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ABSTRACT 
This study introduces a new multi-process analytical framework based on the ideal point 
assumption for analyzing Likert scale data with three newly developed Unfolding Tree 
(UTree) models. Through simulations, we tested the performance of proposed models and 
existing Item Response Tree (IRTree) models across various conditions. Subsequently, empir
ical data were utilized to analyze and compare the UTree models relative to IRTree models, 
exploring respondents’ decision-making processes and underlying latent traits. Simulation 
results showed that fit indices could effectively discern the correct model underlying the 
data. When the correct model was employed, both IRTree and UTree accurately retrieved 
item and individual parameters, with the recovery precision improving as the number of 
items and sample size increased. Conversely, when an incorrect model was utilized, the mis- 
specified model consistently returned biased results in estimating individual parameters, 
which was pronounced when the respondents followed an ideal point response process. 
Empirical findings highlight that respondents’ decisions align with the ideal point process 
rather than the dominance process. The respondents’ choices of extreme response options 
are more driven by target traits than by extreme response style. Furthermore, evidence indi
cates the presence of two distinct but moderately correlated target traits throughout the 
different decision stages.
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Introduction

Background

Originating from early 20th-century psychometrics, the 
Likert scale has become an indispensable tool in both 
psychology and education fields. Whether in measure
ment scales of psychology and education or large-scale 
international educational quality assessment projects 
such as NAEP, PISA, and TIMSS, a multitude of 
researchers and programs have employed the Likert 
scale. By presenting a situational description of a certain 
subject, respondents are asked to choose from several 
options the one that is most suitable to their situations, 
thereby measuring their target traits (Likert, 1932).

However, numerous researchers have identified that 
respondents frequently exhibit response styles (there
fore, response bias) when interacting with these scales 

(Austin et al., 2006; Wetzel et al., 2013; Zeng et al., 
2020). This pertains to the respondents’ consistent 
inclination to favor certain items based on criteria 
divergent from the intended measurement traits 
(Paulhus, 1991). Among these, the extreme response 
style (ERS) stands out as the most prevalent, represent
ing a systematic proclivity to choose extreme options, 
such as “strongly agree” or “strongly disagree”, irre
spective of the test content (Van Vaerenbergh & 
Thomas, 2013). Such preferences may either underesti
mate or overestimate the actual levels of respondents’ 
target traits (Kim & Bolt, 2021). Concurrently, these 
styles have the potential to alter the intrinsic dimen
sions of the scale (Arce-Ferrer & Ketterer, 2003; 
Baumgartner & Steenkamp, 2001; Moors, 2003), as a 
result, reducing the reliability of the questionnaires 
(Clarke, 2001; Hui & Triandis, 1989). This, in turn, can 
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negatively influence the scale’s validity (Arce-Ferrer & 
Ketterer, 2003; Zeng et al., 2020; Zeng et al., 2024).

To identify the extreme response styles effectively in 
Likert scale measurements, researchers have employed 
multiple analytical methods, including descriptive sta
tistics (Greenleaf, 1992), Confirmatory Factor Analysis 
(Billiet & McClendon, 2000; Zeng et al., 2020), and 
Latent Class Analysis (Moors, 2003). In recent years, 
scholars have introduced assessment methods for 
response styles based on Item Response Theory (IRT), 
such as the Multi-dimensional Nominal Response 
Model (Johnson & Bolt, 2010) and the Mixture Partial 
Credit Model (Austin et al., 2006). Compared to tradi
tional measurement models, IRT models enable the 
estimation of response style biases at person levels. 
However, while utilizing these IRT models, it becomes 
challenging to observe the cognitive decision-making 
processes that respondents might undergo at various 
stages, making it difficult to effectively separate 
response styles from target traits. To measure the cog
nitive processing of respondents during their responses 
and more effectively discern response style biases, a 
multi-process tree-structured IRT model, called Item 
Response Tree (IRTree) model subsequently emerged.

Limitations of previous research

There are several gaps in existing research on Likert 
scale data analysis under multi-process IRT framework. 
Firstly, previous research employs IRTree models that 
are based on the assumption of the dominance 
response process to analyze Likert scales. However, 
numerous studies found that when respondents answer 
the Likert scales, they often follow an ideal point deci
sion-making process. In such cases, utilizing IRT mod
els based on the dominance response can lead to 
significant biases when estimating respondent abilities 
(Fang, 2020). Conversely, employing unfolding models 
may effectively address this issue (Chernyshenko et al., 
2007; Guo et al., 2006; Stark et al., 2006; Tay et al., 
2009). However, multi-process decision analysis mod
els are rarely founded on unfolding models in the lit
erature (Jin et al., 2022), making it challenging to delve 
into whether and how respondents follow an ideal 
point process in their multi-stage decision-making 
when answering Likert scales. Therefore, it’s necessary 
to develop Unfolding Tree (UTree) models anchored 
in the unfolding framework, and further discern 
whether respondents are basing their decisions to agree 
or disagree with item statements on a dominance or an 
ideal point process.

Furthermore, once the latent decision-making pro
cess is determined, many studies typically assume that 
respondents choose extreme phrasing options in the 
second stage based on extreme response styles 
(B€ockenholt, 2017; Jin et al., 2022; LaHuis et al., 2019; 
Park & Wu, 2019). However, this assumption may not 
be universally valid, for example, Kim and Bolt (2021) 
found using data from the Trends in International 
Mathematics and Science Study 2015 that only 32% of 
students responded to the questionnaire based on 
extreme response style, whereas a larger proportion, 
68%, responded based on target traits. Although a few 
researchers have begun to explore the use of unfolding 
models within IRTree frameworks, these attempts 
have primarily focused on singular ERS-based models 
(Jin et al., 2022). This overlooks that different nodes 
might be based on target traits (Kim & Bolt, 2021). 
Additionally, the reliance on single-parameter settings 
may limit the models’ flexibility and interpretability 
(Li et al., 2025). Moreover, the performance of this 
type of model under various measurement conditions, 
such as different test lengths, trait correlations, and 
small sample sizes, has not been thoroughly investi
gated, and its efficacy remains to be validated (Jin 
et al., 2022). In reality, respondents might select 
extreme options like “strongly agree” because their 
trait level is very close to the item location. Misusing 
models built on ERS in the second decision-making 
stage, by misinterpreting the target trait as extreme 
response styles, is conceptually incorrect. The esti
mated parameters fundamentally lose their real-world 
relevance in such instances. Hence, there is a need to 
consider ordinal models based on target traits for the 
second decision-making stage. These models can help 
us understand whether respondents choose extreme 
descriptive options based on ERS or the target trait.

Continuing with this scenario, if respondents base 
their choices in the second decision-making stage on 
the target trait, the analysis would require a more 
detailed examination. The respondents might rely on 
the same single latent target trait in both stages, or 
they could rely on two different types of target traits 
in each stage. For instance, in the first stage, they 
might choose “agree” or “disagree” based on the 
agreement trait, and in the second stage, they might 
select “strongly agree/disagree” or “somewhat agree/ 
disagree” based on the degree of agreement (Jeon 
et al., 2017). If respondents possess two different tar
get traits, relying on a model that assumes a single 
trait would substantially obscure the diversity of 
respondents’ latent traits, resulting in misleading 
interpretations of their actual decision-making process 
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and the underlying traits. This can cause substantial 
errors in the interpretation of the results, greatly 
reducing the validity of conclusions. Therefore, it is 
crucial to determine whether the decisions across the 
two stages rely on the same target trait or two slightly 
different traits. However, the answer to this question 
is still unclear, especially within the context of the 
ideal point response process. To address this uncer
tainty, we need to consider models that either 
hypothesize the existence of a single target trait or 
propose two distinct target traits. A subsequent com
parison of these models is paramount to determine 
whether respondents’ decisions across the stages stem 
from a single target trait or two distinct ones.

Moreover, once models that align with respondents’ 
decision-making processes and the underlying latent 
trait types are established, questions arise about the 
stability and accuracy of the estimation results from 
these multi-process models under different conditions, 
especially with the new Unfolding Tree model. The 
uncertainties surrounding these factors present signifi
cant challenges and difficulties in using the models 
correctly (Jin et al., 2022). A major concern is the 
unknown impact on individual latent trait estimations 
when an incorrect model is used. Gaining insight into 
the extent and nature of these effects is crucial, 
emphasizing the importance of employing the appro
priate model and ensuring its rational and efficient 
application. Lastly, the majority of research on multi- 
process IRT models predominantly adopts Markov 
Chain Monte Carlo estimation methods. This 
approach can be time-intensive, potentially compro
mising the models’ practicality and accessibility.

Objectives of this study

Building on the foundation of existing IRTree models 
and integrating the unfolding model, this study aims 
to establish a set of multi-process IRT models using 
an unfolding approach. Based on this groundwork, we 
will create three distinct types of Unfolding Tree mod
els. Our initial objective is to evaluate the performance 
of both the traditional IRTree and the newly devel
oped UTree models through rigorous simulation stud
ies, thereby elucidating the conditions, importance, 
and necessity for the accurate and judicious use of 
these models. Following the simulations, empirical 
research will contrast traditional IRTree models with 
the UTree models. The central aim is to discern the 
specific traits upon which respondents base their 
responses to Likert scales and to illuminate the under
lying decision-making processes. Ultimately, we seek 

to determine which multi-process IRT models most 
closely approximate the actual response patterns of 
the participants.

To answer the overarching research objectives, this 
study aims to address the following research 
questions:

1. How do the IRTree and UTree models perform 
under different conditions? What factors influence 
the performance of these models?

2. What are the consequences for estimations when 
a model misaligned with respondents’ true deci
sion-making process is used?

3. When responding to Likert scales in real-world 
scenarios, do respondents rely on the dominance 
or the ideal point decision-making process? In the 
second decision-making stage, when opting for 
extreme responses, are respondents’ choices 
driven by an extreme response style or by specific 
target traits? If the latter, are these target traits 
consistent across varied decision-making stages?

The rest of this paper is organized as follows: 
Section 2 presents a literature review on the existing 
IRTree and unfolding models. Section 3 proposes the 
unfolding approach-based multi-process IRT models. 
Section 4 details the simulation study, aiming to 
evaluate the performance of various IRTree and 
UTree models under diverse conditions and examine 
the repercussions of employing incorrect models. 
Section 5 describes the empirical application, wherein 
the alignment of the models with real-world Likert 
scale response data is assessed, and the potential 
response processes and underlying latent traits are 
investigated. Finally, Section 6 provides a discussion 
that summarizes the key findings of the research and 
offers a deeper interpretation and discussion of these 
insights.

Literature review

Item response tree model

The central premise of the tree-structured IRT model 
revolves around a tree-like structure, akin to decision 
trees, which breaks down respondents’ answers on the 
Likert scale into multiple stages. This design captures 
the sequential or nested multi-stage cognitive deci
sion-making processes of respondents (B€ockenholt, 
2012; De Boeck & Partchev, 2012; Jeon & De Boeck, 
2016). Consequently, it is often referred to as the Item 
Response Tree model or the multi-process IRT Model. 
The model’s most notable strength lies in its ability to 
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segment response behaviors into various decision 
processes. By allowing respondents to provide distinct 
responses at different processing stages, the model 
facilitates the isolation of response styles from target 
traits. Consequently, this results in an enhanced 
accuracy in estimating target traits. Furthermore, 
beyond its precision, the model is also characterized 
by its significant flexibility and interpretability 
(B€ockenholt, 2012; Jeon & De Boeck, 2016).

The IRTree model primarily comprises three dis
tinct types: linear, nested, and mixed multi-node 
IRTree (Jeon & De Boeck, 2016). Among them, the 
nested model is considered the most suitable IRTree 
model for analyzing the cognitive decision-making 
process in Likert scales with an even number of 
response options for agreement. Researchers predom
inantly employ this model for the analysis of response 
styles in Likert scales, including two typical models: 
the Extreme Response Style IRTree (ERS) Model and 
the Ordinal IRTree (ORD) Model.

Extreme response style IRTree model
The ERS IRTree model refers to the IRTree model 
designed to measure extreme response styles. This 
model categorizes respondents’ responses into mul
tiple cognitive decision-making stages. Using a four- 
point Likert scale as an example, the ERS model can 
divide respondents’ answers into two cognitive deci
sion-making stages: (1) Stage 1: Respondents decide 
whether they agree or disagree with the statement of 
the item, representing the level of their attitudes. (2) 
Stage 2: Respondents choose to either agree or dis
agree with an extremely phrased statement, such as 
selecting options like “strongly disagree” or “strongly 
agree”, indicating the intensity of their extreme 
response style (B€ockenholt, 2017; Jeon & De Boeck, 
2019a; Jeon & De Boeck, 2019b; Park & Wu, 2019), as 
illustrated in Figure 1.

Specifically, we can transform answers from a four- 
point Likert scale into pseudo-item scores across three 
distinct decision nodes: Node 1 relates to decision 
Stage 1, while Nodes 2 and 3 pertain to decision Stage 
2. Assuming the response chosen by individual j for 
item i is represented as Yij1: In Node 1 (Yij1), respond
ents are scored ‘10 if they agree with the item’s state
ment and ‘00 if they disagree. In Node 2 (Yij2), among 
those disagreeing with the statement, a ‘10 score is 
attributed for selecting “strongly disagree” and a ‘00

for opting for “somewhat disagree”. Conversely, in 
Node 3 (Yij3), for those agreeing with the statement, 
they receive a score of ‘10 if they choose “strongly 
agree” and ‘00 if they select “somewhat agree”. The 
scoring method for the four-point Likert scale trans
formed into pseudo-items is delineated in Table 1.

In Node 1 (k ¼ 1), Yij1 equal to 1 indicating agree
ment with the item statement. Using a two-parameter 
IRT (2PL) model (Lord, 1952), the probability of indi
vidual j agreeing to item i is calculated as:

PðYijk ¼ 1jhjÞ ¼
exp½aik hj − bik

� �
�

1þ exp½aik hj − bik
� �

�
: (1) 

For Nodes 2 and 3 (k¼ 2 or 3), the probability of 
individual j choosing the extreme phrasing option 
(“strongly disagree” and “strongly agree”) when 
answering item i is

PðYijk ¼ 1jgjÞ ¼
exp½aik gj − bik

� �
�

1þ exp½aik gj − bik
� �

�
: (2) 

Herein, exp refers to the exponential function with 
base e: bik denotes the item difficulty parameter for 
item i at node k: hj represents the target trait level of 
individual j; while gj indicates the extreme response 
style level of individual j: A larger value of hj implies 
that the respondent is more inclined to agree with the 
item statement and a greater value of gj suggests a 
stronger extreme response style. Typically, hj and gj are 
assumed to jointly follow a standard multivariate nor
mal distribution, where the mean of the distribution is 
zero and its covariance matrix is the identity matrix.

Ultimately, the probability of individual j choosing 
each option for item i is the product of the response 
probabilities across the three nodes, expressed as:

Figure 1. Decision tree diagram of responses on a four-point 
Likert scale under the ERS IRTree model.

Table 1. Scoring method for the four-point Likert scale trans
formed into pseudo-items in the ERS IRTree model.
Response (Yij) Node 1 (Yij1) Node 2 (Yij2) Node 3 (Yij3)

1 (Strongly disagree) 0 1 –
2 (Somewhat disagree) 0 0 –
3 (Somewhat agree) 1 – 0
4 (Strongly agree) 1 – 1
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PðYij ¼ 1jhj, gjÞ ¼ P Yij1 ¼ 0jhj
� �

� P Yij2 ¼ 1jgj
� �

PðYij ¼ 2jhj, gjÞ ¼ P Yij1 ¼ 0jhj
� �

� P Yij2 ¼ 0jgj
� �

PðYij ¼ 3jhj, gjÞ ¼ P Yij1 ¼ 1jhj
� �

� P Yij3 ¼ 0jgj
� �

PðYij ¼ 4jhj, gjÞ ¼ P Yij1 ¼ 1jhj
� �

� P Yij3 ¼ 1jgj
� �

It is important to note that the IRTree model is a 
type of conditional response model, where the prob
ability of an individual ultimately selecting a specific 
option is a conditional probability. For example, in 
the ERS model, the probability of an individual select
ing a particular option is conditional on the choice 
made at Node 1 based on hj; and the specific choice 
at Node 2 based on the extreme response style gj: For 
instance, the probability of an individual selecting the 
“strongly disagree” option is the probability of choos
ing “disagree” at Node 1, under the condition that the 
individual then enters Node 2 and chooses an extreme 
response option. This probability can also be 
expressed as PðYij ¼ 1jhj, gjÞ P Yij2 ¼ 1jgj,

�
Yij1 ¼

0, hjÞ: However, it is important to note that the prob
ability of an individual choosing either “0” or “1” at 
each node is independent of other node selections. 
Except for the ERS model, other IRTree models follow 
a similar logic. Clarifying this point may help in better 
understanding the inherent logic of this model.

Although the above ERS model has a solid con
struct, it makes a strong assumption that respondents 
choose extreme responses in Nodes 2 and 3 due to an 
extreme response style. In reality, however, respond
ents might opt for more extreme options because of a 
particularly high or low level of the target trait. The 
ERS model in Nodes 2 and 3 only accounts for 
extreme response style, failing to capture the response 

process based on the target traits. As a result, 
researchers have suggested considering the use of the 
Ordinal IRTree model (Kim & Bolt, 2021).

Ordinal IRTree model
The ORD IRTree model is similar to the ERS IRTree 
model. However, the ORD model posits that respond
ents’ decisions in Nodes 2 and 3 are based on the 
measured target trait rather than the extreme response 
style (Kim & Bolt, 2021). In this manner, the ORD 
model can more accurately capture instances where 
respondents, due to a particularly strong or weak tar
get trait, opt for extreme options. Consequently, the 
scoring method in Node 2 of the ORD model is the 
exact opposite of the ERS model’s method, as detailed 
in Figure 2.

Building on this, we can derive the transformed 
pseudo-item scoring as presented in Table 2. In this 
model, options representing a higher intensity of 
agreement in Nodes 2 and 3 (i.e., “somewhat disagree” 
and “strongly agree”) are scored as ‘10, while the 
remaining options, representing a lower degree of 
agreement, are scored as ‘00.

In all nodes (k ¼ 1, 2, and 3), the probability of 
individual j selecting an option representing a higher 
degree of agreement for item i is given by:

Figure 2. Decision tree diagram of responses on a four-point Likert scale under the ORD IRTree model.

Table 2. Scoring method for the four-point Likert scale trans
formed into pseudo-items in the ORD IRTree model.
Response (Yij) Node 1 (Yij1) Node 2 (Yij2) Node 3 (Yij3)

1 (Strongly disagree) 0 0 –
2 (Somewhat disagree) 0 1 –
3 (Somewhat agree) 1 – 0
4 (Strongly agree) 1 – 1
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PðYijk ¼ 1jhjÞ ¼
exp½aik hj − bik

� �
�

1þ exp½aik hj − bik
� �

�
: (4) 

Ultimately, the probability of individual j choosing 
a specific option for item i is:

PðYij ¼ 1jhjÞ ¼ P Yij1 ¼ 0jhj
� �

� P Yij2 ¼ 0jhj
� �

PðYij ¼ 2jhjÞ ¼ P Yij1 ¼ 0jhj
� �

� P Yij2 ¼ 1jhj
� �

PðYij ¼ 3jhjÞ ¼ P Yij1 ¼ 1jhj
� �

� P Yij3 ¼ 0jhj
� �

PðYij ¼ 4jhjÞ ¼ P Yij1 ¼ 1jhj
� �

� P Yij3 ¼ 1jhj
� �

(5) 

The ORD model posits that a single latent trait, 
denoted as ‘hj’ and assumed to follow a standard nor
mal distribution with a mean of zero and a standard 
deviation of one, governs decision-making across two 
decision stages. This is a critical departure from the 
ERS model, which presupposes distinct latent traits (hj 
and gj) for different decision stages, representing fun
damentally different conceptualizations of respondent 
characteristics.

However, the ORD model’s assumption that only one 
latent trait hj exists across two decision stages is a very 
strong assumption. Previous research found that in the 
IRTree model, respondents might make decisions at dif
ferent stages based on different target traits (Jeon et al., 
2017). For instance, Stage 1 typically represents the latent 
trait of the degree of agreement with the item statement, 
whereas Stage 2 (encompassing both Nodes 2 and 3) rep
resents the ‘intensity of agreement’ trait. Yet, there cur
rently exists no ORD model that allows for different 
target traits to be the basis for decisions at different 
stages. This poses significant difficulties and challenges 
for researchers aiming to explore and interpret decision- 
making processes based on varying target traits.

In real-world scenarios where respondents’ behav
iors across different decision-making stages are based 
on various target traits, there would be two or more 
distinct types of target traits. In such cases, relying 
solely on an ORD model that assumes a single target 
trait is limited. Firstly, assuming only one target trait, 
unfortunately, leads to a loss of information about the 
respondents’ target traits. For instance, respondents 
might go through a two-stage decision-making process 
when answering items related to attitudes toward pur
chasing certain products. The first stage might be 
based on whether the product’s price falls within their 
consumption range and the second stage might 
involve further determination of purchase intent based 
on product quality. At this point, there exist two dif
ferent latent traits based on the judgment of the prod
uct’s price and quality, corresponding to the attitude 
of agreement to purchase and the intensity of that 

attitude. Simplistically attributing respondents’ deci
sions to a single latent attitude trait ignores the actual 
multi-stage decision-making process and loses the 
diverse latent trait information.

More importantly, an ORD model assuming a single 
latent trait could result in a misleading interpretation of 
what is happening in reality (De Boeck & Partchev, 
2012). If we simplistically attribute respondents’ atti
tudes toward purchasing products to a general purchas
ing willingness, it fails to capture the two distinct target 
traits based on product price and quality, as well as the 
interaction between these traits. For example, some 
products might be expensive but of high quality, and 
despite the cost, the complementary nature of these fac
tors might still incline respondents to purchase. 
However, using a general purchasing attitude makes it 
difficult to explain such phenomena, leading to confu
sion and challenges in interpreting and analyzing why 
respondents make such decisions. This results in mis
leading guidance on the respondents’ true decision- 
making process, which is vastly different from the 
actual situation.

Nevertheless, if we allow the ORD model to assume 
different types of target traits at various decision-mak
ing nodes, it becomes possible to estimate latent traits 
based on judgments of product price and quality at 
respective stages. This approach allows for a more 
accurate and objective interpretation of the respond
ents’ decision-making process, and better explains the 
moderate attitudes toward purchasing products that 
are either high in price but good in quality or low in 
price but poor in quality, thereby offering a more 
nuanced understanding of the multi-trait decision- 
making process of respondents.

Hence, in the present study, we propose an ORD 
model that allows for different target traits across the 
two decision-making stages. To differentiate it from the 
existing ORD model that assumes a single decision- 
making trait, we name the model that allows for two 
target traits as the “ORD.2” model, and the model that 
assumes a single target trait as the “ORD.1” model. 
While the ORD.2 model aligns with the ORD.1 model 
in terms of the pseudo-item scoring conversion, their 
specific calculation model configurations differ.

In Node 1 (k¼1), the probability of individual j 
selecting agreement for item i is given by:

PðYijk ¼ 1jhj1Þ ¼
exp½aik hj1 − bik

� �
�

1þ exp½aik hj1 − bik
� �

�
: (6) 

In Nodes 2 and 3 (k ¼ 2 or 3), the probability of 
individual j responding to item i with “somewhat dis
agree” or “somewhat agree” is:
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PðYijk ¼ 1jhj2Þ ¼
exp½aik hj2 − bik

� �
�

1þ exp½aik hj2 − bik
� �

�
: (7) 

where hj1 represents the agreement with the statement 
and hj2 represents the intensity of agreement. A larger 
hj1 suggests that the respondent is more likely to agree 
with the item statement. A larger hj2 indicates a stron
ger agreement intensity: respondents in Node 2 are 
more likely to choose the “somewhat disagree” option, 
while those in Node 3 are more likely to choose the 
“strongly agree” option. Typically, hj1 and hj2 are pre
sumed to jointly follow a standard multivariate nor
mal distribution. The probability of individual j 
selecting option m for item i in the ORD.2 model is 
similar to that in the ORD.1 model, and is therefore 
not elaborated further here.

Unfolding model

However, these IRTree models such as ERS or ORD 
were all constructed based on the IRT models, which 
hypothesize respondents answer the scales according to 
a dominant response process. This means that the prob
ability of a positive response from respondents increases 
monotonically with the level of the target trait, as 
depicted in the left picture of Figure 3. However, 
numerous studies found that the response process of 
participants on Likert attitude scales might not adhere 
to this dominant response process, but the ideal point 
response process (right picture of Figure 3) 
(Chernyshenko et al., 2001; 2007; Roberts et al., 2000; 
Roberts & Laughlin, 1996).

Using a four-point Likert scale as an example, which 
requires individuals to choose the option that best 
reflects their situation based on the item statement.

� I have a moderate interest in learning 
mathematics.

(1) strongly disagree (2) somewhat disagree (3) 
somewhat agree (4) strongly agree

The dominant response process posits that as a 
participant’s intrinsic interest in mathematics grows, 
they are more inclined to select the “strongly agree” 
option. However, this might not truly mirror the par
ticipant’s decision-making process. Researchers found 
that those with a moderate interest in math—espe
cially when their interest aligns directly with the 
item’s description—would usually be most likely to 
opt for the “strongly agree” option (Chernyshenko 
et al., 2001; 2007). This presents a conundrum where 
the IRTree model, grounded in the IRT model’s dom
inant response process, may not be optimal for ana
lyzing Likert scales.

To more accurately capture such decision processes 
of participants when responding to Likert scales, 
researchers have advanced the concept of an ideal 
point response process and the unfolding model 
grounded in it. Contrary to the dominant response 
process, the ideal point decision-making process 
hypothesizes that respondents are more inclined to 
agree with items that closely align with their target 
trait level (Chernyshenko et al., 2001; 2007; Coombs, 
1950; Roberts et al., 2000; Roberts & Laughlin, 1996; 
Thurstone, 1928). To elucidate, consider a neutral 
item: this model postulates that a participant’s likeli
hood of agreement peaks when their target trait level 
aligns perfectly with the item parameters, termed the 
“ideal point”. This likelihood diminishes when the 
participant’s trait level veers too high or too low from 
this ideal point (Chernyshenko et al., 2001), as illus
trated in the right side of Figure 3.

Using the aforementioned four-point Likert scale 
for illustration, the unfolding model, grounded in the 
ideal point process, hypothesizes that when a partici
pant’s interest in mathematics aligns perfectly with the 
item’s description (i.e., moderate interest in 

Figure 3. The example of probability of positive response for the IRT model (left) and unfolding model (right).
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mathematics), they are most inclined to select the 
“strongly agree” option. If their interest either 
increases or decreases significantly, deviating from the 
central theme of the item (such as higher or lower 
interest), they are more likely to select the “somewhat 
agree” option. As the discrepancy between their inter
est level and the item’s theme grows (e.g., very high 
or very low interest), they tend to choose the 
“somewhat disagree” option. Finally, when their inter
est level is in stark contrast to the item’s statement 
(either extremely high or extremely low), they are 
most likely to choose the “strongly disagree” option. 
This behavior aligns well with the observed response 
processes of participants interacting with attitude-ori
ented Likert scales (Cao et al., 2015; Drasgow et al., 
2010; Tay et al., 2009).

Ample studies have underscored the validity of the 
unfolding model for attitude and personality Likert 
scales (Cao et al., 2015; Guo et al., 2006; Stark et al., 
2006; Tay et al., 2009). For instance, when the unfold
ing model was employed to analyze the two-point 
scaled 16PF personality questionnaire, it was found to 
fit the data more accurately than the dominance IRT 
model (Stark et al., 2006). Additionally, the ideal point 
model also exhibits some unique advantages. This 
model demonstrates psychometric benefits over the 
dominance model, such as accurately identifying the 
dimensionality of scales (Tay & Drasgow, 2012). 
Moreover, it enhances measurement precision and 
provides more information for individuals with rela
tively extreme personality traits when neutral items 
are utilized (Cao et al., 2015; Drasgow et al., 2010). 
Given this, researchers may consider adopting the 
unfolding model when constructing an IRTree model. 
This would lead to the development of an unfolding 

Tree model. Such a model might be better equipped 
to capture the ideal point response process of partici
pants’ reactions to attitude Likert scales, providing a 
more precise estimation of both potential response 
styles and the participants’ target traits.

To construct a UTree model, it is essential to select 
an apt unfolding model with commendable estimation 

performance. As the field has advanced, numerous 
unfolding models have been proposed, both for 
dichotomous and polytomous response data. The pri
mary dichotomous models include the Squared Simple 
Logistic Model (SSLM) (Andrich, 1988), PARELLA 
model (Hoijtink, 1991), and Hyperbolic Cosine Model 
(HCM) (Andrich & Luo, 1993). In contrast, polyto
mous unfolding models chiefly comprise the Graded 
Unfolding Model (GUM) (Roberts & Laughlin, 1996) 
and the Generalized Graded Unfolding Model 
(GGUM) (Roberts et al., 2000).

The GGUM, in particular, stands out due to its 
flexibility. It allows for the unconstrained estimation 
of the discrimination parameter and can be applied to 
both dichotomous and polytomous data, thus offering 
an advantage in practice. Numerous studies have also 
underscored the GGUM model’s standout perform
ance in both simulated and real-world scenarios when 
evaluating personality Likert data (Chernyshenko 
et al., 2007; Stark et al., 2006), notably with two-point 
scales (Guo et al., 2006).

Given the flexibility and excellent performance of 
the GGUM model, the current study intends to use 
this model to construct the UTree model. Before 
doing so, let us first introduce the GGUM model. The 
model categorizes the respondents’ reactions into four 
groups: “strongly agree”, “somewhat agree”, 
“somewhat disagree”, and “strongly disagree”. Among 
them, “strongly agree” stands alone, while the remain
ing categories each contain symmetric directions on 
both the left and right sides. The GGUM centers 
around the axis hj − di ¼ 0: Respondents whose dis
tances from the central axis are equal will have identi
cal probabilities of selecting the same option.

The GGUM model is formulated as: 

where Yij (0, 1, 2:::C) represent the degree of agree
ment of individual j on the specific options in item i;
and the value ranges from 0 to C, where Yij ¼ 0 
means strongly disagree, Yij ¼ C means strongly agree; 
ai represents the discrimination of item i; di repre
sents the position of item i on the continuum; hj rep
resents the position of person j on the continuum; sis 

P Yij ¼ yjhj, di, ai, sis
� �

¼

exp ai y hj − di
� �

−
Py

s¼0
sis

h in o
þ exp ai M − yð Þ hj − di

� �
−
Py

s¼0
sis

h in o

PC
w¼0 exp ai w hj − di

� �
−
Pw

s¼0sis
h in on o

þ exp ai M − wð Þ hj − di
� �

−
Pw

s¼0sis
h in o :

(8) 
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represents the threshold limit value of the sth subject
ive category corresponding to the location of the ith 
item, hj − di ¼ 0 is the axis of symmetry, and the val
ues on both sides of the axis are the same, si0 ¼ 0:
The probability of agreeing symmetrically mirrors on 
either side of the axis where hj − di ¼ 0: M is the 
number of possible response categories, M ¼ 2C þ 1; 
w represents the subjective response category.

Given the apparent complexity of this model, Luo 
(2001) proposed a more streamlined general expression:

P Yij ¼ 1jhj, di, ai, sis
� �

¼
w sisð Þ

w ai hj − di
� �� �

þ w sisð Þ
(9) 

where the link function w :ð Þ can be expressed as:

w xsð Þ ¼
cosh 2Cþ1

2 þ 1 − s
� �

x
� �

cosh 2Cþ1
2 − s

� �
x

� � (10) 

Considering the simplicity of this expression and its 
ability to avoid the understanding difficulties caused by 
complex mathematical formulas, we will use it to repre
sent unfolding models in the following sections.

Proposed model: unfolding tree models

Based on the three types of IRTree models discussed 
in Section 2, we employ the GGUM model (Roberts 
et al., 2000), which allows for the free estimation of 
three parameters (di, ai, sis), to construct three UTree 
models that represent potential ideal point decision 
processes. These models are named: ERSUTree, 
ORDUTree.1, and ORDUTree.2. While we opt for the 
freely estimated three-parameter GGUM in this study, 
it is entirely possible to employ a GGUM with a dif
ferent number of freely estimated parameters or 
replace it with a different unfolding model, such as 
the SSLM, PARELLA, HCM, or GUM, as needed. 
Additionally, although this paper uses a 4-point Likert 
scale as an example for model construction, the model 
can be flexibly applied to more granular scoring 
scales, such as 5, 7, or 9-point Likert scales, thereby 
enabling the analysis of three or even more nodes of 
binary outcomes. This highlights the adaptability and 
flexibility inherent in constructing UTree models.

Currently, Jin et al. (2022) and Li et al. (2025) made 
preliminary attempts to apply the multi-process model 
to unfolding models and used it to analyze extreme 
response styles, finding that individual responses to 
Likert scales are more likely based on the ideal point 
process. However, these modeling efforts primarily 
focused on using the ERS assumption in Nodes 2 and 3, 
neglecting the possibility that individuals at these nodes 
might base their responses on target traits (Kim & Bolt, 

2021), and some models are based on single-parameter 
settings (Li et al., 2025), which may limit the model’s 
flexibility. This paper takes a more comprehensive 
approach by considering the possibility of both ERS and 
target traits, while allowing the item parameters and 
traits of different nodes to be freely estimated, thus 
resulting in the development of ERSUTree, which allows 
for the free estimation of ERS and h, as well as 
ORDUTree.1 and ORDUTree.2, which include both a 
single trait and two target traits.

Extreme response style unfolding tree model

The ERSUTree model, similar to the ERS model, pos
its that individuals use a target trait (h), which repre
sents their attitude toward the item, to decide whether 
to agree or disagree with an item at Node 1. At 
Nodes 2 and 3, individuals base their choices on their 
extreme response style (g), opting for either extreme 
expression options (“strongly agree” or “strongly dis
agree”). This model hypothesizes that respondents 
adhere to the ideal point response process, implying 
that at Node 1, responses are constructed using the 
GGUM based on the ideal point process. When a par
ticipant’s latent trait aligns more closely with the 
item’s position, they are more likely to agree with the 
item’s statement. A schematic representation of the 
response probability can be seen in Figure 4A.

At Nodes 2 and 3, since participants base their 
choices on their extreme response style, the probability 
of a participant opting for an extreme expression option 
increases as the level of extreme response style increases. 
This increment follows a monotonically increasing dom
inance response process. The response probability’s sche
matic representation can be depicted as Figure 4B. 
Subsequently, Nodes 2 and 3 retain the monotonically 
increasing IRT model in the ERSUTree model, echoing 
the logic applied in the IRTree model (Jin et al., 2022).

Combining the aforementioned details, when the 
four-point Likert scale is transformed into three-node 
data (as shown in Figure 1), the response probabilities 
at each node are as follows:

In Node 1 (k ¼ 1), the probability of person j 
choosing to agree with item i is calculated as:

P Yijk ¼ 1jhj
� �

¼
w sikð Þ

w aik hj − dik
� �� �

þ w sikð Þ
(11) 

For the individual j responding to item i; the prob
ability of choosing extreme expression items such as 
“strongly disagree” or “strongly agree” is given by:

PðYijk ¼ 1jgjÞ ¼
exp½aik gj − bik

� �
�

1þ exp½aik gj − bik
� �

�
: (12) 
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In general, the probability of individual j to choose 
a specific option in item i is as follows:

PðYij ¼ 1jhj, gjÞ ¼ P Yij1 ¼ 0jhj
� �

� P Yij2 ¼ 1jgj
� �

PðYij ¼ 2jhj, gjÞ ¼ P Yij1 ¼ 0jhj
� �

� P Yij2 ¼ 0jgj
� �

PðYij ¼ 3jhj, gjÞ ¼ P Yij1 ¼ 1jhj
� �

� P Yij3 ¼ 0jgj
� �

PðYij ¼ 4jhj, gjÞ ¼ P Yij1 ¼ 1jhj
� �

� P Yij3 ¼ 1jgj
� �

(13) 

Ordinal unfolding tree model

The ORDUTree model, akin to the ORD model, fol
lows an ordinal process but is distinctively built on 
the ideal point response process across two stages, 
leading to significant differences in its foundational 
concepts and response mechanisms. This model is 
divided into two distinct types. The first, 
ORDUTree.1, assumes respondents base all decision 
stages on a singular target trait. The second, 
ORDUTree.2, posits that respondents possess two dif
ferent target traits during different decision stages. In 

the following sections, we will delve into both of these 
model types in detail.

ORDUTree.1 model
This model hypothesizes that there is one latent trait, 
h; influencing decision-making across multiple stages. 
This is similar to the ORD.1 model, but in this model, 
respondents adhere to the ideal point cognitive deci
sion-making process at all three nodes, which is fun
damentally different from the response process 
assumed by the ORD IRTree. In this multi-process 
model, individuals make decisions across two stages, 
where respondents decide between agreeing or dis
agreeing with the item statement at Node 1, and 
choose between two options that represent a higher 
degree of agreement (“somewhat disagree” or 
“strongly agree”) and a lower degree of agreement 
(“strongly disagree” or “somewhat agree”) at Nodes 2 
and 3, based on the same target traits. This means 
that the individual’s choices on whether to agree with 
the item and the degree of agreement are highly 

Figure 4. Diagram illustrating response probabilities across decision stages for the ERSUTree and ORDUTree models. Note. In Stage 
1, all UTree models follow the same ideal point process where Y ¼ 1 denotes a tendency to agree with the item statement, and 
Y ¼ 0 indicates a tendency to disagree. In Stage 2, the ERSUTree model hypothesizes decisions based on ERS: M ¼ 1 signifies 
extreme expression options (“strongly agree” or “strongly disagree”), while M ¼ 0 represents non-extreme expressions (“somewhat 
agree” or “somewhat disagree”). The ORDUTree model hypothesizes decisions based on the target trait: N ¼ 1 denotes options 
with a stronger intensity of agreement (“somewhat disagree” or “strongly agree”), and N ¼ 0 indicates options with a lower inten
sity of agreement (“strongly disagree” or “somewhat agree”).
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consistent, such as showing a high degree of agree
ment at Node 1 and similarly strong agreement at 
Node 3, indicating a strong preference for the 
“strongly agree” option; similarly, a strong preference 
for “strongly disagree” might show a similar pattern. 
This shows that when the target traits influencing 
choices in these two stages are highly correlated or 
consistent, using one target trait (h) can adequately 
represent this similar two-stage decision process, 
which is also quite common and entirely possible in 
practice.

However, particularly, since this model involves 
only one target trait following the ideal point process 
across different decision stages, when the trait level is 
very close to the item location, the individual tends to 
agree with the statement at Node 1 and shows a very 
high degree of agreement at Node 3, eventually opting 
for the “strongly agree” option; conversely, when the 
trait level is very far from the item location, the indi
vidual shows a very low degree of agreement at Nodes 
1 and 2, tending to choose the “strongly disagree” 
option. Combining the above, we find that this trait 

level aligns with our traditional understanding of the 
unfolding model. Therefore, we define this target trait 
similarly to the “attitudes towards the statement” in 
the unfolding model, where a smaller distance 
between the trait h and the item location indicates a 
higher degree of agreement with the statement 
(strongly agree), and a larger distance indicates a 
lower degree of agreement (strongly disagree). The 
probabilities of respondents’ choices across both deci
sion-making stages are depicted specifically in Figure 
4A and 4C. The slight distinction from the illustra
tions is that this model assumes respondents base 
their decisions at all stages on the same target trait.

In the ORDUTree.1 model, as per the ORD model, 
the four-point Likert scale can be transformed into 
three-node pseudo item data (see Figure 2). After 
transformation, across all nodes (k ¼ 1, 2, and 3), the 
probability for individual j to choose an option repre
senting a higher degree of agreement when respond
ing to item i is as follows:

P Yijk ¼ 1jhj
� �

¼
w sikð Þ

w aik hj − dik
� �� �

þ w sikð Þ
(14) 

Ultimately, the probability for individual j to 
choose a specific option when responding to item i is 
as follows:

PðYij ¼ 1jhjÞ ¼ P Yij1 ¼ 0jhj
� �

� P Yij2 ¼ 0jhj
� �

PðYij ¼ 2jhjÞ ¼ Yij1 ¼ 0jhj
� �

� P Yij2 ¼ 1jhj
� �

PðYij ¼ 3jhjÞ ¼ P Yij1 ¼ 1jhj
� �

� P Yij3 ¼ 0jhj
� �

PðYij ¼ 4jhjÞ ¼ P Yij1 ¼ 1jhj
� �

� P Yij3 ¼ 1jhj
� �

(15) 

ORDUTree.2 model
While the ORDUTree.1 model is suitable for individu
als who make decisions based on highly similar or 
consistent target traits across stages, it becomes 
inappropriate when the individual’s choices in the two 
stages are based on inconsistent target traits. For 
instance, if an individual tends to agree with the state
ment at Node 1, indicating a close distance to the 
item location with h1; but opts for a lower degree of 
agreement, such as “somewhat agree” at Node 3, 
which reflects a greater distance from the item loca
tion with h2; this discrepancy indicates a clear incon
sistency between the two target traits, rendering the 
ORDUTree.1 assumption of a single trait inappropri
ate. Similarly, if an individual tends to disagree with 
the statement at Node 1 but opts for a higher degree 
of disagreement, like “somewhat disagree,” at Node 2, 
this also demonstrates a significant difference in the 
latent traits at the two nodes.

Figure 5. Diagram explaining the two-stage response process 
of a 4-point Likert scale with Ordinal Unfolding Tree model. 
Note. The Ordinal Unfolding Tree Model assumes that individu
als undergo a two-stage decision-making process. In Stage 1, 
individuals decide whether to agree with the item statement, 
with the vertical range in Stage 1 representing a tendency to 
choose the ‘agree’ option. In Stage 2, the decision is about the 
degree of agreement, where the vertical range in Stage 2 indi
cates a tendency to choose the stronger agreement option of 
‘strongly agree’.

908 B. ZENG ET AL.



Consequently, we introduce the ORDUTree.2 
model, which allows respondents to base their deci
sions on different target traits at different stages. This 
model effectively accommodates the complexity of 
unfolding decision processes by separately estimating 
the different latent traits that influence various aspects 
of response behavior. In this model, individuals decide 
whether to agree or disagree with the item statement 
at Node 1, determining the overall direction of agree
ment or disagreement. Thus, we define the first stage’s 
trait, h1; as the “direction of agreement”. When h1 is 
close to the item location, the individual tends to 
agree with the statement; conversely, when it is dis
tant, the tendency is to disagree. At Nodes 2 and 3, 
after determining the direction of agreement, the indi
vidual selects options that indicate either a higher or 
lower degree of agreement. At this stage, when h2 is 
close to the item location, the individual expresses a 
higher degree of agreement, choosing options indica
tive of strong agreement (such as “strongly agree” or 
“somewhat disagree”). Therefore, defining the target 
trait h2 as the “degree of agreement” at this stage is 
appropriate. The closer h2 is to the item location, the 
higher the degree of agreement; conversely, the farther 
it is, the lower the degree of agreement. These two 
distinct target traits might be related, or they could be 
unrelated. The decision-making process and the prob
ability calculations by which respondents choose a 
specific option in this model are identical to those in 
the ORDUTree.1 model; however, the target trait 
upon which decisions are based varies by stage, as 
specifically depicted in Figures 4A & 4C.

The ORDUTree.2 model uses the same method of 
transforming a four-point Likert item to pseudo-items 
as the ORDUTree.1 model.

In Node 1 (k¼1), the probability that individual j 
chooses to agree when responding to item i is given by:

P Yijk ¼ 1jhj1
� �

¼
w sikð Þ

w aik hj1 − dik
� �� �

þ w sikð Þ
(16) 

In Nodes 2 and 3 (k ¼ 2 or 3), the probability that 
individual j responds to item i by choosing the option 
representing a higher degree of agreement (“somewhat 
disagree” or “somewhat agree”) is given by:

P Yijk ¼ 1jhj2
� �

¼
w sikð Þ

w aik hj2 − dik
� �� �

þ w sikð Þ
(17) 

Meanwhile, hj1 represents the direction of agree
ment, while hj2 represents the degree of agreement. 
Respondents are more likely to choose the option 
indicating a higher degree of agreement when their 

position parameters hj1 and hj2 are closer to the item’s 
position parameters d:

Under the ORDUTree.2 model, the probability of 
respondent j selecting option m for item i is as fol
lows:

PðYij ¼ 1jhj1, hj2Þ ¼ P Yij1 ¼ 0jhj1
� �

� P Yij2 ¼ 0jhj2
� �

PðYij ¼ 2jhj1, hj2Þ ¼ P Yij1 ¼ 0jhj1
� �

� P Yij2 ¼ 1jhj2
� �

PðYij ¼ 3jhj1, hj2Þ ¼ P Yij1 ¼ 1jhj1
� �

� P Yij3 ¼ 0jhj2
� �

PðYij ¼ 4jhj1, hj2Þ ¼ P Yij1 ¼ 1jhj1
� �

� P Yij3 ¼ 1jhj2
� �

(18) 

This probability function is akin to that in the 
ORDUTree.1 model. The primary difference lies in 
the basis of decisions at different nodes: decisions at 
Node 1 are predicated on the trait hj1; while decisions 
at Nodes 2 and 3 rely on hj2:

The ORDUTree model, akin to the ORD model, 
adheres to an ordinal process but is distinctively built 
on the ideal point response process across two stages, 
introducing significant differences in its foundational 
concepts and response mechanisms. The ORD models 
assume that a larger value of h inclines individuals 
toward options with a higher degree of agreement. In 
contrast, the ORDUTree model follows the ideal point 
response process, where the smaller the distance 
between h and the item location, the higher the degree 
of agreement selected, reflecting significant differences 
in underlying hypotheses and latent response process.

Simulation research

To evaluate the performance of the UTree models in 
comparison to IRTree models, this section intends to 
generate response data under various conditions 
through simulations. The generated data are then ana
lyzed across a total of six models. Subsequently, the 
performances of these models are assessed with estab
lished metrics. The primary research questions to be 
addressed include: Firstly, can the magnitude of fit 
indices accurately determine which measurement 
model aligns best with the response data? Secondly, 
when the estimation model mirrors the true model, 
can the IRTree and UTree models accurately recover 
the parameters? And if a mis-specified model is 
applied, what repercussions ensue from utilizing such 
a misaligned model? Finally, how do the IRTree and 
UTree models fare under varied conditions, and 
which factors might potentially impact their 
performance?
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Data generation

To assess the performance of UTree models under 
various conditions, including those of IRTree and 
UTree, and to more accurately gauge the properties 
and stability of these models, as well as to determine 
if fit indices can accurately discern the models that 
better fit the response data, we generated simulated 
data based on all six models—ERS, ORD.1, ORD.2, 
ERSUTree, ORDUTree.1, and ORDUTree.2—under a 
range of conditions.

It is worth further explaining that the primary 
objective of this study is to discuss the differences 
between UTree and nested IRTree models. Although 
many studies have found that the nested IRTree mod
els outperform traditional single-decision GRM and 
linear IRTree models in Likert scales (B€ockenholt & 
Meiser, 2017; Jeon & De Boeck, 2016; LaHuis et al., 
2019; Tijmstra et al., 2018). Among the few existing 
IRTree models considering the ideal point decision 
process, this model also outperforms single-decision 
GGUM and GRM models (Jin et al., 2022). 
Considering the above and the text length, GRM, 
GGUM, and linear IRTree models were not included 
in the comparisons within the simulation and empir
ical studies of this paper. These models can be further 
explored in future research.

Simulation conditions
This study uses a four-point Likert scale as its founda
tion. For the four models that contain two latent 
traits, namely ERS, ORD.2, ERSUTree, and 
ORDUTree.2, we simulate response data under a total 
of 27 different conditions for each model, broken 
down as 3 (sample size) � 3 (test length) � 3 (latent 
trait correlation). For the ORD.1 and ORDUTree.1 
models, which contain only one latent trait, there is 
no need to consider the factor of latent trait correl
ation. Thus, for each of these models, response data 
was simulated under 9 different conditions, delineated 
as 3 (sample size) � 3 (test length). The detailed 
simulation conditions are as follows:

Sample size (N). Three levels are considered: small 
(500 respondents), medium (1,000 respondents), and 
large (2,000 respondents). These conditions align with 
existing unfolding model research (Roberts & 
Laughlin, 1996).

Test length (I). Three lengths are considered: short 
(5 items), medium (10 items), and long (20 items). 
Given that test length can significantly influence the 
estimation accuracy of unfolding models (Roberts & 
Laughlin, 1996), this study has set up scenarios with 
three different test lengths.

Latent trait correlation (q). Three degrees of correl
ation are explored: no correlation (qh1h2ðgÞ

¼ 0), low 
correlation (qh1h2ðgÞ

¼ 0:3), and high correlation 
(qh1h2ðgÞ

¼ 0:6). Some previous research considered 
correlations between different traits at different nodes 
(B€ockenholt, 2017; B€ockenholt & Meiser, 2017), while 
other studies operated under the assumption of no 
correlation (Kim & Bolt, 2021). Thus, this study con
siders various correlation extents to assess model 
efficacy.

Subsequently, based on this foundation, we deter
mine the distribution of each parameter for the simu
lated data.

Discrimination parameter (a). Parameters are drawn 
from a uniform normal distribution in the range [0.5, 
2.0], as outlined in the study by Kim & Bolt (2021).

Item location parameter (d or b). Parameters are 
generated from a truncated normal distribution in the 
range [−2, 2], which is similar to the parameter 
ranges suggested in previous studies (Andrich, 1988; 
Kim & Bolt, 2021; Roberts & Laughlin, 1996).

Threshold parameter (s). Parameters for threshold 
values are selected from a uniform distribution 
between [−2, −0.5], mirroring the findings from 
unfolding models in previous research (Roberts & 
Laughlin, 1996).

Person location (h) and extreme response style par
ameter (g). Parameters are generated from a normal 
distribution with a mean of 0 and a standard devi
ation of 1, consistent with prior research (Andrich, 
1988; Kim & Bolt, 2021; Roberts & Laughlin, 1996).

Data generation process
After determining the simulation conditions and the 
distribution of each parameter, simulated datasets are 
generated through the following steps:

Step 1: Following the pre-determined sample size, test 
length, and latent trait correlation conditions, 
respondents are generated under each condition 
based on the six different models.

Step 2: Following the established parameter condi
tions, the three-node discrimination parameter, item 
location parameter, threshold parameter, person 
location parameter, and response style parameter are 
generated.

Step 3: Based on the six different types of IRTree and 
UTree models, apply the parameters and conditions 
generated in Step 1 and Step 2 to the specific mod
els. Compute the probability for each respondent to 
choose different category options m (m ¼ 1, 2, 3, 4). 
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The formula for probability calculation can be found 
in the model settings section.

Step 4: Based on the option probabilities from the 
previous step, generate multinomial responses.

Step 5: Convert the simulated response data into 
three-node pseudo-items based on the analysis 
model settings. Use the conversion methods outlined 
in Table 1 for ERS and ERSUTree, and Table 2 for 
ORD and ORDUTree models.

Step 6: Repeat Steps 4 and 5, generating 100 datasets 
under each condition for replication analysis 
purposes.

Analysis procedure

We analyze the simulated datasets using the standard 
EM algorithm with fixed quadrature via the mirt 
1.38.1 package in R (Chalmers, 2012). Following the 
approach of Li et al. (2025), we wrote the data simula
tion and analysis code for all six IRTree and UTree 
models, which is hosted on the Open Science 
Framework (available at: https://osf.io/t8znm/). Model 
fit metrics, item parameter recovery, and the propor
tion of true values contained within the 95% confi
dence intervals for h and g estimated parameters are 
chosen as evaluation metrics. The chosen method of 
estimation significantly reduces computation time. 
Even for the most complex UTree models, conver
gence is usually achieved within a few to tens of 
minutes. This greatly enhances computational effi
ciency, increasing the practicality and operability of 
both the IRTree and UTree models. In contrast, the 
Bayesian Markov Chain Monte Carlo method, used by 
other studies (Jin et al., 2022; Kim & Bolt, 2021), typ
ically requires several hours for estimation, e.g., 9 h 
for the complex UTree models.

In the model evaluation metrics, fit metrics primarily 
consist of the Akaike Information Criterion (AIC) 
(Akaike, 1974), Bayesian Information Criterion (BIC) 
(Schwarz, 1978) and the Sample-Size Adjusted Bayesian 
Information Criterion (SABIC) (Sclove, 1987). It is 
worth noting that compared to the commonly used 
BIC, the SABIC places a penalty for adding parameters 
based on sample size, and previous research has demon
strated that SABIC is particularly suitable for model 
comparison and should be prioritized in such contexts 
(Chen et al., 2017; Enders & Tofighi, 2008; Jeon & De 
Boeck, 2019a; Jeon & De Boeck, 2019b). Therefore, we 
will utilize this metric in our study.

The item parameter recovery is mainly used to assess 
the accuracy and precision of the parameters estimated 
by the model, including both Bias and RMSE values. 

The accuracy of individual parameter estimates, specific
ally for h and g; is gauged by the proportion of times 
the true values are encompassed within the 95% confi
dence interval of these estimates (Kim & Bolt, 2021). 
Essentially, a higher proportion indicates that the esti
mated confidence intervals are consistently capturing the 
true values, denoting a reliable estimation process. 
Additionally, the Bias and RMSE of these person param
eter estimates will also be presented to describe the pre
cision of these models.

It is noteworthy that throughout the estimation 
process of the UTree model, we employ the GGUM 
model at each stage. This model exhibits the charac
teristic of reflective invariance. This means that the 
likelihood of a set of responses, given h and d vectors, 
is identical to the likelihood given vectors −h and −d 

(Bafumi et al., 2005). Therefore, when employing 
Bayesian estimation for unfolding models, estimating 
with one set of response data can potentially lead to 
two scenarios: one with h and d and another with −h 

and −d; which lead to non-convergent estimation 
results and identification issues (Duck-Mayr & 
Montgomery, 2023). Such challenges severely compli
cate the estimation and application of the GGUM 
model. Yet, the existing research on unfolding models 
rarely addresses this issue (de la Torre et al., 2006; Jin 
et al., 2022; Roberts et al., 2000; Roberts & Laughlin, 
1996).

The mirt package utilizes the standard EM algorithm 
and achieves stable and convergent results when analyz
ing the GGUM model (Chalmers, 2012). However, there 
can still be instances where our simulated data uses h 

and d; but the estimation may result in −h and −d: To 
obtain reliable results regarding the accuracy of the esti
mated positions for both individuals and items, we drew 
upon existing research addressing reflective invariability 
(Duck-Mayr & Montgomery, 2023; Stephens, 1997). 
Our approach involves first calculating the overall cor
relation between all estimated individual parameters h 

(g) and all item parameters d with their respective true 
values. Then, based on the sign of the correlation, we 
adjust the estimated values to align with the direction of 
the true values (by multiplying them by either 1 or −1). 
Finally, we compute the Bias and RMSE values, enabling 
us to assess the genuine accuracy of our estimations.

Results

Fit indices
Initially, based on the data generated from six distinct 
models, Table 3 presents the average values of AIC 
and SABIC for each model across all conditions over 
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100 replications. Furthermore, the table showcases the 
proportion of instances where the AIC and SABIC 
values for a particular model are the lowest among 
the six models, indicating the best model fit. Statistical 
power denotes the frequency with which the true 
model is accurately identified. A value approaching 1 
(or 100%) signifies superior statistical efficacy. The 
data in Table 3 demonstrates that regardless of 
whether the data originates from the IRTree or UTree 
models, both AIC and SABIC consistently exhibit 
high power across varied item numbers, sample sizes, 
and trait correlations. They consistently return the 
smallest estimated values, correctly identifying the 
genuine data model. Even for the data generated from 
the more intricate UTree model, the AIC and SABIC 
maintain a power close to 1, accurately discerning the 
correct model that aligns with the respondent’s deci
sion-making process. This underscores the viability of 
AIC and SABIC in pinpointing the true model under
lying response data. We also presented the BIC esti
mates in Appendix A (Table A1). While this metric 
performed well in estimating IRTree models, it 
showed much poorer performance in estimating 
the more complex UTree models, especially for the 
ERSUTree and ORDUTree.2 models. Even when the 
correct model was used, the misclassification rate was 
as high as 11%. Therefore, we chose not to use this 
metric as a model selection criterion in the subsequent 
analysis.

Interestingly, whether the data is generated from 
IRTree or UTree model based on a single trait, UTree 
models that assume two different latent traits 
(ERSUTree and ORDUTree.2) exhibit excellent sensi
tivity, which refers to their capacity to correctly iden
tify when response data does not conform to the 
measurement assumptions of the model. We found 
that these two model types often suffer from compu
tation issues under the single trait data generation 
condition, reporting estimation errors and conver
gence problems. This observation indicates there is no 
need for further examination of AIC and SABIC val
ues for these models and directly indicates that 
respondents’ answers are not based on two latent 
traits under conditions where data is generated from a 
single trait. Notably, UTree models that assume two 
traits struggle due to a lack of information in the 
second dimension to estimate parameters beyond 
those defined by the data generation model (which 
involves a single latent trait). As a result, the estima
tion algorithm becomes stuck on a likelihood plateau, 
making it extremely difficult, if not nearly impossible, 
to achieve accurate estimates and avoid convergence 
problems. Additionally, from a more rigorous perspec
tive, the validity of this indicator in Bayesian estima
tion needs further examination. Therefore, sensitivity 
can be used as an auxiliary judgment tool, while fit 
indices might still be the more crucial indicators for 
determining whether the model matches the data.

Table 3. Average fit index values (AIC and SABIC) and the percentage of times each model exhibits the lowest fit index values 
across all conditions for six models.

Fitted model Index

Data generation model

ERS ORD.1 ORD.2 ERS UTree ORD UTree.1 ORD UTree.2

ERS AIC 30697.14  
(99%)

20677.56 
(0%)

31718.33 
(0%)

31514.02 
(2%)

34320.08 
(1%)

34606.69 
(0%)

SABIC 30820.11  
(100%)

20763.84 
(0%)

31841.31 
(0%)

31637.00 
(4%)

34443.05 
(1%)

34729.66 
(0%)

ORD.1 AIC 32203.81 
(0%)

20042.20 
(100%)

31635.71 
(0%)

32757.35 
(0%)

34110.49 
(4%)

34686.63 
(0%)

SABIC 32325.05 
(0%)

20126.85 
(100%)

31756.95 
(0%)

32878.59 
(0%)

34231.73 
(4%)

34807.87 
(0%)

ORD.2 AIC 31743.72 
(0%)

– 30675.23 
(100%)

32437.13 
(0%)

34096.46 
(1%)

34416.04 
(0%)

SABIC 31866.69 
(0%)

– 30798.20 
(100%)

32560.11 
(0%)

34219.43 
(1%)

34539.02 
(2%)

ERSUTree AIC 30741.74  
(1%)

– 31765.79 
(0%)

30991.75 
(98%)

– 34108.68 
(0%)

SABIC 30884.92 
(0%)

– 31908.97 
(0%)

31134.93 
(96%)

– 34251.86 
(0%)

ORDUTree.1 AIC 31189.48 
(0%)

20119.18 
(0%)

31001.46 
(0%)

31637.21 
(0%)

32688.64 
(95%)

33993.89 
(0%)

SABIC 31371.35 
(0%)

20246.14 
(0%)

31183.33 
(0%)

31819.08 
(0%)

32870.51 
(94%)

34175.75 
(0%)

ORDUTree.2 AIC 30803.08 
(0%)

– 30814.21 
(0%)

31063.20 
(0%)

– 33376.22 
(99%)

SABIC 30986.67  
(0%)

– 30997.80 
(0%)

31246.80 
(0%)

– 33559.81 
(98%)

Note. Each condition was replicated 100 times (consistent with the subsequent simulation analysis).
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In contrast, the sensitivity of IRTree models that 
assume two latent traits falls short. The ERS model 
cannot directly indicate during its estimation whether 
the respondents are answering based on a single latent 
trait through the estimation process. Instead, further 
evaluation and comparison of AIC and SABIC values 
with other models are required. The ORD.2 model 
can encounter estimation errors and convergence 
issues and such incidences indicate the respondents’ 
answers may not be based on two latent traits only 
when respondents are based on a single trait and fol
low a dominance process (i.e., the ORD.1 model). 
However, when respondents answer based on a single 
trait but follow an ideal point process (i.e., the 
ORDUTree.1 model), this model cannot directly diag
nose whether the respondents’ answers are based on a 
single latent trait. This necessitates additional scrutiny 
of AIC and SABIC and comparison with other models 
to make such a determination, such as Table 3, ren
dering the process less efficient.

Item parameter recovery
Based on data generated from six distinct models, we 
compute the average Bias and RMSE estimation 
results for all models. It is important to note that 
because the six models have different model settings 
at various decision stages, the item parameters differ 
in meaning and are therefore not directly comparable. 
Consequently, we only present item parameter recov
ery results where the data generation model matches 
the estimation model. The estimation results for the 
six models with consistent data generation and esti
mation can be found in Figures 6 and 7. To ensure 
that the graphics are both concise and readable, we 
display two figures showcasing the average Bias and 
RMSE values for the item parameters in each model 
under various conditions of test length, sample size, 
and latent trait correlations. Specific numerical details 
are provided in Appendix B (Tables B1–B5). For 
more granular Bias and RMSE estimation results for 
each item parameter within each model, please refer 
to Appendix C (Tables C1).

Overall, combining the aforementioned results, we 
observe that when the estimation model matches the 
data generation model (i.e., the correct model), all 
IRTree and UTree models can accurately retrieve item 
parameters. The average Bias value for each item par
ameter approaches zero, and RMSE values typically 
range between 0.1 and 0.2. The distribution of differ
ent item parameters is also relatively concentrated, 
with no item parameters exhibiting particularly high 
Bias and RMSE. Even for the UTree model which is 

complex in its formulation, its parameter recovery 
remains commendable. The Bias for its parameters is 
close to zero, and RMSE is stable around 0.18, sug
gesting satisfactory recovery of data-generating values 
of the model parameters.

Next, we delve deeper into the influence of differ
ent conditions on the performance of IRTree and 
UTree models. Under varying test length conditions, 
with increasing numbers of items, almost all six mod
els show a significant downward trend in RMSE, and 
their distributions become more concentrated. This 
indicates that the absolute deviations in the estimation 
of different items are generally reduced, leading to 
more accurate estimation results. Regarding Bias, the 
average Bias in IRTree models remains relatively 
unchanged, but the distribution of Bias values across 
different items becomes wider, especially when the 
number of items reaches 20. It is important to note 
that the ORD.1 model encounters computational 
issues and reports convergence problems when the 
number of items is 20 and the sample sizes are 1000 
or 2000 (as detailed in Appendix Table B2). 
Consequently, only results for the sample size of 500 
are presented under the 20-item condition. Although 
the Bias and RMSE values in this condition remain 
relatively high, they still exhibit a downward trend 
compared to the conditions with 5 or 10 items, align
ing with the overall patterns observed in other mod
els. As for UTree models, the mean and distribution 
of Bias are stable, indicating that the relative bias of 
these models is less affected by changes in the number 
of items and remains consistent. Although UTree 
models may seem significantly more complex than 
IRTree models, their stability and estimation accuracy 
are particularly noteworthy. Overall, with 10 items, 
most IRTree and UTree models can achieve smaller 
Bias and RMSE results, demonstrating their effective
ness across a range of configurations.

Across different sample sizes, as the sample size 
increases, all IRTree and UTree models show a signifi
cant downward trend in both Bias and RMSE values, 
with their distributions becoming more concentrated, 
indicating a general reduction in overall item devia
tions. When the sample size reaches 1000, the RMSE 
for IRTree models drops to around 0.15, while the 
more complex UTree models maintain an excellent 
RMSE of about 0.18. The mean Bias values for all 
these models hover around zero, with minimal differ
ences between items, indicating that these models can 
provide quite accurate estimates.

In scenarios with varying latent trait correlations, 
both IRTree and UTree models show little change in 

MULTIVARIATE BEHAVIORAL RESEARCH 913



the mean and distribution of RMSE and Bias. The 
RMSE means stay around 0.15 for IRTree and 0.18 
for UTree, with Bias concentrated near zero. This 
indicates that these models, which can freely estimate 
different traits at different stages, can effectively han
dle parameter estimation under various trait correl
ation conditions, returning accurate item parameters.

Proportion of 95% confidence intervals of estimated 
h and g parameters containing true values
Table 4 presents the average proportion, across all 
simulated conditions, of the 95% confidence intervals 
for h and g parameter estimates that encompass the 

true values. When the estimation model is the correct 
one, all six models can accurately retrieve respond
ents’ target traits or response style parameters, with 
the proportion of 95% confidence intervals containing 
the true values being exceptionally high. Additionally, 
it is worth noting that the results in Table 4 indicate 
that the standard errors (SEs) obtained from the cor
rectly specified model estimates are relatively low 
across all six models. However, the fact that the 95% 
confidence intervals formed from these estimates 
encompass the true values at the highest proportion 
suggests that this is not due to large estimated stand
ard errors. Rather, it indicates that the target traits 

Figure 6. Average Bias of estimated item parameters across all simulated conditions when the estimated model and data gener
ation model are consistent.
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Figure 7. Average RMSE of estimated item parameters across all simulated conditions when the estimated model and data gener
ation model are consistent.

Table 4. Average percentage of 95% confidence interval for estimated h and g includes the true value across all conditions and 
replications.

Data generation model

Fitted model

ERS ORD.1 ORD.2 ERS UTree ORD UTree.1 ORD UTree.2

h g h h1 h2 h g h h1 h2

ERS 0.95 
(0.53)

0.95 
(0.53)

0.91 
(0.5)

0.95 
(0.53)

0.92 
(0.64)

0.89 
(0.6)

0.95 
(0.53)

0.58 
(0.44)

0.88 
(0.6)

0.92 
(0.52)

ORD.1 0.94 
(0.51)

0.95 
(0.54)

0.95 
(0.46)

– – – – 0.85 
(0.55)

– –

ORD.2 0.95 
(0.53)

0.92 
(0.64)

0.79 
(0.48)

0.95 
(0.53)

0.95 
(0.53)

0.86 
(0.62)

0.91 
(0.64)

0.60 
(0.52)

0.82 
(0.69)

0.82 
(0.67)

ERSUTree 0.89 
(0.68)

0.95 
(0.56)

0.79 
(0.61)

0.88 
(0.68)

0.93 
(0.66)

0.94 
(0.56)

0.95 
(0.55)

0.70 
(0.48)

0.94 
(0.56)

0.92 
(0.52)

ORDUTree.1 0.88 
(0.62)

0.89 
(0.65)

0.82 
(0.58)

0.84 
(0.61)

0.84 
(0.62)

– – 0.94 
(0.45)

– –

ORDUTree.2 0.88 
(0.68)

0.90 
(0.73)

0.79 
(0.63)

0.88 
(0.69)

0.86 
(0.69)

0.94 
(0.57)

0.90 
(0.72)

0.80 
(0.56)

0.94 
(0.57)

0.94 
(0.56)

Note. The value in parentheses next to each h and g represents the standard error (SE) of the latent traits obtained from the MCMC estimation.
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estimated by these models are relatively accurate. 
Furthermore, when we delve deeper into different 
numbers of items, sample sizes, and latent trait cor
relation conditions, the proportion of 95% confi
dence intervals from the correct model containing 
the true values remains stable between 0.94 and 
0.95. They effectively capture respondents’ target 
traits or extreme response style parameters under 
almost all conditions, even when the number of 
items is very few (I¼ 5) or the sample size is quite 
low (N¼ 500).

However, when an incorrect estimation model is 
used, the proportion of the 95% confidence intervals 
for estimated h and g parameters that cover the true 
values drops significantly. This drop is particularly 
evident when there is a misconception about the 
respondents’ decision-making process. For instance, if 
respondents follow an “ideal point” response process 
but the “dominance” process-based IRTree model is 
erroneously used, the proportion of 95% confidence 
intervals containing the true personal parameter val
ues is much lower. Additionally, if individuals make 
decisions based on two different types of target traits 
(h1 and h2) and mistakenly use models like ORD.1 or 
ORDUTree.1 that assume a single target trait, the pro
portion of 95% confidence intervals containing the 
true values for target trait h also drops substantially. 
This indicates a significant bias in the estimation of 
respondents’ latent abilities, making the results unreli
able. These findings further attest to the importance 
of choosing the right model for estimating respond
ents’ latent traits. Using an incorrect model can lead 
to biased estimation outcomes, greatly affecting 
researchers’ accurate judgment of respondents’ true 
latent traits.

Furthermore, to substantiate the validity of these 
model estimates in assessing target traits, we have 
included in Appendix D the recovery conditions for h 

and g across all six models. The results in the table 
demonstrate that when the estimation model aligns 
with the data generation model, the RMSE values for 
the estimates of h and g are the smallest. This is con
sistent with the highest proportions of 95% confidence 
intervals covering the true values, further affirming 
the reliability of using the correct model to estimate 
target traits.

Summary and discussion

Based on the above simulation results, we found that 
the AIC and SABIC indices demonstrate high statis
tical power in accurately identifying the correct model 

that represents the response process of response data. 
Furthermore, the ERSUTree and ORDUTree.2 models 
show a high level of sensitivity by promptly reporting 
estimation errors and convergence issues during the 
estimation process for respondents’ data under a sin
gle trait condition. This direct detection capability 
allows us to ascertain that the responses are not based 
on two latent traits, thereby avoiding the additional 
time and resource expenditure that would be required 
for further AIC and SABIC comparisons.

When the correct model is utilized, all six catego
ries of IRTree and UTree models adeptly retrieve item 
parameters. Additionally, as both the number of items 
and the sample size increase, there is a notable 
improvement in the precision of these models’ estima
tions. These models also consistently maintain their 
stability across varying conditions of latent trait cor
relation. Moreover, we found that when the correct 
model is employed, both IRTree and UTree models 
are capable of accurately estimating respondents’ 
latent traits, with the 95% confidence intervals for the 
h and g parameter estimations substantially covering 
the true values, and exhibiting low Bias and RMSE 
values. Conversely, employing an incorrect model 
markedly reduces the accuracy of these intervals and 
introduces severely biased latent trait estimations for 
respondents. This issue is particularly pronounced 
when an erroneous response process model is used, 
such as applying IRTree models to data where 
respondents are answering based on an ideal point 
process.

Real data application

Through the analysis of responses from two empirical 
Likert-scale surveys, we aim to evaluate the perform
ance of various IRTree and UTree models, and based 
on this, determine which model is best aligned with 
the empirical data. On this foundation, we seek to 
identify possible potential decision-making processes 
that respondents use in actual Likert-scale scenarios. 
Specifically, do they base their decisions on a domin
ance or an ideal point approach? When opting for 
extreme options in the second decision phase, is their 
choice driven by an extreme response style or specific 
target traits? And if it is the latter, do these target 
traits vary across different decision stages? With these 
insights in hand, we then delve deeper into item 
parameters and respondents’ latent traits, utilizing the 
most fitting model to explore the intricacies of 
respondents’ item response behaviors.
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Example 1: reading interest

Datasets and analytical procedure
We utilize data from the “Reading Interest” section of 
the 2018 Programme for International Student 
Assessment (PISA) Middle School Student 
Questionnaire, which is publicly accessible via the 
official PISA website (OECD, 2018). This “Reading 
Interest” section comprises five items designed to 
gauge students’ attitudes toward reading. Participants 
rated each item on a 4-point Likert scale: 1¼ strongly 
disagree, 2¼ disagree, 3¼ agree, and 4¼ strongly 
agree. Three of the items had a negative connotation 
(e.g., “For me, reading is a waste of time”), while the 
remaining two were phrased positively (e.g., “Reading 
is one of my favorite hobbies”). Students are likely to 
agree with items when their reading interest aligns 
closely with the item’s statement. Previous research 
also found that employing the unfolding model for 
analyzing some of Likert scale data in PISA is more 
appropriate (National Center for Education Statistics, 
2008). This model may better explain the data by cap
turing the ideal point response process and nuanced 
attitudes toward statements. For analytical consistency, 
we adjusted the scores of negatively framed items to 
align all item scores in the same direction.

In this study, we considered the responses from the 
students in Mainland China, resulting in a dataset of 
11,832 student responses. We randomly selected 2,000 
students out of 11,832 respondents for ease of estima
tion. Our earlier simulation study demonstrated that 
both the IRTree and UTree models perform well for a 
small number of items (I¼ 5), with sample sizes of 
n¼ 1,000 and 2,000.

All six models are applied to analyze the dataset 
using the “mirt 1:38:1” package in R. We employ rela
tive fit indices (AIC and SABIC), absolute fit indices 
(h2), item parameters, and latent traits to probe the 
effectiveness of the models and to delve into the stu
dents’ response processes.

Results
Fit indices. Table 5 presents the relative fit indices for 
the six models. The UTree models display notably 

lower fit indices than the IRTree models, suggesting 
that the ideal point response process is more appro
priate. Particularly, the ORDUTree.2 model boasts the 
smallest AIC and SABIC values, underscoring its 
prominence as the best-fitting model. Figure 8
presents the results of the absolute fit indices for six 
models. It’s worth noting that common absolute fit 
indices such as M2; S-X2; RMSEA, and SRMR require 
that individuals have no missing response data 
(Chalmers, 2012). However, all IRTree and UTree 

Table 5. Relative fit indices for the six estimated models in the “reading interest” and “appeal to sexual practices” questionnaires.
ERS ORD.1 ORD.2 ERS UTree ORD UTree.1 ORD UTree.2

Reading interest
AIC 18420.45 19722.29 19582.05 17440.69 17634.52 17386.74
SABIC 18495.58 19795.00 19657.19 17527.95 17743.59 17498.24

Appeal to sexual practices
AIC 34101.32 34898.37 34116.97 33659.12 33834.53 32763.38
SABIC 34289.28 35084.26 34304.92 33878.06 34113.37 33044.28

Figure 8. Absolute fit indices (h2) for different IRTree and 
UTree models in “reading interest” and “appealing to sexual 
practices” questionnaires.
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model simulations utilize pseudo-item data where all 
individuals have missing data in either Node 2 or 
Node 3, making it impossible to calculate these indi
ces. Therefore, we chose to report h2 values (Factor 
Communality), where higher h2 values represent 
greater explanatory power of the latent traits, which 
can more effectively explain the shared variance of the 
manifest items, indicating that the latent traits and 
the model construction are better able to explain the 
responses of the manifest items, thus suggesting a bet
ter fit. Figure 8 illustrates the fit distribution for all 
items across the six models through box plots, indicat
ing that the ORDUTree.2 model also had the highest 
h2 values across both datasets, with most items exhib
iting high h2 values. This suggests that the two factors 
of this model have the highest explanatory power, 
confirming that this model is the most congruent with 
the data in terms of data-factor fit.

This outcome indicates that when respondents 
select extreme options like “strongly agree” or 
“strongly disagree”, their decisions are not primarily 
influenced by an extreme response style, but rather by 
target traits associated with reading interest. 
Additionally, respondents do not rely on a single 
reading interest-related target trait when responding 
to this questionnaire; they employ different target 
traits across decision-making phases. This finding sug
gests that for the “Reading Interest” questionnaire, 
student responses are influenced by two discrete latent 
traits associated with reading interest: a general agree
ment tendency in Node 1 and the degree of this 
agreement in Nodes 2 and 3.

Drawing from our simulation study’s insights, if 
the data is premised on a sole latent target trait—be it 
through a dominant or ideal point response process— 
the ORDUTree.2 model suffers from serious estima
tion difficulties, often resulting in terminating compu
tation. However, we were able to retrieve estimation 
results from this model. This indirectly reaffirms that, 
in this dataset, respondents do not hinge their 
responses on a singular target trait; instead, they base 
their answers on two distinct latent traits.

Item parameters and latent traits. With the 
ORDUTree.2 model proving the best fit, we delve into 
its estimated item parameters and student latent traits, 
as presented in Table 6. Most items display strong dis
crimination across all three nodes. In Node 1, the trait 
representing students’ agreement with reading interest 
is moderate (h1 ¼ −0.004). This alignment between the 
student trait and the item and threshold parameters 
suggests a relatively high level of interest in reading. In 
Node 2, the degree of students’ agreement (h2¼ 0.559) 

closely matched item and threshold parameters, indi
cating a preference for “disagree” over “strongly dis
agree” and signaling heightened reading interest. In 
contrast, Node 3 showcases a greater disparity between 
students’ agreement intensity and the item and thresh
old parameters, leaning toward “agree” over “strongly 
agree”. This indicates a relatively elevated—rather than 
the highest—level of reading interest. Overall, the mod
el’s outcomes highlight strong discrimination within 
the questionnaire, and students exhibited moderate to 
moderately high reading interest.

Correlations among latent traits from different 
models. To explore the relationships and differences 
between latent traits estimated by various models, we 
examined correlations among latent traits under differ
ent models in empirical data. Figure 9 presents these 
correlations as estimated by the six different models. 
For the scatter plot of the IRTree and UTree models, 
the distributions of latent traits appear widely dispersed, 
lacking a clear unified correlation direction. This sug
gests that the dominance and ideal point processes rep
resent distinct cognitive decision-making mechanisms.

Notably, the agreement of reading interest (h1) in 
the ERSUTree and ORDUTree.2 models exhibit a 
high correlation (r¼ 0.982, p< 0.001), signifying con
sistent outcomes when employing the same unfolding 
model estimation for Node 1. However, in Nodes 2 
and 3, when the ERSUTree model using extreme 
response style (g) replaces the “degree of agreement” 
trait (h2) in ORDUTree.2, it may underestimate this 
latent trait’s actual value when h2 falls between −1 
and 0, and overestimate it when h2 falls between 0 
and 1, which result in biased estimations.

The relatively high correlation between ORDUTree.1 
and ORDUTree.2, while not identical, hints that the 
presumption of either one or two target traits can lead 
to disparate outcomes. This underscores the existence 
of two slightly divergent latent traits associated with 
reading interest. Importantly, when we rely solely on 

Table 6. Average estimated item parameters from 
ORDUTree.2 model for “reading interest” and “appeal to sex
ual practices” questionnaires.

a1 a2 d1 d2 s1 s2 h1 (SE) h2 (SE)

Reading interest
Node 1 4.07 −0.31 1.06 −0.004 

(−0.002)
Node 2 2.83 −1.36 1.71 0.559 

(0.482)Node 3 3.1 1.45 0.80

Appeal to sexual practices
Node 1 4.23 0.22 0.57 −0.00 

(−0.009)
Node 2 4.99 −0.17 0.38 0.515 

(0.509)Node 3 2.46 1.18 0.69

Note. This table presents the average item parameter values for each node, 
after converting each item into three pseudo-items for each questionnaire.
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one latent trait to represent participants’ reading inter
est, we may inadvertently neglect a second type of 
reading interest, consequently resulting in skewed esti
mations. The scatter plot contrasting ORDUTree.1 and 
ORDUTree.2 underscores that, at higher levels of the 
degree of agreement, outcomes derived from the 
ORDUTree.1 model are markedly unstable and dis
persed, leading to a considerable underestimation of 
this particular reading interest trait.

In the ORDUTree.2 model, the moderate correl
ation (r ¼ 0.791, p < 0.001) between the “agreement 

of reading interest” (h1) and the “degree of 
agreement” (h2) support the idea that these two dis
tinct latent traits are positively related. Through scat
ter plots, we observe that when individuals have a 
higher tendency to agree with the statement at Node 
1 (with h1 ranging between −1.5 and 0.5, thus closer 
to the item location parameter), the distribution of 
the degree of agreement (h2) among different individ
uals is quite dispersed. This dispersion indicates that 
individuals do not consistently show a strong ten
dency to particularly agree or disagree. Conversely, 

Figure 9. Scatter plots of estimated latent traits for “reading interest” questionnaires under different IRTree and UTree models. 
Note. “ERS_1” represents the latent trait from decision Stage 1 in the ERS model, which corresponds to the target trait h; while 
“ERS_2” signifies the latent trait from decision Stage 2, indicating the extreme response style g: Similarly, for other models, suffixes 
“_1” and “_2” denote latent traits from decision Stage 1 and 2, respectively.
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when individuals tend to disagree with the statement 
(h1 being further from the item location parameter), 
they exhibit a clear tendency at Nodes 2 and 3 to 
choose options indicative of lower agreement levels, 
such as “strongly disagree” and “agree”. Overall, these 
findings emphasize the unique nature of each latent 
trait and their relationship in different cognitive/deci
sion processes under reading interest assessment.

Example 2: appeal of sexual practices

Datasets and analytical procedure
Subsequently, we employ a subscale from the National 
Health and Social Life Survey to gauge male respond
ents’ attitudes toward sexual practices (Laumann 
et al., 1992). This scale consists of 15 items that assess 
the perceived attractiveness of various types of sexual 
practices. Participants were asked to select the most 
fitting option from four Likert items: 0¼ not at all 
appealing, 1¼not appealing, 2¼ somewhat appealing, 
and 3¼ very appealing. Given the neutral nature of 
the descriptions in these items, there is no need for 
reverse scoring. Moreover, this neutrality likely leads 
respondents with moderate sexual attitudes to agree 
with these items, suggesting that considering an ideal 
point response process might be appropriate for this 
data set (Jin et al., 2022). After data cleansing and 
addressing missing values, the dataset used for formal 
analysis encompassed 1,397 respondents’ data. The 
simulation study has confirmed that both IRTree and 
UTree models could effectively estimate item parame
ters and discern the decision processes with scales 
exceeding 10 items, even with small sample sizes. 
Thus, a 15-item scale with responses from 1397 par
ticipants is deemed suitable for analysis. The proce
dures and metrics employed are consistent with those 
used in Example 1.

Results
Fit indices. The findings mirror those from the read
ing interest analysis. As shown in Table 5 and Figure 
7, the UTree model has lower AIC and SABIC and 
higher h2 values than for the IRTree model. This reaf
firms that respondents, when answering this Likert 
questionnaire, adhere to the ideal point process rather 
than the dominance process, suggesting that the 
UTree model is more apt for analyzing Likert items. 
The ORDUTree.2 model, with the smallest AIC, 
SABIC and highest h2 values, again emerges as the 
superior model. This solidifies the idea that respond
ents’ answers to this Likert scale were driven by two 
distinct types of target traits—agreement tendency 

(Node 1) and degree of agreement (Node 2 and 3) 
toward sexual practices—rather than by a single target 
trait or a blend of target trait and extreme response 
style. This finding also indicates that when respond
ents answer Likert scales, they choose extreme state
ment options based on target traits rather than 
extreme response style. Moreover, these traits differ 
between the two decision stages.

Item parameters and latent traits. We conduct 
further analysis on the item parameters and latent 
trait estimations obtained from the best-fitting 
ORDUTree.2 model, as shown in Table 6. Most items 
exhibit high levels of discrimination across all three 
nodes. In Node 1, respondents’ agreement with the 
appeal of sexual practices trait landed at a moderate 
level (h1 ¼ −0.00). The proximity of this trait to the 
item and threshold parameters implies that respond
ents generally agree with the statements about the 
appeal of sexual practices, suggesting a higher degree 
of approval for such practices.

Within Node 2, the degree of respondents’ agree
ment (h2 ¼ 0.559) closely align with the item and 
threshold parameters. This alignment suggests that 
respondents were more inclined to opt for “not 
appealing” rather than “not at all appealing,” which 
points to a stronger agreement regarding sexual prac
tices. In contrast, Node 3 reveals a more pronounced 
difference between the respondents’ traits and the 
item and threshold parameters. This divergence sug
gests that participants were more likely to rate practi
ces as “somewhat appealing” than “very appealing”. 
This nuance points to a relatively strong, though not 
maximal, agreement strength. Overall, the items 
within the appeal of sexual practices scale demonstrate 
strong discrimination, and respondents’ inclination 
toward the appeal of sexual practices was moderately 
elevated.

Correlations among latent traits from different 
models. Figure 10 showcases the correlations of latent 
traits derived from the IRTree and UTree models. 
Mirroring the observations from the reading interest 
analysis, the scatter plots representing latent traits 
across both IRTree and UTree models do not display 
a distinct directional trend. More notably, a number 
of scatter plots that delineate latent traits as estimated 
by IRTree and UTree models display nonlinear associ
ations. This observation reinforces the idea that dom
inance and ideal point processes emerge from separate 
cognitive decision-making mechanisms.

Given the shared model type at Node 1 between 
the ERSUTree and ORDUTree.2 models, it is unsur
prising to observe a relatively higher correlation in 
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their h1 estimates. However, as respondents’ 
“agreement with the appeal of sexual practices” inten
sifies, the ERSUTree model’s estimated results become 
increasingly volatile. The bias becomes more pro
nounced, especially when h1 approaches 1.5. In Nodes 
2 and 3, there is a noticeable discrepancy between the 
ERSUTree’s estimates of ERS (g) and the actual 
“degree of agreement” (h2) of the respondents. This 
discrepancy is particularly salient when h2 reaches 
higher levels, leading to scattered estimation outcomes 
and pronounced bias. Incorrectly using this model 

significantly compromises both the accuracy and 
interpretability of the derived results.

In the ORDUTree.2 model, the “agreement of the 
appeal of sexual practices” (h1) and “degree of 
agreement” (h2) show a moderate correlation 
(r ¼ 0:684, p < 0:001p < 0:001), indicating a positive 
association and a moderate level of correlation 
between these two latent traits. Scatter plots reveal 
that regardless of whether individuals’ target trait lev
els at Node 1 are close to the item position parame
ters, the distribution of their target trait levels at 

Figure 10. Scatter plots of estimated latent traits for “appealing to sexual practices” questionnaires under different IRTree and 
UTree models.
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Nodes 2 and 3 is quite scattered. This indicates that 
regardless of whether individuals agree with the state
ment at Node 1, there is no consistency in their 
choices at specific options in subsequent nodes. The 
two different target traits across different decision- 
making stages exhibit significant variability, reflecting 
their distinctiveness in influencing decision outcomes.

Meanwhile, the low correlation between 
ORDUTree.1 and ORDUTree.2 suggests that using a 
single target trait for estimation could lead to signifi
cantly disparate results. In Node 1, when respondents’ 
“agreement of the appeal of sexual practices” trait is 
either low or high, the results estimated using 
ORDUTree.1 are highly dispersed and unstable, lead
ing to substantial estimation bias. In Nodes 2 and 3, 
when respondents’ “degree of agreement” is at higher 
levels, the ORDUTree.1 model estimates also suffer 
from extreme dispersion and instability, indicating 
that using only one latent target trait is not feasible 
and would result in significant estimation bias.

Conclusions and discussion

Conclusions

Building upon the existing IRTree models, in this 
study, we considered the ideal point process-based 
unfolding model to restructure three distinct types of 
Unfolding Tree models. This approach offers a novel 
perspective and a versatile modeling framework, offer
ing a new viewpoint on the relationship between 
latent traits and the distance to the ideal point to 
reflect respondents’ multi-stage ideal point responses. 
This enables a deeper exploration into Likert scale 
responses and the specific latent traits driving deci
sion-making.

Our simulation study validated that the fit indices 
can accurately discern the true model that aligns with 
the data’s decision-making process. Moreover, when 
the estimated model aligns correctly, both the IRTree 
and UTree models showcase satisfactory performance. 
However, errors arise when there is a mismatch. 
Whether it is mistakenly applying the IRTree model 
to UTree data, erroneously attributing target traits to 
ERS, or forcibly estimating multiple traits as a single 
trait, substantial biases are introduced to individual 
parameter estimates. These findings not only affirm 
the fit indices’ and models’ viability but also under
score the critical necessity of employing the correct 
model in data analysis.

Lastly, by examining two concrete instances, we 
contrasted all the IRTree and UTree models. Results 
revealed that respondents are more likely to undertake 

a two-stage, three-node decision based on the ideal 
point process. Crucially, distinct decision stages are 
underpinned by different target traits. This deepens 
our comprehension of the intricate decision-making 
mechanisms that respondents deploy when engaging 
with Likert scales. Consequently, it offers invaluable 
empirical evidence that enriches our grasp of the 
underlying cognitive processes and latent traits influ
encing their decisions.

Discussion

Here we discuss the specific results and findings from 
our research. In the simulation study, first and fore
most, we discovered that both AIC and SABIC effect
ively identify the true (correct) model underpinning 
response data across various conditions. This validates 
the applicability of these two fit indices when analyz
ing IRT and unfolding-related models, which is con
sistent with existing studies (De Boeck & Partchev, 
2012). Interestingly, when respondents answer based 
on a single latent trait, irrespective of whether it is 
rooted in the ideal point or dominance process, both 
ERSUTree and ORDUTree.2 exhibit high sensitivity. 
They can directly report that the sigma matrix con
tains negative eigenvalues during the estimation pro
cess. This immediate feedback eliminates the need for 
further inspection of fit indices and item parameters. 
Consequently, it offers a direct indication that 
respondents are not basing their answers on two dis
tinct latent traits. This greatly prevents the waste of 
resources in unnecessary comparisons and the biases 
that arise from using incorrect models.

We found that when the estimated model is cor
rectly identified, all IRTree and UTree models consist
ently return accurate item and individual parameters. 
Interestingly, as the number of items and sample size 
increase, the precision of these estimations also 
improves, a finding in line with earlier research 
(Roberts & Laughlin, 1996). The correlation between 
latent traits has minimal impact on model estimation 
performance, indicating that the model can aptly esti
mate the relationships between various latent traits.

However, when the estimated model is inaccurate, 
it can lead to significant biases in the estimation of 
respondents’ latent traits. For instance, when respond
ents select extreme response options based on target 
traits, mistakenly classifying these target traits as ERS 
can induce substantial estimation biases in person 
parameters. This bias becomes especially pronounced 
when respondents decide based on the ideal point 
process, and the ERSUTree model is incorrectly 
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employed. Empirical results echo this observation. 
When respondents might be operating on an ideal 
point process, and make decisions in different stages 
based on two distinct target traits, using the 
ERSUTree model produces unstable and dispersed 
biased estimates for those with either high or low true 
trait levels. This could fundamentally misconstrue the 
concept of the respondent’s true trait level.

Furthermore, when respondents decide based on 
different target traits in various stages, inaccurately 
assuming it is rooted in a singular target trait can also 
cause a systemic shift in person parameters, leading to 
significant biases across most parameters. Empirical 
studies also affirm this, when respondents possibly 
decide based on an ideal point process and two differ
ent types of target traits, using the ORDUTree.1 
model results in consistently biased estimates for tar
get traits, particularly when the second target trait h2 
is high.

Thus, effectively and judiciously employing fit indi
ces to discern the potential genuine decision-making 
process and latent traits behind response data can 
substantially mitigate the biases that arise from using 
inappropriate models. This approach fosters a more 
accurate derivation of item parameters and individual 
latent trait levels.

In the empirical study, we observed that all UTree 
models outperformed the IRTree models. This further 
substantiates the notion that when respondents 
answered Likert scales, they might not be adhering to 
the dominance response process but rather the 
unfolding response process (Thurstone, 1928). This 
observation aligns with numerous existing research 
findings (Chernyshenko et al., 2001; 2007). In essence, 
when respondents engage with Likert scales, they are 
most likely to respond affirmatively only when the 
item’s phrasing closely aligns with their latent trait 
level.

Next, among the UTree models, the ORDUTree.2 
model demonstrated the best fit, indicating that 
respondents were making decisions based on target 
traits rather than extreme response style when choos
ing whether to agree with the extreme expression 
option. While employing the ERSUTree model yielded 
a better fit than the traditional IRTree model at this 
juncture, it is perilous to simply attribute respondents’ 
specific option choices to extreme response style (Jin 
et al., 2022; Li et al., 2025). Respondents might be 
choosing specific options based on target traits rather 
than extreme response styles. The superior fit of the 
ERSUTree model might only result from the applica
tion of the unfolding model during Stage 1 decision- 

making. Hence, it is imperative for us to further com
pare the ERSUTree and ORDUTree models to identify 
a more accurate model that genuinely reflects the 
respondents’ latent traits. Upon further analysis, the 
superior performance of ORDUTree.2 signifies that 
respondents are not choosing extreme options based 
on extreme response style. Instead, such choices arise 
because the item phrasing significantly diverges from 
their inherent trait level. Using the ERSUTree model 
in such a scenario would mistakenly interpret target 
traits as extreme response styles, introducing a con
ceptual bias in our understanding of the respondents’ 
latent traits. This would gravely mislead our interpret
ation of the underlying latent traits driving the 
response process.

Finally, the superior performance of the 
ORDUTree.2 model over ORDUTree.1 underscores 
that respondents, during two distinct decision stages, 
base their choices on different target traits instead of 
a single one. Scatter plots from two real data applica
tions of the ORDUTree.2 model demonstrate that in 
many instances, regardless of whether individuals 
agree or disagree with the statement at Stage 1, there 
is no consistency in their choices at specific options 
during Stage 2. This indicates significant variability 
between the two different target traits across different 
decision-making stages, providing indirect evidence 
for the existence of distinct target traits for agreement 
and strength of agreement. This observation is con
sistent with prior research on IRTree models (Jeon 
et al., 2017). Moreover, in comparison to 
ORDUTree.1, ORDUTree.2 offers enhanced flexibility. 
By sidestepping potential estimation biases that arise 
from contradictory assumptions about target trait lev
els at nodes 1 and nodes 2,3, the ORDUTree.2 model 
can more precisely estimate target trait parameters in 
empirical data.

In summary, this research offers a flexible estima
tion framework based on the ideal point process for 
analyzing responses to Likert scales. Based on our 
findings, we recommend prioritizing the use of the 
ORDUTree.2 model when estimating on Likert scales. 
This approach allows for the free estimation of poten
tial distinct target traits during different decision 
stages, resulting in a more accurate retrieval of item 
parameters and respondents’ latent trait levels. 
Alternatively, as a comprehensive approach, one can 
employ both AIC and SABIC to evaluate each of the 
three UTree models, then proceed with the one that 
demonstrates the optimal fit. This rigorous approach 
to model selection ensures thoroughness, though 
researchers should anticipate the potential for 
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increased time and resource commitments, especially 
with large datasets.

Limitations and future directions

This study also has some limitations. Firstly, our 
research mainly employs a four-point scoring scale for 
demonstration. Future research should utilize Likert 
scales encompassing a wider range of scores, supple
mented with more empirical data, to validate the 
model’s efficacy further and to provide deeper insights 
into respondents’ underlying decision-making proc
esses. Secondly, the primary emphasis of this study is 
on the extreme response style. It would be advanta
geous for subsequent research to extend the applica
tion of UTree models to explore different response 
styles, such as the Midpoint Response Style and 
Acquiescence Response Style. Thirdly, this study aims 
to establish multi-process response models based on 
the ideal point process, using only unidimensional 
latent traits (ERS or target traits) at each node. 
However, recent studies in the IRTree field are 
increasingly developing multidimensional or mixture 
model hypotheses that simultaneously consider ERS 
and target traits (Alag€oz & Meiser, 2023; Kim & Bolt, 
2021; Merhof & Meiser, 2023). These models may bet
ter reflect respondents’ actual conditions and have 
shown good psychometric performance. Therefore, 
future UTree model development could further 
explore multidimensional traits or mixture models, 
which are necessary and meaningful. Finally, this 
study primarily uses Likert datasets to analyze the per
formance and implications of the UTree model, with
out incorporating other external criterion variables. 
Future research could further explore the latent traits 
derived from these UTree models, particularly the 
ORDUTree.2 model, in relation to external criterion 
variables. This would provide more evidence for fur
ther examining and validating the substantive values 
of these traits.
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Appendix B

Table B3. Average Bias and RMSE for data generated and estimated with ORD.2 model across different conditions.

N I

Cor = 0 Cor = 0.3 Cor = 0.6

Bias RMSE Bias RMSE Bias RMSE

500 5 0.00 0.18 −0.01 0.19 −0.02 0.19
500 10 −0.01 0.16 −0.01 0.17 −0.01 0.16
500 20 −0.01 0.15 −0.02 0.16 −0.02 0.16
1000 5 0.01 0.15 −0.01 0.14 −0.01 0.14
1000 10 0.00 0.12 −0.01 0.12 −0.01 0.13
1000 20 0.00 0.11 −0.01 0.11 −0.01 0.12
2000 5 0.00 0.10 0.00 0.10 0.00 0.11
2000 10 0.00 0.09 0.00 0.09 0.00 0.09
2000 20 0.00 0.08 0.00 0.08 −0.01 0.08

Table A1. Average BIC value and the percentage of times each model exhibits the lowest fit index values across all conditions 
for six models.

Fitted model Index

Data Generation Model

ERS ORD.1 ORD.2 ERS UTree ORD. UTree.1 ORD. UTree.2

ERS BIC 31045.59 
(100%)

20943.92 
(0%)

32066.78 
(0%)

31862.47 
(11%)

34668.53 
(1%)

34955.14 
(0%)

ORD.1 BIC 32547.35 
(0%)

20303.75 
(100%)

31979.25 
(0%)

33100.89 
(0%)

34454.03 
(5%)

35030.17 
(0%)

ORD.2 BIC 32092.17 
(0%)

20511.50 
(0%)

31023.68 
(100%)

32785.58 
(0%)

34444.91 
(1%)

34764.49 
(9%)

ERSUTree BIC 31147.44 
(0%)

– 32171.50 
(0%)

31397.45 
(89%)

– 34514.38 
(1%)

ORDUTree.1 BIC 31704.80 
(0%)

– 31516.78 
(0%)

32152.53 
(0%)

33203.96 
(93%)

34509.20 
(0%)

ORDUTree.2 BIC 31323.30 
(0%)

– 31334.43 
(0%)

31583.42 
(0%)

– 33896.44 
(89%)

Note. Each condition was replicated 100 times (consistent with the subsequent simulation analysis).

Table B1. Average Bias and RMSE for data generated and estimated with ERS model across different conditions.

N I

Cor = 0 Cor = 0.3 Cor = 0.6

Bias RMSE Bias RMSE Bias RMSE

500 5 0.00 0.19 −0.01 0.18 −0.01 0.19
500 10 0.00 0.16 −0.01 0.17 −0.01 0.16
500 20 −0.01 0.16 −0.02 0.16 −0.02 0.16
1000 5 0.00 0.14 0.00 0.14 −0.01 0.14
1000 10 0.00 0.12 −0.01 0.12 −0.01 0.13
1000 20 −0.01 0.11 −0.01 0.11 −0.01 0.11
2000 5 0.01 0.10 0.00 0.10 0.00 0.10
2000 10 0.00 0.09 0.00 0.09 0.00 0.09
2000 20 0.00 0.08 −0.01 0.08 −0.01 0.08

Table B2. Average Bias and RMSE for data generated and estimated with ORD.1 and ORDUTree.1 model across different 
conditions.

N I

ORD.1 ORDUTree.1

Bias RMSE Bias RMSE

500 5 −0.02 0.23 −0.05 0.34
500 10 −0.02 0.20 −0.01 0.22
500 20 −0.03 0.21 0.00 0.20
1000 5 −0.01 0.17 −0.01 0.24
1000 10 −0.01 0.16 0.00 0.18
1000 20 – – 0.00 0.16
2000 5 −0.01 0.12 0.00 0.18
2000 10 0.00 0.11 0.00 0.13
2000 20 – – 0.00 0.11
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Appendix C

Table B4. Average Bias and RMSE for data generated and estimated with ERSUTree model across different conditions.

N I

Cor = 0 Cor = 0.3 Cor = 0.6

Bias RMSE Bias RMSE Bias RMSE

500 5 0.02 0.26 0.00 0.26 −0.01 0.23
500 10 0.00 0.21 −0.01 0.20 −0.01 0.19
500 20 0.00 0.17 −0.01 0.17 −0.01 0.17
1000 5 0.01 0.21 0.00 0.20 0.00 0.18
1000 10 0.00 0.15 0.00 0.15 −0.01 0.14
1000 20 0.00 0.13 −0.01 0.13 0.00 0.13
2000 5 0.00 0.16 0.00 0.15 0.00 0.13
2000 10 0.00 0.11 0.00 0.11 0.00 0.10
2000 20 0.00 0.09 0.00 0.09 0.00 0.09

Table C1. Average Bias and RMSE of each item parameter for data generated from six models across all conditions.
ERS ORD.1 ORD.2 ERS UTree ORD.UTree.1 ORD.UTree.2

Bias
α1 −0.01 −0.02 −0.02 0.03 0.02 0.03
α2 −0.03 −0.04 −0.03 −0.03 0.03 0.05
δ1ðβ1Þ 0.00 0.00 0.00 0.00 0.00 0.00
δ2ðβ2Þ 0.00 0.00 0.00 0.00 0.00 0.00
τ1 – – – −0.03 −0.04 −0.03
τ2 – – – – −0.06 −0.05
Cor 0.01 – 0.01 0.02 – 0.03

RMSE
α1 0.14 0.14 0.14 0.20 0.17 0.20
α2 0.21 0.22 0.21 0.21 0.23 0.26
δ1ðβ1Þ 0.10 0.11 0.10 0.18 0.18 0.19
δ2ðβ2Þ 0.17 0.22 0.17 0.19 0.25 0.25
τ1 – – – 0.14 0.14 0.15
τ2 – – – – 0.20 0.19
Cor 0.03 – 0.03 0.04 – 0.05

Note. α1, δ1ðβ1Þ, τ1 represent the discrimination, item location (difficulty), and threshold parameters at the first decision stage, i.e., Node 1. α2, δ2ðβ2Þ, τ2 
represent the discrimination, item location (difficulty), and threshold parameters for the second decision stage, i.e., Nodes 2 and 3. Given that these 
two nodes belong to the same decision stage and utilize the same item location (difficulty) parameters, we have, for the sake of concise representation, 
combined the distinct parameters of Nodes 2 and 3 from the original text, forming an integrated item parameter representing the second decision 
stage.

Table B5. Average Bias and RMSE for data generated and estimated with ORDUTree.2 model across different conditions.

N I

Cor = 0 Cor = 0.3 Cor = 0.6

Bias RMSE Bias RMSE Bias RMSE

500 5 0.02 0.29 0.01 0.28 0.00 0.26
500 10 0.01 0.22 0.00 0.21 0.00 0.21
500 20 0.00 0.19 0.00 0.18 0.00 0.19
1000 5 0.01 0.25 0.01 0.23 0.00 0.21
1000 10 0.01 0.18 0.00 0.17 0.00 0.16
1000 20 0.00 0.15 0.00 0.14 0.00 0.15
2000 5 0.01 0.21 0.00 0.18 −0.01 0.17
2000 10 0.00 0.13 0.00 0.13 0.00 0.12
2000 20 0.00 0.11 0.00 0.11 0.00 0.10
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Table D1. Average Absolute Bias and RMSE of estimated θ and η in six models across all conditions and replications.

Fitted model

Data Generation Model

ERS ORD.1 ORD.2 ERS UTree ORD UTree.1 ORD UTree.2

θ η θ θ1 θ2 θ η θ θ1 θ2

Absolute bias
ERS 0.42 0.42 0.45 0.42 0.57 0.54 0.42 0.8 0.55 0.45
ORD.1 0.41 0.43 0.36 – – – – 0.53 – –
ORD.2 0.42 0.57 0.59 0.42 0.42 0.59 0.58 0.8 0.71 0.68
ERSUTree 0.69 0.44 0.75 0.7 0.58 0.46 0.44 0.72 0.46 0.45
ORDUTree.1 0.64 0.63 0.72 0.71 0.73 – – 0.37 – –
ORDUTree.2 0.70 0.68 0.79 0.71 0.75 0.47 0.66 0.65 0.46 0.47

RMSE
ERS 0.53 0.53 0.57 0.53 0.74 0.69 0.53 1.04 0.7 0.57
ORD.1 0.52 0.54 0.46 – – – – 0.7 – –
ORD.2 0.53 0.74 0.74 0.53 0.53 0.76 0.75 1.04 0.9 0.87
ERSUTree 0.92 0.56 0.98 0.94 0.74 0.62 0.55 0.96 0.62 0.57
ORDUTree.1 0.87 0.85 0.99 0.97 0.99 – – 0.5 – –
ORDUTree.2 0.94 0.89 1.03 0.95 1.01 0.64 0.87 0.86 0.63 0.63

Note. Since the Bias of the estimated θ and η from these models is less than 0.0001, reporting this result is not particularly meaningful. Therefore, we 
have opted to report the Absolute Bias in this section.
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