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ABSTRACT

The Ising model is a graphical model that has played an essential role in network psycho-
metrics. It has been used as a theoretical model to conceptualize psychological concepts
and as a statistical model to analyze psychological data. Using graphical models such as the
Ising model to analyze psychological data has been heavily critiqued since these data often
come from cross-sectional applications. An often voiced concern is the inability of the Ising
model to express heterogeneity in the population. The idiographic approach has been
posed as an alternative and aims to infer individual network structures. While idiographic
networks overcome population heterogeneity, it is unclear how they aggregate into estab-
lished cross-sectional phenomena. This paper establishes a formal bridge between idio-
graphic and cross-sectional network approaches of the Ising model. We ascertain unique
topological structures that characterize individuals and aggregate into an Ising model cross-
sectionally. This new formulation supports population heterogeneity while being consistent
with cross-sectional phenomena. The proposed theory also establishes a new statistical
framework for analyzing populations of idiographic networks for binary variables. The Ising
model and the divide and color model are special cases of this new framework. We intro-
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duce a Gibbs sampling algorithm to estimate models from this new framework.

Networks have become a popular alternative to the
classical latent variable approach of conceptualizing
psychological constructs." A prominent example is how
we came to think about psychological disorders such as
depression (Borsboom, 2008). In classical psychometric
theory, symptoms of depression such as weight prob-
lems, sleep problems, and a depressed mood, are
thought to be caused by an underlying latent variable,
depression (Caspi et al., 2014). In contrast, network
theory suggests that symptoms form networks of mutu-
ally reinforcing variables instead and that there exist
causal pathways in which a symptom such as sleep
problems can lead to a depressed mood, which in turn
then leads to weight problems (e.g., Cramer et al,
2016). This way of conceptualizing psychometric con-
structs not only had a significant impact on psycho-
pathology research (Borsboom & Cramer, 2013), but it

has also been influential in thinking about what consti-
tutes constructs such as intelligence (van der Maas
et al, 2006; van der Maas et al, 2017), personality
(Costantini et al., 2019; Cramer et al,, 2012), and atti-
tudes (Dalege et al., 2016; Dalege et al., 2019).

In the conceptualization of psychological constructs
as networks of mutually reinforcing variables, a graph-
ical model known as the Ising model (Ising, 1925; Lenz,
1920), or Quadratic Exponential model (Cox, 1972),
has played an important role. Formally, the Ising model
describes the joint distribution of a set of random varia-
bles that can be in either one of two states. In psych-
ology, these binary random variables could reflect the
presence or absence of a depression-related symptom
(Borsboom, 2008; Cramer et al., 2010), the positive or
negative evaluation of the trustworthiness of a political
candidate (Dalege et al., 2016, 2019), or the correct or
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incorrect response to an item in an educational test
(Marsman et al., 2015), for example. In the Ising model,
the binary variables embody the nodes of a network,
and the interactions or associations between nodes then
reflect the network structure.

The use of graphical models to conceptualize psy-
chological constructs has also inspired their use to
analyze psychological data (Costantini et al., 2015;
Dalege et al, 2017; Marsman et al., 2015; Marsman
et al., 2019; van Borkulo et al., 2014). But the data
that are analyzed often come from cross-sectional
applications, and the practice of using graphical mod-
els to analyze cross-sectional data has been heavily cri-
tiqued (e.g., Bringmann & Eronen, 2018; Forbes et al,,
2017, 2019, 2022; Fried & Cramer, 2017). In this
paper, we wish to address a prominent critique that
the analyzed population needs to be strictly homoge-
neous regarding the model’s characteristics (e.g., E.
Bos & Wanders, 2016; F. M. Bos et al., 2017; Brusco
et al., 2022). Homogeneity here implies that there can
be no individual differences in the associations
between the network’s variables. Thus the associations
at the individual level must mirror associations at the
group level. But associations at the group level may be
radically different from associations at the individual
level (Kievit et al., 2013), a phenomenon that is often
referred to as Simpson’s paradox (Simpson, 1951) or
the ecological fallacy (Robinson, 1950). This objection
is particularly problematic for proponents of the Ising
model, as the model does not have a natural way to
express individual variation.

Because existing graphical models, such as the Ising
model, do not naturally accommodate heterogeneity in
the population, some researchers have advocated the use
of person-centered network strategies instead (e.g., F. M.
Bos, et al., 2022; Fisher, 2015; Fisher et al., 2018). The idea
behind this idiographic approach is to use repeated meas-
ures of an individual’s symptoms, say, to infer a person’s
network structure (Bak et al., 2016; Fisher et al., 2017; de
Vos et al., 2017). In this way, unique networks are used to
characterize persons, and the idiographic approach can
circumvent population heterogeneity. However, whereas
cross-sectional applications of graphical models do not
accommodate population heterogeneity, the idiographic
approach does not generalize to established cross-sec-
tional phenomena. A case in point is the positive manifold
(Spearman, 1904), the consistent finding that scores on
cognitive tests positively correlate. Where cross-sectional
models in psychology are compatible with established
group-level phenomena such as the positive manifold (see
Savi et al. (2019), for a recent discussion), it is, in general,
unclear how models of the individual fit in.

To overcome heterogeneity using an idiographic
network approach, we need to find a bridge between
networks on the individual and the group levels. This
paper aims to introduce that bridge in the case of the
Ising model. We formulate an idiographic interpret-
ation of the Ising model that supports population het-
erogeneity and is consistent with cross-sectional
phenomena. We model the idiographic network struc-
tures with random graph models and draw a formal
connection between the links in these idiographic top-
ologies and cross-sectional correlations. A theoretical
framework of Fortuin and Kasteleyn (1972) is the
basis of this formulation. Fortuin and Kasteleyn used
their theory to unify disparate areas in statistical phys-
ics, and Savi et al. (2019) recently used it to formulate
an idiographic theory of intelligence that explains how
cross-sectional phenomena such as the positive mani-
fold can emerge from models of the individual. We
will first use the theory to show how network struc-
tures unique to the individual can generate an Ising
model in the population and how to traverse the two
levels of networks. We will then use Fortuin and
Kasteleyn’s theory to open up a new statistical frame-
work to analyze a population of idiographic networks.
We obtain the Ising model and the divide and color
model —a stochastic model for generating networks
with correlated variables— as special cases of this new
modeling approach. A Gibbs sampling approach
allows us to estimate the new models.

This article comprises four sections. In the first sec-
tion, we briefly review two distinct approaches in net-
work analysis: The graphical model and the random
graph model. The two approaches are fundamental to
the theory of Fortuin and Kasteleyn and our idiographic
formulation of the Ising model. The second section
establishes a new network theory that encompasses both
random graph models and graphical models. The
encompassing network theory builds on the work of
Fortuin and Kasteleyn. We use the theory to show how
we can obtain the Ising model in cases where the net-
work’s topology is a random effect that varies at the
individual level and clarify the connection between asso-
ciations at the individual- and group levels. In the third
section, we turn to the statistical analysis of encompass-
ing networks. Here, we will derive the posterior distri-
bution of the idiographic topologies and establish a
Gibbs sampling algorithm to estimate the new models.
Sample R-code for this can be found at https://osf.io/
beqgr/. We illustrate the developments using simulated
and real-data examples in the fourth section. The paper
ends with a discussion.
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Figure 1. Three distinct approaches to a three variable network. The left figure illustrates a random graph model in which random
variables are associated with the edges of the network. The middle figure illustrates a graphical model in which random variables
are associated with the nodes of the network. These two approaches combine into the third approach, which is illustrated in the
right panel where random variables are associated to both the nodes and the edges of the network.

The network models that underlie Fortuin and
Kasteleyn’s theory

It was almost fifty years ago that Fortuin and
Kasteleyn observed several unexplained relations
between the physical phenomena studied in two dis-
parate areas of research. On the one hand, percolation
research studies how particles trickle through a porous
object, such as how water drips through coffee
grounds. On the other hand, in research into magnet-
ism, one studies the way that elementary particles
such as electrons may interact to produce a magnet.
Fortuin and Kasteleyn set out to discover if the unex-
plained relations observed between these two research
fields were more than just coincidence (Grimmet,
2006) and worked out how the theories of magnetism
and percolation relate (Fortuin, 1972a, 1972b; Fortuin
& Kasteleyn, 1972). Fortuin and Kasteleyn’s approach
to consolidate the two scientific theories will be the
basis of our idiographic network characterizations.

The theories of percolation and magnetism are for-
malized using two distinct types of network models.
Blending the two scientific theories thus leads to a
blending of the two network approaches. Percolation,
for example, is conceptualized using a random graph
model, and magnetism using the Ising model —a graph-
ical model. Thus, Fortuin and Kasteleyn’s theory
informs us how the Ising model relates to random
graph models, which is key to our idiographic formula-
tion. This paper will use random graph models to char-
acterize the idiographic network structures and use
Fortuin and Kasteleyn’s theory to relate idiographic net-
works to the Ising model, cross-sectionally. In this sec-
tion, we will formally introduce the random graph
model and the Ising model.

A random graph model for percolation and
idiographic networks

Percolation has traditionally been analyzed using a
random-graph model that is now widely known as the

Erdos and Rényi (1960) model (Broadbent &
Hammersley, 1957). In general, the Erdds-Rényi
model can be used to model the distribution of edges
between pairs of nodes in a network. With W;; denot-
ing a binary random variable that, if it is equal to
one, indicates the presence of a link between nodes i
and j, and if it is equal to zero indicates the absence
of that link, the Erdos-Rényi model for an n-variable
network is characterized by the following probability
distribution

p(w = (W12> cen W(n—l)n)T>
n—1 n
=IT1I o a-op, M
i=1 j=it1

where 0;; denotes the probability that the random
variable Wj; is equal to one. Thus, the Erdds-Rényi
model comprises a set of independent Bernoulli varia-
bles, one for every pair of nodes in the network.
Where the original Erdds-Rényi model has a constant
edge inclusion probability 0, our formulation allows
for distinct edge inclusion probabilities 0;; for the sep-
arate edges wj;.

The left panel in Figure 1 illustrates the Erdés-
Rényi model for a network with three nodes. The net-
work nodes are fixed and labeled one to three, and
the edges between nodes constitute the random varia-
bles W;;. For example, there is an edge between nodes
one and two if the random variable Wi, is equal to
one, and there is no edge if Wy, is equal to zero. The
same holds for the other two edges and random varia-
bles, Wi3 and W,3. The Erdds-Rényi model is thus a
model for the topology of the network, as it describes
a probability distribution over different realizations of
the network’s structure. Figure 2 shows two possible
realizations from the Erdds-Rényi model for the
three-node network. Figure 2 also illustrates the influ-
ence of the three model parameters, 0,, 0,5 and 0,3:
An edge between nodes two and three, for example, is
present (W,; = 1) with probability 0,5. A solid black
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Figure 2. Two realizations of the ErdGs-Rényi model for the
three node network. Present edges are indicated with a black
solid line and absent edges with a gray dashed line.

line indicates this edge in the left panel. An edge
between nodes two and three is absent (W,; = 0)
with probability 1 — 0,3, which is indicated with a
dashed gray line in the right panel, for example.

A concept that will become important later on is
the clustering of nodes in the network. If nodes are
directly or indirectly related, they are said to be in the
same cluster or connected component (Fortuin &
Kasteleyn, 1972).> Thus, the network on the left of
Figure 2 consists of a single cluster since all three of
its nodes are either directly or indirectly connected.
The network on the right of Figure 2, on the other
hand, consists of two distinct clusters: Nodes one and
two form one cluster, and Node three forms another.

In percolation research, the presence of an edge
between two nodes of the network reflects an open con-
nection between two caveats in a porous object. The
absence of an edge then reflects a closed connection.
Thus, particles can move between nodes one and three
in the network on the left of Figure 2, but they cannot
in the network on the right since it has a closed connec-
tion between nodes two and three. That is, particles can-
not move between the network’s clusters. In this paper,
however, we use random-graph models to model the
distribution of relations between pairs of observables in
the idiographic networks. In this way, the presence of
an edge in an idiographic network implies a direct asso-
ciation between two symptoms, evaluations, or
responses. The absence of an edge then implies that the
two observables are not directly related for this person.
The left panel of Figure 2 thus corresponds to an idio-
graphic network in which all three variables are related
and form a single cluster. The right panel depicts an

?In this paper, we use the term “cluster” to refer to a set of nodes that
are directly or indirectly connected, i.e, a “connected component” or
“maximal clique”. This term stems from the percolation literature that
forms the basis of the theory in this paper and refers to having an open
path between nodes; one can reach all nodes in a cluster by traversing
the links between nodes in the cluster. In contemporary literature,
clustering is often used to define a group of nodes that are
densely connected.

idiographic network in which the first two variables are
related but are independent of the third. That is, they
form two distinct clusters.

A graphical model for magnetism and cross-
sectional networks

The Ising model was proposed by Lenz (1920) as a pos-
sible model for magnetism, after which his student Ising
(1925) wrote his doctoral dissertation about the model
(Brush, 1967; Niss, 2005). The Ising model is a graphical
model that can be used to model the states of the nodes
of the network as a function of the network’s structure.
Formally, the Ising model is specified by the following
probability distribution for n dichotomous random vari-
ables X; that each take valuesin {—1, 4+ 1},°

p(X= (1 e m)T) =

1 n n—1 n
7P| Dty > o). (@)
i=1

i=1 j=it+1

where Z; is the model’s normalizing constant. The Ising
model in Equation (2) consists of two sets of parame-
ters: The main effects or thresholds of the network’s var-
iables y; and their pairwise interactions ;. A variable in
the network tends to have a positive value (X; = +1)
when its main effect is positive (i; > 0), and tends to
have a negative value (X; = —1) when its main effect is
negative (; < 0). In addition, the dyad X; and X; tends
to align their values when their interaction effect is posi-
tive (g;; > 0), but tends to be in different states when
their interaction effect is negative (g;; < 0).

The middle panel of Figure 1 illustrates the graph-
ical model. As opposed to the random graph model
that is illustrated in the left panel of Figure 1, the
graphical model does not model the relations between
nodes but models the states of the nodes instead,
which here constitute the random variables X;. The
edges between nodes inform about which variables
influence each other. Solid black lines indicate present
edges, and dashed gray lines indicated absent edges.
Nodes one and two are directly related in the middle
panel network of Figure 1, whereas nodes one and
three are not. Two possible realizations from the Ising
model for the three-node network are shown in
Figure 3, together with the influence of the model’s
parameters. As can be gleaned from Equation (2), the

*In practical applications, we often code the dichotomous variables as
{0, 1} random variables. We use the {—1, + 1} coding here because it
makes the mathematics simpler and the models easier to interpret (see
Haslbeck et al., 2022).



Figure 3. Two realizations of the Ising model for the three
node network. Present relations are indicated with black solid
line and absent relations with a gray dashed line.

main effects y; only affect the individual nodes, while
the associations oij affect pairs of nodes, i.e., it enco-
des their relations. In particular, the absence of a rela-
tion between two variables, such as the relation
between variables X; and Xj, is encoded as an absent
association —a13 = 0— in the Ising model.

In the theory of magnetism, the Ising model is used
to model the spin magnetic moments of electrons,
which are restricted to either point up (X=1) or point
down (X = — 1). The network’s structure then encodes
the relations between electrons. If two electrons are close
to each other, the electrons are related, and their mag-
netic moments tend to align. In psychology, the Ising
model is used to model the presence or absence of psy-
chological symptoms, the positive or negative evaluation
of a political statement, or the correct or incorrect
responses to an intelligence test in the population. A
positive value (X; = +1) then indicates the presence of
a symptom, a positive evaluation of some statement, a
correct response to a test question, and a negative value
(X; = —1) then indicates the absence of that symptom,
the negative evaluation of that statement, or the incor-
rect response to that test question, respectively.

Observe that the Ising model formulated in Equation
(2) does not include a parameter that allows us to express
individual differences. Thus, in the Ising model, individ-
ual variation can only be summarized in terms of the vari-
ation in the configurations of symptoms, attitudes, or
responses of persons. Other than that, the model and the
structure it describes are invariant across individuals. A
natural way to express individual differences with the
Ising model will be the topic of the ensuing sections.

The idiographic Ising model: a framework for
encompassing networks

In a series of papers, Fortuin and Kasteleyn worked
out how the theories of percolation and magnetism
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relate (Fortuin, 1972a, 1972b; Fortuin & Kasteleyn,
1972). They linked the two theories by formulating an
encompassing network model that simultaneously
describes the states of the variables in the network
and the relations between them:

pX=x W=w) =pX=x|W=w) p(W=w)
=p(W=wX=x) p(X=x).

We refer to this model as the encompassing net-
work because it encompasses both types of network
models: A random graph model is used to model the
network’s topology and a graphical model is used to
model the network’s node states. The random graph
model is the edge-marginal of the encompassing net-
work model,

PW=w)=> pX=x, W=w),

and the graphical model is its node-marginal,

PX=x)=) pX=x W=w),

where the sums are with respect to all possible node
states and edge states, respectively. The idea of this
encompassing network model is thus that both nodes
and edges are random variables. The right panel of
Figure 1 illustrates this random-node, random-edge
model, which combines the ideas from the random-
edge model in the left panel and the random-node
model in the middle panel.

Fortuin and Kasteleyn used an encompassing net-
work approach to show that the probability of observ-
ing a pattern of node states x = (x;, ..., x,)" in the
Ising model can be characterized as follows (see
Appendix A for a proof),

Ising model graph coloring random-cluster model

pX=x)=> pX=xW=w) p(W=w),

3)

where a random graph model p(w) known as the ran-
dom-cluster model is used to express the probability
of observing a  topological  structure
(Wi, oo, wn<n_1))T, and the conditional distribution
p(x|w) expresses the probability of observing the pat-
tern of variable states x given the topology w. Since
the node states are arbitrarily labeled, the labels are
sometimes called colors, and the process of assigning
values to the nodes is then called coloring. Thus,
p(x|w) describes the process of coloring the nodes of
the graph that is induced by w.

What makes the encompassing network in
Equation (3) so special? And why should we care

W =
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about its random graph and graph coloring models?
Two aspects make Fortuin and Kasteleyn’s charac-
terization of the Ising model valuable for modeling
psychological phenomena. First, when we assume
that the network relations can differ between per-
sons, the persons are characterized by idiographic
topologies. Modeling a population of topologies
leads us to consider random graph models. Second,
we will discuss how the graph coloring model in
Equation (3) stipulates a direct connection between
the links in the idiographic networks and their cor-
relations in the cross-sectional model. We believe
that this connection is essential because it shows us
how established psychometric phenomena can
emerge from models of the individual. We lose this
connection if we abandon the graph coloring model
suggested by Fortuin and Kasteleyn in favor of other
models (e.g., the coloring process for the random-
triangle model that we describe below). Given this
graph coloring model, however, only the random-
cluster model can generate an Ising model. We will
also consider a variant of the encompassing network
model that includes a different random graph
model, the Erd6s-Rényi model. This variant retains
the essential connection between idiographic net-
work links and cross-sectional correlations, but no
longer reflects the Ising model. We will later see
that the encompassing network setup using the
Erdos-Rényi model can accommodate data coming
from encompassing networks using a random-clus-
ter model for the topologies. We will detail the
models and their implications next.

The graph coloring model

The following deterministic rule underlies the encom-
passing network approach: If two variables are con-
nected, then they must be in the same state:

(W =1) = (Xi = X)).

This rule states that an edge or link between variables
causes their values to align, and offers a simplified
contact process —a model for a disease spreading
about the graph’s nodes (Grimmett, 2018)— in which
two nodes infect each other, and align their values,
when they are in direct contact or connected. Van
Borkulo et al. (2017) used similar ideas to model the
symptom dynamics underlying depression. While the
rule does not imply that two aligned variables are
connected, we can use it to learn about the graph’s
topology based on node alignment (i.e., how the dis-
ease has spread). Since, by consequence of the above

rule, if two variables are in different states, then they
must be disconnected:

(Xi # Xj) = (W; =0).

We can thus establish that certain direct links are
impossible by tracing which nodes are affected and
which nodes are not.*

In the contact process, the graph’s topology is an essen-
tial aspect of a disease’s dynamics. In Fortuin and
Kasteleyn’s encompassing network, this is no different.
The deterministic rule underlying the encompassing net-
work identify open paths or clusters as a focal point in
modeling the latent topologies. Clusters are groups of dir-
ectly and indirectly related nodes that, by definition, align
their values. This could be a group of co-existing symp-
toms or attitudes or a set of co-related item responses.
The graph coloring model assumes that the network’s
clusters are independently colored, and is equal to

Xc+1

p(X =x|w) = [[P(Xc =1)° P(X.=-1)
1

- @

where X, denotes the observables in a cluster ¢ and x,
denotes their collective state. The sampling mechanism
inspired by this graph coloring model is relatively sim-
ple: If the nodes are in the same cluster, then each node
in that cluster is set equal to + 1 with probability 1/2 or
set equal to —1 with probability 1/2. Fortuin and
Kasteleyn showed that this graph coloring model corre-
sponds to an Ising model sans main effects.

Cioletti and Vila (2016) have recently shown how to
extend Fortuin and Kasteleyn’s formulation to Ising mod-
els that include main effects. Their generalization shows
that the Ising model’s main effects impact the weight
assigned to the cluster’s values. The coloring probabilities
in Cioletti and Vila’s generalization become,

€Xp (Zievc ,u,-)
exp (Diev, 1) + exp (= Piey, )

where V. denotes the set of indices of vertices in clus-
ter ¢. In this model, there is a greater probability of

PX,=1) =

“Estimating edges from variable alignment (e.g., symptom co-occurrence)
is closely related to a recently proposed method for inferring idiographic
networks of binary variables by Bodner et al. (2022). Bodner and
colleagues proposed to use the Jaccard index, pitting the number of
measurements that two variables were both active (i.e, X; = 1 and X; =
1) against the total number of measurements of the two variables
excluding the number of measurements in which the variables were both
inactive (i.e, X; = —1 and X; = —1). Whereas Bodner et al.'s approach
offers a non-parametric approach to estimate the marginal relations in
idiographic  topologies —considering edges in isolation— the
encompassing network model offers a model-based approach for their
conditional relations.



generating a positive than generating a negative value
for the cluster’s nodes if their main effects are posi-
tive. In contrast, there is a smaller probability of gen-
erating a positive than generating a negative value for
the cluster’s nodes if their main effects are negative.
In psychopathology, for example, the main effects are
typically negative to cover the overall absence of
symptoms in the population. In education, on the
other hand, the main effects are typically positive to
cover the overall ability to solve test items.

The graph coloring model introduced by Fortuin
and Kasteleyn and generalized by Cioletti and Vila
opens up a direct connection between the idiographic
topologies and cross-sectional correlations. We discuss
this relation below. The focus of this graph coloring
model is the network’s clusters or open paths. In
many applications of random graphs and particularly
social networks, the focus is on the network’s triangles
instead, which leads to the well-known catch-phrase a
friend of my friend is my friend in friendship net-
works. Jonasson (1999) proposed a graph coloring
model that focuses on triangles instead of clusters or
open paths. The random graph model stipulated on
the topologies in the triangle-inspired encompassing
network was aptly named the random-triangle model.
Interestingly, this encompassing network can also
have an Ising model as its edge-marginal (Haggstrom
& Jonasson, 1999), albeit constrained to a particular
honeycomb lattice topology.

The distribution of idiographic topologies

In their seminal work, Fortuin and Kasteleyn (1972)
showed that the edge-marginal in Equation (3) is an
Ising model if the topologies are samples from a ran-
dom-cluster model. The random-cluster model is
defined by the following probability distribution over
topological structures w:

Erdés—Rényi model

n—1 n
PW = w) :ZiR TTTI o (—op s 2o,
i=1 j=it1
(5)
where x(w) denotes the number of connected compo-
nents or clusters in the topological structure that is
implied by w, 4 is a positive clustering weight, and Zg
is the model’s normalizing constant. Observe that the
random-cluster model has the same kernel as the
Erdos-Rényi model in Equation (1), but differs from
the Erdds-Rényi model in terms of the weight it
assigns to the network’s clusters. The random-cluster
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model tends to favor networks with fewer clusters
when the weight is smaller than one (i.e., 4 < 1) and
tends to favor networks with more clusters when the
weight is larger than one (i.e., 4> 1). The random-
cluster model with a unit clustering weight coincides
with the Erdos-Rényi model in Equation (1). Fortuin
and Kasteleyn showed that the characterization in
Equation (3) coincides with an Ising model sans main
effects if the topologies are samples from a random-
cluster model with a clustering weight of 2.

We use a small simulation to illustrate the influ-
ence of the clustering weight on the distribution of
topological structures. We simulate topological struc-
tures using a clustering weight of 0.5, 1, and 2 and
plot the associated cluster distribution in Figure 4.
The distributions in Figure 4 confirm that the topo-
logical structures, on average, have more distinct clus-
ters with increasing values of the clustering weight.
For a clustering weight equal to 0.5, for example,
most of the generated networks have two to four
components. For a clustering weight of 2, on the other
hand, the number of clusters for most of the gener-
ated networks increased to seven or more. The cluster
distribution for the unit clustering weight resides in
between the two other cases, and here most of the
generated networks comprise four to seven clusters. In
this case, the random-cluster model coincides with the
Erdds-Rényi model.

The generalization of Cioletti and Vila (2016)
shows that the main effects impact the clustering
weights of the random-cluster model, which evolve to

Ac = 2cosh (Z ,ui>

i€Ve
= exp (Z u,) + exp <— Zu,) > 2. (6)
icV, iV,

Thus, by including main effects, the random-cluster
model assigns different weights to the different clus-
ters,

n—1 n K(w)
pP(W =w) :ZiR ITII o a—=0p= ] %
c=1

i=1 j=it1

Since the main effects in empirical applications typ-
ically do not sum to zero, their inclusion thus leads to
even more fragmentation in the idiographic networks.
In psychopathology, for example, the main effects are
typically negative to cover the overall absence of
symptoms in the population. In education, on the
other hand, the main effects are typically positive to
cover the overall ability to solve test items. In both



794 M. MARSMAN AND K. HUTH

applications, the clustering weights will then be strictly
larger than two.

As alluded to at the end of the opening section,
there might be reasons that persuade us to consider
other population models for the latent topologies. One
reason might be the random-cluster model’s analytic
intractability. The normalizing constant

n—-1 n K(W
ze=>_TI11II ¢ -0 ] %
w o i=1 j=i+l c=1

involves a sum over all 2:"("~1) possible topological
states w, and may be difficult to evaluate in practice.
Another reason might be the empirical fit of the ran-
dom-cluster model —and thus also the Ising model.
One solution is to use the Erdds-Rényi model rather
than the full random-cluster model for the distribu-
tion of the latent topologies. The Erdds-Rényi model
is analytically tractable and offers great modeling flexi-
bility (see the Encompassing network modeling
section in the discussion). The application of an
Erdos-Rényi model to describe the distribution of ran-
dom graphs in Equation (3) is known as the divide
and color model (Haggstrom, 2001).

graph coloring

=) pX=x[W=w) p(W=w).

@)

The divide and color model in Equation (7) makes
use of the same graph coloring mechanism as Fortuin
and Kasteleyn’s original encompassing network in
Equation (3), but stipulates a different model for the
topologies. We will investigate the statistical analysis
of the two encompassing network approaches after we
have evaluated the relation between idiographic net-
works and cross-sectional phenomena.

Divide and Color model Erdés—Rényi model

The relation between idiographic topologies and
cross-sectional phenomena

The divide and color model does not coincide with an
Ising model. However, Haggstrom (2001) showed that
the model does share several features with the particu-
lar Ising model in Fortuin and Kasteleyn’s formula-
tion. In particular, that the population correlation
between any two observables X; and X; in the network
is non-negative (Fortuin et al., 1971). This observation
reveals a significant restriction on both the divide and
color model and the particular Ising model that
emerges from Fortuin and Kasteleyn’s theory.
However, the finding that observables non-negatively
correlate in the population is consistent with other
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Figure 4. The (cumulative) distribution of clusters in ten-vari-
able networks that were generated from random cluster mod-
els with constant edge probabilities 0; = 0 = 0.1 but with
distinct values for the clustering weight.

latent variable approaches (Holland & Rosenbaum,
1986), and with the robust finding of a positive mani-
fold in psychometric research (e.g., Caspi et al., 2014;
van der Maas et al., 2006).

The result that observables non-negatively correl-
ate in the divide and color model in Equation (7)
and the Fortuin-Kasteleyn model in Equation (3)
reveals a deep connection between observables and
underlying topologies. This relationship between two
observables in the network and their connection in
the latent topologies can be made precise (c.f.
Grimmet, 2006, Theorem 1.16; Steif & Tykesson,
2017, Eq. 1.1)

1 1 1
P(X; = X;) :54'5 P(X; < X;) ZE’
where P(X; < X;) denotes the probability that the two
variables end up in the same cluster. The two-point
correlation 7(X;, X;) = P(X; =X;) —1 then equals
1P(X; < X;), which confirms the non-negative popula-
tion correlations. Since the states of observables align
when they are in the same cluster, their cross-sec-
tional correlation will be high if they end up in the
same cluster for many individuals. Thus, the way
that the latent topologies cluster has a tremendous
impact on observed correlations. The relation in
Equation (8) holds for every encompassing network
model that uses Fortuin and Kasteleyn’s graph color-
ing model, i.e., for every random graph model p(w)
stipulated on the latent topologies. However,

(8)
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Figure 5. Scatterplots of observed correlations between node states —Cor(X;, X;)— for the divide and color model and the
Fortuin and Kasteleyn model for a n =10 variable network in the left panel, and a n=20 variable network in the right panel. The
correlations were based on data from N=10, 000 cases. The edge probabilities 0; were sampled uniformly between 0 and 0.5
and the thresholds p; were simulated from a standard normal distribution.

Equation (8) only pertains to scenarios that involve
no main effects. Equation (1.1) in Steif and Tykesson
(2017) and Theorem 2 in Cioletti and Vila (2016)
offer the generalizations that are relevant for scen-
arios that involve main effects.

The topologies that are consistent with the Ising
model are heavier fragmented than the topologies that
underly the divide and color model. This difference in
fragmentation is the result of using a smaller cluster-
ing weight in the divide and color model, c.f. Figure
4. Since the edge inclusion probabilities are higher
when there is less fragmentation, the two-point popu-
lation correlations will be higher for the divide and
color model than for the Fortuin and Kasteleyn
model. In Figure 5 we show that, for models with the
same edge inclusion probabilities, the correlations are
higher for the divide-and-color than for Fortuin and
Kasteleyn’s idiographic Ising model. The graph gener-
ating mechanisms of the random-cluster model and
the Erdds-Rényi model are thus fundamentally differ-
ent and may lead to divergent predictions and inter-
ventions on underlying topologies.

That population correlations in Fortuin and
Kasteleyn’s theory are a function of the edge inclusion
probabilities of the variable pairs hints at a relation
between associations in the Ising model and edge
probabilities in the random-cluster model in Equation
(3). This relationship indeed exists for the Fortuin-
Kasteleyn model,

1
oij = —Elog(l — 0y). 9)

We illustrate the relation in Figure 6. Observe that
the relation is only valid for non-negative associations
and is consistent with the restriction to non-negative
population correlations. The generalization of the rela-
tion to negative associations has been the topic of sev-
eral investigations that we will not pursue further here
(e.g., C. Newman, 1991; Swendsen & Wang, 1987).

The relationship in Equation (9) yields the bridge
between group-level associations and links in idio-
graphic networks. On the one hand, it allows us to
interpret group-level associations in terms of the pro-
portion of observed edges between variables in the
idiographic networks. One substantial result, for
example, is that absent associations at the group-level
imply the absence of a link between two variables in
all idiographic networks. Thus, the idiographic net-
works mirror the conditional independence property
of the Ising model. On the other hand, the relation
in Equation (9)
between group-level associations and links at the
individual level. At the individual level, two variables
will be entirely dependent if they are in the same
cluster and independent otherwise. At the group-
level, however, this can still generate a wide variety
of associations. Moreover, the fact that patterns in
observed correlations are reflections of patterns in
the underlying edge inclusion probabilities provides
us with an alternative view on psychometric models.
Savi et al. (2019), for example, characterizes the bi-
factor structure, which is ubiquitous in psychomet-
rics, in terms of an underlying community or

also underscores the difference
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Figure 6. The formal relation between the association param-
eter g of the Ising model and the edge probability 0 in the
random-cluster model.

stochastic block structure. This connection between
psychometric models and models from network sci-
ence offers

another exciting avenue for future

research (Marsman et al., 2022).

The statistical analysis of
encompassing networks

Our theory uses random graphs to accommodate the
heterogeneity of associations in the population (ie.,
idiographic topologies). However, these random graphs
are not directly observed and need to be estimated
from the data. We propose to estimate these latent top-
ologies using their posterior distribution. If we assume
that k repeated observations xi, ..., X on the network’s
nodes for a person are independent given the topology
w —the topological equivalence of local independence—
the posterior distribution can consistently estimate the
clusters of the latent graph. We obtain the Ising model
and the divide and color models as special cases of this
model setup with k=1 measurements and using the
random-cluster and Erdés-Rényi priors, respectively.
We will establish two important statistical results for
this model setup. First, we will show that the random-
cluster model is conjugate to the graph coloring model,
which allows us to derive a closed-form expression for
the posterior distribution of the latent topology. This
result holds for scenarios that use a random-cluster
model or an Erdés-Rényi model as topological prior.
Unfortunately, the closed-form expression does not

make it easy to evaluate the posterior because random-
cluster models are intractable. We therefore introduce a
Gibbs sampling algorithm to sample from the intract-
able topological posterior, which allows us to evaluate
the posterior via simulations.

Second, the possibility to simulate from the topo-
logical posterior opens up the statistical analysis of
encompassing networks. Observe that the encompass-
ing network that is consistent with the Ising model
(i.e., k=1 and a random-cluster model as topological
prior) can be estimated using standard software:
Equation (9) shows how to translate the estimated
edge weights to edge inclusion probabilities, and the
proposed posterior simulation method can then be
used to estimate the idiographic topologies. The only
caveat is that the estimated associations need to be
positive. Below, we will use the proposed posterior
simulation method to develop a Gibbs sampling algo-
rithm for estimating encompassing networks for k > 1
using the Erdos-Rényi model as the topological prior.
Unfortunately, we could not extend this methodology
to encompassing networks that use a random-cluster
model as topological prior: The random-cluster mod-
el’s normalizing constant and its dependency on the
network’s main effects leads to significant computa-
tional challenges. We illustrate the developments using
simulated and empirical data in the next section.
There, we will also show that encompassing networks
using an Erdos-Rényi model as topological prior are
nigh indistinguishable from encompassing networks
using a random-cluster model.

The posterior distribution of idiographic networks

If we interpret the random-cluster model to be a prior
distribution for the underlying graphs, we can inte-
grate the information from this prior distribution with
the coloring process to form posterior distributions of
the underlying graphs. This posterior distribution is a
specific instance of the Erdds-Rényi model (see
Appendix A for a derivation),

x; and x; in the same state

n—1 n N

p(w|x) = H H {936 (1 - Hij)liwfj} s )

i=1 j=it1

x; and x; in different states

SR T O

where 0, ) is an indicator function that is equal to
one if x; = x; and is equal to zero otherwise. The
expression of the posterior distribution reveals two



things. First, the probabilities associated to edges
between variables that are in different states are zero
in the posterior distribution. The adjustment of these
edge probabilities follows from the way that graphs
are colored, which forces connected nodes to have the
same state. As a result, nodes that are in different
states could not have connected. Second, the posterior
distribution does not consider the network’s clusters.
In contrast, the prior distribution explicitly does. As a
result of these two properties, the edges of the graph
are independent Bernoulli variables in the posterior
distribution, and the distribution of the edges only
depends on its adjacent response variables:
p(W,] = W,']'|x,' = xj) = 63”(1 — Gij)l_wij
(Wi = wilxi # x;) = 0" 117,

where the latter expression implies that there can be no
edges between variables that are in different states.

Since the posterior distribution comprises inde-
pendent Bernoulli variables, it is easy to summarize
and provide a Bayesian estimate of the latent top-
ology. The posterior mean of a particular edge W;;,
for example, is equal to the edge probability 0; when-
ever the adjacent variables are aligned or is equal to
zero otherwise. Similarly, the posterior variance of this
edge is equal to
0;(1 — 0y)

if x;=x;
Var(Wij|xi, Xj) = {0 ! 1

if x; # xj,

which reveals perfect knowledge about edges that lie
between variables that are in different states, but there
is still much to learn about the remaining edges.
Another convenient Bayesian estimate of the idio-
graphic topologies are plausible values (Mislevy,
1991), which we will refer to as plausible networks. A
plausible network constitutes a sample from the pos-
terior distribution, and could, in principle, reflect the
true underlying network structure.

The posterior distribution that we have derived
above concerns a single observation of the idiographic
network. It turned out that the posterior distribution is
a particular instance of the Erdds-Rényi model, in this
case. The posterior distribution based on two or more
observations of the idiographic network, however, is a
random cluster model (see Appendix A). In particular,
suppose that we have k observations xi, X, ..., X on
the idiographic network of a person, then his or her
posterior distribution is equal to a random-cluster
model with edge probabilities 9;]. and clustering weights
/.. The posterior edge probabilities are specified as

P70 if §;=0
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where d;; is an indicator function that is equal to one
if variables x; and x; aligned on each of the k occa-
sions, and is equal to zero otherwise. Furthermore,
the posterior clustering weight is 1. = ii_k, and is
equal to one when k=1. This posterior distribution
reveals three essential properties. First, the random-
cluster model is the conjugate prior for the cluster-
based coloring process.” Observe that the posterior
distribution under the Erdds-Rényi prior —a special
case of the random-cluster prior— is also a random-
cluster distribution, but with clustering weights 1. =
i;k. Second, with more observations, it becomes more
likely that the posterior distribution excludes incon-
sistent edges. Third, the clustering weights of the pos-
terior distribution, i.e, A, = 2'*, are non-increasing
functions of k when /. > 1. This implies that, given
the same value for d, the posterior distribution tends
to favor less fragmented networks if the number of
observations k increase. Taken together, the last two
observations imply that we (i) accumulate evidence
about the clusters of the underlying network and (ii)
become more confident that the remaining edges
comprise a minimum number of clusters.

Even though conjugacy provides a simple way to
update the posterior distribution in light of new
observations, the posterior distribution is not easily
summarized. This complication is entirely due to the
random-cluster model, which does not have simple
analytic expressions for the mean and variance of
edges in its network, for example. The absent edges
—edges w;; for which 6;; = 0— are an obvious excep-
tion, of course, as their posterior expectation and pos-
terior variance are both equal to zero. One way to
summarize and analyze the posterior distribution is
through simulation. Several methods have been pro-
posed for simulating networks from the random-clus-
ter model, see, for example, Haggstrom (2002) and
Grimmet (2006) for some approaches. However, these
methods focus on specific instances of the random-
cluster model for which the clustering weights /' are
either integer and larger than one. The posterior clus-
tering weights /. are non-integer when the encom-
passing network includes main effects and are smaller
than or equal to one for k > 1. We thus need another
way to simulate from the random-cluster model. In
Appendix B, we derive a straightforward Gibbs sam-
pling approach that works for any non-negative value
for the clustering weights.

>Similarly, one finds that the random-triangle model is the conjugate
prior for the triangle-based coloring process that was analyzed by
Jonasson (1999) and Haggstrom and Jonasson (1999).
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Figure 7. An n=10 variable network was generated for a single person and 25 plausible values were generated based on r obser-
vations of the network. The left panel shows the proportion of correctly identified edges and the right panel the proportion of cor-

rectly identified clusters (averaged over plausible networks).

We illustrate the results above for estimating a single
idiographic network. We generate an idiographic top-
ology for n=10 nodes from a random-cluster model
with a constant clustering weight of 2 and constant
edge probability 0;; =0 =0.1, and generate k=10
observations on the idiographic network. Using the
Gibbs sampler from Appendix B, we generate 25 plaus-
ible networks from the posterior distribution after r =
1, 2, ..., k observations. Figure 7 shows the average
proportion of correctly identified edges and clusters in
the plausible networks after r observations. Here, all
clusters seem to be correctly identified after approxi-
mately six observations, whereas the proportion of cor-
rectly identified edges seems to hit an upper bound.

A Gibbs sampling algorithm to estimate the
encompassing network

We set up a Gibbs sampling approach to estimate the
encompassing network and use the new sampling pro-
cedure to impute the unobserved or missing topolo-
gies. We treat the graph coloring model as a
likelihood. Assuming that individuals are independent,
we have the following likelihood for a person p,
p=1 .., N,

k
L(w,, wlX;) = HP(Xpr|Wp’ n)
r=1
€xp (Zf:l Z?:lei/'ti)
= I(Xl,

k
K(Wp)
< I:[l ZCOSh(Zich ,ui)>

s Xk Wp)

where 1(x, w) is an indicator function for the set

{Xl,

=1,

o X Wi Wi =1 = x,;=x; forr
ek}

In the encompassing network, a random graph
model is used as a population model for the latent
topologies, which acts as a topological prior on the
idiographic networks. Here, we consider the Erdds-
Rényi model as a topological prior,

H H 05" (1—0;)' ™.

i=1 j=i+1

p(w,l0) =

This allows us to formulate a Gibbs sampler to esti-
mate the free parameters of the encompassing net-
work. The main effects u and the edge inclusion
probabilities 8. We will set up a Gibbs sampler to
produce random samples from the multivariate pos-
terior distribution,

p(wi, ..., wy, 0, u|X) x

Nk

[T TI PG, 1) p(10) plns 6),

p=1r=1
where p(p, 0) denotes a prior distribution for the
model parameters. We will assume independence
between main effects and edge inclusion probabilities
a priori, and discuss the individual prior components
below. The joint posterior has an intractable form and
will be difficult to simulate. We will therefore use a
Gibbs sampling algorithm to simulate from the multi-
variate posterior. Our proposed Gibbs sampler com-
prises three steps. Each step consists of sampling from
the posterior of one of the three parameters w, u, and



0 conditionally upon all other parameters. We
derive the desired full-conditional posterior distribu-
tions and discuss how to simulate from them in
Appendix C.

Simulated and real-data examples

In this section, we analyze several simulated data sets
and an empirical longitudinal data set of symptoms of
depression. The simulated data sets will be used to
illustrate the recovery of model parameters with the
Gibbs sampler, and the analysis of model misspecifica-
tion. The longitudinal data set will be used to
illustrate an encompassing network analysis of
panel data.

Numerical example I: parameter recovery in
two scenarios

To illustrate parameter recovery, we simulated data
for a n=10 node encompassing network. The
1n(n—1) =45 edge inclusion probabilities 6 of the
Erdés-Rényi model were simulated from a Beta (1, 10)
distribution, and the n=10 thresholds u were simu-
lated from a Normal (0,1) distribution. We simulated
data for two scenarios, with N X k = 5,000 observa-
tions each. In the first scenario, we sampled N =500
topologies from the simulated Erd6s-Rényi model and
k=10 colorings for each topology. In the second
scenario, we sampled N=50 topologies and k=100
colorings for each topology.

With random starting values for the model parame-
ters and topologies, we estimated the parameters for
the two scenarios using the Gibbs sampler described
in the previous section. We ran the Gibbs samplers
for 100,000 iterations each.® The proposed Metropolis
algorithm for the thresholds —an independence chain
Metropolis algorithm— performed well in this
example. Across all 100,000 iterations of the Gibbs
sampler, the two scenarios, and the p threshold
parameters, all but three proposed values were
accepted. The first 5,000 sampled states of y; and 0,
—the trace plots— for both scenarios are shown in
Figure S1 in the supplementary material. The Gibbs
sampler quickly converged for both scenarios.

SWe performed all analyses in R (R Core Team, 2019) on a Macbook Pro
with 6 Intel Core i9 2,9GHz processors. The Gibbs sampler’s 100,000
iterations took about 18hours for the N=500 topologies, k=10
colorings scenario, and about 4 hours for the N=50 topologies, k=100
colorings scenario. We updated the latent topologies and evaluate their
clustering in parallel (12 virtual cores on the Macbook). Topological
clustering was assessed using the igraph R-package (Csardi & Nepusz,
2019). The R-code that we used for parameter recovery is available at
https://osf.io/beqgr/.
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Figure 8 displays scatter plots of the posterior
mean estimates of the thresholds and edge inclusion
probabilities for the two scenarios against the data
generating parameter values. The horizontal bars rep-
resent the 95% highest posterior density intervals
—the shortest interval that covers 95% of the poster-
ior mass. All 100,000 iterations of the Gibbs sampling
algorithm were used to estimate the posterior means.
The scatter plots clearly show that the thresholds were
accurately estimated in both scenarios. The trace plots
of u; displayed in Figure Sl in the supplementary
material suggests that the posterior uncertainty for the
thresholds was fairly constant across the two scen-
arios, and Figure 8 confirms this. The edge inclusion
probabilities, however, showed a much lower uncer-
tainty for the N =500 topologies scenario than for the
N =150 topologies scenario, which was also clearly vis-
ible in the trace plots of 0, that were displayed in
Figure S1 in the supplementary material.

The proportion of correctly identified edges in the
latent topology’s final state in the Gibbs sampler aver-
aged to 93% for both scenarios. On the other hand,
the proportion of correctly identified clusters averaged
to approximately 93% in the k=10 colorings scenario,
and increased to 98% in the k=100 colorings scen-
ario. These results confirm our earlier suggestion that
there appears to be an upper bound for the propor-
tion of correctly identified edges, but not for the pro-
portion of correctly identified clusters (c.f., Figure 7).

Numerical example Il: random-cluster topologies

How does the encompassing network using an Erdds-
Rényi model for the latent topologies perform when
the topologies are, in fact, sampled from a random-
cluster model? We investigate this scenario by using
the model from the preceding sections to analyze data
generated from a random-cluster distribution for the
topologies. We first focus on Scenario 1 of the previ-
ous simulation: Data from N=500 persons on k=10
colorings or measurements were simulated for a
n =10 variable network. As before, we simulated the
1 n(n—1) =45 edge inclusion probabilities 8 from a
Beta (1,10) distribution, and the p=10 thresholds u
from a Normal (0,1) distribution. We generated the
N=500 topologies from a random-cluster model
using the simulated edge inclusion probabilities and
thresholds. For a single coloring, this set-up would
boil down to an idiographic Ising model.

With random starting values for the model parame-
ters and topologies, we ran the Gibbs sampler for
100,000 iterations. The proposed Metropolis algorithm
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Figure 8. Scatter plots of the posterior mean estimates against the data generating values for the thresholds u and @ in the two
synthetic scenarios. The horizontal gray lines reflect the 95% highest posterior density interval.

for the thresholds independence chain
Metropolis algorithm— again performed well in this
example. Across all 100,000 iterations of the Gibbs
sampler and the p threshold parameters, all but three
proposed values were accepted. The first 5,000
sampled states of y; and o, are shown in Figure S2
in the supplementary material. The Gibbs sampler
converged quickly.

Figure 9 displays scatter plots of the posterior
mean estimates of the thresholds and edge inclusion
probabilities against the data generating parameter
values. The horizontal bars represent the 95% highest
posterior density intervals. All 100,000 iterations of
the Gibbs sampling algorithm were used to estimate
the posterior means. The scatter plots clearly show

—an

that the thresholds were accurately estimated, and that
their estimation was unaffected by the misspecification
of the population model. The estimated edge inclusion
probabilities, however, clearly differed from their gen-
erating values. Given that the these parameters
belonged to different models, the difference is rather
unsurprising.

How does the misspecified population model affect
our estimates of the idiographic topologies? The pro-
portion of correctly identified edges in the latent top-
ology’s final state in the Gibbs sampler averaged to
96%. This is an even higher percentage than we
observed for the correct model set-up in the previous
section. The proportion of correctly identified clusters
averaged to approximately 94%, which is slightly
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Figure 9. Scatter plots of the posterior mean estimates against the data generating values for the thresholds u and 0. The hori-

zontal gray lines reflect the 95% highest posterior density interval.

better than in the previous analysis. Thus, our esti-
mates of the idiographic topologies are robust against
the misspecification in the scenario that we ana-
lyzed here.

Thus far, the misspecified population model only
affects estimation of the edge inclusion probabilities.
The estimated edge inclusion probabilities of the
Erd6s-Rényi model appear to be monotonically related
to, but systematically smaller than the generating edge
inclusion probabilities of the random-cluster model.
We expect that this allows the estimated Erdés-Rényi
model to accommodate the higher fragmentation in
the topologies coming from the random-cluster model
(c.f., Figure 5). We next turn to this model mimicry
—the ability of a model to accommodate data coming
from a competing model.

Assessing the relative fit of the Erdos-Rényi model
Marsman et al. (2016) have recently shown that if a
latent variable model is correctly specified, then draws
from the posterior distribution of the latent variables
can be used to learn about the correct underlying dis-
tribution of the latent variables. Thus, assuming that
the coloring process p(X|W) is correct, we can use
the distribution of plausible networks to infer if the
estimated Erdds-Rényi model fits the observed data.
Since the coloring process was correctly specified in
this scenario, and its parameter estimates were
unaffected by the misspecified population model, we
can use Marsman et al.’s theory to assess the fit of the
Erdds-Rényi model.

The work of Marsman et al. (2016) comprises two
parts. First, they showed that the distribution of plaus-
ible values or networks diverges from the postulated

population model —here the Erdds-Rényi model— if
it is misspecified. Second, they showed that the plaus-
ible network distribution converges toward the correct
population distribution of the latent variables. The
convergence crucially depends on the consistency of
the posterior distribution. Proof of the consistency of
the posterior distribution of the latent topologies goes
beyond the scope of this paper. However, the causal
rule that variables that wire together must be in the
same state will help us identify the relevant clusters of
the idiographic networks. The results in Figure 7 and
the capacity of the Erdds-Rényi model to correctly
identify edges and clusters in the latent topologies
underline this idea.

What sets the Erdés-Rényi model and the random-
cluster model apart is the fragmentation of the
topologies they generate. We assess here if we can dis-
tinguish the distribution of the number of clusters
—the isolated open paths— between a sample from
the Erdds-Rényi model and a sample from the ran-
dom-cluster model (i.e., the plausible networks). Since
we do not know the distribution of the number of
clusters for the two distributions, we assume here that
they are a categorical variable T, say, which ranges
between 1 and n. We estimate the parameters of this
categorical variable by computing sample averages
(i.e., the MLE). Let w; denote a sample from the pos-
terior distribution of person p (i.e., a plausible net-
work) and w;, denote a sample from the estimated
population model. If T, = T(w,) denotes the number
of clusters in a topology wp, then Ty is the p-th sam-
ple of the categorical variable according to the poster-
ior distribution and TI’, the sample from the estimated
population model. Under H,, the two samples come
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Table 1. Simulation results for the comparison of cluster dis-
tributions of the random-cluster and Erddés-Rényi models in
various scenarios. See text for details.

Ho : ErdGs-Rényi ‘H1 : Random-Cluster

N n k=1 k=5 k=10 Obs. k=1 k=5 k=10 Obs.

250 10 .06 .04 .06 .06 .05 .08 .08 .09
500 10 .05 .04 .06 .05 .06 .07 .08 .08

from a single underlying categorical distribution. That
is,

p(T", T'|Ho) = p(T", T'|7) = [T #{*,
t=1

where t* denotes the number of plausible networks
with ¢ clusters, ' the number of topologies sampled
from the population model that had t clusters, and
7, = (t*+¢)/(2N). Under H,;, the two samples
come from different underlying categorical distribu-
tion. That is,
n
* * |k AN a9 S ¢
p(T*, T'[Hy) = p(T*|w*)p(T'|n') = [ [ =, ),
=1
where *; = t*/N and T, = t'/N. We assess their dis-
tinction using a likelihood ratio statistic

A = —2log (p(T", T'[Ho)/p(T", T'|Hy)).

In our simulations below, we estimate the sampling
distribution of the test statistic by simulating both T*
and T  from the estimated population model and
compute the corresponding test statistic 250 times.

In Table 1 we show the results from a simulation
on a range of scenarios under both H, and H;. For
each scenario, we simulated 200 datasets, and ran a
Gibbs sampler for 550 iterations, including 50 burnin
iterations.” The proportion of p-values below 0.05 was
close to its nominal value under Hy. Under H; they
appear to be above this nominal value, but only
slightly. It thus appears that the estimated Erdos-
Rényi models can effectively mimic the random-clus-
ter models as they can, to a large extent, account for
the data that are generated from the competing ran-
dom-cluster model.

To further assess the capacity of the Erdds-Rényi
model to mimic the random-cluster model, we repeat
the simulations leading to Table 1, except now we use
the observed (i.e., simulated) topologies. With the topol-
ogies observed, the posterior mean of the edge inclusion
probabilities in the Erd6s-Rényi model can be directly
inferred from the corresponding Beta posteriors,

"The autocorrelations were higher for the k=1 scenarios. For these
scenarios, we therefore ran the Gibbs samplers for 1,250 iterations,
including 250 burnin iterations.

a—+ W+,']'

EOIW) = 5N

We then simulate N topologies from the estimated
Erdés-Rényi model to estimate its cluster distribution.
In the column “Obs.”, we show the results from these
analyses based on 1,000 simulations. Observe that
these results are very much in line with the encom-
passing network results.

Empirical example: longitudinal data
on depression

We next consider an encompassing network analysis
of longitudinal depression data from the Addiction
Health Evaluation and Disease (AHEAD) manage-
ment study (Saitz et al., 2013).® The AHEAD study
was a randomized controlled trial conducted in
Boston between 2006-2010 evaluating chronic dis-
ease management for substance dependence in pri-
mary care. Participants in the study were at least
18 years of age, diagnosed with alcohol and/or drug
dependence, and were currently seeking treatment.
Participants were assessed on various measures at
baseline and three, six, and twelve months after
enrollment in the program. Here, we focus on the
network analysis of the depression symptom indica-
tors assessed in the study. The AHEAD study used
the PHQ-9 questionnaire (Kroenke et al., 2001) to
assess the nine DSM-IV symptoms for Major
Depression
2000), which we scored as —1 (symptom not pre-
sent) and + 1 (symptom present several days to
nearly every day). The PHQ-9 questionnaire assesses
the following nine depression symptoms: (1) Loss of

(American  Psychiatric  Association,

interest; (2) depressed mood; (3) trouble sleeping or
sleeping too much; (4) feeling tired; (5) poor appe-
tite or overeating; (6) low self-esteem; (7) trouble
concentrating; (8) more or less energy than usual;
(9) self-harm or suicidal thoughts. In the following,
we will use their numbers to refer to the symptoms
in the plots.

One of the research questions in our analysis is
which clusters of depression symptoms we can iden-
tify from the idiographic topologies and how these
clusters compare against the cross-sectional network
estimates. To investigate this research question, we
analyzed the symptom level data of all participants
that completed all four waves of assessments. In total,

8Data can be requested from https://www.icpsr.umich.edu/web/ICPSR/
studies/33581.



Figure 10. The estimated population network structure for the
nine symptoms of depression. Edges reflect the posterior
means of the Erdds-Rényi model’s edge inclusion probabilities.
Pie graphs around each node reflect the node’s activation
probability in the absence of network relations. The network
was visualized using the ggraph R-package (Epskamp
et al, 2012).

Table 2. Clustering of the idiographic networks of the encom-
passing network from all four waves split by cluster size. The
top row provides the number of possible distinct clusters of a

particular size, calculated as (7), where h is the cluster size.

The bottom three rows show the number of distinct clusters
of a particular size observed in the three samples of plaus-
ible networks.

Cluster Size 1 2 3 4 5 6 7 8 9 Total
Possible clusters 9 36 84 126 126 84 36 9 1 511
Sample 1: Observed clusters 9 35 60 52 40 29 12 6 1 244
Sample 2: Observed clusters 9 33 55 43 41 32 12 5 1 231
Sample 3: Observed clusters 9 34 55 49 46 30 11 6 1 241

there were 563 participants in the AHEAD study, of
which N =439 participants completed all four waves.

With random starting values for the model parame-
ters and topologies, we ran the Gibbs sampler for 100,
000 iterations. The proposed Metropolis algorithm for
the thresholds again performed well in these analyses,
with acceptance rates close to 100%. The first 5, 000
sampled states of a threshold parameter and edge
inclusion probability are shown in Figure S3 in the
supplementary material. The model appeared to con-
verge quickly. We have summarized the parameter
values and 95% highest posterior density intervals in
Table S1 in the supplementary material.

Figure 10 shows the estimated population network
structure. The edges in the network displayed in
Figure 10 reflect the posterior means of the Erdds-
Rényi model’s edge inclusion probabilities. Since we
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have used no form of regularization, the network is
densely connected. Node two —depressed mood—
appears to be the most strongly connected symptom
in the network. This finding is in line with previous
results, in which depressed mood was found to be the
most central and most connected symptom in the net-
work (Langer et al., 2019; McElroy et al.,, 2018; Santos
et al., 2017). Pie graphs around each node reflect the
activation probability of that node in the absence of
other network relations, i.e.,

exp (1)
exp (1) + exp (—4;)

pXi=+1) =

Table S1 in the supplementary material shows that
most of the estimated thresholds were positive, which
reflects that most persons experienced these symp-
toms. For these symptoms, p(X; = +1) > .5 and the
pie graph was more than half filled. The thresholds
that corresponded to the symptoms trouble concen-
trating (node 7), more or less energy than usual (node
8), and self-harm or suicidal thoughts (node 9) were
estimated to be negative, which reflects that most per-
sons did not experience these symptoms. The corre-
sponding pie graphs were less than half filled.

We next analyze the clustering of the idiographic
networks that give rise to the cross-sectional networks
in Figure 10. Recall that a cluster is a set of nodes
that lie on an open path, and the number of nodes in
a cluster reflects its size. We observed three interesting
findings. First, most individuals showed highly frag-
mented topologies. On average, individual networks
comprised 4.69 clusters. Less than half (i.e., 46.47%)
of the participants had one large cluster of at least five
nodes in addition to several smaller clusters. Second,
in three samples of posterior networks, we found
between 231 and 244 distinct clusters. Table 2 shows
the number of observed clusters per cluster size for
the three samples, together with the number of pos-
sible clusters of that size. As can be gleaned from the
table, the plausible networks more often comprised
smaller (i.e., less than five nodes) than larger clusters
(i.e., more than five nodes). For example, for two-vari-
able clusters, we observed between 33 and 35 distinct

clusters out of the (3) = 36 possible ones. In contrast,
we only observed between 11 and 12 distinct seven-
variable clusters out of the same (9) = 36 possibilities.

Third, the most observed clusters consisted of a single
node. Here, self-harm and suicidal thoughts was most
often in an isolated cluster (i.e., in 72.21% of the
plausible networks) and depressed mood least often
(ie, in 17.08% of the plausible networks). These
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Figure 11. The idiographic networks of two participants across the four waves. Encompassing networks were estimated through
consecutively adding data from each wave. After each wave, we ran a Gibbs sampler for 100,000 iterations. The network links
depicted here reflect the proportion of links observed in the 100,000 iterations of the Gibbs for these individuals; the thicker the
edge, the more often a link was observed. Node coloring represent the symptom states at the particular wave; green indicates a

present symptom and red an absent symptom.

observations imply that depressed mood was connected
to other nodes in almost 83% of plausible networks,
while self-harm and suicidal thoughts in less than 18%.
To conclude, the dense cross-sectional encompassing
network is build up from highly fragmented idio-
graphic networks, i.e., networks consisting of many
small clusters.

Next, we zoom in on the idiographic networks of
two individuals. Figure 11 shows the idiographic net-
works obtained in consecutive waves. We added the
data from the waves consecutively to estimate the
encompassing network and idiographic topologies.
Nodes are colored according to the symptom activation
at that particular wave (i.e., green indicates an active
symptom, red an inactive symptom). We can identify
several interesting findings. First, both individuals
depict different trajectories despite similarly densely
connected idiographic networks at wave one. While the
idiographic topology of the first person quickly became
more fragmented, the topology of the second person
only showed a difference in the last wave. Second, as
we include the data from more waves (i.e., increase k),
we start to observe nodes with different values (i.e.,
Xi # Xj), and clusters separate. Third, the idiographic
network of the first person is more fragmented than
that of the second person. The first person’s network
consists of five clusters with a maximum size of three,
while the other person’s network consists of three clus-
ters with a maximum size of four. Fourth, we can trace
the configuration of the node activity states, as

indicated through the coloring of the nodes in all four
plots. States of nodes within one cluster fluctuate
jointly across all four measurement occasions. At the
first measurement wave, most symptoms are active,
while at the last state, inactive symptoms are predom-
inant. The number of active depression symptoms
decreased over time for both persons.

In 100,000 iterations of the Gibbs sampler, we
observed 32 distinct plausible networks for the first per-
son and 3,445 for the second. We are thus more confi-
dent about the first topology than about the second.
We show the three most plausible networks (i.e., the
most frequently observed ones) for each person in
Figure 12. Observe that the plausible networks are even
more sparse than the posterior averages in Figure 11.
With high probability, the topology of person one con-
tains six or more clusters. Observe that even though we
observed many distinct networks for person two, the
three most plausible ones had very similar characteris-
tics, comprising only three distinct clusters, with the
same three links in the one positive cluster. These top-
ologies need not reflect the correct topology of these
individuals, but since they are consistent with every-
thing we know about them, they could be.

Discussion

In this paper, we have introduced an idiographic for-
mulation of the Ising model based on the theory of
Fortuin and Kasteleyn. A fundamental aspect of this
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Figure 12. The three most plausible networks for the two persons. Numbers in brackets indicate the proportion of plausible net-

works with these topologies.

version of the Ising model is that it does not require a
homogeneous population for the model to apply. We
can thus obtain the Ising model cross-sectionally even
if topological structures vary on an individual basis.
That is, population homogeneity is a sufficient condi-
tion for the Ising model’s fit, but not a necessary one.
This result suggests a reconciliation of the idiographic
and nomothetic approaches in network psychometrics.

Equation (8) describes a formal connection between
the two approaches. It expresses observed correlations
in the population as a function of the probability that
variables link at an individual level. As far as we can
tell, such a formal link between correlations at the
individual and the group level has not been described
before in the psychometric literature. An essential fea-
ture of this relation is that it is also valid if the topo-
logical structures do not form a random-cluster
distribution. The results of Steif and Tykesson (2017),
for example, show that the relationship is also valid if
the topological structures follow an Erdds-Rényi dis-
tribution. The connection between observed correla-
tions and idiographic edge inclusion probabilities thus
forms an important bridge between the two levels. It
explains how individual networks can generalize to
established cross-sectional phenomena and how cross-
sectional phenomena can be used to constrain idio-
graphic topologies. In the particular case of the Ising
model, where the topological structures follow a ran-
dom-cluster distribution, Equation (9) provides a
parametric link between group-level associations o

and idiographic edge inclusion probabilities 0;. But,
given that the random-cluster model and Erdés-Rényi
model are so closely related, one may also expect that
the proportion of latent links w,;;/N are closely
related to o, defined as —log(1 — 0)/2. Figure 13,
which depicts these relations for both models, con-
firms our hunch.’

Formulating the Ising model in terms of individual
differences in network structure offers a fresh perspec-
tive on the conceptualization of psychological con-
structs and related group-level phenomena. To solidify
this approach, we have formulated a framework for
encompassing network models, and showed how to
estimate models from this new framework and
uncover the latent topologies that cause the new per-
spective. In sum, the results in this paper open up
many new lines of research in the field of network
psychometrics that we believe will resonate through-

out the psychological sciences.

An encompassing network theory

The focus of this article was the idiographic framing
of Ising models using the theory of Fortuin and
Kasteleyn. Their theory offers a novel network
approach that encompasses both graphical models and

°Interestingly, this relation appears to be much more stable across
conditions for the divide and color model than for Fortuin and
Kasteleyn’s idiographic Ising model.
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Figure 13. Scatterplots of the proportion of latent links w.;/N against g; for Fortuin and Kasteleyn’s idiographic Ising model in
the left panel, and the divide and color model in the right panel. The associations were defined as —log (1 — 0;)/2, where 0 is
the generating edge inclusion probability. Results were based on N=10,000 simulated topologies for a n =20 variable network.
The edge inclusion probabilities 0; were the same for both models and sampled uniformly between 0 and 0.5. The thresholds ;

were simulated from a standard normal distribution.

random graph models. These two modeling
approaches generate streams of literature that are, to a
large extent, independent. The fields of Bayesian net-
works, neural networks, and, more recently, network
psychometrics, for example, use graphical models to
unveil the relations between observables. On the other
hand, the fields of social networks, and, more recently,
network science mostly use random graph models to
unveil the characteristics of particular entities —nodes
in the network— from their relations. Here, the enti-
ties could be persons, rail stations, or airports, for
example, and their relations could be friendships, and
rail or flight connections, respectively.

Because their literature is so isolated from each
other, it is often unclear how the two modeling frame-
works relate. This obscurity inspired several critiques
on the assumptions and methods used in network
psychometrics (see, for instance, Brusco et al. 2022;
Epskamp et al., 2022; Marsman et al., 2022; Steinley
et al, 2017, for recent discussions). The centrality
measures used to analyze the relative importance of
nodes in the network provide a good example.
Initially proposed for (unweighted) random graph
models, their extension to weighted graphs offered an
opportunity to use them for graphical models such as
the Ising model. However, several publications now
criticize the application of centrality measures to
graphical models, since it is unclear how to interpret
them. The connection between random graph models
and graphical models examined in this paper offers a
way to analyze how centrality measures for

(unweighted) random graphs relate to centrality meas-
ures for (weighted) graphical models. And, related to
the topic of this paper, how centrality measures for
idiographic networks relate to the centrality measures
of cross-sectional networks. We believe that the unifi-
cation of the two modeling approaches will improve
our understanding of network models and their meth-
ods in psychometrics. Centrality measures are an
example of this.

We also think, however, that the relationship
between the two types of network models aids our
conceptual understanding of psychological constructs,
which, according to this paper, resides in the origin of
individual topologies. These topologies comprise the
unique makeup of psychological disorders, attitudes,
personality, or abilities of persons, and it is crucial to
establish any regularities in their structure. Recent
advances in network science suggest that several topo-
logical patterns are common to networks throughout
the statistical sciences, such as community structure
(Karrer & Newman, 2011; M. Newman, 2012), small
worlds (Watts & Strogatz, 1998), and scale-free net-
works (Barabdsi & Albert, 1999). It would be interest-
ing to see if these patterns also occur in psychometric
topologies, or that they are, in this respect, unique.
We have seen, for example, that different random
graph models lead to different levels of fragmentation
in the idiographic topologies. Furthermore, we also
know that the ubiquitous bi-factor structure in psy-
chological measurement can emerge from a commu-
nity structure in individual topologies (Savi et al,



2019). But what we do not know, however, is what
other topological patterns coincide with the patterns
gleaned from observed correlations. Do the same
topological patterns that are observed in other areas
of network science also occur in these psychometric
networks? Are there unique topological patterns that
occur in psychometric topologies? Are there plausible
psychological processes that generate observed topo-
logical patterns? In sum, the unified network theory
of Fortuin and Kasteleyn raises intriguing questions
about psychological constructs.

Encompassing network modeling

Fortuin and Kasteleyn’s theory also inspired us to for-
mulate a class of encompassing network models for
populations of idiographic networks. We introduced
statistical methods for their analysis, focusing on
encompassing networks using an Erdés-Rényi model
for the latent topologies. This model proved to be
much simpler to estimate than Fortuin and Kasteleyn’s
original approach using a random-cluster model, since
the Erdds-Rényi model does not have an intractable
normalizing constant. While being much easier to ana-
lyze, our simulations also revealed that an encompass-
ing network using an Erdds-Rényi model for the latent
topologies is nigh indistinguishable from Fortuin and
Kasteleyn’s original random-cluster formulation. Our
version of the encompassing network model thus
enjoys great theoretical and practical appeal.

Our formulation of the Erdés-Rényi model —a
product of independent Bernoulli distributions— cov-
ers the stochastic block model as a special case
(Holland et al., 1983). The stochastic block model is a
popular variant of the Erdés-Rényi model that groups
nodes into blocks or communities (i.e., it differentiates
the inclusion probabilities of links between nodes that
are part of the same community from the inclusion
probabilities of links between nodes from different
communities). Savi et al. (2019) revealed that there is
a close connection to the bi-factor structure, ubiqui-
tous in psychological data, which makes a stochastic
block variant of the encompassing network an inter-
esting topic for future research. It should be relatively
straightforward to combine existing Gibbs sampling
algorithms for the stochastic block model with the
proposed Gibbs sampling algorithm for the encom-
passing network. The same holds for the degree-cor-
rected stochastic block models proposed by Karrer
and Newman (2011).

Another advantage of the Erdds-Rényi model is
that it offers great modeling flexibility. Consider, for
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example, the following logistic model for the edge
inclusion probabilities between variables i and j in the
topology of a person p:

exp (oc + ﬁsz)
1+ exp (oc + ,Bsz)

>

P(Wy;; = 1|z) = 05 =

which extends the Erdds-Rényi model to include per-
son-specific covariates to predict the links in the idio-
graphic topologies. These could be
background characteristics, experimental factors, or
grouping variables (e.g., school indicators). Even
though we would lose conjugacy of the Beta prior on
the Bernoulli edge inclusion probabilities, the aug-
mentation scheme of Polson et al. (2013) offers a
practical solution in which the normal density is the
conjugate prior for the « and f parameters of the
logistic model. It is thus relatively straightforward to
update our Gibbs sampling algorithm for estimating
these regression structures.

The proposed regression set-up also points to an inter-
esting dynamic extension of the model, since z, could also
be the edge state at a previous time-point. Let WIS;) denote
the latent link between variables i and j for a person p at a
time ¢. Then, the following logistic model

exp (oc +p W‘Sfj_l))

1+ exp (oc +p WIS;_I))

covariates

-1
P(Wh! = 1IWi) = 0, =

which models the network’s dynamics through autore-
gression of the latent topologies. This points toward
hidden-Markov versions of the encompassing network
to relax the assumption that the idiographic topologies
are constant through time.

Generalizing theory and models beyond
binary variables

The Ising model is fundamental to network psycho-
metrics, since many psychological or psychometric
variables are binary, such as symptom presence, state-
ment endorsement, and item responses, for example.
For this model, we have now formulated a framework
that comprises both idiographic and nomothetic
approaches. However, the Ising model does not cover
all relevant variables in psychological measurement. A
comprehensive psychometric theory that connects
idiographic and nomothetic approaches would accom-
modate other variable types. Unfortunately, a broad
connection between graphical and random graph
models is unavailable, since Fortuin and Kasteleyn’s
theory only covers Ising and Potts models (Ashkin &



808 M. MARSMAN AND K. HUTH

Teller, 1943; Potts, 1952).'° Generalizing the encom-
passing network approach to other variable types is an
interesting challenge. Cai (2017) recently developed a
theory for Gaussian graphical models closely related
to the models analyzed in this paper. Spanning the
space between the encompassing network approaches
of Fortuin and Kasteleyn’s and that of Cai offers a
fruitful avenue for future research.
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Appendix A
The Fortuin-Kasteleyn model

The joint distribution of the edge and node variables in the
representation of Fortuin and Kasteleyn can be formulated
as follows''

p(w, x) = p(x|w) p(w)

K(w)

=11

c=1
= exp (Zu%)
i=1

where 1x(w, x) is an indicator function for the set (see, for
instance Grimmet, 2006)

K(w)

exXp (Zlgv :uzx! Wij 1-w;
iV T 00 (1—0,)"" TT 2
;”C ZR H ]) H ‘

c=1
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i, j

911) 1=w; lR (W, X),

{W, X Wi = 1= x; :x]‘}>

""We will use [T as shorthand for [T/ TT7,,, -
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which ignores realizations (w, x) with connections between
observables that are in different states. The restriction is the
result of the way that the coloring process operates. An other
way to formulate this restriction is as follows (Grimmet, 2006)

[10; (=05 1x(w, x)
i j

= [ {0500, v )+ (1= 05)0, o)}

=T[5 a

L]

O(xi, xj) ) 1-9(x;, x;)
05)" W”} j [OW”(I —Gq)lfwu} J

>

where J(, ;) denotes an indicator function that is equal to
one if a="b and equal to zero otherwise, and the zero term
in the last factor expresses the fact that w; cannot equal
one if 6(x;, x;) = 0.

The marginal distribution p(x)
The marginal distribution of the node states x can be
obtained from the joint distribution. To wit,

n
o (31 )

Wi —w, O(xis x5)
p = > = TT oy -]
W R i j
ot exp (D1 )
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:% T {0560 o +1— 63
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This is a reformulation of the Ising model, since if we
express 0;; as 1 — exp (—20j;), we obtain

M H{ 1 — exp (—263))0(x, x)

i j

exp <Z} M >

p(x) =

+exp (—204)}= Hexp (=201 = 0, x)))-

i j

The indicator function may alternatively be expressed as

O, x) =5+ 3%, such that
exp (Z:l:l,uix,»)
p(x) = — . H exp (—0j; + Gix;x;)

i)j

1 n
= {exp D i+ > opxix | b
exp (21 ]O',]>ZR i=1 i j

which gives the Ising model in Equation (2) upon realizing
that the normalizing constant of the Ising model, Z;, is
equal to Zp exp (3_; ;20y).

The idiographic posterior
Given the above formulation of the joint distribution of
edge and node variables in the Fortuin-Kasteleyn model, we
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may express the posterior distribution of the edge variables
given the states of the node variables as follows
exp :‘, HiXi Wy 100 %)
e o

o]

7, —PALiah) (Z‘:‘#’x‘)_ﬂ_[e‘”( — 0" ’“]
o]

g
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CSIL [
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Next, we characterize the sum in the denominator.

1-0(xi, xj)
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where ¢;; is an indicator function that is equal to one when-
ever the states of nodes i and j were the same for all k
observations, and is equal to zero otherwise. Thus, the pos-
terior distribution is equal to

p(wlxy, ..., x¢) =

I, [o -0 ]" [ — o] ™ 1 2

plwlx) =
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Observe that the factors in the denominator are consist-
ent with

0 5 (i x} (1 — 611) = [1 — 91]] 176(7{,-, xj)’

such that the posterior can ultimately be expressed as
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That is, given the response vector x the edges in the
idiographic networks are independent Bernoulli variables

that only depend on the adjacent response variables and the
population structure.

Updating the posterior distribution

The posterior distribution after having observed k observa-
tions is equal to

k
Uﬂmmmm

p(WIx1, ..., Xx) =

2w ]jp(erW) p(w)
ﬁ exp (;7 1x,,,u,)
11

p(w) 1r(w, x)

ﬂ
]
l:s
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k(W)

H)L ) 1r(w, x)
w Hﬂk

where the indicator function 1z now covers all k observa-
tions on the node states. Thus, the numerator of the poster-
ior distribution can be expressed as follows

) 1x(w, x)

S I [0 -0 )" o -]

which is the expression of a random-cluster model with
edge probabilities

0, = 05 x 0y,

and clustering weights

Appendix B

A Gibbs sampler for the random-cluster model

The Gibbs sampler (Geman & Geman, 1984) can be used to
simulate values from the random-cluster model. To use the
Gibbs sampler we set the network to some initial state w(®)
and then update each of the entries in w(® given the values
on the remamlng entries to obtain w(l). This procedure is
the repeated a “sufficient” number of times such that w*) at
iteration ¢ is a draw from the desired random-clus-
ter model.

We update an entry (a, b) of w”) at an iteration t by
simulating a value from a so-called full-conditional distribu-
tions, i.e., the distribution of W,, given the values of the
remaining variables at iteration t —denoted w(\<)a by- The
probability that W,, = 1 given the values W<(>a p On the
remaining variables is equal to

K(w(\‘()“, W 1)
Oup I A
c=1
K(w, (\t()a B> 1) lc(wit)a) W 0)
Hab H )”c + (1 - eub) H Ac
c=1 c=1

where x(w i(L p 1) denotes the number of clusters of wlt)

when W,, = 1 and K(W(\()a’ by 0) denotes the number of
clusters of w() when W,, = 0. Thus the full-conditional
probabilities depend on whether or not a and b are indir-
ectly connected or not. If a and b are indirectly connected
the number of clusters of w() p» would be the same as the
number of clusters of w) and then the probability that W,
= 1 is simply 0,. Let V. denote the cluster to which both a
and b belong, and let V,; and V, denote the clusters that
form when a and b are not directly connected, such that
a€ Vyand b € V,. Then, in the case that W,, = 0 would
split cluster ¢ into two distinct clusters, d and e, the



probability that W, = 1 is equal to
1

(1—0,) 2cosh (ZEW ;t,») cosh(erve l‘i) :
Oup COSh(Etch ,u,-)

The above formulation makes use of the clustering
weights as in Equation (6). Observe that the full-conditional
in Equation (B1) simplifies to zfﬂgah for the standard ran-
dom-cluster model where the external fields are all equal to
zero. In the case that the target random-cluster model uses
clustering weights that are equal to ii_k —i.e., after having
updated the posterior distribution k times— the full-condi-
tional in Equation (B1) becomes

1

2cosh (Zievd ul) COSh(ZiEVB M)
(S )

(B1)

1+

1-k*

10
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Appendix C

A Gibbs sampling algorithm to estimate the
encompassing network model

The Gibbs sampling algorithm comprises three steps. Each
step consists of sampling from the posterior of one of the
three parameters w, g, and 6 conditionally upon all other
parameters. Next, we derive the three desired full-condi-
tional posterior distributions and discuss how to simulate
from them.

Step 1: Simulating W

The individual topologies are independent given the
observed data and the model parameters. The posterior dis-
tribution of the topology of a person p is proportional to

k
p(Wylp, 0, X,) o HP(Xpr|Wp’ 1) p(Wpl0).

r=1

Appendix A shows that this characterizes a random-clus-
ter distribution. Let /. denote the clustering coefficient for

cluster ¢, and let /! and /. denote the clustering coefficients
for the clusters that result when w;; = 0 splits cluster ¢ into

That is, Ae =

ki . :
[2cosh(}cy. )] b= [ZCOSh(Zhevi ,uh)} , and A =

-k :
{2cosh(zh oV uh)} , where V. denotes the set of nodes in

two distinct clusters.

the splitted cluster to which node i belongs, and Vi the
cluster of nodes to which node j belongs. Then, if d,; = 1,
Appendix B shows that we can sample the links in the idio-
graphic networks using,

p(Wy = 1w, o, X,) =

Ae 0;
- if wp; = 0 split clusters c.
Ae O+ 2.2 (1 = 0y)
0,7 if Wi = 0 does not split cluster c,
and we set W,; = 0 if 6,; = 0.
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Step 2: Simulating u
The likelihood for the threshold of node i, based on the
configuration of one person p, can be formulated as

k k
exp (23 Xpritti) exp (2D, Zjevg,j#i xprjﬂj)
k
(1 + exp (2p;) exp(2) ey, i Hj))

(p; @ ,
(1+8 q)k

L(p[xp, wy) =

where f; = exp (2u;), ¢ = exp (2 Zjevc,ﬁéi 1), and yp; =
1+ 21x,:. If we would only consider the data from a single
person, we find that a beta-prime distribution is conjugate
to f;, and we would obtain the full-conditional posterior
distribution in closed form."? The beta-prime distribution is
no longer conjugate if more than one topological structure
is considered, since then node i can belong to one cluster
for one topology and to another cluster for a different clus-
ter. That is, q = q, depends on the person, and the full like-
lihood becomes,

1 (ﬁz qp)yPH
L(]Y, W)= — 7
e W) IH (145 qp)

We stipulate a beta-prime prior distribution on f; so
that it’s posterior distribution is of the form

) no (B q,)" B!
Y. W, o ’ :
P, W, B )“H (148 )" (1+p)"°

This posterior distribution is intractable, but in
Appendix D we derive an efficient Metropolis algorithm to
produce samples from it. We have used a=b=1 in
our analyses.

Step 3: Simulating 6

The full-conditional distribution of (Jij is of the form
P(O5lw5) o< 0377 (1= 0,)™" p(0y),

where w,;; is the state of the edge between nodes i and j in
the topology of a person p. We stipulate a beta (a, b) prior
on 0, so that the posterior is the beta (a +w,4 b+ N —
w.;) distribution. We have used a = b = 1 in our analyses.

Appendix D

The metropolis algorithm to simulate
from p(B[Y, W, ")

We wish to sample from the posterior distribution,

N B g
iY’ W, (i) p i .
Pl 5 O(g (1+p; qp)k (1+p)*

We consider the Metropolis approach of Maris et al.
(2015) to sample from this posterior distribution. After a
change of variables y; = 1In (f3;), the posterior distribution
is proportional to

p(ulY, W, pl?) o

?However, we have to be careful here as thresholds are probably
identified at the cluster-level in this case.
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I-N[ (exp (1) q,)"" exp (2u)"
p=1 (1 + exp (21;) q )k (1+ exp (2Ni))a+b

The logarithm of this posterior is concave, has a single
mode, and has linear tails:

8% In (p(w|Y, W, p?)) —

{2(y++i+a)—2(N~k+a+b)
2(y4+i +2)

Maris et al. (2015) proposed to use these properties of

the focal posterior distribution to create a proposal distribu-
tion of the form

as [; — 00,
as [; — —00.

(D1)

(d e2)tel

f'ui O((1+d ezui)N~k+a+b'

The logarithm of this proposal distribution —a general-
ized Beta-Prime distribution— has the same linear tails as
the target distribution and has a similar slope. The constant
d is used to ensure that the proposal closely matches the
target distribution at the Markov chain’s current state. It is
specified such that the derivatives of the log of the proposal
and the log of the target distribution coincide.

If [t is the current state of y; in the Markov chain, then
it follows that

) Spk 4 @+ b)
N-k+a+b— zjjlklfﬂqfq —(a+b);

where = exp (2ft). The Metropolis algorithm then boils
down to the following four steps.

1. Compute d from the above expression.
Sample Z from a Beta (a, b)
Then, i = log (d ' %) /2.

3. Sample U from a Uniform (0, 1) distribution, and

distribution.

compute
) Tp+i na
(P () o) t =P (22“,) P (d_exp 2)p++"
— mind 1 =1 (1+exp(2}l) q,)" (Lexp( W) (1+d_exp (2i)) 7o
>N Ipti e (d_exp(2u))y++it®
(exp (21t) q,)? 2 _(d _exp @)y "
H lp exp (2j1) - (14 _exp (20)) 5+

p=1 (l+exp(2u) qp)" (1+exp (202))*

4. Set the new state of y; to w if U<o and to
it otherwise.
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