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ABSTRACT 
Psychological science is divided into two distinct methodological traditions. One tradition 
seeks to understand how people function at the individual level, while the other seeks to 
understand how people differ from each other. Methodologies that have grown out of 
these traditions typically rely on different sources of data. While both use statistical models 
to understand the structure of the data, and these models are often similar, Molenaar 
(2004) showed that results from one type of analysis rarely transfer to the other, unless 
unrealistic assumptions hold. This raises the question how we may integrate these 
approaches. In this paper, we argue that formalized theories can be used to connect intra- 
and interindividual levels of analysis. This connection is indirect, in the sense that the rela
tionship between theory and data is best understood through the intermediate level of phe
nomena: robust statistical patterns in empirical data. To illustrate this, we introduce a 
distinction between intra- and interindividual phenomena, and argue that many psycho
logical theories will have implications for both types of phenomena. Formalization provides 
us with a methodological tool for investigating what kinds of intra- and interindividual phe
nomena we should expect to find if the theory under consideration were true.
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Introduction

The realm of psychology can be divided in two tradi
tions (Cronbach, 1957). The first tradition originates 
with the work of experimental and mathematical psy
chologists such as Wundt, Helmholtz, and Fechner, and 
is dedicated to understanding processes, structures, and 
attributes that characterize the functioning of the indi
vidual person (Murray, 2020). The second tradition 
originates with the work of Francis Galton, James 
McKeen Cattell, and Charles Spearman, and studies the 
origin and structure of individual differences in psycho
logical attributes (Galton, 1879; J Cattell, 1890; 
Spearman, 1904). These two streams of thought are also 
visible in the major traditions in mathematical modeling 
in psychology, where the Wundt line foreshadows 
mathematical psychology and the Spearman line psy
chometrics (Wijsen et al., 2019). In a nontrivial sense, 
these approaches involve a figure-ground reversal: for a 
scientist who targets universals, individual differences 
constitute the background, whereas for the scientist 
who targets individual differences, universals constitute 

the background. For example, a cognitive scientist inter
ested in the mechanics of working memory may regard 
individual differences a nuisance, while for a psychome
trician interested in measuring working memory cap
acity, only deviations from the average are of interest 
(Borsboom et al., 2009).

The question of how to relate these different tradi
tions has been subject to investigation since 
Cronbach (1957) put the two disciplines of scientific 
psychology on the map as comprising two distinct, 
and often competing, methodological traditions. He 
contrasted the traditions methodologically, by juxta
posing experimental approaches (with the stereotype 
of a researcher who executes statistical tests on dif
ferences in means, manipulated with experiments) 
and correlational ones (with the stereotype of a 
researcher computing correlations between sets of 
individual differences). Many people intuitively 
expect the qualitative results from such approaches 
to converge. However, it turns out that this is not 
necessarily the case, for instance because such pat
terns can change, and even reverse, as a function of 
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conditioning on a third variable (Kievit et al., 2013; 
Wagner, 1982) or because sources of variance are 
tangled up in ways that are not straightforwardly 
separated (Hamaker, 2012). To use a standard 
example, one could erroneously conclude that, if 
forcing people to type faster leads to more errors 
(experimental approach), then we should also expect 
that people who type faster should make more errors 
(correlational approach). But of course a correl
ational research design will demonstrate that people 
who type faster typically make less errors, and that is 
the case because there is a third variable—typing 
ability—that produces this correlation: better typists 
are both faster and more accurate. The methodo
logical understanding of this type of reversal, and of 
relations between experimental manipulations and 
correlation structures generally, has been greatly 
advanced since the advent of modern theories of 
causality (Holland, 1986; Pearl, 2009; Peters et al., 
2017; Rohrer & Murayama, 2023; Weinberger, 2015).

Next to the contrast between intraindividual experi
mental approaches and interindividual correlational 
traditions, a similar question comes up when contrast
ing intraindividual correlations from a single individ
ual to corresponding interindividual correlations. 
Specifying under which conditions these two types of 
evidence converge has become a central question since 
intensive longitudinal (or time series) data have 
become highly prevalent in psychological research 
(Conner & Barrett, 2012; Hamaker et al., 2016; 
Hamaker & Wichers, 2017; Kuppens et al., 2022; 
Miller, 2012; Trull & Ebner-Priemer, 2014). In a sem
inal manifesto, Molenaar (2004) argued that a neces
sary condition for this convergence is ergodicity. This 
condition implies that time series of different people 
should both be stationary (implying, for example, that 
there is no trend in the data) and homogeneous (the 
behavior of all individuals is governed by the same 
generating model). In this case, individuals are to a 
considerable extent exchangeable, much like particles 
in a gas are exchangeable save for position and 
momentum. Molenaar’s paper raised the important 
point that, for systems that are non-ergodic, we can
not make a straightforward interindividual ! intrain
dividual inference (and vice versa). This is because, 
unless the system under study satisfies ergodicity, stat
istical patterns characterizing the individuals will not 
be the same as the statistical patterns characterizing 
interindividual differences. This generalizes to other 
properties of the probability distributions in question, 
such as the dimensionality and parameters of latent 
variable models that describe these distributions 

(Hamaker, 2012; Hamaker et al., 2007; Molenaar 
et al., 2003).

Since ergodicity is unlikely to hold in many of the 
systems studied by psychological research, Molenaar’s 
manifesto showed that characterizing statistical pat
terns in individuals requires analyzing data of individ
ual subjects. This in turn requires a reasonably large 
number of observations of the individual at hand, 
which led to a sharp increase of intensive longitudinal 
(or time series) analysis in psychological research. 
This methodological approach has flourished, and has 
obtained an important place in the arsenal of psycho
logical methods (Bringmann et al., 2017; Cabrieto 
et al., 2017; de Haan-Rietdijk et al., 2017; Fisher et al., 
2017; Gates & Molenaar, 2012; Hamaker, 2012; 
Haslbeck et al., 2021; Haslbeck & Ryan, 2022; Wichers 
et al., 2016, 2020, 2015). A benefit of this fast develop
ment of such methodologies has been a surge in the 
development and application of intraindividual analy
ses to empirical data (e.g., Contreras et al., 2019; 
Fisher et al., 2018, 2017; Robinaugh et al., 2020; 
Wichers et al., 2016), which allowed psychological sci
entists to study the temporal evolution of psycho
logical processes with a granularity that was before 
typically unfeasible. Methodological understanding of 
the issue has also increased. It is now well-known that 
statistically separating individual differences from 
intraindividual processes requires both multiple time 
series and dedicated analyses on these time series 
(Adolf et al., 2014; Hamaker, 2012; Hamaker et al., 
2016, 2015; Mulder & Hamaker, 2021). Thus, a direct 
statistical inference from one level to the other is now 
generally precluded.

However, the fact that direct statistical inference 
from one level to the other is generally not possible 
does not mean that statistical patterns from both lev
els cannot be integrated. After all, we have learned 
about many intraindividual causal processes from 
interindividual statistical patterns; examples include 
the discoveries that smoking causes cancer and that 
childhood trauma contributes to adult psychopath
ology. Evidence for such claims rests largely on the 
systematic analysis of individual differences, rather 
than on experimental manipulation and intraindivid
ual time series data. Similarly, we have learned how 
individual differences can arise from studying intrain
dividual processes; for example, we now know that 
large individual differences can be produced purely 
through extensive practice; one way in which this has 
been shown is through case studies in which individu
als devoted thousands of hours of deliberate practice 
into developing their skills (Ericsson, 2008). These 
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examples show that, even in cases where ergodicity 
may be violated, one can find ways of integrate evi
dence drawn from the intra- and interindividual levels 
when developing a theory. In this paper, we develop a 
conceptual framework that systematizes how theories 
relate to statistical patterns on the intra- and interin
dividual levels and how theories can be developed 
using both.

In a nutshell, we will argue that most psychological 
theories make predictions about both statistical pat
terns that one would expect to see in time series that 
characterize the individual, and statistical patterns one 
would expect to find in individual differences data. 
Since theories imply statistical patterns at both the 
intra- and interindividual levels, we can use these stat
istical patterns to inform the theory. We will argue 
that this type of inference back to the theory can take 
the form of constraining the space of theories, which 
is a weaker form of inference than the direct statistical 
inference approach. We will also argue that deriving 
the statistical patterns on different levels that are 
implied by a theory is all but impossible with verbal 
theorizing and making predictions using intuition. 
Instead, we think that formalized psychological theo
ries are needed, because such theories can be used to 
deduce the precise implications of the theory at both 
the intra- and interindividual levels through mathem
atical analysis and simulation. As a result, formaliza
tion can be a tool to deduce what one should expect 
to see in intra- and interindividual comparisons, given 
the theory. The fact that we can precisely deduce 
which patterns on the intra- and interindividual level 
are implied by our theory also means that we can test 
and develop the theory based on all deduced patterns.

The organization of this paper is as follows. First, 
we discuss how the traditional distinction between 
time series and individual differences emanates from 
two ways of contrasting the individual: with them
selves at other time points, and with other people at 
the same time point. We propose that such contrasts 
lead to qualitatively different types of phenomena, 
which we call intraindividual phenomena and interin
dividual phenomena. We suggest that many psycho
logical theories carry implications for both types of 
phenomena, even in cases where statistical models 
that are used to capture these phenomena in the data 
are neither equivalent nor transparently related. 
Subsequently, we discuss how to connect theories to 
intra- and interindividual phenomena. Here, we focus 
on an indirect form of inference in which phenomena 
constrain the set of theories that are consistent with 
them. Using examples from different psychological 

disciplines, we show that this type of inference—albeit 
weaker than direct statistical inference—can be used 
to develop theories with all types of phenomena. We 
then illustrate the fact that a theory can make predic
tions about different types of phenomena and there
fore can be developed based on these phenomena 
using a recently proposed formal theory of panic dis
order. We conclude by discussing how taking the per
spective of theory, phenomena and data allows us to 
integrate disparate empirical research and thereby 
strengthen theory development in psychology.

The conceptual architecture of intra- and 
interindividual phenomena

Many discussions about the relation between intrain
dividual processes and interindividual differences start 
with Cattell’s data box (R. B. Cattell, 1988). This box 
crosses individuals, variables, and measurement occa
sions. Intraindividual comparisons can be made using 
a slice of the data box in which one individual is 
studied over multiple occasions; interindividual com
parisons can be made using a slice in which multiple 
individuals are studied at a single occasion. 
Paradigmatic intraindividual approaches arise from 
case studies, for instance using a number of repeated 
administrations of a task or intensive longitudinal (or 
time series) data obtained through Experience 
Sampling Methodology (ESM; Hektner et al., 2007). 
Paradigmatic interindividual approaches involve cross- 
sectional designs, in which a large number of individ
uals are assessed at a single time point. These designs 
can be combined, for instance when a number of 
individuals are measured at many occasions; a mul
tiple time series design. It has been often shown in 
the literature that statistical analysis of these different 
slices can lead to different conclusions (Hamaker, 
2012; Molenaar, 2004; Molenaar et al., 2003).

As such, the conceptual space in which the intrain
dividual vs. interindividual issue is discussed is organ
ized in terms of the relation between statistical models 
(e.g., the factor model) and data (e.g., cross-sectional 
data versus time series data). This line of analysis typ
ically concerns models that are statistically identified 
and estimable, which allows one to show that models 
estimated on intra- versus interindividual data would 
yield different results. In cases where models do not 
align, a central objective of modeling is to separate 
interindividual and intraindividual sources of variance 
so as to arrive at parameter estimates that can be 
clearly interpreted at either level (Hamaker, 2012; 
Mulder & Hamaker, 2021).
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Framing the intra-interindividual distinction in 
terms of statistical inference is highly useful and helps 
us avoid unwarranted inferences from one domain to 
the other. However, applying the same reasoning to 
other types of inference may hinder research. This 
becomes clear when focusing on theory development 
as a core activity of science and acknowledging that 
many theories are not statistical models. Examples of 
such theories could be verbal theories or formal theo
ries that are not uniquely identified or estimable by a 
single type of dataset. Here, work in philosophy of sci
ence (Bogen & Woodward, 1988; Woodward, 2011) 
suggests that theories do not explain a specific dataset, 
but instead theory explains phenomena evidenced by 
the data. For instance, Darwin’s theory of evolution 
does not explain any particular observation of a 
finch’s beak, but a robust correlation between beak 
size and environment; Newton’s gravitation laws do 
now explain the path of one individual apple falling, 
but the general shape of the trajectories of falling 
bodies; Spearman’s g-factor theory does not explain 
why John answered an IQ-item correctly, but the gen
eral feature that IQ-items tend to be positively corre
lated. As these examples suggest, the phenomena that 
serve as explanatory targets for scientific theories 
often take the form of empirical generalizations (Haig, 
2008). In statistics, such empirical generalizations are 
typically considered in terms of statistical inferences 
from a sample to a population. This construction will 
serve us well in the current paper, too. In the remain
der of this section, we will introduce the distinction 
between data, phenomena and theory; define intra- 
and interindividual phenomena, and relate them to 
different psychological theories.

The theory-data-phenomena distinction

Data
In statistical modeling, the term data is commonly 
used to indicate a dataset, as for instance stored in a 
spreadsheet; Cattell’s data box is a good example of 
such a setup. An entry in a dataset contains a repre
sentation of an observation that was made. For 
instance, if the data point corresponding to the i-th 
row and the j-th column contains the symbol “1”, that 
symbol may represent the observation that person i 
gave an answer to item j that we evaluated as 
“correct”. Two features of data are important for our 
current purposes. First, that data are particular (Haig, 
2008). That is, any data point represents an observa
tion that was made by some person at some place at 
some time. Second, that an entry in a datafile has 

representational content. This means that it is not 
itself an observation, but rather a symbolic representa
tion of an observation. In the natural sciences, one 
can often glance over this issue and treat the data as 
if they were direct observations (a tradition also com
mon in statistics). However, in psychology, this is not 
a wise course of action, because responses often 
depend on how research participants understand the 
questions that are included in a questionnaire. This is 
relevant in the present context, because questionnaire 
items may themselves contain references to temporal 
dynamics; for instance, when a symptom question
naire item queries the presence of a symptom over 
the past months (Ryan and Dablander, n.d.). This is 
important for the relation between the data and the 
processes we study, because explicit and implicit time 
references in the items should be taken into account 
when interpreting statistical relations in the data.

Phenomena
By structuring the representations of observations in 
systematic ways, researchers create variables. The con
struction of variables involves an additional step of 
abstraction, in which relations between the symbolic 
representations in the data are used to facilitate the 
study of patterns in the data. The simplest of these 
relations is equivalence. For instance, we would typic
ally consider all entries of the symbol “1” in a column 
of testing data to represent that the persons in ques
tion answered the item correctly (even though their 
actual responses may have been different, as in open 
question formats). This results in equivalence classes 
that make up the simplest type of variable (usually 
called “nominal”). More complicated variables can be 
constructed by using additional relations between 
equivalence classes, as in the case of ordinal, interval, 
or ratio scaled variables (Krantz et al., 1971). Statistics 
is largely concerned with modeling the joint distribu
tion of sets of variables that are constructed in this 
manner.

In the current paper, we will take phenomena to be 
robust patterns that characterize these distributions. 
For instance, a univariate example would be the bimo
dality in children’s responses to conservation tasks 
(Van der Maas & Molenaar, 1992); a multivariate 
example would be the pattern of positive correlations 
between cognitive test scores that is known as the 
positive manifold (Van der Maas et al., 2006). The 
most important feature of phenomena, for our current 
purposes, is that in contrast to data they are general 
(Haig, 2008). For example, the bimodality in conser
vation task responses is a general feature that is 
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evidenced in data patterns obtained from different 
populations in different locations at different time 
points. Importantly, that phenomena invariably 
involve generalization does not mean that statistical 
patterns must be invariant over all conceivable 
domains of generalization; in fact, a violation of 
invariance can constitute an important phenomenon 
in itself. For instance, robust differences between 
cohorts, such as the secular gains in IQ known as the 
Flynn effect (Trahan et al., 2014), constitute a robust 
phenomenon in the study of intelligence, and cross- 
cultural differences may similary consitute robust phe
nomena in and of themselves (Henrich et al., 2010).

Because phenomena are generalizations, they typic
ally cannot be established with certainty on the basis a 
particular data set. As such, the relation between data 
and phenomena should be construed as evidential: data 
provide evidence for phenomena (Borsboom et al., 
2021; Haig, 2008). As a result, the tasks of detecting 
phenomena and determining to what extent they gener
alize across subpopulations, cultures, and time points is 
an important part of the scientific enterprise.

Theory
Scientific theories can be understood in many different 
ways. In the current paper, we work with a relatively 
elementary understanding in which theories are inter
preted more or less literally. This means we take scien
tific theories as attempts to characterize the structure of 
the world we study. Thus, when Spearman says that 
individual differences in test scores arise from individ
ual differences in mental energy, we take him to mean 
that there is actually such a thing as mental energy, and 
the amount of energy one has plays a decisive role in 
causally generating the correct responses to items on an 
intelligence test.

This literal understanding of theories is known as 
scientific realism (Devitt, 2005), and it is typically 
contrasted with alternative understandings in which 
theories are variously interpreted as predictive instru
ments or “inference tickets” (Ryle, 1949), devices that 
allow us to navigate the world pragmatically (James, 
1909), or highly efficient ways of representing data, as 
in logical positivism (Suppe, 1977). The advantage of 
a realist understanding of theories in the present con
text is that it allows us to reason under the assump
tion that the theory is true in a relatively 
straightforward manner. Namely, we can build an arti
ficial “world” in which the theory is true, and study 
what phenomena we would expect in that scenario. 
This aligns with the common use of simulation in 
statistical modeling, where modelers investigate what 

we should expect to see in the data if a given model 
were true. We can use a very similar setup to investi
gate what phenomena (patterns in the data) would 
follow, if the theory were true, namely by simulating a 
world in which that is the case. If that simulation 
exhibits the empirical phenomena we want to explain, 
then the theory putatively explains the phenomena 
(van Dongen et al., 2022). The explanation is putative 
because the premises (the theoretical model simulated 
from) may be incorrect; moving from a putative to a 
correct explanation involves additional research that 
supports the premises of the argument.

Thus, while the relation between data and phenom
ena is evidential (data provide evidence for phenom
ena), the relation between theory and phenomena is 
explanatory (theories explain phenomena). The rela
tion between theory and data is thus mediated by 
phenomena, in the sense that a theory draws support 
from the data indirectly, namely by offering a good 
explanation for the phenomena the data evidence 
(Haig, 2008).

Intra- versus interindividual phenomena

The conceptual architecture provided by the theory- 
phenomena-data distinction sheds a different light on 
how to integrate data patterns from intra- and interin
dividual contrasts. This is because of the intermediate 
level of phenomena. If theories are conceptualized as 
statistical models that directly provide a likelihood 
associated with each data point, then the natural way 
of relating theories and data is through statistical esti
mation. From this perspective, the focus provided by 
Molenaar (2004) is instructive, because it shows that if 
theories are considered to be identifiable statistical 
models, then the adequate estimation of intraindivid
ual parameters from interindividual or combined data 
either requires strong statistical conditions to hold 
(Adolf et al., 2014; Molenaar, 2004), or specialized 
applications of multilevel models to separate parame
ters that characterize the individual’s time series from 
parameters that characterize differences between indi
viduals (Hamaker, 2012; Mulder & Hamaker, 2021).

Intra- and interindividual contrasts
However, if explanatory theories are understood as 
targeting phenomena that are evidenced by the data, 
the situation is different. From this point of view, the 
way that an individual’s current responses are con
trasted with other responses defines different varia
bles. For example, the variable constructed by taking a 
slice from Cattel’s data box in the time direction 
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contrasts the individual’s current responses with that 
individual’s responses at different time points (e.g., as 
in an ESM study). However, if we construct a variable 
differently, by taking a slice in the individual differen
ces direction, we contrast the individual’s responses 
with other individuals’ responses (e.g., as in a stand
ard T¼ 1, N ¼ large, psychometric study). These are 
not the same variables, because the representational 
content of the data being represented is not the same. 
That is, the data in the different slices of the data box 
have different meanings, and therefore the variables 
constructed from them have different meanings too. 
In this respect, it is actually confusing that often the 
same term is used to indicate both, for instance when 
a model for individual differences is compared to one 
for intraindividual time series, and variables in both 
models are indicated by the same word, e.g. ‘depressed 
mood’ (Bos et al., 2017).

Now, because the variables defined in this way are 
different, the statistical patterns that they form can be 
different as well. That is, they provide evidence for 
qualitatively different phenomena. Generally, we 
would expect the statistical patterns of those phenom
ena to be different. However, they might be the same 
in very specific cases. One of those is the case in 
which statistical patterns captured by a uniquely iden
tified statistical model and in which ergodicity holds. 
For this reason, we propose that it is useful to distin
guish between intra- and interindividual phenomena, 
where intraindividual phenomena are statistical pat
terns that characterize an individual, and interindivid
ual phenomena are patterns that characterize 
individual differences (see Figure 1):

Importantly, in many cases, data-analytic proce
dures followed to identify empirical phenomena will 
involve both contrasts in some way. We denote such 
empirical phenomena by the term combined phenom
ena. Such phenomena include relations between indi
vidual differences in person-specific means of time 
series and other individual differences, as when per
son-specific means in a time series of depression 
symptoms are related to neuroticism or gender.

The distinction between the different types of phe
nomena is best illustrated through examples. One para
digmatic example of an intraindividual phenomenon is 
the speed-accuracy tradeoff (Heitz, 2014). The speed 
accuracy tradeoff refers to the phenomenon that, if tasks 
are executed under increased time pressure, the prob
ability of errors in the task increases. This is an intrain
dividual phenomenon, because it denotes a statistical 
pattern (a negative correlation between speed and 
accuracy) that is formed by contrasting the individual’s 

responses to other responses by that same individual. 
Thus, an intraindividual phenomenon can, in principle, 
be demonstrated as a statistical pattern in data gathered 
in a single person.

A paradigmatic example of an interindividual phe
nomenon is the positive manifold of intelligence 
(Jensen, 1999; Spearman, 1904; Van der Maas et al., 
2006). The positive manifold is a statistical pattern of 
robust positive correlations between performance on 
different cognitive tasks. These correlations are com
puted over variables that represent responses of differ
ent individuals; thus, this is a contrast between the 
individual’s responses and other individuals’ responses. 
Hence, this is an interindividual phenomenon. An 
interindividual phenomenon cannot be demonstrated 
in the data of a single individual, because it requires the 
comparison of the individual with other individuals.

Combined phenomena, which involve both intrain
divdiual and interindividual contrasts, commonly arise 
from statistical approaches that simultaneously use both 
intra- and interindividual contrasts; as a consequence, 
many phenomena that are established through, say, 
multilevel modeling of multiple time series may be 
viewed as combined phenomena; this includes phenom
ena that involve interindividual contrasts that are cor
rected for intraindividual processes, as would for 
instance arise from applications of the random intercept 
cross-lagged panel model (Hamaker et al., 2015).

A paradigmatic example of a combined phenom
enon is the predictive relation between autoregressive 
coefficients for affect states in ESM time series and 
depression diagnoses (Kuppens et al., 2010; van de 
Leemput et al., 2014). Here, an intraindividual phe
nomenon is first identified in the form of the correl
ation between affect states at subsequent time points, 
where the individual’s current response is contrasted 
with other responses by the same individual. Then, in 
a second step, the differences between these autore
gressive coefficients are conjoined with depression 
diagnoses to form a higher order statistical pattern: a 
positive correlation between the value of these coeffi
cients and depression diagnoses.

In the following section we will use intra- and 
interindividual phenomena and discuss how they can 
be related to theories at the intra- and interindividual 
levels.

Connecting theories to intra- and 
interindividual phenomena

In order to connect to intra- and interindividual phe
nomena, a theory needs to have implications for these 
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phenomena. To achieve this, theories about how indi
viduals function (henceforth: intraindividual theories) 
have to specify a data generating mechanism for the 
individual person. This specification is akin to the 
intraindividual tradition of experimental psychology, 
as described by Cronbach (1957), and to time-series 
traditions in psychology. Theories about individual 
differences (henceforth: interindividual theories) need 
to specify how the data generating mechanism leads 
to individual differences. This specification is akin to 
the interindividual tradition of correlational psych
ology and its psychometric arsenal of methods.

In the present context, a key question is how inter
individual theories relate to intraindividual phenom
ena, and how intraindividual theories relate to 
interindividual phenomena. As shown by Molenaar 
et al. (2003), this relation cannot be made through 
direct statistical inference, since the level of the theory 
is not aligned with the level of the phenomenon. 
However, we argue that a relation can be established 
through a weaker “indirect” form of inference, which 
takes the form of constraints that phenomena on both 
levels can put on a given theory. We first discuss this 
type of indirect inference in more detail. We then 
cross the intraindividual-interindividual distinction 
with the theory-phenomena distinction, and evaluat
ing how the relevant phenomena can be be related to 
intra- and interindividual elements in psychological 
theories using different types of inferences.

Direct statistical inference vs. indirect types of 
inferences

In many popular methodological approaches in psych
ology, such as Item Response Theory (IRT) and 
Structural Equation Modeling (SEM), a preferred 
strategy for connecting theories to data is to construct 
a statistical model that is structurally similar to the 
theory. For instance, in confirmatory SEM, models are 
explicitly constructed in such a way that they resemble 
one’s theory as much as possible. Ideally, such a 
model is uniquely identified and testable against the 
data using a goodness-of-fit test. This approach is 
sometimes called one of direct inference, because the 
model makes contact with the data directly, typically 
using a likelihood function that assigns probabilities 
to all possible data patterns.

Using direct statistical inference of this kind limits 
the class of models that can be used to connect theo
ries to data. This is particularly difficult if we aim to 
test intraindividual theories using interindividual phe
nomena, as the requisite statistical models require the 
data to fulfill highly restrictive conditions (Adolf 
et al., 2014; Hamaker et al., 2007; Molenaar, 2004). In 
many cases, even though a theory can make predic
tions about phenomena at different levels, we cannot 
estimate or test the theory directly on the basis of a 
single dataset. This may be the case because the the
ory is unlikely to be isomorphic to any statistical 

Figure 1. Three kinds of phenomena in psychological research. Intraindividual phenomena are statistical patterns that result from 
contrasting the individual’s current state with other time points. Interindividual phenomena result from contrasting the individual 
with other individuals. Combined phenomena are statistical patterns that result from a combination of both contrasts. Prototypical 
examples are listed in boxes.
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model that may be uniquely identified by the data; for 
instance, because the theory is too complicated to be 
translated into an identified model.

However, it is still possible to assess the plausibility 
of a theory through its ability to explain empirical 
phenomena. This strategy is one of indirect inference 
(Haslbeck et al., 2022; Hosseinichimeh et al., 2016), 
both because the inferential relation between data and 
theory is mediated by statistical patterns (i.e., empir
ical phenomena) and because it does not uniquely 
identify the theory. The key concept to reason 
through this setting is the one of constraints. If we 
can imagine a set of theories S that predict, say, an 
interindividual phenomenon that we do not observe 
in the data at hand, then this finding constrains the 
set of all theories such that we can exclude S. The 
more informative the phenomena are with respect to 
the theory at hand, the stronger this constraint will 
be. For example, we would expect that, in general, 
intraindividual time series data will provide phenom
ena that result in stronger constraints for a system 
evolving over time than interindividual data. The 
complement of this set, which includes the theories 
whose predictions are consistent with a given set of 
phenomena, could be interpreted as an equivalence 
class. This concept is well-known to researchers famil
iar with causal inference, where the (conditional) 
dependencies in multivariate data constrain the causal 
graph only to an equivalence class containing all, for 
example, Directed Acyclic Graphs (DAGs, e.g., Peters 
et al., 2017) that could have produced the observed 
dependency structure.

In the remainder of this section, we investigate 
whether connections between intra- and interindivid
ual theories and intra- and interindividual phenomena 
can be made using the strategy of indirect inference.

Intraindividual theories and intraindividual 
phenomena

The relation between intraindividual theories and 
intraindividual phenomena is the most straightforward 
one from the perspective of psychology, which tends 
to focus on processes that characterize the individual 
human being. It epitomizes the earliest traditions of 
psychology (Murray, 2020), in which case studies were 
instrumental, for instance to test theories of functions 
like perception, sensation, and memory.

If intraindividual phenomena are to be explained, 
the system that the theory characterizes (e.g., mem
ory) and the phenomena (e.g., forgetting curves) are 
at the same level. This means that a theory of the 

target system can be relatively directly aligned with 
phenomena evidenced by the data. In modern psych
ology, this strategy is visible in the area of mathemat
ical psychology. A good example concerns research 
into the drift-diffusion model (Ratcliff & McKoon, 
2008; Wagenmakers et al., 2007), which describes the 
cognitive integration of evidence in two-choice 
response tasks, such as the lexical decision task 
(Ratcliff et al., 2004). The model is used to explain 
intraindividual phenomena, such as the speed-accur
acy tradeoff (van der Maas et al., 2011), which are 
established by analyzing large numbers of repeated tri
als that are gathered at the individual level.

In the case of the drift-diffusion model, the model 
is sufficiently simple that its parameters can be esti
mated directly from a single dataset (Wagenmakers 
et al., 2007). In other cases, intraindividual theories 
are too complicated to achieve this; examples of such 
a theoretical systems are the ACT-R framework 
(Anderson, 1996) and neuroscientific models like 
Dynamic Field Theory (Bhat et al., 2022). In these 
cases, model parameters are tuned by triangulating 
findings from different research designs, data sets, and 
other sources of information. Because the models are 
not directly identifiable, they are typically tested indir
ectly, via their capacity to describe and explain experi
mentally established phenomena.

Intraindividual theories and interindividual 
phenomena

In many situations, it is not possible to align intrain
dividual theories and intraindividual phenomena 
because the data needed to establish the intraindivid
ual phenomena are unavailable. This may be the case 
for various reasons; for instance, the intraindividual 
theory may connect events at a time scale that extends 
beyond the reach of empirical studies, the theory may 
concern unique and singular events that only occur 
once so that no variation should be expected at the 
intraindividual level, or we may lack assessment tech
niques that would be required to gather relevant data 
at the level of the individual.

Still, in many cases where it is impossible to estab
lish intraindividual phenomena, researchers do evalu
ate intraindividual theories, and they typically do this 
by comparing different individuals. Perhaps the most 
salient example of this approach is the randomized 
experimental design, in which causal effects are esti
mated by comparing mean differences between experi
mental conditions. In such a design, counterfactual 
causal reasoning is used to create an evidential link 
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between intraindividual theory and interindividual 
phenomena (robust differences in sample means). For 
example, in causal inference, the population mean of 
the control group may be assumed to equal the popu
lation mean of the experimental group under the 
counterfactual assumption that the latter group had 
not received the treatment (Holland, 1986). Note that 
the average treatment effect can only be used to make 
inferences about the treatment effect for an individual 
if we are willing to assume that all individual treat
ment effects are the same (Lamiell, 1987); critically, 
however, even without assuming homogeneity in indi
vidual causal effects, the average causal effect can still 
constrain the possible sets of individual causal effects.

In cases where experimental manipulations are 
infeasible, so that the randomized experimental design 
cannot be implemented, correlational data may be 
combined with causal assumptions to furnish a basis 
for causal inference (Holland, 1986; Pearl, 2009; 
Rohrer & Murayama, 2023; Weinberger, 2015). For 
example, in psychology, an important interindividual 
phenomenon concerns the correlation between indi
vidual differences in childhood abuse and individual 
differences in adult psychopathology. This phenom
enon may be explained through an intraindividual 
theory; for instance, childhood abuse may disrupt 
attachment, which may lead to distrust in other peo
ple, which may lead to paranoia (Isvoranu et al., 
2017). This is a case where direct statistical estimation 
is structurally infeasible, because ethical and practical 
constraints preclude the gathering of data that could 
inform such a process.

However, the intraindividual theory that childhood 
abuse causes adult psychopathology may still connect 
to the interindividual phenomenon via an explanatory 
link: if we assume that some individuals are exposed 
to abuse, while others are not, and run a simulation 
according to this scenario, we may find that the 
implied differences in means follow from the theory. 
Although this of course does not allow one to con
clude that the theory is correct, the interindividual 
phenomenon does put some constraints on the theory, 
because not all intraindividual theories could have 
generated the observed interindividual phenomena; 
therefore, theories that could not have generated these 
phenomena lose credibility.

Interindividual theories and interindividual 
phenomena

Typically, interindividual theories specify how interin
dividual differences in one dimension (e.g., genetic 

makeup) cause individual differences in another 
dimension (e.g., IQ-scores). For instance, common 
phrasings of the theory of general intelligence hold 
that (a substantial part of) the individual differences 
in the g-factor are caused by individual differences in 
genetic makeup, while the resulting differences in the 
g-factor themselves are expressed in a wide variety of 
cognitive tasks, as for instance included in typical 
intelligence tests (Jensen, 1999).

Interindividual theories will imply interindividual 
phenomena naturally, and, as is the case for the scen
ario where intraindividual processes explain intraindi
vidual phenomena, evaluation of the explanatory 
merits of a theory is relatively straightforward. 
However there is one important difference. While 
intraindividual theories need not reference individual 
differences at all, individual differences research 
always contains implicit assumptions about intraindi
vidual processes, because some intraindividual process 
is invariably necessary to connect the theory to the 
interindividual phenomena. For instance, for genetic 
makeup to be expressed in behavior, there must be 
functioning human bodies producing proteins and 
growing a brain. Thus, the theory must rely on at 
least a minimal set of assumptions characterizing the 
individual person. However, such assumptions take 
the form of background or auxiliary assumptions, in 
the sense that the theory is agnostic about them. That 
is, although genetic theories of the g-factor require 
some intraindividual process to be operational, they 
do not commit to a particular intraindividual process. 
For example, it does not matter for the interindividual 
theory whether genetic effects on IQ are transferred 
via brain volume (Posthuma et al., 2002), via neural 
plasticity (Garlick, 2002), or via a myriad of processes 
(Kievit et al., 2014); at least one such route must exist, 
but which one is operational is evidentially neutral 
with respect to the theory (Weinberger, 2015).

Interindividual theories and intraindividual 
phenomena

In the previous cases, the link from theory to data 
could be constructed in terms of implications of the 
theory. Interindividual theories have implications for 
interindividual phenomena; intraindividual theories 
can both have implications for intra- and interindivid
ual phenomena. As a result, these phenomena can 
constrain the set of candidate theories, because theo
ries that fail to explain them lose credibility.

This is not the case for the combination of interin
dividual theories and intraindividual phenomena, 
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because even though interindividual theory does 
implicitly call on some intraindividual process, the 
nature of this process is not usually an explicit part of 
the theory. As a result, it seems one cannot derive 
intraindividual phenomena from such a theory, either 
through simulation or through mathematical analysis. 
If this conclusion is correct, interindividual theories 
cannot explain intraindividual phenomena.

Nevertheless, there are examples in which intraindi
vidual phenomena do provide some evidence for 
interindividual theories because they support intrain
dividual theories that are known to be consistent with 
interindividual theories. An example occurs in 
research that utilizes a link between the IRT model—a 
model for interindividual differences—and the drift- 
diffusion model—a model for intraindividual proc
esses (Tuerlinckx & De Boeck, 2005). In this research 
line, it has been shown that if data are generated 
through a drift-diffusion model, and individuals differ 
in the parameters of that model, then the resulting 
patterns of correct and incorrect responses will be 
described by an Item Response Theory (IRT) model 
(with the IRT parameters a direct function of the dif
fusion parameters). As a result, intraindividual phe
nomena (e.g., the speed-accuracy tradeoff) that 
indicate that the intraindividual process is in fact 
described by the drift-diffusion model indirectly bol
ster confidence in the adequacy of the interindividual 
theory, because we know that if the intraindividual 
theory is correct, the interindividual theory must also 
be correct. Thus, even though the intraindividual 
model functions as an auxiliary relative to the interin
dividual theory (the IRT model does not imply the 
diffusion model for the response process), if we know 
the intraindividual model has a particular structure 
then we know the interindividual theory must hold 
(the drift-diffusion model for the response process 
does imply the IRT model).

Developing an intraindividual theory with 
phenomena on all levels

Theories, as we interpret them here, stipulate that the 
world has a certain structure. The theory putatively 
explains phenomena if they would follow “as a matter 
of course” (Peirce, 1931) if the world indeed had that 
structure. This means that we can derive phenomena 
at different levels from a theory and use those to test 
and develop the theory. In this section, we demon
strate this by simulating theory-implied intraindivid
ual, interindividual, and combined phenomena from 
an intraindividual theory of panic disorder 

(Robinaugh et al., 2019) and discussing how they can 
be compared to empirical phenomena to test and 
develop the theory.

Deriving phenomena on different levels requires 
formalization

To study this relation, we need to evaluate which phe
nomena follow from a given theory. If the theory is 
stated in a purely verbal manner, this is difficult, for 
two reasons. First, verbal theories are in almost all 
cases imprecise, by which we mean that different for
mal theories which can make competing predictions 
are consistent with them (Farrell & Lewandowsky, 
2018). And second, even if the theory is precise, if it 
involves more than a few components that are related 
in a non-linear way, humans are generally unable to 
intuit its implications. The field of complexity science 
illustrates this, as it contains many studies of simple 
systems that have unexpected and complex behaviors 
(Mitchell, 2009). For example, the extremely simple 
logistic map creates phase transitions and determinis
tic chaos (May, 1976) and a model consisting of three 
simple local rules is able to create flocking behavior of 
birds (Reynolds, 1987).

We think that the systems we are studying in psy
chological research are almost certainly of that nature, 
which suggests that verbal theories are too imprecise to 
yield clear implications and therefore formalized theo
ries are needed (Borsboom et al., 2022; Fried, 2020; 
Haslbeck et al., 2022; Robinaugh et al., 2021; Smaldino, 
2017; van Rooij & Baggio, 2021). A theory that is for
malized into a mathematical or computational model 
will generally allow one to derive statistical patterns that 
should follow from it, either analytically or through 
simulation, which is particularly useful in cases where 
intuition fails. Thus, after we have cast the theory in 
mathematical form, we can investigate which phenom
ena follow from the theory, for instance by simulating 
data under the assumption that the theory is true. In 
principle, such phenomena could either be intraindivid
ual, interindividual, or combined.

A brief overview of a computational model of 
panic disorder

Panic disorder is a psychiatric syndrome characterized 
by recurrent panic attacks and persistent patterns of 
behavioral changes, such as avoidance of situations 
that may trigger panic attacks (American Psychiatric 
Association, 2013). The computational model of panic 
disorder proposed by Robinaugh et al. (2019) suggests 
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that panic disorder is the result of three interlocking 
feedback loops, shown in Figure 2.

Firstly, there is an reinforcing feedback loop between 
Arousal and Perceived Threat (Clark, 1986), in which 
Arousal can trigger Perceived Threat and Perceived 
Threat can, in turn, lead to higher Arousal. This feed
back loop is moderated by Arousal Schema, which is a 
set of beliefs and associations regarding the threat posed 
by Arousal. For instance, a person may hold the belief 
that increased heart rate and palpitation (Arousal) may 
be signs of a medical condition, which leads the person 
to interpret them them as potentially dangerous 
(Perceived Threat). Thus, when Arousal Schema is high, 
the effect of Arousal on Perceived Threat is increased 
and it can create a positive feedback loop that causes 
substantially elevated levels of Arousal and Perceived 
Threat, a state known as a panic attack. Panic attacks 
eventually terminate through the operation of homeo
static feedback processes (H), which serve to restore 
Arousal to a normal level.

Second, Perceived Threat and Escape Behavior 
(e.g., fleeing the location where a Panic Attack takes 
place) are linked through a dampening feedback loop, 
where heightened Perceived Threat causes an individ
ual to act in a way that reduces the perceived conse
quences of higher Arousal. As this behavior reduces 
Perceived Threat, it helps keep Arousal and Perceived 
Threat in balance. The individual’s Escape Schema— 
their beliefs in their ability to cope with Perceived 
Threat without engaging in Escape Behavior—moder
ates the strength of this loop, with higher Escape 
Schema meaning that already low levels of Perceived 
Threat can trigger Escape Behavior.

Finally, there is a third feedback loop in the system 
through which individuals can learn how dangerous 
Arousal is perceived (Arousal Schema) and the 

amount of Perceived Threat that can be tolerated or 
managed while refraining from Escape Behavior 
(Escape Schema). Unlike the fast feedback between 
Arousal and Perceived Threat and between Perceived 
Threat and Escape Behavior, which operates on a time 
scale of minutes, this third feedback loop is slow and 
operates on a time scale of days to weeks. It is also 
essential to note that the learning process, and thus 
the change of Arousal Schema and Escape Schema, 
relies upon the collective behavior of Arousal, 
Perceived Threat, and Escape Behavior (which is sig
nified by the parallel arrows originating from the grey 
box that encompasses all fast-moving components). If 
Arousal remains close to equilibrium and Perceived 
Threat remains low, then learning is not possible and 
Arousal Schema and Escape Schema remain unaltered. 
However, if Arousal and Perceived Threat become sig
nificantly elevated (e.g., if a panic attack occurs) then 
learning is possible.

What is learned critically depends on whether 
Escape Behavior is shown. If Escape Behavior is not 
carried out during a panic attack, so that the attack is 
endured, this may lead the individual to learn that such 
behavior is not necessary and that Arousal is not some
thing to be feared (increasing Escape Schema and 
decreasing Arousal Schema). This putatively explains 
the effectiveness of exposure therapy (Robinaugh et al., 
2019). On the other hand, if Escape Behavior is 
employed, the individual is likely to infer that the 
anticipated catastrophe would have been realized if they 
had not taken such action (decreasing Escape Schema 
and increasing Arousal Schema). This increased Arousal 
Schema then makes the individual more likely to be 
exposed to heightened arousal and situations that would 
lead to further Arousal, while they become more hesi
tant to enter these situations (N and C in Figure 2, 
respectively). Ultimately, this can lead to panic disorder, 
in which recurrent panic attacks cause a systematic and 
enduring disruption of a person’s life. For a precise 
description of all components and relationship, and a 
detailed analysis of the behavior of the model we refer 
the reader to Robinaugh et al. (2019).

Generating data from the computational model

The fact that the panic disorder model is a computa
tional model implies that all relationships are precisely 
specified. Given a set of initial values for all variables, 
this allows us to compute the behavior of the model 
arbitrarily far into the future. To illustrate how this 
computational model can imply intraindividual, inter
individual and combined phenomena, we simulate 

Figure 2. The causal diagram of the computational model of 
Panic Disorder by Robinaugh et al. (2019). The components 
within the grey box are fast-changing processes at a time scale 
of minutes; the components outside are slow-changing proc
esses on a time scale of days.
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four weeks of data from N¼ 500 persons. The persons 
differ in their initial values of Arousal Schema and 
Escape Schema, which are chosen such that about 
20% of individuals develop panic disorder within the 
four weeks. The data of days 13 and 14 of Person 1 
are displayed in Panel A of Figure 3. We see that 
Arousal and Perceived Threat display variation at low 
levels until noon on day 13. This variation represents 
natural variation in Arousal, for example due to walk
ing up the stairs or drinking coffee. However, at 
around 13h a perturbation of Arousal is large enough 
to kick off an escalating feedback loop between 

Arousal and Perceived Threat which culminates into a 
panic attack. After 5-20 min, the homeostatic feedback 
mechanism kicks in and brings Arousal (and therefore 
also Perceived Threat) back to normal levels. Since 
Escape Schema is low, Person 1 immediately shows 
Escape Behavior once Perceived Threat is elevated. 
Once Perceived Threat is low again, Escape Behavior 
also goes back to normal levels. We see two more 
panic attacks, one on the evening of day 13 and 
another on the evening of day 14.

The variables Arousal Schema and Escape Schema 
change at a slower time scale than Arousal, Perceived 

Figure 3. How the Panic Disorder model implies different types of phenomena. (a) Simulated data from days 14 and 15 of Person 
1; we display the variables Arousal, Perceived Threat, Escape Behavior, Arousal Schema and Escape Schema; (b) A VAR model fitted 
to the Arousal (A) and Perceived Threat (PT) values measured at a minute time scale from Person 1; (c) Partial correlations 
between five symptoms, estimated based on a cross-sectional dataset consisting of the 500 simulated individuals; (d) The bivariate 
distribution of the lagged effect of PT on A and the symptom sum score in the last week in the sample of the 500 simulated 
individuals.

MULTIVARIATE BEHAVIORAL RESEARCH 1301



Threat and Escape Behavior. We see that they are 
constant during day 13. However, Person 1 experi
enced two panic attacks on that day and showed 
Escape Behavior. They therefore learned that Arousal 
has potentially dangerous consequences, which were 
only avoided by showing Escape Behavior. As a conse
quence, Arousal Schema increases and Escape Schema 
decreases after day 13. On day 14 another panic attack 
occurs during which Person 1 shows Escape Behavior, 
which means that Arousal (Escape) Schema will again 
increase (decrease) during the next day. This shows 
that Person 1 is on the path of developing increasingly 
severe symptomatology that moves toward Panic 
Disorder. In fact, we initialized Person 1 with an 
Arousal Schema value of 0.812 and an Escape Schema 
value of 0.119, which means that a number of panic 
attacks must have occurred already before day 13. The 
code to repeat the simulation and reproduce the 
results shown in Figure 3 can be found at https:// 
github.com/jmbh/withinbetweentheory.

Deriving intraindividual, interindividual, and 
combined phenomena

One way to examine the predictions of the computa
tional model is to visualize the generated time series 
data and discuss its behavior qualitatively, as we have 
just done. In this way, we could also compare the 
simulated time series with a corresponding empirical 
time series, and thereby evaluate to what extent the 
computational model is faithful to reality. While eye
balling the data is often useful, it has the obvious limi
tations that it is not transparent or reproducible, and 
that it provides no principled way to separate signal 
from noise. We therefore typically summarize time 
series data in statistical models, which we see as tools 
to establish empirical phenomena (Borsboom et al., 
2021; Haslbeck et al., 2022).

Intraindividual phenomenon
Focusing again on Person 1, we can summarize the 
time series by assessing how strongly variables are 
correlated with each other across a certain timespan. 
For example, we might be interested in extent to 
which Arousal at time t is correlated with itself one 
minute later at time point tþ 1. Extending such rela
tionships to several variables leads to the Vector 
Autoregressive (VAR) model (Hamilton, 1994), which 
jointly models all variables at t as a linear function of 
all variables at one or several time points before, e.g., 
t − 1, t − 2, :::: In panel B of Figure 3 we display the 
conditional auto- and cross-correlations of a lag-1 

VAR model estimated from minute-level measure
ments of Arousal and Perceived Threat of Person 1. 
Since these relationships are created by contrasting 
(or relating) measurements of the same subject, we 
consider this VAR model to represent an intraindivid
ual phenomenon.

How would we use this intraindividual phenom
enon to develop a theory of panic disorder? First, we 
need to estimate the corresponding VAR model from 
empirical data. These empirical data are sampled from 
Person 1 in the case of truly idiographic research, or a 
population of individuals that can considered inter
changeably. Since we know the data generating model, 
we know that the VAR model does not correctly spe
cify the data generating model in its full complexity. 
There are several reasons for this: Variables are omit
ted (e.g., Arousal Schema), the discrete minute-time 
scale does not match the continuous time of the gen
erating model, and the VAR model is functionally 
misspecified in that it only includes linear relation
ships, while the true relationships are non-linear. This 
means that we generally have no guarantees for mak
ing accurate direct inferences from the VAR parame
ters about the mechanics of the generating model (see 
also Haslbeck et al., 2022; Haslbeck & Ryan, 2022).

However, we can think of the VAR estimates as 
phenomena to be explained by a computational model 
of panic disorder, which in this way put constraints 
on such a model. For example, we could collect 
experience sampling data from a given individual and 
estimate a VAR model on that data. Similarly, we can 
simulate time series data from the current iteration of 
the computational model and estimate a model- 
implied VAR model on those simulated data. Now, if 
the model-implied VAR model in Panel B is very dif
ferent from its empirical counterpart, we know that 
our computational model needs to be improved, and 
we can use our understanding of the model and the 
substantive matter to propose changes to the model 
that would imply VAR models that better match its 
empirical counterpart. Importantly, however, for this 
comparison to work, the measurement frequency in 
the empirical data (perhaps every 2h) and in the 
simulated data (in principle infinite for continuous- 
time models) must be matched. In this example, this 
can be achieved by subsampling the simulated data to 
match the empirical measurement frequency. See also 
Ryan et al. (2023a) who validate a computational 
model of emotion dynamics by evaluating whether it 
reproduces phenomena captured by VAR models 
found typically in empirical data.
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This example illustrates an interesting point: even if 
the levels of theory and phenomenon are aligned such 
as in this case, we may need to resort to the constraint- 
based type of theory development. We think that this 
might be the norm rather than the exception in theory 
development due to the fact that most statistical models 
are gravely misspecified in most situations due to miss
ing variables, functional misspecification or limitations 
of measurements.

Interindividual phenomenon
To derive an interindividual phenomenon, we con
sider data from all of the 500 simulated persons. For 
each person, we determine the five symptoms experi
ence of panic attacks (P), distress during panic attacks 
(D), fears related to panic attacks (F), avoidance of 
behaviors (AvB), and avoidance of contexts (AvC) 
from the Panic Disorder Severity Scale (PDSS; Houck 
et al., 2002). The symptoms are assessed in each of 
the four weeks, and are scored on a 0-4 Likert Scale. 
The symptoms are scored by creating a mapping from 
the minute-level data stream of all variables within a 
given week to the five answer categories of the ordinal 
scale. We did this for each of the five symptoms in a 
way that we found is most faithful to the precise 
wording of the symptom in the PDSS. The exact map
ping can be found in Ryan et al. (2023b) and our 
reproducibility archive (https://github.com/jmbh/with
inbetweentheory). We then estimate a Gaussian 
Graphical Model (GGM) on the symptom scores in 
the last week using the graphical lasso (Epskamp 
et al., 2018; Friedman et al., 2008). Panel C in Figure 
3 displays the partial correlations of the GGM. 
Because the variables in the model are defined by con
trasting individuals to each other, we consider the 
symptom network in panel C an interindividual phe
nomenon. Note that the variables defined in this way 
integrate symptomatology over a time period (a week, 
in this case), which means that time information is 
present in the scores, even if these are contrasted 
interindividually. We will return to this implicit use of 
time information in the discussion.

Similarly to the intraindividual phenomenon, this 
interindividual phenomenon can be used as a con
straint on theories about panic disorder that include 
inter-individual differences. For instance, if we esti
mated a GGM on corresponding empirical symptom 
data and found a much stronger relationship between 
the experience of panic attacks (P) and the avoidance 
of contexts (AvC), we would need to adapt the com
putational model to account for such a strong rela
tionship. Importantly, this change might be made in a 

part of the model specifying the intraindividual 
dynamics of every individual in the model, which in 
interaction with inter-individual differences makes 
predictions about the interindividual correlation 
between the symptoms P and AvC.

A concrete example of how interindividual phe
nomena can guide the development of an intraindi
vidual theory can be found in Haslbeck et al. (2022), 
where the authors simulated from an earlier version 
of the panic model of Robinaugh et al. (2019) which 
showed that panic attacks always co-occurred with the 
panic disorder symptoms persistent worry and avoid
ance behavior. However, when analyzing a large epi
demiological survey (Alegria et al., 2007), they found 
that some people have occasional panic attacks but do 
not develop any further symptoms of panic disorder. 
This mismatch between intraindividual theory and 
interindividual phenomenon led to the current version 
of the model which includes the additional compo
nent Escape Schema (see Figure 2).

Combined phenomenon
To derive a combined phenomenon implied from the 
model, we again consider the data of all N¼ 500 sub
jects. We estimate the VAR model shown in panel B 
for each subject, and also record the PDSS symptom 
sum score of each subject in the last week. Panel D of 
Figure 3 displays the distribution over the lagged 
effect of Perceived Threat at time t − 1 on Arousal at t 
and the PDSS score. We see that individuals with a 
stronger statistical association between Perceived 
Threat at t − 1 on Arousal at t tend to have higher 
symptom sum score in the last week. This is roughly 
consistent with the general dynamics of the data gen
erating model, in which a stronger feedback loop 
between Arousal and Perceived Threat leads to higher 
vulnerability to Panic Attacks. To define this phenom
enon via the probability distribution over the VAR 
parameter and the symptom sum score we first used 
many intraindividual contrasts to obtain the VAR 
coefficients; and then used interindividual contrasts to 
create the bivariate distribution in panel D. We there
fore refer to this phenomenon as a combined phe
nomenon. Similar to the intra- and interindividual- 
phenomena discussed above, this phenomenon can be 
used in theory development in the sense of a con
straint: If the corresponding bivariate distribution in 
empirical data looks very similar, we would take this 
as evidence for the adequacy of our computational 
model; if not, we would use it to propose changes that 
lead to mode-implied distributions that are closer to 
the empirical one.
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Discussion

The question of how our understanding of individual 
persons relates to different types of data that use 
intra- and interindividual contrasts is central to psy
chological science. Molenaar (2004) put the issue 
squarely on the methodological research agenda, and 
his paper has been an important motivation for the 
development of techniques suited to address intraindi
vidual data on their own terms (Bringmann et al., 
2017; Epskamp et al., 2018; Fisher et al., 2017; Gates 
& Molenaar, 2012; Hamaker, 2012). In combination 
with the ever increasing technological possibilities for 
gathering data through digital devices (Conner & 
Barrett, 2012; Miller, 2012; Trull & Ebner-Priemer, 
2014), this movement is reshaping the field of scien
tific psychology rapidly.

However, even though the relation between statis
tical models and data is quite clear in its implications 
for how the intra- and interindividual levels relate 
(Molenaar, 2004; Molenaar et al., 2003), the relation 
between scientific theories and data is less straightfor
ward. In particular, it is not always clear how different 
types of data can inform theories, and a systematic 
framework of studying this question is lacking. In the 
present paper, we have proposed that such a frame
work can be realized through the combination of the 
theory-phenomena-data distinction and the formaliza
tion of theories. Formalized theories can be used to 
derive implications in the form of empirical phenom
ena—robust statistical patterns—that we should expect 
to see if the theory were true. This feature makes it 
possible to answer the question of whether and how 
different kinds of data may weigh in on a given the
ory, by considering how the phenomena they evidence 
constrain the space of candidate theories.

Our analysis of the computational model of panic 
disorder demonstrates that a psychological theory can 
imply both intra- and interindividual phenomena. If a 
theory is able to do this, it can draw evidence from 
either of these sources in the form of giving successful 
explanations of intraindividual, interindividual, or 
combined phenomena. Conversely, each type of phe
nomenon can constrain the theory, in the sense that it 
limits the degree to which the theory can be varied 
without losing the explanatory connection to the phe
nomena. This aligns with the hard-to-vary principle 
proposed by Deutsch (2012): the degree to which one 
can vary functional details of the explanation is 
inversely proportional to the explanatory power of the 
theory. Using this focus on explanation, researchers 
may simulate implications of theories in various data 
types. In this way, we may be able to determine, on a 

case by case basis, whether they would gain better 
information from gathering and analyzing time series, 
mean differences, experimental effects, or interindivid
ual correlations.

Importantly, our characterization of intraindividual, 
interindividual, and combined phenomena is framed 
in terms of comparisons that a researcher makes. 
However, there are also comparisons that participants 
engage in when they answer psychometric items. For 
example, questions that require integration over infor
mation over time windows arise often in cross-sec
tional measurements (Ryan and Dablander, n.d.), for 
instance when psychopathology researchers ask a per
son how well they have slept over the past two weeks, 
or when personality researchers probe how often par
ticipants engage in certain behaviors in general. And 
even in time series measurements, questions are often 
not with respect to the current state but with respect 
to the time period since the last measurement 
(Haslbeck & Ryan, 2022). This suggests that a subset 
of the phenomena we label as interindividual phe
nomena may be implicitly combined, because the rep
resentational content of the data involves an implicit 
integration over a time domain. How to deal with this 
issue is an important open question in this domain, 
and while it is beyond the score of the present paper, 
we think this problem deserves more psychometric 
scrutiny than it currently enjoys.

Another interesting issue is the question of where 
causal effects should be situated. Often, research into 
causal effects uses interindividual contrasts (e.g., in a 
simple Randomized Controlled Trial with a single 
measurement occasion). Because, in the current 
framework, we have defined empirical phenomena as 
statistical patterns in data, this means that observed 
mean differences between experimental conditions 
classify as interindividual phenomena. The interpret
ation of these mean differences in terms of causal 
effects then rests on the explanation of interindividual 
phenomena in terms of an intraindividual theory. 
Thus, intraindividual causal theories explain interindi
vidual phenomena (mean differences between groups), 
and as a result the interindividual phenomena form 
evidence for these theories. Now, as the evidence 
mounts, so that the experimental findings become 
highly robust and replicable (e.g., think of the speed- 
accuracy tradeoff or the Stroop effect in psychology), 
then the inferred intraindividual causal relations can 
themselves become explanatory targets of a more 
expansive theory. In this way, the existence of mecha
nisms that were originally posited in the context of an 
explanatory theory can become a phenomenon to be 
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explained in the context of a deeper explanatory the
ory. Examples of such changes abound in science; for 
instance, although germs were originally posited as 
hypothetical entities that explained disease transmis
sion, currently they are so well evidenced that deeper 
theories can be developed to explain their existence; 
as a result, the existence of germs has changed from a 
hypothesis in a tentative explanatory theory to a 
robust fact that can itself be a target of explanation. 
One can imagine an explanatory hierarchy of empir
ical phenomena in which the intuitive interpretation 
of phenomena changes, for instance from interindivid
ual to intraindividual, when the evidence is considered 
so secure that the intraindividual explanation of inter
individual phenomena attains the status of empirical 
fact, which may itself be explained by a deeper theory. 
In terms of such a hierarchy, the type of empirical 
phenomena we have worked with here would be situ
ated at the relatively low level of empirical generaliza
tions (Haig, 2008). Further research is needed to 
evaluate the structure of such a hierarchy and to 
investigate its consequences for thinking about the 
relation between intra- and interindividual theories 
and phenomena.

As we have shown, if one has a formalized theory, 
one can evaluate a) which intra- and interindividual 
phenomena the theory implies, and b) how such phe
nomena can inform intra- and interindividual parts of 
the theory. This has direct implications for the organ
ization of research and the connection between the two 
disciplines Cronbach (1957) identified. For example, if 
the theory implies that two variables should be corre
lated intraindividually, an ESM design can be combined 
with an Vector Autoregressive model. If the theory 
implies that randomized interventions should produce 
mean differences, an experimental study can be used in 
combination with an analysis of variance. If the theory 
implies that individual differences on questionnaire 
items should be unidimensional, a correlational study 
can be combined with a factor analysis to study this. 
Importantly, as the panic disorder example shows, one 
and the same theory can carry implications in all of 
these directions. Therefore, such theories should be able 
to form structures that connect the methodological tra
ditions of psychology, because they can serve as focal 
points for the interaction between theorists and empir
ical researchers and coordinate research efforts 
systematically.

Importantly, these bridges between traditions are 
afforded by the addition of phenomena as intermedia
ries between theories and data (Bogen & Woodward, 
1988; Woodward, 2011). We think that a focus on 

this level may lead to improvements in the method
ology of indirect inference (Haslbeck et al., 2022; 
Hosseinichimeh et al., 2016). In our view, such 
approaches should play an important role in future 
psychological research, as the discipline moves toward 
the construction of stronger psychological theory 
(Borsboom et al., 2021; Fried, 2020; Robinaugh et al., 
2021; van Rooij & Baggio, 2021).
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