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ABSTRACT

We propose interrater reliability coefficients for observational interdependent social network
data, which are dyadic data from a network of interacting subjects that are observed by
external raters. Using the social relations model, dyadic scores of subjects’ behaviors during
these interactions can be decomposed into actor, partner, and relationship effects. These
effects constitute different facets of theoretical interest about which researchers formulate
research questions. Based on generalizability theory, we extended the social relations model
with rater effects, resulting in a model that decomposes the variance of dyadic observa-
tional data into effects of actors, partners, relationships, raters, and their statistical interac-
tions. We used the variances of these effects to define intraclass correlation coefficients
(ICCs) that indicate the extent the actor, partner, and relationship effects can be generalized
across external raters. We proposed Markov chain Monte Carlo estimation of a Bayesian
hierarchical linear model to estimate the ICCs, and tested their bias and coverage in a simu-

lation study. The method is illustrated using data on social mimicry.

Introduction

In observational research, raters rate subjects to gather
information about subjects’ attributes (e.g., their
behavior or appearances). For example, Majdandzi¢
et al. (2016) used raters to assess parents’ (the sub-
jects) challenging parenting behavior (the attribute).
In statistical analyses, these ratings are used to answer
research questions about the associations between dif-
ferent attributes or about the effect of predictor varia-
bles (e.g., interventions) on these attributes. It is
important that the observed differences in the ratings
reflect differences across the subjects™ attributes rather
than differences across raters and their perspectives.
The degree to which the ratings are independent of
raters can be estimated with interrater reliability (IRR)
coefficients (e.g., Gwet, 2014; Hallgren, 2012; Zhao
et al,, 2013). If the IRR is low, the ratings depend
heavily on the raters. Low IRR can result in biased
estimates or loss of power in statistical analyses of
subjects’ attributes (cf. Lord & Novick, 1968, p. 72),

potentially leading to faulty conclusions. Thus, study-
ing the IRR is vital for social and behavioral research.
When the IRR is too low, researchers should improve
the IRR, for example, by improving rating procedures.
In this paper, we show that for interdependent social
network data (to be explained shortly), the current
measures of IRR are suboptimal, so researchers cannot
assess the IRR. We propose and test more elaborated
and improved IRR measures for this type of data, and
compare our proposed IRR measures to existing
(interrater) reliability measures for interdependent
social network data (Bonito & Kenny, 2010; Kenny
et al., 1994; Malloy & Kenny, 1986).

People often behave differently (e.g., smiling, bully-
ing, mimicking) depending on whom they interact
with, and those individuals may, in turn, elicit differ-
ent behaviors from them (e.g., Card & Hodges, 2010;
Coie et al., 1999; Salazar Kampf et al., 2018; Simpkins
& Parke, 2002). Variables that measure such interde-
pent behaviors are known as dyadic variables (Kenny
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Table 1. Example of an observational social network design
with four subjects and three raters. yjx denotes the score on
attribute Y of person i while interacting with person j (where
i,j € A,B,C,D and i # j), rated by rater k (k =1,2,3).

Subject
Rater Subject Anna Brooke Charlie Deborah
1 Anna - Yagi Yac1 Yap
Brooke YAl - Yeci YBD1
Charlie Yem Ve - Yo
Deborah YA Y1 Yoci -
2 Anna - Yag2 Yac2 Yap2
Brooke Va2 - Yec2 YBD2
Charlie Yeaz Y2 - Y2
Deborah Yom YpB2 Yoc2 -
3 Anna - YaB3 Yac3 Yap3
Brooke Yea3 - YB3 YBD3
Charlie Yeas YB3 - Y3
Deborah Yoa3 YB3 Yoc3 -

et al., 2006). Dyads consist of two subjects: An actor
displaying the behavior and a partner reacting on the
behavior. The behaviors of subjects are dependent on
the subject with whom they interact. Interdependent
social network data involves dyadic data from a net-
work of subjects. Each individual belongs to multiple
dyads (e.g., a group of students consists of multiple
pairs of peers) within such a network (e.g., Table 1,
top panel). Consequently, all dyadic observations
including actor i are nested within actor i, and all
dyadic observations including partner j are nested
within partner j.

In observational social-network research, raters rate
subjects’ attributes during interactions with several
other subjects (e.g., Huang et al., 2017; Hughes et al,,
2021; Salazar Kampf et al., 2018), and the raters are
not part of these interactions. Table 1 provides an
example of an observational social network design, in
which four students (Anna, Brooke, Charlie, and
Deborah) interact with each other. These students
form a social network, and each combination of sub-
jects is a dyad (e.g., Anna and Brooke, Anna and
Charlie, Anna and Deborah, etc.). The behavior of the
students during their interactions with the other stu-
dents is rated twice—as an actor and as a partner—by
each of three raters who are not part of the network.
Let Yjr denote the number of times that subject i
mimicked subject j (where i # j), as rated by rater k.
Both yap and ypa; indicate a score on the dyadic
variable mimicry of the dyad Brooke and Anna, as
rated by Rater 1. The score ysp indicates Anna’s
mimicry of Brooke, as rated by Rater 1, and the score
ypa1 indicates Brooke’s mimicry of Anna as rated by
Rater 1.

In social relations research, researchers could be
interested in different aspects of dyadic interactions.
The social relations model (SRM; Kenny, 1996; Kenny
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& La Voie, 1984) decomposes dyadic variables in dif-
ferent facets of theoretical interest about which
research questions could be formulated: actor effects,
partner effects, and relationship effects. During the
interaction between Anna and Brooke, Anna’s actor
effect would reflect how often Anna mimics her con-
versation partners on average (i.e., how imitative is
Anna?). Brooke’s partner effect would reflect how
often she is mimicked by her conversation partners
on average (i.e., how imitable is Brooke?). Given how
often Anna generally mimics her conversation part-
ners (her actor effect), and how often Brooke is gener-
ally mimicked (her partner effect), the relationship
effect would reflect how much more (or less) Anna
mimics Brooke. Similarly, Brooke’s mimicry of Anna
can be decomposed into the actor effect of Brooke,
the partner effect of Anna, and a relationship effect.’
Dyadic variables have complex dependency structures.
Actor and partner effects of individuals are often
dependent, as are the relationship effects within a
dyad (Kenny, 1996; Kenny & La Voie, 1984). For
example, a subject who mimics others frequently may
also elicit more mimicry on average. If Anna mimics
Brooke more than is expected based on Anna’s actor
effect and Brooke’s partner effect, Brooke may also
mimic Anna more than is expected based on Brooke’s
actor effect and Anna’s partner effect.

The results of the SRM (i.e., estimated actor, part-
ner and relationship effects, and their variances), may
differ across external raters, hence fail to generalize.
Therefore, the IRR of the actor, partner, and relation-
ship effects should be investigated to inspect the
degree to which these effects depend on external
raters. A low IRR may inform researchers that raters
require more training in using the observation instru-
ment, or that more raters should assess each dyadic
interaction. IRR methods have been proposed that can
handle multilevel data, in which the reliability is esti-
mated for the different hierarchical levels in the data
(Ten Hove et al.,, 2022), or that correct for dependen-
cies in two-level nested data (Ten Hove et al., 2022;
Vanbelle, 2017; Yang & Zhou, 2014). However, IRR
coefficients for the more complex dependencies in
interdependent social network data are currently
unavailable. Applying existing IRR coefficients to
interdependent social network data is a conflated

'There are two types of dyadic variables in interdependent social network
data: Those that differ between dyads within a network, but are stable
within dyads such as whether Joyce and Lisa shook hands, and those
that may be different for actor and partner, such as how often Lisa
mimicked Joyce and vice versa. In this paper, interdependent social
network data refers to the latter: Dyadic variables that can differ both
between and within dyads of a social network.
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approach, as they do not provide practically useful
information on the IRR for all facets of theoretical
interest. Also, we expect that point estimates or SEs
may be biased because traditional IRR coefficients
ignore the complex dependency structures in the data.

We use Generalizability theory (GT; Cronbach et al.,
1963; Shavelson et al., 1989) to develop IRR coefficients
for interdependent social network data. First, we dis-
cuss the GT approach for estimating the IRR of inde-
pendent rater data and its limitations for
interdependent social network data. Second, we discuss
the SRM approach for variance decomposition of inter-
dependent social network data and its implications for
estimating the IRR, and combine GT and the SRM to
propose a rater-extended SRM (RESRM). The RESRM
decomposes the variance in interdependent social net-
work data into actor, partner, relationship, and rater-
specific components, plus their statistical interactions.
Third, we propose RESRM-based IRR coefficients for
each facet of theoretical interest (i.e., the actor, partner,
and relationship components) in interdependent social
network data separately, and for their integrated score.
In addition, we propose an estimation procedure to
obtain these IRR estimates from data. Fourth, we com-
pare the conflated and RESRM methods for defining
IRR using example data on social mimicry of Salazar
Kampf et al. (2018). Fifth, we inspect the bias and
coverage rates of the proposed IRR coefficients in a
simulation study. We end with a discussion of our
findings and directions for future research.

Generalizability theory

GT (Cronbach et al., 1963; Shavelson et al., 1989) is an
extension of classical test theory (CTT) that can be
used to estimate the IRR (e.g., Ten Hove et al., 2024c).
CTT is used to estimate reliability of (composite)
observed scores when observed scores consist of a single
true-score component and a single error component.
GT allows to estimate reliability for multiple facets of
interest. Within GT, a single observation (e.g. the
assessment of a person’s degree of social mimicry) is
considered to be sampled from a universe of admissible
observations. The specific conditions under which an
observation is made are called facets. In observational
social network data, typical facets are actors, partners,
raters, and occasions. These facets can be divided into
sources of theoretical interest (termed facets of differen-
tiation; e.g., Vangeneugden et al., 2005), such as sub-
jects, or sources of nuisance variability (termed facets of
generalization; e.g., Vangeneugden et al., 2005), such as
raters or measurement occasions. Reliability is then

defined as the degree to which observations of the facets
of differentiation can be generalized over the facets of
generalization. Reliability is expressed with generaliz-
ability coefficients or indices of dependability. Within
a single study, multiple facets of generalization can be
present. Hence, a single generalizability coefficient can
account for multiple facets of generalization simultan-
eously (e.g., both multiple raters and multiple occa-
sions), or generalizability coefficients can be defined
for the separate facets of generalization. IRR refers to
degree to which the observations of facets of interest
can be generalized over raters.

Interrater reliability for independent data

In independent observational data, independent sub-
jects (i)* are rated by independent raters (k). The uni-
verse of admissible observations consists of subjects
and raters, where subjects are the facet of differenti-
ation and raters are the facet of generalization.
Considering a fully crossed (i.e., two-way) design, in
which each subject is rated by each rater, multiple
observations Yj can be decomposed into a grand
mean (M), a mean for each of the facets (S;, Rx), and
the statistical interaction terms between the aforemen-
tioned facets (SRy). The highest-order statistical inter-
action term between the facets (here the two-way
interaction SR;;) is confounded with error:

Yik = M + S; + R + SRy (1)

Observations Yy then involve the following orthog-
onal variances components (Shavelson et al., 1989): aé
for the main subject variance component, aﬁ for the
main rater variance component, and g%, for the vari-
ance component representing the statistical interac-
tions between raters and subjects, which is
confounded with any other source of error variance:

0y = 05+ 0p + o (2)

The variance decomposition in Equation 2 can be
applied to several definitions of the intraclass correlation
coefficient (ICC), all of which correspond to different
definitions of the IRR. These ICCs are identical to
Generalizability coefficients and indices of dependability
in GT (Ten Hove et al,, 2024c). The IRR literature dis-
tinguishes between ICCs of interrater agreement and
ICCs of interrater consistency, which can both be
defined for single as well as averaged ratings (McGraw
& Wong, 1996; Shrout & Fleiss, 1979). ICCs of

2In this subsection, we do not distinguish between actor and partner
effects of subjects. We therefore use the subscript i to indicate subjects,
rather than actors.



interrater agreement express the degree to which the
observed subject scores can be generalized over raters
and are of interest when subjects’ scores are interpreted
absolutely. For example, this applies to scores on educa-
tional tests that are used to decide whether students pass
a test. Interrater agreement is thus useful when the abso-
lute scores of subjects are used to make decisions about
individual subjects; a practice we consider unlikely for
the actor, partner, and relationship effects from the
SRM. We therefore further ignore ICCs for interrater
agreement. ICCs of interrater consistency express the
degree to which the observed differences across subjects
can be generalized over raters and are of interest when
subjects’ scores are interpreted relatively to each other.
For example, this applies to correlational studies using
the social relations model. Also, ICCs have been defined
for fixed as well as random raters. When raters in an
observation study are considered fixed, they are viewed
as the entire population of possible raters. When raters
are considered random, they are viewed as a random
sample of potential raters that could have been trained
using the rating protocol at hand. Typically, raters are
considered random. Ten Hove et al. (2024c) argued that
the fixed-rater assumption is rarely, if ever, justified for
IRR, so here we focus only on random raters.

ICCs for interrater consistency are defined as the pro-
portion of subject variance (i.e., the facet of interest; ag)
over the subject variance plus the variance in the sub-
ject-by-rater interaction effects, which are confounded
with random error (g5;). The ICCs of interrater consist-
ency do not include the relative standings of raters
across ratings in the denominator (ie., %), because
main rater effects do not influence the observed differ-
ences across subjects when all subjects are assessed by
the same raters (cf. norm-referenced reliability; Winer,
2013).> Hence, the denominator only includes the vari-
ance components that are associated with rank ordering
the facets of differentiation (here subjects). The rater-
related variance component in the denominator of the
ICC is divided by the number of raters over which sub-
jects” scores are averaged (K), resulting in

0.2
ICC(C,K) = —5—, 3)
where C indicates consistency. For single ratings, K = 1
and 22 reduces to o%,.

3For incomplete observational design, in which the raters partly differ
across subjects, a portion of the variance in main rater effects should be
added to the denominator of the ICCs of interrater consistency. This
portion is based on the proportion of non-overlapping raters across
subjects (Brennan, 2001; Putka et al., 2008; Ten Hove et al., 2024c).
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The social relations model

The SRM models dyadic data as nested within both
actors and partners, and actor and partner effects of
individuals are allowed to correlate. The SRM can
therefore be conceived as a cross-classified two-level
model with a bivariate outcome variable that allows
both positive and negative correlated actor and part-
ner effects (Snijders & Kenny, 1999). The dyad-level
observation Yj; is partitioned into a grand mean M
and three components, which are all deviations from
this grand mean (similar to a GT decomposition; cf.
Malloy & Kenny, 1986): A; is the actor effect of per-
son i, P; is the partner effect of person j, and Ej; is the
relationship effect when person i is the actor and per-
son j is the partner; that is,

Y; = M+ A; + P, + Ej;. (4)

If multiple observations of Yj; are available (e.g.,
multiple ratings by several raters) the relationship
effect (E;;) can be distinguished from error; if not, the
relationship effect is confounded with random error.

Let Yy;, denote a vector containing a dyad’s scores
Y and Yj;. The SRM decomposes the dyadic scores
Y{ij}7 as

Y. A . E.

o= =[] (8] [7) + 22

(5)

The actor and partner effects in the SRM are
assumed to be bivariate normally distributed with
means of zero and variances ¢4 and 3. Moreover, it
is assumed that both the actor and partner effects are
mutually uncorrelated between individuals; however, a
within-person correlation p,p (named generalized reci-
procity) exists between the actor effect A; and partner
effect P; of the same individual, resulting in a bivariate
distributional assumption:

Al)

A; 0 o>
! ~o N p— ’E p— A
[Pl} <M [0} A [PAPO'AO'P
(6)

The relationship effects are also assumed to be
bivariate normally distributed with a mean of zero
and variance 7. Also, a reciprocity or mutuality effect
is expected between observations within a dyad. This
reciprocity is modeled by the correlation between E;
and Ej;, which is called the dyadic reciprocity (Kenny
& La Voie, 1984, p. 157). It follows that

4l) o

E;; 0 a2
IJ ~Y p— P— E
5] (= fo) = |

The equality of the variance of E; and E; in
Equation 7 could be relaxed if actors and partners have
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specific roles within a network (e.g., children as actors
and teachers as partners). Lacking such roles to distin-
guish subjects i and j implies that o} = o} = 3.
Because the actor, partner, and relationship effects
in each dyadic observation of Equation 4 are uncorre-
lated (Snijders & Kenny, 1999, p. 474), the total vari-
ance of Yj can be decomposed by the SRM into the

following orthogonal variance components® :
oy = 04 + 0p + 07 (8)

When treating each row in Equation 5 separately,
the variance of each row of Y(;; is also expressed by
Equation 8. However, as the dyad’s scores are depend-
ent, a multivariate approach is required. The covari-
ance matrix of the dyad’s two responses Xy can be
decomposed as follows:

Xy =2ap+ Zpa + g
7y _ | o}
g | o a3 ogg 0% |
YY Y AP P EE E
9)

where the person-level matrix Xpy is a rearrangement
of X4p in Equation 6, such that components are
ordered [Partner, Actor] rather than [Actor, Partner]:

2
Op

+ -

2
AP Oy

2
szz{ Op Gi} (10)

Pap0a0P

Note that the variances on the diagonal of Xy are
both equal to 6%, but y also includes the covariance
between the two observations within a dyad (see also
Appendix A).

A rater-extended social relations model

When external raters are used to measure dyadic vari-
ables, IRR coefficients should express the generaliz-
ability of actor, partner, and relationship effects across
these external raters. Using GT, a measurement with
actors, partners, and relationships as facets of interest
and raters as facets of nuisance, can be decomposed
into effects for each of the facets and their statistical
interactions.” The variance in each of these main- and
interaction effects could then be used in generalizabil-
ity coefficients. However, when decomposing the vari-
ation in the dyadic variables, the dependencies across
subjects’ actor and partner effects, and across the rela-
tionship effects within dyads should be accounted for.

“Although this decomposition has been noted in earlier publications (e.g.,
Jorgensen et al.,, 2018, p. 30; Malloy, 2018, p. 32, Eq. 2.9), we provide the
derivation in Appendix A because we could not locate this in the existing
SRM literature.

®Note that the relationship effects are already statistical interaction effects
between actor and partner effects: actor x partner = relationship = E.

Therefore, we do not propose a traditional GT-
decomposition, but we use the GT rationale to extend
the SRM with rater effects.

The rater-extended social relations model (RESRM)
is a generalization of the SRM in Equation 5, incorpo-
rating rater deviations around each SRM effect. The
variability in M across raters is represented as a ran-
dom intercept with grand-mean M, and a rater-spe-
cific deviation pi for each rater k. The random
intercept A; now represents the average (across raters)
variability for each actor i, and an additional random
intercept ;. captures rater-specific deviations around
A; for each rater k. Likewise, the variability in P;
across raters is represented as a random intercept
with mean P; for each partner j, and a rater specific
deviation mj around P; for each rater k. Lastly, the
variability in Ej across raters is represented as a ran-
dom intercept with mean E; for each dyad ij, and a
rater specific deviation ¢, around Ej; for each rater k.
The resulting model is the RESRM:

Yijk:M+,uk +A,~+oc,-k+Pj+njk+E,~j+8,-jk. (11)

Because the RESRM models repeated measures (i.e.,
multiple ratings) of the same dyadic interaction, E; can
be disentangled from random error. In turn, &, which
represents the rater deviations from the relationship
effect, is confounded with random error. Note that
there are now K pairs of scores per dyad because each
rater measures the bivariate outcome per dyad {ij}:

Y"k M 2 Ai
Yiine = Y — k

o= [y =[] + ]+ 3]

Uik P] TEjk E,] gijk
+[°‘jk} ! [Pt} ’ [ﬂik} i [Ef L]
The distributions of the actor, partner and relation-
ship effects in the RESRM (Equations 11 and 12) are
provided by Equations 6 and 7. The additional random

intercepts for each rater are assumed to be normally dis-
tributed with a mean of zero and variance ai; that is,

1 ~ N(0,07). (13)

(12)

The rater deviations from the actor and partner
effects are assumed to be bivariate normally distrib-
uted with means of zero and variances ¢2 and o2, and
to be mutually uncorrelated across raters. The same
raters’ deviations oy and my from A; and P; may be
correlated; that is:

o)

Uik . 0 . O'i
|:7tik:| N<M_ {0}’2‘” o [pmaao—n
(14)

where p,,. is the correlation between oy and my. The
rater deviations from the relationship effects, ¢; and
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Table 2. Interrater reliability coefficients for interdependent social network data.

Facet of interest

Single rating (C, 1)

Average ratings (C, K)

Actor effect (ICC4)

2
%

ap U};
Partner effect (ICCp) P 2
LS o2
. . 7 %
Relationship effect (ICCg) T2 72
O tO, L
2 2 2 2 2 2
+op+0; 2402+
Integrated score (ICCy) o A
g Y G tor ol taitaital o2 talta? inwkiw

&jik, are assumed to be bivariate normally distributed
with means of zero and common variance 7. Also, we
assume that a correlation, p,, exists between individual
raters’ deviations & and &j; from Ej and Ejy, that is,

Eiik . 0 . Gg
S [ ) o

Because, as for the SRM, all effects are mutually
uncorrelated across actors, partners, dyads (Snijders &
Kenny, 1999, p. 474), and raters, the RESRM decom-
poses the total variance of Yj (Equation 11) into the
following orthogonal variance components:

0y =0, + 04+ 0, +0p+ 0, + 0p + 0, (16)

For the bivariate expression in Equation 12, the
covariance matrix between a dyad’s two responses,

Y{ij}k; is

2

o

_ I
2y = o2
n

Q9
=T N

(17)

Matrices Xp, X4z, 2pa, g and X. have been
defined in Equations 6, 14, 10, 7, and 15, respectively.
Similar to Xps being a rearrangement of X,p, the
matrix X, is a rearrangement of X, in Equation 14:

z o (18)

= n . 18
i pomo-ilaﬂ O-i

The RESRM thus provides the variance components
that are associated with all potential facets of differenti-
ation (i.e., actors, partners, and relationships) and the
facet of generalization (i.e., raters), plus statistical inter-
action effects between these facets, while taking the
possible dependencies in the data into account.

Interrater reliability for interdependent social
network data

We used the variances in Equation 16 to define ICCs
for interrater consistency of actor, partner, and rela-
tionship components, using the same rationale as for
defining an IRR using the variances in Equation 3. The

+2ap + 2on + Zpa + 2y + 2 + X,

numerator of each ICC of interrater consistency
includes the variance components representing the
facet of differentiation, that is, o7 for actor effects, o7
for partner effects, and o2 for relationship effects. The
denominator includes the variance components of the
facet of differentiation (6%, 03, or 6%) plus the variance
of the statistical interaction effect between the facet of
differentiation and the raters; that is, 6% + o2 for actor
effects as facet of differentiation, 6% + o2 for partner
effects as facet of differentiation, and 7% + o2 for rela-
tionship effects as facet of differentiation. For example,
the ICC of interrater consistency of the actor effects is

2
O

ICC4(C,K) = (19)

ol + % .

The ICC of interrater consistency for the integrated
score (i.e., the combination of actor, partner, and rela-
tionship effects) is defined as a fraction with the sum of
the variance of the facets of differentiation (i.e.,
0% + 0% + 0%) as the numerator, and this sum plus the
variances in the statistical interaction effects between
the facets of differentiation and the raters (ie,
02 + 02 + ¢2) in the denominator. Table 2 provides the
ICCs for all possible facets of differentiation in the SRM.

Connections to other SRM reliability estimates

We are not the first to discuss reliability estimates for
the SRM. Here we briefly clarify the distinctions and
similarities between the RESRM approach and other
reliability coefficients for SRM research. Malloy and
Kenny (1986) showed that the SRM is a special case
of GT and showed that its actor, partner, and rela-
tionship components relate to the facets in a GT
decomposition. When measuring interpersonal per-
ceptions, actors can be considered as perceivers
(raters) and partners are targets (subjects), so ICCs
can be used to estimate how much of the total vari-
ance is reliable across these perceivers (e.g.,
ICCp =R?> = 0}2, /0)2,). This ICCp can thus be consid-
ered as an estimate of interrater agreement because it
represents agreement among actors of their percep-
tions about the same set of partners.
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Kenny (1994, p. 241) proposed a GT model that
extends the SRM by incorporating item- or occasion
effects. Bonito and Kenny (2010) implemented this
model to define reliability coefficients for estimated
SRM random effects. In their work, reliability is
defined as the degree to which partner (or actor)
effects can be generalized over relationships (their
Equations 5 and 6) or the degree to which actor and
partner effects can be generalized over both relation-
ships and measurements (i.e., items; their Equations 9
and 10). The denominator of these generalizability
coefficients accounts for the dyadic reciprocity,
because these coefficients estimate the degree to which
actor (but also partner) effects can be generalized over
relations (i.e., the source of dependence in SRM data).

The current paper proposes coefficients to investigate
the degree to which the random actor, partner, and rela-
tionship effects can be generalized over external raters.
These raters do not take part in the interactions them-
selves and are additional to the subjects (i.e., actors and
partners) in the social relations study. The GT-based
RESRM we proposed is similar to Bonito and Kenny’s
(2010) model, however, instead of including an add-
itional item facet, we included a rater facet as measure-
ment facet. Furthermore, our coefficients differ from
those of Bonito and Kenny (2010) because we aim to
investigate how well actor, partner and relationships
scores can be generalized across these independent
raters, rather than across actors and partners that them-
selves take part in the social interactions. Therefore, the
ICCs we propose in Table 2 do not include relationship
variance or dyadic reciprocity in the denominator. Our
ICCs are thus specifically useful for validating or improv-
ing rating procedures when external raters are used to
obtain dyadic data for an SRM study.

Estimating ICCs with the RESRM

ICCs as well as the SRM are traditionally estimated
using random-effects ANOVA models. In the SRM,
correlations are then allowed between an individual’s
actor and partner effects and within dyads (Warner
et al., 1979). Others proposed to estimate the SRM as
a multilevel model with cross-classified random
effects, using maximum likelihood estimation
(Snijders & Kenny, 1999). This procedure is available
in some software packages (e.g., MLwiN; Rasbash
et al, 2017), but many multilevel modeling software
packages do not allow correlations between cross clas-
sified random effects. For a more detailed description
of this multilevel approach, we refer to Snijders and
Kenny (1999). More recently, a structural equation

modeling approach (e.g., Nestler et al., 2020) and a
fully Bayesian approach (Liidtke et al., 2013) were
proposed to estimate the SRM. Both estimation meth-
ods have also been proposed to estimate IRR and gen-
eralizability coefficients (e.g., Jorgensen, 2021; Ten
Hove et al, 2020, 2022, 2024a; Vispoel et al., 2018,
2019). We will focus on the Bayesian approach
because under conditions that are expected to occur
frequently in observational social-network research,
this approached outperformed the IRR estimates
obtained using the structural equation modeling
approach (Ten Hove et al,, 2024a). These conditions
involve small samples (e.g., of raters) and variance
components close to the boundary of zero.

To estimate the parameters of the RESRM, we
implemented a Bayesian approach as proposed for a
similar network model by Hoff (2005) and more
recently described for the SRM by Liidtke et al. (2013).
Let 6 be the vector of all model parameters. The pos-
terior distribution P(0|Y) of the model parameters
given the data is estimated as proportional to the prod-
uct of the prior probability distribution P(0) and the
likelihood of the data, conditional on the parameters
P(Y|0). By using non-informative priors for estimating
P(0)Y) through Markov chain Monte Carlo (MCMC)
estimation, the estimated posterior distribution is pri-
marily influenced by the observed data, and the model
estimates are similar to those obtained using MLE.

MCMC algorithms can estimate all unknown RESRM
quantities (i.e., parameters and random effects) simultan-
eously. Let K be the number of raters, let N be the num-
ber of subjects (and thus the number of actors and
partners), and let D = N(N —1)/2 be the maximum
number of dyads given N.° Assuming a fully crossed
design in which all raters observe all dyadic interactions,
and all subjects interact with all other subjects, paramater
vector 0 includes the following 12 4 2N + 2D + K +
2NK quantities: The grand mean M (Equation 11); vari-
ance components 77, 63,93, 03, 7, 03, and a7 (or their
square roots; / Equation 16); correlations p,p (Equation
6), pg (Equation 7), p,, (Equation 14), and p, (Equation
15); subject-level random effects [A;P;] for i = 1,..., N,
dyad-level random effects [E; E;] for i=1,..,N;j=
1,..N;i#j, rater-specific deviations p, for k=
1,..., K, and rater-specific deviations from subject-level
random effects [oy 7my] for i=1,..., N;yk=1,..,K
(Equation 12). If the design is not fully crossed, each rater
observes a subset of dyads rather than all dyads, or

5D = N(N — 1)/2 only if all subjects interact with all other subjects. When
subjects interact in small subgroups, D < N(N —1)/2.

"Depending on the software, these hyperparameters are estimated in
terms of random-effect SDs, or random-effect variances.



subjects do not interact with all other subjects. For such a
design, the model involves the same parameters but
fewer random effects to estimate.

The conditional distribution of Yj;; given 0 is the
bivariate normal likelihood of the observed data; that

is,
Y Y. 2
[y’.’."%N A’f":[“ez ] . o)
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Equation 20 is specified using the vector of pre-
dicted values for Yy, given all random intercepts:
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The prior distributions of the random effects are
defined by equations 6, 7, 13, 14, and 15. The parame-
ters (i.e., variance components, and correlations) are
hyperparameters requiring their own prior distributions.
These hyperprior distributions can be uninformative (or
weakly informative) to allow the posterior to be influ-
enced only by the data. More informative distributions
can be specified if researchers want to incorporate
stronger prior beliefs or results of previous research. In
the empirical example below, we further elaborate on
the technical specifications of the estimation procedure.

(21)

Empirical example: social mimicry

We estimated the IRR of interdependent social net-
work data on social mimicry (Salazar Kampf et al.,
2018) using both a conflated approach and the
RESRM approach. The data were collected using a
round-robin design (i.e., each subject interacted with
all other subjects within a network; Warner et al,
1979), and raters viewed the recorded interactions to
rate the social mimicry of both subjects in each dyadic
interaction. Salazar Kampf et al. (2018) made this data
publicly available on the Open Science Framework:
https://osf.io/b4nvf/

Method

Participants

In total, N = 139 German students participated in the
study of Salazar Kampf et al. (2018). Each student was
randomly assigned to a group of four to six members,
forming 26 same-sex networks. Each student had an
interaction with all other group members, which
resulted in a total of D = 309 dyadic interactions. For
a more detailed description of the sampling procedure
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and the sample, we refer to Salazar Kdmpf et al.
(2018).

Measures

Each 5-min dyadic interaction was videotaped and
K =3 raters rated the degree of social mimicry of
each participant during each interaction, using a 6-
point Likert scale ranging from 1 (not at all) to 6
(very much). Salazar Kampf et al. (2018) calculated a
conflated IRR estimate of ICC(2,3) = .87.° A more
detailed description of the measures and the rating
protocol can be retrieved from the supplementary
materials of Salazar Kampf et al. (2018).

Analysis plan

Software for estimation. Whereas Liidtke et al. (2013)
used Gibbs sampling techniques to estimate the vari-
ance components associated with each facet, we used a
No-U-Turn Sampler (NUTS), a special case of
Hamiltonian Monte Carlo (HMC) that is implemented
in the Stan software (Carpenter et al., 2017) and avail-
able in the R (R Core Team, 2021) package rstan
(Stan Development Team, 2020). NUTS, and HMC in
general, is faster and more efficient than Gibbs sam-
pling, especially when models are highly parameterized
or include highly correlated parameters (Monnahan
et al., 2017). Whereas Gibbs sampling techniques sam-
ple elements of @ (i.e., the mean, the random-effect var-
iances or SDs, the random-effect correlations, and all
random effects) sequentially, NUTS simultaneously
samples the entire vector 0 by simulating it as a point
in a Nj,-dimensional space, where, in our case, Ny, =
K+2N+2D+2KN +12=3+2 x 139+ 2 x 309 +
2 X3 x 139 + 12 = 1745.

The Stan program estimates the random-effect
hyperparameters in terms of SDs instead of variances.
We derived posterior distributions of all ICCs listed
in Table 2 from the posterior SD estimates. A
Bayesian credible interval (BCI) provided an estimate
of the precision with which an ICC was estimated.
We used the modal a posteriori (MAP) estimates as
point estimates of the ICCs, and we obtained 95%
BCIs using percentiles (Liidtke et al., 2013; Ten Hove
et al., 2020). For comparison, we also estimated the
conflated ICCs with the R software package irr
(Gamer et al., 2012). We provide all software code
that we used for this article on the Open Science
Framework (Ten Hove et al, 2024b): https://osf.io/
9az5x.

%The ICC(2,3) as defined by Shrout and Fleiss (1979) is identical to the
ICC(C,K) in Equation 3.
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Table 3. Estimated variance components using the SRM (by
Salazar Kampf et al., 2018) and using the RESRM.

SRM RESRM
Variance Est % variance MAP 2.5% 97.5% % variance N R
a3 0.32 24 037 026 054 27 866 1.00
ol 0.07 6 0.09 0.04 0.7 7 182 1.02
o? 0.47 35 046 037 058 34 497 1.00
o-% - - 0.00 0.00 039 <1 270 1.00
o - - 011 006 0.15 8 161 101
0'?[ - - 0.00 0.00 0.05 <1 105 1.02
a? - - 033 030 036 24 903 1.00
ol, 046 35 - - - - - -
02l 1.32 100 139 127 181 100 427 1.00

Model diagnostics. We initially used three independ-
ent chains of 1,000 iterations to estimate the model:
The first 500 iterations of each chain served as burn-
in iterations, whereafter we saved 500 samples from
the posterior in each chain. We used traceplots to
check whether the three independent chains con-
verged on the same posterior distribution, and
inspected the potential scale reduction factor (R) and
effective sample size (Neff), using R < 1.10 and Neff
> 100 as indication for adequate mixing of the inde-
pendent chains and a sufficient effective sample size
(Gelman & Rubin, 1992). We had to double the num-
ber of post burn-in iterations because of insufficient
effective sample sizes, which resulted in a in a sample
of 3 (chains) x 1, 000 (post burn-in iterations) =
3,000 iterations to obtain the MAPs and BCIs of the
ICCs, for which the traceplots showed adequate mix-
ing (see our supplementary material on the Open
Science Framework).

Prior distributions. We specified weakly informative
prior distributions for each parameter, assuming that
the standard deviations (64, 0p, 05, 04, 04, 07, and o)
followed a half-#(4, 0, 1) distribution, with a range of
(0, 3), which is half the range of Y and therefore the
largest a SD could possibly be. These priors are specif-
ically useful for studies as these, when variances are
estimated from (very) small samples of subjects and
raters, and possibly close to the lower-bound of zero
(Ten Hove et al., 2020). Given our lack of theoretical
expectations regarding the correlations between the
effects within dyads or persons (p4p, Pz, Pur, and p,),
we assumed that these correlations were uniformly
distributed across the range of (—1,1).

Results

Variance decomposition

Table 3 shows all SRM parameters as estimated with
maximum likelihood by Salazar Kampf et al. (2018),
and all RESRM parameters that we estimated with

Table 4. RESRM-based ICC estimates.
Single ratings (C, 1)

Averaged ratings (C, K)

ICC Est. 2.5% 97.5% Est. 2.5% 97.5%
ICCconr  0.68 0.65 0.72 0.87 0.85 0.88
ICCy 0.68 0.63 0.72 0.86 0.84 0.89
ICCy 0.79 0.68 0.87 0.92 0.86 0.95
ICCp 0.98 0.65 1.00 0.99 0.79 1.00
ICCe 0.59 0.52 0.64 0.81 0.77 0.84

Note. Y = Integrated scores; A = Actor effects; P = Partner effects; £ =
Relationship effects. The ICC as reported by Salazar Kampf et al. (2018,
i.e., 1CC(2,3) = 0.87), resembled the conflated ICC (i.e., ICCcops) for aver-
aged ratings as estimated with the irr package.

stan, including the model diagnostics. The estimated
grand mean, which is the average degree of social
mimicry across subjects, showed comparable estimates
in the SRM of Salazar Kampf et al. (2018) and the
RESRM, as did the estimated proportions of variance
that were explained by the actor, partner, and rela-
tionship components of social mimicry. The difference
is in the error components. Salazar Kampf et al.
(2018) only estimated a single error component,
whereas we separated this composite into four differ-
ent rater-related error components: a variance compo-
nent for the differences in relative standings of raters
(ai), and variance components for the rater deviations
from the actor effects (¢2), partner effects (02), and
relationship effects (02). The variance component
attributed to rater deviations from the relationship
effects, which is confounded with measurement error,
was the largest of the four rater-error variance compo-
nents (24%). Substantial parts of the total variance
could also be attributed to the rater deviations from
the actor effects (8%), whereas only negligible por-
tions of the total variance were explained by the rater
deviations from the grand mean (< 1%) and the part-
ner effects (< 1%) of social mimicry. The proportion
of variance that was explained by the combined rater
deviations from the mean, and actor, partner and rela-
tionship effect (33%), was comparable to the undiffer-
entiated error variance of the SRM (35%).

Interrater reliability

Table 4 shows all IRR estimates as estimated with a
conflated approach and the RESRM approach. These
results show that the RESRM estimates of the ICCs
for single and averaged ratings of the integrated score
(i.e., the combination of all three SRM components;
ICCy) was comparable to the conflated IRR point
estimates.

The conflated IRR estimates seem to underestimate
the IRR of the actor and partner components of social
mimicry and overestimate the IRR of the relationship
component of social mimicry. Overall, these results
imply that it is not safe to assume that the reliability



associated with the integrated scores (i.e., conflated
IRR estimates) adequately represents the reliability
associated with each component of the data.

Simulation study
Method

Data generation

We conducted a simulation study to gain a first
impression of the bias and coverage of the RESRM-
based ICC estimates under favorable and less favor-
able conditions. We varied the research design and
the population parameters of the RESRM. In each
condition, we used mvrnorm function in the R-pack-
age rockchalk (Johnson, 2016) to generate bivariate
normally distributed data from Equation 12 using the
parameters in Equations 6, 7, 13, 14, 15, and 16.

Independent variables
The factor design had two levels: A good design with
substantial and balanced sample sizes, and an poor
design based on the empirical example.” The good
design with substantial sample sizes resembled a situ-
ation in which a group of 10 subjects each interacted
with all other subjects in the group, yielding 122 = 45
dyadic interactions. All interactions were rated twice
(once to rate subject i’s attribute, and once to rate
subject j’s attribute) by 10 raters, resulting in 45
(dyadic interactions ) x 10 (raters ) x 2 (ratings per
interaction) =900 dyadic observations. The poor
design was based on the empirical example and
exactly resembled the design of Salazar Kampf et al.
(2018), in which groups of four to six subjects were
each rated by three raters, yielding 309 dyadic interac-
tions, and 309 (dyadic observations ) x 3 (raters ) x 2
(ratings per interaction) = 2154 dyadic observations.
The factor parameters also had two levels: A
(co)variance structure with substantial RESRM param-
eters, and a (co)variance structure with varying
parameters. The substantial population parameters we
selected were: 64 =0p =0 =0, =0, =0, = 1.00
and pp = Pp = Py = P, = -30. That is, all compo-
nents followed a standard-normal distribution, and
within-person and dyadic correlations differed consid-
erably from zero. The varying population parameters
were based on the empirical example: 64 = 0.60, 5p =
0.30,0r = 0.70,0, = 0.30,0, = 0.10, 0, = 0.60, p4p =

We selected the terms good and poor to ease the discussion of the
simulation results. There may be better or worse conditions than those
that we selected. Also, good and poor conditions to estimate IRR
coefficients may differ from good and poor conditions for drawing
inferences about individuals’ attributes in SRM analyses.
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Table 5. Population ICCs for averaged ratings of the inte-
grated score, and of the actor-, partner-, and relationship
effects across simulation conditions.

ICC

Parameters Design Ratings Y A P E
Substantial Good Single .50 .50 .50 .50
Averaged 91 91 91 91

Poor Single .50 .50 .50 .50

Averaged 75 75 75 75

Varying Good Single 67 .80 .90 .58
Averaged .95 .98 .99 93

Poor Single .67 .80 .90 .58

Averaged .86 .92 .96 .80

Note. Y = Integrated scores; A = Actor effects; P = Partner effects; E =
Relationship effects.

.70, pp = .70, p,., = —.30, p, = .20. These population
parameters were specified as SDs and correlations
because Stan output provides standard-deviation com-
ponents rather than variance components.

This simulation design yielded 2 (design) x 2
(parameters) = 4 conditions in total, for each of which
we generated 1,000 datasets. The resulting population
ICCs ranged from 0.50 to 0.90 for single ratings, and
from 0.75 to 0.99 for averaged ratings (Table 5).

Estimation

We used the NUTS method discussed earlier for par-
ameter estimation and added an automated conver-
gence check. If the three independent chains did not
mix well according to the R criterion of R < 1.10, we
doubled the number of post burn-in iterations. This
was repeated until the model converged, or did not
converge after the limit of 8,000 post burn-in itera-
tions was reached, in which case we discarded the
replication.

Dependent variables

Bias of point estimates. Let 0 denote the average ICC
as estimated across replications in a condition, and let
0 denote the population parameter in that condition.
Relative bias was computed as %3¢, and thus provides
a measure of systematic over- or underestimation of
the true ICCs. We interpreted relative bias between
0.05 and 0.10 as minor bias and relative bias > .10 as
substantial bias.

BCI coverage rates. We computed the coverage rates as
the percentage of converged replications in a condition
for which the 95% BCI contained the population ICC.
Agresti-Coull intervals indicate that with 1000 replica-
tions, 95% BCI coverage < .93 or > .96 differ signifi-
cantly from 0.95 (Agresti & Coull, 1998). We considered
only BCI-coverage rates < .90 practically too low.
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Results

The model converged for almost all replications, vary-
ing from 98% (good-design, varying-parameters

Table 6. Relative bias across simulation conditions.

Substantial parameters ~ Varying parameters

Good Poor Good Poor
ICC M(SD) design design design design
ICCr(C,1)  0.00 (0.01) —0.00 —0.01 0.00 0.00
ICCA(C, 1) 0.11 (0.15) —0.02 031 0.04 0.09
ICCp(C,1) —0.01 (0.08) —0.10 0.09 —0.06 0.02
ICCe(C,1) —0.07 (0.12) —0.00 —-0.26 —0.00 —0.03
ICCr(C,k)  0.00 (0.00) 0.00 —0.01 0.00 0.00
ICCa(C, k) 0.05 (0.06) 0.01 0.14 0.00 0.03
ICCp(C,k)  0.00 (0.04) —0.01 0.04 —0.05 0.01
ICCe(C, k) —0.04 (0.07) 0.00 —-0.15 —0.00 —0.01

Table 7. 95% BCl coverage rates across simulation conditions.

Substantial parameters Varying parameters

Good Poor Good Poor
ICC M(SD) design design design design
ICCr(C,1) .95 (0.02) 95 .92% 96* .95
ICCA(C, 1) .74%* (0.25) .94 A45% .94 61%
ICCp(C,1) .94 (0.04) 95 .90* 94 99*
ICCe(C,1)  .72* (0.44) .96 .06* .95 91%*
ICCr(C, k) .95 (0.02) .95 .92% 96* .95
ICCA(C, k) .74* (0.25) .94 A45% .94 61%
ICCp(C, k) .94 (0.04) 95 .90* 94 99*
ICCe(C k) .72* (0.44) .96 .06* .95 91%*
Note. * = Coverage rate outside Agresti-Coull interval.

condition) to 100% (good design, substantial-parame-
ters condition). Averaged across conditions, the
RESRM provided unbiased estimates with good cover-
age rates for most ICCs (Tables 6 and 7). However,
the ICCs for single ratings of the actor effects were
overestimated, and their BCIs were too narrow, as
was the case for these ICCs for averaged ratings. Also,
the ICCs for single ratings of the relationship effects
were slightly underestimated, and the coverage rates
for the ICCs of relationship effects were too low for
both single and averaged ratings.

Bias

Figure 1 shows the relative bias of the ICCs across
conditions. Most ICCs were accurately estimated,
especially in the good-design conditions. In both
good-design conditions, only the ICCs for single rat-
ings of the partner effects were slightly underesti-
mated. In the poor-design, substantial-parameters
condition, the ICCs of the actor effects were substan-
tially overestimated, and the ICCs of the relationship
effects were substantially underestimated. This bias
can be explained by the combination of few raters,
small groups of interacting subjects, and highly corre-
lated rater effects in this condition, which produces
an underestimation of the variance of the rater-

Good Design Poor Design
0.3+
w
(=]
0.2+ o
g
0.1 =
A L
£ 0.0 . A® . N
£ )
e _01 o
i " 2
£ -0.21 @
g .
©
o 0.3
@
D 0.2- 5
= =
4.(6 i >
< 0.1 Q
o A , D
f Y A =
0.0 X * “ * * 5
-0.11 %
-0.2 e
Sin'gle Aver:aged Sin'gle Aver:'aged
ICC for Single Or Averaged Ratings
Facet Integrated Score Actor Effect Partner Effect @  Relationship Effect

Figure 1. Relative bias of the ICCs across conditions. White areas: substantial bias (>10%); Light-gray areas: minor bias (5-10%);

Dark-gray areas: negligible bias (< 5%).
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Figure 2. Coverage of the ICCs across conditions. White areas: Practically too low coverage rates < 90%.

deviation from the actor effects (si =0.71), and over-
estimation of the rater-deviation from the relationship
effects (sg = 1.30). Using these biased variance-compo-
nent estimates in the formulae for the ICCs (Table 2)
produced biased ICCs. In the poor-design, varying-
parameters condition, the ICCs for single ratings of the
actor effects were slightly overestimated.

Coverage

Figure 2 shows the 95% BCI coverage rates of the
ICCs across conditions. Most ICCs had near-nominal
coverage rates, especially in the good-design condi-
tions. In the poor-design conditions, and particularly
in the poor-design, substantial-parameters condition,
coverage rates of the ICCs of actor and relationship
effects were too low.

Discussion

We proposed, illustrated, and tested an RESRM to esti-
mate the IRR of interdependent social network data.
Using an empirical example on social mimicry, we
showed that the different components of interdependent
social network data may have their own IRR and that it
is thus unsafe to assume that a conflated estimate
adequately represents the IRR associated with each of
these facets of interest. We tested the properties of the

proposed estimator in a simulation study, which indi-
cated that the proposed ICCs were mostly unbiased and
generally had good coverage rates if the research design
includes sufficient raters and a substantial number of
interacting subjects.

The simulation conditions provide a first impres-
sion of the performance estimator under favorable
and unfavorable conditions. The study showed consid-
erable differences between the bias and coverage of
the ICC estimates for the good and poor design con-
ditions. In conditions with both small subgroups of
interacting subjects and a few number of raters, the
RESRM could not accurately estimate all ICCs, espe-
cially if the magnitude of variances and dependence of
observations was substantial. This was to be expected,
because little information generally leads to biased
point or SE estimates of variances. The bias in the
poor design, substantial parameters condition indi-
cated that the RESRM-based ICCs cannot be trusted
for designs with few raters and small subgroups of
subjects. We therefore advise against drawing conclu-
sions based on the IRR estimates for the empirical
example and would advise using the RESRM-based
ICCs for studies with similar designs. Follow-up
research is needed to test the properties of the pro-
posed estimation method in more conditions, to dis-
entangle the effects of various design factors, such as
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the number of raters, the type of social network
design and the degree of dependence in the social net-
work, on the bias and coverage of the ICCs. Because
researchers often use Likert-type scales, or dichotom-
ous variables in network studies (i.e., mainly to indi-
cate whether a relation exists), other useful follow-up
research includes developing an RESRM that handles
discrete data.

The good design, for which the method performed
well, represents conditions with many raters and one
substantially large group of subjects. Such conditions
may seem non-pragmatic, because using many ratings
is typically time consuming and expensive. However,
although the good-design conditions had more raters
per subject (K = 10) than than the poor-design condi-
tions (K = 3), the good-design conditions were more
efficient as they required 900 ratings in total whereas
the poor-design conditions required 2154 ratings. The
good design conditions used fewer participants than
may be desirable for an SRM study, but the design is
useful to inspect the quality of the rating procedure. If
researchers develop rating procedures for SRM research
we suggest to use a validation study to inspect the qual-
ity of the rating procedure in terms of IRR. In such a
validation study, the quality of the rating procedure can
be investigated using a subsample of all subjects, with
many raters per subject. Using the variance components
estimated with the RESRM based on this subsample,
IRR coefficients could be defined for each desired
design, thus also for a design with more subjects but
single ratings. If the IRR for single ratings is sufficient,
the remaining subjects in an SRM study could then be
observed by a single rater, and the SRM could be fitted
to these single ratings.

Traditional IRR coefficients are not useful in SRM
research, because such coefficients do not consider the
IRR for each SRM component separately. In SRM
research, observed dyadic variables are decomposed
into their actor, partner, and relationship components,
each of which might be of interest as predictors or
outcomes in a statistical model. The RESRM-based
IRR coefficients can inform researchers in improving
rating procedures for dyadic variables, by identifying
which components are most prone to rater effects. We
therefore believe that the RESRM approach is a prom-
ising conceptual and analytical tool for evaluating the
IRR of dyad-level predictors in social relations
research.
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Appendix A
Variance decomposition

We derive the variance decomposition of Y for the SRM.
The same principles apply to the RESRM, with similar
results, complicated only by the inclusion of more terms
(e, o, 7, and é&).

The bivariate vector Yy is decomposed as shown in
Equation 5. The mean does not contribute to the variance
because it is a constant, and the remaining terms all have
expected values of zero. Thus, the second central moment
(variance) is simply the expected value of squared random
effects. For example, the variance of actor effect (A) is:

Var(A) = E[(A — E[A])?] = E[A?, (A.1)

and likewise for partner (P) and relationship (E) effects. To
prevent confusion with the expectation operator E[.], the
remainder of this appendix refers to the relationship effect
E;; (e.g., Equation 12) with the variable R(;).

For the univariate SRM in Equation 4, the variance of

Var(Y;) = E[(Y - E[Y])’] (A2)

= E[(M+A,— +Pj+Rj—EM+A; + P+ Rij])z} (A.3)

= E[(M +Ai+P;+R;j— (E[M] +E [A] +E[P}] + E[R,»j]))z},

(A.4)
which follows from the property that the expectation of a
sum (or difference) equals the sum (or difference) of
expectations. The expected value of a constant is itself

(E[M] = M), so the means cancel out M, and Equation A.4
reduces to

Var(Y;) =E [(A,- + P+ R — E[A]] - E[P] — E[R,-j])z} (A.5)

= E[(A + P+ Ry =00 0)] (A6)

= E[(4; + P+ Ry)?). (A7)

The expected value of each random effect is zero, further
simplifying the formula above before squaring the



parenthetical term:
Var(Y,-j) =E |:(Al + Pj + R,‘j)2:| (AS)
= B[4} + B} + R} + 2(AP + ARy + PiRy)|  (A9)
=E[A2] + E[Pﬂ T E{Rfj} 12

(A.10)

= E[4?] +E[P]2} +E[R§j] +2x(0+0+0) (A1)
= E[4?] +E{Pﬂ +E[R,§].

Because the random intercepts are uncorrelated across
(person and dyad) levels, the expectation of the product of
R;j with A; or P; is zero. Likewise, the person-level random
effects are independent across cases i and j, so the product
A;P; has an expectation of zero. The simplified formula in
Equation A.12 contains only the remaining expectations of
squared random effects, which correspond to the variance
components, as shown in Equation A.1 for the actor effect:

(A.12)

Var(Yy) = E[4}] + E[P| + B[R] (A.13)
= Var(A) + Var(P) + Var(R) (A.14)
o%, = O'i —|—o'12,—0—o'§. (A.15)

The same result can be found when deriving the variance
of Yj;, by swapping the i and j subscripts in Equation A.3
and proceeding with the same steps. The variance is equal

for both observations in the bivariate vector Yy, as
implied by Equation 9:
Zyij = Zap + Zpa + 2k (A.16)
2 2 2
_ | %a Op ORr
= + + A.17
S oalt ]l el e
_ [oataptog (A.18)
20ap +0Rr 04 + 05+ 0%
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(A.19)

5 |-
GJ

2
Oyy

Covariance decomposition

We use covariance algebra of linear combinations to derive

the decomposition of the covariance oyy between the two

observations in Y

COV(Y;‘j, Y],) = COV(M -+ Ai + P] + R,] y M + A] =+ Pi =+ R],)
(A.20)

= COV(A,‘,Aj) —+ COV(AI',P,') —+ COV(Ai,Rj,‘)
-+ COV(P],A]) =+ COV(P]',P,') + COV (P],RJ,)
+ COV(Rij,Aj) + COV(Rij, P,‘) + COV(R,‘]‘, Rj,‘)
(A.22)
=0+ Cov(A;, Pi) + 0 + Cov(P;, A)) +0+0+0+0
+ COV(Rij, R],)
(A.23)

The remaining covariances in Equation A.23 correspond
to the parameters that compose oyy in Equation A.18: gyy
between the two observations in Yy;):

COV(Y,‘]‘, Y],) = COV(A,‘,P,‘) + COV(P]',A]') + COV(R,‘]',R]‘,‘)

(A.24)
=2X (COV(A,',P,‘)) + COV(R,j,R]'i) (A25)
Oyy =2 X 04p + ORgr- (A26)

As with the variance decomposition, the same principles
yield similar results for the RESRM, complicated only by
the inclusion of more terms.
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