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ABSTRACT 
The existing literature on missing data handling in psychological network analysis using cross- 
sectional data is currently limited to likelihood based approaches. In addition, there is a focus 
on convex regularization, with the missing handling implemented using different calculations in 
model selection across various packages. Our work aims to contribute to the literature by imple
menting a missing data handling approach based on multiple imputation, specifically stacking 
the imputations, and evaluating it against direct and two-step EM methods. Standardized model 
selection across the multiple imputation and EM methods is ensured, and the comparative 
evaluation between the missing handling methods is performed separately for convex regular
ization (glasso) and nonconvex regularization (atan). Simulated conditions vary network size, 
number of observations, and amount of missingness. Evaluation criteria encompass edge set 
recovery, partial correlation bias, and correlation of network statistics. Overall, missing data 
handling approaches exhibit similar performance under many conditions. Using glasso with 
EBIC model selection, the two-step EM method performs best overall, closely followed by 
stacked multiple imputation. For atan regularization using BIC model selection, stacked multiple 
imputation proves most consistent across all conditions and evaluation criteria.
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Network analysis to model psychological constructs or 
disorders, termed as psychological networks, is emerging 
as a popular tool, particularly for clinical research (e.g., 
Fried et al., 2015; Lu et al., 2023; Miers et al., 2020), but 
has also in areas such as personality research (e.g., 
Jefferies et al., 2023) or health psychology (e.g., van Zyl, 
2021). The methodology can be utilized in both longitu
dinal and cross-sectional settings, with the present paper 
focusing on the latter. While there is extensive debate 
regarding the best approach to model estimation and 
selection through theoretical considerations or simulation 
studies (e.g., Isvoranu & Epskamp, 2023; Williams & 
Rast, 2020), the understanding of the impact of missing 
values and potential ways to handle them remains lim
ited. This issue is further highlighted by recently pub
lished reporting standards (Burger et al., 2023), which 
only briefly touch upon the treatment of missing values.

However, it is well established that missing values can 
lead to errors in the analysis, especially if not handled 
correctly (Schafer & Graham, 2002). Edge weights con
nected to nodes with missing data may be distorted, 

potentially affecting whether those edges are included in 
the final model. Consequently, there is a pressing need 
to investigate missingness in network estimation. 
Mansueto et al. (2023) found two different missing data 
handling approaches (full information maximum likeli
hood estimation and Kalman filter imputation) to per
form quite well when faced with simulated data missing 
completely at random in longitudinal settings. Current 
knowledge on handling missing data in cross-sectional 
psychological network analysis (e.g., Falk & Starr, 2023; 
Nehler & Schultze, 2024b) has primarily focused on the 
performance of approaches based on adaptations of the 
expectation-maximization (EM) algorithm (originally 
introduced by Dempster et al., 1977) and has only inves
tigated a single method for network estimation, namely 
the graphical lasso (glasso; Friedman et al., 2008). To 
broaden the toolset for handling missing data in cross- 
sectional network analysis, we introduce a multiple 
imputation approach and investigate its performance, as 
well as that of the current EM-based methods in two 
distinct network analysis techniques.
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Network estimation and model selection

In psychological networks, variables (e.g., question
naire items or symptoms of a disorder) are repre
sented by nodes and their relationships by edges. For 
continuous variables, edges often reflect partial corre
lations, capturing the unique association between two 
variables. A partial correlation q for two variables j 
and j0 (with j 6¼ j0) can be modeled by using the 
inverse covariance matrix H ¼ R−1; which we will 
refer to as the precision matrix (see Lauritzen, 1996).

qjj0 ¼ −
Hjj0
ffiffiffiffiffiffi
Hjj

p ffiffiffiffiffiffiffiffi
Hj0j0

p (1) 

The proportion of edge weights in a network that are 
not equal to zero is called its density, with highly con
nected networks called dense, while less connected ones 
are called sparse. Cross-sectional networks do not distin
guish between intra- and inter-individual variation 
(Hamaker, 2012) and present the edges as undirected 
(Epskamp & Fried, 2018). In practice, the calculation in 
Equation (1) must be performed based on the estimated 
precision matrix Ĥ; since the true matrix is unknown. 
During the estimation, sampling variation can lead to 
spurious edges (Costantini et al., 2015). Consequently, 
various methods for model estimation and selection 
have been proposed—see Isvoranu and Epskamp (2023) 
for a comprehensive but not exhaustive overview. In 
addition to glasso, which has been examined in the con
text of missing data (e.g., Falk & Starr, 2023; Nehler & 
Schultze, 2024b), we also investigate a nonconvex alter
native in this study, specifically focusing on the atan 
penalty (Williams, 2020).

For the scope of this paper, we limit ourselves to the 
case of continuous, multivariate normally distributed 
variables. Models with this type of data are termed 
Gaussian graphical models (GGM; Costantini et al., 
2015; Lauritzen, 1996). We denote the observed, cen
tered variables as Y following previous research 
(Epskamp & Fried, 2018; Williams & Rast, 2020). The 
sample covariance matrix is denoted as S, and the popu
lation covariance matrix as R:

Convex regularization
The glasso (also called l1 regularization) estimates the 
precision matrix that maximizes a penalized log-likeli
hood based on the sample covariance matrix.

log detðHÞ-trðSHÞ − kjjHjj1 (2) 

The last part of the equation is a convex penalty 
term, which uses the penalty parameter k to scale the 
sum of all off-diagonal absolute values of the precision 
matrix H: Thus, maximizing this equation results in 

shrinking entries in the precision matrix—in some cases 
to 0. Regularization is performed with varying penalty 
parameters k logarithmically spaced between a minimum 
and a maximum value (Epskamp, 2016). Commonly, 100 
values for k are used, returning as many estimated preci
sion matrices Ĥa with a 2 f1, :::, 100g:

Following the estimation process, various methods 
can be employed to determine the optimal one among 
the resulting Ĥa: Most of these methods are based on 
unpenalized log-likelihoods, which are also computed 
using the sample covariance matrix S.

llðĤaÞ ¼
n
2
ð log detðĤaÞ − trðSĤaÞ − p � log ð2pÞÞ (3) 

Two crucial considerations arise: First, the pre
sented unpenalized log-likelihood is always best for 
the least penalized Ĥa: Second, as the number of 
observations increases, the disparity between the log- 
likelihoods of sparse and dense networks grows. Thus, 
instead of performing model selection on the unpenal
ized log-likelihood, the Extended Bayesian Information 
Criterion (EBIC; Foygel & Drton, 2010) is used, aim
ing to identify the model with the lowest value among 
the 100 candidates:

EBICa ¼ −2llðĤaÞ þ jEaj log nþ 4jEajc log p (4) 

Ea represents the edge set of the respective graph 
with jEaj being the number of non-zero elements in 
the upper triangle of the corresponding estimated pre
cision matrix Ĥa: The inclusion of this term serves to 
counterbalance the influence of the log-likelihood by 
imposing a higher penalty on denser networks. The 
hyperparameter c serves as an additional penalty for 
complex models. Simulations indicated an optimal 
value of c ¼ 0:5 (Foygel & Drton, 2010), outperform
ing higher penalizing values when using a network 
structure resembling the expected structure of psycho
logical constructs as the population (Epskamp, 2016). 
In the following, we adhere to the nomenclature pro
posed by Williams et al. (2019) and refer to the com
bination of glasso regularization to estimate a model 
and EBIC to achieve selection as glassoEBIC:

In cases with a similar number of observations and 
nodes, the performance of glassoEBIC stands out due to 
its specificity, where the edges included in a chosen 
network structure can be confidently regarded as 
genuine (Epskamp, 2016). It returns mostly sparse 
network structures, developed to provide applied 
researchers with a well-interpretable network struc
ture. However, Williams et al. (2019) show that the 
sensitivity of the approach varies depending on the 
number of observations, returning more non-zero 
edges as n increases. In their simulation study the true 
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model is not found for n!1 if the true network 
structure is not extremely sparse, which is uncommon 
in psychological practice (Wysocki & Rhemtulla, 
2021). One explanation is that the bmin condition 
required for consistency may not be satisfied, meaning 
that the smallest entries in the inverse covariance 
matrix are not large enough to survive regularization 
(Zhao & Yu, 2006). However, such small entries— 
resulting from weak partial correlations—are a com
mon feature of psychological networks (Wysocki & 
Rhemtulla, 2021). Another contributing factor is that, 
as n increases, sensitivity improves while specificity 
declines, resulting in denser networks that deviate fur
ther from the true structure. It is important to note 
that this effect is specific to the standard glassoEBIC 
implementation in the well-known qgraph package 
(Epskamp et al., 2012) and similar implementations, 
which do not include an explicit mechanism for con
trolling the false positive rate. A further limitation of 
the standard glassoEBIC implementation is that all 
edges are penalized, including those that are ultim
ately retained in the final network structure (Williams 
& Rast, 2020).

Nonconvex regularization
Nonconvex regularization was introduced to psycho
logical network analysis literature by Williams (2020) 
with the objective of mimicking a best subset selection 
approach, while maintaining computational efficiency 
by avoiding the need to test every conceivable edge 
combination. The underlying assumption is that uni
versal consistency can be attained through minimal 
shrinkage on big parameters, while effectively shrink
ing small parameters to zero (Zhao & Yu, 2006). 
Williams (2020) demonstrated nonconvex regulariza
tion approaches to meet these criteria for network 
analysis, with the atan penalty Wang and Zhu (2016) 
showing the most promising performance. However, a 
known limitation of nonconvex penalties is the lack of 
a guaranteed unique global optimum (Williams, 
2020).

In general, like the glassoEBIC; nonconvex regular
ization operates by estimating the precision matrix 
through maximizing a penalized log-likelihood. Yet, it 
offers greater flexibility in the penalty term through 
individualized calculation depending on each entry 
Hjj0 :

log detðHÞ − trðSHÞ −
X

j6¼j0
qk, g jHjj0 j
� �

(5) 

In the case of atan regularization, the individual 
contribution to the penalty term of each entry h in 

the precision matrix is computed as follows:

qk, gðhÞ ¼ k gþ
2
p

� �

arctan
jhj

g

� �

(6) 

k and g (with g > 0) represent the tuning parame
ters for the penalty function. As was the case for 
glasso, the diagonal of H is excluded from the penal
ization. As g approaches infinity, this results in l1 
regularization, while g tending toward zero approxi
mates best subset selection. Sparsity is affected by k;
where k! 0 results in the maximum likelihood esti
mation of H; which represents a non-regularized 
structure. k!1 results in stronger regularization 
and ultimately an empty network. Notably, Williams 
(2020) demonstrated that the decision regarding 
which parameter to fix and which to vary does not 
have a significant impact and freely selecting both 
parameters does not lead to an improvement in per
formance. In our simulation, we varied the parameter 
k; while keeping g fixed at a value of 0.01. Typically, 
50 different values are considered for k logarithmically 
spaced between a lower and an upper bound. This 
results in estimating 50 precision matrices Ĥb with 
b 2 f1, :::, 50g:

As previously stated, a critique of nonconvex penal
ties is the absence of a guaranteed global optimum 
(Williams, 2020). Fan et al. (2014) argued that 
approximating the optimal solution is acceptable, pro
vided that the results maintain desired properties such 
as consistency in model selection. Under the assump
tion that the number of non-zero elements is known, 
they demonstrated this to be true for precision matri
ces. Nevertheless, such an approximation still does not 
guarantee a global optimum for every single applica
tion case. There are several different possible algo
rithms for the approximation. We have chosen to use 
the one-step estimator (Zou & Li, 2008), because of 
its computational efficiency and performance in cases 
with n� p: This condition should be sufficiently met 
in psychological settings, typically with a higher num
ber of observations compared to the amount of varia
bles (Wysocki & Rhemtulla, 2021).

Selecting the final model among the 50 Ĥb is 
accomplished using information criteria. In their 
simulation, Williams (2020) employed the Bayesian 
Information Criterion (BIC; originally introduced by 
Schwarz, 1978), which corresponds to Equation (4)
with c ¼ 0: The author showed that combining the 
atan penalty with BIC for model selection resulted in 
increased sensitivity as sample size grew. Additionally, 
specificity remained high for small n and was not 
impacted strongly with an increasing number of 
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observations or varying sparsitiy in the population net
work. Henceforth, we refer to the combination of atan 
regularization with BIC model selection as atanBIC:

The described methods of estimating network 
structures operate with completely observed data sets 
and their performance in these situations has been 
compared elsewhere (e.g., Isvoranu & Epskamp, 2023; 
Williams, 2020). In this study, we intend to evaluate 
their respective performance when used in conjunc
tion with one MI approach, as well as two EM based 
approaches, in the presence of missing values. It is 
important to note that it is not the intention of this 
study to compare the performance of glassoEBIC and 
atanBIC directly. Following reviews, however, we pro
vide tentative comparisons in the electronic supple
mental material (ESM).

Missing values and handling approaches

Traditionally, the occurrence of missing values is dif
ferentiated into three different missing mechanisms: 
missing completely at random (MCAR), missing at 
random (MAR) and missing not at random (MNAR) 
(Little & Rubin, 2019; Rubin, 1976). With data 
MCAR, the missingness is independent of any proper
ties of the observed or missing data. If the data is 
MAR, missingness depends only on observed values. 
Under MNAR, the probability of missingness is add
itionally conditional on unobserved values. In the fol
lowing paragraphs, we review EM-based approaches 
for handling missing data in network estimation, 
introduce our proposed use of multiple imputation in 
this context, and discuss potential differences in per
formance between these methods.

Two-step EM
The two-step EM approach handles missing data by 
applying the EM algorithm in the first step, followed 
by model estimation and selection in the second step. 
During the expectation-step (E-step) of the EM algo
rithm, missing entries in the data matrix are filled 
with conditional expectations. These conditional 
expectations are subsequently employed to compute 
sufficient statistics, with a residual term added if both 
variables were missing for an observation (Little & 
Rubin, 2019). In the following maximization-step (M- 
step), (co-)variances are computed using the sufficient 
statistics. The E- and the M-step are performed itera
tively until convergence is achieved. It is worth noting 
that the use of full information maximum likelihood 
(FIML) yields the same results as the EM algorithm 
used here when estimating unconstrained covariance 

matrices (Enders, 2001), as is done in the first step of 
this approach. In the second step, network estimation 
and model selection are performed based on the esti
mated covariance matrix.

To our knowledge, the two-step EM is currently 
only evaluated for glassoEBIC but can easily be 
extended to atanBIC: The procedure is implemented in 
the R package bootnet (Epskamp et al., 2018), which 
offers extended options for network analysis on top of 
the qgraph package. As described, the packages uses 
the covariance matrix generated by the EM algorithm 
to perform model estimation. For model selection 
using information criteria, as per Equation (4), as well 
as Equation (3), the covariance matrix from the EM 
algorithm also serves as the sample covariance matrix 
S, while several methods for determining the sample 
size in the presence of missing values are provided.

In a recent evaluation conducted by Nehler and 
Schultze (2024b), the authors employed the default 
settings of qgraph for glassoEBIC; wherein the sample 
size for log-likelihood and EBIC calculation is set to 
the average of all pairwise sample sizes for variances 
and covariances. This evaluation showed that the 
method yields highly sparse networks under various 
conditions, with only a limited number of true edges 
being detected, especially when dealing with increased 
missing data and a small number of observations. 
Falk and Starr (2023) evaluated the two-step EM using 
the average pairwise sample size of only covariances 
instead with similar results.

Direct EM
St€adler and B€uhlmann (2012) proposed an integrated 
EM algorithm as a combination of missing data hand
ling and glasso regularization of the graph structure. 
This method shares the same E-step with a standard 
EM algorithm, computing conditional expectations, 
residual terms and sufficient statistics. In the M-step, the 
algorithm computes the inverse covariance matrix based 
on the sufficient statistics and subsequently employs 
regularization to produce a sparse precision matrix. This 
resulting matrix is then utilized to compute conditional 
expectations in the next E-step. The two steps are 
repeated until convergence is achieved. The algorithm is 
run separately for different penalty parameters k; typic
ally resulting in 100 estimated precision matrices Ĥa:

Since this approach does not involve a separation 
between model estimation via glasso regularization and 
missing data handling, we refer to it as direct EM.

An evaluation by St€adler and B€uhlmann (2012) 
demonstrated promising results with sparse matrices— 
representing typical network structures in the field of 
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biology—showcasing sensitivity and specificity at the 
same time. While the authors included model selection 
via EBIC in their simulations, they did not describe the 
specific technique used to calculate the information cri
teria, which has led to varying implementations in 
practice. The R package cglasso by Augugliaro et al. 
(2023) employs the EBIC, as defined previously in 
Equation (4). It utilizes the total number of observa
tions (with or without missingness). For S, it uses the 
inverse of the non-penalized precision matrix (i.e., the 
assumed sample covariance matrix without regulariza
tion) in the final iteration of the M-step. Therefore, 
each Ĥa matrix is compared to a distinct sample 
covariance matrix, taken from the respective estimation 
process. Nehler and Schultze (2024b) investigated the 
direct EM using the cglasso package with population 
networks estimated from psychological data, which are 
typically denser than those investigated by St€adler and 
B€uhlmann (2012). The results indicated high sensitivity 
at the potential risk of losing specificity.

To our knowledge the direct EM approach has not 
been extended to include atanBIC until now. Our 
implementation is based on the glassoEBIC procedure 
St€adler and B€uhlmann (2012) with only minor modifi
cations, which are describe in detail in Appendix B. 
The alteration involves using the atan penalty for 
regularization in the M-step, and the best model is 
selected among competing models via BIC to align 
with the two-step and complete data approaches. The 
calculation of the information criteria to perform 
model selection is described later in the section Model 
selection with missing values.

Multiple imputation
The fundamental concept of multiple imputation (MI) 
involves replacing each missing data point with sev
eral independent values, thereby creating several com
plete versions of the data set (Rubin, 1987a, 1996). 
We used predictive mean matching (PMM) as the 
imputation method, which has been shown to be 
effective across various scenarios, although its per
formance may falter with smaller n (Kleinke, 2017). 
PMM operates by first predicting values for the vari
able that is imputed for all individuals. The prediction 
incorporates noise and parameter uncertainty by 
drawing parameters from their posterior distribution 
(van Buuren, 2018). PMM then identifies observed 
cases with predicted values similar to those of the 
missing case and randomly draws one as the donor 
for imputation.

In multivariate missing data settings, fully condi
tional specification (FCS) is often used (van Buuren, 

2006, 2007). This approach specifies conditional dis
tributions for each variable separately, eliminating 
the need for a joint multivariate model. Imputations 
across variables are generated iteratively—while five 
iterations may be sufficient for unbiased estimates, 
higher correlations or increased missingness may 
require additional iterations (van Buuren et al., 
1999). Regarding the number of imputations, a 
higher number improves replicability, but as few as 
two imputations may suffice for generating point 
estimates (von Hippel, 2020). Since different imputa
tions yield different imputed values, Rubin’s rules are 
applied to pool resulting statistical parameters, 
including the computation of their standard errors 
(Rubin, 1987b).

Using the traditional approach to pool results of 
multiply imputed data, selecting a final network 
structure is challenging because edges may be 
included in some imputations but excluded in others. 
Pooling raw values, while treating non-existent edges 
as zero in mean calculations, could introduce bias. 
We propose an approach inspired by variable selec
tion in multiple regression (Wood et al., 2008), 
whereby the multiply imputed data sets are stacked 
into one and model estimation is performed only 
once on the combined data set—an approach that 
has also been applied in the context of structural 
equation modeling (SEM; Lang & Little, 2014). 
Evaluation of the stacking approach indicated a need 
for standard error corrections but unbiased point 
estimates (van Buuren, 2018; Wan et al., 2015), mak
ing it suitable for exploratory network analysis via 
atanBIC or glassoEBIC:

In summary, our proposal involves imputing data sets 
using PMM and FCS, stacking them into a single data 
set, and deriving the corresponding covariance matrix, as 
also done by Lang and Little (2014). Subsequently, regu
larization is applied using either glasso or atan to obtain 
estimates for Ĥa or Ĥb: Details on model selection are 
provided in the corresponding section.

Comparison of missing data handling approaches
Direct and two-step EM approaches haven been eval
uated in both the SEM and network analysis litera
ture. In SEM, Savalei and Bentler (2009) and Zhang 
and Savalei (2023) compared full information max
imum likelihood (FIML)—a method conceptually 
similar to the direct EM approach described above— 
with two-step procedures. Their findings suggest that 
while two-step methods yield valid and consistent esti
mates, they tend to be less efficient. Falk and Starr 
(2023) argue that this reduced efficiency may result 

994 K. J. NEHLER AND M. SCHULTZE



from a loss of information about uncertainty in specific 
covariance elements when transitioning from a saturated 
to a structured model in the second step. In the context 
of network analysis, Nehler and Schultze (2024b) found 
that the two-step EM approach performed considerably 
worse than direct EM, particularly in terms of sensitiv
ity. This pattern reversed only under conditions of high 
missingness and large sample sizes. Similarly, Falk and 
Starr (2023) reported inferior performance of the two- 
step EM in recovering population networks, although 
the observed differences were smaller. Notably, the pro
cedures used for model selection varied not only 
between these two studies, but also within each study 
depending on the missing data handling approach. 
These methodological differences are discussed in the 
following section.

While likelihood based methods are often consid
ered the gold standard for handling missing data (van 
Buuren, 2018), MI offers greater flexibility, particularly 
when dealing with non-normal data and nonlinear 
relationships in the imputation model (Vink & Van 
Buuren, 2013). Since MI has not yet been evaluated in 
the context of network analysis, relevant insights 
regarding the comparison of missing data handling 
methods must be drawn from other domains. Within 
donor-based imputation approaches, Jia and Wu 
(2023) identified PMM as particularly effective under 
non-normality in SEM contexts. Moreover, Lee and 
Shi (2021) demonstrated that MI estimates remained 
stable under model misfit, whereas FIML-based 
approaches tended to deviate more from full-data 
results as the degree of misfit increased. This is par
ticularly relevant for the present study, as regulariza
tion in network models introduces intentional model 
misfit, which may disproportionately affect the per
formance of direct EM.

Lang and Little (2014) investigated the use of stacked 
data sets to compute a single covariance matrix (a super
matrix) in SEM. However, their evaluation focused 
exclusively on significance testing and convergence, with 
the stacking procedure demonstrating advantages over 
FIML in terms of convergence. In principle, the stacked 
MI approach resembles the approach utilized in the 
two-step EM method in the sense that missing data 
handling is used to estimate the covariance matrix in 
the first step and regularization is applied afterwards. As 
such, if all distributional assumptions hold, both 
approaches are asymptotically equivalent (Lee & Shi, 
2021; Pigott, 2001). Nevertheless, this does not necessar
ily mean they will yield identical results in practice, as 
highlighted by Pigott (2001) in the context of regression.

The literature suggests that all three investigated 
approaches should exhibit similar consistency. In 
terms of efficiency, the direct EM approach may be 
superior because it retains information about uncer
tainty in the estimated parameters. However, the 
model misfit introduced by regularization may dispro
portionately affect the consistency and efficiency of 
the direct EM approach. Since this misfit stems from 
the regularization procedure, its impact may differ 
between the glassoEBIC and atanBIC: Drawing expecta
tions from prior studies in network analysis is chal
lenging because those studies vary substantially in 
how information criteria are computed, whereas the 
approach we chose in this study follows a standar
dized procedure.

Model selection with missing values

As outlined earlier, the introduction of missing values 
necessitates specific choices in the calculation of the 
log-likelihood and subsequently in the evaluation crite
ria. Existing implementations and previous studies have 
varied in their approaches. For instance, Augugliaro 
et al. (2023) selected the estimate from the final EM 
algorithm iteration as S for Equation (3) in their imple
mentation of the direct EM. However, these estimates 
vary across penalty parameters, complicating the claim 
that they truly represent the sample covariance 
matrix. In contrast, the two-step EM and stacked MI 
approaches could simply use the estimated covariance 
matrix from the first step.

Furthermore, as previously stated, the determin
ation of the number of observations for multiplication 
in Equation (3) has strong influence on the following 
model selection. Sparse models among the candidate 
solutions typically exhibit worse fit when using unpen
alized log-likelihood, a discrepancy that becomes more 
pronounced as n increases. Thus, a larger n introdu
ces greater variation in log-likelihood values used 
for information criteria calculation, which tends to 
favor denser networks among the candidates. In 
contrast, the impact of a higher n on the incorpo
rated log-term is relatively minor. The two-step 
implementation (Epskamp et al., 2018) employs 
pairwise averaging to calculate n, whereas the direct 
EM method by Augugliaro et al. (2023) uses the 
total observation count. This discrepancy may 
explain the findings of Nehler and Schultze (2024b), 
who observed that the two-step approach produced 
more sparse and specific results, whereas the direct 
EM method yielded networks with greater density 
and sensitivity.
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A similar pattern regarding the calculation of log- 
likelihood and its impact on the comparison of miss
ing data handling approaches can be assumed for the 
study of Falk and Starr (2023). In their study, the 
two-step EM approach uses the pairwise average num
ber of observations for the covariances in calculating 
the log-likelihood with Equation (3), sometimes 
resulting in a very small effective sample size. This 
can lead to the selection of sparser networks among 
the candidate models. In contrast, the direct EM 
method, which employs the observed data log-likeli
hood (as described below), generates larger discrepan
cies among candidate models. In their simulation, the 
direct EM method with the observed data log-likeli
hood was found to be more sensitive, while the two- 
step EM method, relying on the pairwise number of 
observation and the matrix-based calculation of the 
log-likelihood, tended to produce sparser networks. 
These differences between the missing data handling 
approaches could potentially be attributed to varia
tions in the log-likelihood and information criteria 
methods.

To emphasize the specific evaluation of the missing 
handling we integrated a consistent approach in com
puting the information criteria across all three missing 
data handling methods. In accordance with Falk and 
Starr (2023), we use the observed data log-likelihood 
instead of having to choose an n and the sample 
covariance matrix. The observed data log-likelihood is 
computed as the sum of the individual log-likelihoods 
for each observation i:

llðĤ, l̂Þ ¼
Xn

i¼1
−

pi

2
� log ð2pÞ −

1
2

log j Ĥ
−1� �

ij

�

−
1
2
ðYi − l̂iÞ

T
ĤiðYi − l̂iÞ

�

(7) 

Here, Yi represents the observed centered variables 
for the specific individual, and all other values in the 
calculation (model parameters Ĥ; p and means l̂) are 
reduced to those that include the observed variables 
of that specific individual. Centering the observed var
iables with missing values based on sample informa
tion does not imply that the true mean of the 
centered variable is zero. Therefore, the mean is also 
incorporated into the equation and estimated based 
on the stacked data matrix in the stacked MI 
approach, via the EM algorithm in the first step of 
the two-step EM approach, and naturally returned by 
the direct EM along with the estimate for Ĥ: Notably, 
the resulting log-likelihood value without missing data 
would be the same as Equation (3).

Although the contribution of the term logðnÞ to the 
information criteria calculation may be relatively 
minor, it nevertheless requires specification. This term 
should represent the available information. We elected 
to utilize the average pairwise observations of all cova
riances, motivated by the rationale that the diagonal 
elements (variances) are not subject to regularization.

The present study

As outlined at the beginning of this manuscript, the pre
sent study aims to evaluate a stacked MI approach 
against EM algorithms under consistent model estima
tion and selection criteria. We integrated all missing 
data handling techniques with both glassoEBIC and 
atanBIC: Given that all three missing data handling 
methods are modern and conceptually similar—particu
larly stacked MI and two-step EM—we expect them to 
perform comparably. However, evidence from previous 
literature suggest that differences in consistency and effi
ciency may arise across approaches, although the direc
tion of these effects remains unclear.

Methods

A Monte Carlo simulation study was conducted to com
pare the performance of the missing data handling tech
niques in estimating networks using both glassoEBIC and 
atanBIC: We used an openly available data set containing 
responses to the Fisher Temperament Inventory (Brown 
et al., 2013; Fisher et al., 2010)1to construct the popula
tion networks from which the data were simulated. This 
choice aligns with the approach taken in other simula
tion studies investigating psychological network analysis 
(e.g., Isvoranu & Epskamp, 2023; Mansueto et al., 2023), 
aiming to mimic a realistic psychological scenario.

A similar density value of approximately 0.32 was 
maintained across all population networks, which falls 
within the range of sparse structures typically encoun
tered in applied psychological research (Wysocki & 
Rhemtulla, 2021). Population network structures were 
achieved by removing edges with the lowest partial 
correlations until the specified density was reached, 
while ensuring that there were no isolated nodes. 
After identifying the edges to be removed, the preci
sion matrix was re-estimated, i.e., the identified edges 
were forced to zero without applying any regulariza
tion to the remaining edges. In line with the work of 
Wysocki and Rhemtulla (2021), we did not ensure 
that the assumptions required for the consistency of 

1Data can be retrieved from http://openpsychometrics.org/FTI_data.zip/.
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model selection were met by the population networks, 
instead focusing the partial correlations on the realis
tic psychological data set. More detailed information 
on the population networks—specifically, the distribu
tion of partial correlations and the detectability of 
edges—can be found in Appendix A.

Simulation design

In the generation of the data set, three factors were 
manipulated. Network size (p) was varied among 8, 24, 
and 48. The choices of 8 and 24 fall within the typical 
range of network sizes encountered in psychological 
research (Wysocki & Rhemtulla, 2021), while 48 repre
sents a more extreme scenario for future reference. 
Sample size (n) was adjusted across three levels: 400, 
800, and 1600 Finally, the rate of missingness (m) was 
varied among completely observed, 0.1, 0.2, and 0.3. 
Nehler and Schultze (2024b) explored different missing 
data mechanisms but found minimal distinctions 
between MAR and MNAR, attributing this surprising 
result to the strong interdependence of nodes within the 
network. Based on these findings, we elected to focus 
exclusively on MAR. The data generation conditions 
were crossed with the three missing data handling meth
ods, excluding any redundant combinations arising from 
the intersection of these factors, resulting in a total of 90 
unique conditions. Each condition was replicated 500 
times, and in cases of missingness, all three handling 
methods were tested. The simulation was conducted 
once for atanBIC and once for glassoEBIC:

Data creation and missing values generation

Data were simulated from the multivariate normal 
distribution with the correlation matrix derived from 
the population networks described above. This initially 
resulted in completely observed data sets. Replications 
were simulated in a way that conditions based on the 
same parameters in data generation (network size and 
number of observations) returned the same 500 data 
sets. For conditions with missing values, observations 
were removed from the complete data sets. This 
approach not only facilitates comparability among dif
ferent missing data handling methods but also allows 
for a direct comparison between a given condition 
using complete and incomplete data sets.

Missing values generation was done with a slight 
modification of the approach proposed by Grund 
et al. (2018). Let R be a matrix including the latent 
response propensities.

Rij ¼ b1jj0 � Pij0 þ rij (8) 

The response propensity of observation i on vari
able j is denoted with Rij: b1jj0 is the regression param
eter for the missing propensity of a variable j with a 
standardized, completely observed predictor Pj0 (with 
b1jj0 set to 0.7). rij represents a normally distributed 
residual value with a mean of zero and a variance of 1 
– b2

1jj0 : Critical values Rc were determined according 
to the missing proportion of the specific conditions. 
Any data point with jRijj > jRcj was deleted from the 
complete data set. Missing values generation was 
aimed at representing MAR (j 6¼ j0). In all conditions 
with m > 0; half of the items contained missing val
ues, while the other half were completely observed. 
Thus, in conditions with m ¼ 0:1; variables j were 
20% missing. Variables with and without missingness 
were determined to have a similar average in the net
work statistic strength.

Evaluation criteria

Simulation studies evaluating network analysis tools 
provide a wide range of possible criteria. In our 
manuscript, we include evaluation criteria offering 
distinct perspectives: encompassing the examination 
of the edge set, parameter estimation, and recovery of 
network statistics2.

Edge set
The first evaluation criteria focus on discerning the 
network structure. Network density is defined as the 
ratio of non-zero estimated edge weights to the total 
number of possible edges. Beyond determining the 
correct density, precision in edge selection is crucial 
and is commonly assessed using sensitivity and speci
ficity (e.g., Isvoranu & Epskamp, 2023; Williams, 
2020). Specificity captures the accuracy in identifying 
edges with weights of zero, while sensitivity quantifies 
the accuracy in identifying non-zero weighted edges.

For all handling mechanisms, an increase in miss
ingness is expected to result in a lower density. With 
glassoEBIC; the densities of the estimated networks 
are projected to exceed the population density for 
larger sample sizes. This would likely be accompa
nied by a decrease in specificity and an increase in 
sensitivity. Conversely, when combining missing 
handling mechanisms with atanBIC; the estimated 
densities should approach the population density 
with increasing sample size, consistently maintaining 

2Notable evaluation criteria not discussed include for example the 
Matthew correlation coefficient (Matthews, 1975) or the Kullback-Leibler 
loss (Kullback & Leibler, 1951). They can be examined using the 
evaluation code in the corresponding repository on the Open Science 
Framework (https://osf.io/kdv7t/).
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heightened specificity while experiencing a smaller 
increase in sensitivity.

Parameter estimation
In network analysis, the primary parameters of inter
est are the edge weights, denoted by partial correla
tions. Bias can occur when non-zero edge weights are 
inaccurately estimated or when genuine zero edge 
weights are erroneously omitted. These potential 
biases are reflected in the previously mentioned evalu
ation criteria of sensitivity and specificity. To comple
ment the bias introduced by edge set identification, 
here, we calculate the difference between estimated 
and true partial correlations for correctly identified 
non-zero edges. To derive more comprehensible 
aggregate performance metrics, we calculated the aver
age raw bias for each replication.

For the glassoEBIC approach, we anticipate a nega
tive bias that intensifies with greater levels of missing 
data. For the atanBIC method, we do not have a pre
defined expectation regarding the direction of the 
bias. However, we do expect performance to degrade 
as the proportion of missing data increases. For 
increases in sample size, we expect this bias to become 
less pronounced (for glassoEBIC) or approach zero (in 
the case of atanBIC).

Network statistics
An important consideration for applied researchers is 
the use of descriptive statistics for the resulting net
work, such as centrality indices (Epskamp et al., 2018; 
Opsahl et al., 2010), which are widely applied to iden
tify the most influential nodes (e.g., Lu et al., 2023). 
However, among these metrics, only strength emerges 
as a reliable and theoretically sound measure (e.g., 
Bringmann et al., 2019; Epskamp et al., 2018). Given 
this, we only evaluate estimated strength values in our 
simulation. Following the conceptualization by Barrat 
et al. (2004), the strength of a node in weighted net
works is defined as the sum of the absolute weight 
values of its edges. Aligning with the methodology of 
Epskamp and Fried (2018), we utilized the correlation 
of strength values between the population and the 
estimated networks as an evaluation criterion.

We anticipate similar behavior of the performance 
criteria across conditions for the analyses using 
glassoEBIC and atanBIC; although predictions are less 
definitive compared to other evaluation criteria. 
Specifically, we expect correlations to decrease as the 
proportion of missing data increases across all missing 
data handling techniques. However, as the ratio n/p 

increases, we believe that the correlations will more 
closely resemble those derived from complete data.

Software and parameter settings

The simulations and evaluations were conducted using 
R (Core Team, 2023). The code for these processes, 
including our customized version of the direct EM 
and the computation of individual log-likelihoods, can 
be accessed on the Open Science Framework (https:// 
osf.io/kdv7t/). A more detailed description of our 
implementation of the direct EM can also be found in 
Appendix B.

Observations from the population networks were 
drawn using the MASS package (Venables & Ripley, 
2002, Version 7.3.60). Notably, all variables were 
standardized in our simulation. For the two-step 
approach, correlation matrices were estimated using 
the EM algorithm by the lavaan package (Rosseel, 
2012, Version 0.6.16). MI was conducted using the 
mice package (van Buuren & Groothuis-Oudshoorn, 
2011, Version 3.16.0) with 20 imputations and a max
imum of 10 iterations. These choices strike a balance 
between computational efficiency and replicability. 
The mice package uses five donors by default, shown 
to be sufficient by van Buuren (2018).

For the glasso regularization, we utilized the glasso 
package (Friedman et al., 2019, Version 1.11). Model 
selection was performed in line with the standard 
implementation in qgraph (Version 1.9.8), using 100 
penalty parameters and a minimum penalty value set 
to 0.01 times the maximum. Atan regularization was 
performed using the GGMncv package (Williams, 
2021, Version 2.1.1) with 50 penalty parameters and 
the same ratio of 0.01. The hyperparameter for EBIC 
calculation was consistently set to c ¼ 0:5:

Results

This section is divided into results derived from 
glassoEBIC and atanBIC: Given the extensive range of 
conditions and performance metrics, we report only 
the most central findings here. Additional figures and 
tables are available in the ESM, providing further 
details on results that are referenced but not discussed 
in depth in the main text. The ESM also includes an 
overview of key comparisons between the perform
ance of the two approaches. In brief, the introduction 
of missingness has a more pronounced negative 
impact on sensitivity for glassoEBIC; reducing it more 
strongly than for atanBIC: In contrast, specificity is 
more negatively affected for atanBIC; whereas it shows 
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a slight improvement for glassoEBIC: These deviations 
from full-data behavior are most evident under condi
tions with small sample sizes and high levels of 
missingness.

glassoEBIC

Convergence
Overall, a single replication failed to converge (see 
Table ESM1 for an overview). This replication was 
excluded from all subsequent analyses.

Edge set
Figure 1 illustrates the density values across all repli
cations for each condition. Performance can be eval
uated in relation to both the complete data scenarios 
and the population densities, represented by dashed 
black lines. As expected, glassoEBIC yields increasing 
estimated densities with larger n, but these do not 
converge to the true population density due to sys
tematic overestimation. As p grows, reaching the 
population density becomes more challenging, which 
is indicated by estimated densities well below popula
tion values even in complete data situations for the 
largest network. While the average density of all repli
cations gets closer to the population density when 
keeping n constant and reducing the network size, the 
variability across replications increases. This is evident 
in conditions with and without missing values. With 
increased missingness, the estimated density of the 
networks gets smaller. However, this decline dimin
ishes notably with larger observation numbers. The 
performance of the two-step EM and stacked MI 
approaches are closely aligned. In contrast, direct EM 
shows minor deviations, yet these deviations lack a 
discernible pattern. At a sample size of 400 

observations, the performances of missing data hand
ling approaches align closely with complete observa
tions only when the missingness is minimal— 
otherwise, the resulting networks tend to be mostly 
empty. By contrast, with 800 observations, the meth
ods generally perform adequately across all conditions. 
However, the direct EM approach faces challenges, 
especially with the medium and big networks.

Table 1 presents mean sensitivity and specificity for 
the various missing data handling techniques, along
side results for completely observed data. In general, 
sensitivity tends to be lower than specificity, as 
expected for an approach that, as described earlier, 
was designed to find a sparse solution in low-dimen
sional settings. Specificity exhibits a ceiling effect in 
conditions with small n, while sensitivity is low. As 
expected, this pattern reverses with a high number of 
observations, whereas, as indicated by the results 
reported for density, many edges are included, result
ing in high sensitivity and low specificity. The size of 
the network also contributes to the tradeoff between 
sensitivity and specificity, with a higher network size 
leading to higher specificity. Increased missingness 
leads to a decrease in sensitivity and an increase in 
specificity, accompanied by greater variability within a 
condition (specific standard deviation values are avail
able in Table ESM2). The impact on sensitivity is 
much more pronounced than on specificity. Yet, the 
effect of missingness diminishes with a higher number 
of observations. Handling methods demonstrate their 
ability to yield results similar to the complete data 
approach in almost all conditions with n ¼ 1600; but 
only for 10% in the smallest network with n ¼ 400:
For 800 observations, a middle ground is observed 
where 10% and 20% missingness are similar to the 
complete data results for the smallest networks and 

Table 1. Means of sensitivity and specificity across conditions using glassoEBIC: Results of completely observed data shown under 
two-step EM for comparison.

n¼ 400 n¼ 800 n¼ 1600

Stacked MI Two-step EM Direct EM Sstacked MI Two-step EM Direct EM Stacked MI Two-step EM Direct EM

p Prop. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec.

0 – – 0.914� 0.917� – – – – 0.995� 0.894� – – – – 1.000� 0.888� – –
0.1 0.799 0.948 0.809 0.946 0.811 0.922 0.976 0.900 0.979 0.901 0.973 0.880 1.000 0.891 0.999 0.897 0.999 0.858
0.2 0.602 0.966 0.616 0.966 0.554 0.949 0.941 0.911 0.946 0.909 0.912 0.873 0.992 0.885 0.994 0.887 0.981 0.830

8 0.3 0.213 0.992 0.241 0.990 0.225 0.987 0.815 0.918 0.813 0.914 0.670 0.911 0.975 0.867 0.976 0.871 0.912 0.819
0 – – 0.703� 0.970� – – – – 0.863� 0.940� – – – – 0.926� 0.927� – –

0.1 0.594 0.981 0.606 0.980 0.539 0.985 0.833 0.941 0.831 0.943 0.817 0.945 0.909 0.926 0.909 0.927 0.908 0.927
0.2 0.400 0.990 0.431 0.988 0.355 0.991 0.782 0.942 0.781 0.944 0.697 0.956 0.883 0.923 0.883 0.924 0.869 0.923

24 0.3 0.077 0.998 0.065 0.997 0.229 0.990 0.681 0.944 0.690 0.940 0.460 0.967 0.837 0.909 0.836 0.912 0.729 0.930
0 – – 0.415� 0.992� – – – – 0.639� 0.963� – – – – 0.729� 0.942� – –

0.1 0.327 0.996 0.338 0.995 0.327 0.995 0.600 0.966 0.601 0.965 0.607 0.967 0.713 0.941 0.711 0.942 0.720 0.943
0.2 0.233 0.997 0.256 0.995 0.244 0.995 0.544 0.969 0.547 0.967 0.501 0.978 0.686 0.939 0.683 0.941 0.701 0.942

48 0.3 0.119 0.999 0.131 0.998 0.179 0.994 0.450 0.973 0.451 0.965 0.361 0.979 0.635 0.933 0.632 0.934 0.581 0.959

Abbreviations: Prop.: Proportion of missing data. Sens.: Sensitivity. Spec.: Specificity.
�Results without missing values are computed by the complete data approach but presented in the column concerning two-step EM.
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10% for the medium and big networks. Examining the 
distinctions between missing handling methods, two- 
step EM exhibits higher sensitivity with 400 observa
tions, while specificity remains comparable to the 
others. With 800 and 1600 observations, minimal dif
ferences exist between two-step EM and MI. Direct 
EM occasionally shows marginally better sensitivity, 
but it shows lower specificity and higher variety in 
results, making it less preferable.

Parameter estimation
Figure 2 illustrates the mean raw biases in correctly 
estimated non-zero partial correlations for conditions 
with 400 and 800 observations. Consistent with the 
expectations for glassoEBIC; negative biases are 
observed across all conditions with 400 observations 
(depicted in Subfigure A). As seen previously for the 
estimated densities, the average bias gets closer to 
zero as n is held constant and the network size is 

Figure 1. Density values of all replications for all conditions using glassoEBIC: Columns vary different degrees of missingness, while 
rows vary network size. Dashed lines represent the true densities in the population networks.

Table 2. Means of sensitivity and specificity across conditions using atanBIC: Results of completely observed data shown under 
two-step EM for comparison. Values for two-step EM are not available for the condition with 48 nodes, 400 observations, and 
30% missing rate due to non-convergence.

n¼ 400 n¼ 800 n¼ 1600

Stacked MI Two-step EM Direct EM Stacked MI Two-step EM Direct EM Stacked MI Two-step EM Direct EM

p Prop. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec.

0 – – 0.857� 0.958� – – – – 0.970� 0.980� – – – – 0.997� 0.990� – –
0.1 0.816 0.955 0.812 0.954 0.797 0.967 0.944 0.970 0.941 0.970 0.931 0.977 0.992 0.986 0.993 0.986 0.988 0.990
0.2 0.782 0.926 0.789 0.917 0.729 0.962 0.902 0.956 0.910 0.952 0.867 0.975 0.976 0.977 0.980 0.976 0.954 0.988

8 0.3 0.726 0.864 0.738 0.815 0.597 0.944 0.845 0.922 0.849 0.901 0.778 0.961 0.942 0.940 0.946 0.934 0.876 0.978
0 – – 0.546� 0.953� – – – – 0.642� 0.968� – – – – 0.729� 0.977� – –

0.1 0.518 0.939 0.518 0.939 0.474 0.955 0.614 0.957 0.612 0.958 0.572 0.970 0.701 0.972 0.700 0.973 0.662 0.980
0.2 0.491 0.908 0.499 0.890 0.422 0.946 0.582 0.934 0.578 0.935 0.518 0.962 0.669 0.955 0.668 0.955 0.606 0.976

24 0.3 0.521 0.773 0.629 0.561 0.360 0.926 0.538 0.875 0.537 0.864 0.446 0.935 0.625 0.911 0.623 0.908 0.552 0.940
0 – – 0.346� 0.954� – – – – 0.414� 0.965� – – – – 0.488� 0.973� – –

0.1 0.327 0.941 0.325 0.937 0.306 0.958 0.398 0.953 0.396 0.953 0.372 0.968 0.468 0.965 0.465 0.966 0.441 0.977
0.2 0.353 0.852 0.406 0.761 0.284 0.949 0.372 0.928 0.369 0.923 0.346 0.960 0.443 0.945 0.441 0.945 0.410 0.970

48 0.3 0.334 0.869 – – 0.265 0.935 0.356 0.868 0.467 0.670 0.322 0.942 0.416 0.881 0.412 0.883 0.384 0.948

Abbreviations: Prop.: Proportion of missing data. Sens.: Sensitivity. Spec.: Specificity.
�Results without missing values are computed by the complete data approach but presented in the column concerning two-step EM.
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reduced, but the variability across replications 
increases. Bias for completely observed data remains 
only very slightly below zero with minor deviations 
between replications. However, the introduction of 
missing values amplifies this bias, even with only 20% 
data missing. Furthermore, the variability in biases 
across replications raises concerns about the consist
ency and trustworthiness of the results. The most pro
nounced biases in single replications arise from 
instances where only a few partial correlations are 
correctly estimated as non-zero, and these are either 
small or incorrectly signed. Comparing the handling 
methods, all missing handling approaches demonstrate 
similar performance with 10% and 20 % missingness. 
This trend persists with 30% missingness for stacked 
MI and two-step EM. However, direct EM shows 
superior performance in these cases for the medium 
and big network sizes.

For conditions with 800 observations (depicted in 
Subfigure B), although partial correlations retain nega
tive biases, these are, as expected, considerably closer 
to zero. The missing handling methods can manage 
up to 20 % missingness, yielding results akin to com
pletely observed data. However, with 30% missingness, 
while the average performance remains comparable to 
the completely observed data for the small and 

medium networks, certain replications display signifi
cant biases, rendering the results of single replications 
questionable. Both stacked MI and two-step EM 
exhibit congruent outcomes, while direct EM presents 
marginally varied results, albeit without a discernible 
pattern. In the largest sample condition (n ¼ 1600;
Figure ESM1), the trends observed with increasing 
sample size persist. Negative biases further decrease, 
and the discrepancies between replications diminish, 
rendering even the 30% missingness scenario feasible. 
Additionally, the disparities between MI, two-step 
EM, and direct EM become minimal, indicating that 
the handling methods perform comparably at this 
sample size.

Network statistics
Figure 3 depicts the correlations between strength val
ues from estimated and population networks for con
ditions with 400 and 800 observations. Notably, this 
metric shows the largest discrepancies between com
pletely observed cases and those with missing data. As 
network size increases, the correlations tend to 
decrease, indicating less reliable identification of 
strongly connected nodes. With 400 observations 
(depicted in Subfigure A), the capacity to roughly dis
cern the nodes with highest strength values remains 

Figure 2. Mean raw bias of correctly identified non-zero partial correlations per replication using glassoEBIC: Conditions with A 400 
and B 800 observations. Columns vary different degrees of missingness, while rows vary network size. Scaling of y-axis differs 
between A and B.

MULTIVARIATE BEHAVIORAL RESEARCH 1001



intact for the largest network configurations, provided 
no data is missing. Outcomes remain satisfactory with 
10% missingness but, as we anticipated, an increase in 
missingness leads to a decline in correlation. Starting 
with 20% missingness, the variance across individual 
replications becomes too pronounced for reliable con
clusions. Both stacked MI and two-step EM yield con
sistently analogous results, though stacked MI returns 
smaller correlations for single replications. In contrast, 
direct EM consistently underperforms across most 
scenarios, including situations with significant missing 
data and expansive networks.

In line with our expectations, when the sample size 
is increased to 800 observations (depicted in Subfigure 
B), both stacked MI and two-step EM closely approxi
mate results from completely observed data in the 
presence of 10% and 20% missingness. At a 30% miss
ing rate, their performance slightly weakens but 
remains within an acceptable spectrum. The variability 
in results decreases, with instances of small correla
tions becoming rare. However, an exception arises in 
the context of 30% missingness within the smallest 
network, where correlations occasionally approach 
zero. Direct EM underperforms in direct comparison 
even with a 20% missing rate for 800 observations. 
With 1600 observations (Figure ESM2), overall 

performance continues to improve. It is noteworthy 
that no individual replication records a correlation 
below 0.6, even under 30% missingness for stacked 
MI and two-step EM. However, direct EM still exhib
its suboptimal outcomes, characterized by substantial 
variations across replications, especially at the 30% 
missingness rate.

atanBIC

Convergence
For completely observed data sets, there were no 
issues with convergence. However, when attempting 
to employ atanBIC in conjunction with missing data 
handling techniques, complications arose in condi
tions with n ¼ 400; as well as conditions with n ¼
800 and p ¼ 48: Non-convergence with two-step EM 
occurred during the second step, indicating that the 
missing data handling in the first step, which was 
conducted using the lavaan package was completed 
successfully. However, this initial step occasionally 
yielded covariance matrices that indicated nearly per
fect correlations between all variables. This resulted in 
non-positive definite matrices after applying atan 
regularization, which ultimately led to the termination 
of computations in the second step. Non-convergence 

Figure 3. Correlations of strength values between estimated and population networks using glassoEBIC: Conditions with A 400 and 
B 800 observations. Columns vary different degrees of missingness, while rows vary network size. Scaling of y-axis differs between 
A and B.
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was particularly evident for 30% missingness, reaching 
a point where all replications failed with p ¼ 48 and 
n ¼ 400: Even for n ¼ 800; almost half of the replica
tions failed for the big network. Direct EM exhibited 
fewer and less severe convergence issues, primarily 
affecting a small subset of cases—specifically, the larg
est network with the smallest sample size, where about 
one-fifth of the replications failed. It is important to 
note that a replication was classified as a failure if 
convergence was not achieved for all penalty parame
ters tested. In contrast, stacked MI demonstrated suc
cessful convergence across all conditions. Detailed 
convergence rates are provided in the ESM (Table 
ESM3). Replications that failed to converge were 
excluded from all subsequent analyses.

Edge set
Figure 4 depicts the density values for all replications 
of every condition. In line with our expectations, the 
estimated density approaches the population value in 
the completely observed conditions with n ¼ 800 and 
n ¼ 1600 in the smallest network. When considering 
conditions with missing values, larger sample sizes 
tend to result in networks that are more closely 
aligned with their counterparts from completely 
observed conditions. Specifically, for 400 observations, 

the networks are comparable to the completely 
observed ones only when missingness is at 10%. With 
800 observations, this similarity extends to 20% miss
ingness. However, it is worth noting that even condi
tions with completely observed data often yield a very 
sparse structure for the big network. For the two-step 
EM approach, reliable results with 30% missingness 
are only observed when using 1600 observations. In 
contrast, both direct EM and stacked MI seem stable 
with 30% missingness in larger networks with 400 and 
800 observations. However, this stability is somewhat 
misleading as these methods often produce nearly 
empty network structures. Overall, stacked MI offers 
the most stable outcomes, while the two-step EM 
approach occasionally comes closer to the density esti
mated by the complete data sets, especially in condi
tions with minimal missingness. Direct EM typically 
lags slightly behind both two-step EM and stacked MI 
in terms of average performance, while producing 
relatively stable results across its replications.

Table 2 presents a comparative overview of mean 
sensitivity and specificity across conditions with and 
without missing data. For cases with complete data, spe
cificity is generally high, while sensitivity increases with 
n. Notably, there is no clear tradeoff between these two 
metrics. However, even with 1600 observations, 

Figure 4. Density values of all replications for all conditions using atanBIC: Columns vary different degrees of missingness, while 
rows vary network size. Dashed lines represent the true densities in the population networks. Values for two-step EM are not avail
able for the condition with 48 nodes, 400 observations, and 30% missing rate due to non-convergence.
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complete data fails to achieve high sensitivity values for 
larger networks, indicating a lack of power. The intro
duction of missingness results in a decline in both sensi
tivity and specificity, with a more pronounced effect on 
sensitivity. This phenomenon is accompanied by an 
increase in variability across replications within the same 
condition (specific standard deviation values are pro
vided in Table ESM4). The observed effects are less 
prominent in smaller networks and conditions with a 
higher number of observations. In line with our expecta
tions, an increase in sample size leads to an increase in 
sensitivity while maintaining high specificity in condi
tions with and without missingness. For 400 observa
tions, missing data handling methods demonstrate the 
ability to perform comparably to the complete data 
approach in conditions with 10% missingness and 400 
observations. In the case of 1600 observations, results 
with 20% missingness are similar to complete data. A 
more substantial increase in observations would be 
required to mitigate the impact of 30% missingness.

The comparison between missing handling meth
ods reveals nuanced patterns. For data sets with 400 
observations, two-step EM demonstrates significantly 
greater variability across replications compared to dir
ect EM and stacked MI, especially with a 30% miss
ingness rate. Direct EM outperforms the other two 

approaches with regards to specificity in these condi
tions, although values obtained with stacked MI are 
close and the latter shows higher sensitivity. With 400 
observations, two-step EM is competitive in both sen
sitivity and specificity only at a 10% missingness rate. 
With 800 observations, two-step EM continues to face 
challenges with variability across replications, espe
cially as missingness increases and the network size 
grows. In contrast, stacked MI and direct EM exhibit 
performance closer to complete data, with stacked MI 
being more sensitive and direct EM more specific. As 
the sample size increases to 1600 observations, distinc
tions between the approaches diminish. Yet, a consistent 
trend emerges wherein both stacked MI and two-step 
EM prioritize sensitivity in contrast to direct EM’s 
inclination toward specificity.

Parameter estimation
The mean raw bias of correctly identified non-zero 
partial correlations per replication is illustrated in 
Figure 5 for data sets with 400 and 800 observations. 
On average, the bias approaches zero, but is skewed 
positive, indicating an overestimation of partial corre
lations. This positive bias intensifies with increasing 
missingness and larger networks. For data sets with 
400 observations (depicted in Subfigure A), there is a 

Figure 5. Mean raw bias of correctly identified non-zero partial correlations per replication using atanBIC: Conditions with A 400 
and B 800 observations. Columns vary different degrees of missingness, while rows vary network size. Scaling of y-axis differs 
between A and B. Values for two-step EM are not available for the condition with 48 nodes, 400 observations, and 30% missing 
rate due to non-convergence.
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systematic positive bias evident in completely 
observed scenarios for both p ¼ 24 and p ¼ 48: While 
the average bias decreases with a smaller network and 
constant sample size, the variability between replica
tions increases (as already seen in the glassoEBIC 
results). Stacked MI consistently mirrors the perform
ance of completely observed data across all conditions. 
Two-step EM encounters challenges in individual rep
lications, particularly evident with a 30% missingness 
rate. Direct EM registers the highest positive bias, 
with its estimates closely aligning to the other two 
handling techniques only under minimal missingness 
or within smaller networks.

With 800 observations (depicted in Subfigure B), 
the systematic bias diminishes, as we anticipated, but 
persists, especially for the larger networks. Stacked MI 
aligns closely with completely observed data on aver
age, yet it exhibits a broader range across replications, 
particularly at the 30% missingness level. While two- 
step EM’s average performance mirrors that of MI, it 
demonstrates an even greater variability. Direct EM 
continues to exhibit the most pronounced positive 
bias but shows a similar variability across replications. 
Using a sample size of n ¼ 1600 (Figure ESM3) 
results in a substantial reduction in bias, with virtually 
no systematic bias observed at p ¼ 48: In addition, 

variability between replications decreases, although it 
remains slightly higher in conditions with missing 
data compared to complete data. The relative per
formance patterns among the missing data handling 
techniques persist, with both stacked MI and two-step 
EM offering similar results, while direct EM consist
ently exhibits the highest bias.

Network statistics
Correlations derived from strength values of estimated 
and population networks with 400 and 800 observa
tions are illustrated in Figure 6. Again, while the aver
age correlation is closer to 1 with a constant sample 
size and a smaller network, the variation across repli
cations also increases. Direct EM consistently exhib
ited the highest correlations with 400 observations 
(depicted in Subfigure A), performing similarly to the 
complete data conditions even when subjected to 10% 
and 20% missingness. While there were isolated 
instances of poor correlation, such anomalies were 
also observed using the complete data set. As 
expected, the discrepancies in the correlations became 
more pronounced with increased missingness, raising 
concerns about the reliability of the results when 20% 
of data were missing in the big network. Stacked MI 
showcased performance only marginally inferior to 

Figure 6. Correlations of strength values between estimated and population networks using atanBIC: Conditions with A 400 and B 
800 observations. Columns vary different degrees of missingness, while rows vary network size. Scaling of y-axis differs between A 
and B. Values for two-step EM are not available for the condition with 48 nodes, 400 observations, and 30% missing rate due to 
non-convergence.
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the complete data set and direct EM in the 10% miss
ingness scenario. As seen in other evaluation criteria, 
two-step EM exhibited limitations as the level of miss
ingness escalated.

In line with our expectations, 800 observations 
(Subfigure B) generally led to higher correlations. A 
notable ceiling effect was observed with the com
pletely observed data in the small network, correla
tions for the medium and big networks without 
missings never dropped below r ¼ :75: Techniques for 
handling missing data demonstrated enhanced resili
ence, effectively managing both 10% and 20% miss
ingness. Nevertheless, certain replications exhibited 
outlier behavior. In conditions with 10% and 20% 
missingness, stacked MI and the two-step method 
exhibited performance on par with direct EM. A mod
est advantage for direct EM was discerned with p ¼
48 at 20% missingness. However, the deviations for 
the 30% missingness scenario, though diminished 
compared to situations with 400 observations, were 
still substantial, calling into question the reliability of 
the returned strength values. Conditions with 1600 
observations (Figure ESM4) showed even better 
results, preserving the previously observed patterns. 
The magnitude of deviations also decreased for the 
30% missingness condition. Nevertheless, sporadic 
replications still recorded correlations hovering 
around r ¼ :5: Direct EM exhibited improved correla
tions compared to stacked MI and two-step EM in 
scenarios with p ¼ 48 and a 30% missingness rate.

Discussion

The aim of the present study was to investigate the 
performance of a stacked MI approach in cross-sec
tional, psychological network analysis, contrasting it 
with two distinct EM approaches. This was done for 
both glassoEBIC and atanBIC: As the computation of 
model selection criteria was standardized across the 
missing data handling methods, the recommendations 
for preferred techniques, detailed later, differ from 
earlier findings which employed different calculations 
(Falk & Starr, 2023) and which relied on the default 
implementations of R packages (Nehler & Schultze, 
2024b). It also necessitates a reevaluation of required 
sample sizes in cases with missing values described by 
Nehler and Schultze (2024b). In the study presented 
here, higher levels of missingness generally led to less 
dense networks with decreases in sensitivity, which 
may seem less desirable. However, these results can be 
viewed as more representative of the actual amount of 
available information.

In line with the standard implementation of 
glassoEBIC without an additional control for the false 
positive rate, a negative bias was observed, and as the 
sample size increased, the network became denser 
with a noticeable decline in specificity. This is consist
ent with the findings of Williams et al. (2019), who 
showed that consistency in model selection is lacking 
when the network structure is not extremely sparse, 
which is the case in our simulation. This effect may 
change by incorporating approaches designed for con
trolling the false positive rate (e.g., Lafit et al., 2019). 
Conducting network analysis via glassoEBIC with a data 
set of 400 individuals and a missingness exceeding 
10% is not recommended. Generally, conditions with 
800 observations remained robust against missing data 
up to 30%. However, there were outliers in strength 
correlations, particularly in the small network. When 
scaling up to 1600 observations, the decline in specifi
city persisted even in the presence of missingness. 
Thus, this implementation of glassoEBIC does not con
verge to the true model with perfect sensitivity and 
specificity but rather continues to add more edges 
with increased sample size, making the approach less 
favorable in these situations regardless of the missing 
data handling technique employed. In terms of com
paring the handling techniques, direct EM exhibited 
marginally inferior performance in certain scenarios 
and significantly poorer outcomes in others, suggest
ing it may not be the optimal choice across the board. 
This may be due to the intentional model misfit intro
duced by regularization in each iteration of the direct 
EM approach, which could increase bias—as demon
strated by Lee and Shi (2021) in the context of SEM. 
Both stacked MI and two-step EM exhibited similar 
performance across all evaluated conditions. As likeli
hood based approaches are acknowledged as the gold 
standard in previous literature (van Buuren, 2018), 
with glassoEBIC; the two-step EM appears to be a rea
sonable recommendation. Additionally, it usually 
offers computational advantages in terms of speed. 
Nevertheless, stacked MI presents a viable alternative, 
especially when other analyses are planned for the 
same data set.

For atanBIC; the relationship between density and n 
is less pronounced, as described by Williams (2020). 
While 400 observations are sufficient for smaller net
works, larger networks necessitate a larger sample 
size. In particular, even with 1600 observations, the 
performance remains suboptimal for a 48-node net
work. However, this network size could be considered 
an edge case based on a review of applied studies 
(Wysocki & Rhemtulla, 2021). The required sample 
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sizes for handling missing data vary: 400 observations 
suffice for a 10% missingness rate, 800 for 20%, and 
1600 for 30%. Nonetheless, some replications exhib
ited outlier behavior, suggesting potential pitfalls for 
individual researchers in achieving accurate results. 
When contrasting missing data handling techniques, 
more nuanced recommendations are necessary for 
atanBIC than for glassoEBIC: Specifically, for 400 obser
vations, direct EM may be recommended for identify
ing nodes with the highest strength. However, caution 
is advised due to the heightened risks of false nega
tives and increased bias in estimated nodes. The two- 
step EM exhibits robust performance with larger data 
sets but demonstrates inconsistency with fewer obser
vations, higher node counts, or elevated missingness 
rates. Stacked MI consistently provides the most stable 
performance across various conditions, making it the 
recommended approach when using atanBIC:

Notably, the discrepancies in performance of the 
missing handling techniques between convex and 
nonconvex regularization in our simulations suggest 
that a universally optimal technique remains unclear. 
Consequently, the choice of a method should depend 
on the specific context of each applied study.

While our results indicate the necessity of substan
tial sample sizes for both glassoEBIC and atanBIC; a 
review of applied studies in cross-sectional network 
analysis revealed that almost half of the studies 
encompassed more than 500 observations (Wysocki & 
Rhemtulla, 2021). It is crucial to acknowledge that in 
cases with a smaller sample size, simply opting for a 
smaller network is not always the solution for achiev
ing a reliable outcome. Although accuracy tends to 
increase on average when comparing results between 
conditions with a larger and smaller network while 
maintaining the same sample size, the discrepancies 
between replications within the same conditions also 
tend to escalate. This phenomenon is not exclusive to 
conditions with missing values—it also occurs in those 
with completely observed data sets.

Limitations and future directions

The contrasting outcomes regarding the best missing 
handling technique from prior evaluations (Falk & 
Starr, 2023; Nehler & Schultze, 2024b) underscored 
the critical influence of decisions in model selection 
with missing data. In particular, the determination of 
sample size and the method employed for computing 
the log-likelihood were pivotal in computing both 
EBIC and BIC. Generally, using individual log-likeli
hoods and calculating average sample size resulted in 

the selection of less dense networks compared to the 
previous study of Nehler and Schultze (2024a). 
Nevertheless, conducting a dedicated study comparing 
these approaches could provide a more nuanced 
understanding of their respective impacts. Notably, for 
EBIC, the implications extend further, including the 
challenge of selecting an appropriate value for the 
hyperparameter c: Given these complexities, the value 
of selecting the best model based on methods like 
cross-validation (Kr€amer et al., 2009), which was ori
ginally the main suggestion of St€adler and B€uhlmann 
(2012), warrants thorough evaluation in a comparative 
study. While Falk and Starr (2023) include cross-val
idation, it is solely implemented for the direct EM 
approach, where it demonstrates encouraging out
comes. Moreover, if the primary aim is to compare 
network estimation methods, future research should 
also consider varying the information criteria, apply
ing the EBIC in combination with atan and the BIC 
with glasso, to implement a fully crossed experimental 
design.

The present study used psychological data to con
struct population networks with the objective of emu
lating realistic scenarios. Although the observed effects 
remained consistent when comparing transitions from 
small to medium and medium to large network size, 
these findings warrant validation using other realistic 
psychological structures. It is worth noting that our 
study maintained the same density for all population 
networks, representing a case of sparse to medium 
density. Future investigations might benefit from 
varying the density, as advocated by studies such as 
Williams (2020). The varied conditions within the 
simulation were selected with the understanding that 
the results from different missing data handling 
methods would likely converge, particularly for the 
two-step EM and stacked MI approaches, which are 
asymptotically equivalent when assumptions hold. 
The primary aim was to identify subtle discrepancies 
and validate the conceptual framework of these 
methods. Future simulation studies could enhance 
differentiation by exploring for example deviations 
from distributional assumptions.

An alternative approach to integrating MI in net
work analysis is grouping, which, unlike stacked MI, 
does not combine the data sets but instead ensures 
that each parameter is either consistently included or 
excluded across all imputations. This makes grouped 
MI conceptually less similar to the two-step EM pro
cedure than stacked MI, although it may be less easily 
generalized due to the inherent specificity required for 
different types of model estimation and selection. In 
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the context of regularized regression, the method has 
shown promising results (Chen & Wang, 2013). 
However, in network analysis without regularization, 
its initial implementation demonstrated weaker per
formance (Nehler & Schultze, 2024a). This raises the 
question of whether grouped MI might yield better 
results in regularized network models. Another 
approach, discussed in the statistical and machine 
learning literature, involves modifying the regulariza
tion procedure to directly accommodate missing data 
(Loh & Wainwright, 2012, 2015). This method adapts 
the estimator itself, in contrast to the approaches pre
sented in our manuscript, where regularization is 
either integrated into missing data handling (direct 
EM) or addressed separately (two-step EM and 
stacked MI). While the cited studies have demon
strated the effectiveness of these modified estimators, 
future research should evaluate their performance 
within the context of psychological networks and 
compare them to the methods presented in this 
manuscript.

On a more general note, investigating the phenom
enon of increased variability across replications while 
keeping a consistent number of observations but 
smaller network sizes presents an important avenue 
for future research. Reducing the number of nodes 
could be seen as an intuitive approach for applied 
researchers to enhance the reliability of their results in 
cases with a low number of available observations. 
However, our results suggest that this approach may 
not be as straightforward as it seems. Thus, the under
lying reasons for this variability warrant thorough 
investigation. Additionally, it is essential to explore 
whether this effect is specific to regularization techni
ques or also occurs in non-regularized methods (e.g., 
Williams et al., 2019). Examining a broader range of 
network estimation and selection techniques will also 
further strengthen the understanding of how well the 
findings on missing data handling generalize, building 
on the initial step taken in this study.

Conclusion

The present study demonstrated that stacked MI and 
EM algorithms for cross-sectional network analysis 
under standardized model estimation and selection 
exhibited similar, though not equivalent, performance. 
The analyses indicated that when using glassoEBIC; the 
two-step EM approach is recommended for handling 
missing values. In contrast, the choice of missing data 
handling technique for network analysis with atanBIC 

is more nuanced, with stacked MI generally being the 
most stable.
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Appendix A  

Additional information on the population 
networks

As described in the introduction, the consistency of the net
work analysis methods relies on different assumptions. To 
gain a deeper understanding of the data-generating net
works, this appendix presents the distribution of partial cor
relations for all three sizes in Table A1. As noted in the 
methods section, the density is equal across network sizes, 
and therefore the number of zero partial correlations is the 
same. Overall, the number of larger partial correlations 
decreases with increasing network size, which is expected, 
as more variables are partialed out.

Furthermore, Table A2 examines the detectability of the 
population networks to improve the interpretability of our 
results. Detectability is assessed by assuming an infinite 
sample size and providing the population covariance matrix 

directly to the estimation and selection procedures—either 
glassoEBIC or atanBIC: The resulting network is then evaluated 
in terms of sensitivity and specificity relative to the true popu
lation network. As shown in the table, consistent recovery is 
possible for the network with 8 nodes. For the 24-node net
work, sensitivity remains nearly perfect for glassoEBIC; but is 
slightly lower for atanBIC: For the network with 48 nodes, 
both sensitivity and specificity decrease, but remain acceptable 
for glassoEBIC: In contrast, for atanBIC; sensitivity is relatively 
low, although specificity remains perfect.

Appendix B  

Technical implementation of the direct EM

As described in the main text, the direct EM is implemented 
following the description provided by St€adler and B€uhlmann 
(2012). Given that some degrees of freedom exist within the 
authors’ description, our implementation differs from that of 
other available approaches. The primary difference from the 
implementation by Augugliaro et al. (2023), aside from 
the variation in model selection, lies in the computation of the 
starting values for the covariance and means, as well as the 
penalty parameters. Our approach bears more similarities to 
Falk and Starr (2023), but still differs, for instance, in the def
inition of penalty parameters at the beginning. In this appen
dix, we provide a comprehensive account of our approach, 
which is applied with both glasso and atan regularization.

At the beginning, the data are standardized. To define 
the penalty parameters, we compute the covariance matrix 
(which corresponds to a correlation matrix due to the 
standardization) using pairwise deletion. The largest abso
lute value of the off-diagonal entries is multiplied by 1.001 
and used as the largest penalty parameter. If no observa
tions are available for a given pair of variables, a warning is 
issued, but the code continues by selecting from the remain
ing off-diagonal entries. The minimum penalty parameter is 
set as the largest penalty multiplied by 0.01. The penalty 
parameters are then distributed logarithmically between the 
minimum and maximum values, consistent with the behav
ior of the qgraph package.

Table A1. Size of partial correlations in the population 
networks.
jPcorj p ¼ 8 p ¼ 24 p ¼ 48

¼ 0 67.86% 67.75% 67.82%
> 0–0.1 0.00% 18.12% 25.71%
> 0.1–0.2 17.86% 10.87% 5.05%
> 0.2–0.3 7.14% 2.54% 0.71%
> 0.3–0.4 3.57% 0.00% 0.35%
> 0.4–1 3.57% 0.72% 0.35%

Abbreviations: jPcorj ¼ Absolute value of partial correlation.

Table A2. Investigation of detectability of the population 
networks.

glassoEBIC atanBIC

p Spec. Sens. Spec. Sens.

8 1.000 1.000 1.000 1.000
24 1.000 0.989 1.000 0.944
48 0.983 0.898 1.000 0.647

Abbreviations: Sens.: Sensitivity. Spec.: Specificity.
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The initial covariances and means for the EM algorithm 
are first calculated using listwise deletion, as described in 
St€adler and B€uhlmann (2012). If the resulting initial covari
ance matrix is not positive definite, it is adjusted to a near 
positive definite matrix using the Matrix package (Bates 
et al., 2023, Version 1.6-0). If listwise deletion is not feasible 
due to missing values on all observations, covariances 
between variables are set to zero. The inverse of the initial 
covariance matrix is then used as the initial precision 
matrix to compute conditional expectations in the E-step.

In the M-step, the covariance matrix calculated from the 
sufficient statistics is forced to be symmetric and positive 
definite using the Matrix package for regularization via 
glasso or atan. The precision matrix and means resulting 
from the M-step are compared to the values at the begin
ning of the E-step. If the difference for each parameter is 
smaller than a threshold of 0.00001, the algorithm termi
nates. Otherwise, the algorithm proceeds with the next E- 
step, continuing until the maximum number of iterations 
(1000) is reached.
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