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ABSTRACT

This study is the first to investigate how 3-year-olds learn simple rules from feedback using
the Toddler Card Sorting Task (TCST). To account for intra- and inter- individual differences
in the learning process, latent Markov models were fitted to the time series of accuracy
responses using maximum likelihood techniques (Visser et al., 2002). In a first, exploratory
study (N = 110, 3- to 5-years olds) a considerable group of 3-year olds applied a hypothesis
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testing learning strategy. A second study confirmed these results with a preregistered study
(3-years olds, N = 60). Under supportive learning conditions, a majority of 3-year- olds was
capable of hypothesis testing. Furthermore, older children and those with bigger working
memory capacities were more likely to use hypothesis testing, even though the latter group
perseverated more than younger children or those with smaller working memory capacities.
3-year-olds are more advanced feedback-learners than assumed.

Introduction

Where many young children display difficulty discover-
ing rules in feedback-learning tasks, this skill rapidly
improves with age (Bunge & Zelazo, 2006).
Interestingly, the pace of development is not uniform,
resulting in some children of the same chronological
age applying a more efficient learning strategy than
others (Kendler, 1979; Schmittmann et al., 2012). There
are multiple learning strategies people employ and the
reliance on those underlying strategies changes during
development (Ashby et al., 1998; Hanania & Smith,
2010; Huang-Pollock et al, 2011; Kendler, 1979;
Schmittmann et al., 2012). The occurrence of a variety
of latent learning strategies within age groups and
across individuals makes it difficult to reliably reveal
children’s abilities (Molenaar, 2004). Using latent
Markov models, the current study aims to unravel
what learning strategies young children employ while
learning simple rules (i.e., rules based on one stimulus
dimension, such as color) from feedback, and how
applying such learning strategies is related to age.
Trial-by-trial accuracy data of a learning episode
allows for modeling the learning process by latent
Markov models. These models account for inter- and

intra-individual differences in this learning process,
which are to be expected especially in young children.
That is, the latent Markov models allow for the detec-
tion of multiple latent strategies, simultaneously repre-
sented by one hidden Markov model (Rabiner, 1989).
Hypothesis testing is an effective strategy to learn
simple rules from feedback (Schmittmann et al., 2012).
In solving a rule-based learning task (that is, categor-
ization tasks that are based on simple rules), hypothe-
ses representing possible rules are generated and tested
until the correct rule is found, using a win-stay lose-
shift strategy (i.e., if you get positive feedback, stick
with the hypothesized rule, if you get negative feed-
back, switch to a new one; Gholson et al, 1972;
Schmittmann et al, 2012). Hypothesis testing is rela-
tively fast and learning is sudden. A typical latent mar-
kov model to describe this learning process would
include a pre-solution state with chance-level responses
and a learned state with (nearly) correct responses. In
this formalization, the learning parameter would be the
transition probability from the first to the second state.
At which age children start to use a hypothesis test-
ing strategy is still a question of debate. Children as
young as 3-years-of-age have the capacity to encode
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stimuli in rule-based tasks by their separate features -
a prerequisite for hypothesis testing (cf. analytical
encoding; Levels of functioning theory; Kendler, 1979) -
theoretically allowing them to use these learning strat-
egies (van Bers et al., 2014; Schwarzer, 2002).
However, Minda et al. (2008) report that 4-years olds
perform relatively better on tasks that can be solved
using more effortful, less efficient types of learning,
like learning separate stimulus-response relations.
Interestingly, many 4- and 5-year-olds do already
seem to rely on a hypothesis testing strategy, even
though in a somewhat inefficient fashion
(Schmittmann et al., 2012; Schmittmann et al., 2006;
Visser et al., 2007). Schmittmann et al. (2012) report
on slow learning as an inefficient, discontinuous
learning process, that is, a learning process with a
sudden change from a pre-solution to a learned state.
A latent Markov model could describe the difference
between hypothesis testing and slow learning by the
value of the transition parameter from a pre-solution
state to a learned state. With age, the use of hypoth-
esis testing seems to become more present and applied
more efficiently (Schmittmann et al.,, 2012).

The use of an efficient hypothesis testing strategy is
likely linked to the development of executive function-
ing (Rabi & Minda, 2014; Zelazo, 2006). First, working
memory is necessary to store, arrange, select and
manipulate hypotheses (Gholson et al, 1972).
Substantial working memory involvement is especially
important to avoid the interference of latent memory
traces of faulty hypotheses with the selection of a new
hypothesis, and therefore avoid perseveration
(Munakata, 1998). Second, lack of inhibition could hin-
der the win-stay loose-shift principle in hypothesis test-
ing when irrelevant, not winning, hypotheses cannot be
sufficiently inhibited (Attentional inertia  theory;
Kirkham et al., 2003) or previously inhibited hypotheses
cannot be re-activated (Activation deficit account;
Chevalier & Blaye, 2008). Lastly, for effective hypothesis
testing, the formulation, application and switching
between mental rule sets (e.g. simple rules based on
color vs shape) is necessary. Cognitive flexibility is
believed to allow for switches between these different
rule sets using higher order rules (“If I need to sort on
shape, and it’s a flower, then it goes here”; CCC-r the-
ory, Zelazo et al, 2003). Limited executive function
capacity could thus critically impair hypothesis testing.
Interestingly, children rapidly develop their executive
abilities between ages 3 and 5 (Carlson, 2005), coincid-
ing with the switch in learning strategy toward hypoth-
esis testing observed in earlier studies in these age
groups (Schmittmann et al., 2012). In latent markov

models describing the learning process, executive func-
tion scores are expected to moderate the transition
parameters between states, such that hypothesis testing
becomes more efficient with better executive functions.

In sum, around age four children start to use
hypothesis testing in rule-based feedback-learning tasks
(Schmittmann et al., 2012). Executive functions like
working memory, inhibition and cognitive flexibility
could potentially be closely related to the ability to
apply an efficient hypothesis testing strategy. This study
posed the question: How do young children learn sim-
ple rules in a rule-based feedback-learning task? Within
this general framework, the purpose of this study was
twofold: to investigate which learning strategies are
employed by pre-schoolers to learn simple rules from
feedback and to examine the relation between this strat-
egy-use, age and executive functioning. Both questions
were first approached in an exploratory manner in
study 1, using a sample of 3- to 5-year-olds. The results
obtained were verified in a pre-registered second study
(Lichtenberg & Raijmakers 2019) in a new sample
exclusively consisting of 3-year-olds.

In the first, exploratory study we develop a parsi-
monious model by fitting latent Markov models to
trial-by-trial accuracy data from children performing a
rule-based feedback-learning task. Model-selection
techniques provide formal grounds to decide which
set of strategies forms the simplest, optimal model to
describe the trial-by-trial data (Visser et al., 2002). In
the second study, we perform a confirmatory test of
this model using a second dataset, collected after pre-
registration of the expected model.

Study 1

Method
Participants

The sample contained data from 110 children age three
(n=42, M=43.0months, SD = 2.2months), four
(n=56, M=54.5, SD = 3.7months) and five (n=12,
M =63.7months, SD = 2.8 months). The total sample
consisted of 64 boys and 46 girls. Children were tested
in the Babylab from the University of Amsterdam, at
schools or in the Nemo Science museum. Informed
consent was obtained for all children. Exclusion criteria
can be found in the appendix.

Materials

Toddler Card sorting task (TCST)
The main task was a newly developed, computerized
feedback-learning task based on the Wisconsin Card



Sort Task (Grant & Berg, 1948), but adapted for
young children (Figure 1). The task was programmed
in python version 2.7.3 and was administered on a
12-inch HP TouchSmart tm2 touchscreen laptop.
Stimuli in this task consisted of cards that differed in
shape and color. Target cards matched each reference
card on one dimension only (e.g. shape or color).
Children had to discover the untold sorting rule (e.g.
sort on shape or sort on color) based on the feedback
provided. Participants received either of two types of
feedback, both containing a verbal component. In the
emoticon condition, an additional happy or sad
emoticon, corresponding with the correctness of the
sort, appeared on screen. In the modeling condition,
verbal feedback was combined with the experimenter
manually moving the target card toward the correct
position after every wrong sort.

This task included three phases: a practice phase, a
test phase, and a generalization phase. In the practice
phase, children sorted six cards that were exact dupli-
cates of the reference cards to introduce card sorting.
In the following phases, the sorting cards matched ref-
erence cards on one dimension only. In the test phase,
the first sort always triggered negative feedback, which
set the sorting rule. It was set to shape if a child
started out sorting on color and vice versa, in order
to force children to use a win-stay loose-shift prin-
ciple. This prevented children from reaching the
learned state without making any errors because the
set rule matched their bias, such as the shape rule in
case of a shape bias (Smith & Slone, 2017). Criterion
was reached by sorting correctly six cards in a row,
with a maximum of 24 cards sorted. Feedback on the
accuracy of the sort was provided after every trial.
The final phase was a generalization phase with nine
trials, in which new stimuli were presented and the
child was asked to continue sorting as they did before
(Figure 1). No feedback was provided on the general-
ization trials.

Executive functions

To obtain measures for working memory, inhibition
and cognitive flexibility, the corsi block task (Bull et al.,
2008), Grass/Snow task (Carlson & Moses, 2001) and
Dimensional Change Card Sorting Task (DCCS; Zelazo,
2006) were respectively conducted. Descriptions can be
found in the supplementary materials.

Procedure

Children were tested in a single one-on-one session
that lasted no longer than 20 minutes. The feedback-
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Figure 1. Stimuli and screen set-up of the feedback-learning
task in test phase (A) and generalization phase (B). Stimuli dif-
fered on two dimensions: shape and color. Children were
instructed to sort the target card (e.g. red snail or blue frog)
with one of the reference cards (red frog and blue snail). The
sorting rule (sort on shape or sort on color) should be discov-
ered using the feedback provided.

learning task and DCCS were administered first, in
counterbalanced order. After, the Grass/Snow task
and Corsi Block test were administered in this set
order. Parents were allowed to be present during test-
ing, but were asked to refrain from interfering.

Statistical approach

Trial-by-trial learning data

Models were created in R statistical software version
3.5.2 (R Core Team, 2017) using the depmixS4 pack-
age version 1.3-5 (Visser & Speekenbrink, 2010).
Candidate models were selected using AIC and BIC,
with lower values indicating better model fit (Akaike,
1974). Likelihood ratio tests were conducted to indi-
cate significant differences between models.

Executive functions

An exploratory factor analysis was applied to the
three executive functions. To the learning parameters
of the selected latent Markov model, age, and the
composite scores of working memory, inhibition,
and cognitive flexibility were added as covariates.
The model definition is discussed in the Results sec-
tion (see Figure 2A).

Results

All analyses conducted on this dataset were exploratory
in nature.

Descriptives

We analyzed the overall number of errors children
made, to see which type of feedback was most benefi-
cial. Children who received modeling feedback made
on average significantly fewer errors (after the first,
forced error) than those receiving emoticon feedback
(Mypoq = 0.82, SDyoq = 1.42; Moy = 2.56, SDeme =
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Figure 2. Latent Markov model reflecting possible learning
strategies in 3-year-olds. The model consists of three states: an
error state (E), a pre-solution state (P) and a learned state (L).
Arrows indicate possible transitions between states. Slow learn-
ing is characterized by a transition from the error state,
through the pre-solution state (o4;) to the learned state (o,).
Hypothesis testing is indicated by a direct transition from the
error state to the learned state (o).

3.85; #(75.60) = —3.22, p = .002) indicating that mod-
eling feedback was more beneficial for them.

Learning strategies

To gain initial insights in 3- to 5-year-olds™ strategy
use, we fitted four fully unconstrained latent Markov
models to the data, with one through four states
respectively. Model fit indices indicated that the three-
state model fitted the data best (Table Al). We calcu-
lated participants’ posterior probabilities of visiting
states per trial given the three-state model, indicating
in which state a participant was likely to be at that
trial. It appeared that participants followed either one
of two patterns, which could possibly reflect different
learning strategies.

Following these observations and the strategies
found by Schmittmann et al. (2012), we created a
three-state latent Markov model that captured the
learning strategies possibly used by 3- to 5-year-olds
when learning simple rules from feedback (Figure 2).
The model includes two learning routes from the
Error state (E, with an accuracy fixed at 0, where by
definition the first error is made, and where due to
the nature of the task all participants start out) to the
Learned state (L, an absorbing state where the chil-
dren perform with high accuracy, fixed at .95): The
direct route with learning parameter oy, represents
hypothesis testing, as long as the wrong hypothesis is
followed, the participant is in the E state. Once the
correct hypothesis is selected the participant is in the
learned state. The indirect route goes from the E state
with transition probability o;; to the pre-solution state
(P where responses are expected to be at chance level,
modeled with p.) and with a transition probability,
that is a learning parameter o5, from the Pre-solution

to the Learned state. The model including both paths
fitted the data significantly better than both other,
more parsimonious models (both strategies vs hypoth-
esis only: Ax*(1) = 4.432, p = .035; both strategies vs
slow only: Ax*(1) = 83.124, p < .000). This model
will henceforth be referred to as Base Model (BM).

The presence of two distinct strategies for learning
indicates that some 3- to 5-year-olds learn simple
rules from feedback using hypothesis testing, while
others use a slow learning strategy. Children following
a slow learning strategy that do not reach criterion
within 24 trials are referred to as non-learners.

Response probability

Based on theoretical constraints, response probabilities
in the error and learned states were fixed at 0 and .95
respectively (Schmittmann et al., 2012). We hypothe-
sized that response probabilities in the pre-solution
state would be at chance level (.50), reflecting a trial-
and-error type of process. Freely estimating the
response probability in the pre-solution state did not
significantly improve model fit compared to a model
where this parameter was fixed at .50, that is chance
level (BM-fix; Ax*(1) = 3.085, p = .079). The final
model is displayed in Figure 3.

Individual strategies

To estimate what proportion of children used a cer-
tain strategy, we inspected the posterior probabilities
per trial per child given the BM-fix model (Table A2).
A clear developmental trend seems present, where
children become more efficient learners when they
grow older. Whereas an already surprisingly large pro-
portion of 3-year-olds used the hypothesis testing
strategy (72%), almost all 4-year-olds (97%) and all 5-
year-olds did so. The type of feedback children
received seemed to influence the efficiency with which
they learned, as indicated by a significant difference in
strategy use between feedback conditions (t(66.7) =
—3.236, p = .002). When receiving modeling feed-
back, all 3-year-olds reached criterion within 24 trials.
In 4-year-olds, there are no slow learners left, indicat-
ing modeling feedback might have helped them to
reach their full potential (for an overview of mixing
proportions per feedback condition, see Appendix).

Generalization

Sorting behavior in the generalization phase of the
task was investigated to see if children following dif-
ferent learning processes in the test phase also
adhered to distinct response strategies during this
phase. Eighty percent of hypothesis testing children



continued their test-phase categorization (e.g., a color
rule) in the generalization phase, strengthening the
evidence for the presence of rule-based representa-
tions of the learned categorization. (See appendix for
a more detailed description of the generalization
analysis).

Relating executive functioning to learning
strategies

Startegies and the executive construct

The EF measures were combined into a single meas-
ure based on a factor analysis (see Appendix A for
details). Both the composite measure and standardized
age in months were added to the BM-fix model as
covariates to determine if EF was associated with the
learning strategies applied in addition to age. The two
covariates (executive functions, EF, and age, A;
A&EF) were either added to both learning parameters
(BM-fix-A&EF-both), only to the hypothesis testing
parameter (BM-fix-A&EF-hyp), or only to the slow
learning parameter (BM-fix-A&EF-slow). In the fol-
lowing analysis we tested whether WM and FL were
explaining variance in the data in addition to the con-
tribution of age, which is a conservative test. The BM-
fix-A&EF-hyp model fitted the data best (see Table
A4 for fit indices), meaning that Age and EF signifi-
cantly influence the hypothesis testing parameter. This
model fitted significantly better than the BM-fix
model (Ax*(3) = 11.006, p = .010), but also better
than the BM-fix-A&EF-slow model at Ax*(0) = 4.208,
p < .001. There was no significant difference between
the BM-fix-A&EF-both and BM-fix-A&EF-hyp model
(Ax*(6) = 5.823 p = .44), altogether indicating that
there was no association between slow learning and
the covariates.

The association between the covariates and strategy
use (i.e. the hypothesis testing parameter) was driven
by the executive functions (BM-fix vs BM-fix-EF-hyp,
Ax*(1) = 8.374, p=0.004), but not significantly by age
(BM-fix vs BM-fix-A-hyp, Ax*(1) = 3.051, p = .08).
The BM-fix-A&EF-hyp model fitted the data signifi-
cantly better than the BM-fix-A-hyp model (AX*(-2) =
7.955, p = .019), indicating that executive functions did
explain variance in strategy use in addition to age.

Coefficients of the BM-fix-EF-hyp model indicated
that the executive construct was positively associated
with hypothesis testing (o: f = .709), and negatively
with the slow learning strategy (a;;: f = —0.233).
Together these results indicate that children with
more developmentally advanced executive functions
are more likely to use a hypothesis testing strategy.
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Conclusion

Study 1 aimed to explore how 3- to 5-year-olds learn
simple (i.e. one-dimensional) rules from feedback. We
fitted latent Markov models to the trial-by-trial accur-
acy data of 3- to 5-year-olds performing a feedback-
learning task. We found indications that 3- to 5-year-
olds used different learning strategies when learning
simple rules from feedback: slow/non learning and
hypothesis testing. Results suggest that contrary to
common belief (Ashby et al., 1998; Gholson et al.,
1972; Minda et al., 2008; Schmittmann et al., 2012),
many 3-year-olds might already be capable of learning
from feedback using hypothesis testing. Moreover,
children with further developed executive functions
were more likely to use a hypothesis testing strategy.
That is, executive functions have a specific predictive
value in strategy use, in addition to age.

Limitations and future directions

Study 1 was exploratory in nature. Replication in a
new sample is needed before strong conclusions can
be drawn. Based on the findings that hypothesis test-
ing already seemed more common in 3-year-olds than
previously believed (Ashby et al., 1998; Gholson et al.,
1972; Minda et al., 2008; Schmittmann et al., 2012),
we decided to focus our next study solely on this still
understudied age group.

Based on observations in study 1, we made some
adjustments. First, we will only include modeling
feedback, as young children seemed to profit most
from this type of feedback. Second, in the current
two-option set-up of the task simple deduction could
technically also be used to discover the sorting rule
(e.g. if it is not A, it must be B). To infer hypothesis
testing with more certainty, a third dimension needed
to be added to the TCST, making it a three dimen-
sional task (3D-TCST). We opted for a number
dimension (as taken from the Wisconsin Card Sorting
Task), since young children can differentiate between
the quantities one, two and three by subitizing (Bruce
& Threlfall, 2004; Grant & Berg, 1948), allowing for
such a dimension to be implemented in tasks for the
very youngest.

Study 2

Study 2 first aimed to confirm the existence of mul-
tiple learning strategies (hypothesis testing and slow
learning) in 3-year olds. Second, the study aimed to
confirm the association between age and the executive
functions in applying a hypothesis testing strategy.
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We expected the hypothesis testers to be the older
children in the sample, and the ones with more devel-
opmentally advanced executive functions (Ashby
et al., 1998; Gholson et al, 1972; Zeithamova &
Maddox, 2007). To this end, we preregistered the
analyses that consist of first fitting the Base Model to
the trial-by-trial data and subsequently adding the
executive functions and age as covariates to the learn-
ing parameters.

Method
Participants

A total of 62 3-year-olds took part in this study, ages
ranging from 34.7 months to 48.6 (Mmonths = 41.77,
SDimonths = 3.95). There were 35 boys and 27 girls.
Children were recruited via the University’s Babylab
database, social media and personal networks. They
were tested in the Babylab (n=31), at home (n=10)
or at a daycare facility (n=21). During the session,
children earned six stickers they were allowed to bring
home and all children, except those tested at the day-
care facility (upon special request of the facility), were
given a small gift, such as bubble blow, after participa-
tion as a reward. Informed consent was obtained for
all the children by a parent or primary caregiver.
Exclusion criteria can be found in the appendix.

Materials

Three Dimensional - Toddler card sorting task (3 D-
TCST)

The main task was an adapted version of the original
TCST used in study 1 with two exceptions: stimuli on
task and reference cards differed on three dimensions
- shape, color and number - to infer hypothesis test-
ing with more certainty (see figure 4 for stimuli and
task set-up), and only modeling feedback was pro-
vided as children seemed to profit from this feedback
most. The generalization phase that directly follows
the test phase (as in study 1) diagnoses the rule that
children apply at the end of the learning process (cf.,
Molenaar et al., 2014). The outcome can be seen as a
validation of the learning task, such that children who
generalize the learned categorization by the applica-
tion of a simple rule, learned a simple rule in the first
place (instead of, e.g., separate stimulus-response
relations).

Executive functions
To measure children’s executive functioning, children
completed three independent tasks: Spin the pots for

working memory (Huges & Ensor, 2005), the Day-
Night-task for inhibition (Carlson & Moses, 2001),
and the Dimensional Change Card Sorting Task
(DCCS) for cognitive flexibility (Zelazo, 2006). Full
task descriptions can be found in Appendix B.

Procedure

All children were tested in a single one-on-one ses-
sion, generally lasting between 30 and 45 minutes.
Parents were allowed to be present during testing, but
explicitly asked to refrain from interfering. The tasks
were administered in a fixed order: feedback-learning,
spin the pots, Day/Night and DCCS. This order pre-
vented possible crossover effects between the two
rule-based learning tasks and created optimal variation
in the test session, alternating between tasks of differ-
ent nature and with different media, hence keeping
the children engaged and concentrated. In between
tasks, breaks of variable duration, but no longer than
10 minutes, were inserted when needed.

Statistical approach

The analysis plan was pre-registered on the Open
Science Framework (Lichtenberg & Raijmakers, 2019),
with the exception of the generalization analyses. The
base model (BM) is used as the standard model to fit
to the trial-by-trial learning data. The BM is com-
pared to an only hypothesis testing model, an only
slow-learning model and a BM-fix (with a response
probability in the presolution state of .33). Analyses
were executed as planned, with the exception of the
Exploratory Factor Analysis for the executive function
tasks. Due to unforeseen responses and missing data
of a substantial number of toddlers on the inhibition
task, we decided to drop this task from our analyses
(inflated number of missing data, which was likely not
missing at random). The remaining two executive
function tasks did not share enough variance to per-
form an Exploratory Factor Analysis, therefore
remaining analyses were run for working memory and
cognitive flexibility separately.

Results
Learning strategy

Feedback-learning strategies

To confirm that 3-year-olds use multiple learning
strategies, we fitted three versions of the latent
Markov model representing the expected underlying
structures of 3-year-olds’ feedback-learning strategies,
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Figure 3. The final, base model (BM-fix) with likelihood esti-
mates of the parameters. Response probabilities of answering
correctly are displayed within the states. n=110.

to the trial-by-trial accuracy data. As expected, a
three-state model with both a fast («,) and slow learn-
ing parameter (o4,), the BM, fitted the data best
(Figure 5A, Table B2). This model fitted the data sig-
nificantly better than both more parsimonious models
(both vs hypothesis only: Ax*(1) = 7.200 p = .007;
both vs slow only: AxX*(1) = 41.974, p < .001), con-
firming our hypothesis that some 3-year-olds learn
simple rules from feedback using a hypothesis testing
strategy, while others use a slow learning strategy.

Response probability

In contrast to study 1, results suggest that the
response probability in the pre-solution state was not
at chance level (chance = .33; Ax*(1) = 8.393, p =
.004). That is, slow learners performed well above
chance, with a probability of .44 to sort a card cor-
rectly . The final model, optimized to the data, is dis-
played in Figure 5B.

Individual strategies

To reveal how many 3-year-olds used which strategy,
we inspected for all children the posterior probabilities
of following each learning strategy. With the 3 D-
TCST, 78.3% (n=47) of the 3-year-olds used the
hypothesis testing strategy (Ngow learning = 3, 5.0%;
Npon-learning = 10, 16.7%). This shows that, when pro-
vided with the learning conditions that seemed most
beneficial to children in study 1, hypothesis testing is
in reach for many 3-year-olds.

Generalization

As in study 1, the majority of hypothesis testing chil-
dren continued their learning strategy into the gener-
alization phase (Table B2 shows model selection
results of the mixture distribution analysis of the gen-
eralization data). Sixtyfour percent continued applying
the learned rule with high accuracy (p = .99) and
36% with lower accuracy (p = .72; different from
chance level, i.e. p = .33).
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Figure 4. Stimuli and screen set-up (A) and stimuli (B) of the
feedback-learning task used in study 2. Stimuli differed on
three dimensions: shape, color and number. Children were
instructed to sort one of the target cards (B: middle row) with
one of the reference cards (B: top row). The sorting rule could
be discovered using the feedback provided after every trial. In
the generalization phase, the target cards were replaced by
stimuli from the bottom row (B).

Relating executive functioning to learning strategy

Executive functions and strategies. To see whether
there was an association between learning and age
and executive functions, age (A), working memory
(WM) and cognitive flexibility (FL) were added as
covariates to the learning parameters of the selected
latent Markov model. In the following analysis we
tested whether WM and FL were explaining variance
in the data in addition to the contribution of age,
which is a conservative test. In DepmixS4, the
response parameter in the pre-solution state could not
be freely estimated simultaneously with adding covari-
ates to the model. The value obtained when optimiz-
ing the BM model to the data was used as a fixed
value in further models (BM-fix). Again, the covari-
ates were either added to both learning parameters
(BM-fix-WMA-both/BM-fix-FLA-both), only the
hypothesis testing parameter (BM-fix-WMA-hyp/BM-
fix-FLA-hyp), or only the slow learning parameter
(BM-fix-WMA -slow/BM-fix-FLA-slow).

Analyses show that, cognitive flexibility was not
significantly associated with either learning parameter
(BM-fix vs BM-fix-FLA-hyp, Ax*(3) = 5962, p =
.114; BM-fix vs B<-fix-FLA-slow, Ax*(3) = 0.799, p
= .850). In contrast, working memory and age were
significantly associated with the use of hypothesis test-
ing (BM-fix vs BM-fix-WMA-hyp, Ax*(3) = 9.323, p
= .025). Adding the covariates to the slow learning
parameter did not significantly improve model fit
(BM-fix vs BM-fix-WMA-both, Ax*(9) = 17.088, p =
.047), indicating that the efficiency of slow learning
was not associated with the covariates. See Table B3
for model fit and comparison indices.

Both covariates, A and WM, established an associ-
ation with the hypothesis testing parameter by them-
selves, indicating that the effect of neither of them
was negligible (BM-fix vs BM-fix-A-hyp, Ax*(1) =
5.096, p = .024, BM-fix vs BM-fix-WM-hyp, Ax*(1) =
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Figure 5. A: The Base Model with four free parameters, oq;, o3 o, and p.. B: The final model (BM) optimized to the data. The
model contains three states, an error state (E) a presolution state (P) and a learned state (L). Arrows indicate possible transitions
with transition probabilities. Response probabilities of answering correctly are displayed within the states.

6.744, p = .009). As expected, the combined model
did not fit the data better than the separate models
(BM-fix-WMA-hyp vs BM-fix-A-hyp, Ax*(2) = 4.227,
p = .121; BM-fix-WMA-hyp vs BM-fix-WM-hyp,
AX*(2) = 2.575, p = .275). The correlation between
age and working memory might partially account for
this overlap (r(44) = .35, p = .018). The AIC and BIC
prefer the BM-fix-WM-hyp model, but the signifi-
cance of the difference cannot be tested. See Table B4
for model fit and comparison indices.

The coefficients of the BM-fix-A-hyp model indi-
cated that age was positively associated with the
hypothesis testing parameter (o,: f = .49; see Table
B5), suggesting that older children are more likely to
use this strategy. Logically following this observation,
age was negatively associated with the slow learning

component (o;;: f = —0.29), as was the case for
working memory in the BM-fix-WM-hyp model (o;:
f = —1.44; see Table B6). This indicates that both

older children and those with bigger working memory
capacities were less likely to be slow learners.
Interestingly, working memory was also negatively
associated with the hypothesis testing parameter (a,: f8
= —0.17), reducing the transitional probability on
individual trials from the error state directly to the
learned state for children with higher working mem-
ory scores. This negative association indicates more
perseveration for hypothesis testers with higher WM
scores.

Conclusion and discussion

The aim of this study was twofold: to verify the exist-
ence of multiple learning strategies in 3-year-olds and
to see how these strategies might be related to the
development of the executive functions of these chil-
dren. Following our preregistration on the Open
Science Framework (Lichtenberg & Raijmakers, 2019),
we fitted latent Markov models on trial-by-trial accur-
acy data to test whether 3-year-olds used different
learning strategies to learn from feedback, that is,
slow learning and hypothesis testing. Results showed
that hypothesis testing was already in reach for many

3-year-olds. Working memory and age were both
associated with strategy use, such that more develop-
mentally advanced and older children were more
likely to use a hypothesis testing strategy. But hypoth-
esis testers with larger working memory perseverate
their initial, incorrect responses longer.

Strategy use

Typical results indicate that hypothesis testing in feed-
back-learning paradigms is only used by children
older than three years of age (Ashby et al, 1998;
Gholson et al.,, 1972; Minda et al., 2008; Schmittmann
et al., 2012). Design differences between the current
study and previous work can possibly account for the
differences in learning strategies observed. We used a
simple task structure (3D-TCST) and modeling feed-
back in order to ensure that children’s executive func-
tions were not unnecessarily taxed, although they are
always involved in rule learning.

In contrast, previous studies have often used more
complex tasks, such as rule-based categorization tasks
that pose a bigger constraint on working memory due
to the absence of reference stimuli (Minda et al., 2008),
rule search and application tasks where rules should
first be selected based on an arbitrary stimulus and
then applied to target stimuli (Van Duijvenvoorde
et al, 2008) or discrimination learning tasks that are
based on dimension comparison instead of dimension
matching, such as the discrimination-learning task
(Kendler, 1979; Schmittmann et al., 2012).

Besides task complexity, the type of feedback pro-
vided varies drastically over studies. Where some
studies only provided nonverbal feedback (Minda
et al., 2008), others only provided feedback on certain
trials (Gholson et al, 1972). Most importantly, some
tasks entail false positive feedback, creating a situation
in which children possibly believe they are right for
the wrong reason (i.e. based on the irrelevant dimen-
sion; Kendler, 1979; Schmittmann et al., 2012). False
positive feedback majorly complicates the hypothesis
testing process by rendering the win-stay principle
unreliable. Altogether, differences in task complexity



and feedback information content could have previ-
ously hindered hypothesis testing of 3-year-olds.

Executive functions

Age and working memory, but not cognitive flexibil-
ity, were related to strategy use, such that older chil-
dren and children with more developmentally
advanced working memory were more likely to use a
hypothesis testing strategy. Interestingly, the associa-
tions for age and working memory were only partly
interchangeable. Where older children were just more
likely to use a hypothesis testing strategy, children
with bigger working memory capacities on average
perseverated on more trials in the error state before
transitioning directly to the learned state, indicating
less efficient use of hypothesis testing. Due to the
nature of the task (starting with negative feedback),
especially children with better working memory could
have more difficulty to abandon their preferred, falsi-
fied rule, resulting in perseveration (Munakata, 1998;
cf. Schmittmann et al., 2012).

The current study focused mainly on the hypoth-
esis testing strategy and could not determine in more
detail what strategy is exactly applied by slow/non-
learners. Theories that could explain slow and non-
learning vary from incremental or associative learning
(Ashby et al., 1998; Kendler, 1979), to the inefficient
use of (a mix of) up-to-date still undetermined strat-
egies (Inkster et al., 2014; Schmittmann et al., 2006).

Peter Molenaar’s legacy and future directions

The detailed information about 3-years olds hypoth-
esis testing could only be revealed by the application
of statistical models that account for inter-individual
differences (due to variation in strategies and order of
tested hypotheses) and intra-individual differences
(accuracies changed suddenly during learning). Peter
Molenaar (2004) extensively argued that inter-individ-
ual variation is not generalizable to intra-individual
variation. The line of work continued in this article,
the application of hidden Markov models to psycho-
logical data (Visser et al., 2002), does not focus on
modeling individual time series but on latent mixtures
of time series. However, these models do assume that
variation between individuals (e.g., transition probabil-
ities between Markov states) are generalizable to
within-individual processes (e.g., learning speed). The
advantage of modeling a limited number of shorter
time series is evident in toddler research. Especially in
the domain of cognitive development with young
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children where data collection is effortful for partici-
pants and researchers, latent Markov modeling pro-
vides an excellent technique to reliably test detailed
hypotheses about learning processes accounting for
important inter and intra-individual differences.
Techniques have been improving considerably since
the first applications to psychological data (Visser &
Speekenbrink, 2022).

An important future direction of this research is to
design a longitudinal study about the development of
learning processes. As discussed in the Manifesto
(Molenaar, 2004), the variance within an individual,
that is, variation of learning strategies over time dur-
ing development, is not necessarily similar to the vari-
ance between individuals, that is learning strategies in
a cross-sectional sample of children with different
ages. Remarkably enough, there are not many datasets
of high density, longitudinal data of preschoolers (cf.,
Stifter & Rovine, 2015). These data could give us
some insight to contribute to the challenge formulated
by Coenen et al. (2019): “What is the developmental
trajectory of inquiry abilities?”.

Conclusion

In sum, using latent Markov models we showed that
3-year-olds used two distinct learning strategies when
learning simple (i.e. one dimensional) rules from feed-
back in the 3D-TCST: slow leaning and hypothesis
testing. Together, these results call for a revalidation
of the feedback-learning capacities of 3-year olds.
When provided with supportive learning conditions
like a simple task structure and informative feedback,
a majority already used a hypothesis testing strategy,
making them more advanced feedback-learners than
previously believed.

Open practices statement

This confirmatory study was preregistered at the
Open Science Framework (Lichtenberg & Raijmakers,
June 19). Feedback-learning in  3-year-olds;
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publicly available on this Open Science Framework
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Appendix A- Tasks and tables exploratory
study

Study 1

Exclusion criteria

Exclusion criteria

All children from whom feedback-learning data was avail-
able were included in the feedback-learning strategy and
generalization analyses (n=110). Executive function data
was available for 93 children, who were all included in the
Exploratory Factor Analysis. Thirteen participants were
excluded from the covariates analysis for failing the pre-
switch phase of the Dimensional Change Card Sort task
(DCCS), resulting in a final sample of 80 participants.

Table A1. Model fit indices.

Model LogL AlC BIC df
BM —443.21 894.43 914.58 4
Hyp only —445.43 896.86 911.98 3
Slow only —484.78 975.55 990.67 3
BM-fix —444.76 895.51 910.63 3

Note. Model fit indices of latent Markov models of trial-by-trial data. BM:
base model containing learning parameters reflecting both strategies,
Hyp only: only hypothesis testing, Slow only: only slow learning, and
BM-fix: base model with response probability in the pre-solution state
fixed at chance (.50). n=110.The fixed base model (a 3-state model
with both a fast and slow learning parameter and the response param-
eter of the pre-solution state fixed at chance) fitted the data best.

Table A2. Proportions per strategy per age group given the
BM-fix model.

3-year-olds 4-year-olds 5-year-olds
N  Proportion N  Proportion N  Proportion
Hypothesis testers 30 715 55 965 1" 1.000
Slow learners 4 .095 0 0 0 0
Non-learners 8 .190 2 .035 0 0

Note. n=110.
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Test phase data analysis

Generalization data analysis (confirmatory)
Generalization

Generalization of the learned rule to new stimuli shows the
way in which the learned rule is represented. To the sum
scores of the generalization phase (with respect to continu-
ing the correct rule of the test phase) of 110 children, we
fitted four binomial mixture models, with one to four com-
ponents respectively. The mixture model with three bino-
mial distributions provided the most optimal fit for our
data and also provided a good absolute fit (x3(36) = 42, p
= .227; see Table A.2). Children either sorted all cards cor-
rectly, that is, in line with the learned rule, (probability cor-
rect, p = .98), performed at chance level (p = .57), or
sorted all cards incorrectly (p = .07).

As predicted, most hypothesis testers continued to
apply the learned rule in the generalization phase (n=77,
80%). A smaller portion seemed to have lost their rule and
performed at chance level (n=10, 11%). The remaining
hypothesis testers consistently sorted generalization cards
incorrectly (n=9, 9%). The majority of slow and non-
learners expectedly performed at chance level (n=7, 50%)
or worse (n =4, 29%). Only a small group sorted all gener-
alization cards correctly (n=3, 21%). These results are in
line with the idea that the strategies found in the learning
task reflect learning a simple rule, since the majority of
children extrapolated their strategy to the generalization
phase.

Table A3. Model fit indices of the generalization models.

Model LogL AlIC BIC df
1-state —258.8141 519.6281 522.3286 1
2-state —151.8008 309.6015 317.7030 3
3-state —145.8982 301.7964 315.2988 5
4-state —144.7242 303.4485 322.3518 7

Note. Model fit indices mixture distribution of binomials models general-
ization data. n=110.

Executive function analysis

Working memory

Corsi block task was administered to measure childrens’-
working memory capacities (Bull et al., 2008). Children
were shown a physical array of identical blue blocks. The
experimenter tapped predetermined patterns on the blocks.
The child was then asked to repeat the pattern by tapping
the same order. When patterns were repeated correctly, pat-
tern length increased over trials. Longer correctly repeated
patterns were taken as indications of bigger working mem-
ory spans.

Inhibition

The Grass/Snow-task was administered to measure a child’s
inhibition capacities (Carlson & Moses, 2001). Children
were shown two colored rectangles on a tablet and were
asked if they knew which one represented ‘Grass’ (i.e. the
green color slab) and which one represented ‘Snow’(i.e. The
white color slab). Subsequently, they had to inhibit their

automatic response by pointing to the white slab when the
experimenter said the word ‘Grass’ and to the green slab
when she said ‘Snow’. The task advanced with a practice
phase of seven trials during which feedback was provided.
A child passed the practice phase if each of the stimuli was
pointed to correctly at least once on two consecutive trials.
During the test phase, another 16 trials were administered
without feedback. Higher scores indicated better inhibition
capacities.

Cognitive flexibility

The Dimensional Change Card Sorting task (DCCS)
measures cognitive flexibility (Zelazo, 2006). In this com-
puterized task, children sorted six 2-dimensional cards
given a given sorting rule (e.g. sort on color or sort on
shape; pre-switch phase). Subsequently, they were asked
to switch to a new sorting rule (i.e. sorting on the other
dimension) for the remaining six cards (post-switch
phase). The sorting rule was repeated before every trial,
but feedback was only provided in the pre-switch phase.
Typically, 3- and 4-year-olds pass the pre-switch phase,
but fail the post-switch phase by perseverating on the
previous sorting rule (van Bers et al., 2014). Switching to
the new sorting rule indicated higher cognitive flexibility.
Following standard DCCS analysis procedure, post switch
scores from this task were converted to a binomial vari-
able (e.g. van Bers et al., 2014; Schmittmann et al., 2012):
Children passed the task when sorting at least five out of
six post-switch cards correctly, otherwise a failed was
obtained.
Exploratory Factor
construct

Since there is discussion in the literature regarding the sep-
arability of the executive functions in young children
(Carlson, 2005; Wiebe et al., 2011; Shing et al., 2010), we
conducted an exploratory factor analysis on standardized
and centered executive function scores. An oblique oblimin
rotation was used to allow possible factors to correlate
(Osborne, 2015). The results indicated that the executive
functions in our sample all loaded on the same construct:
Parallel analysis suggested only one factor had an eigenvalue
higher than .7 (Jolliffe, 1972); In the two-factor model, one
factor explained 94% of the total variance with factor load-
ings between .59 and .30, thus the second factor added min-
imal value. Final factor loadings are displayed in the
appendix. A composite measure was created out of the three
executive function scores by multiplying the standardized
and centered scores with the corresponding factor loadings
as weights, and adding the components. For all further
analyses, the executive functions were treated as one con-
struct by using this composite score.

analysis of the executive

Table A4. Factor loadings Exploratory Factor Analysis.

1 factor 2 factors 3 factors
Factor nr 1 1 2 1 2 3
WM .65 .59 .06 .58 .06 0
Inhibition 44 .50 —-.13 51 -1 0
Flexibility .29 30 .16 .28 15 0

Note. Factor loadings for one, two and three factor solutions. n=93.



Covariate analysis

Table A5. Model fit indices and likelihood ratio difference
scores compared to BM-fix.

Model AIC BIC df LogL Adf Alogl p
BM-fix 57769 59169 3 —285.84

BM-fix-A&EF-both 578.82 634.84 12 —27741 9 16.834 .051
BM-fix-A&EF-hyp ~ 572.66 600.67 6 —280.33 3 11.006 .012*
BM-fix-A-hyp 576.64 59531 4 28432 1 3.051 .081
BM-fix-EF-hyp 57132 589.99 4 -—281.66 1 8.374 .004
BM-fix-A&EF-slow 576.93 60494 6 —28247 3 6.798 .079

Note. Model fit indices and likelihood ratio difference scores from various models
where the executive function (EF) scores and age (A) were added as covariates
to both or either learning parameter(s) (both/hyp/slow). n = 80.* p < .05.

Table A6. Model fit indices and likelihood ratio difference
scores compared to BM-fix-EFA-hyp.

Model AIC BIC df LogL Adf  AlogL p
BM-fix-EFA-hyp  572.66 600.67 6 —280.33

BM-fix-A-hyp 576.64 59531 4 28432 —2 7955 .019*
BM-fix-EF-hyp ~ 571.32 589.99 4 —281.66 —2 2632 .268

Note. n=80. * p < .05.

Table A7. Model coefficients covariate analysis BM-fix-EF-hyp.

Error Presolution Learned
Intercept 0 —.889 1.115
Executive construct 0 —.233 .709
Zero values cov 224 .092 .684

Note. b-coefficients for the different covariates added to the transition parame-
ters of the error state. Remaining in the error state (Perseveration), transition-
ing to the presolution state (slow learning) or the learned state (hypothesis
testing). Coefficients are displayed for intercept, covariate executive construct
and finally the probabilities at zero values of the covariates. n = 80.

Appendix B- Tasks and tables confirmatory study
Study 2

Exclusion criteria

Exclusion criteria

Two participants were excluded from the feedback-learning strat-
egy (and subsequent) analysis due to technical malfunctions in
the 3 D-TCST, resulting in a total sample of 60 participants. A fur-
ther 14 participants were excluded from the covariate analysis
(n=46), due to missing executive function data.

Test phase data analysis
Table B1. Model fit indices.

Model LogL AlC BIC df
BM —374.93 757.85 776.27 4
Hyp only —378.53 763.05 776.87 3
Slow only —395.91 797.83 811.64 3
BM-fix —379.12 764.24 778.06 3

Note. Model fit indices of latent Markov models of trial-by-trial data. BM:
base model containing learning parameters reflecting both strategies,
Hyp only: only hypothesis testing, Slow only: only slow learning, and
BM-fix: base model with response probability in the presolution state
fixed at chance, i.e. .33. n=60. The base model (a 3-state model with
both a fast and slow learning parameter) fitted the data best.

Generalization data analysis

Generalization (exploratory)
Generalization of the learned rule to new stimuli shows the
way in which the learned rule is represented. To the sum
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scores of the generalization phase (with respect to continuing
the correct rule of the test phase) of 56 children, we fitted
four binomial mixture models, with one to four components
respectively. The mixture model with three binomial distribu-
tions provided the most optimal fit for our data and also
provided a good absolute fit (x*(36) = 40, p = .297; see
Table B.2). Children either sorted all cards correctly, that is,
in line with the learned rule, (probability correct, p = .99),
performed at chance level (p = .33), or somewhere in
between at an average of 72% correct (p = .72).

As predicted, most hypothesis testers continued to apply
the learned rule in the generalization phase (n=29, 64%). A
smaller portion had more difficulty in the generalization phase,
but still performed well above chance level (n= 16, 36%). The
majority of slow and non-learners expectedly performed at
chance level (n=7, 64%). Only a small group performed
above chance level at 72% correct (n =4, 36%). These results
are in line with the idea that the strategies found in the learn-
ing task reflect learning a simple rule, since the majority of
children extrapolated their strategy to the generalization phase.

Table B2. Model fit indices of the generalization models.

Model LogL AIC BIC df
1-state —184.78 371.57 373.61 1
2-state —110.24 226.48 232.60 3
3-state-a —101.10 212.20 222.42 5
3-state-b —102.91 211.83 217.96 3
4-state —98.77 211.54 225.84 7

Note. Model fit indices of mixture distribution of binomials models of the
generalization data. n=56. 3-state-a: all parameters freely estimated, 3-
state-b: one response parameter fixed at .33 correct (chance level).

Executive function analysis

Working memory

To measure working memory, children completed the Spin
the pots task (Huges & Ensor, 2005). In this task, eight pots
of distinct shapes, sizes and colors were displayed on a
spinning tray. Together with the experimenter, the child hid
six stickers in the pots, leaving two of them empty. The
pots were covered up with an opaque scarf and spun
around. After the scarf was lifted, the child was allowed to
open one of the pots to see if there was a sticker inside.
The pot was closed again after every trial. This process was
repeated until all stickers had been retrieved or a maximum
of 16 trials had passed. Lower scores indicated better work-
ing memory capacities. During analysis, performance on
this task was reverse scored so that higher scores also indi-
cated better working memory, improving interpretability.
Inhibition

The Day/Night-task was administered to measure a child’s
inhibition capacities (Carlson & Moses, 2001). Children were
shown two images and asked if they knew which one repre-
sented ‘Day’ (i.e. picture of the sun) and which one represented
‘Night’ (i.e. picture of the moon). Subsequently, they had to
inhibit their automatic response by pointing to the moon when
the experimenter said the word ‘Day’ and to the sun when she
said ‘Night’. The task advanced with a practice phase of seven
trials during which feedback was provided. A child passed the
practice phase if each of the stimuli was pointed to correctly at
least once on two consecutive trials. During the test phase,
another 16 trials were administered without feedback. Higher
scores indicated better inhibition capacities.
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Cognitive flexibility

The Dimensional Change Card Sorting task (DCCS) meas-
ures cognitive flexibility (Zelazo, 2006). In this computerized
task, children sorted six 2-dimensional cards given a given
sorting rule (e.g. sort on color or sort on shape; pre-switch
phase). Subsequently, they were asked to switch to a new
sorting rule (i.e. sorting on the other dimension) for the
remaining six cards (post-switch phase). The sorting rule was
repeated before every trial, but feedback was only provided
in the pre-switch phase. Typically, 3- and 4-year-olds pass
the pre-switch phase, but fail the post-switch phase by per-
severating on the previous sorting rule (van Bers et al., 2014).
Switching to the new sorting rule indicated higher cognitive
flexibility. Following standard DCCS analysis procedure, post
switch scores from this task were converted to a binomial
variable (e.g. van Bers et al.,, 2014; Schmittmann et al.,, 2012):
Children passed the task when sorting at least five out of six
post-switch cards correctly, otherwise a failed was obtained.

Covariate analysis

Table B3. Model fit indices compared to BM-fix.
Model AIC BIC df LogL Adf AlogL p

BM-fix 51142 52427 3 —252.71
BM-fix-WMA-both  512.33 563.72 12 —24417 9
BM-fix-WMA-hyp  508.10 53379 6 —248.05 3 9.323 .025’;
BM-fix-A-hyp 50833 52546 4 -—250.16 1 5.096 .024
BM-fix-WM-hyp  506.68 523.80 4 -—249.34 1 6.744 .009"

3

9

3

17.088 .047*

BM-fix-WMA-slow 513.67 53936 6 —250.83 3.753 .289
BM-fix-FLA-both ~ 523.29 57467 12 —249.64 6.134 726
BM-fix-FLA-hyp 51146 53715 6 —249.73 5962 .114
BM-fix-FLA-slow ~ 516.62 54232 6 —25231 3 799 850

Note. Model fit indices and likelihood ratio difference scores from various
models where the executive function (WM/FL) scores and age (A) were
added as covariates to both or either learning parameter(s) (both/hyp/-
slow). * p < .05. n=46. All models are compared to the BM-fix. The
models where age and working memory were separately fitted on the
learning parameter of the hypothesis-testing strategy fitted the data best.

Table B4. Model fit indices and likelihood ratio difference
scores compared to BM-fix-WMA-hyp.
Model AIC BIC df LogL

BM-fix-WMA-hyp 508.10 533.79 6 —248.05
BM-fix-A-hyp 508.33 52546 4 —250.16 2 4227 a1
BM-fix-WM-hyp  506.68 523.80 4 —24934 2 2575 275

Note. n=46. * p < .05.

Adf AlogL P

Table B5. Model coefficients covariate analysis BM-fix-A-hyp.

Error state Presolution state Learned state

Intercept 0 —1.254 —.005
Age 0 —.289 493
Zero values cov 439 125 436

Note. f-coefficients for the transition model for the error state (E) of the
BM-fix-A-hyp. Coefficients are displayed for intercept, the covariate age
and finally the probabilities at zero values of the covariates. n = 46.

Table B6. Model coefficients covariate analysis BM-fix-
WM-hyp.

Error state Presolution state Learned state
Intercept 0 —1.273 .090
WM_rev 0 —1.437 —171
Zero values cov 421 118 461

Note. f-coefficients for the transition model for the error state (E) of the
BM-fix-WM-hyp. Coefficients are displayed for the intercept, the covari-
ate working memory (reverse scored) and finally the probabilities at
zero values of the covariates. n = 46.
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