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ABSTRACT
The Ising model is a model for pairwise interactions between binary variables that has become
popular in the psychological sciences. It has been first introduced as a theoretical model for the
alignment between positive (1) and negative (�1) atom spins. In many psychological applica-
tions, however, the Ising model is defined on the domain {0, 1} instead of the classical domain
f�1, 1g: While it is possible to transform the parameters of the Ising model in one domain to
obtain a statistically equivalent model in the other domain, the parameters in the two versions
of the Ising model lend themselves to different interpretations and imply different dynamics,
when studying the Ising model as a dynamical system. In this tutorial paper, we provide an
accessible discussion of the interpretation of threshold and interaction parameters in the two
domains and show how the dynamics of the Ising model depends on the choice of domain.
Finally, we provide a transformation that allows one to transform the parameters in an Ising
model in one domain into a statistically equivalent Ising model in the other domain.
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Introduction

The Ising model is a model for pairwise interactions
between binary variables that originated in statistical
mechanics (Glauber, 1963; Ising, 1925) but is now used
in a large array of applications in the psychological sci-
ences (e.g., Afzali et al., 2017; Borsboom & Cramer,
2013; Boschloo et al., 2015; Boschloo, Schoevers, van
Borkulo, Borsboom, & Oldehinkel, 2016; Cramer et al.,
2016; Dalege et al., 2016; Deserno, Borsboom, Begeer, &
Geurts, 2017; Fried et al., 2015; Haslbeck & Fried, 2017;
Marsman, Maris, Bechger, & Glas, 2015; Marsman,
Tanis, Bechger, & Waldorp, 2019; Rhemtulla et al.,
2016; Savi, van der Maas, & Maris, 2018; van der Maas,
Kan, Marsman, & Stevenson, 2017).

The original Ising model has been introduced as a
model for the interactions between atom spins, which
can be positive (1) and negative (�1) (Brush, 1967). In
this setting, with variables taking values in the domain
f�1, 1g, the interaction parameters in the Ising model
determine the alignment between variables: If an inter-
action parameter between two variables is positive, the
two variables tend to take on the same value; on the
other hand, if the interaction parameter is negative,
the two variables tend to take on different values.

In most psychological applications, however, the
Ising model is defined with variables taking values in
the domain {0, 1}. While it is possible to transform
the parameters of a given Ising model in one domain
to obtain a statistically equivalent model in the other
domain, the parameters in the two versions of the
Ising model lend themselves to different interpreta-
tions and imply different dynamics, when studying
the Ising model as a dynamical system. If unaware of
those subtle differences, one might erroneously apply
theoretical results from the f�1, 1g domain to a
model estimated in the {0,1} domain, or simply inter-
pret parameters incorrectly. To prevent such confu-
sion in the emerging psychological networks literature
which makes heavy use of the Ising model, we provide
a detailed discussion of both versions of the Ising
model in the present tutorial paper.

We begin by discussing the different interpretations
of the Ising model in the f�1, 1g and {0, 1} domain in
the Section “Different domain, different interpretation”
using a simple example with two variables which allows
the reader to follow all calculations while reading. We
explain the differences in the interpretation of the
threshold and interaction parameters in the two ver-
sions of the Ising model, and discuss in which situation
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which version might be more appropriate. While most
psychological applications of the Ising model use it as a
statistical model, it has also been studied as a dynamical
system in psychological research (e.g., Cramer et al.,
2016; Dalege et al., 2016; Lunansky, van Borkulo, &
Borsboom, 2019). In the Section “Different domain, dif-
ferent dynamics” we discuss how the dynamics of the
Ising model depends on the choice of domain, and
show that the domain changes the qualitative behavior
of the model. Finally, in the Section “Transforming
from f�1, 1g to {0, 1} and vice versa” we provide a
transformation that allows one to transform the param-
eters in an Ising model in one domain into a statistically
equivalent Ising model in the other domain.

Different domain, different interpretation

In this section we estimate an Ising model with p¼ 2
variables in both domains, f�1, 1g and {0, 1}, and
show that the resulting threshold and interaction
parameters have different values and lend themselves
to different interpretations. We choose the p¼ 2 vari-
able case to make the explanation as accessible as pos-
sible. However, all results immediately extend to the
general situation with p variables. The Ising model for
two variables is given by

Pðy1, y2Þ ¼ 1
Z
exp fa1y1 þ a2y2 þ b12y1y2g, (1)

where y1, y2 are either elements of f�1, 1g or {0, 1},
Pðy1, y2Þ is the probability of the event (y1, y2), a1, a2, b12
are parameters in R, and Z is a normalization constant
which denotes the sum of the exponent across all pos-
sible states. There are 2p ¼ 4 states in this example.

To illustrate the differences across models, we gen-
erate n¼ 1000 samples of the labels A, B with the
relative frequencies shown in Table 1. In applications,
the labels A, B can stand for any pair of categories
such as being for or against something, some event
having happened or not, or a symptom being present
or not. The two domains are two different ways to
numerically represent these labels.

We obtain the Maximum Likelihood Estimates (MLE)
of the parameters in two different ways: Once, by filling in
f�1, 1g for {A, B}; and once by filling in f0, 1g for {A, B}.
Figure 1 summarizes the two resulting models. The first
column in Figure 1 shows the parameter estimates a1, a2,

and b12, and log potentials in domain f�1, 1g: We first
focus on the interpretation of the interaction parameter
b12. To understand the interpretation of this parameter
we take a look at the log potentials for all of the four pos-
sible states fð�1, � 1Þ, ð�1, 1Þ, ð1, � 1Þ, ð1, 1Þg, which
we obtain by plugging the four states into the expression
within the exponential in Equation (1). The resulting log
potentials are displayed in the second row in Figure 1
and show us the following: If b12 becomes larger, the
probability of the states ð�1, � 1Þ, ð1, 1Þ increases rela-
tive to the probability of the states ð�1, 1Þ, ð1, � 1Þ:
This means that the interaction parameter determines
the degree of alignment of two variables. That is, if
b12 > 0 the same labels align with each other, and if
b12 < 0 opposite labels align with each other. In
other words, b12 models the probability of the states
ð�1, � 1Þ, ð1, 1Þ relative to the probability of the
states ð�1, 1Þ, ð1, � 1Þ:

This is not the case in the f0, 1g domain. The
second column in Figure 1 shows that the parameter
estimates a�1, a

�
1, b

�
12 in domain f0, 1g, and we see that

they have different values than in the f�1, 1g domain.
To understand why this is the case, we again look at
the interpretation of the interaction parameter b�12 by
inspecting the four log potentials. The key observation
is that b�12 only appears in the log potential of the
state (1, 1). What happens if b�12 increases? Then
the probability of the state (1, 1) increases relative to
the probability of all other states ð0, 1Þ, ð1, 0Þ, ð0, 0Þ: In
other words, b�12 models the probability of state (1, 1)
relative to the probability of the states ð0, 1Þ, ð1, 0Þ, ð0, 0Þ:

Next, we turn to the interpretation of the threshold
parameters. If all interaction parameters are equal to
zero, the threshold parameters in both domains indicate
the tendency of a variable to be in one state or the other.
That is, a, a� > 0 implies a larger probability for the
states ð1Þ 2 f0, 1g, ð1Þ 2 f�1, 1g than for states ð0Þ 2
f0, 1g, ð�1Þ 2 f�1, 1g: If a, a� < 0 the reverse is true,
and if a, a� ¼ 0, the corresponding states have both
probability 0.5. However, in the general case in which
interaction parameters are allowed to be nonzero, the
interpretation depends on the domain: In the f�1, 1g
domain the threshold parameter indicates the tendency
of a variable averaged over all possible states of all other
variables. In more formal terms, the threshold parameter
of a given variable indicates the marginal mean of that
variable. In contrast, the threshold in the f0, 1g domain
indicates the tendency of a variable when all other varia-
bles are equal to zero. We return to the different inter-
pretations of thresholds in the Section “Different
domain, different dynamics”, in which we discuss the
dynamics of the Ising model.

Table 1. Relative frequency of states in the example data set.

A B
A
B

0:14 0:18
0:18 0:50

� �
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In this section, we showed that depending on its
domain, the parameters of the Ising model have different
interpretations. What are the consequences for applied
researchers? In terms of reporting, it is important to state
which domain has been used such that the reported
model can be re-used in the correct way: If someone
reports a set of parameters estimated from in the f0, 1g
domain, and a reader applies it to the f�1, 1g domain
they will obtain the incorrect probabilities. Note that in
order to use the model one also has to report the thresh-
old parameters. Not reporting the threshold parameters
is a common problem and irrespective of the issue dis-
cussed in this paper. The only situation in which the
domain does not matter is if the only goal is to compare
the relative size of interaction parameters since the rela-
tive size is the same in both domains (see Section
“Transforming from f�1, 1g to {0, 1} and vice versa”).

The second consequence is that researchers have to
choose which version of the Ising model is more appro-
priate for the phenomenon at hand. The above clarified
interpretations of the Ising model in its two different
domains allow to take this decision. For example, the
f�1, 1g parameterization may be more plausible for
labels that are not qualitatively different, but rather
opposing each other in some way such as supporting or
opposing a certain viewpoint, for example agreeing or

disagreeing with a statement like “Elections should be
held every two years instead of every four years.” This
also reflects the origin of the Ising model as a model for
atom spins, which are either positive or negative. The
parameterization implied by {0, 1} could be more
appropriate if the two labels are qualitatively different,
such as the presence or absence of an event or a charac-
teristic. Take psychiatric symptoms as an example:
While it seems plausible that fatigue leads to lack of con-
centration, it is less clear whether the absence of fatigue
also leads to the increase of concentration. In such a
case, we can encode the possible belief that the absence
of something cannot have an influence on something
else by choosing the {0, 1} domain. Importantly, the
decision of which version to pick has to be based on
information beyond the data, because the models are
statistically equivalent and therefore cannot be distin-
guished by observational data. In Appendix A we prove
this equivalence for the example shown in Figure 1.

While Ising models in psychological research are
usually fit to cross-sectional data, one is typically
interested in within-subjects dynamics. In this context,
one is often interested in inferring from an estimated
Ising model how to best intervene on the system. In
the next section we will show how the dynamics of

Figure 1. The threshold and interaction parameters estimated from the data generated from Table 1, and the log potentials for
each combination of states, separately for the two domains f�1, 1g and f0, 1g: The log potentials (also called energy function or
Hamiltonian) are obtained by filling each state (e.g., y1 ¼ �1, y2 ¼ �1) in the expression within the exponential in Equation (1).
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the Ising model depends on its domain, and that the
different versions of the Ising model make different
predictions for optimal interventions.

Different domain, different dynamics

In this section we show that the domain also deter-
mines the dynamics of the Ising model, when study-
ing as a dynamical system describing within-person
dynamics. The dynamical version of the Ising model
is initialized by p initial values at t¼ 1, and then each
variable at time t is a function of all variables it is
connected to via a nonzero interaction parameter at
t� 1.1 An often studied characteristic in this model is
how its behavior changes when the size of the inter-
action parameters increases. A typical behavior of
interest is the number of variables in state (1) (e.g.,
Cramer et al., 2016; Dalege et al., 2016).

Which behavior would we expect in the two
domains f�1, 1g and {0, 1}? From the previous sec-
tion we know that in domain f�1, 1g, the interaction
parameter bij models the probability of states fð�1, �
1Þ, ð1, 1Þg relative to the states fð�1, 1Þ, ð1, � 1Þg:
Now, when increasing all bij, connected variables
become more synchronized, which means that all (con-
nected) variables tend to be either all in state ð�1Þ or
(1). In terms of number of variables in state (1), we
would therefore predict that the expected number of
variables in state (1) remains unchanged, because the
states ð�1Þ and (1) occur equally often in the aligned
(ð�1, � 1Þ and (1, 1)) and not aligned (ð�1, 1Þ and
ð1, � 1Þ) states. And second, we predict that the prob-
ability that at a given time point either all variables are
in state ð�1Þ, or all variables are in state (1), increases.
The reason is that, in the ð�1, 1Þ domain, the larger the
interaction parameter, the stronger the alignment
between variables. This second prediction implies that
the variance of the number of states in (1) increases.

In the domain {0, 1}, the interaction parameter b�ij
models the probability of the state (1, 1) relative to the
remaining three states fð0, 1Þ, ð1, 0Þ, ð0, 0Þg: Now, when
increasing b�ij, connected variables will have a higher
probability to be all in state 1. Importantly, the fre-
quency of 1 s in the high probability state (1, 1) is
higher than in the other three states. We therefore
expect that the number of variables in state (1) increases
and that the probability that all variables are in state (1)
increases. The second prediction implies that the vari-
ance of the number of states in (1) decreases.

We prove that the expected number of variables in
state (1) remains unchanged for f�1, 1g and increases
for {0, 1}, if bij > 0 for the case p¼ 2 variables in
Appendix B. Here, we show via simulation that our pre-
dictions are correct. We sample n ¼ 106 observations
from a fully connected (i.e., all interaction parameters
are nonzero) Ising model with p¼ 10 variables in which
all edge weights (interaction parameters) have the same
size and all thresholds are set to zero. We vary both the
size of the interaction parameters bij 2 f0, :1, :2g and
the domain.2 Figure 2 shows the distribution (over time
steps) of the number of variables that are in state {1}.

The first row of Figure 2 shows the distribution of
the number of variables in state (1) across time when all
interaction parameters are equal to zero. We see a sym-
metric, unimodal distribution with mean 5 for both
domains. This is what we would expect since the prob-
ability of each variable being in state (1) can be seen as
an unbiased (because the thresholds are zero) coin flip
that is independent of all other variables. Thus, since we
have 10 variables, the means are equal to 10� 0:5 ¼ 5:

However, when increasing the interaction parameter
from 0 to 0.1 (second row) the distributions become
different: In domain f�1, 1g the mean remains
unchanged and the probability mass shifts from around
5 to more extreme values, resulting in increased vari-
ance. In contrast, in domain {0, 1} the distribution shifts
to the right, which implies that the mean increases and
the variance slightly decreases. When further increasing
the interaction parameters to 0.2 (third row), in domain
f�1, 1g most of the probability mass is concentrated on
0 and 10, while leaving the mean unchanged; in domain
{0, 1} the mean further increases and the variance fur-
ther decreases. From a dynamical perspective, this
means that for strongly connected Ising models (with
thresholds equal to zero) the domain f�1, 1g implies
two stable states (all variables in state ð�1Þ or (1)),
while the domain {0, 1} implies only a single stable (all
variables in state (1)), whose position depends on
whether interaction parameters are positive or negative.
This means that the dynamic Ising model in the
f�1, 1g can switch between stable states, while {0, 1} it
always stays in the same stable state.3

For the general case of Ising models that are not
fully connected and also have negative interaction

1Glauber dynamics (Glauber, 1963) describe a different way to sample
from a dynamic Ising model. The qualitative results presented in this
section also hold for Glauber dynamics.

2The code to reproduce the simulation and Figure 2 is available at http://
github.com/jmbh/IsingVersions.
3The result about bistability is true for the considered fully connected
Ising model with zero thresholds. It is also possible to construct a
bistable Ising model in the {0, 1} domain by choosing large negative
thresholds and large positive interaction parameters. The relationship
between mean/variance and changing the interaction parameter in the
two domains, however, is always true.
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parameters, the results described above extend to local
clusters of two or more variables: In the domain
f�1, 1g, increasing the interaction parameter will
leave the means of all variables in the cluster
unchanged, however, the variables become increas-
ingly aligned (if interaction parameters are positive)
or disaligned (if interaction parameters are negative).
Alignment will lead to an increase in variance, while
disalignment will lead to a decrease in variance. In
contrast, in the {0, 1} domain the mean of all variables
in the cluster will increase in the case of positive

interaction parameters, and decrease in the case of
negative interaction parameters.

This shows that, depending on which domain is
used one can come to entirely different conclusions
about the dynamics of the Ising model. For example,
Cramer et al. (2016) model the interactions between
psychiatric symptoms with an Ising model in domain
{0, 1} and conclude that densely connected Ising mod-
els imply a larger number of active (in state (1))
symptoms and therefore represent “pathological”
models. The above argument and simulation show

Figure 2. The distribution of the number of variables being in state one as a function of the size of the interaction parameter in
a fully connected Ising model f0, :1, :2g and used domain (f�1, 1g and {0, 1}) of the random variable.
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that this is only true when using the {0, 1} domain,
which encodes the belief that the absence of a symp-
tom cannot influence the absence of another symp-
tom. If one decides that an alignment between
variables is a more plausible interaction (as implied by
the f�1, 1g domain), then densely connected Ising
models do not imply a large number of active symp-
toms. Instead, high density implies high variance and
two stable states. Thus, the characterization of dense
networks as pathological networks as in Cramer et al.
(2016) hinges on choosing the {0, 1} domain.

This has important consequences: When choosing
the {0, 1} domain, we would conclude that highly con-
nected symptom networks are necessarily “bad”, and
interventions on the interactions between symptoms
as suggested by Borsboom (2017) should always
reduce symptom activation. On the other hand, in the
f�1, 1g domain highly connected symptom networks
are not necessarily bad, but in fact can lead to high
resilience, if the threshold parameters are large nega-
tive values. In such a situation strong interactions
would keep the system in a state in which all symp-
toms are deactivated.

Transforming from f21, 1g to {0, 1} and
vice versa

The Ising model is typically estimated by a sequence
of p logistic regressions, which require the domain {0,
1}. However, the previous sections showed that in
some situations the domain f�1, 1g may be more
appropriate. In Table 2, we present a transformation
that allows one to obtain the parameterization based
on domain f�1, 1g from the parameterization based
on domain {0, 1} and vice versa (see Appendix C for
the derivation of the transformations). We define
b�iþ ¼

Xp

j¼1
b�ij as the sum over the interaction

parameters associated with a given variable yi.
Table 2 shows that the interaction parameters bij in

the f�1, 1g domain are four times smaller than the
interaction parameters b�ij in the {0, 1} domain. We
also see that the threshold parameter ai is a function
of both the threshold and the interaction parameters
a�i , b

�
ij in the other parameterization.

We now apply the transformations in Table 2 to
the p¼ 2 variable example in Figure 1. We choose to
transform from {0, 1} to f�1, 1g :

a1 ¼ 1
2
a�1 þ

1
4
b�iþ ¼ 0:251

2
þ 0:77

4
¼ 0:318

b12 ¼
1
4
b�12 ¼

:77
4

¼ 0:1925 � 0:193

And indeed, we obtain the parameters obtained
when estimating the Ising model in the f�1, 1g
domain (see first column in Figure 1).

From the transformation in Table 2 follows that
the two models are statistically equivalent. This
implies that one could also estimate the model in the
f�1, 1g domain, transform the parameters, and would
obtain the parameters one would have obtained from
estimating in the {0, 1} domain. Also, note that the
standard errors of estimates are subject to the same
transformation, and therefore one always reaches the
same conclusion regarding statistical significance in
both domains.

However, note that one does not necessarily arrive
at statistical equivalent models when estimating in the
two different domains using biased estimators. An
example of a biased estimation method is the popular
‘1-regularized estimator (van Borkulo et al., 2015).
We discuss why statistical equivalence is not guaran-
teed in this specific example in Appendix D. The
possibility that different domains lead to models that
are not statistically equivalent highlights the import-
ance of choosing the most plausible Ising model on
substantive grounds.

Conclusions

In this article, we have investigated the subtleties in
choosing the domain of the Ising model. We showed
that estimating the Ising model in the domains {0, 1}
and f�1, 1g results in parameters with different values
and different interpretations. We also showed that the
qualitative behavior of the dynamical Ising model
depends on the chosen domain. Finally, we provided
a transformation that explains the relation between
the two parameterizations and allows one to obtain
one from the other. This is useful in practice, because
typically used software packages require the {0, 1}
domain. This transformation also implies that the two
parameterizations are statistically equivalent, which
means that one cannot choose one over the other on
empirical grounds. Thus, researchers should carefully
reflect on which interactions between variables are
plausible and choose the domain accordingly.

Table 2. Transformation functions to obtain the threshold
and interaction parameters of one parameterization from the
threshold and interaction parameters of the other
parameterization.
Transformation Thresholds Interactions

f0, 1g ) f�1, 1g ai ¼ 1
2 a

�
i þ 1

4 b
�
iþ bij ¼ 1

4 b
�
ij

f�1, 1g ) f0, 1g a�i ¼ 2ai � 2biþ b�ij ¼ 4bij
Parameters with asterisk indicate parameters in the {0, 1} domain.
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Appendix A. Statistical Equivalence worked
out for two variable example

Here we show that the two models shown in Figure 1 are
statistically equivalent. Two models statistically equivalent if
they output the same probability for any of states on which
the models are defined.

We begin with the model estimated on the domain
f�1, � 1g: We first compute the potentials for the four
states fð�1, � 1Þ, ð�1, 1Þ, ð1, � 1Þ, ð1, 1Þg :

exp f0:318ð�1Þ þ 0:318ð�1Þ þ 0:193ð�1Þð�1Þg ¼ 0:6415304

exp f0:318ð�1Þ þ 0:318ð1Þ þ 0:193ð�1Þð1Þg ¼ 0:8248249

exp f0:318ð1Þ þ 0:318ð�1Þ þ 0:193ð1Þð�1Þg ¼ 0:8248249

exp f0:318ð1Þ þ 0:318ð1Þ þ 0:193ð1Þð1Þg ¼ 2:29118

and then the normalization constant

Z ¼ 0:6415304þ 0:8248249þ 0:8248249þ 2:29118

¼ 4:58236

We divide the potentials by Z and obtain the
probabilities

PðY1 ¼ �1,Y2 ¼ �1Þ ¼ 0:6415304
Z

¼ 0:14

PðY1 ¼ �1,Y2 ¼ 1Þ ¼ 0:8248249
Z

¼ 0:18

PðY1 ¼ 1,Y2 ¼ �1Þ ¼ 0:8248249
Z

¼ 0:18

PðY1 ¼ 1,Y2 ¼ 1Þ ¼ 2:29118
Z

¼ 0:5

We now repeat the same with domain {0, 1} and first
compute the potentials for the states
fð0, 0Þ, ð0, 1Þ, ð1, 0Þ, ð1, 1Þg :

exp f0:251ð0Þ þ 0:251ð0Þ þ 0:77ð0Þð0Þg ¼ 1

exp f0:251ð0Þ þ 0:251ð1Þ þ 0:77ð0Þð1Þg ¼ 1:285714

exp f0:251ð1Þ þ 0:251ð0Þ þ 0:77ð1Þð0Þg ¼ 1:285714

exp f0:251ð1Þ þ 0:251ð0Þ þ 0:77ð1Þð0Þg ¼ 3:571429

and then the normalization constant

Z ¼ 1þ 1:285714þ 1:285714þ 3:571429 ¼ 7:142857

We divide the potentials by Z and obtain the
probabilities

PðX1 ¼ 0,X2 ¼ 0Þ ¼ 1
Z
¼ 0:14

PðX1 ¼ 0,X2 ¼ 1Þ ¼ 1:285714
Z

¼ 0:18

PðX1 ¼ 1,X2 ¼ 0Þ ¼ 1:285714
Z

¼ 0:18

PðX1 ¼ 1,X2 ¼ 1Þ ¼ 3:571429
Z

¼ 0:5

We see that both models predict the same probabilities
and are therefore statistically equivalent.

Appendix B. Increasing interaction parameters
only changes the marginal probabilities
domain in {0, 1}

Here we show that for an Ising model with p¼ 2 variables
with a1, a2 ¼ 0 and b12 > 0 it holds that

PðX1 ¼ �1Þ ¼ PðX2 ¼ �1Þ ¼ PðX2 ¼ 1Þ ¼ PðX2 ¼ 1Þ (2)

for the domain f�1, 1g, and that

PðX1 ¼ 0Þ ¼ PðX2 ¼ 0Þ < PðX1 ¼ 1Þ ¼ PðX2 ¼ 1Þ (3)

for the domain {0, 1}.
We first show (2). We assume a1, a2 ¼ 0 and b12 > 0:

Then the Ising model is given by

PðX1,X2Þ ¼ 1
Z
exp fa1X1 þ a2X2 þ b12X2X1g

¼ 1
Z
exp fb12X2X1g,

where Z is the normalizing constant summing over all 2p ¼ 4
states. We calculate the probability of the four possible states:

PðX1 ¼ 1,X2 ¼ �1Þ ¼ 1
Z
exp f�b12g,

PðX1 ¼ 1,X2 ¼ 1Þ ¼ 1
Z
exp fb12g,

PðX1 ¼ �1,X2 ¼ �1Þ ¼ 1
Z
exp fb12g,

PðX1 ¼ �1,X2 ¼ 1Þ ¼ 1
Z
exp f�b12g:

And average over the state of X2 to obtain the marginals
probabilities PðX1Þ :

PðX1 ¼ 1Þ ¼ PðX1 ¼ 1,X2 ¼ �1Þ þ PðX1 ¼ 1,X2 ¼ 1Þ

¼ 1
Z
exp f�b12g þ

1
Z
exp fb12gPðX1 ¼ �1Þ ¼ PðX1 ¼ �1,X2

¼ �1Þ þ PðX1 ¼ �1,X2 ¼ 1Þ ¼ 1
Z
exp fb12g þ

1
Z
exp f�b12g

We see that PðX1 ¼ 1Þ ¼ PðX1 ¼ �1Þ: By symmetry the
same is true for X2, which proves our claim.

We next prove (3). We again assume a1, a2 ¼ 0 and b12 >
0 and calculate the probabilities of the four possible states:

PðX1 ¼ 1,X2 ¼ 0Þ ¼ 1
Z
exp f0g,

PðX1 ¼ 1,X2 ¼ 1Þ ¼ 1
Z
exp fb12g,

PðX1 ¼ 0,X2 ¼ 0Þ ¼ 1
Z
exp f0g,

PðX1 ¼ 0,X2 ¼ 1Þ ¼ 1
Z
exp f0g:

The marginal probabilities PðX1Þ are:
PðX1 ¼ 1Þ ¼ PðX1 ¼ 1,X2 ¼ 0Þ þ PðX1 ¼ 1,X2 ¼ 1Þ
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¼ 1
Z
exp f0g þ 1

Z
exp fb1, 2gPðX1 ¼ 0Þ ¼ PðX1 ¼ 0,X2 ¼ 0Þ

þ PðX1 ¼ 0,X2 ¼ 1Þ ¼ 2
1
Z
exp f0g

Since exp fb12g > exp f0g, we have PðX1 ¼ 1Þ >
PðX2 ¼ 1Þ, if b12 > 0: By symmetry the same is true for X2,
which proves our claim.

Note that if we assume b12 < 0, (2) holds again for
f�1, 1g, while for {0, 1} we have

PðX1 ¼ 0Þ ¼ PðX2 ¼ 0Þ > PðX2 ¼ 1Þ ¼ PðX2 ¼ 1Þ
instead.

Appendix C. Derivation of transformation from
{0, 1} to f21, 1g and vice versa

In this section, we first introduce the Ising model for p vari-
ables with domain f�1, 1g, which is the domain used in
physics applications. Next, we introduce the Ising model for
p variables with domain f0, 1g, which is mostly used in the
statistics literature. We connect both models by deriving a
formula of the parameters of one parameterization as a
function of the parameters of the other parameterization.
This allows us to transform the parameterization based on
domain f�1, 1g into the parameterization of domain f0, 1g
and vice versa.

In the physics domain, variables can take on values in
f�1, 1g: The probability distribution of the Ising model for
p such random variables is specified by

pðyÞ ¼
exp

Xp

i¼1
aiyi þ

Xp�1

i¼1

Xp

j>i
bijyiyj

� �
X

y
exp

� Xp

i¼1
aiyi þ

Xp�1

i¼1

Xp

j>i
bijyiyj

� , (4)

where y, y 2 f�1, 1gp, denotes a configuration of the p
random variables, and the sum

P
y in the denominator

denotes a sum that ranges over all 2p possible configura-
tions or realizations of y.

From a statistical perspective, the Ising model is a model
that is completely determined by the spin variables’ main
effects and their pairwise interactions. A spin variable in the
network tends to have a positive value (yi ¼ 1) when its
main effect is positively valued (ai > 0), and tends to have a
negative value (yi ¼ �1) when its main effect is negatively
valued (ai < 0). Furthermore, any two variables yi and yj in
the network tend to align their values when their inter-
action effect is positive (bij > 0), and tend to be in different
states when their interaction effect is negative (bij < 0).

In statistical applications, the Ising model is typically
used to describe the probability distribution of p binary ran-
dom variables,

pðxÞ ¼
exp

� Xp

i¼1
a�i xi þ

Xp�1

i¼1

Xp

j>i
b�ijxixj

�
X

x
exp

� Xp

i¼1
a�i xi þ

Xp�1

i¼1

Xp

j>i
b�ijxixj

� , (5)

where x, x 2 f0, 1gp, denotes a configuration of the p bin-
ary random variables, and again we use

X
x
to denote the

sum that ranges over all 2p possible configurations or real-
izations of x.

Even though the model is again completely determined
by main effects and pairwise interactions, its interaction
parameters b� carry a different interpretation than the inter-
action parameters of the Ising model for variables Y in the
f�1, 1g domain. Here, two binary variables xi and xj in the
network tend to both equal one (xixj ¼ 1) when their inter-
action effect is positive (b�ij > 0), but their product tends to
equal zero (xixj ¼ 0) when their interaction effect is nega-
tive (b�ij < 0). That is, whenever the interaction between two
binary variables xi and xj in the network is negative
(bij < 0), they tend to be in one of the states f0, 0g, f0, 1g
or f1, 0g:

Despite the different interpretations of the two Ising
model formulations, one can traverse the two specifications
by a simple change of variables. To wit, assume that we have
obtained an Ising model for p binary variables p(x) and wish
to express its solution in terms of the variables in the
f�1, 1g domain, then we require the change of variables

xi ¼ 1
2
ðyi þ 1Þ with inverse relation yi ¼ 2xi � 1: (6)

We use this transformation in the distribution of the
binary random variables,

pðxÞ ¼
exp

�Xp

i¼1
a�i xi þ

Xp�1

i¼1

Xp

j>i
b�ijxixj

�
X

x
exp

�Xp

i¼1
a�i xi þ

Xp�1

i¼1

Xp

j>i
b�ijxixj

�

¼
exp

Xp

i¼1
a�i

1
2
ðyi þ 1Þ þ

Xp�1

i¼1

Xp

j>i
b�ij

1
2
ðyi þ 1Þ 1

2
ðyj þ 1Þ

� �
X

y
exp

Xp

i¼1
a�i

1
2
ðyi þ 1Þ þ

Xp�1

i¼1

Xp

j>i
b�ij

1
2
ðyi þ 1Þ 1

2
ðyj þ 1Þ

� � ¼ pðyÞ,

(7)

and observe that this transformation affects both main
effects and pairwise interactions. Working out the sum over
pairs of variables, we find

Xp�1

i¼1

Xp
j>i

b�ij
1
2
ðyi þ 1Þ 1

2
ðyj þ 1Þ

¼
Xp�1

i¼1

Xp
j>i

1
4
b�ijðyiyj þ yi þ yj þ 1Þ

¼
Xp�1

i¼1

Xp
j>i

1
4
b�ijyiyj þ

Xp�1

i¼1

Xp
j>i

1
4
b�ijyi

þ
Xp�1

i¼1

Xp
j>i

1
4
b�ijyj þ

Xp�1

i¼1

Xp
j>i

1
4
b�ij

¼
Xp�1

i¼1

Xp
j>i

1
4
b�ijyiyj þ

Xp
i¼1

X
j ¼ 1
j 6¼ i

p

1
4
b�ijyi þ

Xp�1

i¼1

Xp
j>i

1
4
b�ij ¼

Xp�1

i¼1

Xp
j>i

1
4
b�ijyiyj þ

Xp
i¼1

1
4
b�iþyi

þ
Xp�1

i¼1

Xp
j>i

1
4
b�ij , (8)

where the first term reflects pairwise interactions between
the variables y, the second term reflects main effects of the
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variables with main effect b�iþ ¼
Xp

j¼1
b�ij, and the

last term is constant with respect to (w.r.t.) the variables
y. Similarly, we can express the sum over the main
effects as

Xp
i¼1

a�i
1
2
ðyi þ 1Þ ¼

Xp
i¼1

a�i
1
2
yi þ

Xp
i¼1

a�i
1
2
, (9)

where the last term is again constant w.r.t. the variables y.
Collecting the main effects,

Xp
i¼1

1
2
a�i yi þ

Xp
i¼1

1
4
b�iþyi ¼

Xp
i¼1

1
2
a�i þ

1
4
b�iþ

� �
yi, (10)

and constant terms,

C ¼
Xp
i¼1

1
2
a�i þ

Xp
i¼1

Xp
j¼1

1
4
b�ij, (11)

we obtain:

pðyÞ ¼
exp

Xp

i¼1

1
2
a�i þ

1
4
b�iþ

� �
yi þ

Xp�1

i¼1

Xp

j>i

1
4
b�ijyiyj þ C

� �
X

y
exp

Xp

i¼1

1
2
a�i þ

1
4
b�iþ

� �
yi þ

Xp�1

i¼1

Xp

j>i

1
4
b�ijyiyj þ C

� �

¼
exp

Xp

i¼1

1
2
a�i þ

1
4
b�iþ

� �
yi þ

Xp�1

i¼1

Xp

j>i

1
4
b�ijyiyj

� �
X

y
exp

Xp

i¼1

1
2
a�i þ

1
4
b�iþ

� �
yi þ

Xp�1

i¼1

Xp

j>i

1
4
b�ijyiyj

� � ,

(12)

which is equal to the Ising model for variables in the
f�1, 1g domain when we write ai ¼ 1

2 a
�
i þ 1

4 b
�
iþ and bij ¼

1
4b

�
ij: In a similar way, one can obtain the parameter values

of the binary case from a solution of the Ising model for
variables in the f�1, 1g domain using a�i ¼ 2ai � 2biþ and
b�ij ¼ 4bij: Thus, we can obtain the binary Ising model
parameters a� and b� from a simple transformation of the
f�1, 1g coded Ising model parameters a and b, and vice
versa. Table 3 summarizes these transformations:

Appendix D. Model equivalence across
domains with penalized estimation

If one estimates the Ising model with an unbiased estimator,
one can estimate with domain f0, 1g and obtain by trans-
formation the estimates one would have obtained by esti-
mating with domain f�1, 1g (and vice versa). In this
section we ask whether this is also the case for penalized
estimation, which is a popular way to estimate the Ising
model (e.g., Ravikumar, Wainwright, & Lafferty, 2010; van
Borkulo et al., 2015).

In penalized estimation, the likelihood is maximized
with respect to a constraint c, typically on the ‘1-norm of
the vector of interaction parameters bij

Xp
i¼1

Xp
j ¼ 1
j 6¼ i

jbijj < c:

Estimation with an ‘1-penalty is attractive because it sets
small parameter estimates to zero, which makes it easier to
interpret the model. The key problem in this setting is
selecting an appropriate constraint c. A popular approach is
to consider a sequence of candidate constraints C ¼
fc1, :::, ckg and select the ci that minimizes the Extended
Bayesian Information Criterion (EBIC) (Foygel & Drton,
2010), which extends the BIC (Schwarz, 1978) by an add-
itional penalty (weighted by c) for the number of nonzero
interaction parameters

EBICci ¼ �2LLci þ s0 log nþ 4s0c log p,

where LLci is the maximized log-likelihood under constraint
ci, s0 is the number of nonzero interaction parameters, n is
the number of observations and p the number of estimated
interaction parameters.

We are interested in whether selecting models with this
procedure in the two domains, {0, 1} and f�1, 1g, leads to
statistically equivalent models. This is indeed the case for the
following reason: Assume that c� minimizes the EBIC for
domain {0, 1}, then from the transformation in Table 2, c�

4
should give the lowest EBIC in domain f�1, 1g, because the
constraint jjb�jj1 < c� on {0, 1} is equivalent to the constraint
jjb�jj1 < c�

4 on Y. Thus, if c�
4 is included in the candidate set

C, when estimating in domain f�1, 1g, two statistically
equivalent models should be selected. Note that exactly c

4 has
to be included, because a slightly larger/smaller constraint
can lead to a very different model, if the number of nonzero
parameter changes. This nonlinearity arises from the EBIC,
in which s0 decreases by 1 (large change) if some parameter
with a tiny value (e.g., 0.0001) is set to zero (small change).
Therefore, in order to ensure statistically equivalent models
one would need to search a dense sequence C. Clearly, this is
unfeasible in practice. This means that, in practice ‘1-regular-
ized estimation can return models from domains {0, 1} and
f�1, 1g that are not statistically equivalent. We leave the task
of investigating this issue for different estimation algorithms
for future research. In what follows we provide an extended
version of this argument.

We define:

c� ¼ argc2Cmin EBICc

¼ argc2Cmin� 2 log
1
Z

Yn
m¼1

exp

�Xp
i¼1

a�i Xi þ
Xp
i¼1

Xp
j ¼ 1
j 6¼ i

b�ijXiXj

�2
64

3
75

þ s0 log nþ 4s0c log pðp� 1Þ=2� 	
,

with constraint

Xp
i¼1

Xp
j ¼ 1
j 6¼ i

jb�ijj < c,

Table 3. Transformation functions to obtain the threshold
and interaction parameters in one parameterization from the
threshold and interaction parameters in the other
parameterization.
Transformation a b

f0, 1g ) f�1, 1g ai ¼ 1
2 a

�
i þ 1

4 b
�
iþ bij ¼ 1

4b
�
ij

f�1, 1g ) f0, 1g a�i ¼ 2ai � 2biþ b�ij ¼ 4bij
Parameters with asterisk indicate parameters in the {0, 1} domain.
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where s0 is the number of nonzero interaction parameters,
n is the sample size, p is the number of variables pðp�1Þ

2 is
the total number of interaction parameters, and c is a tun-
ing parameter.

Now, we would like to show that if c� minimizes the EBIC
in domain {0, 1}, then 4c� minimizes the EBIC in f�1, 1g:

We use the transformation in Table 2 to rewrite the
EBIC into the parameterization implied by f�1, 1g :

c� ¼ argc2Cmin EBICc

¼ argc2Cmin� 2 log

"
1
Z

Yn
m¼1

exp

(Xp
i¼1

 
1
2
a�i þ

1
4

X
j ¼ 1
j 6¼ i

b�ij

!
Xi

þ
Xp
i¼1

Xp
j ¼ 1
j 6¼ i

1
4
b�ijXiXj

)#
þ s0 log nþ 4s0c log pðp� 1Þ=2� 	

,

with constraint

Xp
i¼1

Xp
j ¼ 1
j 6¼ i

j 1
4
b�ijj < c�:

We can rewrite the constraint into

Xp
i¼1

Xp
j ¼ 1
j 6¼ i

jb�ijj < 4c�:

The last inequality shows that the constraint is four
times larger for the parameterization in domain {0, 1}. Or
the other way around, the constraint is 1

4 times smaller in
f�1, 1g compared to {0, 1}.

We know that the models are statistically equivalent across
domains. Therefore, the likelihood of the model with con-
straint c in domain {0, 1} is equal to the likelihood of the
model with constraint c

4 in domain f�1, 1g: Now, since the
transformation never changes a zero estimate in a nonzero
estimate or vice versa with probability 1, also the terms
s0 log nþ 4s0c log½pðp� 1Þ=2� in the EBIC remain constant
across domains. It follows that, if c� ¼ argc2Cmin EBICc in
domain f0, 1g, then c�

4 ¼ argc2Cmin EBICc in
domain f�1, 1g:
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