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ABSTRACT

The use of the lambda-mu-sigma (LMS) method for estimating centiles and producing refer-
ence ranges has received much interest in clinical practice, especially for assessing growth in
childhood. However, this method may not be directly applicable where measures are based
on a score calculated from question response categories that is bounded within finite inter-
vals, for example, in psychometrics. In such cases, the main assumption of normality of the
conditional distribution of the transformed response measurement is violated due to the
presence of ceiling (and floor) effects, leading to biased fitted centiles when derived using
the common LMS method. This paper describes the methodology for constructing reference
intervals when the response variable is bounded and explores different distribution families
for the centile estimation, using a score derived from a parent-completed assessment of cog-
nitive and language development in 24 month-old children. Results indicated that the z-
scores, and thus the extracted centiles, improved when kurtosis was also modeled and that
the ceiling effect was addressed with the use of the inflated binomial distribution. Therefore,
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the selection of the appropriate distribution when constructing centile curves is crucial.

Introduction

Maximizing child development is a public health pri-
ority as early life events can have long-term conse-
quences for individuals and populations. Although
cognitive and language development continue
throughout childhood and adolescence, delayed devel-
opment in early childhood, in the first three years of
life, is a risk factor for a range of developmental prob-
lems and disorders that can have an adverse impact
on a child’s lifelong health and wellbeing (Black et al.,
2017). Monitoring early development is therefore
essential for identifying children with delay in order
to ensure that they receive timely intervention to min-
imize the impact of impairments and improve life
chances (Engle et al, 2011). This requires the use of
valid and reliable assessments that yield norm-refer-
enced age-standardized scores for quantifying develop-
ment and classifying delay relative to children in the
general population (American Academy of Pediatrics.

Committee on Children With Disabilities. Developmental
Surveillance and Screening of Infants and Young
Children, 2001).

Routine developmental assessment at two years of
age, in particular at 24 months of age, is recom-
mended for clinical populations of children at high
risk of developmental disorders, such as children born
very preterm (i.e. before 30 weeks of gestation) (NICE
Guideline: Developmental follow-up of children and
young people born preterm, 2017; Report of a BAPM/
RCPCH Working Group: Classification of health status
at 2years as a perinatal outcome, 2008), infants with
congenital heart disease (Marino et al., 2012) and
other hospitalized newborns (International
Consortium  for Health Outcomes Measurement
(ICHOM), Preterm and Hospitalized Newborn Health
Group, NEO Standard Set, 2020; European Foundation
for the Care of Newborn Infants (EFCNI), European
Standards of Care for Newborn Health, 2018).
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The Parent Report of Children’s Abilities-Revised
(PARCA-R) provides one such measure for assessing
children’s cognitive and language development that
has been recommended for use in routine neurodeve-
lopmental follow-up, to assess development at
24 months of age. This brief parent-completed ques-
tionnaire (Johnson et al., 2004; Saudino et al., 1998)
has been used extensively for clinical and research
purposes (Beardmore-Gray et al., 2022; Dorling et al.,
2019; Draper et al., 2020; Gupta et al., 2021; Johnson
et al, 2015). Although assessments are targeted to
occur specifically at 24months of age, obtaining
timely follow-up data is challenging (e.g. due to delays
in parents completing or returning the questionnaire,
or difficulties scheduling face to face assessments on
time), therefore it is quite common for such assess-
ments to occur when children are aged around 24 to
27 months. The PARCA-R has previously been shown
to have good reliability and validity and, using empir-
ically derived cutoff scores, good diagnostic utility for
identifying preterm-born children with moderate to
severe delay on an examiner-administered test
(Blaggan et al., 2014; Cuttini et al., 2012; Johnson
et al., 2004; Johnson et al., 2008; Martin et al., 2012;
Martin et al., 2013; Picotti et al., 2020). The PARCA-
R consists of three sub-scales: (i) non-verbal cognition
(range 0-34), (ii) vocabulary (range 0-100) and (iii)
sentence complexity (range 0-24). The two latter
scales are combined to produce a “language devel-
opment” score (range 0-124), which is then summed
with the “non-verbal cognitive score” to produce an
overall “parent report composite” (PRC) score (range
0-158). The PARCA-R has been translated and vali-
dated in other European languages (Cuttini et al,
2012; Picotti et al., 2020; Vanhaesebrouck et al., 2014)
and is widely used as a developmental assessment in
clinical services and as an outcome measure in clinical
trials (Abbott et al., 2017; Brocklehurst et al., 2011;
Dorling et al, 2019; “Infant Collaborative Group.
Computerized interpretation of fetal heart rate during
labor (INFANT): a randomized controlled trial,” 2017;
Marlow et al., 2006) and observational studies (Draper
et al., 2020; Field et al., 2016; Martin et al.,, 2012).
However, the lack of standardized scores for compar-
ing a child’s developmental level with that of the
norm limited its ability to identify children with subtle
delays and to quantify progress across the full spec-
trum of development. Moreover, since development
may increase even daily over this narrow age range,
the use of the same reference scores to make individ-
ual decisions may lead to the misclassification of a
part of the sample. Therefore, in 2019, we undertook
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a standardization study (Johnson et al.,, 2019) to pro-
duce reference scores in children from four different
age groups (i.e. 24, 25, 26 and 27 months of age) for
the PARCA-R to facilitate its use as a continuous out-
come measure and as a universal developmental
assessment. Within this scope we aimed in this paper
to present the methodology to follow when construct-
ing standardized scores and highlight issues that could
be vital if ignored when identifying a population in
need of intervention.

Age-related normalized reference ranges are com-
monly calculated using the normal distribution, as
opposed to rank-order distributions, that allow for the
generalization of the results through the calculation of
the normalized percentile curves. Within psychomet-
rics the percentiles, that are equivalent to z-scores,
can subsequently translated to standard scores allow-
ing the comparison with other standardized tests. The
lambda(4)-mu(u)-sigma(s) (LMS) method (Cole &
Green, 1992; Cole et al., 2009) has been extensively
used in different clinical settings (Kobayashi et al,
2016; Norris et al., 2018; Quanjer et al., 2012) for that
purpose. It was developed as an extension of the
standard linear regression model to allow greater flexi-
bility when the modeling assumptions are not satisfied
(Cole & Green, 1992). The basis of this method is
that the main assumptions for normality and homo-
scedasticity of a linear model will be satisfied when a
suitable transformation has been applied to the
response variable (Box & Cox, 1964). The latter can
be achieved by modeling the skewness (4), the mean
(1) and the standard variation (o) and using their
estimated values. This allows the modeling of
nonsymmetrical distributions, which are common in
age-related scales such as those measuring cognitive
development (Gluhm et al.,, 2013; Hayat et al., 2014).
Further advances in the use of the LMS method
(Rigby & Stasinopoulos, 2004) also allow for modeling
the fourth moment (i.e. kurtosis, 7) of the distribution
of the response variable.

However, the main modeling assumption of condi-
tional normality of the errors should be satisfied in
the LMS method, which is not often the case in age-
bound scales that are discrete and that often show
strong ceiling and, in some cases, floor effects (Utt],
2005). These elements can violate the main modeling
assumption and lead to distorted fitted parameters
and biased fitted centiles. A potential solution to these
problems is the generalized additive model for loca-
tion, scale and shape (GAMLSS), which has been
developed to allow even greater flexibility by the spe-
cification of an appropriate probability distribution
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relevant to the response variable (Rigby &
Stasinopoulos, 2005). In addition, it has been sug-
gested that probability distributions other than the
Normal distribution might be more suitable to address
these limitations (Hossain et al., 2016; Muniz-Terrera
et al., 2016).

Although the GAMLSS has been implemented by
the World Health Organization to produce growth
charts for children (WHO Multicentre Growth
Reference  Study  Group. WHO Child Growth
Standards: Growth velocity based on weight, length and
head circumference: Methods and development, 2009),
it is unclear whether these advances have been applied
in different settings and, in particular, in psychomet-
rics where the construction of norms tables and age
standardized scores is common (Bayley, 2006; Brooks
et al., 2009). The PARCA-R parent report composite
(PRC) score is such a discrete scale, bounded within a
certain range (0-158). As such, an exploration of the
appropriate method for producing reference scores is
needed. In this paper, we investigate different distribu-
tion families when modeling the association between
the PRC scores and age whilst producing standardized
scores for assessing cognitive and language develop-
ment using the PARCA-R.

Methods

In our analyses, three distribution families were con-
sidered to model the PRC score as a function of age
and produce reference scores: a) the Box-Cox-Cole-
Green (BCCG) distribution, which is the common
LMS method; b) the Box-Cox power exponential
(BCPE) distribution, which is an extension to the
LMS method and allows to model kurtosis; and c) the
beta inflated distribution bounded at [0, 1] (i.e. inclu-
sive of both 0 and 1, BEINFO1). Analyses were per-
formed in R version 3.4.3 (“R Core Team. R: A
language and environment for statistical computing,”
2017) wusing the package “GAMLSS” (Rigby &
Stasinopoulos, 2005) and plots were produced using
the package “ggplot2” (Wickham, 2009).

General model for centile estimation

The implementation of the GAMLSS framework
(Rigby & Stasinopoulos, 2005) offers the ability to fit
different probability distributions to the response vari-
able, so that an appropriate distribution can be chosen
from different alternatives. Let us assume that Y is the
response variable, X is the explanatory variable and
0= (01, 05, ..., O is the vector of K distribution

parameters. A general model for creating the centiles
for Y conditional on the value x of X will be:

Y ~ D(6)

Jk
ge(0) = m = X'Be+ > hi(x), k=1, 2, .., K,
=1

(1)

where D is the assumed distribution, k is the total
number of distribution parameters, with the first four
representing mu (p), sigma (o), lambda (1) and
tau (1), gk is the link function, #; is the linear pre-
dictor, X', is the vector of linear terms of length Ji
and ZJI": 1 hir(xj) is a smooth non-parametric func-
tion, denoted by hj (e.g. p-splines, cubic splines, frac-
tional polynomials) of the explanatory variable Xj
evaluated at xj in the regression model. Using the
GAMLSS, up to four parameters of the response vari-
able distribution, which are usually characterized as
location (denoted by u, the approximate mean), scale
(denoted by o, the approximate standard deviation)
and shape (skewness denoted by A and kurtosis by 1)
parameters, can be modeled with four corresponding
equations equivalent to equation (1) above, defining
the distribution parameters.

According to the nature of the response variable,
there are three distinct types of distribution families:
continuous, discrete and mixed distributions.
Continuous distributions are usually defined on the
(-00, 4 0), (0, +00), or (0, 1) range and are linked
to each other through the log or logit transformation
or their inverse. Discrete distributions refer to count
values and are usually defined on the (0, 1, 2,..., i)
range where i can be a known finite value or infinite.
Mixed distributions are continuous distributions where
the range of the response variable has been extended to
include some discrete values with non-zero probabil-
ities. In this paper, we focus on the continuous and
mixed distributions, describing three approaches to
specify the model and exploring their use for centile
estimation where the outcome is bounded.

Centile estimation for continuous distributions

Continuous distributions can be symmetric, negatively
or positively skewed. The LMS method (Cole &
Green, 1992), implemented through the Box-Cox-
Cole-Green (BCCG) distribution in GAMLSS (Rigby
et al. 2020) has been widely used to produce centile
references by modeling mu (u), sigma (o) and
lambda (). According to its principles, the distribu-
tion of a positive (Y > 0) response variable is defined
through the transformed random variable Z given by:
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where the transformed variable Z is a z-score that fol-
lows a truncated standard normal distribution (i.e.
Z ~N(0, 1)). In this case, the probability density func-

tion denoted by BCCG(p, o, A) is defined by:

Y lexp(=37)

w-a/2n® (ﬁ) ’

where z is given from equation (2) above, and ®() is
the cumulative distribution function of the standard
normal distribution.

However, the distribution of the outcome may also
be leptokurtic (thicker/heavier tails than the normal
distribution) or platykurtic (thinner/lighter tails than
the normal distribution) and this shape is not cap-
tured with the BCCG distribution which is suitable
for a mesokurtic (i.e. normal) distribution. To account
for the shape of the distribution another family has
been introduced as an extension to the LMS method.
This extended distribution that also models kurtosis
(tau, 7) is called the Box-Cox power exponential dis-
tribution (Rigby et al, 2020), denoted as
BCPE(u, o, A, 7) and its probability density function
is defined by:

(Wl o, 1) = 3)

A—1
frle o, 4 1) zyiﬁ(z), (4)

w-cFy (ﬁ)

where f7(z) and Fz(z) are the probability and cumula-
tive distribution functions of a random variable Z
having a standard power exponential distribution,
such as Z~PE(0, 1, tau) with power parameter tau
> 0.

Centile estimation for mixed distributions

Whilst the distributions outlined above are likely to
be appropriate for scores that do not exhibit ceiling
and floor effects, for example the Mild Cognitive
Impairment Questionnaire (Dean et al., 2018), they
cannot adequately allow for such effects where do
they exist, for example the Mini Mental State
Examination (Muniz-Terrera et al., 2016) or the
PARCA-R (Johnson et al., 2004; Saudino et al,
1998). Mixed distributions are mixtures of continu-
ous and discrete distributions and they include the
zero adjusted distributions defined on the [0; o0)
interval and the specific case of inflated distributions
defined on the [0; 1] interval. Beta inflated
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distributions (Rigby et al., 2020) fall in the latter cat-
egory, in which the values of the response variable
lie within 0 <y <1 and they are a mixture of three
components: a discrete value 0 with probability po,
a discrete value 1 with probability p;, and a con-
tinuous beta distribution BE(u, ¢) on the unit
interval (0; 1) with probability (1 —po—p;). The
probability function of the inflated beta distribution
at 0 and 1, denoted by BEINFOl(y, o, 4, 7) is
defined by:

frlw o, 2, 1) =
. pos if y=0
_ e — (a=1) 11 _ \(B=1)
(1 Do pl)B(% ﬂ)y (1 }’) > 1f0<y<1
pi if y=1
(5)
, where
(1-0?) 1—u)(1—¢?
M=) o)
o 1
. and p; = ‘ for 0 <
Po P T ) =Y

T (1t+i+1)
<1

It becomes apparent that the BEINFO1(y, o, 4, 1)
has parameters:
o

U=+%~and g =

P , with E(y) = it

T (T

1
v/ (a+p+1)

Any response variable bounded with both a lower
and upper limit can be transformed so that the trans-
formed values ( yr) lie within 0 <y <1. Therefore, in
this analysis, the PRC score was transformed to the
[0, 1] range by dividing each score with the total
number of questions, and hence produce the
proportion of answers for which a child received a
score of 1 For example, a raw score of 1 out of the
158 in the scale is equivalent to 0.0063 in the trans-
formed 0 to 1 scale and corresponds to 0.63% of the
total raw score.

Model selection

As our aim was to produce age-specific standardized
scores for PRC, separately in boys and girls, we
included age (in days) as the only explanatory variable
of the four parameters defining the location, scale and
shape of the distribution (i.e. , o, 4, 7). Then a ser-
ies of models were tested within each distribution
family examining whether age contributed signifi-
cantly in predicting all the parameters of each model.
To derive the standardized scores, we adopted the fol-
lowing strategy considering:
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1. the distribution of the response variable, that is
the BCCG, the BCPE and the BEINFO01 alongside
the relevant link function,

2. whether age is a significant predictor for each
parameter (i.e. 4, 0, 4 and 1) or the parameter is
constant across the data, and

3. whether a smoothing function for age should
be included.

The link function allows, if necessary, for an appro-
priate transformation of the response variable to
model its linear association with the linear predictors
in the model. Before selecting the link function, one
should examine whether the main assumptions of
normality and linearity are satisfied with the identity
link function. If the assumptions are not met, alterna-
tive link functions can be tried for each parameter (
u, o, Aand 1) and the preferred link function should
be the one which gives the smallest value of the infor-
mation criteria used for model selection. With respect
to the set of link functions, we used the default link
functions as described by Rigby and colleagues (Rigby
et al., 2020), shown in Table S2 (OLS) as it was found
to produce the smallest value of the generalized
Akaike information criterion.

To model age-related trends in development,
smoothing functions were applied to remove the
effects of sampling and measurement variation across
the age range. The use of splines allow for a smoothed
representation of the non-linear effect (if present) of
age on the response variable. Although there are dif-
ferent ways to incorporate a smoothing function (e.g.
cubic splines, kernel estimation, locally weighted
regression) we opted to use the penalized beta (PB)
splines that allow the predictive line to follow the
data, ensuring that knots are well spread across the
data, but incorporating a penalty for doing so and
also are unconstrained at the boundary knots. Then
the appropriate smoothing function and the optimum
degrees of freedom for all the parameters of the model
was selected on the basis that minimized the value of
the information criteria used for model selection
(Eilers & Marx, 1996).

Significance level and information criteria

First, the models were selected by taking into account
the significant contribution of age in each of the
parameters modeled. Then, for models in which age
contributed significantly in each of the modeled
parameters, a balance between the reduction of global
deviance (D) and the generalized Akaike information
criterion (GAIC; Akaike, 1983), was considered for

final model selection. Global deviance is used to com-
pare nested models and is defined as D=
-2 x logLikelihood. The closer the deviance is to zero
the better the model’s fit. The GAIC was additionally
considered to examine the parsimony of the model
and to avoid under- or over-fitting. It is defined as
GAIC =deviance +df x k, where df are the total
model degrees of freedom and k is a penalty for each
effective degree of freedom that is used in a model.
Thus GAIC penalizes models with more parameters
and a model with the smallest GAIC value is the most
parsimonious model. Different penalties can be con-
sidered, but the higher the penalty, the lower the
chosen degrees of freedom leading to smoother fitted
functions for the model’s parameters (i.e., u, g, 4 and
7). Therefore, the resulting fitted centiles will be
smoother, but at the cost of introducing potential bias
in the fitted functions and centiles (Hossain et al.,
2016). To decide upon the most parsimonious model,
low, medium and high values for the fixed penalty k
of the GAIC were used: 1) k=2 for the Akaike infor-
mation criterion (AIC; Akaike, 1983), 2) k=5 and, 3)
k=1log(n) for the Schwarz Bayesian Criterion (SBC)
that penalizes the deviance according to the sample
size (Schwarz, 1978). Smoothing functions for model-
ing 4 and 7 were not required in our data, as their
inclusion led to over-fitted models producing biased
predicted values.

Diagnostic plots

A series of diagnostic plots of the normalized quantile
residuals (or z-scores) were used to decide upon the
suitability of the models selected in the previous step:

1. plots of the z-scores against
a. the fitted values of the models and
b. age as the explanatory variable used in the
model, and
2. the quantile-quantile (Q-Q) plots, the density
plots and the worm plots of these residuals.

As in any regression model, if the model fits well
to the theoretical distribution we would expect the
residuals to be distributed symmetrically across the
range of the fitted values and/or the explanatory vari-
able, with constant scatter and no clear pattern. The
points in the quantile-quantile (Q-Q) plot should lie
on the line y=x and the density plot should follow
the normal distribution.

The worm plot, that was been developed to guide
the model selection process in fitting age-conditional
growth reference curves, was additionally used. This is



a de-trended normal Q-Q plot of the z-scores that
consists of series of plots covering distinct groups and
illustrates the differences between the theoretical and
the empirical distribution, conditional on the values of
a covariate (van Buuren & Fredriks, 2001). The y-axis
of the worm plot (deviation) corresponds to the dif-
ferences between the observed and the expected val-
ues, the x-axis to the explanatory variable, which is
age in our case, and the curved lines indicate the 95%
confidence bands. The data points in each plot form a
worm-like string and the shape of the worm indicates
how the data differ from the assumed underlying dis-
tribution. A flat worm close to the horizontal line in
the middle with no clear pattern indicates that the
data follow the assumed distribution, while points
plotted outside the confidence bands indicate inad-
equacies of the model. If the worm is located within
the interval, this suggests that differences between the
empirical and theoretical distributions for that age
group are due to random variation.

Derivation of standardized scores

Using the fitted values for the p, ¢, 4 and t© (where
appropriate), we calculated the distribution function
of the PRC score. Each of the probabilities of the dis-
tribution function were then converted to a standard
normal distribution with mean (SD) equal to 0 (1).
These quantiles were translated to standardized scores
with mean (SD) equal to 100 (15) using the formula:

Standardized score = 100 + z — score X 15

As we would expect approximately 100% of the val-
ues drawn from a normal distribution to lie within
4SDs of the mean, the standardized scores should
ideally range from 40 to 160. In addition, as we do
not expect the distribution of the z-scores to lie
beyond +6SDs of the mean, the range of the standar-
dized scores is not expected to exceed the [10,
190] range.

Predicted scores

Finally, following the model selection, the predicted
scores were calculated for the best model selected
from each distribution family. We anticipated that as
age increased children would score higher on the PRC
scale, so the expected average would increase.
Therefore, the reference centile curves were expected
to be monotonic in age and any presence of curvature
would indicate an undesirable characteristic of the
standardized scores. We then selected the method that
resulted in standardized scores that were within a
plausible range and compatible with this condition.
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Results using empirical data

Secondary PARCA-R data from 6196 children
assessed at 24 months of age and born between 2010
and 2013 to mothers participating in the INFANT
randomized controlled trial (“Infant Collaborative
Group. Computerized interpretation of fetal heart
rate during labor (INFANT): a randomized con-
trolled trial,” 2017) were considered for the analysis.
As the proportion of children born preterm
(<37 weeks of gestation) in INFANT (i.e. 2.5%) was
smaller than expected in the general population (i.e.
7-8%), the sample was enhanced with the addition
of 343 children born at 32-36weeks of gestation
between 2009-2010 from the Late and Moderately
Preterm Birth Study (LAMBS) (Boyle et al., 2015),
and 20 children born at 27-31weeks of gestation in
2009-2011 from the Preterm and After (PANDA)
Study (Field et al., 2016). As the PARCA-R was
developed to assess development at 24 months of age,
parents completed the questionnaire when children
were as close as possible to 24 months chronological
age, thus data from 6402 children aged 23.5 to
27.5months were used. To ensure that the sample
was representative of the UK population additional
information on the 2010 English Indices of
Deprivation (IMD) (“Department for Communities
and Local Government. The English Indices of
Deprivation 2010,” 2011) and ethnicity (white vs
non-white ethnic background) was collected. The
analyses were undertaken separately for boys and
girls, as it was not possible to identify all potential
interaction terms between age and sex, and language
development differs by sex at this age (Adani &
Cepanec, 2019).

Approximately 75% of boys were aged 23 months
(mo) 16days (d) to 25mo 15d and had white ethnic
background (78%, although this was not reported for
14%) and were from moderate (3" IMD quintile) to
most deprived (1* IMD quintile) areas (63%), similar
to the distributions of ethnicity and deprivation in the
general UK population. The proportion of boys born
preterm was just under 6%, and the proportion of
multiple births was just under 3% (Table S1, On-line
supplementary material (OLS)).

Departures from the normal distribution were evi-
dent in the marginal distribution of the PRC score
(Figure S1(a), OLS). A linear association between PRC
and age at assessment was apparent, with a steep
increase up to the age of 775days (~25month
13 days), which is then followed by a smoother incline
up to the age of 820days (~27months) when it
reaches a plateau (Figure S1(b), OLS).



900 V. BOUNTZIOUKA ET AL.

Table 1. Information criteria for the development of the GAMLSS models for total PRC score in boys (n=3,321) and girls
(n=3,081), with separate predictors for median mu (y), variability sigma (o), skewness lamdba (1) and kurtosis tau (7).

Linear predictor for GAIC
I 4 A T .
df Deviance k=2 k=5 k=8
edf age edf age edf age edf age
BOYS
Distribution
Continuous
BCCG
M1.1 29 age 1.0 constant 1.0 constant - - 4.9 241 251 266 281
M1.2 3.0 age 2.0 age 1.0 constant - - 6.0 237 249 266 285
M1.3 3.2 age 1.0 constant 2.0 age - - 6.2 223 235 254 273
M1.4 3.1 age 2.0 age 2.0 age - - 71 222 236 257 280
BCPE
M2.1 2.0 age 1.0 constant 1.0 constant 1.0 constant 5.0 28 38 53 69
M2.2 2.0 age 1.0 constant 2.0 age 1.0 constant 6.0 19 31 49 67
M2.3 2.0 age 1.0 constant 1.0 constant 2.0 age 6.0 26 38 56 75
M2.4 2.0 age 1.0 constant 2.0 age 2.0 age 7.0 19 33 54 76
M2.5 2.0 age 2.0 age 1.0 constant 1.0 constant 6.0 27 39 57 76
M2.6 2.0 age 2.0 age 2.0 age 1.0 constant 7.0 0 14 35 57
M2.7 2.0 age 2.0 age 1.0 constant 2.0 age 7.0 23 37 58 80
M2.8 2.0 age 2.0 age 2.0 age 2.0 age 8.0 0 16 40 65
Mixed
BEINFO1
M3.1 29 age 1.0 constant 1.0 constant 1.0 constant 59 8 19 37 55
M3.2 29 age 1.0 constant 2.0 age 1.0 constant 6.9 8 21 42 63
M3.3 29 age 1.0 constant 1.0 constant 2.0 age 6.9 2 15 36 57
M3.4 29 age 1.0 constant 2.0 age 2.0 age 79 2 17 41 66
M3.5 29 age 2.0 age 1.0 constant 1.0 constant 6.9 6 20 41 62
M3.6 29 age 2.0 age 2.0 age 1.0 constant 79 6 22 46 70
M3.7 29 age 2.0 age 1.0 constant 2.0 age 79 0 16 40 64
M3.8 29 age 2.0 age 2.0 age 2.0 age 8.9 0 18 45 72
GIRLS
Distribution
Continuous
BCCG
M1.1 2.0 age 1.0 constant 1.0 constant - - 4.0 301 309 321 334
M1.2 23 age 20 age 1.0 constant - - 23.7 781 829 900 972
M1.3 2.0 age 1.0 constant 2.0 age = B 5.0 282 292 307 322
M1.4 24 age 20 age 20 age - - 248 767 817 891 966
BCPE
M2.1 2.0 age 1.0 constant 1.0 constant 1.0 constant 5.0 41 51 66 82
M2.2 2.0 age 1.0 constant 2.0 age 1.0 constant 6.0 41 53 71 89
M2.3 2.0 age 1.0 constant 1.0 constant 2.0 age 6.0 35 47 65 83
M2.4 2.0 age 1.0 constant 2.0 age 2.0 age 7.0 29 43 64 86
M2.5 2.0 age 2.0 age 1.0 constant 1.0 constant 6.0 29 4 60 78
M2.6 2.0 age 18 age 2.0 age 1.0 constant 22.8 0 46 114 183
M2.7 2.0 age 2.0 age 1.0 constant 2.0 age 7.0 35 49 70 91
[ m2s 20  age 39  age 20  age 20  age 99 3 23 53 82|
Mixed
BEINFO1
| M3.1 2.0 age 1.0 constant 1.0 constant 1.0 constant 5.0 2 12 27 43 |
M3.2 2.0 age 1.0 constant 2.0 age 1.0 constant 6.0 2 14 32 51
M3.3 2.0 age 1.0 constant 1.0 constant 2.0 age 6.0 1 13 31 49
M3.4 2.0 age 1.0 constant 2.0 age 2.0 age 7.0 1 15 36 57
M3.5 2.0 age 2.0 age 1.0 constant 1.0 constant 6.0 1 13 31 50
M3.6 2.0 age 2.0 age 2.0 age 1.0 constant 7.0 1 15 36 58
M3.7 2.0 age 2.0 age 1.0 constant 2.0 age 7.0 0 14 35 56
M3.8 2.0 age 2.0 age 2.0 age 2.0 age 8.0 0 16 40 64

Values shown in table were rounded up or down to the closest whole number. Bold fonts indicate the lowest deviance or GAIC value. Box indicate the
final selected model. To facilitate the comparison values 32,410 in boys and 29,512 in girls (i.e. the minimum value noticed in the continuous models
for boys and girls respectively) was subtracted from the continuous distributions and 1150 in boys and 1566 in girls (i.e. the minimum value noticed in
the mixed models for boys and girls respectively) was added to the mixed ones. Abbreviations: edf: Effective degrees of freedom for the spline func-
tion which have been superimposed on the linear trend. These contain the constant, the linear part and the additive part of the smoothing function (if
included in the modeling); df: degrees of freedom in the model, which represent the sum of the edf for all the parameters in the model; GAIC: general-
ized Akaike information criterion.
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Figure 1. Q-Q plot of the normalized residuals (z-scores),
derived from modeling PRC against age using three distribu-
tion families in (A) boys (n=3,321; top panel) and (B) girls
(n=13,081; bottom panel).

Legend: the shaded area from -2 to +2 z-scores represents
the range that z-scores derived from each distribution
are similar.

Model selection

Building on previous knowledge of the clinical signifi-
cance of age in identifying developmental delay, we
first considered the statistical significance of age in
the models, then we selected the most parsimonious
model in terms of deviance and GAIC. Table 1 sum-
marizes the different models tested. The minimum
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values for the deviance and the GAIC, for every distri-
bution family are shown with bold fonts while the
final selected model from each family is framed within
a box (Table 1). These are M1.3 form BCCG, for boys
and girls, that suggests that u for PRC is best modeled
using age with a smoothed function, ¢ is constant
(i.e. not age-dependent) whilst 4 is best modeled
using a linear term for age; M2.6 for boys and M2.8
for girls from the BCPE, that suggests that p and ¢
are best modeled using age with a smoothed function,
A using a linear term for age, whilst kurtosis is con-
stant in boys and best modeled using a linear term for
age in girls; and M3.3 for boys and M3.1 for girls
from the BEINFO1 that suggests that u is best mod-
eled using age with a smoothed function, ¢ and 1
are not age-dependent, whilst kurtosis is best modeled
with a linear term for age in boys but is constant
in girls.

Coefficients of selected models

In all tested distribution families, there was a signifi-
cant, albeit small, increase in the expected median
PRC score for each day increase in age (Table S2,
OLS). For example, using model M2.6, PRC in boys
was expected to increase on average by 0.19 points for
every additional day in participant’s age, plus the con-
tribution of the age spline. This daily increase corre-
sponded on average to approximately 6 points per
month, plus the contribution of the age spline.
Similarly, using model M3.3, the proportion of
answers for which a boy received a score of 1 is
expected to increase by 0.30% per daily increase in
age, which is equivalent to a monthly increase of 9%
on average, plus the contribution of age spline.

Diagnostic plots

The residuals were random for all three models, in
boys and girls, with no clear pattern and a constant
scatter against the fitted values (Figures S2 and S3,
OLS) and age (Figures S4 and S5, OLS), although in
models M1.3 and M2.6 for boys the residuals were
not symmetrically distributed beyond the [—2, +2]
range. The fitted frequency distribution for boys in
models M1.3 and M2.6 had a longer left tail compared
to the one fitted in M3.3 which was more symmetrical
(Figure 1A; Figure S6, OLS), also showing a similar
pattern in girls (Figure 1B; Figure S7, OLS). The
worm plot indicated that the mixed distribution fitted
the data better than the continuous distributions,
mainly addressing the ceiling effect, although in the
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Table 2. Distribution of z-scores derived from the best selected models from each distribution family, in boys (n = 3,321) and

girls (n = 3,081).

Boys Girls
BCCG BCPE BEINFO1 BCCG BCPE BEINFO1
M1.3 M2.6 M3.3 M13 M2.8 M3.1
Min. =31 —4.23 —3.89 —4.17 —4.35 —4.21
P50 (P25; P75)  —0.02 (—0.75; 0.77)  —0.07 (—0.68; 0.59)  —0.11 (—0.72; 0.63)  —0.08 (—0.77; 0.77)  —0.08 (—0.65; 0.60)  —0.09 (—0.71; 0.67)
Mean (SD) 0.004 (0.99) —0.03 (0.99) —0.008 (1.00) —0.02 (1.01) —0.02 (0.99) —0.004 (1.00)
Max. 2.08 2.57 341 2.09 291 4.02

24mo age group the lower empirical quantile was
above the theoretical with larger differences in boys
compared to girls (Figures S8 and S9, OLS). Finally,
as shown in Figures 2 and 3, a better approximation
of the shape of the PRC distribution was achieved
with the BEINFO1 model and was therefore preferred
against the BCPE model (Figures 2 and 3).

Derived normalized residuals (z-scores)
and centiles

Normalized residuals extracted from models M3.3
using the Beta inflated distribution were symmetrically
distributed, ranging from approximately —3.9 to 3.5
in boys and —4.2 to 4.0 in girls, with mean (SD)
approximating 0 (1), whilst the residuals extracted
from the continuous distributions show a longer left
tail in both cases (Table 2).

The sample percentages at or below specified cen-
tile curves for the fitted models against the expected
percentiles are summarized in Table S3. Among the
three models investigated, the BCPE model (M2.6 in
boys and M2.8 in girls) performed best, especially in
the lowest centiles. For the rest of the centiles, all
models had similarly good fit as the sample percen-
tages below each centile curve were close to the
expected centile percentages (Table S3). The fit on the
centiles affected the standardized scores, showing
some small discrepancies between the expected and
the calculated standardized scores for both distribu-
tion families, with the BCPE distribution showing a
better fit in the lowest centiles and the Beta inflated
distribution showing a better fit in the highest centiles
(Table S4).

Predicted median values and standardized scores

For each distribution, the predicted PRC values for u
were calculated using data shown in Table S2 and plot-
ted against age (Figures S10 and S11, OLS). Model
M1.3, in boys, provided the lowest estimates across the
whole age range, while M2.6 and M3.3 provided simi-
lar estimates for PRC up to the age of 25months
(approx. 760days). Then, using M2.6, the estimates

increased constantly whilst using model M3.3 PRC
increased at a slower rate up to the age of 26 months
(approx. 790 days) when it reached a plateau up to the
age of 27 months (820days) (Figure S10, OLS). This
pattern, also evidenced in Figure S1(B) (OLS), was cap-
tured from model M3.3 with predicted PRC scores
being closer to the sample average in each age group,
while estimates from the BCPE overestimated the aver-
age, especially in the older age group (Table 3, top). In
girls, there is a constant increase in PRC over age
(Figure S2(B), OLS), which was also captured from all
three distributions with lower estimates provided by
the BCCG distribution and higher estimates by the
BCPE distribution (Figure S11, OLS). Predicted mean
PRC scores were closer to the observed data when
derived from the mixed distribution (Table 3, bottom).

Figure 4 illustrates the lowest and highest standar-
dized scores, separately for boys (A) and girls (B) by
age group and their PRC equivalent for each distribu-
tion. The monotonic increase in the value of the PRC
scores across the centiles was not evident when mod-
eling the data with the BCCG distribution in boys,
but this pattern was improved using the BCPE distri-
bution. However, neither the BCCG nor the BCPE
produced standardized scores that were equivalent to
3SDs (i.e. equal to a score of 145) above the mean, as
could be achieved with the use of the inflated distri-
bution. In girls, both the BCCG and the BEINF
yielded monotonically increasing standard scores over
age, whilst the BEINF provided standard scores
equivalent to approx. 2.5SDs Moreover, only the Beta
inflated at 0 and 1 distribution provided standardized
scores for a PRC equal to 0 (Figure 3).

Misclassification due to inappropriate use of
standardized scores

In clinical practice a standard score <70 is used to
identify the 5% of a population that is at risk.
Inappropriate use of cutoff points will under- or over-
estimate the proportion of children at risk as we dem-
onstrate in Table S5. For example, a raw PRC score of
30, equivalent to a standard score of 69 derived from
the BCCG distribution in girls aged 24-months-old,
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Figure 2. Density distributions of the total PRC score (upper left) and the fitted BCPE (lower left) and BEINFO1 (lower right) distri-
butions, using the fitted parameters of the best-selected models (BCPE, M2.6: mu = 90.22, sigma = 0.3711, lambda = 1.0512, tau
= 5.3556 at the 0-158 range; BEINFO1, M3.3: mu = 0.5664, sigma = 0.4284, lambda = 8.9e-09, tau = 0.0006 at the 0-1 range),

in boys (n=3,321).

can be used to identify 24-month-old girls at risk of
developmental delay. The proportion of girls at risk will
drop to 3.1%, 2.0% and 1.2% if the same cutoff point is
used to identify girls at risk at 25, 26, and 27 months of
age respectively. A similar drop in the proportion of
children at risk using inappropriate cutoffs is observed
when using the BCPE or the BINF distribution (Table
S5). Underestimation of the proportion at risk is similar
in boys when using the cutoffs derived from the BCPE
or the BEINF, however inappropriate use of cutoffs
derived from BCCG will lead to over-estimation of the
population at risk (Table S5).

Discussion

This paper presents a method that, in the best of our
knowledge, was applied for the first time to construct

reference scores and centile curves for assessing child-
ren’s cognitive and language development. It also
highlights limitations that may occur when inappro-
priate distributions are used to extract the centiles,
whilst modeling the already known association of
developmental test scores with age. Here we provide a
guide for the different steps one need to follow for
producing standardized scores that could also be
applicable in other settings (e.g. for blood pressure or
other cognitive tests).

In order to produce the PARCA-R standardized
scores with the PRC score as the response variable,
three distribution families were examined and com-
pared in terms of their ability to produce correct fitted
centiles: the Box-Cox-Cole-Green (equivalent to the

common LMS method), the Box-Cox-Power-
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Figure 3. Density distributions of the total PRC score (upper left) and the fitted BCPE (lower left) and BEINFO1 (lower right) distri-
butions, using the fitted parameters of the best-selected models (BCPE, M2.8: mu = 108.4, sigma = 0.2774, nu = 1.733, tau =
10.50 at the 0-158 range; BEINFO1, M3.1: mu = 0.6606, sigma = 0.4261, lambda = 3.3e-09, tau = 0.0033 at the 0-1 range), in

girls (n=3,081).

Exponential and the Beta inflated at [0, 1] distribu-
tions. The results indicated that the Beta inflated at
[0, 1] distribution was the most appropriate to con-
struct reference scores across the whole range and to
address the ceiling effect that is present when a meas-
urement tool is bounded in a certain range.

For constructing the reference scores, one needs
to consider the distribution family to be selected,
the smoothing functions of the explanatory varia-
ble(s) and the link function of the response variable.
As we were interested in generating age-specific ref-
erence scores, age was the only explanatory variable
that was used in the modeling. Depending on the
distribution family, age might be significant in dif-
ferent parameters of the response variable distribu-
tion and this affects the predicted values. For
example, in our case, age was signiﬁcant when

predicting the scale parameter (sigma, ¢) using the
BCPE distribution, while it was significant when
predicting skewness (lambda, A4) using the BCCG
and the BCPE distributions. Therefore, it is import-
ant to recognize that two equivalent models may
produce different predicted scores. In addition, the
smoothing function for age may not be required in
all the distribution parameters. In our analysis,
using a smoothing function for age to model skew-
ness and kurtosis in the continuous distributions led
to an over-smoothed model that subsequently
resulted in biased centile curves, as indicated by the
unexpected pattern of the standardized scores as age
increased and their non-plausible range (i.e. standar-
dized scores that ranged from -3 to 140).
Therefore, it was inappropriate to model skewness
and kurtosis with smoothing terms. With respect to
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Figure 4. Trends between the standardized and PRC scores for each distribution family over age for (A) boys (n=3,321; upper
panel), and (B) girls (n=3,081; lower panel).

the link functions, we used the default link function  variable as their association was linear and variabil-
for the response outcome in all the distribution ity was quite constant across the age range. In add-
parameters, as indicated in Table S2 (OLS), and did ition, all children in our sample had PRC > 0, so
not apply any transformation on the explanatory  either distribution family worked well with the
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Table 3. Predicted vs raw PRC scores, by age group, using
the best selected model from each distribution family, in boys
(n = 3,321) and girls (n = 3,081).

Raw PRC score

Predicted
Sample
BCCG BCPE BEINFO1
Boys M1.3 M2.6 M3.3
Age group, months
23mo 16 d to 24 mo 15d 84 (33) 81(32) 84 (34) 84 (36)
24mo 16 d to 25mo 15d 89 (33) 88 (34) 90 (33) 90 (39)
25mo 16 d to 26 mo 15d 93 (33) 92 (36) 95 (33) 94 (40)
26mo 16 d to 27 mo 15d 93 (34) 95 (37) 101 (32) 96 (41)

Girls M1.3 M2.8 M3.1
Age group, months

23mo 16 d to 24mo 15d 102 (32) 90 (50) 105 (31) 100 (43)
24mo 16 d to 25mo 15d 105 (31) 93 (53) 109 (30) 105 (45)
25mo 16 d to 26 mo 15d 109 (32) 97 (55) 114 (29) 110 (47)
26mo 16 d to 27mo 15d 113 (32) 102 (57) 119 (27) 115 (49)

Predicted scores were calculated using the mid-point of each age group,
ie. at 24 (ie. 730days), 25 (i.e. 760days), 26 (i.e. 790days) and
27 months (i.e. 822 days) respectively.

modeling. However, if PRC equals 0 a constant
term should be added to that value or this should
be excluded in order to apply the continuous distri-
butions. The BEINFOI is the only distribution that
allows modeling of the whole range of the scale and
thus obtaining standardized scores for 0.

The two main distribution families were not dir-
ectly comparable, as the response variable was in the
raw scale (0, 158] when using the continuous distribu-
tions and in a transformed [0, 1] scale when using the
mixed distribution. Nevertheless, we used the propor-
tion of answers for which a child could score 1 for as
the response variable (similar to what we did when
applying the beta-inflated model) for the BCCG and
BCPE models. This did not affect model selection for
the continuous distributions and produced similar z-
scores, and thus similar predicted and standardized
scores, to the ones extracted using the 0-158 scale as
the response variable. Therefore, results were pre-
sented only on the raw scale for the BCCG and
BCPE models.

The GAMLSS (Rigby & Stasinopoulos, 2005) offers
a wide selection of distributions for modeling the
response variable, also including distributions from
the discrete family. Considering PRC as a discrete
scale, we also examined whether a distribution of the
discrete family of distributions could fit the data bet-
ter. However, neither of the distributions tested (i.e.
the Poisson inverse Gaussian, the beta negative bino-
mial, the Delaporte and the zero inflated negative
binomial distributions) resulted in normally distrib-
uted residuals nor addressed the ceiling effect, there-
fore were not considered for presentation. It has also
been suggested that a Tobit model based on the
Student-t distribution could be used to replace the

beta distribution, which often has a poor fit to a pro-
portion response variable on (0, 1) in real datasets
(Hossain et al., 2016). This distribution, tested in our
data, also failed to fulfill the assumptions of normality
of the standardized residuals, as evidenced from the
diagnostic plots, and also produced an excess concen-
tration of values around +2SDs from the mean and
therefore was not preferred against the beta-inflated
distribution at [0, 1].

The application of quantile regression (Koenker,
2017) could have been an alternative approach for
estimating age-specific reference scores, especially
when the assumptions of linear models (i.e. linearity,
homoscedasticity, normality) are not met. Quantile
regression allows the calculation of any percentile for
a particular value of the predictor(s). Therefore, it
would have been useful to calculate, for example, the
5th percentile for the PRC score at a particular age,
meaning that there is a 5% chance the actual PRC
score is below the prediction for that particular age.
Although the quantile regression is useful to rank
individuals of a specific sample according to their
scores, it avoids making distributional assumptions
and, as such, cannot provide z-scores, which are use-
ful for quantifying measurements on a continuous
scale and for clinical decision making (van Buuren,
2007), or making the scale comparable to other devel-
opmental tests. Regardless, we applied quantile regres-
sion in our data but computational problems occurred
due to the presence of many ties that precluded the
estimation of the fitted centiles.

Similar to monitoring growth problems, develop-
mental delay is more efficient and cost-effective when
detected early to allow for early instigation of inter-
vention (Black et al., 2017). To assess developmental
delay a child’s score is compared against that of chil-
dren of a similar age and a decision to refer the child
for clinical assessment of intervention is then made
(Bellman et al., 2013). It is therefore important to
ensure that appropriate standards are used when gen-
erating standardized scores to avoid over- or under-
referrals. Ignoring age-related changes in the scale
and/or the location parameters of the distribution of
the response variable will derive either too low or too
high z-scores, which result in biased centiles and may
mislead clinicians as to the child’s true developmental
level (Royston & Wright, 1998, 2000). Although in
our data, using the beta inflated distribution 2.5% of
the cases were below the 4.5™ centile and 5% below
the 7" centile, the z-scores calculated from the pre-
dicted values corresponded to the 2.45™ centile for
2.5% of the cases and 4.8 centile for 5% of the cases



which confirmed the suitability of the equations for
the extraction of the standardized scores.

It is acknowledged that emphasis should be given
to accurately capturing the lower centiles to identify
children at risk of delay; however, the use of a distri-
bution that does not handle the ceiling effect prop-
erly is also problematic. Ceiling effects occur when a
test is relatively easy, so participants can reach the
highest possible score and cannot demonstrate
the true extent of their abilities (Garin, 2014). In the
presence of a ceiling effect, the variability among
individuals is underestimated and the true score
range is reduced so differences among high-scorers
are not evident, leading to biased derived scores
(Uttl, 2005; Wang et al., 2008). The use of the beta-
inflated distribution addressed this limitation and
produced symmetrically distributed z-scores beyond
+3SDs of the mean.

In clinical practice, the decision to refer a child for
intervention is based on age-specific centile curves.
An individual’s score or measurement is related to a
distribution from an age-specific reference group and
this comparison gives an indication of the position of
the individual relative to the reference group at that
age. These centiles are commonly constructed using
the LMS method. However, we advise that one should
inspect the underlying distribution and select the
appropriate transformation for constructing the centi-
les, rather than applying the LMS by default which
may end up over- or under- estimating the people at
risk and in need of intervention. Inaccurate centiles
may mislead the clinician as to the true developmental
level of the child and may increase the chance of
under- or over-referral. Therefore, the appropriate
selection of the distribution family to model the
response measurement against age and to construct
these centile curves is crucial.
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