MULTIVARIATE BEHAVIORAL RESEARCH
2021, VOL. 56, NO. 2, 175-198

3 OPEN ACCESS

Latent Variable Models and Networks: Statistical Equivalence and Testability

Riet van Bork?®, Mijke Rhemtulla®, Lourens J. Waldorp?, Joost Kruis®, Shirin Rezvanifar®, and

Denny Borsboom?

University of Amsterdam; PUniversity of California, Davis; “Allameh Tabatabai University

ABSTRACT

Networks are gaining popularity as an alternative to latent variable models for representing
psychological constructs. Whereas latent variable approaches introduce unobserved com-
mon causes to explain the relations among observed variables, network approaches posit
direct causal relations between observed variables. While these approaches lead to radically
different understandings of the psychological constructs of interest, recent articles have
established mathematical equivalences that hold between network models and latent vari-
able models. We argue that the fact that for any model from one class there is an equiva-
lent model from the other class does not mean that both models are equally plausible
accounts of the data-generating mechanism. In many cases the constraints that are mean-
ingful in one framework translate to constraints in the equivalent model that lack a clear
interpretation in the other framework. Finally, we discuss three diverging predictions for the
relation between zero-order correlations and partial correlations implied by sparse network
models and unidimensional factor models. We propose a test procedure that compares the
likelihoods of these models in light of these diverging implications. We use an empirical
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example to illustrate our argument.

Psychological constructs have traditionally been
approached using a latent variable framework, in
which a set of observed variables (e.g. psychopath-
ology symptoms, self-reports on questionnaire items,
or performance on cognitive tests) is assumed to
reflect an underlying psychological construct (e.g.
depression, extraversion, or general intelligence;
Cronbach & Meehl, 1955). In this framework,
researchers typically assume that the construct being
measured (e.g. depression) creates the shared variance
between these observed variables (e.g. symptoms of
depression). If this is the case, the shared variance of
the observed variables reflects the latent construct, and
hence appropriate functions of the test scores (e.g.
total scores or factor score estimates) can be inter-
preted as measures of the construct (Bollen & Lennox,
1991; Borsboom, Mellenbergh, & van Heerden, 2004,
2003; Edwards & Bagozzi, 2000).

Recently, however, an alternative framework has
been proposed, based on the idea that many observed
variables in psychology reflect basic psychological
states or processes that engage in mutual (causal)

interactions (Cramer, Waldorp, van der Maas, &
Borsboom, 2010; Van der Maas et al., 2006). As such,
correlations between observed variables are not attrib-
utable to their dependence on a common latent vari-
able, but rather may result from local interactions
between the relevant processes. For instance, in intelli-
gence research, increasing short-term memory cap-
acity leads to the availability of new cognitive
strategies (Siegler & Alibali, 2005), the application of
which results in improvements in short-term memory;
in depression research, a symptom like insomnia may
lead to concentration problems, which may lead to
worry, which in turn may lead to insomnia (Cramer
et al., 2010); and in personality, a person who likes to
go to parties may develop greater social skills, which
may lead him or her to like parties even more
(Cramer et al., 2012). In all of these cases, mutual
reinforcement of the observable variables plausibly
generates at least some of the common variance
among indicators.

In the past decade, researchers have therefore
started to reconsider psychological constructs that
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have traditionally been viewed from a latent variable
perspective, such as intelligence, personality traits and
psychopathology (Caspi et al., 2014; McCrae & Costa,
1987; Spearman, 1904), from a network perspective
(e.g. Cramer et al., 2012; McNally et al., 2014; Van
der Maas et al., 2006). These studies have resulted in
a novel framework on the nature and etiology of psy-
chological constructs, and the ensuing research pro-
gram has led to alternative interpretations of
phenomena such as comorbidity (Cramer et al., 2010)
and spontaneous recovery (Cramer et al., 2016), as
well as to new substantive findings. Examples include
the observation that depressed individuals have more
strongly connected networks of negative emotional
states (Pe et al., 2015), and the finding that network
structure is related to recovery from depression (van
Borkulo et al, 2015). As a result of these
developments, network approaches are quickly
gaining popularity.

At first glance, the latent variable framework and
the network framework propose radically different
views on how to understand psychological constructs
and the relations between observed variables: In the
latent variable framework, shared variance of observed
variables is assumed to reflect a latent construct,
whereas in the network framework, it is assumed to
reflect a causal network. These frameworks propose
contrasting data-generating mechanisms, which lead
to different substantive interpretations of the statistical
models. However, these divergent hypothesized causal
processes do not necessarily translate into different
statistical data structures. For example, Van der Maas
et al. (2006) showed that simulating data according to
a model with positive direct relations between
observed variables can result in a well-fitting factor
model (see also Epskamp, Rhemtulla, & Borsboom,
2017; Gignac, 2016; Marsman, Maris, Bechger, & Glas,
2015; Van der Maas & Kan, 2016), so that observing
good fit for a factor model is also consistent with a
network model. Similarly, if data are simulated
according to a single factor model with positive factor
loadings, a network analysis will result in a fully con-
nected network model (henceforth ‘complete graph’)
with positive edge weights. In this case, good fit for a
(low-rank) network model is consistent with a latent
variable hypothesis. Several articles in the past couple
of years have formalized the statistical equivalence
between network models and latent variable models
for binary variables, that is, between Ising models
(Ising, 1925) and Multidimensional Item Response
Theory (MIRT) models (Epskamp, Maris, Waldorp, &
Borsboom, 2018; Kruis & Maris, 2016; Marsman

et al., 2018, 2015). This equivalence builds on work of
Kac (1968), who introduced the Gaussian integral rep-
resentation of the Curie-Weiss model (a restricted ver-
sion of the Ising model) that forms the basis for these
equivalence proofs. The equivalence between latent
variable models and network models entails that both
models produce the same first and second moments.
For example, for continuous variables this implies that
the network model and latent variable model yield the
same means and variance-covariance matrix. The
implication that any covariance matrix can be repre-
sented both as a network model and as a latent vari-
able model suggests that it is impossible to distinguish
network models and latent variable models based on
empirical data alone.

In this article we argue that although every network
model corresponds to an equivalent latent variable
model, and vice versa, these pairs of equivalent mod-
els rarely constitute a substantively interesting com-
parison. Importantly, the network models and latent
variable models that follow from substantively inter-
esting hypotheses are typically not equivalent.
Following that analysis, we pinpoint possible avenues
for distinguishing between the corresponding data-
generating mechanisms based on statistical differences
between substantively relevant models.

Some clarifications on the proposed interpretation
of these data-generating mechanisms are in order. In
this article we interpret network models and latent
variables as substantively meaningful models rather
than as purely data-analytic models. That is, we
assume that a researcher using the model aims to sci-
entifically represent important aspects of the data-gen-
erating mechanism. For the latent variable model this
may for instance take the form of the scientific
hypothesis that correlations between observed varia-
bles are the result of a latent common cause.
Historically important examples of such psychometric
hypotheses include Spearman’s (1904) hypothesis that
the positive manifold of cognitive test scores is pro-
duced by their common causal dependence on general
intelligence and Krueger’s (1999) hypothesis that the
structure of common mental disorders arises from the
fact that psychopathology symptoms are manifesta-
tions of a small number of core psychological proc-
esses. Typically, this hypothesis involves a directional
relation between the measured construct and the
observed variables, in which the construct determines
the observed variables rather than the other way
around (Edwards & Bagozzi, 2000).

For the network model, a scientific hypothesis that
motivates the statistical model may take the form of a



theory that proposes direct relations between meas-
ured attributes (Borsboom, 2017; Van der Maas et al.,
2006). These relations may reflect, for instance, mutu-
ally supporting developmental processes in intelligence
(Van der Maas et al., 2006), homeostatic mechanisms
that couple symptoms in psychopathology (Borsboom
& Cramer, 2013), or a preference for consistency
between states of attitude components that leads these
components to align (Dalege et al., 2016). In contrast
to interpretations of the latent variable model typically
proposed in psychometrics, network models usually
feature undirected relations. Although one can see
such relations as resulting from epistemic uncertainty
(e.g. if conditional dependencies in reality arise from a
directed model; Pearl, 2000), in the current context it
is more useful to work with the scientific hypothesis
that coupled variables have bidirectional and symmet-
ric causal effects, i.e. literally instantiate the Ising
model, because this generates a productive contrast
with the implications of the latent variable model (see
Marsman et al., 2018, Figure 12). In addition to the
usual assumption that the data come from the same
distribution (i.e. are identically distributed), we
assume that the data are the result of the same
causal mechanism.

Naturally, the fit of a statistical model does not
definitively prove the theory that motivates the model,
as there are invariably alternative explanations that
cannot be ruled out. Thus, statistical models at best
confer some evidence on the theories that motivate
them, but never prove these theories definitively. Also,
we note that the above interpretations are scientific
hypotheses that go beyond the statistical models them-
selves. Clearly, these scientific hypotheses are not
necessitated by the statistical models commonly fitted
to data: one can fit factor models without assuming
latent variables to correspond to common causes of
the observables (e.g. to find a parsimonious represen-
tation of the covariance matrix) and one can fit net-
work models without assuming direct relations
between observables (e.g. to produce an esthetically
attractive visualization of multivariate dependencies).
The current article does not speak to such uses of the
statistical models per se, but instead concerns the situ-
ation in which researchers use the models to pit dis-
tinct scientific theories against each other.

In the next sections, we first briefly discuss the dis-
tinct substantive implications of network models and
latent variable models. Second, we discuss the mean-
ing of the existing equivalence proofs and conclude
that the specific models that are equivalent are not the
models that are considered as alternative data-
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generating mechanisms. Third, we show that specific
subsets of network models and latent variable models
imply divergent statistical predictions, as we will expli-
cate through a comparison of two such subsets: the
unidimensional factor model and the sparse network
model. We discuss three implications of the unidi-
mensional factor model for the relation between par-
tial correlations and zero-order correlations that do
not hold for sparse network models. Fourth, we use
these diverging implications of the unidimensional
factor model and sparse network model to construct a
test that compares the likelihoods of these two models
We present a simulation study examining the per-
formance of the test. Finally, we illustrate the meaning
of the equivalence as well as the use of the test in an
empirical data example.

The meaning of model equivalence: general
model classes versus specific model
interpretations

Statistical equivalence is a thorny concept. For
instance, at first glance it may seem that statistically
equivalent models are in fact identical, so that the
choice between, say, a network or latent variable is
merely a choice between two alternative ways of rep-
resenting the data. However, as Markus (2002) has
pointed out, statistical equivalence of two models
implicitly assumes that these models are not identical;
these equivalences are important precisely because
they show that different models yield the same covari-
ance structure. Markus argues that models that are
statistically equivalent are not semantically equivalent
when the models have different substantive implica-
tions, that is, they reflect different theories about the
studied phenomenon.

This is in line with other literature on model
equivalence in Structural Equation Modeling (SEM),
in which equivalent models have different path dia-
grams corresponding to different hypotheses about
how the phenomenon operates (Bollen & Pearl, 2013;
MacCallum, Wegener, Uchino, & Fabrigar, 1993;
Raykov & Marcoulides, 2001). Bollen and Pearl (2013)
argue that statistically equivalent models are different
causal models to the extent that they imply different
causal assumptions. These causal assumptions are
reflected in the directed paths that go from one vari-
able to another and can be understood as predictions
about how the variable at the head of the arrow
responds if one were to intervene on the variable at
the tail of the arrow. When network models and
latent variable models are understood as reflecting
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theories about the data-generating process, they also
differ in their substantive implications. For example, a
network model with direct interactions between varia-
bles may be equivalent to a single factor model, but
the absence of direct paths between the indicators in
the path diagram of the latent variable model implies
the strong causal assumption that an intervention on
any of the indicator variables does not have an effect
on any of the other indicators.

Consider a more concrete example in which the
associations between five depression symptoms can be
modeled either as a common factor model or as a net-
work model. Suppose that one of these symptoms is
insomnia. The network model implies that an inter-
vention on insomnia (e.g. through sleeping pills or
sleep hygiene therapy) should influence other symp-
toms via its influence on insomnia. The common fac-
tor model implies that such an intervention, however,
would not influence the other symptoms. Even if the
intervention were to unknowingly also influence the
latent variable, and via the latent variable all other
symptoms, the implication of the common factor
model would still be that the influence on the symp-
toms is proportional to their factor loadings while the
network model implies that the influence on the other
symptoms depends on the strength of the paths that
connect each symptom to insomnia. As such, the net-
work model and common factor model reflect very
different predictions about the effect of interventions
on variables in the model and as such feature different
substantive implications.

Several articles have demonstrated the equivalence
of latent variable models and network models
(Epskamp, Maris, et al., 2018; Kruis & Maris, 2016;
Marsman et al., 2018, 2015). The articles cited above
focus on binary variables, so that the class of common
factor models refers to Item Response Theory (IRT;
Mellenbergh, 1994) models, and the class of network
models refers to Ising (1925) models, which describe
networks of binary data. However, similar equivalence
relationships exist between network models and latent
variable models for other types of data (Epskamp,
Maris, et al.,, 2018). Let Q denote a weight matrix with
the weights of edges between nodes in a network
model, so that w;; is the weight of the edge between
node i and node j. In the literature cited above, the
equivalence between Ising models and MIRT models
boils down to the following. (1) The class of Ising
models refers to all positive semidefinite weight matri-
ces. (2) Since these weight matrices are positive semi-
definite, all eigenvalues of the eigenvalue
decomposition of such a matrix are nonnegative. (3)

Any eigenvalue decomposition with nonnegative
eigenvalues can be transformed into an MIRT model,
using Kac (1968)’s Gaussian identity to obtain poster-
ior distributions for the latent variables. For the proof
of (3), we refer the reader to Epskamp, Maris, et al.
(2018) and Marsman et al. (2018). The MIRT model
that is obtained from the eigenvalue decomposition
has as many common factors as the number of posi-
tive eigenvalues, and the obtained discrimination
parameters are functions of the eigenvector values.

The finding that these equivalent representations
exist shows that whenever a researcher compares dif-
ferent models within one such framework to adopt
the best-fitting model, there are necessarily alterna-
tives within the other class that fit equally well to the
data. But, while the equivalence proofs entail that for
any network model there is an equivalent representa-
tion as a common factor model and vice versa, this
equivalent representation is not necessarily a plausible
alternative explanation for the data. Constraints on
the parameter space that have a sensible interpretation
in one of the frameworks may translate to constraints
that are hard to interpret in the alterna-
tive framework.

Consider as an example a network model with p
nodes and no constraints on the edge weights. The
diagonal of the weight matrix Q is arbitrary and thus
can be chosen so that the resulting matrix is positive
semidefinite’ (Epskamp, Maris, et al, 2018). The
eigenvalue decomposition of the resulting matrix has
p - 1 positive eigenvalues and one eigenvalue of 0
which can be seen to represent a common factor
model with p - 1 common factors. While any eigen-
value decomposition of a positive semidefinite matrix
can be transformed into a common factor model, in
practice not all such models are considered relevant
for explaining the data. For example, while the MIRT
model that is obtained using Kac (1968)’s Gaussian
identity has as many factors as nonnegative eigenval-
ues of the weight matrix, a model with p - 1 common
factors is arguably not substantively interesting, and is
also not identifiable from data. For this reason, the
number of common factors is typically assumed to be
limited to a much smaller number than the number
of observed variables. Assuming a lower dimensional-
ity implies a rank constraint on the covariance struc-
ture; the rank p covariance matrix is the sum of a
matrix that is constrained to be low rank and a rank
p diagonal matrix. For example, a common factor
model with a single factor implies that the covariance

'This is achieved by subtracting the lowest eigenvalue from the zero
diagonal of Q.



matrix is the sum of a diagonal matrix and a matrix
that is constrained to be of rank one. This rank con-
straint can be interpreted as the assumption that a
single latent dimension can explain all covariance
between the observed variables. This assumption fol-
lows naturally from the hypothesis that all response
variables measure the same underlying latent trait.
The equivalent network model is one in which the
weight matrix is of rank one; however, it is not clear
how this rank constraint is meaningfully interpreted
in the network framework.

In the network framework a natural way of con-
straining the model is by removing edges (i.e. by fix-
ing them to zero). Edge weights that are zero can be
interpreted as conditional independencies, which
means that the state of one node does not provide
information on the state of the other node once the
state of the other nodes is taken into consideration. A
network model in which some edge weights are con-
strained to zero is equivalent to a common factor
model with p - 1 latent variables and a complex
proportionality constraint on the discrimination
parameters (or factor loadings in the factor
analysis framework).

To see what such an equivalent common factor
model could look like, we take as an example some
network model with four nodes, in which some edge
weights are constrained to zero. The model in Figure
1A represents a network model with four different
edges (ws;; and w4 are constrained to zero). This
model thus has eight freely estimated parameters: four
thresholds and four edge weights. The model in

A

w21 Wy
X1 X2 Xy
w32
W43

X3
0 wp 0 0 0 030 O 0
g=|®21 0 w3 wu| 1030 0 020 025
0 w3 0 w3y 0 020 0 035
0 Wyy W43 0 0 0.25 0.35 0
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Figure 1B represents the equivalent common factor
model, that results from the eigenvalue decomposition
of Q in which the diagonal is set equal to —1 times
the lowest eigenvalue of € so that the lowest eigen-
value equals zero. Let Q represent the p x p eigen-
vector matrix in which each row is associated with an
observed variable X; and each column is associated
with a latent variable #;. Let r represent the vector of
eigenvalues of the p X p covariance matrix, of which
the last element equals zero such that the total num-
ber of latent variables equals p - 1. ay, the discrimin-
ation parameter for variable X; on the latent variable
N is a function of gy, the eigenvector value of that
variable that is associated with #; and the eigenvalue
rr associated with ng: ax = —24/r/2 X qi. For a
more extensive explanation of how to obtain A, the
matrix of discrimination parameters, from £, we refer
the reader to Epskamp, Maris, et al. (2018) and
Marsman et al. (2015). Note that although the com-
mon factor model seems to be more complex in the
number of parameters, the number of freely estimated
parameters of the two models is exactly equal due to
proportionality constraints on the discrimination
parameters. That is, all discrimination parameters are
a function of the smaller number of @ parameters.

It is not clear in what cases one would consider the
common factor model in Figure 1B as a plausible
alternative data-generating mechanism. From a sub-
stantive point of view it is more sensible to compare
the network model in Figure 1A to a common factor
model with interpretable constraints, e.g. a rank con-
straint on the common factor model so that the

B m M2 3

a1 a;z a3 0 0.407 —0.780 0.113 0
A= |%21 @2 3 0 _ 10796 -0372 -0.126 0
31 Q33 Q33 0 0.739 0.423 0.249 0
Ay gy g3 O 0.782 0386 —0.166 0

Figure 1. The model in (1 A) represents the network model that is associated with the weight matrix . The model in (1B) repre-
sents the common factor model that is equivalent to the network model in (1 A). The discrimination parameters of this common

factor model are presented in the matrix A.
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number of common factors is limited. That is, in
many cases the relevant comparison between two
plausible explanations of the data is not a comparison
between a model in the one framework and its
equivalent representation in the other framework.
Rather, a relevant comparison is between some spe-
cific model in the one framework that is interpretable
within its framework (e.g. a common factor model
with some rank constraint), and some specific model
in the other framework that is also interpretable in its
own framework (e.g. a network model in which some
edges are constrained to zero). These models are
unlikely to be equivalent, and hence can be compared
empirically. In fact, in the next section we show that
the group of common factor models with a single
common factor and the group of network models in
which some edge weights are zero, are mutually exclu-
sive (i.e. none of the models in the one group are
equivalent to any of the models in the other group).
We use three diverging empirical implications of these
models to make a start in statistically comparing net-
work models and common factor models.

Distinguishing between specific models

The previous section has established that model equiv-
alences, while important, should not be interpreted to
mean that network models and latent variable models
are the same. In this section, we identify divergent
statistical predictions that can be derived from two
important submodels that have often been proposed
as candidate models in the psychological literature.
First, the unidimensional factor model (UFM;
Joreskog, 1971); second, the sparse network model
(SNM; Epskamp, Rhemtulla, et al., 2017). Because dis-
tributional representations become rather unwieldy for
categorical variables, in this section we consider
Gaussian variables.

There are two reasons for considering the group of
UFMs. First, the UFM is relevant because many of the
historically important psychometric models are unidi-
mensional - examples include the models of Rasch
(1960), Birnbaum (1968), Mokken (1971), and
Joreskog (1971). In fact, in several approaches the uni-
dimensional model is used normatively in test con-
struction; that is, violations of unidimensionality are
sometimes considered a flaw of the test and can justify
the removal of items (Bond & Fox, 2001). A second
reason for considering UFMs is that the sets of UFMs
and SNMs are mutually exclusive; there are no SNMs
that are equivalent to a UFM or vice versa.
Importantly, however, it is plausible to conjecture that

the implications of the UFM that we use to distin-
guish them from SNMs also hold for other specific
types of common factor models, such as correlated
factor models and hierarchical factor models (van
Bork, Grasman, & Waldorp, 2018); however, a proof
of this conjecture falls beyond the scope of this article.
If other groups of common factor models can be
identified, for which these same implications hold,
then these models can be distinguished from SNMs in
a similar way as we show here for UFMs. Thus, estab-
lishing the procedure for the UFM provides an
important starting point from which future generaliza-
tions to other models can be derived. Before we exam-
ine divergent implications that follow from these
models, we briefly introduce them to the reader.

Unidimensional factor models and sparse
network models

For factor models, just like for MIRT models, the
observed variables are considered fallible indicators of
a latent variable, which typically represents the con-
struct of interest. Let ¥ denote the covariance matrix
of y, in which y denotes a vector of p Gaussian
observed variables that are mean-centered. Let #
denote a Gaussian latent variable with unit variance.
Let A denote the vector of factor loadings and ® the
residual covariance matrix. In a UFM all observed
variables in y are a linear function of a single latent
variable (1), and independent Gaussian residuals, &:

yi = Al + &;. (1)

Note that because we assume normality, the UFM
is a linear factor model. We let 1 have unit variance.
The UFM implies that the covariance matrix of the
indicators admits the following representation:

> =i+ 0. )

Here, we assume that @ is diagonal, that is, that
the observed variables do not covary over and above
what is explained by the latent factor. In other words,
the principle of local independence holds (Bollen,
1989). Equation (2) implies that the covariance among
observed variables is a function of their factor load-
ings. More precisely, because ® is a diagonal matrix,
the covariance between two variables y; and y; equals
4ilj, in which /4; and /; are elements of the vector 4
and denote the factor loadings of y; and y; on the fac-
tor 7. Figure 2b depicts a factor model with
three indicators.

For Gaussian variables, as we consider here, the
Ising network model discussed above translates into a
partial correlation network. In a partial correlation
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Figure 2. (a) Direct relations underlying the correlations between y;, y; and y,. The causal structure on the left implies the condi-
tional independence structure on the right. (b) Single common cause underlying the correlations between y;,y; and y,. Two differ-
ent models that explain the correlational structure of three observed variables.

network for Gaussian variables, edges have a particu-
larly simple representation, namely as the partial cor-
relation between two variables that results when all
other variables in the network are partialled out.
These partial correlations are computed by standardiz-
ing elements of the precision matrix, P = X' :
Piiv\{i.j} N
where V ={1,2,...,p} denotes an index set for the
variables in y and V' \ {i,j} denotes this set minus i
and j. This equation implies that off-diagonal elements
of P that equal zero correspond to partial correlations
of zero.

Whereas in the factor modeling approach the
covariance matrix of y is a function of factor loadings
and the residual covariance matrix, in the network
approach the covariance matrix is defined by the fol-
lowing equation:

(3)

T =AI-Q)7'A, (4)

where Q is a weight matrix with zeros on the diagonal
and off-diagonal elements w;; that reflect the edge
weights between nodes, and A is a diagonal matrix in
which the elements are functions of the diagonal ele-
ments of the precision matrix, J; =p;* (Epskamp,
Rhemtulla, et al., 2017).

When Q is obtained by standardizing the inverse
sample covariance matrix and multiplying the off-
diagonal elements by —1, one obtains a saturated

model, which perfectly reproduces the sample partial
correlation matrix (Epskamp, Rhemtulla, et al., 2017).
In this case, all nodes will be connected to all other
nodes (with the rare exception of sample partial corre-
lations that equal exactly zero). In practice, modelers
gain degrees of freedom by assuming that the true
network is sparse, that is, that relatively few direct
interactions are necessary to fully explain the covari-
ance between observed variables (Costantini et al.,
2015; Deserno, Borsboom, Begeer, & Geurts, 2017;
Epskamp, Rhemtulla, et al., 2017; Epskamp, Waldorp,
Mottus, & Borsboom, 2018; Isvoranu et al., 2017).
Sparsity is modeled by constraining some elements of
Q to equal zero; these zeroes correspond to pairs of
variables that are conditionally independent given all
other variables in the network. In the following we
refer to this model as a sparse network model (SNM).
As such, the SNM, just like the Ising model, is a pair-
wise Markov Random Field (MRF; Koller &
Friedman, 2009). More specifically, the SNM is a
multivariate normal pairwise MRF, which is known as
a Gaussian Graphical Model (GGM; Lauritzen, 1996).
A pairwise MRF is an undirected network in which
nodes represent observed random variables and any
edge between two nodes represents the conditional
dependence between these nodes given all other nodes
in the network. Correspondingly, any missing edge
represents a conditional independence between these
nodes given all other nodes and as such a MRF
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encodes the conditional independence structure of a
set of nodes.

Divergent implications

When considering two specific models, such as the
UFM and SNM, rather than two general model classes
(e.g. all factor models versus all network models), we
can derive targeted comparisons of particular phe-
nomena in the data for which the relevant models
have divergent statistical predictions. We explicate one
such implication in this section.

Partial correlations and zero-order correlations

For unidimensional factor models, each partial correl-
ation lies between zero and the zero-order correlation
(van Bork et al., 2018). This implication does not rely
on properties of the normal distribution and thus
extends to other unidimensional factor models than
the linear factor model. This result includes three
more specific implications of UFMs: (1) the UFM
implies that partial correlations cannot equal zero, (2)
the UFM implies that partial correlations cannot
switch sign compared to the zero-order correlation
and (3) the UFM implies that partial correlations can-
not be greater in absolute value than the zero-order
correlation. In the following we will explain these
three implications. We consider standardized variables
so that X simplifies to a correlation matrix. The factor
loadings are interpretable as standardized regression
coefficients. We assume that the diagonal matrix © is
positive definite, so that factor loadings are never
exactly —1 or 1. We also assume that factor loadings
are never 0. Note that the implications that we dem-
onstrate extend to unstandardized variables because
they rely on Equation (2), which also holds for an
unstandardized ¥ and 4 and the status of the parame-
ters in @ is irrelevant.

Partial correlations of zero
Let y;, y; and y. be elements of y, the vector of
observed variables. The partial correlation between y;
and y; given y. is defined as follows (Chen & Pearl,
2014):
by — Pi—PizPjz )
(1=p%)(1=p3.)

Figure 2 shows two possible causal mechanisms
that result in nonzero correlations between y;, y; and
¥z In Figure 2a, two direct relations (@ and ;)
cause all three variables to be correlated. By plugging
in the correlations that correspond to Figure 2a

(pi; = > Pj: = )z and pij = ;iwj;) in Equation (5),
the numerator of Equation (5) becomes zero. If a
common factor underlies the covariance of y;, y; and
. (depicted in Figure 2b), however, p;;, cannot equal
zero. It follows from Equation (2) that, if y;, y; and y.
are influenced by a single common factor like in
Figure 2b, their correlations can be expressed as fol-
lows:

pl] - ;“i)“j
Piz = )°i)“Z (6)
pjz = ;"]}"Z

The partial correlation p;;, equals zero when p; =
pizPj;- Using expression 6, in the case of a UFM, this
equivalence holds if and only if 4;4; = (4i4:)(44;),
which only holds if either 4; or 4; equals zero, or
when A, =1 or 4, = —1. Put differently, partial corre-
lations of zero in a UFM coincide with standardized
factor loadings of zero, one or minus one. A standar-
dized factor loading of zero implies that the corre-
sponding variable does not load on the common
factor and thus none of its correlations with other
variables can be explained by the common factor. A
variable with a standardized factor loading of 1 or —1
is perfectly correlated with the latent factor, which, as
a result, is no longer latent. In this case, the common
factor is observed, and conditioning on the variable
with factor loading 1 or —1 would render all other
variables statistically independent, due to the assump-
tion of local independence (Bollen, 1989).

Holland and Rosenbaum (1986) proved that the
simple example above with three observed variables
applies to all UFMs; that is, UFMs imply that partial
correlations between the observed variables can never
be exactly zero. However, do note that, given a unidi-
mensional factor model, as the set of observed varia-
bles increases (i.e. as y contains more elements),
partial correlations may become very small, as the set
of observed variables partialled out yields an increas-
ingly better approximation to the latent factor (see
also, Guttman, 1940, 1953). This suggests that, unless
one has access to a very large sample so that one can
distinguish between zero partial correlations and very
small partial correlations, this divergent implication
may be most efficiently utilized for relatively small
sets of variables.

Sign switch in partial correlations

Holland and Rosenbaum (1986) also showed that
UFMs imply that the partial correlation has to have
the same sign as the zero-order correlation. Consider
the earlier example with three variables y;, y; and y,



again. The denominator in Equation (5) is positive.
This means that if pj; is positive, the partial correl-
ation p;;, only switches sign (i.e. is negative) when
the numerator Pii—PizPj; is negative. Suppose now
that y;, y; and y, are indicators in a UFM. If pj; is
positive, then 4;4; is positive. This means that the
numerator in Equation (5) cannot be negative since
we established that for a UFM the numerator equals
2idi—(2i22)(2;2,) which equals 4;4;—A;4;A2. For this to
be negative 4’ has to be larger than one. In contrast, a
network model does not imply that the partial correl-
ation should have the same sign as the zero-order cor-
relation. Collider structures in which two variables
have a common effect, are a well known example in
which the correlation between the causes can be
(slightly) positive but the partial correlation between
the causes conditioning on the common effect is nega-
tive (Lauritzen, 1996; Pearl, 2000). For example, when
yi and y; have a weak positive correlation but both
have a strong positive influence on y,, then the partial
correlation between y; and y; given y, will be negative.
This result suggests that the observation of partial cor-
relations that have a different sign than the zero-order
correlation indicate evidence in favor of an SNM over
a UFM.

Increase in absolute partial correlations

The third implication of a UFM that diverges from an
SNM, is that partial correlations between two indica-
tors in a UFM cannot be stronger than the corre-
sponding zero-order correlation between these
indicators. That is, the absolute partial correlation
between two variables can never be larger than the
corresponding absolute zero-order correlation.

To get an intuitive sense for why this implication
follows, consider again Equation (5). Suppose that p;
is positive, then p;;, is stronger than pj; only if p;.p;,
is negative. For p;,p;, to be negative, either p;, or p;,
has to be negative, but not both. That is, exactly one
of the three correlations must be negative. Suppose
that p;; is negative, then pij.. 1s stronger than p; only
if pi.pj, is positive. For p;.p;, to be positive both p;.
and p;. have to be negative or both p;; and p;, have to
be positive. As a result, for any three variables there
are two correlational structures that result in partial
correlations that are stronger than the corresponding
zero-order correlations: (I) one negative correlation
and two positive correlations or (II) three negative
correlations.

Neither of these two correlational structures, how-
ever, can be explained by a UFM, as becomes clear
from examining expression (6). Given any three
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variables, to arrive at a correlational structure with
either one or three negative correlations at least one
factor loading ought to be negative. However, both
one and two negative factor loadings result in two
negative correlations, while three negative factor load-
ings results in no negative correlations. In sum, there
is no way to choose factor loadings such that the
model results in a correlation structure that complies
with partial correlations that are stronger than their
corresponding zero-order correlations.

The above example extends to more than three var-
iables. Let ;1 (; o and J;y(; » denote the best linear
approximation of respectively y; and y; in terms of
the variables that are partialled out, V'\ {i,j} (i.e.
the variation in y; that is explained by V' \ {i,j}). The
residual of y; is yi—J,n; ;y and is denoted as y; . (; o
(because it represents the part of y; that is not pre-
dicted by other variables in y). The partial correlation
between y; and y; (deA:noted pij-V\{iA, j}) is the zero-order
correlation between Viv\(i.j} and Viv\ii.j} (i.e. between
the residuals® of y; and ¥ Cramér, 1946).

In any UFM, each observed variable (y;) is a func-
tion of the factor () and some random error (g;). The
principle of local independence implies that the
observed variables only share variance due to 5. Thus,
by subtracting a linear combination of the other
observed variables from both y; and yj; variance
related to # is pulled out, while none of the random
error (g or g) is pulled out as this is not shared with
the other observed variables. Because # is precisely
what y; and y; share, the correlation between y,,(; o
and y;y; 5y (i.e. the partial correlation between y; and
y;) must be smaller in absolute size than the zero-
order correlation. Note that the partial correlation
does not become zero because the observed variables
that are partialled out also contain random error.
However, if any of the partialled-out variables con-
tained no measurement error, all of # would be sub-
tracted from y; and y; resulting in a partial
correlation of zero. This is in correspondence with the
previous section, in which we showed that partial cor-
relations can only equal zero if at least one standar-
dized factor loading equals one (i.e. there is no
measurement error). For a complete proof of the gen-
eral case with p variables see (van Bork et al., 2018).

The partial correlation likelihood test

In the previous section, we discussed three diverging
predictions for empirical data: (1) UFMs imply that

“Note here that the term ‘residual’ refers to Yingijy rather than to & (ie.
f/,-,,] in a UFM).
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the population partial correlations cannot equal zero
(2) UFMs imply that population partial correlations
cannot have a different sign than the corresponding
zero-order correlations and (3) UFMs imply that the
population partial correlations cannot be stronger
than the corresponding zero-order correlations. None
of these three implications hold for SNMs.
Considering these alternative hypotheses of SNMs ver-
sus UFMs, we can assess whether the proportion of
partial correlations that have a different sign than the
corresponding zero-order correlations in the data is
more consistent with a UFM or with an SNM. We
can also assess whether the proportion of partial cor-
relations that are stronger than the corresponding
zero-order correlations in the data is more consistent
with a UFM or with an SNM. We cannot assess the
number of partial correlations in the data that are
exactly zero, since sample partial correlations will
rarely be exactly zero even when the population par-
tial correlation is zero. We could circumvent this
problem by assessing the proportion of partial correla-
tions that are significantly different from zero, but
since the UFM implies very small partial correlations
(especially with more indicators or stronger factor
loadings) it is difficult to determine when the power
is sufficient to detect partial correlations that are zero.
We therefore use (2) and (3) to construct a likelihood
test that compares UFMs with SNMs.

The proportion of partial correlations that are
inconsistent with a UFM (either because they have a
different sign than the zero-order correlation, or
because they are greater in absolute value than the
zero-order correlation) can be interpreted as a test
statistic, and the value of this test statistic can be com-
pared to the sampling distribution that would arise (a)
under the hypothesis that the best-fitting UFM were
true, and (b) under the hypothesis that the best-fitting
SNM were true. The relevant sampling distributions,
while analytically intractable, are not difficult to simu-
late. Appendix A provides code to get sampling distri-
butions for the proportion of partial correlations that
either have a different sign than the zero-order correl-
ation or are greater in absolute value than the zero-
order correlation, under the best-fitting UFM and
SNM. The resulting test, which we will refer to as the
Partial Correlation Likelihood (PCL) test, works
as follows:

1. The sample covariance matrix is used to obtain a
sample partial correlation matrix. The proportion
of partial correlations that either have the oppos-
ite sign as the zero-order correlation or are

greater in absolute value than the zero-order cor-
relation, is calculated.

2. Both a UFM and an SNM are estimated from the
sample covariance matrix using maximum likeli-
hood estimation, resulting in ML(UFM)
and ML(SNM).

3. The model implied covariance matrices of both
models are obtained: EUFM and EZSNM.

4. Sypy and Zguy are each used to simulate 1000
datasets of size N.

5. For each dataset the proportion of partial correla-
tions that either have the opposite sign as the
zero-order correlation or are greater in absolute
value than the zero-order correlation, is calcu-
lated. These proportions are used to create a
probability mass function for each model.

6. The observed proportion in the sample is com-
pared to the probability mass functions of
ML(UFM) and ML(SNM). The results are com-
bined in a decision procedure. For example, one
can decide that the model that assigns the highest
probability mass to the observed proportion ‘wins’
the test. Alternatively, one could calculate a likeli-
hood ratio and make a decision when the likeli-
hood ratio is larger than some specified value.

Figure 3 represents how the test works and Figure
4 shows an example of test results on data that were
simulated under a UFM with 10 variables. The graph
presents information about how much more probable
the observed proportion is under the one model than
under the other model.

The likelihood of the SNM is the probability of
the observed proportion of partial correlations that
switched signs under the best-fitting SNM (i.e.
P(x|ML(SNM)), in which x denotes the observed
proportion in the data). Similarly, P(x ML(UFM)) is
the likelihood of the UFM. These likelihoods can be
used to calculate a ratio of likelihoods which yields a
similar interpretation to other evidence ratios that
are based on a ratio of likelihoods in combination
with a function of the number of free parameters to
account for model complexity. For example, the
ratio of Akaike weights can be rewritten as
L exp (F,—F;) where L; is the maximum likelihood
or model M;, and F; the number of free parameters
(Wagenmakers & Farrell, 2004). For the best-fitting
SNM and best-fitting UFM, the number of free
parameters is zero (Fypy = Fsyy = 0) and thus the
ratio of Akaike weights equals the ratio of likeli-
hoods. Other evidence ratios that compare the likeli-
hoods of two models while accounting also for
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Figure 3. A visual representation of how the test works. The numbers 1:6 correspond with the steps explained in the text. The
sample covariance matrix results in two estimated models that both correspond to a probability mass function. The model with
the highest probability mass for the observed proportion wins the test. See text for detail.

model complexity are the Bayes factor and the ratio
of BIC weights. The ratio of BIC weights equals
é—;n%(FJ’F " in which n is the number of observations
(Wagenmakers & Farrell, 2004). With equal numbers
of free parameters the ratio of BIC weights reduces

to % the ratio of likelihoods. Similarly, the Bayes
7

factor reduces to a likelihood ratio when the models
that are compared have no free parameters (Kass &
Raftery, 1995). For more information on likelihoods
as measures of statistical evidence in the likelihood-
ist framework we refer the reader to Edwards (1972)
and Royall (1997).
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Figure 4. An example of possible output of the test. The black
vertical line represents the observed proportion of partial cor-
relations that switched sign or increased in absolute value. In
this example the observed proportion in the data has a higher
probability mass under the UFM than under the SNM.

Simulation study

We conducted a Monte Carlo study in R (R Core
Team, 2018) to examine the performance of the PCL
test when the true model that underlies the data
(SNM or UFM) is known. Test performance is eval-
uated using the proportion of replications in which
the test chooses the true underlying model.

Simulation design

We generated sample covariance matrices for a set of
10 variables according to either a UFM or an SNM
with edge density .5 (i.e. 50% of the possible edges
were set to zero). To explore the influence of power
on test performance, we generated data with sample
sizes ranging from 100 to 2000, in steps of 100. For
each combination of model and sample size, we gen-
erated 1000 sample covariance matrices on which the
test was performed. As the number of variables in the
model influences the strength of partial correlations in
a UFM, we repeated this simulation for 5 and 15 vari-
ables. To consider a possible influence of the network
density (i.e. the proportion of non-zero edges in a
network), we also repeated the simulation for edge
densities of .2 and .8 (with 10 variables only). Finally,
we repeated the simulation for all conditions with
cross-validation. In these simulations, one half of the
data is used to estimate the UFM, SNM, and

probability mass functions from these models. The
other half of the data is used to obtain the observed
proportion of partial correlations that either switched
in sign or are greater in absolute value than the
The observed proportion
obtained in step two is then compared to the prob-
ability mass functions that are obtained in step one.

zero-order correlation.

Generating data from SNMs and UFMs

An SNM was generated by constructing a precision
matrix, P = X!, for which each element is specified
to be either zero or sampled from a uniform distri-
bution over the interval [—1, 1]. First, the diagonal
was set to zero, and then the eigenvalues were com-
puted. To make the matrix positive definite, the diag-
onal was set to the smallest eigenvalue plus an
arbitrary small number (0.2). After this, the matrix
was forced to be using  the
forceSymmetric() function of the R-package ‘Matrix’
(Bates & Maechler, 2014). The resulting precision
matrix P is related to the network weight matrix Q
(i.e. the partial correlation matrix) as follows:

P=A"'1-QA"!
Q =I-APA

symmetric

(7)

where A is a diagonal matrix with §; = p];%. To obtain
the weight matrix Q, P is pre- and post-multiplied by
A, yielding a standardized precision matrix, which is
subtracted from an identity matrix, to change the sign
of all off-diagonal elements. Note that all elements
that equal zero in the precision matrix will also equal
zero in the weight matrix, that is, they correspond to
missing edges in the network. The correlation matrix
that corresponds to the obtained weight matrix was
used to simulate data.

To construct covariance matrices consistent with a
factor model, we sampled factor loadings from a uni-
form distribution over the interval [0.1, 0.9] and
[—0.9,—0.1] to exclude factor loadings equal to zero,
one or minus one. These factor loadings were com-
bined in a vector 4 which we used to obtain a correl-
ation matrix in the following way:

=11 +0, (8)

in which O is a diagonal matrix with 0; = 1—/1?.

We used the function mvrnorm() of the R-package
‘MASS’ (Venables & Ripley, 2002) to simulate data
from the constructed covariance matrices.
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Table 1. Percentage of cases in which the PCL test made a correct (c) or incorrect (i) decision on whether a UFM or SNM under-
lies the data. The results in this table stem from simulations in which the test picked the model with the highest likelihood for
the observed proportion significant partial correlations in the data. The percentages correct and incorrect decisions do not always
add up to 100. The missing percentage is the percentage of cases in which the test did not decide because the SNM and UFM

had the same likelihood.

N

Density # Variables Decision 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
- 5 C 814 774 766 748 76.1 743 76.1 777 757 770 77.0 788 797 770 79.0 79.7 789 805 786 79.1
- 5 i 183 224 233 252 237 256 237 218 237 223 226 206 197 216 199 188 193 181 178 183
- 10 C 84.1 822 833 814 844 813 832 863 858 863 858 864 869 870 865 879 894 872 900 879
- 10 i 158 17.7 167 184 152 186 166 135 142 137 139 135 129 129 135 120 105 127 97 120
- 15 C 92.7 88.7 893 874 89.1 88.6 89.7 91,5 90.7 93.0 90.8 927 91.1 903 936 928 933 944 950 94.2
- 15 i 70 112 105 124 105 109 101 84 90 69 91 72 85 97 63 70 64 56 50 58
0.5 5 C 329 356 434 458 46.0 51.2 516 543 548 536 568 59.1 575 573 554 586 620 621 568 60.6
0.5 5 i 66.2 63.6 56.0 533 53.4 482 47.8 447 442 458 427 405 424 422 442 406 374 370 428 389
0.5 10 C 426 60.7 753 79.5 825 848 87.7 873 89.6 91.2 895 915 926 919 921 934 928 936 935 943
0.5 10 i 570 382 246 198 174 149 117 125 98 85 103 82 72 80 78 65 66 62 62 56
0.5 15 C 337 622 787 879 912 935 942 950 960 968 96.6 97.1 973 980 981 978 973 979 980 979
0.5 15 i 657 37.1 204 114 83 60 45 41 30 27 28 22 18 14 11 13 16 13 11 14
0.2 10 C 40.0 46.1 519 553 527 56.0 574 553 588 572 600 622 595 605 61.7 636 61.6 612 651 616
0.2 10 i 59.0 524 46.7 433 46.6 427 414 436 398 420 386 364 395 384 377 354 376 374 343 374
0.8 10 C 51.1 754 86.1 90.2 927 93.7 952 959 958 957 96.2 955 976 959 973 977 976 972 97.1 976
0.8 10 i 484 245 134 91 71 58 47 38 36 39 37 40 20 35 24 17 22 24 24 24

Estimating models from generated data

The test was performed in R (R Core Team, 2018). The
R-package ‘lavaan’ (Rosseel, 2012) was used to estimate
a UFM from the sample covariance matrix and to
retrieve a model implied covariance matrix for this esti-
mated factor model. A network model was estimated
from the sample covariance matrix with the function
EBICglasso() from the R-package ‘qgraph’ (Epskamp,
Cramer, Waldorp, Schmittmann, & Borsboom, 2012).
This function estimates P, the precision matrix, by
introducing a lasso penalty on the sum of the elements
in the lower triangle of P such that many of the ele-
ments in P are set to exactly zero (Friedman, Hastie, &
Tibshirani, 2008). A regularization parameter deter-
mines the weight of the penalty in obtaining P, such
that higher values of the regularization parameter result
in more elements in P being put to zero than lower
values of the regularization parameter. This penaliza-
tion parameter is determined by minimizing the
Extended Bayesian Information Criterion (EBIC; Foygel
& Drton, 2010). Note that because P will have elements
that are exactly zero, Q will have this as well (see
Equation 7), and thus the estimated network will be a
sparse network. Note that the estimation procedures
described in this paragraph refer to step (2) of the test,
and that the likelihoods that are used in this step to
obtain the best-fitting UFM and SPM are not the likeli-
hoods on which the SPM and UFM are being com-
pared in step (5) of the test.

Results simulation study

Table 1 presents the results of the simulation study
for the PCL test for 5, 10 and 15 observed variables.

The most important results are also included in the
graph in Figure 5. The numbers in Table 1 represent
the correct (c) and incorrect (i) decision rates in per-
centages of cases for both cases in which the true
model is a UFM and cases in which the true model is
an SNM, as well as for different numbers of variables
and densities. The green line with crosses in Figure 5
corresponds to the correct decision rate. The blue
(circles), orange (solid), and yellow (dashed) lines pre-
sent the mean proportions of partial correlations that
have the opposite sign as the zero-order correlation or
are stronger than the zero-order correlation, that are
present in the sample data and implied by the two
estimated models (yellow (dashed) = implied by the
SNM, orange (solid) = implied by the UFM). In cases
where an SNM is the true model, the yellow (dashed)
line should trace the blue (circles) line closer, and in
cases where a UFM is the true model, the orange
(solid) line should trace the blue (circles) line closer.

Number of observations

The performance of the test generally improves as the
number of observations increases. When the true
model is an SNM, the improvement in performance
for increasing numbers of observations is particularly
strong for small numbers of observations. For
example, with 10 observed variables, the test correctly
picks the SNM as the more likely model in only 43%
of the cases with 200 observations (see Table 1 and
Figure 5¢) while this is already 83% with 500 observa-
tions and 94% with 2000 observations. When the true
model is a UFM, the performance improves only very
slightly with increasing numbers of observations. For
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Figure 5. Performance of the test for 5, 10, and 15 variables with the number of observations on the horizontal axis. The green
line with crosses represents the proportion of replications in which the test picked the correct model (for 5a, 5¢ and 5e this is an
SNM and for 5b, 5d and 5f this is a UFM). The blue line represents the mean proportion of partial correlations that have a differ-
ent sign than the zero-order correlation or are greater in absolute value than the zero-order correlation in data sets that are gener-
ated from the true model. The dashed yellow line represents this mean proportion for the estimated SNM and the solid orange
line represents this mean proportion for the estimated UFM.
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Figure 6. Performance of the test for 10 variables when (a) an SNM with density 0.2 or (b) an SNM with density 0.8 underlies the
data. The green line with crosses represents the proportion of simulated cases in which the test picks the right model (for both
(a) and (b) this is an SNM). The blue line represents the mean proportion of partial correlations that have a different sign than the
zero-order correlation or are greater in absolute value than the zero-order correlation in data sets that are generated from the
true model. The dashed yellow line represents this mean proportion for the estimated SNM and the solid orange line represents

this mean proportion for the estimated UFM.

example, with 10 observed variables, the test correctly
picks the UFM as the more likely model in 80% to
90% of the cases for all numbers of observations that
are considered (see Table 1 and Figure 5d).

Number of variables

As the number of variables increases, the performance
of the test improves both when an SNM underlies the
data and when a UFM underlies the data. The num-
ber of variables has a stronger impact on the perform-
ance of the test when an SNM underlies the data then
when a UFM underlies the data. For example, with 5
variables, when an SNM underlies the data, the test
only picks the right model in 61% of the cases with
2000 observations. It is therefore not recommended to
use this test for such small numbers of variables.

Network density

In the results presented so far, data were simulated
from SNMs with a density of 0.5 (i.e. the probability
of an edge in the network being present was 0.5).
Figure 6 presents simulation results for 10 variables
when the data-generating model is an SNM with

density 0.2 (Figure 6a) or an SNM with density 0.8
(Figure 6b). The results indicate that when the true
model is an SNM, a higher density results in a better
test performance.

Cross-validation results

The results of the simulations with the cross-valid-
ation scheme suggest that the performance of the PCL
test holds up under cross-validation (see Figure 7). In
fact, for the condition with 5 variables and in which
an SNM underlies the data, the results of the test
were slightly better in the simulations with cross-val-
idation than without cross-validation (see Figures 5a
and 7a).

Reasoning with equivalence and testability: a
practical example

The above discussion of equivalence and testability
suggests that, in practical research situations, model
equivalences can sharpen and inform the way
researchers approach their data. For instance, the
equivalence proofs can be used to construct alternative
hypotheses about the data-generating mechanism, by



190 @ R. VAN BORK ET AL.

data generated by SNM

a

data generated by UFM

5 variables 5 variables

S S

~ -~

© | @ |

° ° Wm
© © |

o o

< .‘C"’”ﬂw g

S \_\’\ (o)

N N

o o

S S

o o

200 600 1000 1400 1800

number of observations

C

10 variables

200

d

600 1000 1400 1800

number of observations

10 variables

o _ Qe _
hand ~
o | Q_W
o o
© | © |
o o
. <
e \__\__h N
N N
o o
o o
IS} IS}

200 600 1000 1400 1800

number of observations

200 600 1000 1400 1800

number of observations

15 variables 15 variables
QS _ o _
© © W
o 7] o 7]
© © |
o o
< <
o o
= ° M
o o
o | o |
oIIIIIIIIIIIIIIIIIIII OIIIIIIIIIIIIIIIIIIII
200 600 1000 1400 1800 200 600 1000 1400 1800
number of observations number of observations
—>¢ % correct mean SNM —— mean UFM —@— mean sample

Figure 7. Performance of the test with cross-validation for conditions with 5, 10, and 15 variables with the number of observa-
tions on the horizontal axis. The green line with crosses represents the proportion of replications in which the test picked the cor-
rect model (for 5a, 5¢c and 5e this is an SNM and for 5b, 5d and 5f this is a UFM). The blue line represents the mean proportion
of partial correlations that have a different sign than the zero-order correlation or are greater in absolute value than the zero-order
correlation in data sets that are generated from the true model. The dashed yellow line represents this mean proportion for the
estimated SNM and the solid orange line represents this mean proportion for the estimated UFM.
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Table 2. Polychoric correlation matrix of the 9 procrastination items. This correlation matrix is obtained with cor_auto() of the R-

package ggraph (Epskamp et al. 2012).

Vi V2 V3 V4 V5 V6 V7 V8 V9
Vi 1.000 0.187 0.476 0.517 0.393 0.399 0.520 0.529 0.272
V2 0.187 1.000 —0.097 0.304 0.047 0.439 0.264 0.309 0.426
V3 0.476 —0.097 1.000 0.436 0.557 0.260 0.394 0.395 0.086
V4 0.517 0.304 0.436 1.000 0.476 0.351 0.576 0.520 0.320
V5 0.393 0.047 0.557 0.476 1.000 0.422 0.508 0.502 0.178
V6 0.399 0.439 0.260 0.351 0.422 1.000 0.492 0.531 0.449
V7 0.520 0.264 0.394 0.576 0.508 0.492 1.000 0.740 0.291
V8 0.529 0.309 0.395 0.520 0.502 0.531 0.740 1.000 0.368
V9 0.272 0.426 0.086 0.320 0.178 0.449 0.291 0.368 1.000

considering which latent variable model would be able
to mimic data from a network or vice versa (see
Epskamp, Kruis, & Marsman, 2017, for some exam-
ples). In addition, the divergent statistical predictions
identified in this article can be used to gain insight
into the relative likelihoods of particular models under
investigation. To illustrate this, we examine a dataset
containing items designed to assess procrastination.
We consider the alternative hypotheses that the item
responses arise from a UFM or from an SNM.

The dataset consists of 414 observations on items
of the Irrational Procrastination Scale (IPS; Steel,
2010), and is part of an ongoing data collection pro-
gram of the Allameh Tabataba’i University in Tehran.
The IPS is a self-report measure of procrastination
consisting of nine items that are scored on a 5-point
Likert scale. The items and the polychoric correlation
matrix of the data are included in Appendix B and
Table 2 respectively. The internal consistency of the
IPS is o = 0.91 in the validation sample (Steel, 2010),
and o = 0.81 in the sample we use for our analyses.
We used the polychoric correlation matrix of these 9
variables to estimate a UFM and SNM (see Table 2).
Steel (2010) found that a single factor was sufficient
to explain the data. These findings have been repli-
cated in other samples which resulted in the same
conclusion of a single dimension underlying the pro-
crastination items (Rozental et al., 2014; Svartdal,
2017). Rozental et al. (2014) actually found a second
factor for the reversed items but concluded that this is
an artifact reflecting that participants missed the
negation in these items.

The best-fitting UFM is represented in Figure 8a.
The equivalent network model is represented in
Figure 8b. To get this network we let 2 in Equation
(4) equal the covariance matrix that is implied by the
UFM (i.e. all covariances in X are a function of the
nine factor loadings). We then get Q from X by taking
the inverse of £ and multiplying all off-diagonal ele-
ments with —1, and then standardizing the resulting
matrix (i.e. using Equation (4)). The elements in Q

correspond to partial correlations that are implied by
the UFM. Note here that the number of parameters is
not equal to the number of non-zero edges: the net-
work is a complete graph but all edge weights are a
function of the nine factor loadings. The best-fitting
SNM is represented in Figure 9a. The covariance
matrix of the estimated SNM is positive definite, so
we can interpret the eigenvalue decomposition as a
representation of a common factor model. The covari-
ance matrix that is implied by the best-fitting SNM is
of full rank and thus the eigenvalue decomposition
results in as many factors as observed variables, i.e. all
nine positive eigenvalues can be seen to represent a
factor. This factor solution is represented in
Figure 9b.

The interesting comparison here is not between the
UFM and its equivalent network model (the models
in Figure 8a and b) or between the SNM and its
equivalent latent variable model (the models in Figure
9a and b), but rather between the best-fitting SNM
and best-fitting UFM, and these two classes of models
(UFMs and SNMs) diverge in their predictions for
empirical data, making them distinguishable.

We applied the PCL test to the data on the nine
procrastination items. This analysis can be replicated
with the polychoric correlation matrix of the procras-
tination data that is included in Table 2. Figure 10
shows the sampling distributions of the test statistic
under the best-fitting UFM and the best-fitting SNM
for the nine procrastination items. The vertical black
line represents the observed proportion of partial cor-
relations in the procrastination data that have a differ-
ent sign than their corresponding zero-order
correlation or are greater in absolute value than the
zero-order correlation.

As we can see from Figure 10, the best-fitting SNM
has a higher likelihood given the observed proportion
of partial correlations that switched sign or are greater
in absolute value than the zero-order correlation, than
the best-fitting UFM. The best-fitting SNM assigns a
probability of 0.246 to this observed proportion of
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Figure 8. (a) The UFM that was estimated from the item responses in the procrastination dataset. The estimated factor loadings
are standardized. (b) The network that is equivalent to the estimated UFM in Figure 8a. All weights are a function of the nine fac-
tor loadings, so that the weights conform to a rank one matrix. Note that the network is not an SNM; it is a complete graph.

partial correlations in the data. The best-fitting UFM
assigns a probability of only 0.020 to the observed
proportion in the data. So, the observed proportion of
partial correlations that have the opposite sign or are
greater in value than the zero-order correlation is
more probable under the estimated SNM than under
the estimated UFM. To investigate whether the lower
likelihood of the UFM is not merely the result of a
second factor that underlies the data on which the
reversed items load, we repeated the analysis with the
test comparing the best-fitting SNM to the best-fitting
correlated two-factor model. An exploratory factor
analysis on the data indicated that only the reversed
items loaded higher on the second factor than on the
first factor. We therefore estimated a factor model in
which the items that were not reversed loaded on one
factor and the reversed items loaded on a second

factor. As shown in Figure 11, the results were similar,
providing support for an SNM over a correlated two-
factor model.

The results of this comparison suggest that a focus
on the relation between the partial correlations and
zero-order correlations in the data provides evidence
for the estimated SNM over the estimated UFM.
Given the observed proportion of partial correlations
that have a different sign than the zero-order correl-
ation or are stronger than the zero-order correlation,
the SNM has a higher likelihood than the UFM.

Discussion

Psychology has a history of modeling theoretical con-
structs as latent factors that act as common determi-
nants for a set of observed variables (e.g. Caspi et al,
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Figure 9. (a) The SNM that was estimated from the item responses in the procrastination dataset. (b) The eigenvalue decompos-
ition of the correlation matrix implied by the SNM in Figure 9a. Q is a matrix of the eigenvectors and r is a vector of the eigenval-

ues. Estimated SNM and the equivalent common factor model.

2014; McCrae & Costa, 1987; Spearman, 1904). In the
past decade, however, multiple studies have shown
that networks offer reasonable alternative ways of
understanding such constructs (e.g. Cramer et al,
2012; McNally et al,, 2014; Van der Maas et al., 2006).
At this point in time, it is possible to model the

correlation structure in a dataset using either a factor
model (explaining the correlations by a common
cause) or a network model (explaining the correla-
tions by relatively few direct interactions). In the past
couple of years multiple authors have proved an
equivalence between latent variable models and
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Figure 10. The probability mass functions of the best-fitting
SNM and UFM for the proportion of partial correlations that
either have the opposite sign as their corresponding zero-
order correlations or are greater in absolute value than their
corresponding zero-order correlations. The black vertical line
represents the observed proportion in the data.

network models (Epskamp, Maris, et al., 2018; Kruis
& Maris, 2016; Marsman et al., 2015). We argued in
this article that the proven equivalence does not mean
that the models are just alternative representations of
the same model. If the models are interpreted as rep-
resentations of possible data-generating mechanisms,
network models and latent variable models have dif-
ferent substantive implications, so it is crucial to
develop methods that compare these models in terms
of their plausibility to have generated the data. While
it is impossible to distinguish statistically equivalent
models based on empirical data alone, we argued that
the network models and latent variable models that
are equivalent are typically not the models that are
relevant to compare as data-generating mechanisms,
and the network models that are relevant to compare
are not equivalent. We illustrated this by proposing a
test that compares the likelihoods of unidimensional
factor models and sparse network models.

Our argument throughout this article was twofold.
First, we showed how the models are equivalent only
in the broadest sense; any positive semidefinite matrix
can be represented as a network model and as a factor
model. We argued that although the general group of
latent variable models is equivalent to the general
group of network models, it is important to consider
what models exactly are equivalent because in many

0.25-
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0.05-
0.00-

0.0 0.1 0.2 0.3

proportion pcors
SNM Two—Factor Model

Figure 11. The probability mass functions of the best-fitting
SNM and best-fitting correlated two-factor model for the pro-
portion of partial correlations that either have the opposite
sign as their corresponding zero-order correlations or are
greater in absolute value than their corresponding zero-order
correlations. The black vertical line represents the observed
proportion in the data.

cases one of the equivalent models will not form a
plausible candidate for the data. The equivalence
between network models and latent variable models
relies on the fact that any positive semidefinite covari-
ance matrix results in an eigenvalue decomposition
with nonnegative eigenvalues, which can be trans-
formed into a latent variable model with as many
latent variables as positive eigenvalues (Epskamp,
Maris, et al., 2018; Kruis & Maris, 2016). Thus, any
network model will also imply a positive semidefinite
matrix that can be explained with as many latent vari-
ables as positive eigenvalues. The resulting factor
models, however, are in many cases not plausible as a
data-generating mechanism because they consist of as
many latent variables as observed variables in the data
and have uninterpretable constraints on the factor
loadings or discrimination parameters that result from
constraints in the network model (e.g. edges that are
constrained to zero). The other way around, the con-
straints that form a sensible hypothesis in the latent
variable framework (e.g. omitting latent variables)
translate to constraints that are difficult to interpret
substantively in the network framework (rank
constraints).

Second, we shifted the focus from the broad classes
of latent variable models and network models to more



specific subsets of models within these broader classes
that are theoretically interesting to compare. We
showed that SNMs and UFMs diverge in their predic-
tions for empirical data, and as such observations in
the data can lend support for the one model over the
other model. We intend this to be a first step towards
a comprehensive research program that could be
directed at the question of which sets of models
from the different frameworks are empirically
distinguishable.

In order to identify more subsets of models that
diverge in their empirical predictions it is important
to note that the group of SNMs and UFMs that are
considered in this article are mutually exclusive; there
are no UFMs that are statistically equivalent to a
SNM and vice versa. The group of SNMs is a subset
of the set of all possible network models, namely
those that have missing edges, and the set of unidi-
mensional factor models is a subset of the set of all
factor models. Our results are important because they
show that, although it might not be possible to distin-
guish a given network model from all possible factor
models, there are groups of models within the class of
factor models and network models that can be statis-
tically compared, and further research might identify
more such groups. However, it should be clearly kept
in mind that such comparisons only pit specific mod-
els against each other. It is always possible that some
other factor or network model has generated the data,
so the conclusion that one specific model explains cer-
tain features of the data better than another does not
license the conclusion that the model is correct. As is
generally the case in model comparisons, the best-fit-
ting model may still be entirely wrong.

Another route for future research may lie in
including additional statistical signals that may distin-
guish the UFM and SNM in the test procedure to ren-
der it more powerful. To this end, additional
statistical research regarding the different properties
of the models is necessary.

Moreover, we believe it is important to explore to
what kinds of factor models other than a UFM the
implications discussed in this article may extend. The
implications of UFMs in this test do not generalize to
all factor models, as cross-loadings as well as orthog-
onal factors make it possible to arrive at, for example,
partial correlations of zero. However, the implications
of UFMs discussed in this article likely do generalize
to some types of factor models other than unidimen-
sional ones. Possible candidates are higher-order fac-
tor models with one factor at the apex and thus also
the subset of correlated factor models that are
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equivalent to such higher-order factor models. Future
research may be directed to evaluate alternative scen-
arios, and investigate which properties of the data are
best suited to distinguish between networks and latent
variable models in these scenarios.
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Appendix A

library(qgraph)
library(lavaan)

MyData #this can be, for example, the procrastination data-
set, rows refer to observations, and columns to variables.
Note that the covariance matrix of the data is sufficient to
perform the test.

#estimate ufm:

ufm <-procr=V1+V24+V34+V44+V54+V6+V7+
V8+V9

cfa_procr <- cfa(ufm, MyData)

#estimate network:
EBIC <- EBICglasso(cor_auto(MyData), n=nrow
(MyData))diag(EBIC) <- 1 #model implied partial
correlation matrixn

<- 10000 #number of iterations
nobs <- nrow(MyData) #number of observations
nV <- ncol(MyData) #number of variables
cov_FA <- fitted(cfa_procr)$cov #implied
matrix UFM
cor_FA <- cov2cor(cov_FA)
cor NW <- pcor2cor(EBIC)cor_data <- cor(MyData)
pcor_data <- cor2pcor(cor_data)
U_data_cor <- cor_data[lower.tri(cor_data, diag = F)]
#unique elements in correlation matrix
U_data_pcor <- pcor_data[lower.tri(pcor_data, diag =
F)] #unique elements in partial correlation matrix

covariance

signswitch_data <- which(U_data_pcor * U_data_cor <
0) #number of correlations that have different sign than pcor
stronger_data <- which((U_FA_pcor~2) >(U_FA_cor "2))
together_data <- union(signswitch_data, stronger_data)
total_data <- length(together_data)

propData <- total_data/length(U_data_cor) #proportion of
correlations that have different sign than pcor

propFA <-
propNW <-
for(i in 1:n) {
DataNW <- data.frame(mvrnorm(n=nobs, mu =
rep(0,nV), Sigma = cor_NW, empirical =F))
DataFA <- data.frame(mvrnorm(n=nobs, mu =
rep(0,nV), Sigma = cor_FA, empirical =F))
corFA <- cor(DataFA)
pcorFA <- cor2pcor(corFA)
corNW <- cor(DataNW)
pcorNW <- cor2pcor(corNW)
U_FA_cor <- corFA[lower.tri(corFA, diag = F)]
U_FA_pcor <- pcorFA[lower.tri(pcorFA, diag = F)]
U_NW_cor <- corNW/[lower.tri(corNW, diag = F)]
U_NW_pcor <- pcorNW/[lower.tri(pcorNW, diag = F)]
signswitch_FA <- which(U_FA_pcor * U_FA_cor < 0)
signswitch NW <~ which(U_NW_pcor * U_NW_cor
<0)
stronger FA <- which((U_FA_pcor
"2))
stronger NW <-
>(U_NW_cor " 2))
together_FA <- union(signswitch_FA, stronger_FA)
together NW <- union(signswitch_NW, stronger NW)
total_ FA <- length(together_FA)
total NW <- length(together NW)
propFA[i] <- total FA/length(U_FA_cor)
propNWI[i] <- total NW/length(U_NW_cor)
}
propNW #proportions of partial correlations that have differ-
ent sign than cor or are stronger than cor, implied
by SNM
propFA #proportions of partial correlations that have differ-
ent sign than cor or are stronger than cor, implied
by UFM
propData #proportions of partial correlations that have dif-
ferent sign than cor or are stronger than cor, in data

rep(NA, n)
rep(NA, n)

" 2) >(U_FA_cor

which((U_NW_pcor - 2)

Appendix B

Irrational procrastination scale (IPS; Steel, 2010)

1. I put things off so long that my well-being or efficiency
unnecessarily suffers

2. If there is something I should do, I get to it before
attending to lesser tasks (R)

3. My life would be better if I did some activities or
tasks earlier

4. When I should be doing one thing, I will do another

5. At the end of the day, I know I could have spent the
time better

6. I spend my time wisely (R)

7. I delay tasks beyond what is reasonable

8. I procrastinate

9. I do everything when I believe it needs to be done (R)

Note: Items designated with an (R) are reverse scored.
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