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ABSTRACT

The existing literature on missing data handling in psychological network analysis using cross-
sectional data is currently limited to likelihood based approaches. In addition, there is a focus
on convex regularization, with the missing handling implemented using different calculations in
model selection across various packages. Our work aims to contribute to the literature by imple-
menting a missing data handling approach based on multiple imputation, specifically stacking
the imputations, and evaluating it against direct and two-step EM methods. Standardized model
selection across the multiple imputation and EM methods is ensured, and the comparative
evaluation between the missing handling methods is performed separately for convex regular-
ization (glasso) and nonconvex regularization (atan). Simulated conditions vary network size,
number of observations, and amount of missingness. Evaluation criteria encompass edge set
recovery, partial correlation bias, and correlation of network statistics. Overall, missing data
handling approaches exhibit similar performance under many conditions. Using glasso with
EBIC model selection, the two-step EM method performs best overall, closely followed by
stacked multiple imputation. For atan regularization using BIC model selection, stacked multiple

imputation proves most consistent across all conditions and evaluation criteria.

Network analysis to model psychological constructs or
disorders, termed as psychological networks, is emerging
as a popular tool, particularly for clinical research (e.g.,
Fried et al, 2015; Lu et al., 2023; Miers et al., 2020), but
has also in areas such as personality research (e.g.,
Jefferies et al.,, 2023) or health psychology (e.g., van Zyl,
2021). The methodology can be utilized in both longitu-
dinal and cross-sectional settings, with the present paper
focusing on the latter. While there is extensive debate
regarding the best approach to model estimation and
selection through theoretical considerations or simulation
studies (e.g., Isvoranu & Epskamp, 2023; Williams &
Rast, 2020), the understanding of the impact of missing
values and potential ways to handle them remains lim-
ited. This issue is further highlighted by recently pub-
lished reporting standards (Burger et al, 2023), which
only briefly touch upon the treatment of missing values.
However, it is well established that missing values can
lead to errors in the analysis, especially if not handled
correctly (Schafer & Graham, 2002). Edge weights con-
nected to nodes with missing data may be distorted,

potentially affecting whether those edges are included in
the final model. Consequently, there is a pressing need
to investigate missingness in network estimation.
Mansueto et al. (2023) found two different missing data
handling approaches (full information maximum likeli-
hood estimation and Kalman filter imputation) to per-
form quite well when faced with simulated data missing
completely at random in longitudinal settings. Current
knowledge on handling missing data in cross-sectional
psychological network analysis (e.g., Falk & Starr, 2023;
Nehler & Schultze, 2024b) has primarily focused on the
performance of approaches based on adaptations of the
expectation-maximization (EM) algorithm (originally
introduced by Dempster et al.,, 1977) and has only inves-
tigated a single method for network estimation, namely
the graphical lasso (glasso; Friedman et al., 2008). To
broaden the toolset for handling missing data in cross-
sectional network analysis, we introduce a multiple
imputation approach and investigate its performance, as
well as that of the current EM-based methods in two
distinct network analysis techniques.

© 2025 The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the

posting of the Accepted Manuscript in a repository by the author(s) or with their consent.



Network estimation and model selection

In psychological networks, variables (e.g., question-
naire items or symptoms of a disorder) are repre-
sented by nodes and their relationships by edges. For
continuous variables, edges often reflect partial corre-
lations, capturing the unique association between two
variables. A partial correlation p for two variables j
and j (with j#j) can be modeled by using the
inverse covariance matrix ® = X!, which we will
refer to as the precision matrix (see Lauritzen, 1996).
= O
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The proportion of edge weights in a network that are
not equal to zero is called its density, with highly con-
nected networks called dense, while less connected ones
are called sparse. Cross-sectional networks do not distin-
guish between intra- and inter-individual variation
(Hamaker, 2012) and present the edges as undirected
(Epskamp & Fried, 2018). In practice, the calculation in
Equation (1) must be performed based on the estimated
precision matrix ©, since the true matrix is unknown.
During the estimation, sampling variation can lead to
spurious edges (Costantini et al., 2015). Consequently,
various methods for model estimation and selection
have been proposed—see Isvoranu and Epskamp (2023)
for a comprehensive but not exhaustive overview. In
addition to glasso, which has been examined in the con-
text of missing data (e.g., Falk & Starr, 2023; Nehler &
Schultze, 2024b), we also investigate a nonconvex alter-
native in this study, specifically focusing on the atan
penalty (Williams, 2020).

For the scope of this paper, we limit ourselves to the
case of continuous, multivariate normally distributed
variables. Models with this type of data are termed
Gaussian graphical models (GGM; Costantini et al.,
2015; Lauritzen, 1996). We denote the observed, cen-
tered variables as Y following previous research
(Epskamp & Fried, 2018; Williams & Rast, 2020). The
sample covariance matrix is denoted as S, and the popu-
lation covariance matrix as X.

(1)

Convex regularization

The glasso (also called /; regularization) estimates the
precision matrix that maximizes a penalized log-likeli-
hood based on the sample covariance matrix.

log det(®)-tr(S®) — 1||®]], (2)

The last part of the equation is a convex penalty
term, which uses the penalty parameter /4 to scale the
sum of all off-diagonal absolute values of the precision
matrix ®. Thus, maximizing this equation results in
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shrinking entries in the precision matrix—in some cases
to 0. Regularization is performed with varying penalty
parameters A logarithmically spaced between a minimum
and a maximum value (Epskamp, 2016). Commonly, 100
values for 1 are used, returning as many estimated preci-
sion matrices ©, with a € {1, ...,100}.

Following the estimation process, various methods
can be employed to determine the optimal one among
the resulting ©,. Most of these methods are based on
unpenalized log-likelihoods, which are also computed
using the sample covariance matrix S.

e, = g(log det(®,) — tr(SO,) — p - log (27)) (3)

Two crucial considerations arise: First, the pre-
sented unpenalized log-likelihood is always best for
the least penalized ©,. Second, as the number of
observations increases, the disparity between the log-
likelihoods of sparse and dense networks grows. Thus,
instead of performing model selection on the unpenal-
ized log-likelihood, the Extended Bayesian Information
Criterion (EBIC; Foygel & Drton, 2010) is used, aim-
ing to identify the model with the lowest value among
the 100 candidates:

EBIC, = =2lI(®,) + |E,|logn + 4|E,|ylogp  (4)

E, represents the edge set of the respective graph
with |E,| being the number of non-zero elements in
the upper triangle of the corresponding estimated pre-
cision matrix ©,. The inclusion of this term serves to
counterbalance the influence of the log-likelihood by
imposing a higher penalty on denser networks. The
hyperparameter y serves as an additional penalty for
complex models. Simulations indicated an optimal
value of y = 0.5 (Foygel & Drton, 2010), outperform-
ing higher penalizing values when using a network
structure resembling the expected structure of psycho-
logical constructs as the population (Epskamp, 2016).
In the following, we adhere to the nomenclature pro-
posed by Williams et al. (2019) and refer to the com-
bination of glasso regularization to estimate a model
and EBIC to achieve selection as glassoggic.

In cases with a similar number of observations and
nodes, the performance of glassogpic stands out due to
its specificity, where the edges included in a chosen
network structure can be confidently regarded as
genuine (Epskamp, 2016). It returns mostly sparse
network structures, developed to provide applied
researchers with a well-interpretable network struc-
ture. However, Williams et al. (2019) show that the
sensitivity of the approach varies depending on the
number of observations, returning more non-zero
edges as n increases. In their simulation study the true
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model is not found for n — oo if the true network
structure is not extremely sparse, which is uncommon
in psychological practice (Wysocki & Rhemtulla,
2021). One explanation is that the f.;, condition
required for consistency may not be satisfied, meaning
that the smallest entries in the inverse covariance
matrix are not large enough to survive regularization
(Zhao & Yu, 2006). However, such small entries—
resulting from weak partial correlations—are a com-
mon feature of psychological networks (Wysocki &
Rhemtulla, 2021). Another contributing factor is that,
as n increases, sensitivity improves while specificity
declines, resulting in denser networks that deviate fur-
ther from the true structure. It is important to note
that this effect is specific to the standard glassoggic
implementation in the well-known ggraph package
(Epskamp et al., 2012) and similar implementations,
which do not include an explicit mechanism for con-
trolling the false positive rate. A further limitation of
the standard glassogpc implementation is that all
edges are penalized, including those that are ultim-
ately retained in the final network structure (Williams
& Rast, 2020).

Nonconvex regularization

Nonconvex regularization was introduced to psycho-
logical network analysis literature by Williams (2020)
with the objective of mimicking a best subset selection
approach, while maintaining computational efficiency
by avoiding the need to test every conceivable edge
combination. The underlying assumption is that uni-
versal consistency can be attained through minimal
shrinkage on big parameters, while effectively shrink-
ing small parameters to zero (Zhao & Yu, 2006).
Williams (2020) demonstrated nonconvex regulariza-
tion approaches to meet these criteria for network
analysis, with the atan penalty Wang and Zhu (2016)
showing the most promising performance. However, a
known limitation of nonconvex penalties is the lack of
a guaranteed unique global optimum (Williams,
2020).

In general, like the glassoggic, nonconvex regular-
ization operates by estimating the precision matrix
through maximizing a penalized log-likelihood. Yet, it
offers greater flexibility in the penalty term through
individualized calculation depending on each entry

®

Ji'
log det(®) — tr(S©) = > " q;,,(10y]) (5)
J#
In the case of atan regularization, the individual
contribution to the penalty term of each entry 0 in

the precision matrix is computed as follows:

q5,n(0) = 4 <;7 + %) arctan (%) (6)

A and n (with # > 0) represent the tuning parame-
ters for the penalty function. As was the case for
glasso, the diagonal of @ is excluded from the penal-
ization. As n approaches infinity, this results in /;
regularization, while # tending toward zero approxi-
mates best subset selection. Sparsity is affected by 4,
where 4 — 0 results in the maximum likelihood esti-
mation of ®, which represents a non-regularized
structure. 4 — oo results in stronger regularization
and ultimately an empty network. Notably, Williams
(2020) demonstrated that the decision regarding
which parameter to fix and which to vary does not
have a significant impact and freely selecting both
parameters does not lead to an improvement in per-
formance. In our simulation, we varied the parameter
A, while keeping n fixed at a value of 0.01. Typically,
50 different values are considered for A logarithmically
spaced between a lower and an upper bound. This
results in estimating 50 precision matrices (:)b with
be{l,..,50}.

As previously stated, a critique of nonconvex penal-
ties is the absence of a guaranteed global optimum
(Williams, 2020). Fan et al. (2014) argued that
approximating the optimal solution is acceptable, pro-
vided that the results maintain desired properties such
as consistency in model selection. Under the assump-
tion that the number of non-zero elements is known,
they demonstrated this to be true for precision matri-
ces. Nevertheless, such an approximation still does not
guarantee a global optimum for every single applica-
tion case. There are several different possible algo-
rithms for the approximation. We have chosen to use
the one-step estimator (Zou & Li, 2008), because of
its computational efficiency and performance in cases
with # > p. This condition should be sufficiently met
in psychological settings, typically with a higher num-
ber of observations compared to the amount of varia-
bles (Wysocki & Rhemtulla, 2021).

Selecting the final model among the 50 ©, is
accomplished using information criteria. In their
simulation, Williams (2020) employed the Bayesian
Information Criterion (BIC; originally introduced by
Schwarz, 1978), which corresponds to Equation (4)
with y = 0. The author showed that combining the
atan penalty with BIC for model selection resulted in
increased sensitivity as sample size grew. Additionally,
specificity remained high for small n and was not
impacted strongly with an increasing number of



observations or varying sparsitiy in the population net-
work. Henceforth, we refer to the combination of atan
regularization with BIC model selection as atanpc.

The described methods of estimating network
structures operate with completely observed data sets
and their performance in these situations has been
compared elsewhere (e.g., Isvoranu & Epskamp, 2023;
Williams, 2020). In this study, we intend to evaluate
their respective performance when used in conjunc-
tion with one MI approach, as well as two EM based
approaches, in the presence of missing values. It is
important to note that it is not the intention of this
study to compare the performance of glassoggc and
atanpyc directly. Following reviews, however, we pro-
vide tentative comparisons in the electronic supple-
mental material (ESM).

Missing values and handling approaches

Traditionally, the occurrence of missing values is dif-
ferentiated into three different missing mechanisms:
missing completely at random (MCAR), missing at
random (MAR) and missing not at random (MNAR)
(Little & Rubin, 2019; Rubin, 1976). With data
MCAR, the missingness is independent of any proper-
ties of the observed or missing data. If the data is
MAR, missingness depends only on observed values.
Under MNAR, the probability of missingness is add-
itionally conditional on unobserved values. In the fol-
lowing paragraphs, we review EM-based approaches
for handling missing data in network estimation,
introduce our proposed use of multiple imputation in
this context, and discuss potential differences in per-
formance between these methods.

Two-step EM

The two-step EM approach handles missing data by
applying the EM algorithm in the first step, followed
by model estimation and selection in the second step.
During the expectation-step (E-step) of the EM algo-
rithm, missing entries in the data matrix are filled
with conditional expectations. These conditional
expectations are subsequently employed to compute
sufficient statistics, with a residual term added if both
variables were missing for an observation (Little &
Rubin, 2019). In the following maximization-step (M-
step), (co-)variances are computed using the sufficient
statistics. The E- and the M-step are performed itera-
tively until convergence is achieved. It is worth noting
that the use of full information maximum likelihood
(FIML) yields the same results as the EM algorithm
used here when estimating unconstrained covariance
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matrices (Enders, 2001), as is done in the first step of
this approach. In the second step, network estimation
and model selection are performed based on the esti-
mated covariance matrix.

To our knowledge, the two-step EM is currently
only evaluated for glassoggc but can easily be
extended to atangc. The procedure is implemented in
the R package bootnet (Epskamp et al., 2018), which
offers extended options for network analysis on top of
the ggraph package. As described, the packages uses
the covariance matrix generated by the EM algorithm
to perform model estimation. For model selection
using information criteria, as per Equation (4), as well
as Equation (3), the covariance matrix from the EM
algorithm also serves as the sample covariance matrix
S, while several methods for determining the sample
size in the presence of missing values are provided.

In a recent evaluation conducted by Nehler and
Schultze (2024b), the authors employed the default
settings of ggraph for glassoggic, wherein the sample
size for log-likelihood and EBIC calculation is set to
the average of all pairwise sample sizes for variances
and covariances. This evaluation showed that the
method yields highly sparse networks under various
conditions, with only a limited number of true edges
being detected, especially when dealing with increased
missing data and a small number of observations.
Falk and Starr (2023) evaluated the two-step EM using
the average pairwise sample size of only covariances
instead with similar results.

Direct EM
Stadler and Bithlmann (2012) proposed an integrated
EM algorithm as a combination of missing data hand-
ling and glasso regularization of the graph structure.
This method shares the same E-step with a standard
EM algorithm, computing conditional expectations,
residual terms and sufficient statistics. In the M-step, the
algorithm computes the inverse covariance matrix based
on the sufficient statistics and subsequently employs
regularization to produce a sparse precision matrix. This
resulting matrix is then utilized to compute conditional
expectations in the next E-step. The two steps are
repeated until convergence is achieved. The algorithm is
run separately for different penalty parameters 4, typic-
ally resulting in 100 estimated precision matrices 0,.
Since this approach does not involve a separation
between model estimation via glasso regularization and
missing data handling, we refer to it as direct EM.

An evaluation by Stadler and Biithlmann (2012)
demonstrated promising results with sparse matrices—
representing typical network structures in the field of
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biology—showcasing sensitivity and specificity at the
same time. While the authors included model selection
via EBIC in their simulations, they did not describe the
specific technique used to calculate the information cri-
teria, which has led to varying implementations in
practice. The R package cglasso by Augugliaro et al.
(2023) employs the EBIC, as defined previously in
Equation (4). It utilizes the total number of observa-
tions (with or without missingness). For S, it uses the
inverse of the non-penalized precision matrix (i.e., the
assumed sample covariance matrix without regulariza-
tion) in the final iteration of the M-step. Therefore,
each ©, matrix is compared to a distinct sample
covariance matrix, taken from the respective estimation
process. Nehler and Schultze (2024b) investigated the
direct EM using the cglasso package with population
networks estimated from psychological data, which are
typically denser than those investigated by Stadler and
Bithlmann (2012). The results indicated high sensitivity
at the potential risk of losing specificity.

To our knowledge the direct EM approach has not
been extended to include atanpc until now. Our
implementation is based on the glassogpc procedure
Stadler and Bithlmann (2012) with only minor modifi-
cations, which are describe in detail in Appendix B.
The alteration involves using the atan penalty for
regularization in the M-step, and the best model is
selected among competing models via BIC to align
with the two-step and complete data approaches. The
calculation of the information criteria to perform
model selection is described later in the section Model
selection with missing values.

Multiple imputation
The fundamental concept of multiple imputation (MI)
involves replacing each missing data point with sev-
eral independent values, thereby creating several com-
plete versions of the data set (Rubin, 1987a, 1996).
We used predictive mean matching (PMM) as the
imputation method, which has been shown to be
effective across various scenarios, although its per-
formance may falter with smaller n (Kleinke, 2017).
PMM operates by first predicting values for the vari-
able that is imputed for all individuals. The prediction
incorporates noise and parameter uncertainty by
drawing parameters from their posterior distribution
(van Buuren, 2018). PMM then identifies observed
cases with predicted values similar to those of the
missing case and randomly draws one as the donor
for imputation.

In multivariate missing data settings, fully condi-
tional specification (FCS) is often used (van Buuren,

2006, 2007). This approach specifies conditional dis-
tributions for each variable separately, eliminating
the need for a joint multivariate model. Imputations
across variables are generated iteratively—while five
iterations may be sufficient for unbiased estimates,
higher correlations or increased missingness may
require additional iterations (van Buuren et al,
1999). Regarding the number of imputations, a
higher number improves replicability, but as few as
two imputations may suffice for generating point
estimates (von Hippel, 2020). Since different imputa-
tions yield different imputed values, Rubin’s rules are
applied to pool resulting statistical parameters,
including the computation of their standard errors
(Rubin, 1987b).

Using the traditional approach to pool results of
multiply imputed data, selecting a final network
structure is challenging because edges may be
included in some imputations but excluded in others.
Pooling raw values, while treating non-existent edges
as zero in mean calculations, could introduce bias.
We propose an approach inspired by variable selec-
tion in multiple regression (Wood et al, 2008),
whereby the multiply imputed data sets are stacked
into one and model estimation is performed only
once on the combined data set—an approach that
has also been applied in the context of structural
equation modeling (SEM; Lang & Little, 2014).
Evaluation of the stacking approach indicated a need
for standard error corrections but unbiased point
estimates (van Buuren, 2018; Wan et al., 2015), mak-
ing it suitable for exploratory network analysis via
atangic or glassogpic.

In summary, our proposal involves imputing data sets
using PMM and FCS, stacking them into a single data
set, and deriving the corresponding covariance matrix, as
also done by Lang and Little (2014). Subsequently, regu-
larization is applied using either glasso or atan to obtain
estimates for (:)a or (:)1,. Details on model selection are
provided in the corresponding section.

Comparison of missing data handling approaches

Direct and two-step EM approaches haven been eval-
uated in both the SEM and network analysis litera-
ture. In SEM, Savalei and Bentler (2009) and Zhang
and Savalei (2023) compared full information max-
imum likelihood (FIML)—a method conceptually
similar to the direct EM approach described above—
with two-step procedures. Their findings suggest that
while two-step methods yield valid and consistent esti-
mates, they tend to be less efficient. Falk and Starr
(2023) argue that this reduced efficiency may result



from a loss of information about uncertainty in specific
covariance elements when transitioning from a saturated
to a structured model in the second step. In the context
of network analysis, Nehler and Schultze (2024b) found
that the two-step EM approach performed considerably
worse than direct EM, particularly in terms of sensitiv-
ity. This pattern reversed only under conditions of high
missingness and large sample sizes. Similarly, Falk and
Starr (2023) reported inferior performance of the two-
step EM in recovering population networks, although
the observed differences were smaller. Notably, the pro-
cedures used for model selection varied not only
between these two studies, but also within each study
depending on the missing data handling approach.
These methodological differences are discussed in the
following section.

While likelihood based methods are often consid-
ered the gold standard for handling missing data (van
Buuren, 2018), MI offers greater flexibility, particularly
when dealing with non-normal data and nonlinear
relationships in the imputation model (Vink & Van
Buuren, 2013). Since MI has not yet been evaluated in
the context of network analysis, relevant insights
regarding the comparison of missing data handling
methods must be drawn from other domains. Within
donor-based imputation approaches, Jia and Wu
(2023) identified PMM as particularly effective under
non-normality in SEM contexts. Moreover, Lee and
Shi (2021) demonstrated that MI estimates remained
stable under FIML-based
approaches tended to deviate more from full-data
results as the degree of misfit increased. This is par-
ticularly relevant for the present study, as regulariza-
tion in network models introduces intentional model
misfit, which may disproportionately affect the per-
formance of direct EM.

Lang and Little (2014) investigated the use of stacked
data sets to compute a single covariance matrix (a super-
matrix) in SEM. However, their evaluation focused
exclusively on significance testing and convergence, with
the stacking procedure demonstrating advantages over
FIML in terms of convergence. In principle, the stacked
MI approach resembles the approach utilized in the
two-step EM method in the sense that missing data
handling is used to estimate the covariance matrix in
the first step and regularization is applied afterwards. As
such, if all distributional assumptions hold, both
approaches are asymptotically equivalent (Lee & Shi,
2021; Pigott, 2001). Nevertheless, this does not necessar-
ily mean they will yield identical results in practice, as
highlighted by Pigott (2001) in the context of regression.

model misfit, whereas
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The literature suggests that all three investigated
approaches should exhibit similar consistency. In
terms of efficiency, the direct EM approach may be
superior because it retains information about uncer-
tainty in the estimated parameters. However, the
model misfit introduced by regularization may dispro-
portionately affect the consistency and efficiency of
the direct EM approach. Since this misfit stems from
the regularization procedure, its impact may differ
between the glassogpic and atangc. Drawing expecta-
tions from prior studies in network analysis is chal-
lenging because those studies vary substantially in
how information criteria are computed, whereas the
approach we chose in this study follows a standar-
dized procedure.

Model selection with missing values

As outlined earlier, the introduction of missing values
necessitates specific choices in the calculation of the
log-likelihood and subsequently in the evaluation crite-
ria. Existing implementations and previous studies have
varied in their approaches. For instance, Augugliaro
et al. (2023) selected the estimate from the final EM
algorithm iteration as S for Equation (3) in their imple-
mentation of the direct EM. However, these estimates
vary across penalty parameters, complicating the claim
that they truly represent the sample covariance
matrix. In contrast, the two-step EM and stacked MI
approaches could simply use the estimated covariance
matrix from the first step.

Furthermore, as previously stated, the determin-
ation of the number of observations for multiplication
in Equation (3) has strong influence on the following
model selection. Sparse models among the candidate
solutions typically exhibit worse fit when using unpen-
alized log-likelihood, a discrepancy that becomes more
pronounced as n increases. Thus, a larger » introdu-
ces greater variation in log-likelihood values used
for information criteria calculation, which tends to
favor denser networks among the candidates. In
contrast, the impact of a higher #n on the incorpo-
rated log-term is relatively minor. The two-step
implementation (Epskamp et al., 2018) employs
pairwise averaging to calculate n, whereas the direct
EM method by Augugliaro et al. (2023) uses the
total observation count. This discrepancy may
explain the findings of Nehler and Schultze (2024b),
who observed that the two-step approach produced
more sparse and specific results, whereas the direct
EM method yielded networks with greater density
and sensitivity.
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A similar pattern regarding the calculation of log-
likelihood and its impact on the comparison of miss-
ing data handling approaches can be assumed for the
study of Falk and Starr (2023). In their study, the
two-step EM approach uses the pairwise average num-
ber of observations for the covariances in calculating
the log-likelihood with Equation (3), sometimes
resulting in a very small effective sample size. This
can lead to the selection of sparser networks among
the candidate models. In contrast, the direct EM
method, which employs the observed data log-likeli-
hood (as described below), generates larger discrepan-
cies among candidate models. In their simulation, the
direct EM method with the observed data log-likeli-
hood was found to be more sensitive, while the two-
step EM method, relying on the pairwise number of
observation and the matrix-based calculation of the
log-likelihood, tended to produce sparser networks.
These differences between the missing data handling
approaches could potentially be attributed to varia-
tions in the log-likelihood and information criteria
methods.

To emphasize the specific evaluation of the missing
handling we integrated a consistent approach in com-
puting the information criteria across all three missing
data handling methods. In accordance with Falk and
Starr (2023), we use the observed data log-likelihood
instead of having to choose an #n and the sample
covariance matrix. The observed data log-likelihood is
computed as the sum of the individual log-likelihoods
for each observation i:

00, ) = Z (-%. log (27) —%log|(®_l)i|

i=1

(7)

Here, Y; represents the observed centered variables
for the specific individual, and all other values in the
calculation (model parameters 0, p and means i) are
reduced to those that include the observed variables
of that specific individual. Centering the observed var-
iables with missing values based on sample informa-
tion does not imply that the true mean of the
centered variable is zero. Therefore, the mean is also
incorporated into the equation and estimated based
on the stacked data matrix in the stacked MI
approach, via the EM algorithm in the first step of
the two-step EM approach, and naturally returned by
the direct EM along with the estimate for 0. Notably,
the resulting log-likelihood value without missing data
would be the same as Equation (3).

Although the contribution of the term log(n) to the
information criteria calculation may be relatively
minor, it nevertheless requires specification. This term
should represent the available information. We elected
to utilize the average pairwise observations of all cova-
riances, motivated by the rationale that the diagonal
elements (variances) are not subject to regularization.

The present study

As outlined at the beginning of this manuscript, the pre-
sent study aims to evaluate a stacked MI approach
against EM algorithms under consistent model estima-
tion and selection criteria. We integrated all missing
data handling techniques with both glassogsc and
atangic. Given that all three missing data handling
methods are modern and conceptually similar—particu-
larly stacked MI and two-step EM—we expect them to
perform comparably. However, evidence from previous
literature suggest that differences in consistency and effi-
ciency may arise across approaches, although the direc-
tion of these effects remains unclear.

Methods

A Monte Carlo simulation study was conducted to com-
pare the performance of the missing data handling tech-
niques in estimating networks using both glassogpc and
atangic. We used an openly available data set containing
responses to the Fisher Temperament Inventory (Brown
et al., 2013; Fisher et al., 2010)'to construct the popula-
tion networks from which the data were simulated. This
choice aligns with the approach taken in other simula-
tion studies investigating psychological network analysis
(e.g., Isvoranu & Epskamp, 2023; Mansueto et al., 2023),
aiming to mimic a realistic psychological scenario.

A similar density value of approximately 0.32 was
maintained across all population networks, which falls
within the range of sparse structures typically encoun-
tered in applied psychological research (Wysocki &
Rhemtulla, 2021). Population network structures were
achieved by removing edges with the lowest partial
correlations until the specified density was reached,
while ensuring that there were no isolated nodes.
After identifying the edges to be removed, the preci-
sion matrix was re-estimated, i.e., the identified edges
were forced to zero without applying any regulariza-
tion to the remaining edges. In line with the work of
Wysocki and Rhemtulla (2021), we did not ensure
that the assumptions required for the consistency of

"Data can be retrieved from http://openpsychometrics.org/FTI_data.zip/.



model selection were met by the population networks,
instead focusing the partial correlations on the realis-
tic psychological data set. More detailed information
on the population networks—specifically, the distribu-
tion of partial correlations and the detectability of
edges—can be found in Appendix A.

Simulation design

In the generation of the data set, three factors were
manipulated. Network size (p) was varied among 8, 24,
and 48. The choices of 8 and 24 fall within the typical
range of network sizes encountered in psychological
research (Wysocki & Rhemtulla, 2021), while 48 repre-
sents a more extreme scenario for future reference.
Sample size (n) was adjusted across three levels: 400,
800, and 1600 Finally, the rate of missingness (m) was
varied among completely observed, 0.1, 0.2, and 0.3.
Nehler and Schultze (2024b) explored different missing
data mechanisms but found minimal distinctions
between MAR and MNAR, attributing this surprising
result to the strong interdependence of nodes within the
network. Based on these findings, we elected to focus
exclusively on MAR. The data generation conditions
were crossed with the three missing data handling meth-
ods, excluding any redundant combinations arising from
the intersection of these factors, resulting in a total of 90
unique conditions. Each condition was replicated 500
times, and in cases of missingness, all three handling
methods were tested. The simulation was conducted
once for atangc and once for glassoggic.

Data creation and missing values generation

Data were simulated from the multivariate normal
distribution with the correlation matrix derived from
the population networks described above. This initially
resulted in completely observed data sets. Replications
were simulated in a way that conditions based on the
same parameters in data generation (network size and
number of observations) returned the same 500 data
sets. For conditions with missing values, observations
were removed from the complete data sets. This
approach not only facilitates comparability among dif-
ferent missing data handling methods but also allows
for a direct comparison between a given condition
using complete and incomplete data sets.

Missing values generation was done with a slight
modification of the approach proposed by Grund
et al. (2018). Let R be a matrix including the latent
response propensities.
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The response propensity of observation i on vari-
able j is denoted with Rj;. 8 is the regression param-
eter for the missing propensity of a variable j with a
standardized, completely observed predictor P; (with
Byjy set to 0.7). r; represents a normally distributed
residual value with a mean of zero and a variance of 1
- ﬁfﬁ,. Critical values R, were determined according
to the missing proportion of the specific conditions.
Any data point with |R;| > |R | was deleted from the
complete data set. Missing values generation was
aimed at representing MAR (j # j). In all conditions
with m > 0, half of the items contained missing val-
ues, while the other half were completely observed.
Thus, in conditions with m = 0.1, variables j were
20% missing. Variables with and without missingness
were determined to have a similar average in the net-
work statistic strength.

Evaluation criteria

Simulation studies evaluating network analysis tools
provide a wide range of possible criteria. In our
manuscript, we include evaluation criteria offering
distinct perspectives: encompassing the examination
of the edge set, parameter estimation, and recovery of
network statistics.

Edge set
The first evaluation criteria focus on discerning the
network structure. Network density is defined as the
ratio of non-zero estimated edge weights to the total
number of possible edges. Beyond determining the
correct density, precision in edge selection is crucial
and is commonly assessed using sensitivity and speci-
ficity (e.g., Isvoranu & Epskamp, 2023; Williams,
2020). Specificity captures the accuracy in identifying
edges with weights of zero, while sensitivity quantifies
the accuracy in identifying non-zero weighted edges.
For all handling mechanisms, an increase in miss-
ingness is expected to result in a lower density. With
glassogpic, the densities of the estimated networks
are projected to exceed the population density for
larger sample sizes. This would likely be accompa-
nied by a decrease in specificity and an increase in
sensitivity. Conversely, when combining missing
handling mechanisms with atangc, the estimated
densities should approach the population density
with increasing sample size, consistently maintaining

Notable evaluation criteria not discussed include for example the
Matthew correlation coefficient (Matthews, 1975) or the Kullback-Leibler
loss (Kullback & Leibler, 1951). They can be examined using the
evaluation code in the corresponding repository on the Open Science
Framework (https://osf.io/kdv7t/).
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heightened specificity while experiencing a smaller
increase in sensitivity.

Parameter estimation

In network analysis, the primary parameters of inter-
est are the edge weights, denoted by partial correla-
tions. Bias can occur when non-zero edge weights are
inaccurately estimated or when genuine zero edge
weights are erroneously omitted. These potential
biases are reflected in the previously mentioned evalu-
ation criteria of sensitivity and specificity. To comple-
ment the bias introduced by edge set identification,
here, we calculate the difference between estimated
and true partial correlations for correctly identified
non-zero edges. To derive more comprehensible
aggregate performance metrics, we calculated the aver-
age raw bias for each replication.

For the glassoggic approach, we anticipate a nega-
tive bias that intensifies with greater levels of missing
data. For the atangic method, we do not have a pre-
defined expectation regarding the direction of the
bias. However, we do expect performance to degrade
as the proportion of missing data increases. For
increases in sample size, we expect this bias to become
less pronounced (for glassogpic) or approach zero (in
the case of atangic).

Network statistics

An important consideration for applied researchers is
the use of descriptive statistics for the resulting net-
work, such as centrality indices (Epskamp et al., 2018;
Opsahl et al., 2010), which are widely applied to iden-
tify the most influential nodes (e.g., Lu et al.,, 2023).
However, among these metrics, only strength emerges
as a reliable and theoretically sound measure (e.g.,
Bringmann et al., 2019; Epskamp et al., 2018). Given
this, we only evaluate estimated strength values in our
simulation. Following the conceptualization by Barrat
et al. (2004), the strength of a node in weighted net-
works is defined as the sum of the absolute weight
values of its edges. Aligning with the methodology of
Epskamp and Fried (2018), we utilized the correlation
of strength values between the population and the
estimated networks as an evaluation criterion.

We anticipate similar behavior of the performance
criteria across conditions for the analyses using
glassoppic and atanpic, although predictions are less
definitive compared to other evaluation criteria.
Specifically, we expect correlations to decrease as the
proportion of missing data increases across all missing
data handling techniques. However, as the ratio n/p

increases, we believe that the correlations will more
closely resemble those derived from complete data.

Software and parameter settings

The simulations and evaluations were conducted using
R (Core Team, 2023). The code for these processes,
including our customized version of the direct EM
and the computation of individual log-likelihoods, can
be accessed on the Open Science Framework (https://
osf.io/kdv7t/). A more detailed description of our
implementation of the direct EM can also be found in
Appendix B.

Observations from the population networks were
drawn using the MASS package (Venables & Ripley,
2002, Version 7.3.60). Notably, all variables were
standardized in our simulation. For the two-step
approach, correlation matrices were estimated using
the EM algorithm by the lavaan package (Rosseel,
2012, Version 0.6.16). MI was conducted using the
mice package (van Buuren & Groothuis-Oudshoorn,
2011, Version 3.16.0) with 20 imputations and a max-
imum of 10 iterations. These choices strike a balance
between computational efficiency and replicability.
The mice package uses five donors by default, shown
to be sufficient by van Buuren (2018).

For the glasso regularization, we utilized the glasso
package (Friedman et al, 2019, Version 1.11). Model
selection was performed in line with the standard
implementation in ggraph (Version 1.9.8), using 100
penalty parameters and a minimum penalty value set
to 0.01 times the maximum. Atan regularization was
performed using the GGMncv package (Williams,
2021, Version 2.1.1) with 50 penalty parameters and
the same ratio of 0.01. The hyperparameter for EBIC
calculation was consistently set to y = 0.5.

Results

is divided into results derived from
glassogpic and atanpc. Given the extensive range of
conditions and performance metrics, we report only
the most central findings here. Additional figures and
tables are available in the ESM, providing further
details on results that are referenced but not discussed
in depth in the main text. The ESM also includes an
overview of key comparisons between the perform-
ance of the two approaches. In brief, the introduction
of missingness has a more pronounced negative
impact on sensitivity for glassogpc, reducing it more
strongly than for atangc. In contrast, specificity is
more negatively affected for atanpic, whereas it shows

This section



a slight improvement for glassogpic. These deviations
from full-data behavior are most evident under condi-
tions with small sample sizes and high levels of
missingness.

glassoggic

Convergence

Overall, a single replication failed to converge (see
Table ESM1 for an overview). This replication was
excluded from all subsequent analyses.

Edge set

Figure 1 illustrates the density values across all repli-
cations for each condition. Performance can be eval-
uated in relation to both the complete data scenarios
and the population densities, represented by dashed
black lines. As expected, glassogpic yields increasing
estimated densities with larger »n, but these do not
converge to the true population density due to sys-
tematic overestimation. As p grows, reaching the
population density becomes more challenging, which
is indicated by estimated densities well below popula-
tion values even in complete data situations for the
largest network. While the average density of all repli-
cations gets closer to the population density when
keeping n constant and reducing the network size, the
variability across replications increases. This is evident
in conditions with and without missing values. With
increased missingness, the estimated density of the
networks gets smaller. However, this decline dimin-
ishes notably with larger observation numbers. The
performance of the two-step EM and stacked MI
approaches are closely aligned. In contrast, direct EM
shows minor deviations, yet these deviations lack a
discernible pattern. At a sample size of 400
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observations, the performances of missing data hand-
ling approaches align closely with complete observa-
tions only when the missingness is minimal—
otherwise, the resulting networks tend to be mostly
empty. By contrast, with 800 observations, the meth-
ods generally perform adequately across all conditions.
However, the direct EM approach faces challenges,
especially with the medium and big networks.

Table 1 presents mean sensitivity and specificity for
the various missing data handling techniques, along-
side results for completely observed data. In general,
sensitivity tends to be lower than specificity, as
expected for an approach that, as described earlier,
was designed to find a sparse solution in low-dimen-
sional settings. Specificity exhibits a ceiling effect in
conditions with small n, while sensitivity is low. As
expected, this pattern reverses with a high number of
observations, whereas, as indicated by the results
reported for density, many edges are included, result-
ing in high sensitivity and low specificity. The size of
the network also contributes to the tradeoff between
sensitivity and specificity, with a higher network size
leading to higher specificity. Increased missingness
leads to a decrease in sensitivity and an increase in
specificity, accompanied by greater variability within a
condition (specific standard deviation values are avail-
able in Table ESM2). The impact on sensitivity is
much more pronounced than on specificity. Yet, the
effect of missingness diminishes with a higher number
of observations. Handling methods demonstrate their
ability to yield results similar to the complete data
approach in almost all conditions with n = 1600, but
only for 10% in the smallest network with n = 400.
For 800 observations, a middle ground is observed
where 10% and 20% missingness are similar to the
complete data results for the smallest networks and

Table 1. Means of sensitivity and specificity across conditions using glassogsic. Results of completely observed data shown under

two-step EM for comparison.

n =400 n=2800 n=1600

Stacked Ml Two-step EM Direct EM Sstacked Ml Two-step EM Direct EM Stacked Ml Two-step EM Direct EM

p Prop. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec.
0 - - 0914% 0917% - - - - 0.995% 0.894% - - - - 1.000% 0.888* - -

0.1 0.799 00948 0.809 0946 0.811 0.922 0976 0.900 0.979 0901 0.973 0.880 1.000 0.891 0.999 0.897 0.999 0.858

0.2 0.602 0966 0.616 0966 0.554 0.949 0.941 0911 0946 0909 0912 0.873 0.992 0.885 0.994 0.887 0.981 0.830

8 03 0.213 0992 0.241 0990 0.225 0.987 0.815 0918 0813 0914 0.670 0911 0975 0.867 0976 0.871 0.912 0.819
0 - - 0703% 0970% - - - - 0.863* 0.940% - - - - 0926% 0.927% - -

0.1 0.594 00981 0.606 0980 0.539 0.985 0.833 0.941 0.831 0943 0.817 0.945 0.909 0.926 0.909 0.927 0.908 0.927

0.2 0400 00990 0431 0988 0355 0.991 0.782 0.942 0.781 0944 0.697 0.956 0.883 0.923 0.883 0.924 0.869 0.923

24 03 0.077 0998 0.065 0.997 0.229 0.990 0.681 0.944 0.690 0.940 0.460 0.967 0.837 0.909 0.836 0912 0.729 0.930
0 - - 0415% 0.992% - - - - 0.639% 0.963* - - - - 0729% 0.942% - -

0.1 0327 099 0338 0.995 0327 0.995 0.600 0.966 0.601 0965 0.607 0.967 0.713 0.941 0.711 0.942 0.720 0.943

0.2 0.233 0997 0.256 0.995 0.244 0.995 0.544 0969 0.547 0967 0.501 0978 0.686 0.939 0.683 0.941 0.701 0.942

48 03 0119 0999 0.131 0998 0.179 0994 0450 0973 0451 0.965 0361 0.979 0.635 0933 0.632 0.934 0.581 0.959

Abbreviations: Prop.: Proportion of missing data. Sens.: Sensitivity. Spec.: Specificity.
*Results without missing values are computed by the complete data approach but presented in the column concerning two-step EM.
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Figure 1. Density values of all replications for all conditions using glassogsc. Columns vary different degrees of missingness, while
rows vary network size. Dashed lines represent the true densities in the population networks.

Table 2. Means of sensitivity and specificity across conditions using atangc. Results of completely observed data shown under
two-step EM for comparison. Values for two-step EM are not available for the condition with 48 nodes, 400 observations, and
30% missing rate due to non-convergence.

n =400 n=2800 n=1600

Stacked MI Two-step EM Direct EM Stacked Ml Two-step EM Direct EM Stacked Ml Two-step EM Direct EM

p Prop. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec.
0 - - 0.857% 0958% - - - - 0.970% 0980% - - - - 0.997% 0990% - -

0.1 0.816 0955 0812 0954 0.797 0.967 0.944 0970 0941 0970 0.931 0977 0992 0986 0.993 0.986 0.988 0.990

0.2 0.782 0926 0789 0917 0.729 0.962 0.902 0.956 0910 0.952 0.867 0975 0976 0.977 0.980 0.976 0.954 0.988

8 03 0726 0864 0738 0815 0.597 0.944 0.845 0.922 0849 0901 0.778 0.961 0942 0.940 0.946 0.934 0876 0.978
0 - - 0.546% 0953*% - - - - 0.642% 0968% - - - - 0729% 0977% - -

0.1 0518 0939 0518 0939 0474 0955 0.614 0957 0612 0958 0572 0970 0701 0.972 0.700 0.973 0.662 0.980

0.2 0491 0908 0499 0890 0422 0946 0.582 0.934 0578 0.935 0.518 0.962 0669 0.955 0.668 0.955 0.606 0.976

24 03 0521 0.773 0629 0561 0360 0926 0538 0.875 0.537 0.864 0446 0935 0.625 0911 0.623 0.908 0.552 0.940
0 - - 0346% 0954% - - - - 0414% 0965% - - - - 0488% 0973* - -

0.1 0327 0941 0325 0937 0.306 0.958 0398 0.953 0396 0953 0372 0.968 0468 0.965 0465 0.966 0441 0.977

0.2 0353 0852 0406 0761 0.284 0.949 0372 0928 0369 0.923 0346 0960 0.443 0945 0441 0945 0410 0.970

48 03 0334 0.869 - - 0.265 0.935 0356 0.868 0467 0.670 0322 0942 0416 0.881 0412 0.883 0384 0.948

Abbreviations: Prop.: Proportion of missing data. Sens.: Sensitivity. Spec.: Specificity.
*Results without missing values are computed by the complete data approach but presented in the column concerning two-step EM.

10% for the medium and big networks. Examining the
distinctions between missing handling methods, two-
step EM exhibits higher sensitivity with 400 observa-
tions, while specificity remains comparable to the
others. With 800 and 1600 observations, minimal dif-
ferences exist between two-step EM and MI. Direct
EM occasionally shows marginally better sensitivity,
but it shows lower specificity and higher variety in
results, making it less preferable.

Parameter estimation

Figure 2 illustrates the mean raw biases in correctly
estimated non-zero partial correlations for conditions
with 400 and 800 observations. Consistent with the
expectations for glassoppic, negative biases are
observed across all conditions with 400 observations
(depicted in Subfigure A). As seen previously for the
estimated densities, the average bias gets closer to
zero as n is held constant and the network size is



reduced, but the replications
increases. Bias for completely observed data remains
only very slightly below zero with minor deviations
between replications. However, the introduction of
missing values amplifies this bias, even with only 20%
data missing. Furthermore, the variability in biases

variability across

across replications raises concerns about the consist-
ency and trustworthiness of the results. The most pro-
nounced biases in single replications arise from
instances where only a few partial correlations are
correctly estimated as non-zero, and these are either
small or incorrectly signed. Comparing the handling
methods, all missing handling approaches demonstrate
similar performance with 10% and 20 % missingness.
This trend persists with 30% missingness for stacked
MI and two-step EM. However, direct EM shows
superior performance in these cases for the medium
and big network sizes.

For conditions with 800 observations (depicted in
Subfigure B), although partial correlations retain nega-
tive biases, these are, as expected, considerably closer
to zero. The missing handling methods can manage
up to 20 % missingness, yielding results akin to com-
pletely observed data. However, with 30% missingness,
while the average performance remains comparable to
the completely observed data for the small and
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medium networks, certain replications display signifi-
cant biases, rendering the results of single replications
questionable. Both stacked MI and two-step EM
exhibit congruent outcomes, while direct EM presents
marginally varied results, albeit without a discernible
pattern. In the largest sample condition (n = 1600,
Figure ESM1), the trends observed with increasing
sample size persist. Negative biases further decrease,
and the discrepancies between replications diminish,
rendering even the 30% missingness scenario feasible.
Additionally, the disparities between MI, two-step
EM, and direct EM become minimal, indicating that
the handling methods perform comparably at this
sample size.

Network statistics

Figure 3 depicts the correlations between strength val-
ues from estimated and population networks for con-
ditions with 400 and 800 observations. Notably, this
metric shows the largest discrepancies between com-
pletely observed cases and those with missing data. As
increases, the correlations tend to
decrease, indicating less reliable identification of
strongly connected nodes. With 400 observations
(depicted in Subfigure A), the capacity to roughly dis-
cern the nodes with highest strength values remains

network size
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Figure 2. Mean raw bias of correctly identified non-zero partial correlations per replication using glassoggc. Conditions with A 400
and B 800 observations. Columns vary different degrees of missingness, while rows vary network size. Scaling of y-axis differs

between A and B.
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intact for the largest network configurations, provided
no data is missing. Outcomes remain satisfactory with
10% missingness but, as we anticipated, an increase in
missingness leads to a decline in correlation. Starting
with 20% missingness, the variance across individual
replications becomes too pronounced for reliable con-
clusions. Both stacked MI and two-step EM vyield con-
sistently analogous results, though stacked MI returns
smaller correlations for single replications. In contrast,
direct EM consistently underperforms across most
scenarios, including situations with significant missing
data and expansive networks.

In line with our expectations, when the sample size
is increased to 800 observations (depicted in Subfigure
B), both stacked MI and two-step EM closely approxi-
mate results from completely observed data in the
presence of 10% and 20% missingness. At a 30% miss-
ing rate, their performance slightly weakens but
remains within an acceptable spectrum. The variability
in results decreases, with instances of small correla-
tions becoming rare. However, an exception arises in
the context of 30% missingness within the smallest
network, where correlations occasionally approach
zero. Direct EM underperforms in direct comparison
even with a 20% missing rate for 800 observations.

performance continues to improve. It is noteworthy
that no individual replication records a correlation
below 0.6, even under 30% missingness for stacked
MI and two-step EM. However, direct EM still exhib-
its suboptimal outcomes, characterized by substantial
variations across replications, especially at the 30%
missingness rate.

atangic

Convergence

For completely observed data sets, there were no
issues with convergence. However, when attempting
to employ atanpc in conjunction with missing data
handling techniques, complications arose in condi-
tions with n = 400, as well as conditions with n =
800 and p = 48. Non-convergence with two-step EM
occurred during the second step, indicating that the
missing data handling in the first step, which was
conducted using the lavaan package was completed
successfully. However, this initial step occasionally
yielded covariance matrices that indicated nearly per-
fect correlations between all variables. This resulted in
non-positive definite matrices after applying atan
regularization, which ultimately led to the termination

With 1600 observations (Figure ESM2), overall of computations in the second step. Non-convergence
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Figure 4. Density values of all replications for all conditions using atangc. Columns vary different degrees of missingness, while
rows vary network size. Dashed lines represent the true densities in the population networks. Values for two-step EM are not avail-
able for the condition with 48 nodes, 400 observations, and 30% missing rate due to non-convergence.

was particularly evident for 30% missingness, reaching
a point where all replications failed with p =48 and
n = 400. Even for n = 800, almost half of the replica-
tions failed for the big network. Direct EM exhibited
fewer and less severe convergence issues, primarily
affecting a small subset of cases—specifically, the larg-
est network with the smallest sample size, where about
one-fifth of the replications failed. It is important to
note that a replication was classified as a failure if
convergence was not achieved for all penalty parame-
ters tested. In contrast, stacked MI demonstrated suc-
cessful convergence across all conditions. Detailed
convergence rates are provided in the ESM (Table
ESM3). Replications that failed to converge were
excluded from all subsequent analyses.

Edge set

Figure 4 depicts the density values for all replications
of every condition. In line with our expectations, the
estimated density approaches the population value in
the completely observed conditions with n = 800 and
n = 1600 in the smallest network. When considering
conditions with missing values, larger sample sizes
tend to result in networks that are more closely
aligned with their counterparts from completely
observed conditions. Specifically, for 400 observations,

the networks are comparable to the completely
observed ones only when missingness is at 10%. With
800 observations, this similarity extends to 20% miss-
ingness. However, it is worth noting that even condi-
tions with completely observed data often yield a very
sparse structure for the big network. For the two-step
EM approach, reliable results with 30% missingness
are only observed when using 1600 observations. In
contrast, both direct EM and stacked MI seem stable
with 30% missingness in larger networks with 400 and
800 observations. However, this stability is somewhat
misleading as these methods often produce nearly
empty network structures. Overall, stacked MI offers
the most stable outcomes, while the two-step EM
approach occasionally comes closer to the density esti-
mated by the complete data sets, especially in condi-
tions with minimal missingness. Direct EM typically
lags slightly behind both two-step EM and stacked MI
in terms of average performance, while producing
relatively stable results across its replications.

Table 2 presents a comparative overview of mean
sensitivity and specificity across conditions with and
without missing data. For cases with complete data, spe-
cificity is generally high, while sensitivity increases with
n. Notably, there is no clear tradeoff between these two
metrics. However, even with 1600 observations,
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Figure 5. Mean raw bias of correctly identified non-zero partial correlations per replication using atangc. Conditions with A 400
and B 800 observations. Columns vary different degrees of missingness, while rows vary network size. Scaling of y-axis differs
between A and B. Values for two-step EM are not available for the condition with 48 nodes, 400 observations, and 30% missing

rate due to non-convergence.

complete data fails to achieve high sensitivity values for
larger networks, indicating a lack of power. The intro-
duction of missingness results in a decline in both sensi-
tivity and specificity, with a more pronounced effect on
sensitivity. This phenomenon is accompanied by an
increase in variability across replications within the same
condition (specific standard deviation values are pro-
vided in Table ESM4). The observed effects are less
prominent in smaller networks and conditions with a
higher number of observations. In line with our expecta-
tions, an increase in sample size leads to an increase in
sensitivity while maintaining high specificity in condi-
tions with and without missingness. For 400 observa-
tions, missing data handling methods demonstrate the
ability to perform comparably to the complete data
approach in conditions with 10% missingness and 400
observations. In the case of 1600 observations, results
with 20% missingness are similar to complete data. A
more substantial increase in observations would be
required to mitigate the impact of 30% missingness.

The comparison between missing handling meth-
ods reveals nuanced patterns. For data sets with 400
observations, two-step EM demonstrates significantly
greater variability across replications compared to dir-
ect EM and stacked MI, especially with a 30% miss-
ingness rate. Direct EM outperforms the other two

approaches with regards to specificity in these condi-
tions, although values obtained with stacked MI are
close and the latter shows higher sensitivity. With 400
observations, two-step EM is competitive in both sen-
sitivity and specificity only at a 10% missingness rate.
With 800 observations, two-step EM continues to face
challenges with varijability across replications, espe-
cially as missingness increases and the network size
grows. In contrast, stacked MI and direct EM exhibit
performance closer to complete data, with stacked MI
being more sensitive and direct EM more specific. As
the sample size increases to 1600 observations, distinc-
tions between the approaches diminish. Yet, a consistent
trend emerges wherein both stacked MI and two-step
EM prioritize sensitivity in contrast to direct EM’s
inclination toward specificity.

Parameter estimation

The mean raw bias of correctly identified non-zero
partial correlations per replication is illustrated in
Figure 5 for data sets with 400 and 800 observations.
On average, the bias approaches zero, but is skewed
positive, indicating an overestimation of partial corre-
lations. This positive bias intensifies with increasing
missingness and larger networks. For data sets with
400 observations (depicted in Subfigure A), there is a
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Figure 6. Correlations of strength values between estimated and population networks using atangc. Conditions with A 400 and B
800 observations. Columns vary different degrees of missingness, while rows vary network size. Scaling of y-axis differs between A
and B. Values for two-step EM are not available for the condition with 48 nodes, 400 observations, and 30% missing rate due to

non-convergence.

systematic positive bias evident in completely
observed scenarios for both p = 24 and p = 48. While
the average bias decreases with a smaller network and
constant sample size, the variability between replica-
tions increases (as already seen in the glassogpc
results). Stacked MI consistently mirrors the perform-
ance of completely observed data across all conditions.
Two-step EM encounters challenges in individual rep-
lications, particularly evident with a 30% missingness
rate. Direct EM registers the highest positive bias,
with its estimates closely aligning to the other two
handling techniques only under minimal missingness
or within smaller networks.

With 800 observations (depicted in Subfigure B),
the systematic bias diminishes, as we anticipated, but
persists, especially for the larger networks. Stacked MI
aligns closely with completely observed data on aver-
age, yet it exhibits a broader range across replications,
particularly at the 30% missingness level. While two-
step EM’s average performance mirrors that of MI, it
demonstrates an even greater variability. Direct EM
continues to exhibit the most pronounced positive
bias but shows a similar variability across replications.
Using a sample size of n = 1600 (Figure ESM3)
results in a substantial reduction in bias, with virtually
no systematic bias observed at p =48. In addition,

variability between replications decreases, although it
remains slightly higher in conditions with missing
data compared to complete data. The relative per-
formance patterns among the missing data handling
techniques persist, with both stacked MI and two-step
EM offering similar results, while direct EM consist-
ently exhibits the highest bias.

Network statistics

Correlations derived from strength values of estimated
and population networks with 400 and 800 observa-
tions are illustrated in Figure 6. Again, while the aver-
age correlation is closer to 1 with a constant sample
size and a smaller network, the variation across repli-
cations also increases. Direct EM consistently exhib-
ited the highest correlations with 400 observations
(depicted in Subfigure A), performing similarly to the
complete data conditions even when subjected to 10%
and 20% missingness. While there were isolated
instances of poor correlation, such anomalies were
also observed using the complete data set. As
expected, the discrepancies in the correlations became
more pronounced with increased missingness, raising
concerns about the reliability of the results when 20%
of data were missing in the big network. Stacked MI
showcased performance only marginally inferior to
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the complete data set and direct EM in the 10% miss-
ingness scenario. As seen in other evaluation criteria,
two-step EM exhibited limitations as the level of miss-
ingness escalated.

In line with our expectations, 800 observations
(Subfigure B) generally led to higher correlations. A
notable ceiling effect was observed with the com-
pletely observed data in the small network, correla-
tions for the medium and big networks without
missings never dropped below r = .75. Techniques for
handling missing data demonstrated enhanced resili-
ence, effectively managing both 10% and 20% miss-
ingness. Nevertheless, certain replications exhibited
outlier behavior. In conditions with 10% and 20%
missingness, stacked MI and the two-step method
exhibited performance on par with direct EM. A mod-
est advantage for direct EM was discerned with p =
48 at 20% missingness. However, the deviations for
the 30% missingness scenario, though diminished
compared to situations with 400 observations, were
still substantial, calling into question the reliability of
the returned strength values. Conditions with 1600
observations (Figure ESM4) showed even better
results, preserving the previously observed patterns.
The magnitude of deviations also decreased for the
30% missingness condition. Nevertheless, sporadic
replications  still recorded correlations hovering
around r = .5. Direct EM exhibited improved correla-
tions compared to stacked MI and two-step EM in
scenarios with p = 48 and a 30% missingness rate.

Discussion

The aim of the present study was to investigate the
performance of a stacked MI approach in cross-sec-
tional, psychological network analysis, contrasting it
with two distinct EM approaches. This was done for
both glassogpic and atanpc. As the computation of
model selection criteria was standardized across the
missing data handling methods, the recommendations
for preferred techniques, detailed later, differ from
earlier findings which employed different calculations
(Falk & Starr, 2023) and which relied on the default
implementations of R packages (Nehler & Schultze,
2024b). It also necessitates a reevaluation of required
sample sizes in cases with missing values described by
Nehler and Schultze (2024b). In the study presented
here, higher levels of missingness generally led to less
dense networks with decreases in sensitivity, which
may seem less desirable. However, these results can be
viewed as more representative of the actual amount of
available information.

In line with the standard implementation of
glassogpic without an additional control for the false
positive rate, a negative bias was observed, and as the
sample size increased, the network became denser
with a noticeable decline in specificity. This is consist-
ent with the findings of Williams et al. (2019), who
showed that consistency in model selection is lacking
when the network structure is not extremely sparse,
which is the case in our simulation. This effect may
change by incorporating approaches designed for con-
trolling the false positive rate (e.g., Lafit et al., 2019).
Conducting network analysis via glassoggc with a data
set of 400 individuals and a missingness exceeding
10% is not recommended. Generally, conditions with
800 observations remained robust against missing data
up to 30%. However, there were outliers in strength
correlations, particularly in the small network. When
scaling up to 1600 observations, the decline in specifi-
city persisted even in the presence of missingness.
Thus, this implementation of glassogpic does not con-
verge to the true model with perfect sensitivity and
specificity but rather continues to add more edges
with increased sample size, making the approach less
favorable in these situations regardless of the missing
data handling technique employed. In terms of com-
paring the handling techniques, direct EM exhibited
marginally inferior performance in certain scenarios
and significantly poorer outcomes in others, suggest-
ing it may not be the optimal choice across the board.
This may be due to the intentional model misfit intro-
duced by regularization in each iteration of the direct
EM approach, which could increase bias—as demon-
strated by Lee and Shi (2021) in the context of SEM.
Both stacked MI and two-step EM exhibited similar
performance across all evaluated conditions. As likeli-
hood based approaches are acknowledged as the gold
standard in previous literature (van Buuren, 2018),
with glassogpc, the two-step EM appears to be a rea-
sonable recommendation. Additionally, it usually
offers computational advantages in terms of speed.
Nevertheless, stacked MI presents a viable alternative,
especially when other analyses are planned for the
same data set.

For atanpc, the relationship between density and n
is less pronounced, as described by Williams (2020).
While 400 observations are sufficient for smaller net-
works, larger networks necessitate a larger sample
size. In particular, even with 1600 observations, the
performance remains suboptimal for a 48-node net-
work. However, this network size could be considered
an edge case based on a review of applied studies
(Wysocki & Rhemtulla, 2021). The required sample



sizes for handling missing data vary: 400 observations
suffice for a 10% missingness rate, 800 for 20%, and
1600 for 30%. Nonetheless, some replications exhib-
ited outlier behavior, suggesting potential pitfalls for
individual researchers in achieving accurate results.
When contrasting missing data handling techniques,
more nuanced recommendations are necessary for
atanpic than for glassogpic. Specifically, for 400 obser-
vations, direct EM may be recommended for identify-
ing nodes with the highest strength. However, caution
is advised due to the heightened risks of false nega-
tives and increased bias in estimated nodes. The two-
step EM exhibits robust performance with larger data
sets but demonstrates inconsistency with fewer obser-
vations, higher node counts, or elevated missingness
rates. Stacked MI consistently provides the most stable
performance across various conditions, making it the
recommended approach when using atangc.

Notably, the discrepancies in performance of the
missing handling techniques between convex and
nonconvex regularization in our simulations suggest
that a universally optimal technique remains unclear.
Consequently, the choice of a method should depend
on the specific context of each applied study.

While our results indicate the necessity of substan-
tial sample sizes for both glassogpic and atanpc, a
review of applied studies in cross-sectional network
analysis revealed that almost half of the studies
encompassed more than 500 observations (Wysocki &
Rhemtulla, 2021). It is crucial to acknowledge that in
cases with a smaller sample size, simply opting for a
smaller network is not always the solution for achiev-
ing a reliable outcome. Although accuracy tends to
increase on average when comparing results between
conditions with a larger and smaller network while
maintaining the same sample size, the discrepancies
between replications within the same conditions also
tend to escalate. This phenomenon is not exclusive to
conditions with missing values—it also occurs in those
with completely observed data sets.

Limitations and future directions

The contrasting outcomes regarding the best missing
handling technique from prior evaluations (Falk &
Starr, 2023; Nehler & Schultze, 2024b) underscored
the critical influence of decisions in model selection
with missing data. In particular, the determination of
sample size and the method employed for computing
the log-likelihood were pivotal in computing both
EBIC and BIC. Generally, using individual log-likeli-
hoods and calculating average sample size resulted in
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the selection of less dense networks compared to the
previous study of Nehler and Schultze (2024a).
Nevertheless, conducting a dedicated study comparing
these approaches could provide a more nuanced
understanding of their respective impacts. Notably, for
EBIC, the implications extend further, including the
challenge of selecting an appropriate value for the
hyperparameter y. Given these complexities, the value
of selecting the best model based on methods like
cross-validation (Kramer et al., 2009), which was ori-
ginally the main suggestion of Stadler and Biihlmann
(2012), warrants thorough evaluation in a comparative
study. While Falk and Starr (2023) include cross-val-
idation, it is solely implemented for the direct EM
approach, where it demonstrates encouraging out-
comes. Moreover, if the primary aim is to compare
network estimation methods, future research should
also consider varying the information criteria, apply-
ing the EBIC in combination with atan and the BIC
with glasso, to implement a fully crossed experimental
design.

The present study used psychological data to con-
struct population networks with the objective of emu-
lating realistic scenarios. Although the observed effects
remained consistent when comparing transitions from
small to medium and medium to large network size,
these findings warrant validation using other realistic
psychological structures. It is worth noting that our
study maintained the same density for all population
networks, representing a case of sparse to medium
density. Future investigations might benefit from
varying the density, as advocated by studies such as
Williams (2020). The varied conditions within the
simulation were selected with the understanding that
the results from different missing data handling
methods would likely converge, particularly for the
two-step EM and stacked MI approaches, which are
asymptotically equivalent when assumptions hold.
The primary aim was to identify subtle discrepancies
and validate the conceptual framework of these
methods. Future simulation studies could enhance
differentiation by exploring for example deviations
from distributional assumptions.

An alternative approach to integrating MI in net-
work analysis is grouping, which, unlike stacked MI,
does not combine the data sets but instead ensures
that each parameter is either consistently included or
excluded across all imputations. This makes grouped
MI conceptually less similar to the two-step EM pro-
cedure than stacked MI, although it may be less easily
generalized due to the inherent specificity required for
different types of model estimation and selection. In
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the context of regularized regression, the method has
shown promising results (Chen & Wang, 2013).
However, in network analysis without regularization,
its initial implementation demonstrated weaker per-
formance (Nehler & Schultze, 2024a). This raises the
question of whether grouped MI might yield better
Another
approach, discussed in the statistical and machine
learning literature, involves modifying the regulariza-
tion procedure to directly accommodate missing data
(Loh & Wainwright, 2012, 2015). This method adapts
the estimator itself, in contrast to the approaches pre-
sented in our manuscript, where regularization is
either integrated into missing data handling (direct
EM) or addressed separately (two-step EM and
stacked MI). While the cited studies have demon-
strated the effectiveness of these modified estimators,
future research should evaluate their performance
within the context of psychological networks and
compare them to the methods presented in this
manuscript.

On a more general note, investigating the phenom-
enon of increased variability across replications while
keeping a consistent number of observations but
smaller network sizes presents an important avenue
for future research. Reducing the number of nodes
could be seen as an intuitive approach for applied
researchers to enhance the reliability of their results in
cases with a low number of available observations.
However, our results suggest that this approach may
not be as straightforward as it seems. Thus, the under-
lying reasons for this variability warrant thorough
investigation. Additionally, it is essential to explore
whether this effect is specific to regularization techni-
ques or also occurs in non-regularized methods (e.g.,
Williams et al.,, 2019). Examining a broader range of
network estimation and selection techniques will also
further strengthen the understanding of how well the
findings on missing data handling generalize, building
on the initial step taken in this study.

results in regularized network models.

Conclusion

The present study demonstrated that stacked MI and
EM algorithms for cross-sectional network analysis
under standardized model estimation and selection
exhibited similar, though not equivalent, performance.
The analyses indicated that when using glassoggic, the
two-step EM approach is recommended for handling
missing values. In contrast, the choice of missing data
handling technique for network analysis with atangc

is more nuanced, with stacked MI generally being the
most stable.
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Appendix A

Additional information on the population
networks

As described in the introduction, the consistency of the net-
work analysis methods relies on different assumptions. To
gain a deeper understanding of the data-generating net-
works, this appendix presents the distribution of partial cor-
relations for all three sizes in Table Al. As noted in the
methods section, the density is equal across network sizes,
and therefore the number of zero partial correlations is the
same. Overall, the number of larger partial correlations
decreases with increasing network size, which is expected,
as more variables are partialed out.

Furthermore, Table A2 examines the detectability of the
population networks to improve the interpretability of our
results. Detectability is assessed by assuming an infinite
sample size and providing the population covariance matrix
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Table A1. Size of partial correlations in the population
networks.

|Pcor| p=28 p=24 p=48
=0 67.86% 67.75% 67.82%
> 0-0.1 0.00% 18.12% 25.71%
> 0.1-0.2 17.86% 10.87% 5.05%
> 0.2-03 7.14% 2.54% 0.71%
> 0.3-04 3.57% 0.00% 0.35%
> 04-1 3.57% 0.72% 0.35%

Abbreviations: |Pcor| = Absolute value of partial correlation.

Table A2. Investigation of detectability of the population
networks.

glassogsic atangc
p Spec. Sens. Spec. Sens.
8 1.000 1.000 1.000 1.000
24 1.000 0.989 1.000 0.944
48 0.983 0.898 1.000 0.647

Abbreviations: Sens.: Sensitivity. Spec.: Specificity.

directly to the estimation and selection procedures—either
glassoggc or atangc. The resulting network is then evaluated
in terms of sensitivity and specificity relative to the true popu-
lation network. As shown in the table, consistent recovery is
possible for the network with 8 nodes. For the 24-node net-
work, sensitivity remains nearly perfect for glassoggc, but is
slightly lower for atangc. For the network with 48 nodes,
both sensitivity and specificity decrease, but remain acceptable
for glassogpic. In contrast, for atanpic, sensitivity is relatively
low, although specificity remains perfect.

Appendix B

Technical implementation of the direct EM

As described in the main text, the direct EM is implemented
following the description provided by Stadler and Bithlmann
(2012). Given that some degrees of freedom exist within the
authors’ description, our implementation differs from that of
other available approaches. The primary difference from the
implementation by Augugliaro et al. (2023), aside from
the variation in model selection, lies in the computation of the
starting values for the covariance and means, as well as the
penalty parameters. Our approach bears more similarities to
Falk and Starr (2023), but still differs, for instance, in the def-
inition of penalty parameters at the beginning. In this appen-
dix, we provide a comprehensive account of our approach,
which is applied with both glasso and atan regularization.

At the beginning, the data are standardized. To define
the penalty parameters, we compute the covariance matrix
(which corresponds to a correlation matrix due to the
standardization) using pairwise deletion. The largest abso-
lute value of the off-diagonal entries is multiplied by 1.001
and used as the largest penalty parameter. If no observa-
tions are available for a given pair of variables, a warning is
issued, but the code continues by selecting from the remain-
ing off-diagonal entries. The minimum penalty parameter is
set as the largest penalty multiplied by 0.01. The penalty
parameters are then distributed logarithmically between the
minimum and maximum values, consistent with the behav-
ior of the ggraph package.
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The initial covariances and means for the EM algorithm
are first calculated using listwise deletion, as described in
Stadler and Biithlmann (2012). If the resulting initial covari-
ance matrix is not positive definite, it is adjusted to a near
positive definite matrix using the Matrix package (Bates
et al., 2023, Version 1.6-0). If listwise deletion is not feasible
due to missing values on all observations, covariances
between variables are set to zero. The inverse of the initial
covariance matrix is then used as the initial precision
matrix to compute conditional expectations in the E-step.

In the M-step, the covariance matrix calculated from the
sufficient statistics is forced to be symmetric and positive
definite using the Matrix package for regularization via
glasso or atan. The precision matrix and means resulting
from the M-step are compared to the values at the begin-
ning of the E-step. If the difference for each parameter is
smaller than a threshold of 0.00001, the algorithm termi-
nates. Otherwise, the algorithm proceeds with the next E-
step, continuing until the maximum number of iterations
(1000) is reached.
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