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ABSTRACT

In this paper, we propose a Bayesian causal mediation approach to the analysis of experi-
mental data when both the outcome and the mediator are measured through structured
questionnaires based on Likert-scaled inquiries. Our estimation strategy builds upon the
error-in-variables literature and, specifically, it leverages Item Response Theory to explicitly
model the observed surrogate mediator and outcome measures. We employ their elicited
latent counterparts in a simple g-computation algorithm, where we exploit the fundamental
identifying assumptions of causal mediation analysis to impute all the relevant counterfac-
tuals and estimate the causal parameters of interest. We finally devise a sensitivity analysis
procedure to test the robustness of the proposed methods to the restrictive requirement of
mediator’s conditional ignorability. We demonstrate the functioning of our proposed meth-
odology through an empirical application using survey data from an online experiment on
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food purchasing intentions and the effect of different labeling regimes.

Introduction

Although causal inference (CI) techniques have garnered
increasing interest in recent social sciences literature,
researchers predominantly concentrate on identification
strategies and related estimation methods aimed at solely
quantifying the effect of a cause (Gelman & Imbens,
2013). Much less attention is given to a slightly different
and more challenging question: what is the mechanism
through which this total effect comes into being? In other
words, is the mere magnitude of the (average) treatment
effect the sole goal of CI, or does the interest lie in other
related estimands? In some cases, the answer to the
second question is yes. Indeed, some studies explore
more than just whether an intervention succeeded in
improving a target indicator. Rather, uncovering and
quantifying the so-called causal mechanisms can answer
to more interesting and relevant research questions
(Celli, 2022). The set of statistical techniques aimed at
investigating causal mechanisms go under the generic
name of causal mediation analysis (CMA). Imai et al.
(2010a, 2010b) provide a general scope for CMA by
defining a causal mechanism as the process where a

treatment influences an outcome through an intermedi-
ate variable called mediator. Therefore, CMA involves
estimating three fundamental quantities: (i) the direct
causal effect of the treatment on the outcome; (ii) the
indirect causal effect of the mediator on the outcome;
(iii) the sum of (i) and (ii) which goes under the name
of total causal effect.

CMA holds relevance across various disciplines
within the social sciences, offering valuable insights and
applications. For example, CMA can be very useful in
political science when conducting impact assessment
and policy evaluation. Rather than answering the ques-
tion of whether and by how much a policy is working,
CMA allows to investigate why this is the case (Keele
et al., 2015). This is achieved by identifying and dissect-
ing the indirect effects of one or more mediators on the
desired policy outcomes, all while accounting for the
direct effects as well. Empirical assessments provide a
versatile avenue for exploring mediators, adopting
diverse approaches. Researchers can either construct ad-
hoc models tailored to specific case studies or anchor
their investigations within established theoretical frame-
works. For instance, Huber et al. (2017) delved into the
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efficacy of alternative tools aimed at boosting employ-
ment, while Ma et al. (2020) leveraged the Expectancy
Value Theory to explore the role of “perceived value” in
enhancing the success of a policy. Similar approaches
find resonance in other disciplines as well, where
hypotheses concerning a priori defined mediators can be
tested from theories. In psychology, several notable
mediators emerge, such as “self-efficiency” in the Social
Cognitive Theory (e.g, Benight & Bandura, 2004),
“trust” and “jealousy” in the Attachment Theory (e.g.,
Toplu-Demirtas et al., 2022), and “intentions” in the
Theory of Planned Behavior (e.g. Sultan et al., 2020).
In marketing studies, researchers frequently explore
mediators like “usefulness” to reveal the mechanisms of
acceptance of new technologies within the Technology
Acceptance Model (Blut & Wang, 2020) or ‘consumer
attitudes metrics’ in liking marketing mix activities
and sales performances (Hanssens et al, 2014).
Management studies offer a fertile ground for mediator
identification as well. For example, “capabilities” can
mediate the relational performances of buyers/suppliers
within the Resource-Based and Relational Views (e. g.
Mesquita et al., 2008) and the degree of innovation or
corporate social responsibility can play important roles
in mediating the relationships between Total Quality
Management and firms’ performances (e.g. Abbas,
2020; Sadikoglu & Zehir, 2010). The applications of
CMA extend beyond these disciplines into various
other domains within the social sciences, including
sociology, education, and communication sciences,
where several other examples could be provided.

A prevalent characteristic found in the literature dis-
cussed above is the reliance on survey data, with latent
variables often assuming the role of mediators. These
latent variables essentially represent unobservable con-
structs that are assessed through multiple items, ideally
derived from or aligned with well-constructed and
rigorously validated scales (Boateng et al, 2018).
However, resource and time constraints as well as prag-
matic choices concerning the feasibility of surveys can
often lead to sub-optimal choices in the measurement
of latent variables. Moreover, even a latent variable
measured from widely accepted and validated scales is
not free from the presence of measurement errors. In
fact, the concepts of latent variables and measurement
error are very closely related as latency can be often
framed as an information gap between surrogate indir-
ect indicators and a corresponding unmeasurable trait.
In the context of CMA, Hoyle and Kenny (1999), le
Cessie et al., (2012), Vander Weele et al. (2012) and
Muthén and Asparouhov (2015) have discussed how
measurement errors in the moderating variable may

lead to severely biased causal effects in a variety of dif-
ferent analytical settings. Although some authors have
proposed post-hoc corrections to adjust for such incon-
sistencies, these can be impractical because they only
apply to specific modeling strategies (le Cessie et al.,
2012). Therefore, recent works have attempted to dir-
ectly tackle measurement errors in mediators by extend-
ing the standard CMA methods through supplementary
statistical models linking these latent components to the
corresponding indirect measurements. For example,
Albert et al. (2016) employ a generalized structural equa-
tion model (GSEM) assuming that the unobserved medi-
ator follows a normal distribution with unit variance and
conditional mean functionally related to a set of surrogate
covariates. Similarly, Sun et al. (2021) use a linear SEM to
inform several unobserved mediators through a large set
of highly correlated observable surrogates and incorporate
the resulting model into a Bayesian proportional hazard
regression. Last, Loh et al. (2020) apply a structural after
measurement (SAM—Rosseel & Loh, 2024) approach to a
SEM using continuous surrogates to identify a set of latent
mediators. The authors eventually resort to a modified g-
computation algorithm to calculate the casual effects of
interest in case of longitudinal data.

When working with survey data involving polyto-
mous items such as Likert-scaled question, however, the
characterization of individual latent traits is typically
different. Given the distinctive nature of ordinal
responses and because such inquiries are explicitly
designed to accurately inform specific characteristics,
the literature recognizes two main approaches to meas-
urement error. These are typically referred to as
Categorical Factor Analysis (CFA) and Item Factor
Analysis (IFA), where the second is a generic label for a
larger set of models known as Item-Response Theory
(IRT) Models (Van der Linden, 2018). The goal of both
these techniques is to come up with suitable statistical
machineries to identify and quantify latent characteris-
tics from sets of indirect discrete (either ordinal or
multinomial) information sources. Although several
authors have established equivalence relationships
between CFA and a number of IRT models (Glockner-
Rist & Hoijtink, 2003; Kamata & Bauer, 2008; Takane &
De Leeuw, 1987), the latter have remained relatively
underexplored outside the field of psychomtrics
(Thomas, 2019). However, given their fully probabilistic
nature, and considering the recent developments in effi-
cient Bayesian estimation techniques (Biirkner, 2019;
Furr, 2017; Luo & Jiao, 2018), it is now relatively easy to
fit IRT models within complex multilevel statistical struc-
tures to control for measurement error in either depend-
ent or independent variables. An early presentation of



this idea is given in Fox and Glas (2003), who proposed
to deal with errors in predictors using an IRT normal
ogive model (Lord, 1980). Fox (2005) extended their
work to accommodate polytomous response data, while
recent applications based on this approach include
Soregaroli et al. (2022) and Stranieri et al. (2021). This
solution can be readily extended to experimental settings
where the mediator (or the mediators) is (are) indirectly
measured through sets of Likert-valued inquiries. In
these cases, one can simply define one or more measure-
ment error models on top of the distribution functions
for the outcome and the latent mediator (or mediators)
so that the uncertainty in estimating the latter is auto-
matically accounted for when imputing the potential out-
comes of interest. This can be seen as a special case of
multilevel Bayesian mediation analysis (Bafumi et al.,
2005; Yuan & MacKinnon, 2009).

In this paper, we present how CMA can be
addressed in presence of latent meditators and out-
come variables when these are measured through pol-
ytomous ordinal items in a structured survey. In
doing so, we also contribute to the literature showing
how IRT can be used to address measurement errors
in Likert-scaled inquiries devised to approximate well-
defined individual latent characteristics. The core of
our work focusses on integrating such corrections
mechanisms within the non-parametric identification
strategy for CMA proposed by Imai et al. (2010a). In
particular, we show how Bayesian estimation can be
used to impute latent counterfactual mediator and
outcome values under sequential ignorability and
randomized treatment assignment. Building on our
methodological approach, we discuss a simple sensi-
tivity analysis designed to probe the consistency of
our estimates to the fundamental assumption of con-
ditional independence between the mediator and the
outcome. We finally illustrate the proposed methods
through an empirical example that shows how our
approach can be easily applied to many real-world
experimental data where the relevant variables have
been measured through sets of Likert-scaled questions.
To encourage users unfamiliar with either CMA or
Bayesian methods to pick up these techniques, and to
facilitate the practical implementation of the proposed
algorithm, we provide the full R codes, the corre-
sponding Stan programs and a complementary R
markdown document'

The reminder of this paper proceeds as follows:
section “Methodology” provides a comprehensive dis-
cussion of our methodological approach, section

'The replication package for this paper is available online on OSF.io at:
https://osf.io/8bz4j/?view_only=9a067a723dbd41b4bbc3fd6b922ddacc
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Figure 1. The causal mechanism considered throughout the
paper.

“Simulation study” presents a simulation study
addressing the estimation of the relevant parameters,
section “Sensitivity analysis” outlines our sensitivity
analysis test targeting the residual correlation between
the outcome and the mediator, section “Empirical
application” discusses an empirical application using
real data from a randomized experiment, while section
“Conclusions” provides some concluding remark and

discussion points for future research.

Methodology
Identification of the treatment effects

The motivating causal structure that we will refer to
throughout the document is the standard setup with
one treatment (D), one mediator (#™) and one outcome
of interest (0Y). Unlike the standard notation adopted in
most CMA studies, we will refer to the mediator and
the outcome using the Greek letter (0 because both
quantities are latent. We will also assume that the treat-
ment is randomly assigned, as standard practice in
experimental setups. Then, given pretreatment con-
founders X, where X indicates a P x 1 vector of
observed variables measured with no error, our analyt-
ical scheme can be depicted as in Figure 1, where the
absence of an arrow from X to D indicates that X does
not affect the treatment propensity because of random-
ization. Although casual mechanisms have been historic-
ally approached using SEMs (Baron & Kenny, 1986),
Imai et al. (2010a, 2010b) and Imai et al. (2011) argued
that this approach can have several important limitations
when it comes to its reliance on (generalized) linear
parametric models, untestable assumptions about the
error terms and misuses of the exogeneity assumption
(Celli, 2022).

Despite Heckman and Pinto’s (2015) discussion on
how some of these shortcomings can be addressed using
econometric methods, more recently an alternative non-
parametric way of defining causal effects in CMA has
increasingly gained popularity. This literature relies on
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identification strategies that, because of their agnosticism
with respect to explicit modeling assumptions, are in
fact more general than the structural constraints in
SEMs. These are formulated using the potential out-
comes (PO) framework (Rubin, 1974) and are readily
recognizable to anyone familiar with the standard CI lit-
erature (Imbens & Rubin, 2015). In brief, the key differ-
ence between the SEM and the PO approach to causal
mediation analysis lies in how identification is handled.
Whereas the former leverages explicit modeling of both
the mediator and the outcome through structural equa-
tions, the latter defines all the relevant counterfactuals
and formulates the necessary assumptions to inform the
corresponding causal estimands through sample infor-
mation. Only then can parametric/semi-parametric
restrictions be invoked to estimate these quantities from
the data.” Although in several circumstances these two
approaches tend to overlap and yield the same (or
roughly similar) estimators (see, for example, section
“Bayesian estimation”), all the methods discussed here-
after are developed within the PO paradigm.

The basic idea of CMA is that there exist two pairs
of POs (Imai et al, 2010a, 2010b). Let j € {1,...,N}
be the subscript indicating some individual in a study,
then GJM (d) denotes the potential value of the medi-
ator for j when the treatment is set to D;=d.
Similarly, ij(d, 9M) represents the PO for individual j
when D; = d and the mediator takes value HJM =M.

It follows that the measurable mediator and outcome

values can be indicated as GJM = HJM(D]-) and ij =

GJ.Y {Dj,HJJ.VI(Dj)}, respectively. Clearly, of both expres-
sions only one can be potentially informed through
observed data. Under no interference and no unob-
served alternative versions of the treatment (i.e.: the
so-called Stable Unit Treatment Value Assumption—
SUTVA), Imai et al. (2010a) use these quantities to
define several causal effects, the first one being the
Natural Indirect Effect (NIE). Assuming a binary
treatment, the latter can be defined as:

() = 0) |, 04D = 1)| - 6] |.0(D; = 0)]

where d € {0,1}. The NIE expresses the change in ij
had one changed the mediator value from the control
status, ij(Dj = 0), to the treatment status, ij(Dj =1),
while holding the treatment constant at ¢. The NIE can
be employed to construct the average causal mediation

2However, in some experimental settings, these further assumptions may
not be necessary.

effect (ACME), which represents the first target estimand
in CMA:

5(d) = E[5,(d)]

Other important quantities are the Natural Direct
Effect (NDE), which indicates the treatment effect
from setting the mediator to the potential value that
would occur under treatment &, and the Average
Natural Direct Effect (ANDE), i.e., the second esti-
mand of interest:

5(@) = 0} [py = 1,0(@)] - 0! [D; = 0,0 (a)]
(@) =E[g(a)]

Consistently with Vander Weele and Vansteelandt
(2009), Imai et al. (2010a, 2010b), Imai et al. (2011),
Park and Kaplan (2015) and Celli (2022), both the
ACME and the ANDE are non-parametrically identi-
fied under the following assumptions: (i) 0 <
Pr(D;=1|X; =x) <1 (ie, every individual has a
strictly positive probability to receive the treatment);
(ii) Pr [QJM(dﬂDj =d,X; = x} > 0 (i.e., conditional on

pretreatment covariates X; — where pretreatment
means common causes of the treatment, mediator,
and/or outcome that are measured before treatment
— the mediator is not a deterministic function of the
treatment); (i) {of(d’,ﬁM),OJM(d)}wﬂxj =x (ie,
the two PO are independent of the treatment condi-
tional on Xj); (iv) HJ-Y(d/, ﬁM)LG;\J(d)\Xj =x,Dj=d
(i.e., the mediator is ignorable—the potential outcome
is independent of the potential mediator value—condi-
tional on D; and X;). Whereas randomizing the treat-
ment ensures that assumptions (i) through (iii) are
met, condition (iv) is more restrictive and more diffi-
cult to attain (Heckman & Pinto, 2015). In short,
assumption (iv) makes sure that there are no treatment
effects on any variable (whether observable or unob-
servable) that would confound the mediator-outcome
relationship. In other words, the treatment effects are
identified if there are no unmeasured pretreatment var-
iables and no posttreatment confounders (i.e., common
causes of the mediator and outcome that are measured
after treatment). Since measuring the mediator and the
outcome often occurs later than the exposure to the
treatment, the identification of any mediation effect
often struggles in face of this restriction. However, as
discussed by Vander Weele and Vansteelandt (2009)
there are cases in which assumption (iv) could prove
more credible. For example, when the mediator is
measured shortly after the treatment is administered, it



is less likely that there might be post-treatment con-
founding variables. While in many situations this reads
as a strong requirement, it may be less problematic for
experimental settings where surrogate data for the
mediator are collected through surveys or question-
naires by the end of the experiment.

Given assumptions (i) through (iv), we can write
down an analytical expression for the conditional dis-
tribution of the POs (Imai et al., 2010b):

£(0) [0 (@) 1x; = x)
— J f (0]Y|0].M — 9™, D= d,X; = x> A, 3, 0

(1)
where f(-) defines a generic probability density or
mass function, while &,d’ € {0,1}. Equation (1) gen-
eralizes the results in Imai et al. (2010a), who provide
similar results in terms of conditional expectation
rather than probability distributions. Finally, while the
ACME and the ANDE can be simply obtained by
averaging (1) with the respect to the empirical distri-
bution of X; (i.e.: a simple average — Li et al,, 2023)
and plugging in the resulting values into the corre-
sponding formulas, we prefer to work with Equation
(1) directly as it provides for a better understanding
of algorithm 1 in section “Bayesian estimation”.

Measurement error model

As discussed in section “Measurement error model”, the
latent quantities denoted as 0™ and 0" are not directly
observable. Rather, we can only attempt to obtain indir-
ect information using surrogate measures, such as Likert-
valued statements and questions. Since quantifying the
causal effects defined in the previous section hinges on
these latent features, our modeling exercise requires a
coherent methodological framework connecting individ-
ual responses to the corresponding hidden attributes. As
discussed in the introductory section, IRT models stand
out as a compelling set of empirical tools that can inform
both individual-specific and question-specific traits.
Although these statistical techniques have long been
solely regarded as psychrometric methods, they are stead-
ily gaining popularity across multiple disciplines
(Thomas, 2019; Yamashita, 2022), including applications
to measurement error modeling (Fox, 2005; Fox & Glas,
2003; Soregaroli et al., 2022; Stranieri et al., 2021).

When participants to an experiment are asked to
rate Likert-valued statements, where the lowest and
highest values correspond to strong disagreement and
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strong agreement, respectively, the Rating Scale Model
(RSM—Andrich, 2005, 2016) provides a sensible prob-
abilistic framework to link response scores to two
abstract components, i.e.: “item difficulty” and “person
ability” (Wright, 1977). Unlike more complex IRT
models, the standard RSM assumes that the distance
between item difficulty values remains constant across
all items. This assumption is reasonable when item
responses are obtained using a fixed set of behavioral
thresholds (e.g., Likert-type scales). Additionally,
because all coefficients in a RSM represent positions
on an underlying latent variable, they enable objective
comparisons of individuals and items.

Mathematically, the standard RSM model can be
formulated as follows (Andrich, 2005, 2016; Van der
Linden, 2018: Chapter 5):

Pj,r,q = Pr(rj,q = 4"|Hj,ﬁq,l€)
exp {3201 (0 = By — xe) }

— )
L+ S e {5 (0= By =) }

where q € {1,...,Q} indicates the ¢q" item (i.e.: state-
ment or question), j represents the j person (i.e.: the
individual or respondent), r€ {1,2,..,R} is the
response given by person j to any item g, Pj,, indi-
cates the probability that person j answers 7~ to item
g, P, stands for the g item’s difficulty, x is a R-vec-
tor of thresholds x = [k, ..., kz], and 0; refers to the
j™ person’s ability. A popular extension to the model
in Equation (2) is the generalized RSM (GRSM -
Muraki, 1992), where the parameter set now includes
a discrimination parameter, o:

P;fr,q = Pr(rj,q = 70,04, ﬂq,K)
exp {ZL(%HJ — B, - w)}

- 3)
L+ S e {5 (a0 = By = ) |

These additional coefficients are proportional to the
strength of the relationship between the latent individ-
ual characteristic and the chances of choosing option
7. Therefore, positive values of «,; correspond to
statements where individual with higher 0; will choose
7 with higher probability, and vice versa (Bafumi
et al., 2005). For simplicity, we re-formulate Equation
(3) more compactly as:

75,ql0j> g B 16 ~ GRSM (0}, 0, 8, K) (4)

Since we are interested in modeling two latent
characteristics, we extend Equation (4) to:
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M M oM M M M oM M
A10M, o, B,k ~GRSM<0j,aq,ﬁq,x )

Y |gY LY pY ¥ Y Y pY Y
r.gl07 500, By GRSM(Qj,aq,ﬁq,x )

Before describing our estimation procedure, two
important clarifications need to be made. First, the stand-
ard nomenclature of the RSM does not seem to entirely
fit our analytical framework. In fact, unlike most applica-
tions in psychrometric analysis, our primary objective
does not involve modeling respondents’ abilities or expli-
citly correcting for item difficulty. Instead, we exploit this
probabilistic construct to map sets of Likert-valued state-
ments onto continuous measures that share a common
support. Therefore, to align the IRT terminology with
our analytical framework, we will henceforth refer to the
subscripts g and j as “question” and “respondent”,
respectively, instead of “item” and “person”. Second,
model (3) is clearly statistically not identified. On the
one hand, adding a constant to 0;, ﬁq and x, does not
change how the model predicts P;, , (this problem is
typically called additive aliasing). Consequently, as sug-
gested by Bafumi et al. (2005), Gelman and Hill (2006,
chapter 14.3), Furr (2017), and Luo and Jiao (2018), we
impose two simple restrictions on model (3): (i) we con-
strain both the last statement coefficient f; and the last
threshold k% to be the negative sum of the other state-

ment coefficients and thresholds, respectively (ie: B, =
- ZqQ:_ll By and kg = — SR 1k, so that these terms
average to zero); (ii) we specify a zero-mean weakly
informative prior distribution for both the statement
coefficients and the thresholds to allow identifying the
mean-function parameters of 0; (See sections “Bayesian
estimation” and “Simulation study”). Besides additive ali-
asing, model (3) also suffers from two additional forms
of indeterminacy known as multiplicative aliasing and
reflection invariance. These can be worked out by impos-
ing two additional model-identifying restrictions (Bafumi
et al. 2005; Fox, 2005; Fujimoto & Neugebauer, 2020;
Furr, 2017): (i) placing a log-normal prior on o, thereby
restricting the sign of the discriminating parameters to
positive values;® (i) fixing the prior variance of 0; to a
constant value (typically 69 = 1). The latter also helps in
CMA applications in that it ensures that both the latent
outcome and the latent mediator share the same prior

*This is sometimes regarded as a restrictive assumption in that
discrimination is limited to the relative magnitude of «, rather than its
sign and magnitude. However, this assumption remains necessary to
statistically identify model (3) and it is standard practice in the (Bayesian)
estimation of generalized IRT models. One alternative and less limiting
approach would be to manually restrict the sign of each o based on
individual characteristics, as discussed in Bafumi et al. (2005). However,
since this approach hinges both on the nature of the data and the
problem at hand, we do not discuss it in our work.

scale. Not only is this a sensible assumption when both
these quantities are measured through Likert-scaled ques-
tions that share the same minimum and maximum
scores, but it is also a common choice in the error-in-
variables literature (Albert et al., 2016).

Finally, we would like to stress that the GRSM can
be either replaced by other slightly different IRT mod-
els such as the Partial Credit Model (PCM) and the
Graded Response Model (GRM), or extended in several
ways, including multilevel, nested (Bockenholt, 2012) as
well as multivariate specifications (Fujimoto &
Neugebauer, 2020). Although there exist model selection
techniques to determine which formulation provides a
better fit for the data (see, for example, Fox, 2005 or
Luo & Jiao, 2018, for a survey of such methods), choos-
ing between these alternatives ultimately hinges on the
structure and purposes of the survey, particularly when
it comes to the statements’ design. However, since an
exhaustive treatment of such techniques (as well as a
comprehensive discussion of the many IRT modeling
choices) is outside the scope of this paper, we limit our
discussion to two complementary model checking strat-
egies when discussing our empirical application in sec-
tion “Empirical application”.

As we illustrate in the following section, our estima-
tion strategy hinges on the joint distribution of r,;, 0;,
B, and K as well as the remaining parameters for the
conditional mean of 0;. This multivariate probability
function represents the full Bayesian model (Betancourt,
2020) and can be decomposed into two fundamental
terms known as likelihood and prior. Using this ter-
minology, Equation (3) represents the likelihood of the
observed data, while 0;, f, and k require their own

prior distributions (Gelman et al, 2013). As recom-
mended in Furr (2017), Luo and Jiao (2018) and
Biirkner (2019), we choose weakly informative priors:*

K% ~ N(0,3) for all €€ {1,..,R}

Bg ~N(0,3) for all g € {1,...,Q°}

07 ~ N (1f,0%) for all j € {1,..,N}
of ~logV'(1,1) for all g € {1,..,Q%}

(5)

where z € {M,Y}, Q? is the number of questions or
statements for z, 6% =1 following the identifying
restrictions defined above, while ;7 are defined in the

following section.

“In the empirical application discussed in section “Empirical application”,
we also conduct a small sensitivity analysis where we nudge the all the
priors’ coefficients in Equation (5) to test the stability of our estimates.
Although these tests show that our results are robust to limited variations
in the priors’ parameters, we stress that, in general, prior influence tends
to decrease with sample size (Gelman et al., 2013, p. 355).



Bayesian estimation

Following the general approach discussed in Imai et al.
(2010b), Park and Kaplan (2015), Albert et al. (2016)
and Loh et al. (2020), we devise a simple Bayesian g-
computation algorithm® coupled with a tractable specifi-
cation for all the terms in Equation (1). The first stage
of our estimation strategy consists in defining a suitable
(parametric, non-parametric or semi-parametric) model
for f(@jVI|Dj,Xj =x;) and f(9]¥|9]]-w =9, D, X; = x;).
We begin by assuming that both OJM and 0;( are nor-

mally distributed. Adopting a Gaussian model for the
latent mediator and outcome is not only convenient in
that, under linear conditional means, the model becomes
immediately interpretable as a standard linear SEM
(Imai et al., 2010a), but it also remains general enough
since latent variables are typically given this type of dis-
tribution (Albert et al., 2016). Moreover, as discussed in
section “Measurement error model”, the normal distri-
bution is also a reasonable and widely adopted prior for
the respondent coefficients of the GRSM model which,
likewise, represent latent characteristics (Fox, 2005; Fox
& Glas, 2003). The overlap between the distributional
assumptions for the outcome and the mediator, and the
prior choices for the measurement error model is very
important for the functioning of the algorithm discussed
below. The reason lies in the two-step approach of g-
computation, where step one takes care of estimating
the parameters of f (GJM |D;,X; = x) and f (9].Y|0]I.M =
M ,Dj, X; = x), while step two makes use of these esti-
mates to simulate the POs through the formula in
Equation (1) (Snowden et al,, 2011).

Given a normal model for both the mediator and
the outcome, characterizing the conditional distribu-
tion of HJM and (JJ.Y requires specifying ! and .
This essentially corresponds to constructing regression
equations for the two latent quantities of interest. As
discussed in Imai et al. (2010b) and Preacher (2015),
setting ,uJM or ,u]-Y to linear predictors under either an

identity or any other canonical link gives rise to a
linear or generalized linear SEM. However, whereas
tackling estimation and identification in such cases
can require rather different approaches, all the
procedures  described  here can  potentially

®Notice that, unlike the approaches described in Imbens and Rubin (2015,
p. 150), Ding and Li (2018, p. 223) and Li et al. (2023, p. 6), our statistical
model does not attempt to explicitly define a joint distribution for the
potential outcomes and the model parameters. Rather, the full Bayesian
model only serves to combine the modelling steps in Equations (3) and
(7) with the identification strategy described in Section “Measurement
error model”. In other words, whereas the estimation stage is fully
Bayesian, identification follows a different conceptual path.
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accommodate different distribution functions as well
as non-parametric or semi-parametric conditional
expectation functions.

For the sake of illustration, we hereafter assume
that both 1" and p are linear in Dj, X; and HJM (for
an extension using a semi-parametric specification see
Kim et al., 2018). We also include an interaction (i.e.:
treatment heterogeneity) between the mediator and
the treatment in the outcome predictor:

w' = A+ AP D) + XAY
1 = Ay + ALD; + XIAx + Ay 0 + Ay, D0
(6)

where AY and Ay indicate P x 1 vectors of regression
coefficients for the P x 1 covariate set X; in the latent
moderator and outcome equation, respectively.
Combining Equations (1) and (6) under normally dis-
tributed 9}” and HJ-Y yields:

(010X = x) = W (Ay! + ApD; + ¥ AY, o)
(010" = 9", D, X; = x)
= N(Ag + ABD; + X AL + AR+ AL DY, aY)

(7)

Equation (7) also completes the prior specification
in Equation (5), to which we add the following
weakly informative priors for all the “slope” parame-
ters:

A A AY AL A Ay p ~ N(0,1)

8
Af,\?x,/\;x ~ N(0,1) for all p € {1,...,P} ®)

where A;fx € A% and A;X € A;Z. These distributional

choices follow the general principle of avoiding flat
uninformative priors that, in case of poorly inform-
ative likelihoods, can cause severe mixing problems in
Markov chain Monte Carlo (MCMC) sampling algo-
rithms (Gelman et al., 2017; Lemoine, 2019; Park &
Kaplan, 2015; Smid et al, 2020). Specifically, since
oM =¢¥ =1 and provided that all the binary and
continuous variables in X; have been centered or
standardized, respectively, the N'(0,1) represents a
good default for linear regression models (Gelman
et al., 2008; Ghosh et al., 2018). In the simulation
exercise discussed in section “Sensitivity analysis”,
however, we also test our model against wider priors
for the A parameters.6 Equations (3), (5), (7) and (8),

SAll the results discussed in the empirical application presented in Section
“Empirical application” also show stability to different choices of prior for
A such as N'(0,2.5) and N(0,5).
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make up the full Bayesian model from which we can
sample via MCMC methods (see Appendices” Al and
A2 for details, supplementary material).

Suppose now that S uncorrelated samples were suc-
cessfully collected from the joint posterior distribution
of the parameters in Equation (7). Then, calculating the
ACME and the ANDE involves: (i) plugging such esti-
mates in the corresponding formulas to approximate the
conditional distributions of GM and HY (i) imputing

the POs via Monte Carlo 1ntegrat10n of Equation (1).
Park and Kaplan (2015), who provide a Bayesian alter-
native to the algorithm proposed by Imai et al. (2010b),
illustrate one way of computing these quantities using
the posterior distribution of the coefficients in Equation
(6). Their idea essentially resides in sampling POs
from the conditional means E[91M|D] Xj=x] = ,u]M and
IE[H]-Y|0§VI =M D, X; =x] = ,qu, and use them to dir-
ectly quantify all the causal estimands (see Imai et al,
2010a: Theorem 1). Although the authors show that this
procedure yields unbiased estimates of d(d) and {(d4),
it does not make full use of the distributions in
Equation (7) since the potential values of both the medi-
ator and the outcome are only generated using their
expected values. In this respect, imputation through the
conditional mean disregards the variance of HJM and HjY,

ie: oM and o7, thereby resulting in overconfident (i.e.,
narrower) credible intervals for the resulting predictions.
This can be especially limiting when OJM and OJ.Y are
latent, as incorporating the uncertainty in these unob-
servable respondent characteristics is an essential feature
of the measurement error model. To this extent, imput-
ing potential using f (HJM |D;,X; = x) and
f (9Y|HM M, D;, X; = x) is consistent with the prob-
lem in Equation (1), where the integration is defined
with respect to the whole conditional distributions of
the counterfactuals (see Imai et al., 2010b: Theorem 1).
A similar argument is sustained by Keil et al. (2018),
who devise a g-computation formula based on the pos-
terior predictive distribution (PPD) of the POs in a
standard binary treatment setup.

To provide more conservative estimates of o(d)
and {(d), we propose the procedure is stylized in

D, dse1,...s),

values

algorithm 1, where the set {1~9]Y

for all je{l,..,N}, represents® S draws from
f(@}.y[d, 9]1-\4(0{’)“)(],:,6)’ while [\3/1,(3)’ [\AD/L(S); Af’(s),

’Appendix A1 and A2 can be found in the supplementary material
available  online on OSF.io at: https:/osf.io/8bz4j/?view_only=
9a067a723dbd41b4bbc3fd6b922ddacc.

8Conditioning on Xj = x is omitted to simplify notation.

[\(f’(s), [\;’(S), [\,i’(s), Z\L’(‘), AE,(;)’ M. (5)

indicate samples from the posterior distributions of
the parameters in Equation (7),” and steps (1) through

and 70

(3) make use of the assumption that HJM and ij are

normally distributed.

Algorithm 1: Bayesian g-computation

For all s € {1, ...,S} do:
For all j € {1,...,N} do:

(1) Sample from N (]\f)w

© Azgms) 4+ ¥ AM © 5_M,(s))
~M,
and obtain ¥; (S)( )

M,(s) | M (s)

(2) Sample from N(A +A,

and obtain 19j M. (d)

(3.1) Sample from N(/N\;'“)

Y, (s)

A1) M (s) ~Y,(s) , =M, (s)

AM 19]' (d)Jr AM,Ddlﬁj

obtain 1~9Y (5>(d’ d)

(3.2) Sample from N(,\Y(S +AY<s d x]f&;’(s) N
AM(S),&M (d/)+ AMDdﬁ (d/), &Y,(s)) and
obtain 19j (d, d)

(3.3) Sample from N([\”S) n ;\LY)&s) dr x]( &;’ (s)
/N\L()ﬂ (d’)_|_ AMDdﬁ (d/), &Y,(s)) and
obtain 19]. (d) d)

Y, (s)

i x}[&x

(3.4) Sample from JV‘(A +A
2 Y (5) 5 M, (s) LY (s) ; v, (s
Ay, v Nd)+ AM)Dd'ﬁj (d’), GY’<)) and
(5)(d’,d’)
~(s _ ~Y,(s)
= NTEY [ @ )]

N (9 @)
(4.2) Compute

obtain 9 ].Y’

(4.1) Compute

% () =
(0, d)]

N~ ZJI[' Ud)]

Y, (s)

N (9

Even though the posterior quantities produced
by algorithm 1 will be approximately centered
around the values obtained with the methods dis-
cussed in Park and Kaplan (2015), the former will
entail more uncertainty, resulting in larger credible
intervals. How wider these intervals will be is going
to depend on the index of dispersion of HJM
and HJ-Y

Finally, it is important to stress that, under linear
" and p and normal priors on HJM and HJ-Y, one

Notice that, using the GRSM as a measurement error model, the variance
of 0}” and ij is fixed to a constant, so %) = ¢ for all s € {1,...5}.



could directly use the posterior distribution of Af)w,
AY, Ay Ay p A and AY to quantify the two esti-
mands of interest via coefficients’ multiplication (Imai
et al., 2010b):

5(S>(d) _ ;\24 (s) ([\L,(S) —l—/‘;)@d)
) =AY +AL ([\34 O ANy LAY (s))

where X = N™! 2]11 x;. Notice that, under standardized

covariates, both A)' =0 and ¥ = 0, so /N\f)w’ “ and the

x Af’ v term drop out of the equation for v (d). The

multiplication approach is commonly used in Bayesian
SEM (Lawson et al., 2023; McCandless & Somers, 2019;

Yuan & MacKinnon, 2009). However, unlike S(Gs)(d)

and Zg)(d), the results obtained in this way do not
marginalize over ¢ and ¢" and, because of that, they
will perfectly align with the estimates obtained through
imputation the conditional means-based imputation.
The empirical application presented in section
“Empirical application” provides a comparison between
0(d) and {(d) when these are estimated using either
the marginal or the conditional predictive distribution of
the latent outcome and the latent mediator.

Simulation study

The non-parametric identification of the causal esti-
mands discussed in section “Identification of the treat-
ment effects” clearly hinges on the parameters of
Equation (7) being themselves statistically identified."
Although section “Identification of the treatment
effects” briefly mentions that the restrictions applied
to the discrimination, question and threshold parame-
ters in the GRSM model allow identifying the slope
coefficients in the mean function of HJM and HJ.Y, the

fact that ,qu also includes latent regressors in the form

of ()JM may further complicate the estimation of these
parameters. In other words, had the coefficients
A, AY and AY not been identified though the con-
straints discussed above, the posterior distribution of

0jY would likely be biased and so would the estimates

of Ag JALLAY, A}\;’ » and AY. Since the g-computation

ONotice that causal identification differs from statistical identification.
Whereas the former makes sure that the causal estimands defined in
section “Methodology” capture the intended treatment effect under
assumption (i) through (iv), the latter refers to the extent to which the
data can inform the prior within the ensemble defined by the full
Bayesian model (Gelman et al., 2013; Schad et al., 2021). Throughout this
section, we discuss statical identification.
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algorithm presented in section “Bayesian estimation”
(as well as the coefficient multiplication method) sim-
ulates counterfactuals through the posterior distribu-
tion of the parameters above (and also ¢™,s? in the
basic RSM specification), these need to be correctly
estimated when sampling from the full Bayesian
model implied by Equations (4), (5) and (8). In this
section, we discuss an extensive simulation study
where we assess the approximated posterior distribu-
tion of the coefficients in 1 and p as well as the

corresponding causal effects. To do so, we exploit the
class of simulation-based calibration methods devel-
oped by Cook et al. (2006), Talts et al. (2018) and
Schad et al. (2021). The idea is to provide a fully
Bayesian implementation of the standard routines
designed to validate frequentist estimators. The main
difference between the two approaches is that, in the
Bayesian case, the target parameters are not fixed
quantities, but they have their own distribution.
Therefore, our evaluation exploits the properties of
the full Bayesian model to address the coherence
between a range of ‘true’ parameter values generated
through the prior distributions and the resulting pos-
terior (Betancourt, 2020; Talts et al., 2018).

Following the notation introduced and discussed in
Appendix Al (supplementary material), let AM =
AV, AY AY] be a (P+2) x 1 coefficient vector, call
AY the (P+4)x 1 parameter vector [A},A}, Ay,
AL,A}(/[’D], and let L = (P +2) + (P + 4). Define also
the L-dimensional vector A = [AM, A¥] and let f(A) be
the corresponding (joint) prior distribution. With a
slight abuse of notation, define the sets of remaining
(complement) GRSM parameters as A and A"
respectively, which we also concatenate into A =
[AM< AT with (joint) prior f(A°). Furthermore, indi-
cate with ¥ the Q% X 1 vector 1 = [rf,...,r7 5:]. We
can aggregate the latter over j into a NQ? x 1 array
r?=1[r%..,r%] and form the full set of observed
responses r = [rM,r¥] with joint likelihood function
F(r|A, AS) = F(PMAM AMOF(#Y|AY, AYC). Finally let
A", A°" represent ‘true¢’ parameter values drawn from
the joint prior f(A, A°) = f(A)f(A®) using the configu-
rations in Equations (5) and (8), and consider observa-
tions r* obtained from f(r|A*, A°"). Then, the tuple
[r*, A*] represents a draw from the joint distribution
f(r,A) < f(A|r), implying that A™ is itself a draw from
the posterior distribution f(Alr). Therefore, given a S x
L matrix of posterior samples A = [1~\(1>,...,1§(s)]/
obtained by fitting f(A|r*), the marginal distribution of

A" should be the same as that of any 1~\(S> cA.If not,
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the sampler is likely ill-designed and the resulting par-
ameter estimates might be unreliable.

Among the strategies designed to validate an algo-
rithmic approximation to the posterior of interest,
Talts et al. (2018) discuss how to construct rank statis-

tics based on A* and A"
not produce parameter values that are larger or
smaller than the true posterior, nor the variance of
the posterior samples should exceed the true posterior
dispersion, one can use knowledge of A*

1~\(s>

. Since the sampler should

to assess

as sketched in algorithm 2.

Algorithm 2: Simulation-based calibration
For all k € {1,...,K} do:

(1) Sample from f(A) and f(A°) to obtain A} and

AS

(2) Sample from f(r|A}, Ay") and obtain r}

3) Fitf(A|r,’;) and obtain the S x L matrix Ay

For alll € {1,...,L} do:

(3.1) For all s € {1, ..., S} calculate
i =A< A

(3.2) Calculate ranks as R = Zf:l 1'1(,5;1

Intuitively, had the computation been successful,
the posterior distribution should overlap with the

) for all s € {1,...,S}. In this
case, the sequence of rank statistics {R x|k € 1,...,K}
for some parameter A; € A should be approximately
uniformly distributed. Otherwise, the rank distribution
will take on different shapes depending on the local
differences between the prior and the posterior'!
(Cook et al., 2006; Talts et al., 2018).

prior, yielding A} ~ A

Discrepancies between A* and AY can be also

investigated using two useful summary statistics dis-
cussed in Schad et al. (2021). One the one hand, one
can calculate z-scores as:
E[ALx] - Af,

6 (Avi)

where A, indicates the S x 1 vector of posterior

2Lk =

draws for parameter [ in iteration k (ie., the I’ column

"Notice that calibrated sampling algorithms make sure that the credible
intervals obtained from the resulting posterior distribution provide
(approximate) nominal coverage (Schad et al., 2021; Talts et al., 2018).
Therefore, across all simulations, any X% posterior credible intervals will
include the ‘true’ parameters in approximately X out of 100 replications.
Since simulating implies that there can be many different X% credible
intervals, the average coverage will be X% for all of them.

of the 1~\k matrix), while IE‘,[] and G(-) represent the
empirical posterior mean and standard deviation, respect-
ively (see algorithm 3). These indicators capture how
much the posterior mean overlaps with the true param-
eter, weighted by the posterior uncertainty. Therefore, z-
scores quantify how accurately the computed posterior
recovers the true model configuration through a combin-
ation of bias and precision. Specifically, smaller values of
71k indicate that the posterior more strongly concentrates
around the true value, while larger values suggest that
the posterior concentrates away from ground truth. The
last metric that we use in our simulation exercise is the
posterior contraction:

~ 2
a(Asr)

o (A7)

where ¢(A}) is the prior standard deviation of param-

ar=1-

eter | (see Equation 8). Since the additional information
provided by the likelihood should reduce uncertainty,
the posterior variance is expected to be smaller than the
prior variance. Therefore, in case of highly informative
data, the numerator decreases, thereby triggering poster-
ior contraction and bringing ¢ close to one. In this
case, we say that the parameter is statistically identified
(Gelman et al., 2013; Schad et al., 2021). Vice versa,
when the data fails to inform A;, the ratio between the
two variances will be close to one, pushing ¢, toward
zero. Both z-scores and posterior contraction measures
are calculated following algorithm 3.

Algorithm 3: z-scores and posterior contraction
For all k € {1,...,K} do:
(1) Sample from f (A) and f (A°) to obtain A} and
AL"
(2) Sample from f(r|A}, Ay™) and obtain r}
(3) Fit f(A|r;) and obtain the S x L matrix Ak
For all I € {1,...,L} do:

ST - ~ ()
(3.1) Calculate E[A; ] =S 30 A}

>

(3.2) Calculate &(A;;) = \/ SIS, (A S,z E[Az,k])z
E[AL-A,

o(Avi)

(3.4) Calculate posterior concentration as
o 72
g |e(A)
Cl,k—l |:J(A;):|

Ideally, the distribution of z;x and ¢ across the K
generated dataset should be inspected jointly, meaning
that optimal performance corresponds to both z-scores

(3.3) Calculate z-scores as z; x =
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Contraction and z-scores for AY
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Figure 2. Simulation results for A" Q=5and 7 ¢ {50,100, 150}. Each row corresponds to a different sample size, 7. The over-
impressed values indicate the average posterior contraction (top) and the average z-score (bottom).

centered around zero and posterior contractions skewed
toward one.

Our simulation exercise proceeds as follows: we
begin by constructing a simple J x 2 covariate matrix
using X;; ~ N(2,1) and X;, ~ Gamma(l,2), for all
ie{l,..,J }, where J is the number of respondents
in the simulated data. We next randomly assign each
observation to either a treatment or a control group
via D; ~ Bernoulli(0.5). To test our algorithm against
differently sized samples, we set J to 50, 100 and
150. Finally, we generate responses for M and Y
on a 1 to 5 Likert scale via rf,|07,02, B0, k% ~
GRSM(#, az,ﬁj,kz), with Q set to either 3, 5 or 8
(step 2 of Algorithms 2 and 3), while we randomly
extract ‘true’ parameters for 07, ocz,ﬁg and k° from
the priors defined in Equation (5), (6) and (7) (step
1 of Algorithms 2 and 3). We also simulate the
regression coefficients in both the mediator and the
outcome conditional mean function using the priors
in Equation (8). Since step 3 in algorithms 2 and 3
requires fitting the model multiple times, we set K =
250 to keep computation time reasonably low.

Figure 2 displays the calculated ranks, contractions
and z-scores'> for AM = [AM, AY], where AM corre-
sponds to Ag in Equations (6) and (7), AM =
[AY, AY] indicates the 2 x 1 coefficient vector" for
the 2 x 1 simulated covariate vector X; = [X; 1, Xp),
7 € {50,100,150} and Q =5. Inspecting the rank
plots revels that the sampler is well calibrated in that
the posterior of all A} € AM recovers the prior distri-
bution rather precisely (for K = 250). Similarly, all the
z-scores are relatively close to zero, with most con-
tained between the values —2 and of 2, indicating very
good recovery of the ‘true’ parameters A* (vertical
axis). Contraction ranges also exhibit encouraging
results, with the most parameters’ posterior draws suc-
cessfully incorporating data information and yielding
very strong contraction in general (i.e., close to 1).

2Note that here we are only addressing the posterior distribution of the
slope parameters as they are essential to correctly estimate the casual
estimands of interest. This kind of analyses, however, can be easily
extended to all other model parameters to investigate whether our
computation provides accurate posterior estimates.

3Since we standardize both X; and X,, there is no need to simulate
intercepts AY and Al.



316 A. VARACCA

Unsurprisingly, posterior contractions tend to improve
as J grows from 50 to 150, although these differences
are barely noticeable.

Similar results also hold for AY = [Af, A%;, A};, Ag ),
where A, A} and Al correspond to, respectively,
A}, A}, and AJI\(/I, p in Equations (6) and (7), while
Ay = [A],AY] as defined in the paragraph above
(Figure 3). However, since the equation for the latent
outcome includes variables measured with error in the
mean function, our simulation produces higher dis-
persion in the information gain statistics across the K
replications (horizontal axis). In fact, the distribution
of the posterior contractions appears more spread out
for 3 =50 and collapses to one as J grows to 150.
However, even in cases where J is low, the average
contraction statistic floors at roughly 0.8, which indi-
cates a very good performance. The z-scores for A*
are also symmetrically distributed around zero, sug-
gesting that the corresponding simulated parameters
were, on average, successfully recovered.

Appendix A4' (figures A5 to A8, supplementary
material) presents simulation results for both Q = 3 and
Q = 8. Providing more questions does not seem to con-
tribute much to the already good z-scores and posterior
contractions of AM. On the other hand, setting Q = 3
yields higher dispersion in the contraction values of A"
while, conversely, Q =8 improves on Q =5 through
more concentrated contraction statistics. In either case,
however, the average ¢; and z; floor at 0.75 and —0.08
across all A”, indicating high information gain and pre-
cision across replications.

Unlike the priors in Equation (5), the distributions in
Equation (8) are not explicitly referenced in the litera-
ture. Rather, they reflect a reasonable range of expected
coefficients values, given standardized covariates and
oM = ¢¥ = 1. We thus repeat the analysis using more
diffuse priors for both A and AY. This configuration
is more challenging to address because there are higher
chances of observing large A** which may contribute
to generate noisier 0. Consequently, 0 will also
exhibit higher dispersion because of the interaction
between A} *,Al* and 0M. Figures A9 and A0 in
Appendix 4 (supplementary material) suggest that plac-
ing less informative distributions on the slope parame-
ters of the mediator’s/outcome’s conditional mean
changes their rank, z-score, and contraction statistics
only marginally. As a result, algorithm 1 should not be

“Appendix A4 can be found in the supplementary material available
online on OSF.io at: https://osf.io/8bz4j/?view_only=9a067a723dbd41b4bb
c3fd6b922ddacc

too sensitive to weaker prior knowledge about its core
components.

Finally, although A and A" are key to construct
the causal estimands of interest, they are not of direct
relevance in mediation analysis. Rather, our interest
lies in the ACME and the ANDE, which are both
derived by combining the individual components of
the two above parameter sets. Therefore, the final step
of our simulation addresses the ranks, z-scores, and
contraction values of the four causal quantities intro-
duced in section “Identification of the treatment
effects”. Unfortunately, not all the evaluation metrics
discussed in this section can be directly applied to the
g-computation output discussed in section “Bayesian
estimation”. Since algorithm 1 generates counterfac-
tuals by sampling from a normal distribution whose
mean depends on the posterior estimates of the slope
coefficients, calculating contraction values becomes
challenging because the prior variance of the corre-
sponding quantities is not available. Furthermore, the
very definition of rank statistic conflicts with the goal
of algorithm 1 to incorporate more uncertainty into
the posterior distribution of the causal estimands.
Consequently, only z-scores can be consistently calcu-
lated and examined. To do so, we modify algorithm 3
by both adding step (1.1), where we construct o (d)
and {(d) as in algorithm 1, and re-defining:

B(Zou(@)] - GG (@)
5 |Loua)]

o _ Elar(@)] = 0Gu(d) -
k G [Sc,k(d)]

V2 =

where both 6¢ (d) and Z'G, «(d) are Sx 1 vector of
posterior draws for the two causal estimands, respect-
ively. Figure 4 reports the z-scores of the four causal esti-
mands, indicating that our posterior estimates correctly
recover the ‘true ACME and ANDE values. Results are
also consistent for Q = 3 and Q = 8 (see Appendix A4,
figures A1l and A12, supplementary material).

To assess contraction values and ranks, we test our
estimation approach against 0"(d) and (*(d) values
generated via coefficient multiplication which, as dis-
cussed at the end of section “Bayesian estimation”,
corresponds to a g-computation algorithm using uY
and M only. For these quantities, we can obtain prior
standard deviations ¢(6*) and a({") using the proper-
ties of the normal distribution:

a(6*) = a(ALY) [J(A}\CI’*) + J(AL’)*D) d}

o) = o057) + (M) |8 N+ Do ()
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Rank statistics for AY
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Figure 3. Simulation results for A¥, Q =5 and 7 € {50,100, 150}. Each row corresponds to a different sample size, 7. The over-
impressed values indicate the average posterior contraction (top) and the average z-score (bottom).



318 A. VARACCA

Z-scores for 8%(1)
Q=5

Z-scores for 6%(0)
Q=5

50 100 150

50 100 150

601 z: 0 z: -0.03 z: 0.05

40

20

601 z: 0 z: -0.03 z: 0.04

40

20

z-score

z-scores for £(1)
Q=5

z-score

Z-scores for £%(0)
Q=5

50

50

T
401 z 002 | z: 0.04
i

40 z: -0.02 i
30

20

z-score

b } }
-4 =2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4

44 2 0 2 4

z-score

Figure 4. Simulation results for 55(d) and {c(d), Q =5 and 7 € {50,100, 150}. Each box corresponds to a different sample size,

J. The overimpressed values indicate the average z-score.

where each individual component can be found in
Equation (8). All the metrics displayed in Figure 5
confirm the evidence collected in the previous analy-
ses: the simulated ACME and ANDE are correctly
recovered, as indicated by the zero-centered z-scores.
Average contractions are also satisfactory, although
0(0) exhibits a slightly larger dispersion of informa-
tion gain across the replicated datasets. However,
increasing the sample size quickly skews these values
toward one. Ranks also appear uniformly distributed
irrespective of the estimand or the corresponding
sample size. These results also hold for Q =3 and
Q = 8 (see Appendix A4, figures A13 and Al4, sup-
plementary material).

Sensitivity analysis

One common criticism to the approach described in
sections “Identification of the treatment -effects”
through “Bayesian estimation” is that the conditional
independence assumption between the latent mediator
and the latent outcome is often too strong of an iden-
tifying condition (Celli, 2022; Heckman & Pinto,
2015). Likewise, Equation (7) implicitly postulates
zero residual correlation between HJM and OJ.Y, imply-

ing no association between the two quantities after
controlling for the mediator and the treatment. One
way that this assumption does not hold is the pres-
ence of unobserved confounding variables that affect
both the mediator and the outcome (Imai et al,

2010a, 2010b). Since the credibility of the estimated
ACME and ANDE hinges on mediator’s conditional
ignorability, we present a simple sensitivity test targeting
the potential correlation between HJM and HJ.Y. Building
on the model introduced in section
estimation”, we can re-write Equation (7) as:

oM M M
)7l 7)o
i j

where both ' and y are defined in Equation (6)
and p € [-1,1]. Clearly, for p =0, Equation (9)
reduces to Equation (7), which holds under the five
assumptions listed in section “Identification of the
treatment effects”. Therefore, to assess the extent to
which failures of sequential ignorability could impact
the causal estimands of interest, we replace the uni-

“Bayesian

variate prior distributions on both ij and HJ-Y with a

multivariate normal where ¢ =¢¥ =1 and p is

fixed to some sensitivity value. To probe the consist-
ency of our results against different degrees of
dependence between the two latent constructs, we re-
estimate the ACME and the ANDE by setting p to
—0.8, —0.5, 0.5, and 0.8 and compare the resulting
posterior distributions to those obtained under inde-
pendence (i.e., p = 0). If the estimates obtained with
values of p # 0 deviate too much from the baseline,
the assumption of no unobserved confounding
becomes more central to the credibility of the
analysis.
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Figure 5. Simulation results for §(¢) and {(d), Q =5 and J € {50,100,150}. Each row corresponds to a different sample size,
J. The overimpressed values indicate the average posterior contraction (top) and the average z-score (bottom).

Empirical application

The identification and estimation approaches pre-
sented in section “Methodology” can be easily applied
to several experimental settings. As discussed in sec-
tion “Methodology”, Likert-scaled questions and CMA
are in fact the bread and butter of many survey-based
studies where the two main quantities of interest (i.e.:
the outcome and the mediator) can only be indirectly
elicited via structured questionnaires or other similar
tools. In the following, we briefly present an empirical

application from a randomized experiment designed
to assess the willingness to buy for a food product
under two different labeling schemes. Participants
were either shown a label describing the product’s
nutritional characteristics (the so-called Nutriscore) or
a label indicating that the food belongs to a so-called
geographical indication (GI). The hypothesis is that
the effect of the labels on the purchase intention is
mediated by a latent construct that corresponds to the
“healthiness” of the product as perceived by the
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Figure 6. Posterior distributions for the ACME (top panels) and the ANDE (bottom panels) using the model implied by Equations
(3) (5), (7) and (8) in Algorithm 1 (Full Distribution - rightmost panel), by solely resorting to conditional mean imputations
(Conditional Mean — central panel) and through coefficients’ multiplication (Coef. Mult. — leftmost panel). The solid lines at the bot-
tom of the plots represent 95% credible intervals, while the solid vertical lines indicate zero (no) effect.

respondents (Ikonen et al., 2020). Both the purchase
intention and the perceived healthiness were captured
by two sets of Likert-valued questions (3 and 7 ques-
tions, respectively) which we use to elicit ij and HJM ,

respectively. Alongside these scores, control variables
including respondents’ nationality, degree, age,
income, and family size were also collected. The
experimental design consisted of a 2x2 factorial
design which identifies four labeling conditions: no
label (condition A), just one of the two labels (GI
only—condition B; Nutriscore only—condition C) or
both (condition D). Data were collected utilizing a
between subject sampling scheme, where respondents
were randomly assigned to one of the four experimen-
tal conditions. The survey was conducted online and
administered throughout the Qualtrics platform."> To

BAll participants involved in the experimental survey have duly
completed and signed the informed consent form. Additionally, it is
important to note that the study adheres to all other requirements
mandated by national legislations.

be eligible for the questionnaire, the respondents had
to be above 18years old, and declare to be at least
partially involved in the shopping for their household.
The final database included validated responses from
1,524 individuals living in Italy and The Netherlands.
To illustrate our methodological contribution, we
focus on the Nutriscore label (condition C) and assess
the ACME and ANDE when the this is compared
against condition A (no label). In doing so, we con-
trast the results attained through algorithm 1 to the
estimates obtained using the coefficients’ product
approach or the corresponding conditional g-compu-
tation method. Appendix A3 (supplementary mater-
ial)'® also discusses several convergence checks for the
sampling algorithm that we used to approximate the
posterior densities of the parameters in Equations (5)
and (8). Figure 6 shows the distribution of the two

'®Appendix A3 can be found in the supplementary material available
online on OSFio at: https://osf.io/8bz4j/?view_only=9a067a723
dbd41b4bbc3fd6b922ddacc.
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Figure 7. Sensitivity for the ACME (left panels) ANDE (right panels) obtained through Algorithm 1 for values of p €
[-0.8, — 0.5,0.5,0.8]. The solid vertical lines indicate zero (no) effect.

causal quantities when these are estimated through
algorithm 1 (Full Distribution), by the g-formula in
Park and Kaplan (2015) (Conditional Mean) or via
coefficient multiplication (as in linear SEMs).

Our results suggest strong evidence of a positive
direct effect of the Nutriscore label on the respond-
ents’ purchase intentions (i.e.: the latent outcome -
top panels), while the effect mediated by the perceived
healthiness of the product (i.e.: the latent mediator—
bottom panels) exhibits the opposite sign. Focusing
on the latter, whereas the 95% credible intervals (solid
horizontal bars) calculated using predictions from the
conditional mean function (central panel) or coeffi-
cients’ multiplication (leftmost panel) do not include
zero (solid vertical lines), the one constructed using
Algorithm 1 (rightmost panel) does. The reason for
this difference is the larger dispersion in the posterior
distributions of o(d), when this is approximated by
simulating POs from Equation (7) rather than
Equation (6). This difference is also noticeable when
switching to {(d), albeit less striking and neutral on
the results.

At this point, it is worth mentioning that the latent
constructs estimated through IRT models are typically
best understood within the context of the analysis. In
other words, our modeling approach assumes that the
meaning researchers will attribute to the latent varia-
bles, as well as the structure of corresponding surveys,
have been validated either before or while running the
experiment (using, for example, a pilot sample).
Conveniently, IRT models can be also used for meas-
urement scales validation. Put differently, one can
exploit the same modeling techniques presented in
section “Measurement error model” to understand the
extent to which a set of questions helps identifying

the unobservable individual traits, conditional on the
chosen model configuration. To this end, one could
study the discrimination and difficulty parameters, the
item characteristic curves and the amount of informa-
tion provided by each item (question) to fine-tune the
corresponding measurement system. However, since
latent features are always defined on a dimensionless
scale with approximately known range, one can only
make sense of the relative size of d(d) and ((d) by
comparing them against the empirical distribution of

é;:]];l[i)ﬂ, where bjyz [é;’(l),...,éy’(s)}, for all

i
j€{1,...,N}. If one wished to give the latent medi-
ator and/or the latent outcome (and, consequently, to
the causal estimands) a practical interpretation, a
sensible strategy could involve mapping these con-
structs to a measurable quantity that can be more eas-
ily appreciated within the scope of the experiment. To
provide a concrete example, one could easily design a
follow-up or contextual study to address if and to

what extent a (unit) change along the 0¥ scale (ie.,
purchase intention) translates to an observed (or
stated) purchasing behavior (i.e., willingness to pay)
using, for example, a choice experiment. Yet, given
the contextual specificity of these exercises, we believe
that a deeper discussion of these complementary
aspects is best suited for a future applied work.

Figure 7 shows the results of the sensitivity analysis
presented in section “Sensitivity analysis”. These
plots report the posterior distributions of both
0g(d, p) (left panels) and (;(d,p) (right panels) for
p €{-0.8, —0.5,0,0.50.8}. What emerge is that,
although our estimated ACME decreases for negative
values of p, the corresponding uncertainty tends to
get larger as we move away from null effects (solid
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Figure 8. Posterior predictive checks for the latent mediator's model in Equation (3). The black dots represent the observed sum
of responses equal to 1, 2, 3, 4 and 5 for each question. The grey density plots indicate the corresponding predicted sum obtained

by sampling from model (12).

vertical line). On the other hand, when p takes on
positive values, the ACME shifts toward zero and its
posterior distribution contracts around the point esti-
mate. Conversely, the ANDE remains positive and
grows for negative correlation values, while it shifts
back to zero when p moves into positive territory. It
also worth noticing that both casual estimands move
very little for large changes in negative correlation
(i.e., the posterior distributions of the ACME and
ANDE change very little between p = —0.5 and
p = —0.8), while they tend to be more responsive to
similar changes in positive p (i.e., when the correl-
ation parameter moves from p =0.5 to p =0.8).
Overall, these results indicate that our estimated
effects can be quite sensitive to violations of the
sequential ignorability assumption. Therefore, caution
is recommended when interpreting these coefficients
causally, unless it is reasonable to posit the absence of
unobserved confounders.

As put forward in section “Measurement error
model”, we finally discuss two simple model checking
techniques aimed at investigating how well the GRSM
fits our survey data. All the plots depicted in Figures

8 through 10 hinge on the PPD of rf, which

corresponds to the marginalization (Gelman et al,
2013; Kruschke, 2014):

f(;fq|rZ) - Jf(rfq|A — A= w)dFA,Ac‘,(x, 2%
(10)

where dFj a¢, indicates the posterior distribution of
A, A°. This quantity is approximated by sampling
parameter values AA ~ dFa Ay and using the
from

resulting draws to

f(rfq\A:):,AC:ic). Figures 8 and 9 depict the

sum of responses equal to 1, 2, 3, 4 and 5 for each
question used to identify the corresponding unobserv-
able quantity (i.e.: the latent mediator or the latent
outcome). These representations are inspired by the
score plots in Béguin and Glas (2001), where the
authors evaluate a 3-paramters logit model by com-
paring the expected and predicted number of correct
answers. The black dots in figures 8 and 9 indicate
the observed sums, while the grey density plots repre-
sent the posterior predictions of the same quantities
obtained by extracting S samples from the empirical
approximation of Equation (10). Since the black dots

sample
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Figure 9. Posterior predictive checks for the latent outcome’s model in Equation (3). The black dots represent the observed sum
of responses equal to 1, 2, 3, 4 and 5 for each question. The grey density plots indicate the corresponding predicted sum obtained

by sampling from model (12).
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Figure 10. Posterior predictive checks for the latent mediator’s
model in Equation (3). The dark grey bars represent the
respondent-specific distances for d? and z =M, while the
light grey bars represent the respondent-specific distances for
diand z =Y.

fall either within or very close to the predictive distri-
bution in most cases, this indicates that the GRSM
does a reasonable job in fitting the data structure of
our sample. However, results for the latent mediator
suggest that there is room for improvement, especially
for questions 5 and 6 where predictions appear farther
apart from the observed scores.

Our second model assessment test is based on the
frequency distribution of the respondent-specific aver-
age distance between observed and predicted
responses. We calculate such distances as:

)

]
q=1 Nq

z

where i'qu is a S-vector of simulations i'jq:

[rjz)’q(l), . rjz,’q(s)
in Figure 10, which essentially corroborates the
insights provided by Figure 8 and Figure 9. Indeed,
the average distances for the outcome model seem to

]. The corresponding plots are reported

suggest a satisfying fit, while the predicted responses
pertaining to the mediator model indicate that the lat-
ter could be improved. However, most of the distan-
ces are in both cases less than one, propounding an
overall reasonable performance of the GRSM.

Conclusions

Causal mediation analysis in an important approach
to causal inference in that it not only allows to tackle
the problem of quantifying the total effect of a treat-
ment on a given outcome, but it also enables to break
down this effect into a direct and indirect component.
The latter postulates the existence of a mediating vari-
able (i.e.: the so-called mediator) and often represents
the causal estimand of interest known as average cas-
ual mediation effect. In the context of casual medi-
ation analysis, several authors have discussed how
measurement errors in the mediator may lead to
biased estimates, recommending to control for error-
in-variables when approaching this type of analysis.
This issue is particularly relevant when working with
survey data, where the mediator, the outcome, or both
are typically measured through surrogate polytomous
items such as Likert-scaled question. When this type
of data represents the only way through which latent
measures can be quantified, item response theory
models provide a theoretically sound approach to map
indirect discrete proxies on a continuous scale that
characterizes the unmeasurable quantity of interest. In
this paper, we have exploited the probabilistic nature
of these statistical techniques to construct a simple
Bayesian algorithm aimed at estimating both the dir-
ect and the indirect effect of a binary treatment on a
latent outcome variable, through a latent mediator.
Our identification strategy closely followed that of
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previous seminal works in that it leveraged the poten-
tial outcome framework and the conditional ignorabil-
ity of the mediator to work out tractable expressions
for the causal estimands. In this respect, we discussed
how our methodology compares to other similar pro-
posals in casual mediation analysis and highlighted
the main differences between our approach and the
existing literature. In particular, we emphasized the
importance of marginalizing over all the parameters
of the counterfactual distributions to obtain conserva-
tive estimates for both the average causal mediation
effect and the average natural direct effect.

This paper also contributes to the topic of sensitiv-
ity analysis with respect to the critical identifying
assumptions of the underlying identification strategy.
Specifically, we proposed a straightforward robustness
check targeting the residual correlation between the
latent outcome and the latent mediator. This sensitiv-
ity parameter represents the extent to which the pres-
ence of unobserved post-treatment cofounders can
invalidate the assumption of independence between
the outcome and the mediator, conditional on the
treatment and observed exogenous covariates. We
next showed how the proposed algorithm can be used
in practice through an empirical application. Using
data from a randomized experiment, we illustrated
how the respondents’ health consciousness can pro-
duce a negative mediation effect on the purchase
intention for a specific food product, when the partici-
pants are exposed to a treatment label. Aimed at fos-
tering the implementation of these techniques by
applied researchers, we concluded by discussing the
issue of computation time and show that estimation
can be reliably sped up via variational inference meth-
ods. We also provide all the complete R and Stan
scripts as well as a complementary rmarkdown
document to guide potential users through all the
methods and application discussed in the manuscript.
The present work can be extended in several ways.
First, the Generalized Rating Scale Model can be too
restrictive for some applications, particularly when the
independence assumption between the latent mediator
and outcome is deemed unrealistic because of peculiar
experimental setting or the presence of unintended
confounding mechanisms. In these situations, improv-
ing the current measurement error model through its
multivariate counterpart might improve model fit and
provide a more realistic representation of the underly-
ing latent quantities. Second, the current casual model
is limited to the simple case of one mediator, one out-
come. In many applications, however, this framework
can be too limiting, as causal mechanisms often

involve several mediators (either latent or observable)
as well as many treatments, not necessarily binary.
Although such setups are still an active area of
research, we believe that our proposed approach can
be extended quite naturally to more complex structural
models. Third, given the recent advances in Bayesian
non-parametrics, a natural direction that the proposed
approach could steer toward is modeling the conditional
mean of the unobservable characteristics by flexible
regression models such as Gaussian Processes, Bayesian
Splines, Bayesian Additive Regression Trees (BART—
Chipman et al,, 2010) or similar techniques. This would
allow going beyond simple average treatment effects and
provide a solid framework for the estimation of heter-
ogenous treatment effects.
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