire.

closely matched item and threshold parameters, indi-
cating a preference for “disagree” over “strongly dis-
agree” and signaling heightened reading interest. In
contrast, Node 3 showcases a greater disparity between
students’ agreement intensity and the item and thresh-
old parameters, leaning toward “agree” over “strongly
agree”. This indicates a relatively elevated—rather than
the highest—level of reading interest. Overall, the mod-
el's outcomes highlight strong discrimination within
the questionnaire, and students exhibited moderate to
moderately high reading interest.

Correlations among latent traits from different
models. To explore the relationships and differences
between latent traits estimated by various models, we
examined correlations among latent traits under differ-
ent models in empirical data. Figure 9 presents these
correlations as estimated by the six different models.
For the scatter plot of the IRTree and UTree models,
the distributions of latent traits appear widely dispersed,
lacking a clear unified correlation direction. This sug-
gests that the dominance and ideal point processes rep-
resent distinct cognitive decision-making mechanisms.

Notably, the agreement of reading interest (0;) in
the ERSUTree and ORDUTree.2 models exhibit a
high correlation (r=0.982, p < 0.001), signifying con-
sistent outcomes when employing the same unfolding
model estimation for Node 1. However, in Nodes 2
and 3, when the ERSUTree model using extreme
response style (1) replaces the “degree of agreement”
trait (0;) in ORDUTree.2, it may underestimate this
latent trait’s actual value when 0, falls between —1
and 0, and overestimate it when 0, falls between 0
and 1, which result in biased estimations.

The relatively high correlation between ORDUTree.1
and ORDUTree.2, while not identical, hints that the
presumption of either one or two target traits can lead
to disparate outcomes. This underscores the existence
of two slightly divergent latent traits associated with
reading interest. Importantly, when we rely solely on
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Figure 9. Scatter plots of estimated latent traits for “reading interest” questionnaires under different IRTree and UTree models.
Note. “ERS_1" represents the latent trait from decision Stage 1 in the ERS model, which corresponds to the target trait 0, while
“ERS_2" signifies the latent trait from decision Stage 2, indicating the extreme response style 5. Similarly, for other models, suffixes
“_1" and “_2" denote latent traits from decision Stage 1 and 2, respectively.

one latent trait to represent participants’ reading inter-
est, we may inadvertently neglect a second type of
reading interest, consequently resulting in skewed esti-
mations. The scatter plot contrasting ORDUTree.1 and
ORDUTree.2 underscores that, at higher levels of the
degree of agreement, outcomes derived from the
ORDUTree.l model are markedly unstable and dis-
persed, leading to a considerable underestimation of
this particular reading interest trait.

In the ORDUTree.2 model, the moderate correl-
ation (r = 0.791, p < 0.001) between the “agreement

of reading interest” (0;) and the “degree of
agreement” (0,) support the idea that these two dis-
tinct latent traits are positively related. Through scat-
ter plots, we observe that when individuals have a
higher tendency to agree with the statement at Node
1 (with 0, ranging between —1.5 and 0.5, thus closer
to the item location parameter), the distribution of
the degree of agreement (0,) among different individ-
uals is quite dispersed. This dispersion indicates that
individuals do not consistently show a strong ten-
dency to particularly agree or disagree. Conversely,
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when individuals tend to disagree with the statement
(0, being further from the item location parameter),
they exhibit a clear tendency at Nodes 2 and 3 to
choose options indicative of lower agreement levels,
such as “strongly disagree” and “agree”. Overall, these
findings emphasize the unique nature of each latent
trait and their relationship in different cognitive/deci-
sion processes under reading interest assessment.

Example 2: appeal of sexual practices

Datasets and analytical procedure

Subsequently, we employ a subscale from the National
Health and Social Life Survey to gauge male respond-
ents’ attitudes toward sexual practices (Laumann
et al., 1992). This scale consists of 15 items that assess
the perceived attractiveness of various types of sexual
practices. Participants were asked to select the most
fitting option from four Likert items: 0 =not at all
appealing, 1 =not appealing, 2 =somewhat appealing,
and 3 =very appealing. Given the neutral nature of
the descriptions in these items, there is no need for
reverse scoring. Moreover, this neutrality likely leads
respondents with moderate sexual attitudes to agree
with these items, suggesting that considering an ideal
point response process might be appropriate for this
data set (Jin et al., 2022). After data cleansing and
addressing missing values, the dataset used for formal
analysis encompassed 1,397 respondents’ data. The
simulation study has confirmed that both IRTree and
UTree models could effectively estimate item parame-
ters and discern the decision processes with scales
exceeding 10 items, even with small sample sizes.
Thus, a 15-item scale with responses from 1397 par-
ticipants is deemed suitable for analysis. The proce-
dures and metrics employed are consistent with those
used in Example 1.

Results

Fit indices. The findings mirror those from the read-
ing interest analysis. As shown in Table 5 and Figure
7, the UTree model has lower AIC and SABIC and
higher h? values than for the IRTree model. This reaf-
firms that respondents, when answering this Likert
questionnaire, adhere to the ideal point process rather
than the dominance process, suggesting that the
UTree model is more apt for analyzing Likert items.
The ORDUTree.2 model, with the smallest AIC,
SABIC and highest h* values, again emerges as the
superior model. This solidifies the idea that respond-
ents’ answers to this Likert scale were driven by two
distinct types of target traits—agreement tendency

(Node 1) and degree of agreement (Node 2 and 3)
toward sexual practices—rather than by a single target
trait or a blend of target trait and extreme response
style. This finding also indicates that when respond-
ents answer Likert scales, they choose extreme state-
ment options based on target traits rather than
extreme response style. Moreover, these traits differ
between the two decision stages.

Item parameters and latent traits. We conduct
further analysis on the item parameters and latent
trait estimations obtained from the best-fitting
ORDUTree.2 model, as shown in Table 6. Most items
exhibit high levels of discrimination across all three
nodes. In Node 1, respondents’ agreement with the
appeal of sexual practices trait landed at a moderate
level (0; = —0.00). The proximity of this trait to the
item and threshold parameters implies that respond-
ents generally agree with the statements about the
appeal of sexual practices, suggesting a higher degree
of approval for such practices.

Within Node 2, the degree of respondents’ agree-
ment (0, = 0.559) closely align with the item and
threshold parameters. This alignment suggests that
respondents were more inclined to opt for “not
appealing” rather than “not at all appealing,” which
points to a stronger agreement regarding sexual prac-
tices. In contrast, Node 3 reveals a more pronounced
difference between the respondents’ traits and the
item and threshold parameters. This divergence sug-
gests that participants were more likely to rate practi-
ces as “somewhat appealing” than “very appealing”.
This nuance points to a relatively strong, though not
maximal, agreement strength. Overall, the items
within the appeal of sexual practices scale demonstrate
strong discrimination, and respondents’ inclination
toward the appeal of sexual practices was moderately
elevated.

Correlations among latent traits from different
models. Figure 10 showcases the correlations of latent
traits derived from the IRTree and UTree models.
Mirroring the observations from the reading interest
analysis, the scatter plots representing latent traits
across both IRTree and UTree models do not display
a distinct directional trend. More notably, a number
of scatter plots that delineate latent traits as estimated
by IRTree and UTree models display nonlinear associ-
ations. This observation reinforces the idea that dom-
inance and ideal point processes emerge from separate
cognitive decision-making mechanisms.

Given the shared model type at Node 1 between
the ERSUTree and ORDUTree.2 models, it is unsur-
prising to observe a relatively higher correlation in
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Figure 10. Scatter plots of estimated latent traits for “appealing to sexual practices” questionnaires under different IRTree and

UTree models.

their 0; estimates. However, as respondents’
“agreement with the appeal of sexual practices” inten-
sifies, the ERSUTree model’s estimated results become
increasingly volatile. The bias becomes more pro-
nounced, especially when 0; approaches 1.5. In Nodes
2 and 3, there is a noticeable discrepancy between the
ERSUTree’s estimates of ERS () and the actual
“degree of agreement” (0,) of the respondents. This
discrepancy is particularly salient when 0, reaches
higher levels, leading to scattered estimation outcomes
and pronounced bias. Incorrectly using this model

significantly compromises both the accuracy and
interpretability of the derived results.

In the ORDUTree.2 model, the “agreement of the
appeal of sexual practices” (0;) and “degree of
agreement” (0;) show a moderate correlation
(r =0.684,p < 0.001p < 0.001), indicating a positive
association and a moderate level of correlation
between these two latent traits. Scatter plots reveal
that regardless of whether individuals’ target trait lev-
els at Node 1 are close to the item position parame-
ters, the distribution of their target trait levels at
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Nodes 2 and 3 is quite scattered. This indicates that
regardless of whether individuals agree with the state-
ment at Node 1, there is no consistency in their
choices at specific options in subsequent nodes. The
two different target traits across different decision-
making stages exhibit significant variability, reflecting
their distinctiveness in influencing decision outcomes.

Meanwhile, the low  correlation  between
ORDUTree.l and ORDUTree.2 suggests that using a
single target trait for estimation could lead to signifi-
cantly disparate results. In Node 1, when respondents’
“agreement of the appeal of sexual practices” trait is
either low or high, the results estimated using
ORDUTree.1 are highly dispersed and unstable, lead-
ing to substantial estimation bias. In Nodes 2 and 3,
when respondents’ “degree of agreement” is at higher
levels, the ORDUTree.l model estimates also suffer
from extreme dispersion and instability, indicating
that using only one latent target trait is not feasible
and would result in significant estimation bias.

Conclusions and discussion
Conclusions

Building upon the existing IRTree models, in this
study, we considered the ideal point process-based
unfolding model to restructure three distinct types of
Unfolding Tree models. This approach offers a novel
perspective and a versatile modeling framework, offer-
ing a new viewpoint on the relationship between
latent traits and the distance to the ideal point to
reflect respondents’ multi-stage ideal point responses.
This enables a deeper exploration into Likert scale
responses and the specific latent traits driving deci-
sion-making.

Our simulation study validated that the fit indices
can accurately discern the true model that aligns with
the data’s decision-making process. Moreover, when
the estimated model aligns correctly, both the IRTree
and UTree models showcase satisfactory performance.
However, errors arise when there is a mismatch.
Whether it is mistakenly applying the IRTree model
to UTree data, erroneously attributing target traits to
ERS, or forcibly estimating multiple traits as a single
trait, substantial biases are introduced to individual
parameter estimates. These findings not only affirm
the fit indices’ and models’ viability but also under-
score the critical necessity of employing the correct
model in data analysis.

Lastly, by examining two concrete instances, we
contrasted all the IRTree and UTree models. Results
revealed that respondents are more likely to undertake

a two-stage, three-node decision based on the ideal
point process. Crucially, distinct decision stages are
underpinned by different target traits. This deepens
our comprehension of the intricate decision-making
mechanisms that respondents deploy when engaging
with Likert scales. Consequently, it offers invaluable
empirical evidence that enriches our grasp of the
underlying cognitive processes and latent traits influ-
encing their decisions.

Discussion

Here we discuss the specific results and findings from
our research. In the simulation study, first and fore-
most, we discovered that both AIC and SABIC effect-
ively identify the true (correct) model underpinning
response data across various conditions. This validates
the applicability of these two fit indices when analyz-
ing IRT and unfolding-related models, which is con-
sistent with existing studies (De Boeck & Partchev,
2012). Interestingly, when respondents answer based
on a single latent trait, irrespective of whether it is
rooted in the ideal point or dominance process, both
ERSUTree and ORDUTree.2 exhibit high sensitivity.
They can directly report that the sigma matrix con-
tains negative eigenvalues during the estimation pro-
cess. This immediate feedback eliminates the need for
further inspection of fit indices and item parameters.
Consequently, it offers a direct indication that
respondents are not basing their answers on two dis-
tinct latent traits. This greatly prevents the waste of
resources in unnecessary comparisons and the biases
that arise from using incorrect models.

We found that when the estimated model is cor-
rectly identified, all IRTree and UTree models consist-
ently return accurate item and individual parameters.
Interestingly, as the number of items and sample size
increase, the precision of these estimations also
improves, a finding in line with earlier research
(Roberts & Laughlin, 1996). The correlation between
latent traits has minimal impact on model estimation
performance, indicating that the model can aptly esti-
mate the relationships between various latent traits.

However, when the estimated model is inaccurate,
it can lead to significant biases in the estimation of
respondents’ latent traits. For instance, when respond-
ents select extreme response options based on target
traits, mistakenly classifying these target traits as ERS
can induce substantial estimation biases in person
parameters. This bias becomes especially pronounced
when respondents decide based on the ideal point
process, and the ERSUTree model is incorrectly



employed. Empirical results echo this observation.
When respondents might be operating on an ideal
point process, and make decisions in different stages
based on two distinct target traits, using the
ERSUTree model produces unstable and dispersed
biased estimates for those with either high or low true
trait levels. This could fundamentally misconstrue the
concept of the respondent’s true trait level.

Furthermore, when respondents decide based on
different target traits in various stages, inaccurately
assuming it is rooted in a singular target trait can also
cause a systemic shift in person parameters, leading to
significant biases across most parameters. Empirical
studies also affirm this, when respondents possibly
decide based on an ideal point process and two differ-
ent types of target traits, using the ORDUTree.l
model results in consistently biased estimates for tar-
get traits, particularly when the second target trait 0,
is high.

Thus, effectively and judiciously employing fit indi-
ces to discern the potential genuine decision-making
process and latent traits behind response data can
substantially mitigate the biases that arise from using
inappropriate models. This approach fosters a more
accurate derivation of item parameters and individual
latent trait levels.

In the empirical study, we observed that all UTree
models outperformed the IRTree models. This further
substantiates the notion that when respondents
answered Likert scales, they might not be adhering to
the dominance response process but rather the
unfolding response process (Thurstone, 1928). This
observation aligns with numerous existing research
findings (Chernyshenko et al., 2001; 2007). In essence,
when respondents engage with Likert scales, they are
most likely to respond affirmatively only when the
item’s phrasing closely aligns with their latent trait
level.

Next, among the UTree models, the ORDUTree.2
model demonstrated the best fit, indicating that
respondents were making decisions based on target
traits rather than extreme response style when choos-
ing whether to agree with the extreme expression
option. While employing the ERSUTree model yielded
a better fit than the traditional IRTree model at this
juncture, it is perilous to simply attribute respondents’
specific option choices to extreme response style (Jin
et al, 2022; Li et al, 2025). Respondents might be
choosing specific options based on target traits rather
than extreme response styles. The superior fit of the
ERSUTree model might only result from the applica-
tion of the unfolding model during Stage 1 decision-
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making. Hence, it is imperative for us to further com-
pare the ERSUTree and ORDUTree models to identify
a more accurate model that genuinely reflects the
respondents’ latent traits. Upon further analysis, the
superior performance of ORDUTree.2 signifies that
respondents are not choosing extreme options based
on extreme response style. Instead, such choices arise
because the item phrasing significantly diverges from
their inherent trait level. Using the ERSUTree model
in such a scenario would mistakenly interpret target
traits as extreme response styles, introducing a con-
ceptual bias in our understanding of the respondents’
latent traits. This would gravely mislead our interpret-
ation of the underlying latent traits driving the
response process.

Finally, the superior performance of the
ORDUTree.2 model over ORDUTree.l underscores
that respondents, during two distinct decision stages,
base their choices on different target traits instead of
a single one. Scatter plots from two real data applica-
tions of the ORDUTree.2 model demonstrate that in
many instances, regardless of whether individuals
agree or disagree with the statement at Stage 1, there
is no consistency in their choices at specific options
during Stage 2. This indicates significant variability
between the two different target traits across different
decision-making stages, providing indirect evidence
for the existence of distinct target traits for agreement
and strength of agreement. This observation is con-
sistent with prior research on IRTree models (Jeon
et al, 2017). Moreover, in comparison to
ORDUTree.1, ORDUTree.2 offers enhanced flexibility.
By sidestepping potential estimation biases that arise
from contradictory assumptions about target trait lev-
els at nodes 1 and nodes 2,3, the ORDUTree.2 model
can more precisely estimate target trait parameters in
empirical data.

In summary, this research offers a flexible estima-
tion framework based on the ideal point process for
analyzing responses to Likert scales. Based on our
findings, we recommend prioritizing the use of the
ORDUTree.2 model when estimating on Likert scales.
This approach allows for the free estimation of poten-
tial distinct target traits during different decision
stages, resulting in a more accurate retrieval of item
parameters and respondents’ latent trait levels.
Alternatively, as a comprehensive approach, one can
employ both AIC and SABIC to evaluate each of the
three UTree models, then proceed with the one that
demonstrates the optimal fit. This rigorous approach
to model selection ensures thoroughness, though
researchers should anticipate the potential for
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increased time and resource commitments, especially
with large datasets.

Limitations and future directions

This study also has some limitations. Firstly, our
research mainly employs a four-point scoring scale for
demonstration. Future research should utilize Likert
scales encompassing a wider range of scores, supple-
mented with more empirical data, to validate the
model’s efficacy further and to provide deeper insights
into respondents’ underlying decision-making proc-
esses. Secondly, the primary emphasis of this study is
on the extreme response style. It would be advanta-
geous for subsequent research to extend the applica-
tion of UTree models to explore different response
styles, such as the Midpoint Response Style and
Acquiescence Response Style. Thirdly, this study aims
to establish multi-process response models based on
the ideal point process, using only unidimensional
latent traits (ERS or target traits) at each node.
However, recent studies in the IRTree field are
increasingly developing multidimensional or mixture
model hypotheses that simultaneously consider ERS
and target traits (Alagoz & Meiser, 2023; Kim & Bolt,
2021; Merhof & Meiser, 2023). These models may bet-
ter reflect respondents’ actual conditions and have
shown good psychometric performance. Therefore,
future UTree model development could further
explore multidimensional traits or mixture models,
which are necessary and meaningful. Finally, this
study primarily uses Likert datasets to analyze the per-
formance and implications of the UTree model, with-
out incorporating other external criterion variables.
Future research could further explore the latent traits
derived from these UTree models, particularly the
ORDUTree.2 model, in relation to external criterion
variables. This would provide more evidence for fur-
ther examining and validating the substantive values
of these traits.
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Table A1. Average BIC value and the percentage of times each model exhibits the lowest fit index values across all conditions

for six models.

Data Generation Model

Fitted model Index ERS ORD.1 ORD.2 ERS UTree ORD. UTree.1 ORD. UTree.2
ERS BIC 31045.59 20943.92 32066.78 31862.47 34668.53 34955.14
(100%) (0%) (0%) (11%) (1%) (0%)
ORD.1 BIC 32547.35 20303.75 31979.25 33100.89 34454.03 35030.17
(0%) (100%) (0%) (0%) (5%) (0%)
ORD.2 BIC 32092.17 20511.50 31023.68 32785.58 3444491 34764.49
(0%) (0%) (100%) (0%) (1%) (9%)
ERSUTree BIC 31147.44 - 32171.50 31397.45 - 34514.38
(0%) (0%) (89%) (1%)
ORDUTree.1 BIC 31704.80 - 31516.78 3215253 33203.96 34509.20
(0%) (0%) (0%) (93%) (0%)
ORDUTree.2 BIC 31323.30 - 3133443 31583.42 - 33896.44
(0%) (0%) (0%) (89%)
Note. Each condition was replicated 100 times (consistent with the subsequent simulation analysis).
Appendix B
Table B1. Average Bias and RMSE for data generated and estimated with ERS model across different conditions.
Cor=0 Cor =03 Cor = 0.6
N / Bias RMSE Bias RMSE Bias RMSE
500 5 0.00 0.19 -0.01 0.18 —0.01 0.19
500 10 0.00 0.16 -0.01 0.17 —0.01 0.16
500 20 —-0.01 0.16 —-0.02 0.16 —0.02 0.16
1000 5 0.00 0.14 0.00 0.14 —0.01 0.14
1000 10 0.00 0.12 -0.01 0.12 —0.01 0.13
1000 20 -0.01 0.11 -0.01 0.11 —0.01 0.11
2000 5 0.01 0.10 0.00 0.10 0.00 0.10
2000 10 0.00 0.09 0.00 0.09 0.00 0.09
2000 20 0.00 0.08 -0.01 0.08 —0.01 0.08

Table B2. Average Bias and RMSE for data generated and estimated with ORD.1 and ORDUTree.1 model across different
conditions.
ORD.1 ORDUTree.1

N / Bias RMSE Bias RMSE
500 5 -0.02 0.23 -0.05 0.34
500 10 -0.02 0.20 -0.01 0.22
500 20 -0.03 0.21 0.00 0.20
1000 5 -0.01 0.17 -0.01 0.24
1000 10 -0.01 0.16 0.00 0.18
1000 20 - - 0.00 0.16
2000 5 -0.01 0.12 0.00 0.18
2000 10 0.00 0.1 0.00 0.13
2000 20 - - 0.00 0.11
Table B3. Average Bias and RMSE for data generated and estimated with ORD.2 model across different conditions.

Cor=0 Cor =03 Cor = 0.6
N / Bias RMSE Bias RMSE Bias RMSE
500 5 0.00 0.18 -0.01 0.19 -0.02 0.19
500 10 -0.01 0.16 -0.01 0.17 -0.01 0.16
500 20 -0.01 0.15 -0.02 0.16 -0.02 0.16
1000 5 0.01 0.15 -0.01 0.14 -0.01 0.14
1000 10 0.00 0.12 -0.01 0.12 -0.01 0.13
1000 20 0.00 0.11 -0.01 0.11 -0.01 0.12
2000 5 0.00 0.10 0.00 0.10 0.00 0.11
2000 10 0.00 0.09 0.00 0.09 0.00 0.09
2000 20 0.00 0.08 0.00 0.08 -0.01 0.08
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Table B4. Average Bias and RMSE for data generated and estimated with ERSUTree model across different conditions.

Cor=0 Cor=103 Cor = 0.6
N / Bias RMSE Bias RMSE Bias RMSE
500 5 0.02 0.26 0.00 0.26 -0.01 0.23
500 10 0.00 0.21 -0.01 0.20 -0.01 0.19
500 20 0.00 0.17 -0.01 0.17 -0.01 0.17
1000 5 0.01 0.21 0.00 0.20 0.00 0.18
1000 10 0.00 0.15 0.00 0.15 -0.01 0.14
1000 20 0.00 0.13 -0.01 0.13 0.00 0.13
2000 5 0.00 0.16 0.00 0.15 0.00 0.13
2000 10 0.00 0.11 0.00 0.11 0.00 0.10
2000 20 0.00 0.09 0.00 0.09 0.00 0.09
Table B5. Average Bias and RMSE for data generated and estimated with ORDUTree.2 model across different conditions.
Cor=0 Cor = 0.3 Cor = 0.6
N / Bias RMSE Bias RMSE Bias RMSE
500 5 0.02 0.29 0.01 0.28 0.00 0.26
500 10 0.01 0.22 0.00 0.21 0.00 0.21
500 20 0.00 0.19 0.00 0.18 0.00 0.19
1000 5 0.01 0.25 0.01 0.23 0.00 0.21
1000 10 0.01 0.18 0.00 0.17 0.00 0.16
1000 20 0.00 0.15 0.00 0.14 0.00 0.15
2000 5 0.01 0.21 0.00 0.18 -0.01 0.17
2000 10 0.00 0.13 0.00 0.13 0.00 0.12
2000 20 0.00 0.11 0.00 0.11 0.00 0.10
Appendix C
Table C1. Average Bias and RMSE of each item parameter for data generated from six models across all conditions.
ERS ORD.1 ORD.2 ERS UTree ORD.UTree.1 ORD.UTree.2

Bias

o -0.01 -0.02 -0.02 0.03 0.02 0.03

a -0.03 -0.04 -0.03 -0.03 0.03 0.05

81(By) 0.00 0.00 0.00 0.00 0.00 0.00

8,(8,) 0.00 0.00 0.00 0.00 0.00 0.00

7 - - - -0.03 -0.04 -0.03

9 - - - - —-0.06 —-0.05

Cor 0.01 - 0.01 0.02 - 0.03
RMSE

o 0.14 0.14 0.14 0.20 0.17 0.20

a, 0.21 0.22 0.21 0.21 0.23 0.26

81(By) 0.10 0.11 0.10 0.18 0.18 0.19

8,(B,) 0.17 0.22 0.17 0.19 0.25 0.25

7 - - - 0.14 0.14 0.15

19 - - - - 0.20 0.19

Cor 0.03 - 0.03 0.04 - 0.05

Note. ay, 61(B;), T4 represent the discrimination, item location (difficulty), and threshold parameters at the first decision stage, i.e, Node 1. ay, 8:(B,), T2
represent the discrimination, item location (difficulty), and threshold parameters for the second decision stage, i.e., Nodes 2 and 3. Given that these
two nodes belong to the same decision stage and utilize the same item location (difficulty) parameters, we have, for the sake of concise representation,
combined the distinct parameters of Nodes 2 and 3 from the original text, forming an integrated item parameter representing the second decision

stage.
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Appendix D

Table D1. Average Absolute Bias and RMSE of estimated 6 and n in six models across all conditions and replications.
Data Generation Model

ERS ORD.1 ORD.2 ERS UTree ORD UTree.1 ORD UTree.2
Fitted model 0 n 0 0, 0, 0 n 0 0, 0,
Absolute bias
ERS 0.42 0.42 0.45 0.42 0.57 0.54 0.42 0.8 0.55 0.45
ORD.1 0.41 0.43 0.36 - - - - 0.53 - -
ORD.2 0.42 0.57 0.59 0.42 0.42 0.59 0.58 0.8 0.71 0.68
ERSUTree 0.69 0.44 0.75 0.7 0.58 0.46 0.44 0.72 0.46 0.45
ORDUTree.1 0.64 0.63 0.72 0.71 0.73 - - 0.37 - -
ORDUTree.2 0.70 0.68 0.79 0.71 0.75 0.47 0.66 0.65 0.46 0.47
RMSE
ERS 0.53 0.53 0.57 0.53 0.74 0.69 0.53 1.04 0.7 0.57
ORD.1 0.52 0.54 0.46 - - - - 0.7 - -
ORD.2 0.53 0.74 0.74 0.53 0.53 0.76 0.75 1.04 0.9 0.87
ERSUTree 0.92 0.56 0.98 0.94 0.74 0.62 0.55 0.96 0.62 0.57
ORDUTree.1 0.87 0.85 0.99 0.97 0.99 - - 0.5 - -
ORDUTree.2 0.94 0.89 1.03 0.95 1.01 0.64 0.87 0.86 0.63 0.63

Note. Since the Bias of the estimated 6 and n from these models is less than 0.0001, reporting this result is not particularly meaningful. Therefore, we
have opted to report the Absolute Bias in this section.
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