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ABSTRACT 
In this paper, we propose a Bayesian causal mediation approach to the analysis of experi
mental data when both the outcome and the mediator are measured through structured 
questionnaires based on Likert-scaled inquiries. Our estimation strategy builds upon the 
error-in-variables literature and, specifically, it leverages Item Response Theory to explicitly 
model the observed surrogate mediator and outcome measures. We employ their elicited 
latent counterparts in a simple g-computation algorithm, where we exploit the fundamental 
identifying assumptions of causal mediation analysis to impute all the relevant counterfac
tuals and estimate the causal parameters of interest. We finally devise a sensitivity analysis 
procedure to test the robustness of the proposed methods to the restrictive requirement of 
mediator’s conditional ignorability. We demonstrate the functioning of our proposed meth
odology through an empirical application using survey data from an online experiment on 
food purchasing intentions and the effect of different labeling regimes.
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Introduction

Although causal inference (CI) techniques have garnered 
increasing interest in recent social sciences literature, 
researchers predominantly concentrate on identification 
strategies and related estimation methods aimed at solely 
quantifying the effect of a cause (Gelman & Imbens, 
2013). Much less attention is given to a slightly different 
and more challenging question: what is the mechanism 
through which this total effect comes into being? In other 
words, is the mere magnitude of the (average) treatment 
effect the sole goal of CI, or does the interest lie in other 
related estimands? In some cases, the answer to the 
second question is yes. Indeed, some studies explore 
more than just whether an intervention succeeded in 
improving a target indicator. Rather, uncovering and 
quantifying the so-called causal mechanisms can answer 
to more interesting and relevant research questions 
(Celli, 2022). The set of statistical techniques aimed at 
investigating causal mechanisms go under the generic 
name of causal mediation analysis (CMA). Imai et al. 
(2010a, 2010b) provide a general scope for CMA by 
defining a causal mechanism as the process where a 

treatment influences an outcome through an intermedi
ate variable called mediator. Therefore, CMA involves 
estimating three fundamental quantities: (i) the direct 
causal effect of the treatment on the outcome; (ii) the 
indirect causal effect of the mediator on the outcome; 
(iii) the sum of (i) and (ii) which goes under the name 
of total causal effect.

CMA holds relevance across various disciplines 
within the social sciences, offering valuable insights and 
applications. For example, CMA can be very useful in 
political science when conducting impact assessment 
and policy evaluation. Rather than answering the ques
tion of whether and by how much a policy is working, 
CMA allows to investigate why this is the case (Keele 
et al., 2015). This is achieved by identifying and dissect
ing the indirect effects of one or more mediators on the 
desired policy outcomes, all while accounting for the 
direct effects as well. Empirical assessments provide a 
versatile avenue for exploring mediators, adopting 
diverse approaches. Researchers can either construct ad- 
hoc models tailored to specific case studies or anchor 
their investigations within established theoretical frame
works. For instance, Huber et al. (2017) delved into the 
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efficacy of alternative tools aimed at boosting employ
ment, while Ma et al. (2020) leveraged the Expectancy 
Value Theory to explore the role of “perceived value” in 
enhancing the success of a policy. Similar approaches 
find resonance in other disciplines as well, where 
hypotheses concerning a priori defined mediators can be 
tested from theories. In psychology, several notable 
mediators emerge, such as “self-efficiency” in the Social 
Cognitive Theory (e.g., Benight & Bandura, 2004), 
“trust” and “jealousy” in the Attachment Theory (e.g., 
Toplu-Demirtaş et al., 2022), and “intentions” in the 
Theory of Planned Behavior (e.g. Sultan et al., 2020). 
In marketing studies, researchers frequently explore 
mediators like “usefulness” to reveal the mechanisms of 
acceptance of new technologies within the Technology 
Acceptance Model (Blut & Wang, 2020) or ‘consumer 
attitudes metrics’ in liking marketing mix activities 
and sales performances (Hanssens et al., 2014). 
Management studies offer a fertile ground for mediator 
identification as well. For example, “capabilities” can 
mediate the relational performances of buyers/suppliers 
within the Resource-Based and Relational Views (e. g. 
Mesquita et al., 2008) and the degree of innovation or 
corporate social responsibility can play important roles 
in mediating the relationships between Total Quality 
Management and firms’ performances (e.g. Abbas, 
2020; Sadikoglu & Zehir, 2010). The applications of 
CMA extend beyond these disciplines into various 
other domains within the social sciences, including 
sociology, education, and communication sciences, 
where several other examples could be provided.

A prevalent characteristic found in the literature dis
cussed above is the reliance on survey data, with latent 
variables often assuming the role of mediators. These 
latent variables essentially represent unobservable con
structs that are assessed through multiple items, ideally 
derived from or aligned with well-constructed and 
rigorously validated scales (Boateng et al., 2018). 
However, resource and time constraints as well as prag
matic choices concerning the feasibility of surveys can 
often lead to sub-optimal choices in the measurement 
of latent variables. Moreover, even a latent variable 
measured from widely accepted and validated scales is 
not free from the presence of measurement errors. In 
fact, the concepts of latent variables and measurement 
error are very closely related as latency can be often 
framed as an information gap between surrogate indir
ect indicators and a corresponding unmeasurable trait. 
In the context of CMA, Hoyle and Kenny (1999), le 
Cessie et al., (2012), Vander Weele et al. (2012) and 
Muth�en and Asparouhov (2015) have discussed how 
measurement errors in the moderating variable may 

lead to severely biased causal effects in a variety of dif
ferent analytical settings. Although some authors have 
proposed post-hoc corrections to adjust for such incon
sistencies, these can be impractical because they only 
apply to specific modeling strategies (le Cessie et al., 
2012). Therefore, recent works have attempted to dir
ectly tackle measurement errors in mediators by extend
ing the standard CMA methods through supplementary 
statistical models linking these latent components to the 
corresponding indirect measurements. For example, 
Albert et al. (2016) employ a generalized structural equa
tion model (GSEM) assuming that the unobserved medi
ator follows a normal distribution with unit variance and 
conditional mean functionally related to a set of surrogate 
covariates. Similarly, Sun et al. (2021) use a linear SEM to 
inform several unobserved mediators through a large set 
of highly correlated observable surrogates and incorporate 
the resulting model into a Bayesian proportional hazard 
regression. Last, Loh et al. (2020) apply a structural after 
measurement (SAM—Rosseel & Loh, 2024) approach to a 
SEM using continuous surrogates to identify a set of latent 
mediators. The authors eventually resort to a modified g- 
computation algorithm to calculate the casual effects of 
interest in case of longitudinal data.

When working with survey data involving polyto
mous items such as Likert-scaled question, however, the 
characterization of individual latent traits is typically 
different. Given the distinctive nature of ordinal 
responses and because such inquiries are explicitly 
designed to accurately inform specific characteristics, 
the literature recognizes two main approaches to meas
urement error. These are typically referred to as 
Categorical Factor Analysis (CFA) and Item Factor 
Analysis (IFA), where the second is a generic label for a 
larger set of models known as Item-Response Theory 
(IRT) Models (Van der Linden, 2018). The goal of both 
these techniques is to come up with suitable statistical 
machineries to identify and quantify latent characteris
tics from sets of indirect discrete (either ordinal or 
multinomial) information sources. Although several 
authors have established equivalence relationships 
between CFA and a number of IRT models (Glockner- 
Rist & Hoijtink, 2003; Kamata & Bauer, 2008; Takane & 
De Leeuw, 1987), the latter have remained relatively 
underexplored outside the field of psychomtrics 
(Thomas, 2019). However, given their fully probabilistic 
nature, and considering the recent developments in effi
cient Bayesian estimation techniques (B€urkner, 2019; 
Furr, 2017; Luo & Jiao, 2018), it is now relatively easy to 
fit IRT models within complex multilevel statistical struc
tures to control for measurement error in either depend
ent or independent variables. An early presentation of 
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this idea is given in Fox and Glas (2003), who proposed 
to deal with errors in predictors using an IRT normal 
ogive model (Lord, 1980). Fox (2005) extended their 
work to accommodate polytomous response data, while 
recent applications based on this approach include 
Soregaroli et al. (2022) and Stranieri et al. (2021). This 
solution can be readily extended to experimental settings 
where the mediator (or the mediators) is (are) indirectly 
measured through sets of Likert-valued inquiries. In 
these cases, one can simply define one or more measure
ment error models on top of the distribution functions 
for the outcome and the latent mediator (or mediators) 
so that the uncertainty in estimating the latter is auto
matically accounted for when imputing the potential out
comes of interest. This can be seen as a special case of 
multilevel Bayesian mediation analysis (Bafumi et al., 
2005; Yuan & MacKinnon, 2009).

In this paper, we present how CMA can be 
addressed in presence of latent meditators and out
come variables when these are measured through pol
ytomous ordinal items in a structured survey. In 
doing so, we also contribute to the literature showing 
how IRT can be used to address measurement errors 
in Likert-scaled inquiries devised to approximate well- 
defined individual latent characteristics. The core of 
our work focusses on integrating such corrections 
mechanisms within the non-parametric identification 
strategy for CMA proposed by Imai et al. (2010a). In 
particular, we show how Bayesian estimation can be 
used to impute latent counterfactual mediator and 
outcome values under sequential ignorability and 
randomized treatment assignment. Building on our 
methodological approach, we discuss a simple sensi
tivity analysis designed to probe the consistency of 
our estimates to the fundamental assumption of con
ditional independence between the mediator and the 
outcome. We finally illustrate the proposed methods 
through an empirical example that shows how our 
approach can be easily applied to many real-world 
experimental data where the relevant variables have 
been measured through sets of Likert-scaled questions. 
To encourage users unfamiliar with either CMA or 
Bayesian methods to pick up these techniques, and to 
facilitate the practical implementation of the proposed 
algorithm, we provide the full R codes, the corre
sponding Stan programs and a complementary R 
markdown document1

The reminder of this paper proceeds as follows: 
section “Methodology” provides a comprehensive dis
cussion of our methodological approach, section 

“Simulation study” presents a simulation study 
addressing the estimation of the relevant parameters, 
section “Sensitivity analysis” outlines our sensitivity 
analysis test targeting the residual correlation between 
the outcome and the mediator, section “Empirical 
application” discusses an empirical application using 
real data from a randomized experiment, while section 
“Conclusions” provides some concluding remark and 
discussion points for future research.

Methodology

Identification of the treatment effects

The motivating causal structure that we will refer to 
throughout the document is the standard setup with 
one treatment (D), one mediator (hM) and one outcome 
of interest (hY). Unlike the standard notation adopted in 
most CMA studies, we will refer to the mediator and 
the outcome using the Greek letter h because both 
quantities are latent. We will also assume that the treat
ment is randomly assigned, as standard practice in 
experimental setups. Then, given pretreatment con
founders X, where X indicates a P � 1 vector of 
observed variables measured with no error, our analyt
ical scheme can be depicted as in Figure 1, where the 
absence of an arrow from X to D indicates that X does 
not affect the treatment propensity because of random
ization. Although casual mechanisms have been historic
ally approached using SEMs (Baron & Kenny, 1986), 
Imai et al. (2010a, 2010b) and Imai et al. (2011) argued 
that this approach can have several important limitations 
when it comes to its reliance on (generalized) linear 
parametric models, untestable assumptions about the 
error terms and misuses of the exogeneity assumption 
(Celli, 2022).

Despite Heckman and Pinto’s (2015) discussion on 
how some of these shortcomings can be addressed using 
econometric methods, more recently an alternative non- 
parametric way of defining causal effects in CMA has 
increasingly gained popularity. This literature relies on 

Figure 1. The causal mechanism considered throughout the 
paper.

1The replication package for this paper is available online on OSF.io at: 
https://osf.io/8bz4j/?view_only=9a067a723dbd41b4bbc3fd6b922ddacc
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identification strategies that, because of their agnosticism 
with respect to explicit modeling assumptions, are in 
fact more general than the structural constraints in 
SEMs. These are formulated using the potential out
comes (PO) framework (Rubin, 1974) and are readily 
recognizable to anyone familiar with the standard CI lit
erature (Imbens & Rubin, 2015). In brief, the key differ
ence between the SEM and the PO approach to causal 
mediation analysis lies in how identification is handled. 
Whereas the former leverages explicit modeling of both 
the mediator and the outcome through structural equa
tions, the latter defines all the relevant counterfactuals 
and formulates the necessary assumptions to inform the 
corresponding causal estimands through sample infor
mation. Only then can parametric/semi-parametric 
restrictions be invoked to estimate these quantities from 
the data.2 Although in several circumstances these two 
approaches tend to overlap and yield the same (or 
roughly similar) estimators (see, for example, section 
“Bayesian estimation”), all the methods discussed here
after are developed within the PO paradigm.

The basic idea of CMA is that there exist two pairs 
of POs (Imai et al., 2010a, 2010b). Let j 2 1, :::, Nf g

be the subscript indicating some individual in a study, 
then hM

j dð Þ denotes the potential value of the medi
ator for j when the treatment is set to Dj ¼ d:
Similarly, hY

j d,#Mð Þ represents the PO for individual j 
when Dj ¼ d and the mediator takes value hM

j ¼ #
M:

It follows that the measurable mediator and outcome 
values can be indicated as hM

j ¼ hM
j Djð Þ and hY

j ¼

hY
j Dj, hM

j Djð Þ

h i
, respectively. Clearly, of both expres

sions only one can be potentially informed through 
observed data. Under no interference and no unob
served alternative versions of the treatment (i.e.: the 
so-called Stable Unit Treatment Value Assumption— 
SUTVA), Imai et al. (2010a) use these quantities to 
define several causal effects, the first one being the 
Natural Indirect Effect (NIE). Assuming a binary 
treatment, the latter can be defined as:

dj dð Þ ¼ hY
j d, hM

j Dj ¼ 1ð Þ

h i
− hY

j d, hM
j Dj ¼ 0ð Þ

h i

where d 2 0, 1f g: The NIE expresses the change in hY
j 

had one changed the mediator value from the control 
status, hM

j Dj ¼ 0ð Þ, to the treatment status, hM
j Dj ¼ 1ð Þ, 

while holding the treatment constant at d: The NIE can 
be employed to construct the average causal mediation 

effect (ACME), which represents the first target estimand 
in CMA:

d dð Þ ¼ E dj dð Þ
� �

Other important quantities are the Natural Direct 
Effect (NDE), which indicates the treatment effect 
from setting the mediator to the potential value that 
would occur under treatment d, and the Average 
Natural Direct Effect (ANDE), i.e., the second esti
mand of interest:

fj dð Þ ¼ hY
j Dj ¼ 1, hM

j dð Þ
h i

− hY
j Dj ¼ 0, hM

j dð Þ
h i

f dð Þ ¼ E fj dð Þ
h i

Consistently with Vander Weele and Vansteelandt 
(2009), Imai et al. (2010a, 2010b), Imai et al. (2011), 
Park and Kaplan (2015) and Celli (2022), both the 
ACME and the ANDE are non-parametrically identi
fied under the following assumptions: (i) 0 <
Pr Dj ¼ 1jXj ¼ x
� �

< 1 (i.e., every individual has a 
strictly positive probability to receive the treatment); 
(ii) Pr hM

j dð ÞjDj ¼ d, Xj ¼ x
h i

> 0 (i.e., conditional on 

pretreatment covariates Xj — where pretreatment 
means common causes of the treatment, mediator, 
and/or outcome that are measured before treatment 
— the mediator is not a deterministic function of the 
treatment); (iii) hY

j d0,#Mð Þ, hM
j dð Þ

n o
?DjjXj ¼ x (i.e., 

the two PO are independent of the treatment condi
tional on Xj); (iv) hY

j d0,#Mð Þ?hM
j dð ÞjXj ¼ x, Dj ¼ d 

(i.e., the mediator is ignorable—the potential outcome 
is independent of the potential mediator value—condi
tional on Dj and Xj). Whereas randomizing the treat
ment ensures that assumptions (i) through (iii) are 
met, condition (iv) is more restrictive and more diffi
cult to attain (Heckman & Pinto, 2015). In short, 
assumption (iv) makes sure that there are no treatment 
effects on any variable (whether observable or unob
servable) that would confound the mediator-outcome 
relationship. In other words, the treatment effects are 
identified if there are no unmeasured pretreatment var
iables and no posttreatment confounders (i.e., common 
causes of the mediator and outcome that are measured 
after treatment). Since measuring the mediator and the 
outcome often occurs later than the exposure to the 
treatment, the identification of any mediation effect 
often struggles in face of this restriction. However, as 
discussed by Vander Weele and Vansteelandt (2009) 
there are cases in which assumption (iv) could prove 
more credible. For example, when the mediator is 
measured shortly after the treatment is administered, it 

2However, in some experimental settings, these further assumptions may 
not be necessary.
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is less likely that there might be post-treatment con
founding variables. While in many situations this reads 
as a strong requirement, it may be less problematic for 
experimental settings where surrogate data for the 
mediator are collected through surveys or question
naires by the end of the experiment.

Given assumptions (i) through (iv), we can write 
down an analytical expression for the conditional dis
tribution of the POs (Imai et al., 2010b):

f hY
j d,hM

j d0ð Þ
h i

jXj ¼ x
� �

¼

ð

f hY
j jh

M
j ¼ #

M , Dj ¼d, Xj ¼ x
� �

dFhM
j jDj¼d0, Xj¼x #

Mð Þ

(1) 

where f �ð Þ defines a generic probability density or 
mass function, while d, d0 2 0, 1f g: Equation (1) gen
eralizes the results in Imai et al. (2010a), who provide 
similar results in terms of conditional expectation 
rather than probability distributions. Finally, while the 
ACME and the ANDE can be simply obtained by 
averaging (1) with the respect to the empirical distri
bution of Xj (i.e.: a simple average – Li et al., 2023) 
and plugging in the resulting values into the corre
sponding formulas, we prefer to work with Equation 
(1) directly as it provides for a better understanding 
of algorithm 1 in section “Bayesian estimation”.

Measurement error model

As discussed in section “Measurement error model”, the 
latent quantities denoted as hM and hY are not directly 
observable. Rather, we can only attempt to obtain indir
ect information using surrogate measures, such as Likert- 
valued statements and questions. Since quantifying the 
causal effects defined in the previous section hinges on 
these latent features, our modeling exercise requires a 
coherent methodological framework connecting individ
ual responses to the corresponding hidden attributes. As 
discussed in the introductory section, IRT models stand 
out as a compelling set of empirical tools that can inform 
both individual-specific and question-specific traits. 
Although these statistical techniques have long been 
solely regarded as psychrometric methods, they are stead
ily gaining popularity across multiple disciplines 
(Thomas, 2019; Yamashita, 2022), including applications 
to measurement error modeling (Fox, 2005; Fox & Glas, 
2003; Soregaroli et al., 2022; Stranieri et al., 2021).

When participants to an experiment are asked to 
rate Likert-valued statements, where the lowest and 
highest values correspond to strong disagreement and 

strong agreement, respectively, the Rating Scale Model 
(RSM—Andrich, 2005, 2016) provides a sensible prob
abilistic framework to link response scores to two 
abstract components, i.e.: “item difficulty” and “person 
ability” (Wright, 1977). Unlike more complex IRT 
models, the standard RSM assumes that the distance 
between item difficulty values remains constant across 
all items. This assumption is reasonable when item 
responses are obtained using a fixed set of behavioral 
thresholds (e.g., Likert-type scales). Additionally, 
because all coefficients in a RSM represent positions 
on an underlying latent variable, they enable objective 
comparisons of individuals and items.

Mathematically, the standard RSM model can be 
formulated as follows (Andrich, 2005, 2016; Van der 
Linden, 2018: Chapter 5):

Pj, r, q ¼ Pr rj, q ¼ rjhj, bq, j
� �

¼

exp
Pr

l¼1 hj − bq − jl
� �n o

1þ
PR

k¼1exp
Pk

l¼1 hj − bq − jl
� �n o (2) 

where q 2 1, :::, Qf g indicates the qth item (i.e.: state
ment or question), j represents the jth person (i.e.: the 
individual or respondent), r 2 f1, 2, :::, Rg is the 
response given by person j to any item q, Pj, r, q indi
cates the probability that person j answers r to item 
q, bq stands for the qth item’s difficulty, j is a R-vec
tor of thresholds j ¼ j1, :::, jR½ �, and hj refers to the 
jth person’s ability. A popular extension to the model 
in Equation (2) is the generalized RSM (GRSM – 
Muraki, 1992), where the parameter set now includes 
a discrimination parameter, a:

Pa
j, r, q ¼ Pr rj, q ¼ rjhj, aq, bq, j

� �

¼

exp
Pr

l¼1 aqhj − bq − jl
� �n o

1þ
PR

k¼1exp
Pk

l¼1 aqhj − bq − jl
� �n o (3) 

These additional coefficients are proportional to the 
strength of the relationship between the latent individ
ual characteristic and the chances of choosing option 
r: Therefore, positive values of aq correspond to 
statements where individual with higher hj will choose 
r with higher probability, and vice versa (Bafumi 
et al., 2005). For simplicity, we re-formulate Equation 
(3) more compactly as:

rj, qjhj, aq, bq, j � GRSM hj, aq, bq, j
� �

(4) 

Since we are interested in modeling two latent 
characteristics, we extend Equation (4) to:
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rM
j, qjh

M
j , aM

q , bM
q , jM � GRSM hM

j , aM
q , bM

q , jM
� �

rY
j, qjh

Y
j , aY

q , bY
q , jY � GRSM hY

j , aY
q , bY

q , jY
� �

Before describing our estimation procedure, two 
important clarifications need to be made. First, the stand
ard nomenclature of the RSM does not seem to entirely 
fit our analytical framework. In fact, unlike most applica
tions in psychrometric analysis, our primary objective 
does not involve modeling respondents’ abilities or expli
citly correcting for item difficulty. Instead, we exploit this 
probabilistic construct to map sets of Likert-valued state
ments onto continuous measures that share a common 
support. Therefore, to align the IRT terminology with 
our analytical framework, we will henceforth refer to the 
subscripts q and j as “question” and “respondent”, 
respectively, instead of “item” and “person”. Second, 
model (3) is clearly statistically not identified. On the 
one hand, adding a constant to hj, bq and jl does not 
change how the model predicts Pj, r, q (this problem is 
typically called additive aliasing). Consequently, as sug
gested by Bafumi et al. (2005), Gelman and Hill (2006, 
chapter 14.3), Furr (2017), and Luo and Jiao (2018), we 
impose two simple restrictions on model (3): (i) we con
strain both the last statement coefficient bQ and the last 
threshold jR to be the negative sum of the other state
ment coefficients and thresholds, respectively (i.e.: bQ ¼

−
PQ−1

q¼1 bq and jR ¼ −
PR−1

r¼1 jr, so that these terms 
average to zero); (ii) we specify a zero-mean weakly 
informative prior distribution for both the statement 
coefficients and the thresholds to allow identifying the 
mean-function parameters of hj (See sections “Bayesian 
estimation” and “Simulation study”). Besides additive ali
asing, model (3) also suffers from two additional forms 
of indeterminacy known as multiplicative aliasing and 
reflection invariance. These can be worked out by impos
ing two additional model-identifying restrictions (Bafumi 
et al. 2005; Fox, 2005; Fujimoto & Neugebauer, 2020; 
Furr, 2017): (i) placing a log-normal prior on aq, thereby 
restricting the sign of the discriminating parameters to 
positive values;3 (ii) fixing the prior variance of hj to a 
constant value (typically rh ¼ 1). The latter also helps in 
CMA applications in that it ensures that both the latent 
outcome and the latent mediator share the same prior 

scale. Not only is this a sensible assumption when both 
these quantities are measured through Likert-scaled ques
tions that share the same minimum and maximum 
scores, but it is also a common choice in the error-in- 
variables literature (Albert et al., 2016).

Finally, we would like to stress that the GRSM can 
be either replaced by other slightly different IRT mod
els such as the Partial Credit Model (PCM) and the 
Graded Response Model (GRM), or extended in several 
ways, including multilevel, nested (B€ockenholt, 2012) as 
well as multivariate specifications (Fujimoto & 
Neugebauer, 2020). Although there exist model selection 
techniques to determine which formulation provides a 
better fit for the data (see, for example, Fox, 2005 or 
Luo & Jiao, 2018, for a survey of such methods), choos
ing between these alternatives ultimately hinges on the 
structure and purposes of the survey, particularly when 
it comes to the statements’ design. However, since an 
exhaustive treatment of such techniques (as well as a 
comprehensive discussion of the many IRT modeling 
choices) is outside the scope of this paper, we limit our 
discussion to two complementary model checking strat
egies when discussing our empirical application in sec
tion “Empirical application”.

As we illustrate in the following section, our estima
tion strategy hinges on the joint distribution of rq, j, hj, 
bq and j as well as the remaining parameters for the 
conditional mean of hj: This multivariate probability 
function represents the full Bayesian model (Betancourt, 
2020) and can be decomposed into two fundamental 
terms known as likelihood and prior. Using this ter
minology, Equation (3) represents the likelihood of the 
observed data, while hj, bq and j require their own 
prior distributions (Gelman et al., 2013). As recom
mended in Furr (2017), Luo and Jiao (2018) and 
B€urkner (2019), we choose weakly informative priors:4

jz
l �N 0, 3ð Þ for all l 2 1, :::, Rf g

bz
q �N 0, 3ð Þ for all q 2 1, :::, Qzf g

hz
j �N lz

j , rz� �
for all j 2 f1, :::, Ng

az
q � log N 1, 1ð Þ for all q 2 1, :::, Qzf g

(5) 

where z 2 M, Yf g, Qz is the number of questions or 
statements for z, rz ¼ 1 following the identifying 
restrictions defined above, while lz

j are defined in the 
following section.3This is sometimes regarded as a restrictive assumption in that 

discrimination is limited to the relative magnitude of a, rather than its 
sign and magnitude. However, this assumption remains necessary to 
statistically identify model (3) and it is standard practice in the (Bayesian) 
estimation of generalized IRT models. One alternative and less limiting 
approach would be to manually restrict the sign of each a based on 
individual characteristics, as discussed in Bafumi et al. (2005). However, 
since this approach hinges both on the nature of the data and the 
problem at hand, we do not discuss it in our work.

4In the empirical application discussed in section “Empirical application”, 
we also conduct a small sensitivity analysis where we nudge the all the 
priors’ coefficients in Equation (5) to test the stability of our estimates. 
Although these tests show that our results are robust to limited variations 
in the priors’ parameters, we stress that, in general, prior influence tends 
to decrease with sample size (Gelman et al., 2013, p. 355).
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Bayesian estimation

Following the general approach discussed in Imai et al. 
(2010b), Park and Kaplan (2015), Albert et al. (2016) 
and Loh et al. (2020), we devise a simple Bayesian g- 
computation algorithm5 coupled with a tractable specifi
cation for all the terms in Equation (1). The first stage 
of our estimation strategy consists in defining a suitable 
(parametric, non-parametric or semi-parametric) model 
for f ðhM

j jDj, Xj ¼ xjÞ and f ðhY
j jh

M
j ¼ #

M , Dj, Xj ¼ xjÞ:

We begin by assuming that both hM
j and hY

j are nor
mally distributed. Adopting a Gaussian model for the 
latent mediator and outcome is not only convenient in 
that, under linear conditional means, the model becomes 
immediately interpretable as a standard linear SEM 
(Imai et al., 2010a), but it also remains general enough 
since latent variables are typically given this type of dis
tribution (Albert et al., 2016). Moreover, as discussed in 
section “Measurement error model”, the normal distri
bution is also a reasonable and widely adopted prior for 
the respondent coefficients of the GRSM model which, 
likewise, represent latent characteristics (Fox, 2005; Fox 
& Glas, 2003). The overlap between the distributional 
assumptions for the outcome and the mediator, and the 
prior choices for the measurement error model is very 
important for the functioning of the algorithm discussed 
below. The reason lies in the two-step approach of g- 
computation, where step one takes care of estimating 
the parameters of f ðhM

j jDj, Xj ¼ xÞ and f ðhY
j jh

M
j ¼

#M , Dj, Xj ¼ xÞ, while step two makes use of these esti
mates to simulate the POs through the formula in 
Equation (1) (Snowden et al., 2011).

Given a normal model for both the mediator and 
the outcome, characterizing the conditional distribu
tion of hM

j and hY
j requires specifying lM

j and lY
j :

This essentially corresponds to constructing regression 
equations for the two latent quantities of interest. As 
discussed in Imai et al. (2010b) and Preacher (2015), 
setting lM

j or lY
j to linear predictors under either an 

identity or any other canonical link gives rise to a 
linear or generalized linear SEM. However, whereas 
tackling estimation and identification in such cases 
can require rather different approaches, all the 
procedures described here can potentially 

accommodate different distribution functions as well 
as non-parametric or semi-parametric conditional 
expectation functions.

For the sake of illustration, we hereafter assume 
that both lM

j and lY
j are linear in Dj, Xj and hM

j (for 
an extension using a semi-parametric specification see 
Kim et al., 2018). We also include an interaction (i.e.: 
treatment heterogeneity) between the mediator and 
the treatment in the outcome predictor:

lM
j ¼ KM

0 þ KM
D Dj þ X0jK

M
X

lY
j ¼ KY

0 þ KY
DDj þ X0jK

Y
X þ KY

MhM
j þ KY

M, DDjh
M
j

(6) 

where KM
X and KY

X indicate P � 1 vectors of regression 
coefficients for the P � 1 covariate set Xj in the latent 
moderator and outcome equation, respectively. 
Combining Equations (1) and (6) under normally dis
tributed hM

j and hY
j yields:

f hM
j jDj, Xj ¼ x

� �
¼N KM

0 þ KDDj þ x0jK
M
X , rM

� �

f hY
j jh

M
j ¼ #

M , Dj, Xj ¼ x
� �

¼N KY
0 þ KY

DDj þ x0jK
Y
X þ KY

M#
M
j þ KY

M, DDj#
M
j , rY

� �

(7) 

Equation (7) also completes the prior specification 
in Equation (5), to which we add the following 
weakly informative priors for all the “slope” parame
ters:

KM
0 , KY

0 , KM
D , KY

D, KY
M, KY

M, D �N 0, 1ð Þ

KM
p, X, KY

p, X �N 0, 1ð Þ for all p 2 1, :::, Pf g
(8) 

where KM
p, X 2 KM

X and KY
p, X 2 KY

X: These distributional 
choices follow the general principle of avoiding flat 
uninformative priors that, in case of poorly inform
ative likelihoods, can cause severe mixing problems in 
Markov chain Monte Carlo (MCMC) sampling algo
rithms (Gelman et al., 2017; Lemoine, 2019; Park & 
Kaplan, 2015; Smid et al., 2020). Specifically, since 
rM ¼ rY ¼ 1 and provided that all the binary and 
continuous variables in Xj have been centered or 
standardized, respectively, the N 0, 1ð Þ represents a 
good default for linear regression models (Gelman 
et al., 2008; Ghosh et al., 2018). In the simulation 
exercise discussed in section “Sensitivity analysis”, 
however, we also test our model against wider priors 
for the K parameters.6 Equations (3), (5), (7) and (8), 

5Notice that, unlike the approaches described in Imbens and Rubin (2015, 
p. 150), Ding and Li (2018, p. 223) and Li et al. (2023, p. 6), our statistical 
model does not attempt to explicitly define a joint distribution for the 
potential outcomes and the model parameters. Rather, the full Bayesian 
model only serves to combine the modelling steps in Equations (3) and 
(7) with the identification strategy described in Section “Measurement 
error model”. In other words, whereas the estimation stage is fully 
Bayesian, identification follows a different conceptual path.

6All the results discussed in the empirical application presented in Section 
“Empirical application” also show stability to different choices of prior for 
K such as N 0, 2:5ð Þ and N 0, 5ð Þ:
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make up the full Bayesian model from which we can 
sample via MCMC methods (see Appendices7 A1 and 
A2 for details, supplementary material).

Suppose now that S uncorrelated samples were suc
cessfully collected from the joint posterior distribution 
of the parameters in Equation (7). Then, calculating the 
ACME and the ANDE involves: (i) plugging such esti
mates in the corresponding formulas to approximate the 
conditional distributions of hM

j and hY
j ; (ii) imputing 

the POs via Monte Carlo integration of Equation (1). 
Park and Kaplan (2015), who provide a Bayesian alter
native to the algorithm proposed by Imai et al. (2010b), 
illustrate one way of computing these quantities using 
the posterior distribution of the coefficients in Equation 
(6). Their idea essentially resides in sampling POs 
from the conditional means E½hM

j jDj, Xj ¼ x� ¼ lM
j and 

E½hY
j jh

M
j ¼ #

M , Dj, Xj ¼ x� ¼ lY
j , and use them to dir

ectly quantify all the causal estimands (see Imai et al., 
2010a: Theorem 1). Although the authors show that this 
procedure yields unbiased estimates of dðdÞ and fðdÞ, 
it does not make full use of the distributions in 
Equation (7) since the potential values of both the medi
ator and the outcome are only generated using their 
expected values. In this respect, imputation through the 
conditional mean disregards the variance of hM

j and hY
j , 

i.e.: rM and rY , thereby resulting in overconfident (i.e., 
narrower) credible intervals for the resulting predictions. 
This can be especially limiting when hM

j and hY
j are 

latent, as incorporating the uncertainty in these unob
servable respondent characteristics is an essential feature 
of the measurement error model. To this extent, imput
ing potential values using f ðhM

j jDj, Xj ¼ xÞ and 
f ðhY

j jh
M
j ¼ #

M, Dj, Xj ¼ xÞ is consistent with the prob
lem in Equation (1), where the integration is defined 
with respect to the whole conditional distributions of 
the counterfactuals (see Imai et al., 2010b: Theorem 1). 
A similar argument is sustained by Keil et al. (2018), 
who devise a g-computation formula based on the pos
terior predictive distribution (PPD) of the POs in a 
standard binary treatment setup.

To provide more conservative estimates of dðdÞ
and fðdÞ, we propose the procedure is stylized in 

algorithm 1, where the set f~#
Y , ðsÞ
j ðd, d0Þjs 2 1, :::, Sg, 

for all j 2 f1, :::, Ng, represents8 S draws from 

f ðhY
j ½d, hM

j ðd
0Þ�jXj ¼ xÞ, while ~K

M, ðsÞ
0 , ~K

M, ðsÞ
D , ~K

M, ðsÞ
X , 

~K
Y , ðsÞ
0 , ~K

Y , ðsÞ
D , ~K

Y , ðsÞ
X , ~K

Y , ðsÞ
M , ~K

Y , ðsÞ
M, D , ~rM, ðsÞ and ~rY , ðsÞ

indicate samples from the posterior distributions of 
the parameters in Equation (7),9 and steps (1) through 
(3) make use of the assumption that hM

j and hY
j are 

normally distributed.

Algorithm 1: Bayesian g-computation
For all s 2 1, :::, Sf g do:

For all j 2 1, :::, Nf g do:

ð1Þ Sample from N ~K
M, ðsÞ
0 þ ~K

M, ðsÞ
D d0 þ x0j ~K

M, ðsÞ
X ,

�

~rM, ðsÞ
�

and obtain ~#
M, sð Þ
j d0ð Þ

ð2Þ Sample from N ~K
M, ðsÞ
0 þ ~K

M, ðsÞ
D dþ x0j ~K

M, ðsÞ
X ,

�

~rM, ðsÞ
�

and obtain ~#
M, sð Þ
j dð Þ

ð3:1Þ Sample from N ~K
Y, ðsÞ
0 þ ~K

Y , ðsÞ
D d0þ

�

x0j ~K
Y , ðsÞ
X þ

~K
Y , ðsÞ
M

~#
M, sð Þ
j dð Þþ ~K

Y , ðsÞ
M, D d0~#M, sð Þ

j dð Þ, ~rY , ðsÞ
�

and 

obtain ~#
Y , sð Þ
j d0, dð Þ

ð3:2Þ Sample from N ~K
Y, ðsÞ
0 þ ~K

Y , ðsÞ
D dþ

�

x0j ~K
Y , ðsÞ
X þ

~K
Y , ðsÞ
M

~#
M, sð Þ
j d0ð Þþ ~K

Y , ðsÞ
M, D d~#

M, sð Þ
j d0ð Þ, ~rY , ðsÞ

�
and 

obtain ~#
Y , sð Þ
j d, d0ð Þ

ð3:3Þ Sample from N ~K
Y, ðsÞ
0 þ ~K

Y , ðsÞ
D dþ

�

x0j ~K
Y , ðsÞ
X þ

~K
Y , ðsÞ
M

~#
M, sð Þ
j d0ð Þþ ~K

Y , ðsÞ
M, D d~#

M, sð Þ
j d0ð Þ, ~rY , ðsÞ

�
and 

obtain ~#
Y , sð Þ
j d, dð Þ

ð3:4Þ Sample from N ~K
Y, ðsÞ
0 þ ~K

Y , ðsÞ
D d0þ

�

x0j ~K
Y , ðsÞ
X þ

~K
Y , ðsÞ
M

~#
M, sð Þ
j d0ð Þþ ~K

Y , ðsÞ
M, D d0~#M, sð Þ

j d0ð Þ, ~rY , ðsÞ
�

and 

obtain ~#
Y , sð Þ
j d0, d0ð Þ

ð4:1Þ Compute ~d
ðsÞ
G ðdÞ ¼ N−1PN

j¼1
~#

Y , sð Þ
j d, 1ð Þ

h i

−  

N−1PN
j¼1

~#
Y , sð Þ
j d, 0ð Þ

h i

ð4:2Þ Compute ~f
ðsÞ
G ðdÞ ¼ N−1PN

j¼1
~#

Y, sð Þ
j 1, dð Þ

h i

−  

N−1PN
j¼1

~#
Y , sð Þ
j 0, dð Þ

h i

Even though the posterior quantities produced 
by algorithm 1 will be approximately centered 
around the values obtained with the methods dis
cussed in Park and Kaplan (2015), the former will 
entail more uncertainty, resulting in larger credible 
intervals. How wider these intervals will be is going 
to depend on the index of dispersion of hM

j 

and hY
j

Finally, it is important to stress that, under linear 
lM

j and lY
j and normal priors on hM

j and hY
j , one 

7Appendix A1 and A2 can be found in the supplementary material 
available online on OSF.io at: https://osf.io/8bz4j/?view_only= 
9a067a723dbd41b4bbc3fd6b922ddacc.
8Conditioning on Xj ¼ x is omitted to simplify notation.

9Notice that, using the GRSM as a measurement error model, the variance 
of hM

j and hY
j is fixed to a constant, so ~rz, sð Þ ¼ rz for all s 2 1, :::, Sf g:

312 A. VARACCA



could directly use the posterior distribution of KM
0 , 

KM
D , KY

M , KY
M, D, KY

D and KM
X to quantify the two esti

mands of interest via coefficients’ multiplication (Imai 
et al., 2010b):

~d
ðsÞ

dð Þ ¼ ~K
M, ðsÞ
D

~K
Y , ðsÞ
M þ ~K

Y , ðsÞ
M, D d

� �

~f
ðsÞ

dð Þ ¼ ~K
Y , ðsÞ
D þ ~K

Y , sð Þ
M, D

~K
M, ðsÞ
0 þ ~K

M, ðsÞ
D dþ x 0 ~K

M, ðsÞ
X

� �

where x ¼ N−1PN
j¼1 xj: Notice that, under standardized 

covariates, both KM
0 ¼ 0 and x ¼ 0, so ~K

M, ðsÞ
0 and the 

x 0 ~K
M, ðsÞ
X term drop out of the equation for ~f

ðsÞ
ðdÞ: The 

multiplication approach is commonly used in Bayesian 
SEM (Lawson et al., 2023; McCandless & Somers, 2019; 

Yuan & MacKinnon, 2009). However, unlike ~d
ðsÞ
G ðdÞ

and ~f
ðsÞ
G ðdÞ, the results obtained in this way do not 

marginalize over rM and rY and, because of that, they 
will perfectly align with the estimates obtained through 
imputation the conditional means-based imputation. 
The empirical application presented in section 
“Empirical application” provides a comparison between 
dðdÞ and fðdÞ when these are estimated using either 
the marginal or the conditional predictive distribution of 
the latent outcome and the latent mediator.

Simulation study

The non-parametric identification of the causal esti
mands discussed in section “Identification of the treat
ment effects” clearly hinges on the parameters of 
Equation (7) being themselves statistically identified.10

Although section “Identification of the treatment 
effects” briefly mentions that the restrictions applied 
to the discrimination, question and threshold parame
ters in the GRSM model allow identifying the slope 
coefficients in the mean function of hM

j and hY
j , the 

fact that lY
j also includes latent regressors in the form 

of hM
j may further complicate the estimation of these 

parameters. In other words, had the coefficients 
KM

0 , KM
D and KM

X not been identified though the con
straints discussed above, the posterior distribution of 
hY

j would likely be biased and so would the estimates 
of KY

0 , KY
D, KY

M, KY
M, D and KY

X: Since the g-computation 

algorithm presented in section “Bayesian estimation” 
(as well as the coefficient multiplication method) sim
ulates counterfactuals through the posterior distribu
tion of the parameters above (and also rM , rY in the 
basic RSM specification), these need to be correctly 
estimated when sampling from the full Bayesian 
model implied by Equations (4), (5) and (8). In this 
section, we discuss an extensive simulation study 
where we assess the approximated posterior distribu
tion of the coefficients in lM

j and lY
j as well as the 

corresponding causal effects. To do so, we exploit the 
class of simulation-based calibration methods devel
oped by Cook et al. (2006), Talts et al. (2018) and 
Schad et al. (2021). The idea is to provide a fully 
Bayesian implementation of the standard routines 
designed to validate frequentist estimators. The main 
difference between the two approaches is that, in the 
Bayesian case, the target parameters are not fixed 
quantities, but they have their own distribution. 
Therefore, our evaluation exploits the properties of 
the full Bayesian model to address the coherence 
between a range of ‘true’ parameter values generated 
through the prior distributions and the resulting pos
terior (Betancourt, 2020; Talts et al., 2018).

Following the notation introduced and discussed in 
Appendix A1 (supplementary material), let KM ¼

½KM
0 , KM

D , KM
X � be a ðP þ 2Þ � 1 coefficient vector, call 

KY the ðP þ 4Þ � 1 parameter vector ½KY
0 , KY

D, KY
X, 

KY
M , KY

M, D�, and let L ¼ ðP þ 2Þ þ ðP þ 4Þ: Define also 
the L-dimensional vector K ¼ ½KM , KY � and let f ðKÞ be 
the corresponding (joint) prior distribution. With a 
slight abuse of notation, define the sets of remaining 
(complement) GRSM parameters as KM, c and KY , c, 
respectively, which we also concatenate into Kc ¼

½KM, c, KY , c� with (joint) prior f ðKcÞ: Furthermore, indi
cate with rz

j the Qz � 1 vector rz
j ¼ ½r

z
j, 1, :::, rz

j, Qz �: We 
can aggregate the latter over j into a NQz � 1 array 
rz ¼ ½rz

1 , :::, rz
N � and form the full set of observed 

responses r ¼ ½rM , rY � with joint likelihood function 
f ðrjK, KcÞ ¼ f ðrMjKM , KM, cÞf ðrY jKY , KY , cÞ: Finally let 
K�, Kc, � represent ‘true’ parameter values drawn from 
the joint prior f ðK, KcÞ ¼ f ðKÞf ðKcÞ using the configu
rations in Equations (5) and (8), and consider observa
tions r� obtained from f ðrjK�, Kc, �Þ: Then, the tuple 
½r�, K�� represents a draw from the joint distribution 
f ðr, KÞ / f ðKjrÞ, implying that K� is itself a draw from 
the posterior distribution f ðKjrÞ: Therefore, given a S�

L matrix of posterior samples ~K ¼ ½~K
ð1Þ

, :::, ~K
ðSÞ
�
0

obtained by fitting f ðKjr�Þ, the marginal distribution of 

K� should be the same as that of any ~K
ðsÞ
2 ~K: If not, 

10Notice that causal identification differs from statistical identification. 
Whereas the former makes sure that the causal estimands defined in 
section “Methodology” capture the intended treatment effect under 
assumption (i) through (iv), the latter refers to the extent to which the 
data can inform the prior within the ensemble defined by the full 
Bayesian model (Gelman et al., 2013; Schad et al., 2021). Throughout this 
section, we discuss statical identification.
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the sampler is likely ill-designed and the resulting par
ameter estimates might be unreliable.

Among the strategies designed to validate an algo
rithmic approximation to the posterior of interest, 
Talts et al. (2018) discuss how to construct rank statis

tics based on K� and ~K
sð Þ
: Since the sampler should 

not produce parameter values that are larger or 
smaller than the true posterior, nor the variance of 
the posterior samples should exceed the true posterior 
dispersion, one can use knowledge of K� to assess 
~K

sð Þ as sketched in algorithm 2. 

Algorithm 2: Simulation-based calibration
For all k 2 1, :::, Kf g do:

(1) Sample from f Kð Þ and f Kcð Þ to obtain K�k and  
Kc, �

k
(2) Sample from f rjK�k , Kc, �

k
� �

and obtain r�k
(3) Fit f Kjr�k

� �
and obtain the S� L matrix ~Kk

For all l 2 1, :::, Lf g do:
(3.1) For all s 2 1, :::, Sf g calculate  

i sð Þ
l, k ¼ I K�l, k <

�
~K

sð Þ
l, kg

(3.2) Calculate ranks as Rl, k ¼
PS

s¼1 i sð Þ
l, k

Intuitively, had the computation been successful, 
the posterior distribution should overlap with the 

prior, yielding K�k � ~K
sð Þ

k for all s 2 1, :::, Sf g: In this 
case, the sequence of rank statistics Rl, kjk 2 1, :::, Kf g

for some parameter Kl 2 K should be approximately 
uniformly distributed. Otherwise, the rank distribution 
will take on different shapes depending on the local 
differences between the prior and the posterior11

(Cook et al., 2006; Talts et al., 2018).

Discrepancies between K� and ~K
sð Þ can be also 

investigated using two useful summary statistics dis
cussed in Schad et al. (2021). One the one hand, one 
can calculate z-scores as:

zl, k ¼
Ê ~Kl, k
� �

− K�l, k

r̂ ~Kl, k
� �

where ~Kl, k indicates the S� 1 vector of posterior 
draws for parameter l in iteration k (i.e., the lth column 

of the ~Kk matrix), while Ê �½ � and r̂ �ð Þ represent the 
empirical posterior mean and standard deviation, respect
ively (see algorithm 3). These indicators capture how 
much the posterior mean overlaps with the true param
eter, weighted by the posterior uncertainty. Therefore, z- 
scores quantify how accurately the computed posterior 
recovers the true model configuration through a combin
ation of bias and precision. Specifically, smaller values of 
zl, k indicate that the posterior more strongly concentrates 
around the true value, while larger values suggest that 
the posterior concentrates away from ground truth. The 
last metric that we use in our simulation exercise is the 
posterior contraction:

cl, k ¼ 1 −
r̂ ~Kl, k
� �

r K�l
� �

" #2 

where r K�l
� �

is the prior standard deviation of param
eter l (see Equation 8). Since the additional information 
provided by the likelihood should reduce uncertainty, 
the posterior variance is expected to be smaller than the 
prior variance. Therefore, in case of highly informative 
data, the numerator decreases, thereby triggering poster
ior contraction and bringing cl, k close to one. In this 
case, we say that the parameter is statistically identified 
(Gelman et al., 2013; Schad et al., 2021). Vice versa, 
when the data fails to inform Kl, the ratio between the 
two variances will be close to one, pushing cl, k toward 
zero. Both z-scores and posterior contraction measures 
are calculated following algorithm 3. 

Algorithm 3: z-scores and posterior contraction
For all k 2 1, :::, Kf g do:

(1) Sample from f Kð Þ and f Kcð Þ to obtain K�k and  
Kc, �

k
(2) Sample from f rjK�k , Kc, �

k
� �

and obtain r�k
(3) Fit f Kjr�k

� �
and obtain the S� L matrix ~Kk

For all l 2 1, :::, Lf g do:

(3.1) Calculate Ê ~Kl, k
� �

¼ S−1PS
s¼1

~K
sð Þ

l, k

(3.2) Calculate r̂ ~Kl, k
� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S−1
PS

s¼1
~K

sð Þ
l, k − Ê ~Kl, k

� �� �2
r

(3.3) Calculate z-scores as zl, k ¼
Ê ~K l, k½ �−K�l, k

r̂ ~K l, kð Þ

(3.4) Calculate posterior concentration as  

cl, k ¼ 1−  r̂ ~K l, kð Þ
r K�lð Þ

� �2

Ideally, the distribution of zl, k and cl, k across the K 
generated dataset should be inspected jointly, meaning 
that optimal performance corresponds to both z-scores 

11Notice that calibrated sampling algorithms make sure that the credible 
intervals obtained from the resulting posterior distribution provide 
(approximate) nominal coverage (Schad et al., 2021; Talts et al., 2018). 
Therefore, across all simulations, any X% posterior credible intervals will 
include the ‘true’ parameters in approximately X out of 100 replications. 
Since simulating implies that there can be many different X% credible 
intervals, the average coverage will be X% for all of them.
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centered around zero and posterior contractions skewed 
toward one.

Our simulation exercise proceeds as follows: we 
begin by constructing a simple I� 2 covariate matrix 
using Xi, 1 �Nð2, 1Þ and Xi, 2 � Gammað1, 2Þ, for all 
i 2 f1, :::, I g, where I is the number of respondents 
in the simulated data. We next randomly assign each 
observation to either a treatment or a control group 
via Di � Bernoullið0:5Þ: To test our algorithm against 
differently sized samples, we set I to 50, 100 and 
150. Finally, we generate responses for M and Y 
on a 1 to 5 Likert scale via rz

i, qjh
z
i , az

q , bz
q , jz �

GRSMðhz
i , az

q , bz
q , jzÞ, with Q set to either 3, 5 or 8 

(step 2 of Algorithms 2 and 3), while we randomly 
extract ‘true’ parameters for hz

i , az
q , bz

q and jz from 
the priors defined in Equation (5), (6) and (7) (step 
1 of Algorithms 2 and 3). We also simulate the 
regression coefficients in both the mediator and the 
outcome conditional mean function using the priors 
in Equation (8). Since step 3 in algorithms 2 and 3
requires fitting the model multiple times, we set K ¼
250 to keep computation time reasonably low.

Figure 2 displays the calculated ranks, contractions 
and z-scores12 for KM ¼ ½KM

1 , KM
X �, where KM

1 corre
sponds to KM

D in Equations (6) and (7), KM
X ¼

½KM
2 , KM

3 � indicates the 2� 1 coefficient vector13 for 
the 2� 1 simulated covariate vector Xi ¼ ½Xi, 1, Xi2�, 
I 2 f50, 100, 150g and Q ¼ 5: Inspecting the rank 
plots revels that the sampler is well calibrated in that 
the posterior of all KM

l 2 KM recovers the prior distri
bution rather precisely (for K ¼ 250). Similarly, all the 
z-scores are relatively close to zero, with most con
tained between the values −2 and of 2, indicating very 
good recovery of the ‘true’ parameters KM, � (vertical 
axis). Contraction ranges also exhibit encouraging 
results, with the most parameters’ posterior draws suc
cessfully incorporating data information and yielding 
very strong contraction in general (i.e., close to 1). 

Figure 2. Simulation results for KM, Q ¼ 5 and I 2 50, 100, 150f g: Each row corresponds to a different sample size, I: The over
impressed values indicate the average posterior contraction (top) and the average z-score (bottom).

12Note that here we are only addressing the posterior distribution of the 
slope parameters as they are essential to correctly estimate the casual 
estimands of interest. This kind of analyses, however, can be easily 
extended to all other model parameters to investigate whether our 
computation provides accurate posterior estimates.
13Since we standardize both X1 and X2, there is no need to simulate 
intercepts KM

0 and KY
0 :
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Unsurprisingly, posterior contractions tend to improve 
as I grows from 50 to 150, although these differences 
are barely noticeable.

Similar results also hold for KY ¼ ½KY
1 , KY

X, KY
4 , KY

5 �, 
where KY

1 , KY
4 and KY

5 correspond to, respectively, 
KY

D, KY
M and KY

M, D in Equations (6) and (7), while 
KY

X ¼ KY
2 , KY

3
� �

as defined in the paragraph above 
(Figure 3). However, since the equation for the latent 
outcome includes variables measured with error in the 
mean function, our simulation produces higher dis
persion in the information gain statistics across the K 
replications (horizontal axis). In fact, the distribution 
of the posterior contractions appears more spread out 
for I ¼ 50 and collapses to one as I grows to 150. 
However, even in cases where I is low, the average 
contraction statistic floors at roughly 0.8, which indi
cates a very good performance. The z-scores for KY 

are also symmetrically distributed around zero, sug
gesting that the corresponding simulated parameters 
were, on average, successfully recovered.

Appendix A414 (figures A5 to A8, supplementary 
material) presents simulation results for both Q ¼ 3 and 
Q ¼ 8: Providing more questions does not seem to con
tribute much to the already good z-scores and posterior 
contractions of KM: On the other hand, setting Q ¼ 3 
yields higher dispersion in the contraction values of KY 

while, conversely, Q ¼ 8 improves on Q ¼ 5 through 
more concentrated contraction statistics. In either case, 
however, the average cl and zl floor at 0.75 and −0.08 
across all KY , indicating high information gain and pre
cision across replications.

Unlike the priors in Equation (5), the distributions in 
Equation (8) are not explicitly referenced in the litera
ture. Rather, they reflect a reasonable range of expected 
coefficients values, given standardized covariates and 
rM ¼ rY ¼ 1: We thus repeat the analysis using more 
diffuse priors for both KM and KY : This configuration 
is more challenging to address because there are higher 
chances of observing large KM, � which may contribute 
to generate noisier hM

i : Consequently, hY
i will also 

exhibit higher dispersion because of the interaction 
between KY , �

4 , KY , �
5 and hM

i : Figures A9 and A10 in 
Appendix 4 (supplementary material) suggest that plac
ing less informative distributions on the slope parame
ters of the mediator’s/outcome’s conditional mean 
changes their rank, z-score, and contraction statistics 
only marginally. As a result, algorithm 1 should not be 

too sensitive to weaker prior knowledge about its core 
components.

Finally, although KM and KY are key to construct 
the causal estimands of interest, they are not of direct 
relevance in mediation analysis. Rather, our interest 
lies in the ACME and the ANDE, which are both 
derived by combining the individual components of 
the two above parameter sets. Therefore, the final step 
of our simulation addresses the ranks, z-scores, and 
contraction values of the four causal quantities intro
duced in section “Identification of the treatment 
effects”. Unfortunately, not all the evaluation metrics 
discussed in this section can be directly applied to the 
g-computation output discussed in section “Bayesian 
estimation”. Since algorithm 1 generates counterfac
tuals by sampling from a normal distribution whose 
mean depends on the posterior estimates of the slope 
coefficients, calculating contraction values becomes 
challenging because the prior variance of the corre
sponding quantities is not available. Furthermore, the 
very definition of rank statistic conflicts with the goal 
of algorithm 1 to incorporate more uncertainty into 
the posterior distribution of the causal estimands. 
Consequently, only z-scores can be consistently calcu
lated and examined. To do so, we modify algorithm 3
by both adding step (1.1), where we construct d�GðdÞ
and f�GðdÞ as in algorithm 1, and re-defining:

zd
k ¼
Ê ~dG, kðdÞ
� �

− d�G, kðdÞ
r̂ ~dG, kðdÞ
� � ; zf

k ¼
Ê ~fG, kðdÞ
h i

− f�G, kðdÞ

r̂ ~fG, kðdÞ
h i

where both ~dG, kðdÞ and ~fG, kðdÞ are S� 1 vector of 
posterior draws for the two causal estimands, respect
ively. Figure 4 reports the z-scores of the four causal esti
mands, indicating that our posterior estimates correctly 
recover the ‘true’ ACME and ANDE values. Results are 
also consistent for Q ¼ 3 and Q ¼ 8 (see Appendix A4, 
figures A11 and A12, supplementary material).

To assess contraction values and ranks, we test our 
estimation approach against d�ðdÞ and f�ðdÞ values 
generated via coefficient multiplication which, as dis
cussed at the end of section “Bayesian estimation”, 
corresponds to a g-computation algorithm using lY 

and lM only. For these quantities, we can obtain prior 
standard deviations r d�ð Þ and r f�ð Þ using the proper
ties of the normal distribution:

r d�ð Þ ¼ r KM, �
D

� �
r KY , �

M

� �
þ r KY , �

M, D

� �
d

h i

r f�ð Þ ¼ r KY , �
D

� �
þ r KY , �

M, D

� �
r KM, �

D

� �
dþ

XP

p¼1
xpr KM, �

p, X

� �
2

4

3

514Appendix A4 can be found in the supplementary material available 
online on OSF.io at: https://osf.io/8bz4j/?view_only=9a067a723dbd41b4bb 
c3fd6b922ddacc
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Figure 3. Simulation results for KY , Q ¼ 5 and I 2 50, 100, 150f g: Each row corresponds to a different sample size, I: The over
impressed values indicate the average posterior contraction (top) and the average z-score (bottom).
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where each individual component can be found in 
Equation (8). All the metrics displayed in Figure 5
confirm the evidence collected in the previous analy
ses: the simulated ACME and ANDE are correctly 
recovered, as indicated by the zero-centered z-scores. 
Average contractions are also satisfactory, although 
dð0Þ exhibits a slightly larger dispersion of informa
tion gain across the replicated datasets. However, 
increasing the sample size quickly skews these values 
toward one. Ranks also appear uniformly distributed 
irrespective of the estimand or the corresponding 
sample size. These results also hold for Q ¼ 3 and 
Q ¼ 8 (see Appendix A4, figures A13 and A14, sup
plementary material).

Sensitivity analysis

One common criticism to the approach described in 
sections “Identification of the treatment effects” 
through “Bayesian estimation” is that the conditional 
independence assumption between the latent mediator 
and the latent outcome is often too strong of an iden
tifying condition (Celli, 2022; Heckman & Pinto, 
2015). Likewise, Equation (7) implicitly postulates 
zero residual correlation between hM

j and hY
j , imply

ing no association between the two quantities after 
controlling for the mediator and the treatment. One 
way that this assumption does not hold is the pres
ence of unobserved confounding variables that affect 
both the mediator and the outcome (Imai et al., 

2010a, 2010b). Since the credibility of the estimated 
ACME and ANDE hinges on mediator’s conditional 
ignorability, we present a simple sensitivity test targeting 
the potential correlation between hM

j and hY
j : Building 

on the model introduced in section “Bayesian 
estimation”, we can re-write Equation (7) as:

hM
j

hY
j

 !

�N2
lM

j
lY

j

" #

, rM q

q rY

� � !

(9) 

where both lM
j and lY

j are defined in Equation (6)
and q 2 −1, 1½ �: Clearly, for q ¼ 0, Equation (9)
reduces to Equation (7), which holds under the five 
assumptions listed in section “Identification of the 
treatment effects”. Therefore, to assess the extent to 
which failures of sequential ignorability could impact 
the causal estimands of interest, we replace the uni
variate prior distributions on both hM

j and hY
j with a 

multivariate normal where rM ¼ rY ¼ 1 and q is 
fixed to some sensitivity value. To probe the consist
ency of our results against different degrees of 
dependence between the two latent constructs, we re- 
estimate the ACME and the ANDE by setting q to 
−0.8, −0.5, 0.5, and 0.8 and compare the resulting 
posterior distributions to those obtained under inde
pendence (i.e., q ¼ 0). If the estimates obtained with 
values of q 6¼ 0 deviate too much from the baseline, 
the assumption of no unobserved confounding 
becomes more central to the credibility of the 
analysis.

Figure 4. Simulation results for dG dð Þ and fG dð Þ, Q ¼ 5 and I 2 50, 100, 150f g: Each box corresponds to a different sample size, 
I: The overimpressed values indicate the average z-score.
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Empirical application

The identification and estimation approaches pre
sented in section “Methodology” can be easily applied 
to several experimental settings. As discussed in sec
tion “Methodology”, Likert-scaled questions and CMA 
are in fact the bread and butter of many survey-based 
studies where the two main quantities of interest (i.e.: 
the outcome and the mediator) can only be indirectly 
elicited via structured questionnaires or other similar 
tools. In the following, we briefly present an empirical 

application from a randomized experiment designed 
to assess the willingness to buy for a food product 
under two different labeling schemes. Participants 
were either shown a label describing the product’s 
nutritional characteristics (the so-called Nutriscore) or 
a label indicating that the food belongs to a so-called 
geographical indication (GI). The hypothesis is that 
the effect of the labels on the purchase intention is 
mediated by a latent construct that corresponds to the 
“healthiness” of the product as perceived by the 

Figure 5. Simulation results for d dð Þ and f dð Þ, Q ¼ 5 and I 2 50, 100, 150f g: Each row corresponds to a different sample size, 
I: The overimpressed values indicate the average posterior contraction (top) and the average z-score (bottom).
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respondents (Ikonen et al., 2020). Both the purchase 
intention and the perceived healthiness were captured 
by two sets of Likert-valued questions (3 and 7 ques
tions, respectively) which we use to elicit hY

j and hM
j , 

respectively. Alongside these scores, control variables 
including respondents’ nationality, degree, age, 
income, and family size were also collected. The 
experimental design consisted of a 2� 2 factorial 
design which identifies four labeling conditions: no 
label (condition A), just one of the two labels (GI 
only—condition B; Nutriscore only—condition C) or 
both (condition D). Data were collected utilizing a 
between subject sampling scheme, where respondents 
were randomly assigned to one of the four experimen
tal conditions. The survey was conducted online and 
administered throughout the Qualtrics platform.15 To 

be eligible for the questionnaire, the respondents had 
to be above 18 years old, and declare to be at least 
partially involved in the shopping for their household. 
The final database included validated responses from 
1,524 individuals living in Italy and The Netherlands.

To illustrate our methodological contribution, we 
focus on the Nutriscore label (condition C) and assess 
the ACME and ANDE when the this is compared 
against condition A (no label). In doing so, we con
trast the results attained through algorithm 1 to the 
estimates obtained using the coefficients’ product 
approach or the corresponding conditional g-compu
tation method. Appendix A3 (supplementary mater
ial)16 also discusses several convergence checks for the 
sampling algorithm that we used to approximate the 
posterior densities of the parameters in Equations (5)
and (8). Figure 6 shows the distribution of the two 

Figure 6. Posterior distributions for the ACME (top panels) and the ANDE (bottom panels) using the model implied by Equations 
(3) (5), (7) and (8) in Algorithm 1 (Full Distribution – rightmost panel), by solely resorting to conditional mean imputations 
(Conditional Mean – central panel) and through coefficients’ multiplication (Coef. Mult. – leftmost panel). The solid lines at the bot
tom of the plots represent 95% credible intervals, while the solid vertical lines indicate zero (no) effect.

15All participants involved in the experimental survey have duly 
completed and signed the informed consent form. Additionally, it is 
important to note that the study adheres to all other requirements 
mandated by national legislations.

16Appendix A3 can be found in the supplementary material available 
online on OSF.io at: https://osf.io/8bz4j/?view_only=9a067a723 
dbd41b4bbc3fd6b922ddacc.
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causal quantities when these are estimated through 
algorithm 1 (Full Distribution), by the g-formula in 
Park and Kaplan (2015) (Conditional Mean) or via 
coefficient multiplication (as in linear SEMs).

Our results suggest strong evidence of a positive 
direct effect of the Nutriscore label on the respond
ents’ purchase intentions (i.e.: the latent outcome - 
top panels), while the effect mediated by the perceived 
healthiness of the product (i.e.: the latent mediator— 
bottom panels) exhibits the opposite sign. Focusing 
on the latter, whereas the 95% credible intervals (solid 
horizontal bars) calculated using predictions from the 
conditional mean function (central panel) or coeffi
cients’ multiplication (leftmost panel) do not include 
zero (solid vertical lines), the one constructed using 
Algorithm 1 (rightmost panel) does. The reason for 
this difference is the larger dispersion in the posterior 
distributions of dðdÞ, when this is approximated by 
simulating POs from Equation (7) rather than 
Equation (6). This difference is also noticeable when 
switching to fðdÞ, albeit less striking and neutral on 
the results.

At this point, it is worth mentioning that the latent 
constructs estimated through IRT models are typically 
best understood within the context of the analysis. In 
other words, our modeling approach assumes that the 
meaning researchers will attribute to the latent varia
bles, as well as the structure of corresponding surveys, 
have been validated either before or while running the 
experiment (using, for example, a pilot sample). 
Conveniently, IRT models can be also used for meas
urement scales validation. Put differently, one can 
exploit the same modeling techniques presented in 
section “Measurement error model” to understand the 
extent to which a set of questions helps identifying 

the unobservable individual traits, conditional on the 
chosen model configuration. To this end, one could 
study the discrimination and difficulty parameters, the 
item characteristic curves and the amount of informa
tion provided by each item (question) to fine-tune the 
corresponding measurement system. However, since 
latent features are always defined on a dimensionless 
scale with approximately known range, one can only 
make sense of the relative size of d dð Þ and f dð Þ by 
comparing them against the empirical distribution of 

ĥ
Y
j ¼ Ê ~h

Y
j

h i

, where ~h
Y
j ¼

~h
Y , ð1Þ
j , :::, ~h

Y , ðSÞ
j

h i

, for all 
j 2 1, :::, Nf g: If one wished to give the latent medi
ator and/or the latent outcome (and, consequently, to 
the causal estimands) a practical interpretation, a 
sensible strategy could involve mapping these con
structs to a measurable quantity that can be more eas
ily appreciated within the scope of the experiment. To 
provide a concrete example, one could easily design a 
follow-up or contextual study to address if and to 
what extent a (unit) change along the hY scale (i.e., 
purchase intention) translates to an observed (or 
stated) purchasing behavior (i.e., willingness to pay) 
using, for example, a choice experiment. Yet, given 
the contextual specificity of these exercises, we believe 
that a deeper discussion of these complementary 
aspects is best suited for a future applied work.

Figure 7 shows the results of the sensitivity analysis 
presented in section “Sensitivity analysis”. These 
plots report the posterior distributions of both 
dG d, qð Þ (left panels) and fG d, qð Þ (right panels) for 
q 2 −0:8, − 0:5, 0, 0:5, 0:8f g: What emerge is that, 
although our estimated ACME decreases for negative 
values of q, the corresponding uncertainty tends to 
get larger as we move away from null effects (solid 

Figure 7. Sensitivity for the ACME (left panels) ANDE (right panels) obtained through Algorithm 1 for values of q 2

−0:8, − 0:5, 0:5, 0:8½ �: The solid vertical lines indicate zero (no) effect.
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vertical line). On the other hand, when q takes on 
positive values, the ACME shifts toward zero and its 
posterior distribution contracts around the point esti
mate. Conversely, the ANDE remains positive and 
grows for negative correlation values, while it shifts 
back to zero when q moves into positive territory. It 
also worth noticing that both casual estimands move 
very little for large changes in negative correlation 
(i.e., the posterior distributions of the ACME and 
ANDE change very little between q ¼ −0:5 and 
q ¼ −0:8), while they tend to be more responsive to 
similar changes in positive q (i.e., when the correl
ation parameter moves from q ¼ 0:5 to q ¼ 0:8). 
Overall, these results indicate that our estimated 
effects can be quite sensitive to violations of the 
sequential ignorability assumption. Therefore, caution 
is recommended when interpreting these coefficients 
causally, unless it is reasonable to posit the absence of 
unobserved confounders.

As put forward in section “Measurement error 
model”, we finally discuss two simple model checking 
techniques aimed at investigating how well the GRSM 
fits our survey data. All the plots depicted in Figures 
8 through 10 hinge on the PPD of rz

j, q, which 

corresponds to the marginalization (Gelman et al., 
2013; Kruschke, 2014):

f ~rz
j, qjr

z
� �

¼

ð

f rz
j, qjK ¼ k, Kc ¼ kc

� �
dFK, Kcjr k, kcð Þ

(10) 

where dFK, Kcjr indicates the posterior distribution of 
K, Kc: This quantity is approximated by sampling 
parameter values ~K, ~K

c
� dFK, Kcjr and using the 

resulting draws to sample from 

f rz
j, qjK ¼

~k, Kc ¼ ~k
c

� �
: Figures 8 and 9 depict the 

sum of responses equal to 1, 2, 3, 4 and 5 for each 
question used to identify the corresponding unobserv
able quantity (i.e.: the latent mediator or the latent 
outcome). These representations are inspired by the 
score plots in B�eguin and Glas (2001), where the 
authors evaluate a 3-paramters logit model by com
paring the expected and predicted number of correct 
answers. The black dots in figures 8 and 9 indicate 
the observed sums, while the grey density plots repre
sent the posterior predictions of the same quantities 
obtained by extracting S samples from the empirical 
approximation of Equation (10). Since the black dots 

Figure 8. Posterior predictive checks for the latent mediator’s model in Equation (3). The black dots represent the observed sum 
of responses equal to 1, 2, 3, 4 and 5 for each question. The grey density plots indicate the corresponding predicted sum obtained 
by sampling from model (12).
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fall either within or very close to the predictive distri
bution in most cases, this indicates that the GRSM 
does a reasonable job in fitting the data structure of 
our sample. However, results for the latent mediator 
suggest that there is room for improvement, especially 
for questions 5 and 6 where predictions appear farther 
apart from the observed scores.

Our second model assessment test is based on the 
frequency distribution of the respondent-specific aver
age distance between observed and predicted 
responses. We calculate such distances as:

dz
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XQz

q¼1

rz
j, q − Ê ~rz

j, q

h i� �2

Nq

v
u
u
u
t

where ~rz
j, q is a S-vector of simulations ~rz

j, q ¼

~rz, ð1Þ
j, q , :::,~rz, ðSÞ

j, q

h i

: The corresponding plots are reported 

in Figure 10, which essentially corroborates the 
insights provided by Figure 8 and Figure 9. Indeed, 
the average distances for the outcome model seem to 

suggest a satisfying fit, while the predicted responses 
pertaining to the mediator model indicate that the lat
ter could be improved. However, most of the distan
ces are in both cases less than one, propounding an 
overall reasonable performance of the GRSM.

Conclusions

Causal mediation analysis in an important approach 
to causal inference in that it not only allows to tackle 
the problem of quantifying the total effect of a treat
ment on a given outcome, but it also enables to break 
down this effect into a direct and indirect component. 
The latter postulates the existence of a mediating vari
able (i.e.: the so-called mediator) and often represents 
the causal estimand of interest known as average cas
ual mediation effect. In the context of casual medi
ation analysis, several authors have discussed how 
measurement errors in the mediator may lead to 
biased estimates, recommending to control for error- 
in-variables when approaching this type of analysis. 
This issue is particularly relevant when working with 
survey data, where the mediator, the outcome, or both 
are typically measured through surrogate polytomous 
items such as Likert-scaled question. When this type 
of data represents the only way through which latent 
measures can be quantified, item response theory 
models provide a theoretically sound approach to map 
indirect discrete proxies on a continuous scale that 
characterizes the unmeasurable quantity of interest. In 
this paper, we have exploited the probabilistic nature 
of these statistical techniques to construct a simple 
Bayesian algorithm aimed at estimating both the dir
ect and the indirect effect of a binary treatment on a 
latent outcome variable, through a latent mediator. 
Our identification strategy closely followed that of 

Figure 9. Posterior predictive checks for the latent outcome’s model in Equation (3). The black dots represent the observed sum 
of responses equal to 1, 2, 3, 4 and 5 for each question. The grey density plots indicate the corresponding predicted sum obtained 
by sampling from model (12).

Figure 10. Posterior predictive checks for the latent mediator’s 
model in Equation (3). The dark grey bars represent the 
respondent-specific distances for dz

j and z ¼ M, while the 
light grey bars represent the respondent-specific distances for 
dz

j and z ¼ Y:
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previous seminal works in that it leveraged the poten
tial outcome framework and the conditional ignorabil
ity of the mediator to work out tractable expressions 
for the causal estimands. In this respect, we discussed 
how our methodology compares to other similar pro
posals in casual mediation analysis and highlighted 
the main differences between our approach and the 
existing literature. In particular, we emphasized the 
importance of marginalizing over all the parameters 
of the counterfactual distributions to obtain conserva
tive estimates for both the average causal mediation 
effect and the average natural direct effect.

This paper also contributes to the topic of sensitiv
ity analysis with respect to the critical identifying 
assumptions of the underlying identification strategy. 
Specifically, we proposed a straightforward robustness 
check targeting the residual correlation between the 
latent outcome and the latent mediator. This sensitiv
ity parameter represents the extent to which the pres
ence of unobserved post-treatment cofounders can 
invalidate the assumption of independence between 
the outcome and the mediator, conditional on the 
treatment and observed exogenous covariates. We 
next showed how the proposed algorithm can be used 
in practice through an empirical application. Using 
data from a randomized experiment, we illustrated 
how the respondents’ health consciousness can pro
duce a negative mediation effect on the purchase 
intention for a specific food product, when the partici
pants are exposed to a treatment label. Aimed at fos
tering the implementation of these techniques by 
applied researchers, we concluded by discussing the 
issue of computation time and show that estimation 
can be reliably sped up via variational inference meth
ods. We also provide all the complete R and Stan 
scripts as well as a complementary rmarkdown 
document to guide potential users through all the 
methods and application discussed in the manuscript.
The present work can be extended in several ways. 
First, the Generalized Rating Scale Model can be too 
restrictive for some applications, particularly when the 
independence assumption between the latent mediator 
and outcome is deemed unrealistic because of peculiar 
experimental setting or the presence of unintended 
confounding mechanisms. In these situations, improv
ing the current measurement error model through its 
multivariate counterpart might improve model fit and 
provide a more realistic representation of the underly
ing latent quantities. Second, the current casual model 
is limited to the simple case of one mediator, one out
come. In many applications, however, this framework 
can be too limiting, as causal mechanisms often 

involve several mediators (either latent or observable) 
as well as many treatments, not necessarily binary. 
Although such setups are still an active area of 
research, we believe that our proposed approach can 
be extended quite naturally to more complex structural 
models. Third, given the recent advances in Bayesian 
non-parametrics, a natural direction that the proposed 
approach could steer toward is modeling the conditional 
mean of the unobservable characteristics by flexible 
regression models such as Gaussian Processes, Bayesian 
Splines, Bayesian Additive Regression Trees (BART— 
Chipman et al., 2010) or similar techniques. This would 
allow going beyond simple average treatment effects and 
provide a solid framework for the estimation of heter
ogenous treatment effects.
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