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ABSTRACT 
We propose interrater reliability coefficients for observational interdependent social network 
data, which are dyadic data from a network of interacting subjects that are observed by 
external raters. Using the social relations model, dyadic scores of subjects’ behaviors during 
these interactions can be decomposed into actor, partner, and relationship effects. These 
effects constitute different facets of theoretical interest about which researchers formulate 
research questions. Based on generalizability theory, we extended the social relations model 
with rater effects, resulting in a model that decomposes the variance of dyadic observa
tional data into effects of actors, partners, relationships, raters, and their statistical interac
tions. We used the variances of these effects to define intraclass correlation coefficients 
(ICCs) that indicate the extent the actor, partner, and relationship effects can be generalized 
across external raters. We proposed Markov chain Monte Carlo estimation of a Bayesian 
hierarchical linear model to estimate the ICCs, and tested their bias and coverage in a simu
lation study. The method is illustrated using data on social mimicry.
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Introduction

In observational research, raters rate subjects to gather 
information about subjects’ attributes (e.g., their 
behavior or appearances). For example, Majdand�zi�c 
et al. (2016) used raters to assess parents’ (the sub
jects) challenging parenting behavior (the attribute). 
In statistical analyses, these ratings are used to answer 
research questions about the associations between dif
ferent attributes or about the effect of predictor varia
bles (e.g., interventions) on these attributes. It is 
important that the observed differences in the ratings 
reflect differences across the subjects’ attributes rather 
than differences across raters and their perspectives. 
The degree to which the ratings are independent of 
raters can be estimated with interrater reliability (IRR) 
coefficients (e.g., Gwet, 2014; Hallgren, 2012; Zhao 
et al., 2013). If the IRR is low, the ratings depend 
heavily on the raters. Low IRR can result in biased 
estimates or loss of power in statistical analyses of 
subjects’ attributes (cf. Lord & Novick, 1968, p. 72), 

potentially leading to faulty conclusions. Thus, study
ing the IRR is vital for social and behavioral research. 
When the IRR is too low, researchers should improve 
the IRR, for example, by improving rating procedures. 
In this paper, we show that for interdependent social 
network data (to be explained shortly), the current 
measures of IRR are suboptimal, so researchers cannot 
assess the IRR. We propose and test more elaborated 
and improved IRR measures for this type of data, and 
compare our proposed IRR measures to existing 
(interrater) reliability measures for interdependent 
social network data (Bonito & Kenny, 2010; Kenny 
et al., 1994; Malloy & Kenny, 1986).

People often behave differently (e.g., smiling, bully
ing, mimicking) depending on whom they interact 
with, and those individuals may, in turn, elicit differ
ent behaviors from them (e.g., Card & Hodges, 2010; 
Coie et al., 1999; Salazar K€ampf et al., 2018; Simpkins 
& Parke, 2002). Variables that measure such interde
pent behaviors are known as dyadic variables (Kenny 
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et al., 2006). Dyads consist of two subjects: An actor 
displaying the behavior and a partner reacting on the 
behavior. The behaviors of subjects are dependent on 
the subject with whom they interact. Interdependent 
social network data involves dyadic data from a net
work of subjects. Each individual belongs to multiple 
dyads (e.g., a group of students consists of multiple 
pairs of peers) within such a network (e.g., Table 1, 
top panel). Consequently, all dyadic observations 
including actor i are nested within actor i, and all 
dyadic observations including partner j are nested 
within partner j.

In observational social-network research, raters rate 
subjects’ attributes during interactions with several 
other subjects (e.g., Huang et al., 2017; Hughes et al., 
2021; Salazar K€ampf et al., 2018), and the raters are 
not part of these interactions. Table 1 provides an 
example of an observational social network design, in 
which four students (Anna, Brooke, Charlie, and 
Deborah) interact with each other. These students 
form a social network, and each combination of sub
jects is a dyad (e.g., Anna and Brooke, Anna and 
Charlie, Anna and Deborah, etc.). The behavior of the 
students during their interactions with the other stu
dents is rated twice—as an actor and as a partner—by 
each of three raters who are not part of the network. 
Let Yijk denote the number of times that subject i 
mimicked subject j (where i 6¼ j), as rated by rater k. 
Both yAB1 and yBA1 indicate a score on the dyadic 
variable mimicry of the dyad Brooke and Anna, as 
rated by Rater 1. The score yAB1 indicates Anna’s 
mimicry of Brooke, as rated by Rater 1, and the score 
yBA1 indicates Brooke’s mimicry of Anna as rated by 
Rater 1.

In social relations research, researchers could be 
interested in different aspects of dyadic interactions. 
The social relations model (SRM; Kenny, 1996; Kenny 

& La Voie, 1984) decomposes dyadic variables in dif
ferent facets of theoretical interest about which 
research questions could be formulated: actor effects, 
partner effects, and relationship effects. During the 
interaction between Anna and Brooke, Anna’s actor 
effect would reflect how often Anna mimics her con
versation partners on average (i.e., how imitative is 
Anna?). Brooke’s partner effect would reflect how 
often she is mimicked by her conversation partners 
on average (i.e., how imitable is Brooke?). Given how 
often Anna generally mimics her conversation part
ners (her actor effect), and how often Brooke is gener
ally mimicked (her partner effect), the relationship 
effect would reflect how much more (or less) Anna 
mimics Brooke. Similarly, Brooke’s mimicry of Anna 
can be decomposed into the actor effect of Brooke, 
the partner effect of Anna, and a relationship effect.1

Dyadic variables have complex dependency structures. 
Actor and partner effects of individuals are often 
dependent, as are the relationship effects within a 
dyad (Kenny, 1996; Kenny & La Voie, 1984). For 
example, a subject who mimics others frequently may 
also elicit more mimicry on average. If Anna mimics 
Brooke more than is expected based on Anna’s actor 
effect and Brooke’s partner effect, Brooke may also 
mimic Anna more than is expected based on Brooke’s 
actor effect and Anna’s partner effect.

The results of the SRM (i.e., estimated actor, part
ner and relationship effects, and their variances), may 
differ across external raters, hence fail to generalize. 
Therefore, the IRR of the actor, partner, and relation
ship effects should be investigated to inspect the 
degree to which these effects depend on external 
raters. A low IRR may inform researchers that raters 
require more training in using the observation instru
ment, or that more raters should assess each dyadic 
interaction. IRR methods have been proposed that can 
handle multilevel data, in which the reliability is esti
mated for the different hierarchical levels in the data 
(Ten Hove et al., 2022), or that correct for dependen
cies in two-level nested data (Ten Hove et al., 2022; 
Vanbelle, 2017; Yang & Zhou, 2014). However, IRR 
coefficients for the more complex dependencies in 
interdependent social network data are currently 
unavailable. Applying existing IRR coefficients to 
interdependent social network data is a conflated 

Table 1. Example of an observational social network design 
with four subjects and three raters. yijk denotes the score on 
attribute Y of person i while interacting with person j (where 
i, j 2 A, B, C, D and i 6¼ j), rated by rater k ðk ¼ 1, 2, 3Þ:

Subject

Rater Subject Anna Brooke Charlie Deborah

1 Anna – yAB1 yAC1 yAD1
Brooke yBA1 – yBC1 yBD1
Charlie yCA1 yCB1 – yCD1

Deborah yDA1 yDB1 yDC1 –
2 Anna – yAB2 yAC2 yAD2

Brooke yBA2 – yBC2 yBD2
Charlie yCA2 yCB2 – yCD2

Deborah yDA2 yDB2 yDC2 –
3 Anna – yAB3 yAC3 yAD3

Brooke yBA3 – yBC3 yBD3
Charlie yCA3 yCB3 – yCD3

Deborah yDA3 yDB3 yDC3 –

1There are two types of dyadic variables in interdependent social network 
data: Those that differ between dyads within a network, but are stable 
within dyads such as whether Joyce and Lisa shook hands, and those 
that may be different for actor and partner, such as how often Lisa 
mimicked Joyce and vice versa. In this paper, interdependent social 
network data refers to the latter: Dyadic variables that can differ both 
between and within dyads of a social network.
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approach, as they do not provide practically useful 
information on the IRR for all facets of theoretical 
interest. Also, we expect that point estimates or SEs 
may be biased because traditional IRR coefficients 
ignore the complex dependency structures in the data.

We use Generalizability theory (GT; Cronbach et al., 
1963; Shavelson et al., 1989) to develop IRR coefficients 
for interdependent social network data. First, we dis
cuss the GT approach for estimating the IRR of inde
pendent rater data and its limitations for 
interdependent social network data. Second, we discuss 
the SRM approach for variance decomposition of inter
dependent social network data and its implications for 
estimating the IRR, and combine GT and the SRM to 
propose a rater-extended SRM (RESRM). The RESRM 
decomposes the variance in interdependent social net
work data into actor, partner, relationship, and rater- 
specific components, plus their statistical interactions. 
Third, we propose RESRM-based IRR coefficients for 
each facet of theoretical interest (i.e., the actor, partner, 
and relationship components) in interdependent social 
network data separately, and for their integrated score. 
In addition, we propose an estimation procedure to 
obtain these IRR estimates from data. Fourth, we com
pare the conflated and RESRM methods for defining 
IRR using example data on social mimicry of Salazar 
K€ampf et al. (2018). Fifth, we inspect the bias and 
coverage rates of the proposed IRR coefficients in a 
simulation study. We end with a discussion of our 
findings and directions for future research.

Generalizability theory

GT (Cronbach et al., 1963; Shavelson et al., 1989) is an 
extension of classical test theory (CTT) that can be 
used to estimate the IRR (e.g., Ten Hove et al., 2024c). 
CTT is used to estimate reliability of (composite) 
observed scores when observed scores consist of a single 
true-score component and a single error component. 
GT allows to estimate reliability for multiple facets of 
interest. Within GT, a single observation (e.g., the 
assessment of a person’s degree of social mimicry) is 
considered to be sampled from a universe of admissible 
observations. The specific conditions under which an 
observation is made are called facets. In observational 
social network data, typical facets are actors, partners, 
raters, and occasions. These facets can be divided into 
sources of theoretical interest (termed facets of differen
tiation; e.g., Vangeneugden et al., 2005), such as sub
jects, or sources of nuisance variability (termed facets of 
generalization; e.g., Vangeneugden et al., 2005), such as 
raters or measurement occasions. Reliability is then 

defined as the degree to which observations of the facets 
of differentiation can be generalized over the facets of 
generalization. Reliability is expressed with generaliz
ability coefficients or indices of dependability. Within 
a single study, multiple facets of generalization can be 
present. Hence, a single generalizability coefficient can 
account for multiple facets of generalization simultan
eously (e.g., both multiple raters and multiple occa
sions), or generalizability coefficients can be defined 
for the separate facets of generalization. IRR refers to 
degree to which the observations of facets of interest 
can be generalized over raters.

Interrater reliability for independent data

In independent observational data, independent sub
jects (i)2 are rated by independent raters (k). The uni
verse of admissible observations consists of subjects 
and raters, where subjects are the facet of differenti
ation and raters are the facet of generalization. 
Considering a fully crossed (i.e., two-way) design, in 
which each subject is rated by each rater, multiple 
observations Yik can be decomposed into a grand 
mean (M), a mean for each of the facets (Si; Rk), and 
the statistical interaction terms between the aforemen
tioned facets (SRik). The highest-order statistical inter
action term between the facets (here the two-way 
interaction SRik) is confounded with error:

Yik ¼ M þ Si þ Rk þ SRik: (1) 

Observations Yik then involve the following orthog
onal variances components (Shavelson et al., 1989): r2

S 
for the main subject variance component, r2

R for the 
main rater variance component, and r2

SR for the vari
ance component representing the statistical interac
tions between raters and subjects, which is 
confounded with any other source of error variance:

r2
Y ¼ r2

S þ r2
R þ r2

SR: (2) 

The variance decomposition in Equation 2 can be 
applied to several definitions of the intraclass correlation 
coefficient (ICC), all of which correspond to different 
definitions of the IRR. These ICCs are identical to 
Generalizability coefficients and indices of dependability 
in GT (Ten Hove et al., 2024c). The IRR literature dis
tinguishes between ICCs of interrater agreement and 
ICCs of interrater consistency, which can both be 
defined for single as well as averaged ratings (McGraw 
& Wong, 1996; Shrout & Fleiss, 1979). ICCs of 

2In this subsection, we do not distinguish between actor and partner 
effects of subjects. We therefore use the subscript i to indicate subjects, 
rather than actors.
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interrater agreement express the degree to which the 
observed subject scores can be generalized over raters 
and are of interest when subjects’ scores are interpreted 
absolutely. For example, this applies to scores on educa
tional tests that are used to decide whether students pass 
a test. Interrater agreement is thus useful when the abso
lute scores of subjects are used to make decisions about 
individual subjects; a practice we consider unlikely for 
the actor, partner, and relationship effects from the 
SRM. We therefore further ignore ICCs for interrater 
agreement. ICCs of interrater consistency express the 
degree to which the observed differences across subjects 
can be generalized over raters and are of interest when 
subjects’ scores are interpreted relatively to each other. 
For example, this applies to correlational studies using 
the social relations model. Also, ICCs have been defined 
for fixed as well as random raters. When raters in an 
observation study are considered fixed, they are viewed 
as the entire population of possible raters. When raters 
are considered random, they are viewed as a random 
sample of potential raters that could have been trained 
using the rating protocol at hand. Typically, raters are 
considered random. Ten Hove et al. (2024c) argued that 
the fixed-rater assumption is rarely, if ever, justified for 
IRR, so here we focus only on random raters.

ICCs for interrater consistency are defined as the pro
portion of subject variance (i.e., the facet of interest; r2

S) 
over the subject variance plus the variance in the sub
ject-by-rater interaction effects, which are confounded 
with random error (r2

SR). The ICCs of interrater consist
ency do not include the relative standings of raters 
across ratings in the denominator (i.e., r2

R), because 
main rater effects do not influence the observed differ
ences across subjects when all subjects are assessed by 
the same raters (cf. norm-referenced reliability; Winer, 
2013).3 Hence, the denominator only includes the vari
ance components that are associated with rank ordering 
the facets of differentiation (here subjects). The rater- 
related variance component in the denominator of the 
ICC is divided by the number of raters over which sub
jects’ scores are averaged (K), resulting in

ICCðC, KÞ ¼
r2

S

r2
S þ

r2
SR
K

, (3) 

where C indicates consistency. For single ratings, K ¼ 1 
and r

2
SR

K reduces to r2
SR:

The social relations model

The SRM models dyadic data as nested within both 
actors and partners, and actor and partner effects of 
individuals are allowed to correlate. The SRM can 
therefore be conceived as a cross-classified two-level 
model with a bivariate outcome variable that allows 
both positive and negative correlated actor and part
ner effects (Snijders & Kenny, 1999). The dyad-level 
observation Yij is partitioned into a grand mean M 
and three components, which are all deviations from 
this grand mean (similar to a GT decomposition; cf. 
Malloy & Kenny, 1986): Ai is the actor effect of per
son i, Pj is the partner effect of person j, and Eij is the 
relationship effect when person i is the actor and per
son j is the partner; that is,

Yij ¼ M þ Ai þ Pj þ Eij: (4) 

If multiple observations of Yij are available (e.g., 
multiple ratings by several raters) the relationship 
effect (Eij) can be distinguished from error; if not, the 
relationship effect is confounded with random error.

Let Yfijg denote a vector containing a dyad’s scores 
Yij and Yji: The SRM decomposes the dyadic scores 
Yfijg; as

Yfijg ¼
Yij
Yji

� �

¼
M
M

� �

þ
Ai
Aj

� �

þ
Pj
Pi

� �

þ
Eij
Eji

� �

:

(5) 

The actor and partner effects in the SRM are 
assumed to be bivariate normally distributed with 
means of zero and variances r2

A and r2
P: Moreover, it 

is assumed that both the actor and partner effects are 
mutually uncorrelated between individuals; however, a 
within-person correlation qAP (named generalized reci
procity) exists between the actor effect Ai and partner 
effect Pi of the same individual, resulting in a bivariate 
distributional assumption:

Ai
Pi

� �

� N l ¼
0
0

� �

, RAP ¼
r2

A
qAPrArP r2

P

� �� �

:

(6) 

The relationship effects are also assumed to be 
bivariate normally distributed with a mean of zero 
and variance r2

E: Also, a reciprocity or mutuality effect 
is expected between observations within a dyad. This 
reciprocity is modeled by the correlation between Eij 
and Eji; which is called the dyadic reciprocity (Kenny 
& La Voie, 1984, p. 157). It follows that

Eij
Eji

� �

� N l ¼
0
0

� �

, RE ¼
r2

E
qEr

2
E r2

E

� �� �

: (7) 

The equality of the variance of Eij and Eji in 
Equation 7 could be relaxed if actors and partners have 

3For incomplete observational design, in which the raters partly differ 
across subjects, a portion of the variance in main rater effects should be 
added to the denominator of the ICCs of interrater consistency. This 
portion is based on the proportion of non-overlapping raters across 
subjects (Brennan, 2001; Putka et al., 2008; Ten Hove et al., 2024c).
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specific roles within a network (e.g., children as actors 
and teachers as partners). Lacking such roles to distin
guish subjects i and j implies that r2

Eij
¼ r2

Eji
¼ r2

E:

Because the actor, partner, and relationship effects 
in each dyadic observation of Equation 4 are uncorre
lated (Snijders & Kenny, 1999, p. 474), the total vari
ance of Yij can be decomposed by the SRM into the 
following orthogonal variance components4 :

r2
Y ¼ r2

A þ r2
P þ r2

E: (8) 

When treating each row in Equation 5 separately, 
the variance of each row of Yfijg is also expressed by 
Equation 8. However, as the dyad’s scores are depend
ent, a multivariate approach is required. The covari
ance matrix of the dyad’s two responses RY can be 
decomposed as follows:

RY ¼ RAP þ RPA þ RE

r2
Y

rYY r2
Y

" #

¼
r2

A
rAP r2

P

" #

þ
r2

P
rAP r2

A

" #

þ
r2

E
rEE r2

E

" #

,

(9) 

where the person-level matrix RPA is a rearrangement 
of RAP in Equation 6, such that components are 
ordered [Partner, Actor] rather than [Actor, Partner]:

RPA ¼
r2

P
qAPrArP r2

A

� �

: (10) 

Note that the variances on the diagonal of RY are 
both equal to r2

Y ; but RY also includes the covariance 
between the two observations within a dyad (see also 
Appendix A).

A rater-extended social relations model

When external raters are used to measure dyadic vari
ables, IRR coefficients should express the generaliz
ability of actor, partner, and relationship effects across 
these external raters. Using GT, a measurement with 
actors, partners, and relationships as facets of interest 
and raters as facets of nuisance, can be decomposed 
into effects for each of the facets and their statistical 
interactions.5 The variance in each of these main- and 
interaction effects could then be used in generalizabil
ity coefficients. However, when decomposing the vari
ation in the dyadic variables, the dependencies across 
subjects’ actor and partner effects, and across the rela
tionship effects within dyads should be accounted for. 

Therefore, we do not propose a traditional GT- 
decomposition, but we use the GT rationale to extend 
the SRM with rater effects.

The rater-extended social relations model (RESRM) 
is a generalization of the SRM in Equation 5, incorpo
rating rater deviations around each SRM effect. The 
variability in M across raters is represented as a ran
dom intercept with grand-mean M, and a rater-spe
cific deviation lK for each rater k. The random 
intercept Ai now represents the average (across raters) 
variability for each actor i, and an additional random 
intercept aik captures rater-specific deviations around 
Ai for each rater k. Likewise, the variability in Pj 
across raters is represented as a random intercept 
with mean Pj for each partner j, and a rater specific 
deviation pjk around Pj for each rater k. Lastly, the 
variability in Eij across raters is represented as a ran
dom intercept with mean Eij for each dyad ij, and a 
rater specific deviation eijk around Eij for each rater k. 
The resulting model is the RESRM:

Yijk ¼ M þ lk þ Ai þ aik þ Pj þ pjk þ Eij þ eijk: (11) 

Because the RESRM models repeated measures (i.e., 
multiple ratings) of the same dyadic interaction, Eij can 
be disentangled from random error. In turn, eijk; which 
represents the rater deviations from the relationship 
effect, is confounded with random error. Note that 
there are now K pairs of scores per dyad because each 
rater measures the bivariate outcome per dyad fijg:

Yfijgk ¼
Yijk
Yjik

� �

¼
M
M

� �

þ
lk
lk

� �

þ
Ai
Aj

� �

þ
aik
ajk

� �

þ
Pj
Pi

� �

þ
pjk
pik

� �

þ
Eij
Eji

� �

þ
eijk
ejik

� �

:

(12) 

The distributions of the actor, partner and relation
ship effects in the RESRM (Equations 11 and 12) are 
provided by Equations 6 and 7. The additional random 
intercepts for each rater are assumed to be normally dis
tributed with a mean of zero and variance r2

l; that is,

lk � Nð0, r2
lÞ: (13) 

The rater deviations from the actor and partner 
effects are assumed to be bivariate normally distrib
uted with means of zero and variances r2

a and r2
p; and 

to be mutually uncorrelated across raters. The same 
raters’ deviations aik and pik from Ai and Pi may be 
correlated; that is:

aik
pik

� �

� N l ¼
0
0

� �

, Rap ¼
r2

a

qaprarp r2
p

� �� �

,

(14) 

where qap is the correlation between aik and pik: The 
rater deviations from the relationship effects, eijk and 

4Although this decomposition has been noted in earlier publications (e.g., 
Jorgensen et al., 2018, p. 30; Malloy, 2018, p. 32, Eq. 2.9), we provide the 
derivation in Appendix A because we could not locate this in the existing 
SRM literature.
5Note that the relationship effects are already statistical interaction effects 
between actor and partner effects: actor � partner¼ relationship ¼ E.
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ejik; are assumed to be bivariate normally distributed 
with means of zero and common variance r2

e : Also, we 
assume that a correlation, qe; exists between individual 
raters’ deviations eijk and ejik from Eijk and Ejik; that is,

eijk
ejik

� �

� N l ¼
0
0

� �

, Re ¼
r2

e

qer
2
e r2

e

� �� �

: (15) 

Because, as for the SRM, all effects are mutually 
uncorrelated across actors, partners, dyads (Snijders & 
Kenny, 1999, p. 474), and raters, the RESRM decom
poses the total variance of Yijk (Equation 11) into the 
following orthogonal variance components:

r2
Y ¼ r2

l þ r2
A þ r2

a þ r2
P þ r2

p þ r2
E þ r2

e : (16) 

For the bivariate expression in Equation 12, the 
covariance matrix between a dyad’s two responses, 
Yfijgk; is

RY ¼
r2

l r2
l

r2
l r2

l

" #

þ RAP þ Rap þ RPA þ Rpa þ RE þ Re:

(17) 

Matrices RAP; Rap; RPA; RE and R� have been 
defined in Equations 6, 14, 10, 7, and 15, respectively. 
Similar to RPA being a rearrangement of RAP; the 
matrix Rpa is a rearrangement of Rap in Equation 14:

Rpa ¼
r2

p

qaprarp r2
a

� �

: (18) 

The RESRM thus provides the variance components 
that are associated with all potential facets of differenti
ation (i.e., actors, partners, and relationships) and the 
facet of generalization (i.e., raters), plus statistical inter
action effects between these facets, while taking the 
possible dependencies in the data into account.

Interrater reliability for interdependent social 
network data

We used the variances in Equation 16 to define ICCs 
for interrater consistency of actor, partner, and rela
tionship components, using the same rationale as for 
defining an IRR using the variances in Equation 3. The 

numerator of each ICC of interrater consistency 
includes the variance components representing the 
facet of differentiation, that is, r2

A for actor effects, r2
P 

for partner effects, and r2
E for relationship effects. The 

denominator includes the variance components of the 
facet of differentiation (r2

A; r2
P; or r2

E) plus the variance 
of the statistical interaction effect between the facet of 
differentiation and the raters; that is, r2

A þ r2
a for actor 

effects as facet of differentiation, r2
P þ r2

p for partner 
effects as facet of differentiation, and r2

E þ r2
e for rela

tionship effects as facet of differentiation. For example, 
the ICC of interrater consistency of the actor effects is

ICCAðC, KÞ ¼
r2

A

r2
A þ

r2
a

K

: (19) 

The ICC of interrater consistency for the integrated 
score (i.e., the combination of actor, partner, and rela
tionship effects) is defined as a fraction with the sum of 
the variance of the facets of differentiation (i.e., 
r2

A þ r2
P þ r2

E) as the numerator, and this sum plus the 
variances in the statistical interaction effects between 
the facets of differentiation and the raters (i.e., 
r2

a þ r2
p þ r2

e ) in the denominator. Table 2 provides the 
ICCs for all possible facets of differentiation in the SRM.

Connections to other SRM reliability estimates

We are not the first to discuss reliability estimates for 
the SRM. Here we briefly clarify the distinctions and 
similarities between the RESRM approach and other 
reliability coefficients for SRM research. Malloy and 
Kenny (1986) showed that the SRM is a special case 
of GT and showed that its actor, partner, and rela
tionship components relate to the facets in a GT 
decomposition. When measuring interpersonal per
ceptions, actors can be considered as perceivers 
(raters) and partners are targets (subjects), so ICCs 
can be used to estimate how much of the total vari
ance is reliable across these perceivers (e.g., 
ICCP ¼ R2 ¼ r2

p=r
2
y). This ICCP can thus be consid

ered as an estimate of interrater agreement because it 
represents agreement among actors of their percep
tions about the same set of partners.

Table 2. Interrater reliability coefficients for interdependent social network data.
Facet of interest Single rating (C, 1) Average ratings (C, K)

Actor effect (ICCA) r2
A

r2
Aþr2

a

r2
A

r2
Aþ

r2
a

K

Partner effect (ICCP) r2
P

r2
Pþr2

p

r2
P

r2
Pþ

r2
p

K

Relationship effect (ICCE ) r2
E

r2
Eþr2

e

r2
E

r2
Eþ

r2
e

K

Integrated score (ICCY ) r2
Aþr2

Pþr2
E

r2
Aþr2

Pþr2
Eþr2

aþr2
pþr2

e

r2
Aþr2

Pþr2
E

r2
Aþr2

Pþr2
Eþ

r2
aþr2

pþr2
e

K 
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Kenny (1994, p. 241) proposed a GT model that 
extends the SRM by incorporating item- or occasion 
effects. Bonito and Kenny (2010) implemented this 
model to define reliability coefficients for estimated 
SRM random effects. In their work, reliability is 
defined as the degree to which partner (or actor) 
effects can be generalized over relationships (their 
Equations 5 and 6) or the degree to which actor and 
partner effects can be generalized over both relation
ships and measurements (i.e., items; their Equations 9 
and 10). The denominator of these generalizability 
coefficients accounts for the dyadic reciprocity, 
because these coefficients estimate the degree to which 
actor (but also partner) effects can be generalized over 
relations (i.e., the source of dependence in SRM data).

The current paper proposes coefficients to investigate 
the degree to which the random actor, partner, and rela
tionship effects can be generalized over external raters. 
These raters do not take part in the interactions them
selves and are additional to the subjects (i.e., actors and 
partners) in the social relations study. The GT-based 
RESRM we proposed is similar to Bonito and Kenny’s 
(2010) model, however, instead of including an add
itional item facet, we included a rater facet as measure
ment facet. Furthermore, our coefficients differ from 
those of Bonito and Kenny (2010) because we aim to 
investigate how well actor, partner and relationships 
scores can be generalized across these independent 
raters, rather than across actors and partners that them
selves take part in the social interactions. Therefore, the 
ICCs we propose in Table 2 do not include relationship 
variance or dyadic reciprocity in the denominator. Our 
ICCs are thus specifically useful for validating or improv
ing rating procedures when external raters are used to 
obtain dyadic data for an SRM study.

Estimating ICCs with the RESRM

ICCs as well as the SRM are traditionally estimated 
using random-effects ANOVA models. In the SRM, 
correlations are then allowed between an individual’s 
actor and partner effects and within dyads (Warner 
et al., 1979). Others proposed to estimate the SRM as 
a multilevel model with cross-classified random 
effects, using maximum likelihood estimation 
(Snijders & Kenny, 1999). This procedure is available 
in some software packages (e.g., MLwiN; Rasbash 
et al., 2017), but many multilevel modeling software 
packages do not allow correlations between cross clas
sified random effects. For a more detailed description 
of this multilevel approach, we refer to Snijders and 
Kenny (1999). More recently, a structural equation 

modeling approach (e.g., Nestler et al., 2020) and a 
fully Bayesian approach (L€udtke et al., 2013) were 
proposed to estimate the SRM. Both estimation meth
ods have also been proposed to estimate IRR and gen
eralizability coefficients (e.g., Jorgensen, 2021; Ten 
Hove et al., 2020, 2022, 2024a; Vispoel et al., 2018, 
2019). We will focus on the Bayesian approach 
because under conditions that are expected to occur 
frequently in observational social-network research, 
this approached outperformed the IRR estimates 
obtained using the structural equation modeling 
approach (Ten Hove et al., 2024a). These conditions 
involve small samples (e.g., of raters) and variance 
components close to the boundary of zero.

To estimate the parameters of the RESRM, we 
implemented a Bayesian approach as proposed for a 
similar network model by Hoff (2005) and more 
recently described for the SRM by L€udtke et al. (2013). 
Let h be the vector of all model parameters. The pos
terior distribution PðhjYÞ of the model parameters 
given the data is estimated as proportional to the prod
uct of the prior probability distribution PðhÞ and the 
likelihood of the data, conditional on the parameters 
PðYjhÞ: By using non-informative priors for estimating 
PðhjYÞ through Markov chain Monte Carlo (MCMC) 
estimation, the estimated posterior distribution is pri
marily influenced by the observed data, and the model 
estimates are similar to those obtained using MLE.

MCMC algorithms can estimate all unknown RESRM 
quantities (i.e., parameters and random effects) simultan
eously. Let K be the number of raters, let N be the num
ber of subjects (and thus the number of actors and 
partners), and let D ¼ NðN − 1Þ=2 be the maximum 
number of dyads given N.6 Assuming a fully crossed 
design in which all raters observe all dyadic interactions, 
and all subjects interact with all other subjects, paramater 
vector h includes the following 12þ 2N þ 2Dþ K þ
2NK quantities: The grand mean M (Equation 11); vari
ance components r2

l, r2
A, r2

a, r2
P, r2

p r2
E; and r2

e (or their 
square roots; 7 Equation 16); correlations qAP (Equation 
6), qE (Equation 7), qap (Equation 14), and qe (Equation 
15); subject-level random effects ½AiPi� for i ¼ 1, :::, N;
dyad-level random effects ½Eij Eji� for i ¼ 1, :::, N; j ¼
1, :::N; i 6¼ j; rater-specific deviations lk for k ¼
1, :::, K; and rater-specific deviations from subject-level 
random effects ½aik pik� for i ¼ 1, :::, N; k ¼ 1, :::, K 
(Equation 12). If the design is not fully crossed, each rater 
observes a subset of dyads rather than all dyads, or 

6D ¼ NðN − 1Þ=2 only if all subjects interact with all other subjects. When 
subjects interact in small subgroups, D < NðN − 1Þ=2:
7Depending on the software, these hyperparameters are estimated in 
terms of random-effect SDs, or random-effect variances.
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subjects do not interact with all other subjects. For such a 
design, the model involves the same parameters but 
fewer random effects to estimate.

The conditional distribution of Yfijgk given h is the 
bivariate normal likelihood of the observed data; that 
is, 

Yijk
Yjik

� �

� N Ŷ ijk

Ŷ jik

" #

, r2
e

qer
2
e r2

e

� � !

: (20) 

Equation 20 is specified using the vector of pre
dicted values for Yfijgk; given all random intercepts:

Ŷfijgk ¼
Ŷ ijk

Ŷ jik

" #

¼
M
M

� �

þ
lk
lk

� �

þ
Ai
Aj

� �

þ
aik
ajk

� �

þ
Pj
Pi

� �

þ
pjk
pik

� �

þ
Eij
Eji

� �

:

(21) 

The prior distributions of the random effects are 
defined by equations 6, 7, 13, 14, and 15. The parame
ters (i.e., variance components, and correlations) are 
hyperparameters requiring their own prior distributions. 
These hyperprior distributions can be uninformative (or 
weakly informative) to allow the posterior to be influ
enced only by the data. More informative distributions 
can be specified if researchers want to incorporate 
stronger prior beliefs or results of previous research. In 
the empirical example below, we further elaborate on 
the technical specifications of the estimation procedure.

Empirical example: social mimicry

We estimated the IRR of interdependent social net
work data on social mimicry (Salazar K€ampf et al., 
2018) using both a conflated approach and the 
RESRM approach. The data were collected using a 
round-robin design (i.e., each subject interacted with 
all other subjects within a network; Warner et al., 
1979), and raters viewed the recorded interactions to 
rate the social mimicry of both subjects in each dyadic 
interaction. Salazar K€ampf et al. (2018) made this data 
publicly available on the Open Science Framework: 
https://osf.io/b4nvf/

Method

Participants
In total, N ¼ 139 German students participated in the 
study of Salazar K€ampf et al. (2018). Each student was 
randomly assigned to a group of four to six members, 
forming 26 same-sex networks. Each student had an 
interaction with all other group members, which 
resulted in a total of D ¼ 309 dyadic interactions. For 
a more detailed description of the sampling procedure 

and the sample, we refer to Salazar K€ampf et al. 
(2018).

Measures
Each 5-min dyadic interaction was videotaped and 
K ¼ 3 raters rated the degree of social mimicry of 
each participant during each interaction, using a 6- 
point Likert scale ranging from 1 (not at all) to 6 
(very much). Salazar K€ampf et al. (2018) calculated a 
conflated IRR estimate of ICCð2, 3Þ ¼ :87.8 A more 
detailed description of the measures and the rating 
protocol can be retrieved from the supplementary 
materials of Salazar K€ampf et al. (2018).

Analysis plan
Software for estimation. Whereas L€udtke et al. (2013) 
used Gibbs sampling techniques to estimate the vari
ance components associated with each facet, we used a 
No-U-Turn Sampler (NUTS), a special case of 
Hamiltonian Monte Carlo (HMC) that is implemented 
in the Stan software (Carpenter et al., 2017) and avail
able in the R (R Core Team, 2021) package rstan 
(Stan Development Team, 2020). NUTS, and HMC in 
general, is faster and more efficient than Gibbs sam
pling, especially when models are highly parameterized 
or include highly correlated parameters (Monnahan 
et al., 2017). Whereas Gibbs sampling techniques sam
ple elements of h (i.e., the mean, the random-effect var
iances or SDs, the random-effect correlations, and all 
random effects) sequentially, NUTS simultaneously 
samples the entire vector h by simulating it as a point 
in a Npar-dimensional space, where, in our case, Npar ¼

K þ 2N þ 2Dþ 2KN þ 12 ¼ 3þ 2� 139þ 2� 309þ
2� 3� 139 þ 12 ¼ 1745:

The Stan program estimates the random-effect 
hyperparameters in terms of SDs instead of variances. 
We derived posterior distributions of all ICCs listed 
in Table 2 from the posterior SD estimates. A 
Bayesian credible interval (BCI) provided an estimate 
of the precision with which an ICC was estimated. 
We used the modal a posteriori (MAP) estimates as 
point estimates of the ICCs, and we obtained 95% 
BCIs using percentiles (L€udtke et al., 2013; Ten Hove 
et al., 2020). For comparison, we also estimated the 
conflated ICCs with the R software package irr 
(Gamer et al., 2012). We provide all software code 
that we used for this article on the Open Science 
Framework (Ten Hove et al., 2024b): https://osf.io/ 
9az5x.

8The ICCð2, 3Þ as defined by Shrout and Fleiss (1979) is identical to the 
ICCðC, KÞ in Equation 3.
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Model diagnostics. We initially used three independ
ent chains of 1,000 iterations to estimate the model: 
The first 500 iterations of each chain served as burn- 
in iterations, whereafter we saved 500 samples from 
the posterior in each chain. We used traceplots to 
check whether the three independent chains con
verged on the same posterior distribution, and 
inspected the potential scale reduction factor (R̂) and 
effective sample size (Neff), using R̂ < 1:10 and Neff 
> 100 as indication for adequate mixing of the inde
pendent chains and a sufficient effective sample size 
(Gelman & Rubin, 1992). We had to double the num
ber of post burn-in iterations because of insufficient 
effective sample sizes, which resulted in a in a sample 
of 3 (chains) � 1, 000 (post burn-in iterations) ¼
3, 000 iterations to obtain the MAPs and BCIs of the 
ICCs, for which the traceplots showed adequate mix
ing (see our supplementary material on the Open 
Science Framework).

Prior distributions. We specified weakly informative 
prior distributions for each parameter, assuming that 
the standard deviations (rA, rP, rE, rl, ra, rp; and re) 
followed a half-t(4, 0, 1) distribution, with a range of 
(0, 3), which is half the range of Y and therefore the 
largest a SD could possibly be. These priors are specif
ically useful for studies as these, when variances are 
estimated from (very) small samples of subjects and 
raters, and possibly close to the lower-bound of zero 
(Ten Hove et al., 2020). Given our lack of theoretical 
expectations regarding the correlations between the 
effects within dyads or persons (qAP; qE; qap; and qe), 
we assumed that these correlations were uniformly 
distributed across the range of (−1, 1).

Results

Variance decomposition
Table 3 shows all SRM parameters as estimated with 
maximum likelihood by Salazar K€ampf et al. (2018), 
and all RESRM parameters that we estimated with 

stan, including the model diagnostics. The estimated 
grand mean, which is the average degree of social 
mimicry across subjects, showed comparable estimates 
in the SRM of Salazar K€ampf et al. (2018) and the 
RESRM, as did the estimated proportions of variance 
that were explained by the actor, partner, and rela
tionship components of social mimicry. The difference 
is in the error components. Salazar K€ampf et al. 
(2018) only estimated a single error component, 
whereas we separated this composite into four differ
ent rater-related error components: a variance compo
nent for the differences in relative standings of raters 
(r2

l), and variance components for the rater deviations 
from the actor effects (r2

a), partner effects (r2
p), and 

relationship effects (r2
e ). The variance component 

attributed to rater deviations from the relationship 
effects, which is confounded with measurement error, 
was the largest of the four rater-error variance compo
nents (24%). Substantial parts of the total variance 
could also be attributed to the rater deviations from 
the actor effects (8%), whereas only negligible por
tions of the total variance were explained by the rater 
deviations from the grand mean (< 1%) and the part
ner effects (< 1%) of social mimicry. The proportion 
of variance that was explained by the combined rater 
deviations from the mean, and actor, partner and rela
tionship effect (33%), was comparable to the undiffer
entiated error variance of the SRM (35%).

Interrater reliability
Table 4 shows all IRR estimates as estimated with a 
conflated approach and the RESRM approach. These 
results show that the RESRM estimates of the ICCs 
for single and averaged ratings of the integrated score 
(i.e., the combination of all three SRM components; 
ICCY ) was comparable to the conflated IRR point 
estimates.

The conflated IRR estimates seem to underestimate 
the IRR of the actor and partner components of social 
mimicry and overestimate the IRR of the relationship 
component of social mimicry. Overall, these results 
imply that it is not safe to assume that the reliability 

Table 3. Estimated variance components using the SRM (by 
Salazar K€ampf et al., 2018) and using the RESRM.

SRM RESRM

Variance Est % variance MAP 2.5% 97.5% % variance Neff R̂

r2
A 0.32 24 0.37 0.26 0.54 27 866 1.00

r2
P 0.07 6 0.09 0.04 0.17 7 182 1.02

r2
E 0.47 35 0.46 0.37 0.58 34 497 1.00

r2
l – – 0.00 0.00 0.39 < 1 270 1.00

r2
a – – 0.11 0.06 0.15 8 161 1.01

r2
p – – 0.00 0.00 0.05 < 1 105 1.02

r2
e – – 0.33 0.30 0.36 24 903 1.00

r2
Error 0.46 35 – – – – – –

r2
Total 1.32 100 1.39 1.27 1.81 100 427 1.00

Table 4. RESRM-based ICC estimates.
Single ratings (C, 1) Averaged ratings (C, K)

ICC Est. 2.5% 97.5% Est. 2.5% 97.5%

ICCConf 0.68 0.65 0.72 0.87 0.85 0.88
ICCY 0.68 0.63 0.72 0.86 0.84 0.89
ICCA 0.79 0.68 0.87 0.92 0.86 0.95
ICCP 0.98 0.65 1.00 0.99 0.79 1.00
ICCE 0.59 0.52 0.64 0.81 0.77 0.84

Note. Y ¼ Integrated scores; A ¼ Actor effects; P ¼ Partner effects; E ¼
Relationship effects. The ICC as reported by Salazar K€ampf et al. (2018, 
i.e., ICC(2,3) ¼ 0.87), resembled the conflated ICC (i.e., ICCConf ) for aver
aged ratings as estimated with the irr package.
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associated with the integrated scores (i.e., conflated 
IRR estimates) adequately represents the reliability 
associated with each component of the data.

Simulation study

Method

Data generation
We conducted a simulation study to gain a first 
impression of the bias and coverage of the RESRM- 
based ICC estimates under favorable and less favor
able conditions. We varied the research design and 
the population parameters of the RESRM. In each 
condition, we used mvrnorm function in the R-pack
age rockchalk (Johnson, 2016) to generate bivariate 
normally distributed data from Equation 12 using the 
parameters in Equations 6, 7, 13, 14, 15, and 16.

Independent variables
The factor design had two levels: A good design with 
substantial and balanced sample sizes, and an poor 
design based on the empirical example.9 The good 
design with substantial sample sizes resembled a situ
ation in which a group of 10 subjects each interacted 
with all other subjects in the group, yielding 10�9

2 ¼ 45 
dyadic interactions. All interactions were rated twice 
(once to rate subject i’s attribute, and once to rate 
subject j’s attribute) by 10 raters, resulting in 45 
(dyadic interactions Þ � 10 (raters Þ � 2 (ratings per 
interaction) ¼ 900 dyadic observations. The poor 
design was based on the empirical example and 
exactly resembled the design of Salazar K€ampf et al. 
(2018), in which groups of four to six subjects were 
each rated by three raters, yielding 309 dyadic interac
tions, and 309 (dyadic observations Þ � 3 (raters Þ � 2 
(ratings per interaction) ¼ 2154 dyadic observations.

The factor parameters also had two levels: A 
(co)variance structure with substantial RESRM param
eters, and a (co)variance structure with varying 
parameters. The substantial population parameters we 
selected were: rA ¼ rP ¼ rR ¼ rp ¼ ra ¼ re ¼ 1:00 
and qAP ¼ qE ¼ qap ¼ qe ¼ :30: That is, all compo
nents followed a standard-normal distribution, and 
within-person and dyadic correlations differed consid
erably from zero. The varying population parameters 
were based on the empirical example: rA ¼ 0:60, rP ¼

0:30, rE ¼ 0:70, ra ¼ 0:30, rp ¼ 0:10, re ¼ 0:60, qAP ¼

:70, qE ¼ :70, qap ¼ −:30, qe ¼ :20: These population 
parameters were specified as SDs and correlations 
because Stan output provides standard-deviation com
ponents rather than variance components.

This simulation design yielded 2 (design) � 2 
(parameters) ¼ 4 conditions in total, for each of which 
we generated 1,000 datasets. The resulting population 
ICCs ranged from 0.50 to 0.90 for single ratings, and 
from 0.75 to 0.99 for averaged ratings (Table 5).

Estimation
We used the NUTS method discussed earlier for par
ameter estimation and added an automated conver
gence check. If the three independent chains did not 
mix well according to the R̂ criterion of R̂ < 1:10; we 
doubled the number of post burn-in iterations. This 
was repeated until the model converged, or did not 
converge after the limit of 8,000 post burn-in itera
tions was reached, in which case we discarded the 
replication.

Dependent variables
Bias of point estimates. Let �h denote the average ICC 
as estimated across replications in a condition, and let 
h denote the population parameter in that condition. 
Relative bias was computed as �h−h

h
; and thus provides 

a measure of systematic over- or underestimation of 
the true ICCs. We interpreted relative bias between 
0.05 and 0.10 as minor bias and relative bias > :10 as 
substantial bias.

BCI coverage rates. We computed the coverage rates as 
the percentage of converged replications in a condition 
for which the 95% BCI contained the population ICC. 
Agresti-Coull intervals indicate that with 1000 replica
tions, 95% BCI coverage < :93 or > :96 differ signifi
cantly from 0.95 (Agresti & Coull, 1998). We considered 
only BCI-coverage rates < :90 practically too low.

Table 5. Population ICCs for averaged ratings of the inte
grated score, and of the actor-, partner-, and relationship 
effects across simulation conditions.

ICC

Parameters Design Ratings Y A P E

Substantial Good Single .50 .50 .50 .50
Averaged .91 .91 .91 .91

Poor Single .50 .50 .50 .50
Averaged .75 .75 .75 .75

Varying Good Single .67 .80 .90 .58
Averaged .95 .98 .99 .93

Poor Single .67 .80 .90 .58
Averaged .86 .92 .96 .80

Note. Y ¼ Integrated scores; A ¼ Actor effects; P ¼ Partner effects; E ¼
Relationship effects.

9We selected the terms good and poor to ease the discussion of the 
simulation results. There may be better or worse conditions than those 
that we selected. Also, good and poor conditions to estimate IRR 
coefficients may differ from good and poor conditions for drawing 
inferences about individuals’ attributes in SRM analyses.
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Results

The model converged for almost all replications, vary
ing from 98% (good-design, varying-parameters 

condition) to 100% (good design, substantial-parame
ters condition). Averaged across conditions, the 
RESRM provided unbiased estimates with good cover
age rates for most ICCs (Tables 6 and 7). However, 
the ICCs for single ratings of the actor effects were 
overestimated, and their BCIs were too narrow, as 
was the case for these ICCs for averaged ratings. Also, 
the ICCs for single ratings of the relationship effects 
were slightly underestimated, and the coverage rates 
for the ICCs of relationship effects were too low for 
both single and averaged ratings.

Bias
Figure 1 shows the relative bias of the ICCs across 
conditions. Most ICCs were accurately estimated, 
especially in the good-design conditions. In both 
good-design conditions, only the ICCs for single rat
ings of the partner effects were slightly underesti
mated. In the poor-design, substantial-parameters 
condition, the ICCs of the actor effects were substan
tially overestimated, and the ICCs of the relationship 
effects were substantially underestimated. This bias 
can be explained by the combination of few raters, 
small groups of interacting subjects, and highly corre
lated rater effects in this condition, which produces 
an underestimation of the variance of the rater- 

Table 7. 95% BCI coverage rates across simulation conditions.
Substantial parameters Varying parameters

ICC MðSDÞ
Good  

design
Poor  

design
Good  

design
Poor  

design

ICCTðC, 1Þ .95 (0.02) .95 .92� .96� .95
ICCAðC, 1Þ .74� (0.25) .94 .45� .94 .61�

ICCPðC, 1Þ .94 (0.04) .95 .90� .94 .99�

ICCEðC, 1Þ .72� (0.44) .96 .06� .95 .91�

ICCTðC, kÞ .95 (0.02) .95 .92� .96� .95
ICCAðC, kÞ .74� (0.25) .94 .45� .94 .61�

ICCPðC, kÞ .94 (0.04) .95 .90� .94 .99�

ICCEðC, kÞ .72� (0.44) .96 .06� .95 .91�

Note. � ¼ Coverage rate outside Agresti-Coull interval.

Figure 1. Relative bias of the ICCs across conditions. White areas: substantial bias (>10%); Light-gray areas: minor bias (5–10%); 
Dark-gray areas: negligible bias (< 5%).

Table 6. Relative bias across simulation conditions.
Substantial parameters Varying parameters

ICC MðSDÞ
Good  

design
Poor  

design
Good  

design
Poor  

design

ICCTðC, 1Þ 0.00 (0.01) −0.00 −0.01 0.00 0.00
ICCAðC, 1Þ 0.11 (0.15) −0.02 0.31 0.04 0.09
ICCPðC, 1Þ −0.01 (0.08) −0.10 0.09 −0.06 0.02
ICCEðC, 1Þ −0.07 (0.12) −0.00 −0.26 −0.00 −0.03
ICCTðC, kÞ 0.00 (0.00) 0.00 −0.01 0.00 0.00
ICCAðC, kÞ 0.05 (0.06) 0.01 0.14 0.00 0.03
ICCPðC, kÞ 0.00 (0.04) −0.01 0.04 −0.05 0.01
ICCEðC, kÞ −0.04 (0.07) 0.00 −0.15 −0.00 −0.01
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deviation from the actor effects (s2
a ¼ 0:71), and over

estimation of the rater-deviation from the relationship 
effects (s2

� ¼ 1:30). Using these biased variance-compo
nent estimates in the formulae for the ICCs (Table 2) 
produced biased ICCs. In the poor-design, varying- 
parameters condition, the ICCs for single ratings of the 
actor effects were slightly overestimated.

Coverage
Figure 2 shows the 95% BCI coverage rates of the 
ICCs across conditions. Most ICCs had near-nominal 
coverage rates, especially in the good-design condi
tions. In the poor-design conditions, and particularly 
in the poor-design, substantial-parameters condition, 
coverage rates of the ICCs of actor and relationship 
effects were too low.

Discussion

We proposed, illustrated, and tested an RESRM to esti
mate the IRR of interdependent social network data. 
Using an empirical example on social mimicry, we 
showed that the different components of interdependent 
social network data may have their own IRR and that it 
is thus unsafe to assume that a conflated estimate 
adequately represents the IRR associated with each of 
these facets of interest. We tested the properties of the 

proposed estimator in a simulation study, which indi
cated that the proposed ICCs were mostly unbiased and 
generally had good coverage rates if the research design 
includes sufficient raters and a substantial number of 
interacting subjects.

The simulation conditions provide a first impres
sion of the performance estimator under favorable 
and unfavorable conditions. The study showed consid
erable differences between the bias and coverage of 
the ICC estimates for the good and poor design con
ditions. In conditions with both small subgroups of 
interacting subjects and a few number of raters, the 
RESRM could not accurately estimate all ICCs, espe
cially if the magnitude of variances and dependence of 
observations was substantial. This was to be expected, 
because little information generally leads to biased 
point or SE estimates of variances. The bias in the 
poor design, substantial parameters condition indi
cated that the RESRM-based ICCs cannot be trusted 
for designs with few raters and small subgroups of 
subjects. We therefore advise against drawing conclu
sions based on the IRR estimates for the empirical 
example and would advise using the RESRM-based 
ICCs for studies with similar designs. Follow-up 
research is needed to test the properties of the pro
posed estimation method in more conditions, to dis
entangle the effects of various design factors, such as 

Figure 2. Coverage of the ICCs across conditions. White areas: Practically too low coverage rates < 90%.
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the number of raters, the type of social network 
design and the degree of dependence in the social net
work, on the bias and coverage of the ICCs. Because 
researchers often use Likert-type scales, or dichotom
ous variables in network studies (i.e., mainly to indi
cate whether a relation exists), other useful follow-up 
research includes developing an RESRM that handles 
discrete data.

The good design, for which the method performed 
well, represents conditions with many raters and one 
substantially large group of subjects. Such conditions 
may seem non-pragmatic, because using many ratings 
is typically time consuming and expensive. However, 
although the good-design conditions had more raters 
per subject (K ¼ 10) than than the poor-design condi
tions (K ¼ 3), the good-design conditions were more 
efficient as they required 900 ratings in total whereas 
the poor-design conditions required 2154 ratings. The 
good design conditions used fewer participants than 
may be desirable for an SRM study, but the design is 
useful to inspect the quality of the rating procedure. If 
researchers develop rating procedures for SRM research 
we suggest to use a validation study to inspect the qual
ity of the rating procedure in terms of IRR. In such a 
validation study, the quality of the rating procedure can 
be investigated using a subsample of all subjects, with 
many raters per subject. Using the variance components 
estimated with the RESRM based on this subsample, 
IRR coefficients could be defined for each desired 
design, thus also for a design with more subjects but 
single ratings. If the IRR for single ratings is sufficient, 
the remaining subjects in an SRM study could then be 
observed by a single rater, and the SRM could be fitted 
to these single ratings.

Traditional IRR coefficients are not useful in SRM 
research, because such coefficients do not consider the 
IRR for each SRM component separately. In SRM 
research, observed dyadic variables are decomposed 
into their actor, partner, and relationship components, 
each of which might be of interest as predictors or 
outcomes in a statistical model. The RESRM-based 
IRR coefficients can inform researchers in improving 
rating procedures for dyadic variables, by identifying 
which components are most prone to rater effects. We 
therefore believe that the RESRM approach is a prom
ising conceptual and analytical tool for evaluating the 
IRR of dyad-level predictors in social relations 
research.
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Appendix A 
Variance decomposition

We derive the variance decomposition of Y for the SRM. 
The same principles apply to the RESRM, with similar 
results, complicated only by the inclusion of more terms 
(lk; a; p; and e).

The bivariate vector Yfijg is decomposed as shown in 
Equation 5. The mean does not contribute to the variance 
because it is a constant, and the remaining terms all have 
expected values of zero. Thus, the second central moment 
(variance) is simply the expected value of squared random 
effects. For example, the variance of actor effect (A) is:

VarðAÞ ¼ E ðA − E A½ �Þ2
� �

¼ E A2½ �, (A.1) 

and likewise for partner (P) and relationship (E) effects. To 
prevent confusion with the expectation operator E[.], the 
remainder of this appendix refers to the relationship effect 
Eij (e.g., Equation 12) with the variable RðijÞ:

For the univariate SRM in Equation 4, the variance of 
Yij is

VarðYijÞ ¼ E ðY − E Y½ �Þ2
� �

(A.2) 

¼ E ðM þ Ai þ Pj þ Rij − E M þ Ai þ Pj þ Rij½ �Þ
2

h i

(A.3) 

¼ E ðM þ Ai þ Pj þ Rij − ðE M½ � þ E Ai½ � þ E Pj½ � þ E Rij½ �ÞÞ
2

h i

,

(A.4) 

which follows from the property that the expectation of a 
sum (or difference) equals the sum (or difference) of 
expectations. The expected value of a constant is itself 
(E½M� ¼ M), so the means cancel out M, and Equation A.4 
reduces to

VarðYijÞ ¼ E ðAi þ Pj þ Rij − E Ai½ � − E Pj½ � − E Rij½ �Þ
2

h i

(A.5) 

¼ E ðAi þ Pj þ Rij − 0 − 0 − 0Þ2
h i

(A.6) 

¼ E ðAi þ Pj þ RijÞ
2

h i

: (A.7) 

The expected value of each random effect is zero, further 
simplifying the formula above before squaring the 
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parenthetical term:

VarðYijÞ ¼ E ðAi þ Pj þ RijÞ
2

h i

(A.8) 

¼ E A2
i þ P2

j þ R2
ij þ 2ðAiPj þ AiRij þ PjRijÞ

h i
(A.9) 

¼E A2
i

� �
þ E P2

j

h i
þ E R2

ij

h i
þ 2

� ðE AiPj½ � þ E AiRij½ � þ E PjRij½ �Þ
(A.10) 

¼ E A2
i

� �
þ E P2

j

h i
þ E R2

ij

h i
þ 2� ð0þ 0þ 0Þ (A.11) 

¼ E A2
i

� �
þ E P2

j

h i
þ E R2

ij

h i
: (A.12) 

Because the random intercepts are uncorrelated across 
(person and dyad) levels, the expectation of the product of 
Rij with Ai or Pj is zero. Likewise, the person-level random 
effects are independent across cases i and j, so the product 
AiPj has an expectation of zero. The simplified formula in 
Equation A.12 contains only the remaining expectations of 
squared random effects, which correspond to the variance 
components, as shown in Equation A.1 for the actor effect:

VarðYijÞ ¼ E A2
i

� �
þ E P2

j

h i
þ E R2

ij

h i
(A.13) 

¼ VarðAÞ þ VarðPÞ þ VarðRÞ (A.14) 

r2
Y ¼ r2

A þ r2
P þ r2

R: (A.15) 

The same result can be found when deriving the variance 
of Yji; by swapping the i and j subscripts in Equation A.3
and proceeding with the same steps. The variance is equal 
for both observations in the bivariate vector Yfijg; as 
implied by Equation 9:
RYij ¼ RAP þ RPA þ RE (A.16) 

¼
r2

A
rAP r2

P

� �

þ
r2

P
rAP r2

A

� �

þ
r2

R
rRR r2

R

� �

(A.17) 

¼
r2

A þ r2
P þ r2

R
2rAP þ rRR r2

A þ r2
P þ r2

R

� �

(A.18) 

¼
r2

Y
rYY r2

Y

� �

: (A.19) 

Covariance decomposition

We use covariance algebra of linear combinations to derive 
the decomposition of the covariance rYY between the two 
observations in Yfijg:
CovðYij, YjiÞ ¼ CovðM þ Ai þ Pj þ Rij ; M þ Aj þ Pi þ RjiÞ

(A.20) 

¼ CovðAi þ Pj þ Rij ; Aj þ Pi þ RjiÞ (A.21) 

¼ CovðAi, AjÞ þ CovðAi, PiÞ þ CovðAi, RjiÞ

þ CovðPj, AjÞ þ CovðPj, PiÞ þ Cov ðPj, RjiÞ

þ CovðRij, AjÞ þ CovðRij, PiÞ þ CovðRij, RjiÞ

(A.22) 

¼ 0þ CovðAi, PiÞ þ 0þ CovðPj, AjÞ þ 0þ 0þ 0þ 0

þ CovðRij, RjiÞ:

(A.23) 
The remaining covariances in Equation A.23 correspond 

to the parameters that compose rYY in Equation A.18: rYY 
between the two observations in Yfijg:

CovðYij, YjiÞ ¼ CovðAi, PiÞ þ CovðPj, AjÞ þ CovðRij, RjiÞ

(A.24) 

¼ 2� ðCovðAi, PiÞÞ þ CovðRij, RjiÞ (A.25) 

rYY ¼ 2� rAP þ rRR: (A.26) 

As with the variance decomposition, the same principles 
yield similar results for the RESRM, complicated only by 
the inclusion of more terms.
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