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ABSTRACT

Psychological science is divided into two distinct methodological traditions. One tradition
seeks to understand how people function at the individual level, while the other seeks to
understand how people differ from each other. Methodologies that have grown out of
these traditions typically rely on different sources of data. While both use statistical models
to understand the structure of the data, and these models are often similar, Molenaar
(2004) showed that results from one type of analysis rarely transfer to the other, unless
unrealistic assumptions hold. This raises the question how we may integrate these
approaches. In this paper, we argue that formalized theories can be used to connect intra-
and interindividual levels of analysis. This connection is indirect, in the sense that the rela-
tionship between theory and data is best understood through the intermediate level of phe-
nomena: robust statistical patterns in empirical data. To illustrate this, we introduce a
distinction between intra- and interindividual phenomena, and argue that many psycho-
logical theories will have implications for both types of phenomena. Formalization provides
us with a methodological tool for investigating what kinds of intra- and interindividual phe-
nomena we should expect to find if the theory under consideration were true.

Introduction the background. For example, a cognitive scientist inter-
ested in the mechanics of working memory may regard
individual differences a nuisance, while for a psychome-
trician interested in measuring working memory cap-
acity, only deviations from the average are of interest
(Borsboom et al., 2009).

The question of how to relate these different tradi-
tions has been subject to investigation since
Cronbach (1957) put the two disciplines of scientific
psychology on the map as comprising two distinct,
and often competing, methodological traditions. He
contrasted the traditions methodologically, by juxta-

The realm of psychology can be divided in two tradi-
tions (Cronbach, 1957). The first tradition originates
with the work of experimental and mathematical psy-
chologists such as Wundt, Helmholtz, and Fechner, and
is dedicated to understanding processes, structures, and
attributes that characterize the functioning of the indi-
vidual person (Murray, 2020). The second tradition
originates with the work of Francis Galton, James
McKeen Cattell, and Charles Spearman, and studies the
origin and structure of individual differences in psycho-

logical attributes (Galton, 1879; ] Cattell, 1890;
Spearman, 1904). These two streams of thought are also
visible in the major traditions in mathematical modeling
in psychology, where the Wundt line foreshadows
mathematical psychology and the Spearman line psy-
chometrics (Wijsen et al., 2019). In a nontrivial sense,
these approaches involve a figure-ground reversal: for a
scientist who targets universals, individual differences
constitute the background, whereas for the scientist
who targets individual differences, universals constitute

posing experimental approaches (with the stereotype
of a researcher who executes statistical tests on dif-
ferences in means, manipulated with experiments)
and correlational ones (with the stereotype of a
researcher computing correlations between sets of
individual differences). Many people intuitively
expect the qualitative results from such approaches
to converge. However, it turns out that this is not
necessarily the case, for instance because such pat-
terns can change, and even reverse, as a function of
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conditioning on a third variable (Kievit et al., 2013;
Wagner, 1982) or because sources of variance are
tangled up in ways that are not straightforwardly
separated (Hamaker, 2012). To wuse a standard
example, one could erroneously conclude that, if
forcing people to type faster leads to more errors
(experimental approach), then we should also expect
that people who type faster should make more errors
(correlational approach). But of course a correl-
ational research design will demonstrate that people
who type faster typically make less errors, and that is
the case because there is a third variable—typing
ability—that produces this correlation: better typists
are both faster and more accurate. The methodo-
logical understanding of this type of reversal, and of
relations between experimental manipulations and
correlation structures generally, has been greatly
advanced since the advent of modern theories of
causality (Holland, 1986; Pearl, 2009; Peters et al.,
2017; Rohrer & Murayama, 2023; Weinberger, 2015).

Next to the contrast between intraindividual experi-
mental approaches and interindividual correlational
traditions, a similar question comes up when contrast-
ing intraindividual correlations from a single individ-
ual to corresponding interindividual correlations.
Specifying under which conditions these two types of
evidence converge has become a central question since
intensive longitudinal (or time series) data have
become highly prevalent in psychological research
(Conner & Barrett, 2012; Hamaker et al., 2016;
Hamaker & Wichers, 2017; Kuppens et al., 2022;
Miller, 2012; Trull & Ebner-Priemer, 2014). In a sem-
inal manifesto, Molenaar (2004) argued that a neces-
sary condition for this convergence is ergodicity. This
condition implies that time series of different people
should both be stationary (implying, for example, that
there is no trend in the data) and homogeneous (the
behavior of all individuals is governed by the same
generating model). In this case, individuals are to a
considerable extent exchangeable, much like particles
in a gas are exchangeable save for position and
momentum. Molenaar’s paper raised the important
point that, for systems that are non-ergodic, we can-
not make a straightforward interindividual — intrain-
dividual inference (and vice versa). This is because,
unless the system under study satisfies ergodicity, stat-
istical patterns characterizing the individuals will not
be the same as the statistical patterns characterizing
interindividual differences. This generalizes to other
properties of the probability distributions in question,
such as the dimensionality and parameters of latent
variable models that describe these distributions
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(Hamaker, 2012; Hamaker et al., 2007; Molenaar
et al., 2003).

Since ergodicity is unlikely to hold in many of the
systems studied by psychological research, Molenaar’s
manifesto showed that characterizing statistical pat-
terns in individuals requires analyzing data of individ-
ual subjects. This in turn requires a reasonably large
number of observations of the individual at hand,
which led to a sharp increase of intensive longitudinal
(or time series) analysis in psychological research.
This methodological approach has flourished, and has
obtained an important place in the arsenal of psycho-
logical methods (Bringmann et al., 2017; Cabrieto
et al,, 2017; de Haan-Rietdijk et al., 2017; Fisher et al.,
2017; Gates & Molenaar, 2012; Hamaker, 2012;
Haslbeck et al., 2021; Haslbeck & Ryan, 2022; Wichers
et al,, 2016, 2020, 2015). A benefit of this fast develop-
ment of such methodologies has been a surge in the
development and application of intraindividual analy-
ses to empirical data (e.g., Contreras et al., 2019;
Fisher et al, 2018, 2017; Robinaugh et al., 2020;
Wichers et al., 2016), which allowed psychological sci-
entists to study the temporal evolution of psycho-
logical processes with a granularity that was before
typically unfeasible. Methodological understanding of
the issue has also increased. It is now well-known that
statistically separating individual differences from
intraindividual processes requires both multiple time
series and dedicated analyses on these time series
(Adolf et al., 2014; Hamaker, 2012; Hamaker et al,,
2016, 2015; Mulder & Hamaker, 2021). Thus, a direct
statistical inference from one level to the other is now
generally precluded.

However, the fact that direct statistical inference
from one level to the other is generally not possible
does not mean that statistical patterns from both lev-
els cannot be integrated. After all, we have learned
about many intraindividual causal processes from
interindividual statistical patterns; examples include
the discoveries that smoking causes cancer and that
childhood trauma contributes to adult psychopath-
ology. Evidence for such claims rests largely on the
systematic analysis of individual differences, rather
than on experimental manipulation and intraindivid-
ual time series data. Similarly, we have learned how
individual differences can arise from studying intrain-
dividual processes; for example, we now know that
large individual differences can be produced purely
through extensive practice; one way in which this has
been shown is through case studies in which individu-
als devoted thousands of hours of deliberate practice
into developing their skills (Ericsson, 2008). These
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examples show that, even in cases where ergodicity
may be violated, one can find ways of integrate evi-
dence drawn from the intra- and interindividual levels
when developing a theory. In this paper, we develop a
conceptual framework that systematizes how theories
relate to statistical patterns on the intra- and interin-
dividual levels and how theories can be developed
using both.

In a nutshell, we will argue that most psychological
theories make predictions about both statistical pat-
terns that one would expect to see in time series that
characterize the individual, and statistical patterns one
would expect to find in individual differences data.
Since theories imply statistical patterns at both the
intra- and interindividual levels, we can use these stat-
istical patterns to inform the theory. We will argue
that this type of inference back to the theory can take
the form of constraining the space of theories, which
is a weaker form of inference than the direct statistical
inference approach. We will also argue that deriving
the statistical patterns on different levels that are
implied by a theory is all but impossible with verbal
theorizing and making predictions using intuition.
Instead, we think that formalized psychological theo-
ries are needed, because such theories can be used to
deduce the precise implications of the theory at both
the intra- and interindividual levels through mathem-
atical analysis and simulation. As a result, formaliza-
tion can be a tool to deduce what one should expect
to see in intra- and interindividual comparisons, given
the theory. The fact that we can precisely deduce
which patterns on the intra- and interindividual level
are implied by our theory also means that we can test
and develop the theory based on all deduced patterns.

The organization of this paper is as follows. First,
we discuss how the traditional distinction between
time series and individual differences emanates from
two ways of contrasting the individual: with them-
selves at other time points, and with other people at
the same time point. We propose that such contrasts
lead to qualitatively different types of phenomena,
which we call intraindividual phenomena and interin-
dividual phenomena. We suggest that many psycho-
logical theories carry implications for both types of
phenomena, even in cases where statistical models
that are used to capture these phenomena in the data
are neither equivalent nor transparently related.
Subsequently, we discuss how to connect theories to
intra- and interindividual phenomena. Here, we focus
on an indirect form of inference in which phenomena
constrain the set of theories that are consistent with
them. Using examples from different psychological

disciplines, we show that this type of inference—albeit
weaker than direct statistical inference—can be used
to develop theories with all types of phenomena. We
then illustrate the fact that a theory can make predic-
tions about different types of phenomena and there-
fore can be developed based on these phenomena
using a recently proposed formal theory of panic dis-
order. We conclude by discussing how taking the per-
spective of theory, phenomena and data allows us to
integrate disparate empirical research and thereby
strengthen theory development in psychology.

The conceptual architecture of intra- and
interindividual phenomena

Many discussions about the relation between intrain-
dividual processes and interindividual differences start
with Cattell’s data box (R. B. Cattell, 1988). This box
crosses individuals, variables, and measurement occa-
sions. Intraindividual comparisons can be made using
a slice of the data box in which one individual is
studied over multiple occasions; interindividual com-
parisons can be made using a slice in which multiple
individuals are studied at a single occasion.
Paradigmatic intraindividual approaches arise from
case studies, for instance using a number of repeated
administrations of a task or intensive longitudinal (or
time series) data obtained through Experience
Sampling Methodology (ESM; Hektner et al,, 2007).
Paradigmatic interindividual approaches involve cross-
sectional designs, in which a large number of individ-
uals are assessed at a single time point. These designs
can be combined, for instance when a number of
individuals are measured at many occasions; a mul-
tiple time series design. It has been often shown in
the literature that statistical analysis of these different
slices can lead to different conclusions (Hamaker,
2012; Molenaar, 2004; Molenaar et al., 2003).

As such, the conceptual space in which the intrain-
dividual vs. interindividual issue is discussed is organ-
ized in terms of the relation between statistical models
(e.g., the factor model) and data (e.g., cross-sectional
data versus time series data). This line of analysis typ-
ically concerns models that are statistically identified
and estimable, which allows one to show that models
estimated on intra- versus interindividual data would
yield different results. In cases where models do not
align, a central objective of modeling is to separate
interindividual and intraindividual sources of variance
so as to arrive at parameter estimates that can be
clearly interpreted at either level (Hamaker, 2012;
Mulder & Hamaker, 2021).



Framing the intra-interindividual distinction in
terms of statistical inference is highly useful and helps
us avoid unwarranted inferences from one domain to
the other. However, applying the same reasoning to
other types of inference may hinder research. This
becomes clear when focusing on theory development
as a core activity of science and acknowledging that
many theories are not statistical models. Examples of
such theories could be verbal theories or formal theo-
ries that are not uniquely identified or estimable by a
single type of dataset. Here, work in philosophy of sci-
ence (Bogen & Woodward, 1988; Woodward, 2011)
suggests that theories do not explain a specific dataset,
but instead theory explains phenomena evidenced by
the data. For instance, Darwin’s theory of evolution
does not explain any particular observation of a
finch’s beak, but a robust correlation between beak
size and environment; Newton’s gravitation laws do
now explain the path of one individual apple falling,
but the general shape of the trajectories of falling
bodies; Spearman’s g-factor theory does not explain
why John answered an IQ-item correctly, but the gen-
eral feature that IQ-items tend to be positively corre-
lated. As these examples suggest, the phenomena that
serve as explanatory targets for scientific theories
often take the form of empirical generalizations (Haig,
2008). In statistics, such empirical generalizations are
typically considered in terms of statistical inferences
from a sample to a population. This construction will
serve us well in the current paper, too. In the remain-
der of this section, we will introduce the distinction
between data, phenomena and theory; define intra-
and interindividual phenomena, and relate them to
different psychological theories.

The theory-data-phenomena distinction

Data

In statistical modeling, the term data is commonly
used to indicate a dataset, as for instance stored in a
spreadsheet; Cattell’s data box is a good example of
such a setup. An entry in a dataset contains a repre-
sentation of an observation that was made. For
instance, if the data point corresponding to the i-th
row and the j-th column contains the symbol “17, that
symbol may represent the observation that person i
gave an answer to item j that we evaluated as
“correct”. Two features of data are important for our
current purposes. First, that data are particular (Haig,
2008). That is, any data point represents an observa-
tion that was made by some person at some place at
some time. Second, that an entry in a datafile has
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representational content. This means that it is not
itself an observation, but rather a symbolic representa-
tion of an observation. In the natural sciences, one
can often glance over this issue and treat the data as
if they were direct observations (a tradition also com-
mon in statistics). However, in psychology, this is not
a wise course of action, because responses often
depend on how research participants understand the
questions that are included in a questionnaire. This is
relevant in the present context, because questionnaire
items may themselves contain references to temporal
dynamics; for instance, when a symptom question-
naire item queries the presence of a symptom over
the past months (Ryan and Dablander, n.d.). This is
important for the relation between the data and the
processes we study, because explicit and implicit time
references in the items should be taken into account
when interpreting statistical relations in the data.

Phenomena

By structuring the representations of observations in
systematic ways, researchers create variables. The con-
struction of variables involves an additional step of
abstraction, in which relations between the symbolic
representations in the data are used to facilitate the
study of patterns in the data. The simplest of these
relations is equivalence. For instance, we would typic-
ally consider all entries of the symbol “1” in a column
of testing data to represent that the persons in ques-
tion answered the item correctly (even though their
actual responses may have been different, as in open
question formats). This results in equivalence classes
that make up the simplest type of variable (usually
called “nominal”). More complicated variables can be
constructed by using additional relations between
equivalence classes, as in the case of ordinal, interval,
or ratio scaled variables (Krantz et al., 1971). Statistics
is largely concerned with modeling the joint distribu-
tion of sets of variables that are constructed in this
manner.

In the current paper, we will take phenomena to be
robust patterns that characterize these distributions.
For instance, a univariate example would be the bimo-
dality in children’s responses to conservation tasks
(Van der Maas & Molenaar, 1992); a multivariate
example would be the pattern of positive correlations
between cognitive test scores that is known as the
positive manifold (Van der Maas et al, 2006). The
most important feature of phenomena, for our current
purposes, is that in contrast to data they are general
(Haig, 2008). For example, the bimodality in conser-
vation task responses is a general feature that is
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evidenced in data patterns obtained from different
populations in different locations at different time
points. Importantly, that phenomena invariably
involve generalization does not mean that statistical
patterns must be invariant over all conceivable
domains of generalization; in fact, a violation of
invariance can constitute an important phenomenon
in itself. For instance, robust differences between
cohorts, such as the secular gains in IQ known as the
Flynn effect (Trahan et al.,, 2014), constitute a robust
phenomenon in the study of intelligence, and cross-
cultural differences may similary consitute robust phe-
nomena in and of themselves (Henrich et al., 2010).

Because phenomena are generalizations, they typic-
ally cannot be established with certainty on the basis a
particular data set. As such, the relation between data
and phenomena should be construed as evidential: data
provide evidence for phenomena (Borsboom et al.,
2021; Haig, 2008). As a result, the tasks of detecting
phenomena and determining to what extent they gener-
alize across subpopulations, cultures, and time points is
an important part of the scientific enterprise.

Theory

Scientific theories can be understood in many different
ways. In the current paper, we work with a relatively
elementary understanding in which theories are inter-
preted more or less literally. This means we take scien-
tific theories as attempts to characterize the structure of
the world we study. Thus, when Spearman says that
individual differences in test scores arise from individ-
ual differences in mental energy, we take him to mean
that there is actually such a thing as mental energy, and
the amount of energy one has plays a decisive role in
causally generating the correct responses to items on an
intelligence test.

This literal understanding of theories is known as
scientific realism (Devitt, 2005), and it is typically
contrasted with alternative understandings in which
theories are variously interpreted as predictive instru-
ments or “inference tickets” (Ryle, 1949), devices that
allow us to navigate the world pragmatically (James,
1909), or highly efficient ways of representing data, as
in logical positivism (Suppe, 1977). The advantage of
a realist understanding of theories in the present con-
text is that it allows us to reason under the assump-
tion that the theory is true in a relatively
straightforward manner. Namely, we can build an arti-
ficial “world” in which the theory is true, and study
what phenomena we would expect in that scenario.
This aligns with the common use of simulation in
statistical modeling, where modelers investigate what

we should expect to see in the data if a given model
were true. We can use a very similar setup to investi-
gate what phenomena (patterns in the data) would
follow, if the theory were true, namely by simulating a
world in which that is the case. If that simulation
exhibits the empirical phenomena we want to explain,
then the theory putatively explains the phenomena
(van Dongen et al., 2022). The explanation is putative
because the premises (the theoretical model simulated
from) may be incorrect; moving from a putative to a
correct explanation involves additional research that
supports the premises of the argument.

Thus, while the relation between data and phenom-
ena is evidential (data provide evidence for phenom-
ena), the relation between theory and phenomena is
explanatory (theories explain phenomena). The rela-
tion between theory and data is thus mediated by
phenomena, in the sense that a theory draws support
from the data indirectly, namely by offering a good
explanation for the phenomena the data evidence
(Haig, 2008).

Intra- versus interindividual phenomena

The conceptual architecture provided by the theory-
phenomena-data distinction sheds a different light on
how to integrate data patterns from intra- and interin-
dividual contrasts. This is because of the intermediate
level of phenomena. If theories are conceptualized as
statistical models that directly provide a likelihood
associated with each data point, then the natural way
of relating theories and data is through statistical esti-
mation. From this perspective, the focus provided by
Molenaar (2004) is instructive, because it shows that if
theories are considered to be identifiable statistical
models, then the adequate estimation of intraindivid-
ual parameters from interindividual or combined data
either requires strong statistical conditions to hold
(Adolf et al., 2014; Molenaar, 2004), or specialized
applications of multilevel models to separate parame-
ters that characterize the individual’s time series from
parameters that characterize differences between indi-
viduals (Hamaker, 2012; Mulder & Hamaker, 2021).

Intra- and interindividual contrasts

However, if explanatory theories are understood as
targeting phenomena that are evidenced by the data,
the situation is different. From this point of view, the
way that an individual’s current responses are con-
trasted with other responses defines different varia-
bles. For example, the variable constructed by taking a
slice from Cattel’s data box in the time direction



contrasts the individual’s current responses with that
individual’s responses at different time points (e.g., as
in an ESM study). However, if we construct a variable
differently, by taking a slice in the individual differen-
ces direction, we contrast the individual’s responses
with other individuals’ responses (e.g., as in a stand-
ard T=1, N = large, psychometric study). These are
not the same variables, because the representational
content of the data being represented is not the same.
That is, the data in the different slices of the data box
have different meanings, and therefore the variables
constructed from them have different meanings too.
In this respect, it is actually confusing that often the
same term is used to indicate both, for instance when
a model for individual differences is compared to one
for intraindividual time series, and variables in both
models are indicated by the same word, e.g. ‘depressed
mood’ (Bos et al., 2017).

Now, because the variables defined in this way are
different, the statistical patterns that they form can be
different as well. That is, they provide evidence for
qualitatively different phenomena. Generally, we
would expect the statistical patterns of those phenom-
ena to be different. However, they might be the same
in very specific cases. One of those is the case in
which statistical patterns captured by a uniquely iden-
tified statistical model and in which ergodicity holds.
For this reason, we propose that it is useful to distin-
guish between intra- and interindividual phenomena,
where intraindividual phenomena are statistical pat-
terns that characterize an individual, and interindivid-
ual phenomena are patterns that characterize
individual differences (see Figure 1):

Importantly, in many cases, data-analytic proce-
dures followed to identify empirical phenomena will
involve both contrasts in some way. We denote such
empirical phenomena by the term combined phenom-
ena. Such phenomena include relations between indi-
vidual differences in person-specific means of time
series and other individual differences, as when per-
son-specific means in a time series of depression
symptoms are related to neuroticism or gender.

The distinction between the different types of phe-
nomena is best illustrated through examples. One para-
digmatic example of an intraindividual phenomenon is
the speed-accuracy tradeoff (Heitz, 2014). The speed
accuracy tradeoff refers to the phenomenon that, if tasks
are executed under increased time pressure, the prob-
ability of errors in the task increases. This is an intrain-
dividual phenomenon, because it denotes a statistical
pattern (a negative correlation between speed and
accuracy) that is formed by contrasting the individual’s
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responses to other responses by that same individual.
Thus, an intraindividual phenomenon can, in principle,
be demonstrated as a statistical pattern in data gathered
in a single person.

A paradigmatic example of an interindividual phe-
nomenon is the positive manifold of intelligence
(Jensen, 1999; Spearman, 1904; Van der Maas et al,,
2006). The positive manifold is a statistical pattern of
robust positive correlations between performance on
different cognitive tasks. These correlations are com-
puted over variables that represent responses of differ-
ent individuals; thus, this is a contrast between the
individual’s responses and other individuals’ responses.
Hence, this is an interindividual phenomenon. An
interindividual phenomenon cannot be demonstrated
in the data of a single individual, because it requires the
comparison of the individual with other individuals.

Combined phenomena, which involve both intrain-
divdiual and interindividual contrasts, commonly arise
from statistical approaches that simultaneously use both
intra- and interindividual contrasts; as a consequence,
many phenomena that are established through, say,
multilevel modeling of multiple time series may be
viewed as combined phenomena; this includes phenom-
ena that involve interindividual contrasts that are cor-
rected for intraindividual processes, as would for
instance arise from applications of the random intercept
cross-lagged panel model (Hamaker et al.,, 2015).

A paradigmatic example of a combined phenom-
enon is the predictive relation between autoregressive
coefficients for affect states in ESM time series and
depression diagnoses (Kuppens et al, 2010; van de
Leemput et al,, 2014). Here, an intraindividual phe-
nomenon is first identified in the form of the correl-
ation between affect states at subsequent time points,
where the individual’s current response is contrasted
with other responses by the same individual. Then, in
a second step, the differences between these autore-
gressive coefficients are conjoined with depression
diagnoses to form a higher order statistical pattern: a
positive correlation between the value of these coeffi-
cients and depression diagnoses.

In the following section we will use intra- and
interindividual phenomena and discuss how they can
be related to theories at the intra- and interindividual
levels.

Connecting theories to intra- and
interindividual phenomena

In order to connect to intra- and interindividual phe-
nomena, a theory needs to have implications for these
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Figure 1. Three kinds of phenomena in psychological research. Intraindividual phenomena are statistical patterns that result from
contrasting the individual’s current state with other time points. Interindividual phenomena result from contrasting the individual
with other individuals. Combined phenomena are statistical patterns that result from a combination of both contrasts. Prototypical

examples are listed in boxes.

phenomena. To achieve this, theories about how indi-
viduals function (henceforth: intraindividual theories)
have to specify a data generating mechanism for the
individual person. This specification is akin to the
intraindividual tradition of experimental psychology,
as described by Cronbach (1957), and to time-series
traditions in psychology. Theories about individual
differences (henceforth: interindividual theories) need
to specify how the data generating mechanism leads
to individual differences. This specification is akin to
the interindividual tradition of correlational psych-
ology and its psychometric arsenal of methods.

In the present context, a key question is how inter-
individual theories relate to intraindividual phenom-
ena, and how intraindividual theories relate to
interindividual phenomena. As shown by Molenaar
et al. (2003), this relation cannot be made through
direct statistical inference, since the level of the theory
is not aligned with the level of the phenomenon.
However, we argue that a relation can be established
through a weaker “indirect” form of inference, which
takes the form of constraints that phenomena on both
levels can put on a given theory. We first discuss this
type of indirect inference in more detail. We then
cross the intraindividual-interindividual distinction
with the theory-phenomena distinction, and evaluat-
ing how the relevant phenomena can be be related to
intra- and interindividual elements in psychological
theories using different types of inferences.

Direct statistical inference vs. indirect types of
inferences

In many popular methodological approaches in psych-
ology, such as Item Response Theory (IRT) and
Structural Equation Modeling (SEM), a preferred
strategy for connecting theories to data is to construct
a statistical model that is structurally similar to the
theory. For instance, in confirmatory SEM, models are
explicitly constructed in such a way that they resemble
one’s theory as much as possible. Ideally, such a
model is uniquely identified and testable against the
data using a goodness-of-fit test. This approach is
sometimes called one of direct inference, because the
model makes contact with the data directly, typically
using a likelihood function that assigns probabilities
to all possible data patterns.

Using direct statistical inference of this kind limits
the class of models that can be used to connect theo-
ries to data. This is particularly difficult if we aim to
test intraindividual theories using interindividual phe-
nomena, as the requisite statistical models require the
data to fulfill highly restrictive conditions (Adolf
et al., 2014; Hamaker et al., 2007; Molenaar, 2004). In
many cases, even though a theory can make predic-
tions about phenomena at different levels, we cannot
estimate or test the theory directly on the basis of a
single dataset. This may be the case because the the-
ory is unlikely to be isomorphic to any statistical



model that may be uniquely identified by the data; for
instance, because the theory is too complicated to be
translated into an identified model.

However, it is still possible to assess the plausibility
of a theory through its ability to explain empirical
phenomena. This strategy is one of indirect inference
(Haslbeck et al., 2022; Hosseinichimeh et al., 2016),
both because the inferential relation between data and
theory is mediated by statistical patterns (i.e., empir-
ical phenomena) and because it does not uniquely
identify the theory. The key concept to reason
through this setting is the one of constraints. If we
can imagine a set of theories S that predict, say, an
interindividual phenomenon that we do not observe
in the data at hand, then this finding constrains the
set of all theories such that we can exclude S. The
more informative the phenomena are with respect to
the theory at hand, the stronger this constraint will
be. For example, we would expect that, in general,
intraindividual time series data will provide phenom-
ena that result in stronger constraints for a system
evolving over time than interindividual data. The
complement of this set, which includes the theories
whose predictions are consistent with a given set of
phenomena, could be interpreted as an equivalence
class. This concept is well-known to researchers famil-
iar with causal inference, where the (conditional)
dependencies in multivariate data constrain the causal
graph only to an equivalence class containing all, for
example, Directed Acyclic Graphs (DAGs, e.g., Peters
et al,, 2017) that could have produced the observed
dependency structure.

In the remainder of this section, we investigate
whether connections between intra- and interindivid-
ual theories and intra- and interindividual phenomena
can be made using the strategy of indirect inference.

Intraindividual theories and intraindividual
phenomena

The relation between intraindividual theories and
intraindividual phenomena is the most straightforward
one from the perspective of psychology, which tends
to focus on processes that characterize the individual
human being. It epitomizes the earliest traditions of
psychology (Murray, 2020), in which case studies were
instrumental, for instance to test theories of functions
like perception, sensation, and memory.

If intraindividual phenomena are to be explained,
the system that the theory characterizes (e.g., mem-
ory) and the phenomena (e.g., forgetting curves) are
at the same level. This means that a theory of the
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target system can be relatively directly aligned with
phenomena evidenced by the data. In modern psych-
ology, this strategy is visible in the area of mathemat-
ical psychology. A good example concerns research
into the drift-diffusion model (Ratcliff & McKoon,
2008; Wagenmakers et al., 2007), which describes the
cognitive integration of evidence in two-choice
response tasks, such as the lexical decision task
(Ratcliff et al., 2004). The model is used to explain
intraindividual phenomena, such as the speed-accur-
acy tradeoff (van der Maas et al., 2011), which are
established by analyzing large numbers of repeated tri-
als that are gathered at the individual level.

In the case of the drift-diffusion model, the model
is sufficiently simple that its parameters can be esti-
mated directly from a single dataset (Wagenmakers
et al., 2007). In other cases, intraindividual theories
are too complicated to achieve this; examples of such
a theoretical systems are the ACT-R framework
(Anderson, 1996) and neuroscientific models like
Dynamic Field Theory (Bhat et al, 2022). In these
cases, model parameters are tuned by triangulating
findings from different research designs, data sets, and
other sources of information. Because the models are
not directly identifiable, they are typically tested indir-
ectly, via their capacity to describe and explain experi-
mentally established phenomena.

Intraindividual theories and interindividual
phenomena

In many situations, it is not possible to align intrain-
dividual theories and intraindividual phenomena
because the data needed to establish the intraindivid-
ual phenomena are unavailable. This may be the case
for various reasons; for instance, the intraindividual
theory may connect events at a time scale that extends
beyond the reach of empirical studies, the theory may
concern unique and singular events that only occur
once so that no variation should be expected at the
intraindividual level, or we may lack assessment tech-
niques that would be required to gather relevant data
at the level of the individual.

Still, in many cases where it is impossible to estab-
lish intraindividual phenomena, researchers do evalu-
ate intraindividual theories, and they typically do this
by comparing different individuals. Perhaps the most
salient example of this approach is the randomized
experimental design, in which causal effects are esti-
mated by comparing mean differences between experi-
mental conditions. In such a design, counterfactual
causal reasoning is used to create an evidential link
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between intraindividual theory and interindividual
phenomena (robust differences in sample means). For
example, in causal inference, the population mean of
the control group may be assumed to equal the popu-
lation mean of the experimental group under the
counterfactual assumption that the latter group had
not received the treatment (Holland, 1986). Note that
the average treatment effect can only be used to make
inferences about the treatment effect for an individual
if we are willing to assume that all individual treat-
ment effects are the same (Lamiell, 1987); critically,
however, even without assuming homogeneity in indi-
vidual causal effects, the average causal effect can still
constrain the possible sets of individual causal effects.

In cases where experimental manipulations are
infeasible, so that the randomized experimental design
cannot be implemented, correlational data may be
combined with causal assumptions to furnish a basis
for causal inference (Holland, 1986; Pearl, 2009;
Rohrer & Murayama, 2023; Weinberger, 2015). For
example, in psychology, an important interindividual
phenomenon concerns the correlation between indi-
vidual differences in childhood abuse and individual
differences in adult psychopathology. This phenom-
enon may be explained through an intraindividual
theory; for instance, childhood abuse may disrupt
attachment, which may lead to distrust in other peo-
ple, which may lead to paranoia (Isvoranu et al,
2017). This is a case where direct statistical estimation
is structurally infeasible, because ethical and practical
constraints preclude the gathering of data that could
inform such a process.

However, the intraindividual theory that childhood
abuse causes adult psychopathology may still connect
to the interindividual phenomenon via an explanatory
link: if we assume that some individuals are exposed
to abuse, while others are not, and run a simulation
according to this scenario, we may find that the
implied differences in means follow from the theory.
Although this of course does not allow one to con-
clude that the theory is correct, the interindividual
phenomenon does put some constraints on the theory,
because not all intraindividual theories could have
generated the observed interindividual phenomena;
therefore, theories that could not have generated these
phenomena lose credibility.

Interindividual theories and interindividual
phenomena

Typically, interindividual theories specify how interin-
dividual differences in one dimension (e.g., genetic

makeup) cause individual differences in another
dimension (e.g., IQ-scores). For instance, common
phrasings of the theory of general intelligence hold
that (a substantial part of) the individual differences
in the g-factor are caused by individual differences in
genetic makeup, while the resulting differences in the
g-factor themselves are expressed in a wide variety of
cognitive tasks, as for instance included in typical
intelligence tests (Jensen, 1999).

Interindividual theories will imply interindividual
phenomena naturally, and, as is the case for the scen-
ario where intraindividual processes explain intraindi-
vidual phenomena, evaluation of the explanatory
merits of a theory is relatively straightforward.
However there is one important difference. While
intraindividual theories need not reference individual
differences at all, individual differences research
always contains implicit assumptions about intraindi-
vidual processes, because some intraindividual process
is invariably necessary to connect the theory to the
interindividual phenomena. For instance, for genetic
makeup to be expressed in behavior, there must be
functioning human bodies producing proteins and
growing a brain. Thus, the theory must rely on at
least a minimal set of assumptions characterizing the
individual person. However, such assumptions take
the form of background or auxiliary assumptions, in
the sense that the theory is agnostic about them. That
is, although genetic theories of the g-factor require
some intraindividual process to be operational, they
do not commit to a particular intraindividual process.
For example, it does not matter for the interindividual
theory whether genetic effects on IQ are transferred
vig brain volume (Posthuma et al., 2002), via neural
plasticity (Garlick, 2002), or via a myriad of processes
(Kievit et al., 2014); at least one such route must exist,
but which one is operational is evidentially neutral
with respect to the theory (Weinberger, 2015).

Interindividual theories and intraindividual
phenomena

In the previous cases, the link from theory to data
could be constructed in terms of implications of the
theory. Interindividual theories have implications for
interindividual phenomena; intraindividual theories
can both have implications for intra- and interindivid-
ual phenomena. As a result, these phenomena can
constrain the set of candidate theories, because theo-
ries that fail to explain them lose credibility.

This is not the case for the combination of interin-
dividual theories and intraindividual phenomena,



because even though interindividual theory does
implicitly call on some intraindividual process, the
nature of this process is not usually an explicit part of
the theory. As a result, it seems one cannot derive
intraindividual phenomena from such a theory, either
through simulation or through mathematical analysis.
If this conclusion is correct, interindividual theories
cannot explain intraindividual phenomena.

Nevertheless, there are examples in which intraindi-
vidual phenomena do provide some evidence for
interindividual theories because they support intrain-
dividual theories that are known to be consistent with
interindividual theories. An example occurs in
research that utilizes a link between the IRT model—a
model for interindividual differences—and the drift-
diffusion model—a model for intraindividual proc-
esses (Tuerlinckx & De Boeck, 2005). In this research
line, it has been shown that if data are generated
through a drift-diffusion model, and individuals differ
in the parameters of that model, then the resulting
patterns of correct and incorrect responses will be
described by an Item Response Theory (IRT) model
(with the IRT parameters a direct function of the dif-
fusion parameters). As a result, intraindividual phe-
nomena (e.g., the speed-accuracy tradeoff) that
indicate that the intraindividual process is in fact
described by the drift-diffusion model indirectly bol-
ster confidence in the adequacy of the interindividual
theory, because we know that if the intraindividual
theory is correct, the interindividual theory must also
be correct. Thus, even though the intraindividual
model functions as an auxiliary relative to the interin-
dividual theory (the IRT model does not imply the
diffusion model for the response process), if we know
the intraindividual model has a particular structure
then we know the interindividual theory must hold
(the drift-diffusion model for the response process
does imply the IRT model).

Developing an intraindividual theory with
phenomena on all levels

Theories, as we interpret them here, stipulate that the
world has a certain structure. The theory putatively
explains phenomena if they would follow “as a matter
of course” (Peirce, 1931) if the world indeed had that
structure. This means that we can derive phenomena
at different levels from a theory and use those to test
and develop the theory. In this section, we demon-
strate this by simulating theory-implied intraindivid-
ual, interindividual, and combined phenomena from
an intraindividual theory of panic disorder
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(Robinaugh et al., 2019) and discussing how they can
be compared to empirical phenomena to test and
develop the theory.

Deriving phenomena on different levels requires
formalization

To study this relation, we need to evaluate which phe-
nomena follow from a given theory. If the theory is
stated in a purely verbal manner, this is difficult, for
two reasons. First, verbal theories are in almost all
cases imprecise, by which we mean that different for-
mal theories which can make competing predictions
are consistent with them (Farrell & Lewandowsky,
2018). And second, even if the theory is precise, if it
involves more than a few components that are related
in a non-linear way, humans are generally unable to
intuit its implications. The field of complexity science
illustrates this, as it contains many studies of simple
systems that have unexpected and complex behaviors
(Mitchell, 2009). For example, the extremely simple
logistic map creates phase transitions and determinis-
tic chaos (May, 1976) and a model consisting of three
simple local rules is able to create flocking behavior of
birds (Reynolds, 1987).

We think that the systems we are studying in psy-
chological research are almost certainly of that nature,
which suggests that verbal theories are too imprecise to
yield clear implications and therefore formalized theo-
ries are needed (Borsboom et al., 2022; Fried, 2020;
Haslbeck et al., 2022; Robinaugh et al., 2021; Smaldino,
2017; van Rooij & Baggio, 2021). A theory that is for-
malized into a mathematical or computational model
will generally allow one to derive statistical patterns that
should follow from it, either analytically or through
simulation, which is particularly useful in cases where
intuition fails. Thus, after we have cast the theory in
mathematical form, we can investigate which phenom-
ena follow from the theory, for instance by simulating
data under the assumption that the theory is true. In
principle, such phenomena could either be intraindivid-
ual, interindividual, or combined.

A brief overview of a computational model of
panic disorder

Panic disorder is a psychiatric syndrome characterized
by recurrent panic attacks and persistent patterns of
behavioral changes, such as avoidance of situations
that may trigger panic attacks (American Psychiatric
Association, 2013). The computational model of panic
disorder proposed by Robinaugh et al. (2019) suggests
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that panic disorder is the result of three interlocking
feedback loops, shown in Figure 2.

Firstly, there is an reinforcing feedback loop between
Arousal and Perceived Threat (Clark, 1986), in which
Arousal can trigger Perceived Threat and Perceived
Threat can, in turn, lead to higher Arousal. This feed-
back loop is moderated by Arousal Schema, which is a
set of beliefs and associations regarding the threat posed
by Arousal. For instance, a person may hold the belief
that increased heart rate and palpitation (Arousal) may
be signs of a medical condition, which leads the person
to interpret them them as potentially dangerous
(Perceived Threat). Thus, when Arousal Schema is high,
the effect of Arousal on Perceived Threat is increased
and it can create a positive feedback loop that causes
substantially elevated levels of Arousal and Perceived
Threat, a state known as a panic attack. Panic attacks
eventually terminate through the operation of homeo-
static feedback processes (H), which serve to restore
Arousal to a normal level.

Second, Perceived Threat and Escape Behavior
(e.g., fleeing the location where a Panic Attack takes
place) are linked through a dampening feedback loop,
where heightened Perceived Threat causes an individ-
ual to act in a way that reduces the perceived conse-
quences of higher Arousal. As this behavior reduces
Perceived Threat, it helps keep Arousal and Perceived
Threat in balance. The individual’s Escape Schema—
their beliefs in their ability to cope with Perceived
Threat without engaging in Escape Behavior—moder-
ates the strength of this loop, with higher Escape
Schema meaning that already low levels of Perceived
Threat can trigger Escape Behavior.

Finally, there is a third feedback loop in the system
through which individuals can learn how dangerous
Arousal is perceived (Arousal Schema) and the

Escape
Schema

(X)

Arousal '\ ¢—
Schema )& -,

()

Perceived
Threat

Figure 2. The causal diagram of the computational model of
Panic Disorder by Robinaugh et al. (2019). The components
within the grey box are fast-changing processes at a time scale
of minutes; the components outside are slow-changing proc-
esses on a time scale of days.

amount of Perceived Threat that can be tolerated or
managed while refraining from Escape Behavior
(Escape Schema). Unlike the fast feedback between
Arousal and Perceived Threat and between Perceived
Threat and Escape Behavior, which operates on a time
scale of minutes, this third feedback loop is slow and
operates on a time scale of days to weeks. It is also
essential to note that the learning process, and thus
the change of Arousal Schema and Escape Schema,
relies upon the collective behavior of Arousal,
Perceived Threat, and Escape Behavior (which is sig-
nified by the parallel arrows originating from the grey
box that encompasses all fast-moving components). If
Arousal remains close to equilibrium and Perceived
Threat remains low, then learning is not possible and
Arousal Schema and Escape Schema remain unaltered.
However, if Arousal and Perceived Threat become sig-
nificantly elevated (e.g., if a panic attack occurs) then
learning is possible.

What is learned critically depends on whether
Escape Behavior is shown. If Escape Behavior is not
carried out during a panic attack, so that the attack is
endured, this may lead the individual to learn that such
behavior is not necessary and that Arousal is not some-
thing to be feared (increasing Escape Schema and
decreasing Arousal Schema). This putatively explains
the effectiveness of exposure therapy (Robinaugh et al.,
2019). On the other hand, if Escape Behavior is
employed, the individual is likely to infer that the
anticipated catastrophe would have been realized if they
had not taken such action (decreasing Escape Schema
and increasing Arousal Schema). This increased Arousal
Schema then makes the individual more likely to be
exposed to heightened arousal and situations that would
lead to further Arousal, while they become more hesi-
tant to enter these situations (N and C in Figure 2,
respectively). Ultimately, this can lead to panic disorder,
in which recurrent panic attacks cause a systematic and
enduring disruption of a person’s life. For a precise
description of all components and relationship, and a
detailed analysis of the behavior of the model we refer
the reader to Robinaugh et al. (2019).

Generating data from the computational model

The fact that the panic disorder model is a computa-
tional model implies that all relationships are precisely
specified. Given a set of initial values for all variables,
this allows us to compute the behavior of the model
arbitrarily far into the future. To illustrate how this
computational model can imply intraindividual, inter-
individual and combined phenomena, we simulate



A. Simulated Data of Person 1 (Days 13-14)
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B. Intraindividual: VAR model of Person 1
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Figure 3. How the Panic Disorder model implies different types of phenomena. (a) Simulated data from days 14 and 15 of Person
1; we display the variables Arousal, Perceived Threat, Escape Behavior, Arousal Schema and Escape Schema; (b) A VAR model fitted
to the Arousal (A) and Perceived Threat (PT) values measured at a minute time scale from Person 1; (c) Partial correlations
between five symptoms, estimated based on a cross-sectional dataset consisting of the 500 simulated individuals; (d) The bivariate
distribution of the lagged effect of PT on A and the symptom sum score in the last week in the sample of the 500 simulated

individuals.

four weeks of data from N =500 persons. The persons
differ in their initial values of Arousal Schema and
Escape Schema, which are chosen such that about
20% of individuals develop panic disorder within the
four weeks. The data of days 13 and 14 of Person 1
are displayed in Panel A of Figure 3. We see that
Arousal and Perceived Threat display variation at low
levels until noon on day 13. This variation represents
natural variation in Arousal, for example due to walk-
ing up the stairs or drinking coffee. However, at
around 13h a perturbation of Arousal is large enough
to kick off an escalating feedback loop between

Arousal and Perceived Threat which culminates into a
panic attack. After 5-20 min, the homeostatic feedback
mechanism kicks in and brings Arousal (and therefore
also Perceived Threat) back to normal levels. Since
Escape Schema is low, Person 1 immediately shows
Escape Behavior once Perceived Threat is elevated.
Once Perceived Threat is low again, Escape Behavior
also goes back to normal levels. We see two more
panic attacks, one on the evening of day 13 and
another on the evening of day 14.

The variables Arousal Schema and Escape Schema
change at a slower time scale than Arousal, Perceived
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Threat and Escape Behavior. We see that they are
constant during day 13. However, Person 1 experi-
enced two panic attacks on that day and showed
Escape Behavior. They therefore learned that Arousal
has potentially dangerous consequences, which were
only avoided by showing Escape Behavior. As a conse-
quence, Arousal Schema increases and Escape Schema
decreases after day 13. On day 14 another panic attack
occurs during which Person 1 shows Escape Behavior,
which means that Arousal (Escape) Schema will again
increase (decrease) during the next day. This shows
that Person 1 is on the path of developing increasingly
severe symptomatology that moves toward Panic
Disorder. In fact, we initialized Person 1 with an
Arousal Schema value of 0.812 and an Escape Schema
value of 0.119, which means that a number of panic
attacks must have occurred already before day 13. The
code to repeat the simulation and reproduce the
results shown in Figure 3 can be found at https://
github.com/jmbh/withinbetweentheory.

Deriving intraindividual, interindividual, and
combined phenomena

One way to examine the predictions of the computa-
tional model is to visualize the generated time series
data and discuss its behavior qualitatively, as we have
just done. In this way, we could also compare the
simulated time series with a corresponding empirical
time series, and thereby evaluate to what extent the
computational model is faithful to reality. While eye-
balling the data is often useful, it has the obvious limi-
tations that it is not transparent or reproducible, and
that it provides no principled way to separate signal
from noise. We therefore typically summarize time
series data in statistical models, which we see as tools
to establish empirical phenomena (Borsboom et al,
2021; Haslbeck et al., 2022).

Intraindividual phenomenon

Focusing again on Person 1, we can summarize the
time series by assessing how strongly variables are
correlated with each other across a certain timespan.
For example, we might be interested in extent to
which Arousal at time ¢ is correlated with itself one
minute later at time point t4 1. Extending such rela-
tionships to several variables leads to the Vector
Autoregressive (VAR) model (Hamilton, 1994), which
jointly models all variables at ¢ as a linear function of
all variables at one or several time points before, e.g.,
t—1,t—2,.... In panel B of Figure 3 we display the
conditional auto- and cross-correlations of a lag-1

VAR model estimated from minute-level measure-
ments of Arousal and Perceived Threat of Person 1.
Since these relationships are created by contrasting
(or relating) measurements of the same subject, we
consider this VAR model to represent an intraindivid-
ual phenomenon.

How would we use this intraindividual phenom-
enon to develop a theory of panic disorder? First, we
need to estimate the corresponding VAR model from
empirical data. These empirical data are sampled from
Person 1 in the case of truly idiographic research, or a
population of individuals that can considered inter-
changeably. Since we know the data generating model,
we know that the VAR model does not correctly spe-
cify the data generating model in its full complexity.
There are several reasons for this: Variables are omit-
ted (e.g., Arousal Schema), the discrete minute-time
scale does not match the continuous time of the gen-
erating model, and the VAR model is functionally
misspecified in that it only includes linear relation-
ships, while the true relationships are non-linear. This
means that we generally have no guarantees for mak-
ing accurate direct inferences from the VAR parame-
ters about the mechanics of the generating model (see
also Haslbeck et al., 2022; Haslbeck & Ryan, 2022).

However, we can think of the VAR estimates as
phenomena to be explained by a computational model
of panic disorder, which in this way put constraints
on such a model. For example, we could collect
experience sampling data from a given individual and
estimate a VAR model on that data. Similarly, we can
simulate time series data from the current iteration of
the computational model and estimate a model-
implied VAR model on those simulated data. Now, if
the model-implied VAR model in Panel B is very dif-
ferent from its empirical counterpart, we know that
our computational model needs to be improved, and
we can use our understanding of the model and the
substantive matter to propose changes to the model
that would imply VAR models that better match its
empirical counterpart. Importantly, however, for this
comparison to work, the measurement frequency in
the empirical data (perhaps every 2h) and in the
simulated data (in principle infinite for continuous-
time models) must be matched. In this example, this
can be achieved by subsampling the simulated data to
match the empirical measurement frequency. See also
Ryan et al. (2023a) who validate a computational
model of emotion dynamics by evaluating whether it
reproduces phenomena captured by VAR models
found typically in empirical data.



This example illustrates an interesting point: even if
the levels of theory and phenomenon are aligned such
as in this case, we may need to resort to the constraint-
based type of theory development. We think that this
might be the norm rather than the exception in theory
development due to the fact that most statistical models
are gravely misspecified in most situations due to miss-
ing variables, functional misspecification or limitations
of measurements.

Interindividual phenomenon

To derive an interindividual phenomenon, we con-
sider data from all of the 500 simulated persons. For
each person, we determine the five symptoms experi-
ence of panic attacks (P), distress during panic attacks
(D), fears related to panic attacks (F), avoidance of
behaviors (AvB), and avoidance of contexts (AvC)
from the Panic Disorder Severity Scale (PDSS; Houck
et al., 2002). The symptoms are assessed in each of
the four weeks, and are scored on a 0-4 Likert Scale.
The symptoms are scored by creating a mapping from
the minute-level data stream of all variables within a
given week to the five answer categories of the ordinal
scale. We did this for each of the five symptoms in a
way that we found is most faithful to the precise
wording of the symptom in the PDSS. The exact map-
ping can be found in Ryan et al. (2023b) and our
reproducibility archive (https://github.com/jmbh/with-
inbetweentheory). We then estimate a Gaussian
Graphical Model (GGM) on the symptom scores in
the last week using the graphical lasso (Epskamp
et al., 2018; Friedman et al., 2008). Panel C in Figure
3 displays the partial correlations of the GGM.
Because the variables in the model are defined by con-
trasting individuals to each other, we consider the
symptom network in panel C an interindividual phe-
nomenon. Note that the variables defined in this way
integrate symptomatology over a time period (a week,
in this case), which means that time information is
present in the scores, even if these are contrasted
interindividually. We will return to this implicit use of
time information in the discussion.

Similarly to the intraindividual phenomenon, this
interindividual phenomenon can be used as a con-
straint on theories about panic disorder that include
inter-individual differences. For instance, if we esti-
mated a GGM on corresponding empirical symptom
data and found a much stronger relationship between
the experience of panic attacks (P) and the avoidance
of contexts (AvC), we would need to adapt the com-
putational model to account for such a strong rela-
tionship. Importantly, this change might be made in a
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part of the model specifying the intraindividual
dynamics of every individual in the model, which in
interaction with inter-individual differences makes
predictions about the interindividual correlation
between the symptoms P and AvC.

A concrete example of how interindividual phe-
nomena can guide the development of an intraindi-
vidual theory can be found in Haslbeck et al. (2022),
where the authors simulated from an earlier version
of the panic model of Robinaugh et al. (2019) which
showed that panic attacks always co-occurred with the
panic disorder symptoms persistent worry and avoid-
ance behavior. However, when analyzing a large epi-
demiological survey (Alegria et al., 2007), they found
that some people have occasional panic attacks but do
not develop any further symptoms of panic disorder.
This mismatch between intraindividual theory and
interindividual phenomenon led to the current version
of the model which includes the additional compo-
nent Escape Schema (see Figure 2).

Combined phenomenon

To derive a combined phenomenon implied from the
model, we again consider the data of all N=500 sub-
jects. We estimate the VAR model shown in panel B
for each subject, and also record the PDSS symptom
sum score of each subject in the last week. Panel D of
Figure 3 displays the distribution over the lagged
effect of Perceived Threat at time f— 1 on Arousal at ¢
and the PDSS score. We see that individuals with a
stronger statistical association between Perceived
Threat at t—1 on Arousal at t tend to have higher
symptom sum score in the last week. This is roughly
consistent with the general dynamics of the data gen-
erating model, in which a stronger feedback loop
between Arousal and Perceived Threat leads to higher
vulnerability to Panic Attacks. To define this phenom-
enon via the probability distribution over the VAR
parameter and the symptom sum score we first used
many intraindividual contrasts to obtain the VAR
coefficients; and then used interindividual contrasts to
create the bivariate distribution in panel D. We there-
fore refer to this phenomenon as a combined phe-
nomenon. Similar to the intra- and interindividual-
phenomena discussed above, this phenomenon can be
used in theory development in the sense of a con-
straint: If the corresponding bivariate distribution in
empirical data looks very similar, we would take this
as evidence for the adequacy of our computational
model; if not, we would use it to propose changes that
lead to mode-implied distributions that are closer to
the empirical one.
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Discussion

The question of how our understanding of individual
persons relates to different types of data that use
intra- and interindividual contrasts is central to psy-
chological science. Molenaar (2004) put the issue
squarely on the methodological research agenda, and
his paper has been an important motivation for the
development of techniques suited to address intraindi-
vidual data on their own terms (Bringmann et al.,
2017; Epskamp et al., 2018; Fisher et al., 2017; Gates
& Molenaar, 2012; Hamaker, 2012). In combination
with the ever increasing technological possibilities for
gathering data through digital devices (Conner &
Barrett, 2012; Miller, 2012; Trull & Ebner-Priemer,
2014), this movement is reshaping the field of scien-
tific psychology rapidly.

However, even though the relation between statis-
tical models and data is quite clear in its implications
for how the intra- and interindividual levels relate
(Molenaar, 2004; Molenaar et al., 2003), the relation
between scientific theories and data is less straightfor-
ward. In particular, it is not always clear how different
types of data can inform theories, and a systematic
framework of studying this question is lacking. In the
present paper, we have proposed that such a frame-
work can be realized through the combination of the
theory-phenomena-data distinction and the formaliza-
tion of theories. Formalized theories can be used to
derive implications in the form of empirical phenom-
ena—robust statistical patterns—that we should expect
to see if the theory were true. This feature makes it
possible to answer the question of whether and how
different kinds of data may weigh in on a given the-
ory, by considering how the phenomena they evidence
constrain the space of candidate theories.

Our analysis of the computational model of panic
disorder demonstrates that a psychological theory can
imply both intra- and interindividual phenomena. If a
theory is able to do this, it can draw evidence from
either of these sources in the form of giving successful
explanations of intraindividual, interindividual, or
combined phenomena. Conversely, each type of phe-
nomenon can constrain the theory, in the sense that it
limits the degree to which the theory can be varied
without losing the explanatory connection to the phe-
nomena. This aligns with the hard-to-vary principle
proposed by Deutsch (2012): the degree to which one
can vary functional details of the explanation is
inversely proportional to the explanatory power of the
theory. Using this focus on explanation, researchers
may simulate implications of theories in various data
types. In this way, we may be able to determine, on a

case by case basis, whether they would gain better
information from gathering and analyzing time series,
mean differences, experimental effects, or interindivid-
ual correlations.

Importantly, our characterization of intraindividual,
interindividual, and combined phenomena is framed
in terms of comparisons that a researcher makes.
However, there are also comparisons that participants
engage in when they answer psychometric items. For
example, questions that require integration over infor-
mation over time windows arise often in cross-sec-
tional measurements (Ryan and Dablander, n.d.), for
instance when psychopathology researchers ask a per-
son how well they have slept over the past two weeks,
or when personality researchers probe how often par-
ticipants engage in certain behaviors in general. And
even in time series measurements, questions are often
not with respect to the current state but with respect
to the time period since the last measurement
(Haslbeck & Ryan, 2022). This suggests that a subset
of the phenomena we label as interindividual phe-
nomena may be implicitly combined, because the rep-
resentational content of the data involves an implicit
integration over a time domain. How to deal with this
issue is an important open question in this domain,
and while it is beyond the score of the present paper,
we think this problem deserves more psychometric
scrutiny than it currently enjoys.

Another interesting issue is the question of where
causal effects should be situated. Often, research into
causal effects uses interindividual contrasts (e.g., in a
simple Randomized Controlled Trial with a single
measurement occasion). Because, in the current
framework, we have defined empirical phenomena as
statistical patterns in data, this means that observed
mean differences between experimental conditions
classify as interindividual phenomena. The interpret-
ation of these mean differences in terms of causal
effects then rests on the explanation of interindividual
phenomena in terms of an intraindividual theory.
Thus, intraindividual causal theories explain interindi-
vidual phenomena (mean differences between groups),
and as a result the interindividual phenomena form
evidence for these theories. Now, as the evidence
mounts, so that the experimental findings become
highly robust and replicable (e.g., think of the speed-
accuracy tradeoff or the Stroop effect in psychology),
then the inferred intraindividual causal relations can
themselves become explanatory targets of a more
expansive theory. In this way, the existence of mecha-
nisms that were originally posited in the context of an
explanatory theory can become a phenomenon to be



explained in the context of a deeper explanatory the-
ory. Examples of such changes abound in science; for
instance, although germs were originally posited as
hypothetical entities that explained disease transmis-
sion, currently they are so well evidenced that deeper
theories can be developed to explain their existence;
as a result, the existence of germs has changed from a
hypothesis in a tentative explanatory theory to a
robust fact that can itself be a target of explanation.
One can imagine an explanatory hierarchy of empir-
ical phenomena in which the intuitive interpretation
of phenomena changes, for instance from interindivid-
ual to intraindividual, when the evidence is considered
so secure that the intraindividual explanation of inter-
individual phenomena attains the status of empirical
fact, which may itself be explained by a deeper theory.
In terms of such a hierarchy, the type of empirical
phenomena we have worked with here would be situ-
ated at the relatively low level of empirical generaliza-
tions (Haig, 2008). Further research is needed to
evaluate the structure of such a hierarchy and to
investigate its consequences for thinking about the
relation between intra- and interindividual theories
and phenomena.

As we have shown, if one has a formalized theory,
one can evaluate a) which intra- and interindividual
phenomena the theory implies, and b) how such phe-
nomena can inform intra- and interindividual parts of
the theory. This has direct implications for the organ-
ization of research and the connection between the two
disciplines Cronbach (1957) identified. For example, if
the theory implies that two variables should be corre-
lated intraindividually, an ESM design can be combined
with an Vector Autoregressive model. If the theory
implies that randomized interventions should produce
mean differences, an experimental study can be used in
combination with an analysis of variance. If the theory
implies that individual differences on questionnaire
items should be unidimensional, a correlational study
can be combined with a factor analysis to study this.
Importantly, as the panic disorder example shows, one
and the same theory can carry implications in all of
these directions. Therefore, such theories should be able
to form structures that connect the methodological tra-
ditions of psychology, because they can serve as focal
points for the interaction between theorists and empir-
ical researchers and coordinate research efforts
systematically.

Importantly, these bridges between traditions are
afforded by the addition of phenomena as intermedia-
ries between theories and data (Bogen & Woodward,
1988; Woodward, 2011). We think that a focus on
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this level may lead to improvements in the method-
ology of indirect inference (Haslbeck et al., 2022;
Hosseinichimeh et al., 2016). In our view, such
approaches should play an important role in future
psychological research, as the discipline moves toward
the construction of stronger psychological theory
(Borsboom et al., 2021; Fried, 2020; Robinaugh et al.,
2021; van Rooij & Baggio, 2021).
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