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ABSTRACT

Latent class (LC) analysis is a model-based clustering approach for categorical data, with a
wide range of applications in the social sciences and beyond. When the data have a hier-
archical structure, the multilevel LC model can be used to account for higher-level depend-
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encies between the units by means of a further categorical LC variable at the group level.
The research interest of LC analysis typically lies in the relationship between the LCs and
external covariates, or predictors. To estimate LC models with covariates, researchers can
use the one-step approach, or the generally recommended stepwise estimators, which sep-
arate the estimation of the clustering model from the subsequent estimation of the regres-
sion model. The package multilevLCA has the most comprehensive set of model
specifications and estimation approaches for this family of models in the open-source
domain, estimating single- and multilevel LC models, with and without covariates, using the

one-step and stepwise approaches.

Introduction

Latent class (LC) analysis (Goodman, 1974a;
Lazarsfeld & Henry, 1968; McCutcheon, 1979) is used
to classify units into discrete types based on a set of
observed categorical variables. The clustering is mod-
eled as an underlying discrete variable with some
number of categories or latent classes. LC analysis has
been applied in diverse research domains in the social
sciences and beyond. For example,
research, Oser (2022) identified repertoires of political
participation; in educational research, Hickendorff
et al. (2010) identified patterns of mental strategies for
division problems among elementary school students;
in substance use research, Bray et al. (2023) identified
types of opioid users among patients in the emergency
department.

A basic assumption of standard LC analysis is that
the units of analysis are independent of each other.

in political

This conditional independence assumption is often
violated when the data have a multilevel, or hierarch-
ical structure, for example when we observe voters

within countries, students within schools, or patients
within hospitals. In hierarchical data, units within
groups are likely to be systematically more similar
than units across groups.

To account for the higher-level dependencies in the
hierarchical data, the baseline LC model can be
extended by modeling a second categorical LC vari-
able at the higher (group) level. In such a multilevel
LC model, the distribution of the lower-level classes is
allowed to vary between the higher-level classes. This
random effect is effectively nonparametric (Aitkin,
1999; Finch & French, 2014; Laird, 1978; Vermunt,
2003), thus avoiding strict distributional assumptions.
For instance, in their multilevel LC analysis of finan-
cial product ownership across European countries,
Bijmolt et al. (2004) identified 14 individual-level con-
sumer segments and found that the prevalence of
these segments varied between 7 country-level clus-
ters. For example, the consumer segment that was the
largest in the cluster of countries in North-Central
Europe was rather small in the cluster of countries in
North-Western Europe.
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In LC analysis, identifying the clustering structure
of the data is usually only the first step of the empir-
ical investigation. The research interest usually lies in
the relationship between the classes and some covari-
ates, or predictors. In the multilevel LC model, covari-
ates can be included both on the lower level and on
the higher level. For instance, in their multilevel LC
analysis of adolescent smoking behavior across com-
munities, Henry and Muthén (2010) first identified
three individual-level clusters - heavy smokers, moder-
ate smokers, and nonsmokers, and two community-
level clusters - low-use communities and high-use
communities. Subsequently, they analyzed the regres-
sion relationship between smoking behavior and
lower-level covariates such as school performance and
academic aspirations, and the regression relationship
between community type and higher-level covariates
such as the proportion of youth living in poverty.

Historically, multilevel LC models were estimated
using the traditional one-step approach, which involves
fitting the full model simultaneously (Lazarsfeld &
Henry, 1968; Vermunt, 2003). While the one-step
approach has attractive statistical properties — when the
LC model is correctly specified, it is efficient and
asymptotically unbiased - it also comes with serious
defects (see e.g. the discussion in Bakk & Kuha, 2018).
Whenever covariates are added or removed, the whole
model needs to be refitted and the effective definitions
of the latent classes can change. This complicates model
interpretation and model selection. Furthermore, the
one-step approach does not fit with the logic of most
applied researchers, who tend to view the regression
model as a distinct component that should be estimated
only after the clustering model has been built.
Therefore, the general recommendation is to use step-
wise estimation approaches (Asparouhov & Muthén,
2014). These were traditionally only available in
single-level LC analysis, but recent methodological
advancements have shown how they can be extended to
multilevel LC models (Bakk et al., 2022; Di Mari et al.,
2023; Lyrvall et al., 2024).

Stepwise approaches avoid the defects of the one-
step approach by separating the estimation of the
measurement model from the subsequent estimation
of the structural model. Among the available stepwise
approaches, the two-step approach is known to be the
most efficient, least biased, most direct, and most flex-
ible option (Bakk & Kuha, 2018; Di Mari et al., 2023).
The two-stage approach (Bakk et al., 2022) is slightly
less direct but otherwise largely shares the same prop-
erties as the two-step approach. Compared to the one-
step approach, the two-step and two-stage approaches

come with enhanced algorithmic stability and
improved speed of convergence (Di Mari et al., 2023).
Regardless of which estimation approach is applied,
the number of classes on the higher level and the
lower level is taken as given. Because the complexity
of the underlying clustering structure in the data
tends to be unknown a priori, identification of the
optimal number of classes is typically the first step of
applied LC analysis.

In light of these recent methodological contributions,
the first aim of this article is to provide a compilation of
state-of-the-art methods for multilevel LC analysis with
covariates. We describe benchmark model specifica-
tions and estimation approaches. In addition, we detail
initialization issues and model selection alternatives.
Targeting both beginning LC analysts and more
advanced LC analysts, we hope to strike a satisfying bal-
ance between user-friendly ground-up exposition and
technical detail.

A lack of general and easily available software solu-
tions has limited the dissemination of these estimation
and model selection approaches in the applied multi-
level LC analysis literature. The recently published R
package multilevLCA (Di Mari & Lyrvall, 2024)
was developed to fill this gap. The package is available
from the Comprehensive R Archive Network at http://
cran.r-project.org/package=multilevLCA. The second
aim of this article is to propose the multilevLCA
package to the open-source statistical software litera-
ture. While the functionalities discussed in this article
can be implemented in specialized software like Latent
GOLD (Vermunt & Magidson, 2021) and Mplus
(Muthén & Muthén, 2017), these software options are
commercial and offer fewer automatic implementa-
tions of stepwise and sequential routines. In this art-
icle we focus on open-source software. We present the
capabilities and syntax of multilevLCA. The pres-
entation is organized in the article alongside the cor-
responding LC analysis methodological exposition, to
closely connect software implementation with theory.
The software contribution has been written in such
a way that we hope that this article can serve
as a stand-alone reference for application of
multilevLCA.

The multilevLCA package is both the first free-
ware-software to implement stepwise estimation of
multilevel LC models with covariates and the first to
estimate multilevel LC models with both dichotomous
and polytomous indicators. multilevLCA has the
most comprehensive set of model specifications and
estimation approaches; estimating single- and multi-
level LC models, with and without covariates, using



the one-step, two-stage, and two-step approaches. The
semi-automatic implementation of model selection in
the package is more straightforward and efficient
compared to when each model of interest needs to be
fitted separately, which is the case when using other
freeware-software for LC analysis.

The only existing freeware-software for multilevel
LC analysis with covariates is the R package glca
(Kim et al, 2022), but it is limited to the one-step
approach, with no implementation of stepwise
approaches. Moreover, it does not have the capacity
to model polytomous indicators, which are typically
used in applied research. As such, the scope of the use
of glca is somewhat limited compared to
multilevLCA. The comprehensive functionalities of
multilevLCA also extend the freeware-software
state-of-the-art in single-level LC analysis with covari-
ates. Existing packages for it include the R packages
poLCA (Linzer & Lewis, 2011) and MultiLCIRT
(Bartolucci et al., 2014), but they estimate only single-
level models using the one-step approach. The more
complete alternative for single-level LC modeling is
the Python package StepMix (Morin et al., 2023),
with R interface stepmixr (Lacourse et al., 2024),
which also implements stepwise estimation. However,
unlike multilevLCA, StepMix does not compute
maximum-likelihood standard errors of the regression
parameters for the covariates, which is the statistical
benchmark, instead applying the bootstrap method.

This article offers a comprehensive review of the
key aspects of multilevel LC analysis with covariates,
and a hands-on guide to the implementation of these
techniques using the multilevLCA package. In the
next section, we present the multilevel LC model and
the multilevLCA syntax. Then, we describe pos-
sible estimation strategies for the model and their
implementation in multilevLCA, including strat-
egies for class selection and initialization and a bench-
mark simulation study of performance and estimation
times. Next, we illustrate key features of
multilevLCA by means of an empirical example,
and conclude with a summary.

Model specifications
Theoretical framework

Let Y;, denote the response of unit i = 1,...,N on the
categorical item h=1,...,H, with possible values
Y, =1,..,Ry, and let Y; = (Y;,..., Y;y)' denote the
full response vector for the same unit. The elements
of the vector are treated as observed indicators of the
categorical latent variable X;, with possible values
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{1,..,T}. The single-level latent class (LC) model
defines the unconditional probability of observing a
particular response pattern Y; as a mixture of T class-
specific probabilities, that is,

ZP

Here, the mixture weight P(X; =t) describes the
unconditional probability that unit i belongs to class t,
while the mixture component P(Y;|X; =t) describes
the conditional probability of a particular response
pattern Y; given class t. The responses of the different
indicators are assumed to be conditionally independ-
ent given class membership (the local independence
assumption), leading to

:ip(xl =

t=1

= zT: P(X; =

t=1

£P(Yi|X; = 1). (1)

P(Y,‘h |X, == t)

\::]m E::]m

Ry
W=r)
H rh\th 4 (2)

where the quantity ¢,,, is the probability of giving
response r on item h given class ¢, and I(Y;, =7r) is
equal to 1 if unit i gives response r on item h, and 0
otherwise. For ease of notation, we will use
P(Yy|X; = t) to denote Hfi ) i;%ih:r) in what follows.

Figure 1 graphically illustrates the single-level LC
model defined in (2). The arrows describe a causal
relationship from the LC variable X; to the indicators
Y. There are no arrows between the indicators,
reflecting the local independence assumption.

In a multilevel LC model we take the lower-level
units i =1,...,n; (e.g. individual respondents) to be
nested within higher-level units j=1,...,J] (groups,
e.g. countries). Let W; be a higher-level categorical
latent variable with possible categories m =1, ..., M,
and probabilities P(W; = m) = w,, >0, and let Xj
now be a lower-level categorical latent variable that is
defined conditional on the values of W;, with possible
values t=1,..,T and conditional probabilities
P(Xjj = t|W; = m) = my,, > 0. We collect all w,, and
Tym tespectively in the M-vector w, and the M x T
matrix Il. The multilevel (random-effect) LC model

Y] e - [

Figure 1. The single-level latent class model, with categorical
indicators Y & a categorical latent class variable X.
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for Y;; can be specified as

Y) = f:p(w - m)ip(x,j — W,

t=1
H
HP l]h|Xl] - t (3)
h=1

where we assume that the conditional response proba-
bilities of items Y, depend on higher-level class
membership only through Xj;. The model specified in
(3) is similar to the multilevel item response model
(Gnaldi et al., 2016), but with categorical latent varia-
bles on both levels.

While the assumption of conditional independence
between Yjj;, and W given Xj; is not necessary for model
identification, it is a standard assumption in multilevel
LC analysis for enhancing model interpretation
(Lukociené et al., 2010; Vermunt, 2003). The higher-
level LC variable is typically included when it cannot be
assumed that the distribution of the lower-level LCs be
invariant across higher-level units j (this point is exem-
plified in a substantive analysis in Section 5).

In Figure 2, we graphically illustrate the multilevel
LC model defined in (3). The absence of arrows from
the higher-level LC variable W; to the indicators Yy,
reflect their conditional independence given the
lower-level LC variable Xj;.

Higher-level and lower-level covariates can be
included to predict class membership. Let Z; =
(1.Z,Z), ) be a vector of K covariates, which can be
deflned on the higher level (Z;;) and the lower level
(Z),)). On the higher level, we consider the following

2ij
multinomial logistic model

exp (o), ZH)
L+ S0 exp (42F)

where ZH (1.Z, )', and a,,, are regression coefficients
for m =2,..,M. When only the intercept term is
included, then o, is equal to the log-odds log (/).

P(W; = m|Z]") = (4)

On the lower level, class membership probabilities
can be parameterized in the following analogous way,

exp (Vi,nZi)
1+ 30, exp (Y, Z;)

where v, is a vector of regression coefficients for
each t=2,..,T, and m=1,...,M. When only the
intercept term is included, so that Z; = 1, then y,,, is
equal to the log-odds log (), /m|;s). As can be seen,
this parametrization allows the effects of Z; on Xj; to
vary across different m. The methodological expos-
ition throughout this article holds also for the equiva-

P(Xl] = t|VVJ =m, Z,]) = (5)

lent constrained parametrization in which the slopes
are held fixed across different m and only the inter-
cepts are allowed to vary (Di Mari et al, 2023;
Vermunt, 2005). For generality of exposition, we focus
on the unconstrained parametrization without fixed
slopes in (5).

We further assume that the indicators Y, are condi-
tionally independent from the covariates given lower-
level class membership. With these assumptions, the
multilevel LC model for P(Y;j|Z;;) can be written as

T
P(Y,2Z;) ZP - m|zf>[ZP<Xi; 4w,

H
=m,Z;) [ [ P( ,]h|X,]—t}
h=1

(6)

The conditional response probabilities P(Yj| X =
t) define the LC measurement model, while the condi-
tional class membership probabilities P(W; = m|ZjH )
and P(Xj = t|W; =m,Z;) define the LC structural
models.

The multilevel LC model with covariates defined in
(6) is graphically illustrated by means of a path dia-
gram in Figure 3. The assumption of conditional inde-
pendence between the indicators and the covariates

i [Pz - (Vi ] (Vo] Pz [¥am] [ ] Yo - [Fo

Figure 2. The multilevel latent class model, with categorical indicators Y, a categorical lower-level latent class variable X, & a cat-

egorical higher-level latent class variable W.
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Figure 3. The multilevel latent class model with covariates.

given lower-level class membership is reflected in the
absence of arrows from Z;; and ZH to the Yijn.

As noted above, multilevel LCA is typically applied
when the distribution of the lower-level LCs Xj; can-
not be assumed to be invariant across higher-level
units j. The strategy of capturing this invariance by
means of a higher-level clustering structure is known
as the random-effect approach. This is the approach
on which we focus. For completeness, we now briefly
describe the alternative fixed-effect approach. In this
approach the distribution of Xj; is allowed to vary
across each of the J higher-level units. This is achieved
by treating higher-level unit membership as a (cat-
egorical) covariate in a single-level LC model. Let
I = (I;(1),...5;(J))" be a collection of vectors I;(j)
which are equal to unity if i belongs to j and zero
otherwise. A fixed-effect multilevel LC model with
covariates can be specified as

T H
P(Yi|Zy) =Y P(X; = t|, Zy) [ [ P(Yiul Xy = 1),
t=1 h=1

(7)
where, like in the random-effect specification, P(X; =

t|I",Z;) can be parameterized by means of multi-
nomial logistic equations.

Implementation in multilevLCA

The syntax used in the R package multilevLCA is
aligned with the notation used in (6). The package’s
multilevel modeling focuses on standard specifications
with conditional independence between the items Yy,
and the higher-level LC variable W; are given the lower-
level LC variable Xj;. LC models are specified using the
function multiLCA (), based on some combination of
statements about the variables to be included in the
model. This is structured by means of the following
arguments:

e data: Matrix or data frame containing the observed
data

e Y: Names of data columns with indicators

e iT: Number of lower-level classes

e id high: Name of data column with higher-
level id
iM: Number of higher-level classes
Z: Names of data columns with covariates in the
model for the lower-level classes

e Zh: Names of data columns with covariates in
the model for the higher-level classes

The multilevel LC model with covariates on the
higher level and the lower level includes all the varia-
bles corresponding to these statements - the indicators
Y, specified by Y; the lower-level LC variable X =
1,..., T, specified by iT; the higher-level LC variable
W =1,..,M, specified by id_high and ilM; the
covariates in the model for the lower-level classes Z,
specified by Z; and the covariates in the model for the
higher-level classes Z', specified by zh. The syntax
for specifying this model is’

multiLCA(data, Y, iT, id_high, iM, Z, Zh)

Single-level LC models with covariates and multi-
level fixed-effect LC models can be estimated by omit-
ting to specify 1d_high, iM, and Zh (which default
to NULL). More specifically, multilevel fixed-effect LC
models can be estimated by specifying Z as the col-
umn name which in random-effect modeling is speci-
fied for id_high. We illustrate the multiLCA ()
syntax in greater detail by means of real-data exam-
ples in Section 5.

The next section describes the currently existing
approaches for estimating (6).

"multilevLCA also estimates multilevel LC models in which the slopes for
the lower-level structural model are held fixed across the higher-level
classes. This constraint is managed by means of the argument fixedslopes
in the multiLCA() function. The specification fixedslopes =TRUE fixes the
slopes in the lower-level structural model. The default specification
fixedslopes = FALSE estimates models without these constraints, which is
the focus of this article.
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Figure 4. The measurement model (red) & structural models (blue).

Methodology
Theoretical framework

Let Y; = (Yy;, ...,Ynjj)’ denote the full set of item
responses for all lower-level units belonging to higher-
level unit j.* Let 0 = (0/,0,)" denote the full set of
model parameters in (6), where 0 contains the meas-
urement parameters ¢, and 0, contains the struc-
tural parameters o, and vy,,,.

Figure 4 graphically illustrates the measurement
parameters 0, by red arrows, and the structural
parameters 6, by blue arrows.

Maximum-likelihood estimates 8 can be obtained by
maximizing the observed-data log-likelihood function

J M T
/(0) = log| > P(W;=mz{) [ > P(X;
j=1 m=1

i=1 t=1

H
= t|W; = m,Zy) [ [ P(Yiul Xy = 1) | (8)
h=1

This is the classical one-step approach (Lazarsfeld &
Henry, 1968; Vermunt, 2003). It is efficient and asymp-
totically unbiased when the LC model is correctly speci-
fied. However, simultaneous estimation of the
measurement model and structural models has serious
disadvantages when the correct specification is not
known a priori (see e.g. the discussion in Bakk & Kuha,
2018). Whenever the structural model is changed - for

By default, multilevLCA discards any rows with missing values on
the items, or incomplete item-response patterns, before estimation. An
alternative strategy involves including incomplete item-response patterns
by means of full-information maximum-likelihood (FIML) estimation, only
discarding any rows with missing values on all the items. The choice
between these strategies is managed by means of the argument
incomplete in the function multiLCA(). The default specification
incomplete =FALSE implements row-wise deletion of incomplete
item-response patterns. The alternative specification incomplete=
TRUE implements the FIML strategy, including incomplete item-response
patterns (except fully missing item-response patterns). Regardless of
strategy for handling missing values, if covariates are included in the
model, rows with missing values in the covariates are removed only in
the estimation of the structural part of the LC model, i.e. (see below) step
2 in the two-step estimator, stage 2 in the two-stage estimator, or the
single step in the one-step estimator.

example adding or removing covariates - the measure-
ment model will be affected, which distorts the class defi-
nitions. In practice, this problem can occur to an extent
that makes comparisons of estimated models meaning-
less. As such, the one-step approach complicates model
interpretation and model selection. Moreover, simultan-
eous estimation of complex models involves demanding
computations, which renders the one-step approach the
more time consuming modeling option for multilevel LC
analysis with covariates (Di Mari et al., 2023).

Stepwise methods overcome the drawbacks of the
one-step approach by separating the estimation of the
measurement model and structural model. The first
stepwise method that was proposed in multilevel LC
modeling with covariates is the two-stage approach
(Bakk et al., 2022; Di Mari et al., 2022). Its first stage
involves estimating the measurement parameters. This
is further broken down into three sub-steps. In the
first sub-step, the single-level LC model without cova-
riates is estimated, ignoring the hierarchical structure
of the data, by maximizing the log-likelihood function

N T H

laagera (1) = D log | Y P(X; = 1) [ [ P(YiulX = 1) |,
i=1 t=1 h=1

)

where N = Z]Iil n;, to obtain measurement estimates
0;. In the second sub-step, the multilevel LC model
without covariates is estimated, keeping the measure-
ment parameters 0; fixed at their values from sub-
step 1, by maximizing the log-likelihood function

"

N J M
/stage1.2<92|91 = 01) = Zlog ZP(I/VJ = m)H
=1 m=1

i=1

~

P(X; = t|W; = m)

t—

—

P(Yyh|X,] = t,91 == 61) 5

=

=
Il

1
(10)



where the structural parameters 6, now contain only the
intercept terms, to obtain structural estimates ,. In the
third sub-step, to stabilize the measurement estimates, the
multilevel LC model is estimated again, this time keeping
the structural parameters 0, fixed at their values from
sub-step 2, by maximizing the log-likelihood function

/stagel.S (91 |02 - 62) -

] M B n T
> log [ > P(W; = m|8, = ez)ﬂZP(xﬁ = t|W;
j=1 m=1

i=1 t=1
B H
=m0, = 0,) [ [P(YiulX; = 1) . (11)
h=1

Stage 2 of the two-stage approach involves adding
the covariates to the multilevel LC model, and esti-
mating the intercept and slope terms 0,, keeping the
measurement parameters fixed at their stage-1 values,
by maximizing the log-likelihood function

/stageZ(BZ‘el = 61) =

J M noT
> log [ZP(WJ- =m|Z)[[D _P(X; = t|W; = m, Z)
j=1 m=1

i=1 t=1

H
h=1

The two-stage approach simplifies model interpret-
ation and improves computation time compared to
the one-step method, while demonstrating very similar
properties when the model assumptions hold (Bakk
et al.,, 2022). However, a difficulty of this approach is
estimating asymptotic standard errors of the structural
parameters. In the second stage, conditioning on the
measurement parameters as if they were known,
rather than estimated with sampling error, yields
underestimation of the standard errors. Conditioning
on this first-stage variability is complicated due to the
multiple sub-steps of the first stage.

To address this difficulty, the more straightforward
two-step approach (Di Mari et al., 2023) was devel-
oped. It simplifies the estimation of the measurement
model by means of a single first step. This involves
maximizing the log-likelihood function

] M n T
Loept(B1) = ) log [ZP(WJ- =m ][> P

m=1 i=1 t=1

(13)

to obtain measurement estimates 0,. The second step
involves estimating the structural parameters, keeping
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the measurement parameters fixed at their step-1 val-
ues, by maximizing the log-likelihood function for the
second step as

/step2(92‘91 = él) =

] M nj T
> log [Zp(wj =mZ"[[D_P(Xy = t|W; = m, Z;)
j=1 m=1 i=1 t=1

H
[[P(Yinlx; = £,0, = 6))]. (14)
=1
The two-step approach retains the attractive proper-
ties of the two-stage method, with the additional benefits
of easy-to-derive asymptotic standard errors, and even
greater computational efficiency (Di Mari et al., 2023).
The estimation approaches that were presented in
this section take the number of classes on the higher
level, M, and the lower level, T, as given. Selecting these
values is a distinct but equally fundamental task. In
Section 4, two model selection approaches are described.

Implementation in multilevLCA

Because of its attractive properties, the two-step
approach is the default estimator in the R package
multilevLCA. Users can also choose to estimate LC
models using the one-step and two-stage approaches.
This makes multilevLCA the first R package, and
the first freeware software in any programming lan-
guage, to implement stepwise estimation of multilevel
LC models with covariates.

Estimation approaches are managed using the argu-
ment fixedpars in the function multiLCA().
One-step, two-stage, and two-step estimation of the
multilevel LC model with covariates on the higher
level and the lower level are implemented by means
of the syntax

# One-step estimation:
multiLCA(data, Y, iT, id_high, iM, Z,
zh, fixedpars=20)

# Two-stage estimation:
multiLCA(data, Y, iT, id_high, iM, Z,
zZh, fixedpars=2)

# Two-step estimation (the default):
multiLCA(data, Y, iT, id_high, iM, Z,
Zh, fixedpars=1)

# Equivalent two-step estimation:
multiLCA(data, Y, iT, id_high, iM,
Z, Zh)
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The estimators are labeled by the total number of
fixed parameters; in one-step estimation, no parame-
ters are kept fixed (fixedpars=0); in two-stage
estimation, the fixed parameters are obtained from
two consecutive sub-steps (fixedpars =2); in two-
step estimation, the fixed parameters are obtained
from a single step (fixedpars=1).

Regardless of which estimator is used, estimation is
performed using the expectation-maximization (EM)
algorithm (Dempster et al,, 1977). When covariates
are included, the M step of the EM algorithm uses a
Newton-Raphson (NR) algorithm. For computational
efficiency, the EM and NR algorithms are imple-
mented by integration of C++ code (Eddelbuettel &
Francois, 2011; Eddelbuettel & Sanderson, 2014).

In stepwise estimation, the starting values for the EM
algorithm are particularly important because subse-
quent steps are conditional on estimates from previous
steps. multilevLCA implements an initialization
strategy based on Di Mari et al. (2023).

For the measurement model, the initialization strat-
egy involves the following hierarchical procedure:

1. Fit a single-level LC model with T classes to the
pooled data (Y, ...,Y,), ignoring the multilevel
structure. To initialize the class proportions
P(X; =t), perform a k-modes clustering on the
dummy-coded data, with k = T. Use the relative
sizes of the resulting clusters for the initialization.
From the single-level class solution, retain the
estimates for the conditional response probabil-
ities P(Y;j|X;; = t), and the modal posterior class
assignments® X;;. The estimates for P(Y;|X; = t)
are passed to the EM-algorithm as starting values.
For computational speed and stability, the class
proportions P(X; =t) can be initialized by the
following alternative strategy. First, perform a
principal component analysis on the dummy-
coded data. Retain the first principal components
that together explain at least 85% of the total vari-
ance, or retain the first half of all principal com-
ponents, if this is a greater number. Second,
perform a k-means clustering on the reduced
data, with k= T. Use the relative sizes of the
resulting clusters for the initialization.

*The modal posterior class assignment is the class for which the posterior
class membership probability P(X; =t|Y;), which describes the
probability of belonging to class t given the observed response pattern
Yj, is the greatest. Using the Bayes rule (Goodman, 1974a, 1974b;
Hagenaars, 1992; MaclLahlan & Peel, 2000), this quantity can be
computed as

P(X; = t]Yy) = L= =0 (15)

2. Compute the relative sizes of Xij within each
higher-level unit j. On the resulting J x T table,
perform a k-means clustering, with k = M. Let W;
be the resulting clusters. The relative sizes of W
are passed to the EM-algorithm as starting values
for the higher-level class proportions P(W; = m).

In the function multiLCA (), the choice between
the k-modes strategy and the k-means on principal com-
ponents strategy is managed using the logical argument
kmea. The default argument is kmea = TRUE, which
indicates the k-means on principal components strategy.
The user also has the option to specify custom starting
values. This can be done by specifying, in the
multiLCA() call, the argument startval (which
defaults to NULL) as the name of the data column con-
taining starting values for the lower-level class member-
ship of each lower-level unit. The three initialization
strategies are implemented by means of the syntax

# k-means on principal
initialization:
multiLCA (data, Y, 1T, id_high, iM, Z, zh)

components

# k-modes initialization:
multiLCA (data, Y, iT, id_high, iM, Z,
Zh, kmea =FALSE)

# user-specified starting values:
multiLCA (data, Y, iT, id_high, iM, Z,
Zh, startval)

For the structural model, the initialization strategy
is used to handle label switching on the higher level.
Keeping the conditional response probabilities fixed
cannot prevent that higher-level class labels can be
switched, as there are still M! equivalent permutations
of them. This is handled by initializing the intercept
in o, and the intercept in 7,, at the measurement
model estimates for log (/@) and log (7tm/ijm),
respectively, while initializing the slope parameters in
o,, and the slope parameters in y,,, at zero.

Model selection
Theoretical framework

The general recommendation in LC analysis with
covariates is to perform model selection on the model
without covariates, defined in (3), and then estimate
the full model given this value (Masyn, 2017). In
multilevel LC analysis, different approaches can be
used to identify the locally optimal number of



higher-level classes, M, and lower-level classes, T,
among a set of specifications. Using the straightfor-
ward simultaneous approach, all crossed combinations
of the values of interest for M and T are estimated.

Using the generally recommended sequential
approach (Lukociené et al., 2010), the optimal values
for M and T are selected in a stepwise procedure.
First, single-level LC models, defined in (2), are esti-
mated to select the optimal number of lower-level
classes, T*. Second, multilevel LC models are esti-
mated, keeping the number of lower-level classes fixed
at the step-1 value T, to select the optimal number
of higher-level classes, M*. Third, multilevel LC mod-
els are estimated again, this time keeping the number
of higher-level classes fixed at the step-2 value M*, to
re-select the number of lower-level classes.

The optimal model can be selected based on stand-
ard information criteria, such as the Bayesian informa-
tion criterion (BIC) or the Akaike information criterion
(AIC). BIC can be evaluated on the higher level and the
lower level separately (e.g. Lukociené et al., 2010).
Another information criterion is the BIC-type approxi-
mation of the integrated complete likelihood (ICL-BIC;
e.g. Morgan, 2015), which can be defined on the higher
level and the lower level separately, wherein a penalty
for class separation is added to the BIC.

Implementation in multilevLCA

The R package multilevLCA implements semi-
automatic* model selection, for model specifications
without covariates, using the simultaneous and
sequential approaches. This is done using the same
syntax as for standard model estimation, in the func-
tion multiLCA (), with the number of classes on the
higher level and the lower level specified as a range of
consecutive integers, and model selection approaches
managed using the argument seqguential. The
argument sequential =TRUE indicates sequential
model selection, and the argument sequential =
FALSE indicates simultaneous model selection. The
sequential approach is the default model selection
approach.

Consider, for example, the multilevel LC model
with an unknown number of lower-level classes,
which is taken to be within the range 1-5, and an
unknown number of higher-level classes, taken to be
within the range 1-3. The syntax for implementing
simultaneous and sequential model selection is

“Semi-automatic in the sense that the package implements model
selection only over the range of specifications which is specified by the
user.
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# Sequential model selection:

multiLCA(data, Y, iT=1:5,
iM=1:3)

# Simultaneous model selection:

id_high,

multiL.CA(data, Y, iT=1:5,
iM=1:3, sequential =FALSE)

id_high,

Regardless of which model selection approach is
implemented, the function call returns the optimal
model, and information criteria for all the estimated
models. The information criteria include higher- and
lower-level BIC, AIC, and higher- and lower-level
ICL-BIC. The optimal model is selected based on BIC;
with simultaneous model selection, the lower-level
BIC, and with sequential model selection, the lower-
level BIC for step 1, the higher-level BIC for step 2,
and again the lower-level BIC for step 3. This is illus-
trated by means of a real-data example in Section 5.

Performance and estimation time of model selection

To examine the performance and estimation time for
the semi-automatic implementation of the simultan-
eous and sequential model selection approaches in the
multilevLCA package, we conduct a simulation
study. The population model has twelve binary items
Yijn. For all the lower-level classes, the probability of
the most likely response is set to 0.8. We vary the
number T of lower-level classes X;; from three to five,
and the number M of higher-level classes W; from
two to three. The sample sizes on the lower level and
the higher level are 500 and 30, respectively.

In all the simulation conditions, the first lower-level
class X;; = 1 has high probabilities (0.8) of endorsement
for all the items and the last lower-level class X;; = T
low probabilities (0.2) of endorsement for all the items.

When the number of lower-level classes is T = 3,
the second class has high probabilities for the first six
items Yjj, ..., Yijs and low probabilities for the last six
items Yjjy, ..., Yji2. The lower-level class proportions
within the first and second higher-level classes are:

P(Xij = 1|Wj =1
P(Xij = 2|Wj=1
(

P(Xij = 3|Wj =2) = 0.19
P(Xij = 2|Wj = 2) = 0.31
P(Xij = 3|Wj = 1) = P(Xij = 1|Wj = 2) = 0.51
P(Xij =t|Wj=3)=1/T =0.33 for all ¢, when a
third higher-level class is modeled

— e — —

When the number of lower-level classes is T = 4,
the second and third classes have high probabilities
only for the first and last six items, respectively. The
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lower-level class proportions within the first and
second higher-level classes are:

P(Xij = 1|Wj=1)
P(Xij =2|Wj =1)
E )

P(Xij = 4|Wj = 2) = 0.10
P(Xij = 3|Wj = 2) = 0.17
P(
P(

P(Xij = 3|Wj =1
P(Xij = 4|Wj = 1) = P(Xij = 1|Wj = 2) = 0.46
P(Xij=t|Wj=3)=1/T =0.25 for all t, when a
third higher-level class is modeled

Xij = 2|Wj =2) =0.28

When the number of lower-level classes is T =5,
the second, third, and fourth classes have high proba-
bilities only on the first, mid, and last four items,
respectively. In this context, the lower-level class pro-
portions within the first and second higher-level
classes are:

P(Xij = 5|Wj = 2) = 0.06
P(Xij = 4|Wj = 2) = 0.10
P(Xij = 3|Wj=2) =0.16
P(Xij = 4|Wj = 1) = P(Xij = 2|Wj = 2) = 0.26
P(Xij = 5|Wj = 1) = P(Xij = 1|Wj = 2) = 0.43
P(Xij=t|Wj=3)=1/T =0.20 for all ¢, when a
third higher-level class is modeled

)
P(Xij = 2|Wj = 1)
)

In all the simulation conditions, model selection is
performed over a range of values for T and M. The
smallest value for these ranges is one, while we vary
the highest values by means of the excess above the
true number of classes, considering excesses equal to
one or three. For example, with a lower-level excess of
three for T =3 and a higher-level excess of one for
T =2, we perform model selection over 1-6 lower-
level classes and 1-3 higher-level classes.

Table 1 summarizes the resulting 24 fully crossed
simulation conditions. For each of them, we generate
50 random samples.

The sequential model selection approach correctly
identified the true number of lower-level and higher-
level classes for all the simulation conditions and ran-
dom samples. The simultaneous approach performed
equally well for the lower level, while, for the higher
level, it yielded a 50/50 success rate across the random
samples for 16 of the 24 simulation conditions. For
the other simulation conditions, it yielded a success
rate of 47-49/50 across the random samples.’

Figure 5 reports the average estimation time for the
sequential and simultaneous model selection approaches
across the 24 simulation conditions and 50 replications.

5The success rate was 47/50 for simulation condition 21; 48/50 for
simulation condition 5; 49/50 for simulation conditions 1, 4, 7, 8, 16
and 22.

Table 1. Fully crossed simulation conditions based on the
true & excess number of lower-level classes T, & the true &
excess number of higher-level classes M.

Sim. cond. T M

T-exc. M-exc.

—_
_
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As expected, the time cost for both approaches tends to
be greater when the range of values for the number of
classes is larger on the lower level or the higher level. It
can clearly be seen that the sequential approach is con-
sistently faster than the simultaneous approach. The
time cost for the sequential approach is less sensitive to
the range of values for T or M, so that the time cost dif-
ference increases when these ranges increase.

Empirical example: citizenship norms

To illustrate the functionalities of the R package
multilevLCa, we analyze data from the
International Civic and Citizenship Education Study
2016 (Schulz et al., 2018) of the International
Association for the Evaluation of Educational
Achievement (IEA), which have been used to advance
political research on citizenship norms (Hooghe &
Oser, 2015; Hooghe et al., 2016; Oser & Hooghe, 2013;
Oser et al., 2023). For details on data cleaning and
recoding, see Oser et al. (2023). These data are con-
tained in multilevLCA as the data frame dataIEA.
We can load the package and the data by executing

library (multilevLCA)
data("dataIEA")

We interpret the substantive results in relation to
the LC analysis of the same data by Oser et al. (2023).
Prior to their investigation, the political literature on
citizenship norms had been focusing on societal-level
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Figure 5. Estimation time for the sequential model selection approach & the simultaneous model selection approach, averaged
across the 24 simulation conditions & the 50 replications.

analyses. The LC analysis informs the literature by taking a person-centered approach and investigating how
individuals in different sub-groups of the population adhere to distinct citizenship norms.

As part of a comprehensive evaluation of education systems, the IEA conducted surveys in school classes of
14-year olds to investigate civic education. The use of responses from adolescents to analyze citizenship norms
is justified by political research showing that stabilization of individual political attitudes and behaviors occurs
rather early in the life cycle (Prior, 2010; Van Deth et al., 2011). The survey lists a variety of activities for
respondents to rate in terms of importance in order to be considered a good adult citizen. These can be catego-
rized as self-expressive, engaged normative ideals: promoting human rights (rights), participating in local activ-
ities (local), supporting activities to protect the environment (envir), participating in peaceful protest (protest),
and engaging in political conversations (discuss); and traditional, duty-based normative ideals: obeying the law
(obey), working hard (work), voting (vote), learning about the country’s history (history), showing respect for
government representatives (respect), following political news (news), and joining a political party (party). The
answer options “very important” and “quite important” are here coded as 1, while the answer options “not very
important” and “not important at all” are coded as 0.

Similar to Oser et al. (2023), in our LC analysis, we treat the items as observed indicators Y;; of an underlying
structure of citizenship norms Xj;, where i denotes a particular student, and j denotes the country in which the
school is located. The data contain 90,221 students from 22 countries.

To illustrate the observed response patterns, we print the first three rows below (the observed responses to
the questionnaire items are located in columns 5-16).

head (dataIEA[,5:16], 3)
obey rights local work envir vote history respect news protest discuss party

1 1 1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 0 0 0

We begin the illustrative analysis with the five-class single-level LC model without covariates, which was
defined in (2), replicating the analysis of Oser et al. (2023), by executing

set.seed(2023)
multiLCA (data=dataIEA, Y=colnames (dataIEA) [5:16], 1iT=05)
CLASS PROPORTIONS:

P(C1l) 0.3956
P(C2) 0.3509
P(C3) 0.1111
P(C4) 0.1147
P(C5) 0.0277
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RESPONSE PROBABILITIES:

cl Cc2 C3 c4 C5
P (obey|C) 0.9801 0.9742 0.6335 0.9594 0.3408
P (rights|C) 0.9802 0.9601 0.7386 0.2999 0.0485
P(locallC) 0.9678 0.9079 0.7267 0.3517 0.0527
P (work|C) 0.9364 0.8894 0.5991 0.8532 0.3150
P(envir|C) 0.9800 0.9767 0.7135 0.4771 0.1241
P (vote|C) 0.9727 0.7893 0.6644 0.7476 0.1605
P (history|C) 0.9399 0.8361 0.5992 0.7031 0.1744
P (respect|C) 0.9384 0.8569 0.5357 0.8351 0.1465
P (news|C) 0.9621 0.7171 0.5150 0.7015 0.0783
P (protest|C) 0.8713 0.5701 0.6315 0.1672 0.0516
P (discuss|C) 0.8400 0.1782 0.3945 0.1797 0.0122
P (party|C) 0.6071 0.1439 0.3071 0.1519 0.0177

MODEL AND CLASSIFICATION STATISTICS:
ClassErr 0.1966
EntR-sqgr 0.6181

At the bottom of the partial multiLCA () output above, we can see class separation statistics for the class
solution, namely, the average proportion of classification error (ClassErr; see Vermunt & Magidson, 2021),
and the entropy-based R* (EntR-sqr; see Magidson, 1981). To interpret these statistics, consider the task of
predicting class membership based on the model parameters (using the modal assignment rule). Based on the
average proportion of classification error, we can expect 20% of the respondents to be assigned to the wrong
class. Based on the entropy-based R* we can expect a 62% improvement of the class prediction when using the
response probabilities and class proportions, compared to the prediction using only the class proportions.

The results show that estimated 11.1% and 11.5% of the respondents belong to class 3 and class 4, respectively.
Class 3 is corresponding to the “Engaged” class and class 4 to the “Duty” class in Oser et al. (2023). The youth
belonging to class 3 have consistently high conditional probabilities to score 1 (i.e., indicate high importance) on the
self-expressive and engaged notions of good citizenship, and consider the traditional and duty-based items to be less
important. Class 4 places high importance on the traditional items, except for joining a political party, while placing
relatively low importance on the self-expressive items. From a theoretical perspective, the capacity of LCA to iden-
tify these two distinctive citizenship norms allows us to address longstanding questions in the literature regarding
the socio-demographic characteristics of people who adhere to these different norms.

We can automatically plot the estimated response probabilities by executing

plot (out)

The resulting plot is shown in Figure 6.

To investigate whether the proportion of classification error differs between the classes, we request extensive
multiLCA () output using the specification extout =TRUE. The quantities of interest are contained in the
element mClassErrProb, which we display below, rounded to two decimal points. The rows of the matrix
correspond to true class membership, while columns correspond to predicted class membership. As shown, the
expected proportion of correct classification for class 3 (Engaged) and class 4 (Duty) are 73% and 76%, respect-
ively. The youth belonging to class 3 have 9% probability of being assigned to class 4, and those belonging to
class 4 a 10% probability of being assigned to class 3.

out =multiLCA (data=dataIEA, Y=colnames (dataIEA) [5:16], iT=5, extout =TRUE)
round (out$mClassErrProb, 2)

Cl_pred C2_pred C3_pred C4d_pred C5_pred
Cl_true 0.87 0.11 0.02 0.01 0.00
C2_true 0.13 0.76 0.07 0.04 0.00
C3_true 0.04 0.13 0.73 0.09 0.01
C4_true 0.01 0.11 0.10 0.76 0.02
C5_true 0.00 0.00 0.04 0.06 0.90
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Figure 6. Plot generated using the function multiLCA ().

The element mU_modal, which is returned when extout =TRUE, contains the modal class assignment of
the units. As shown below, respondents scoring 0 on all the items are estimated to belong to class 5.

head (out$mU_modal, 1)

obey rights local work envir vote history respect news protest discuss party
0 0 0 0 0 0 0 0 0 0 0 0

Cl Cc2C3C4cC5

0O 0 0 0 1

Next, we extend the analysis of Oser et al. (2023) by accounting for the hierarchical structure of the data using
the multilevel LC model. The higher-level unit is the country of the respondent (the dataIEA column
COUNTRY). The rationale of this multilevel modeling is that we do not assume the distribution of citizenship
norms to be invariant across countries. We could reasonably accept that this distribution would vary across dif-
ferent clusters of countries. We perform model selection on the higher level and, to illustrate how multilevel LC
analysis is typically carried out, the lower level. For simplicity of illustration, we consider a small range of values;
1-2 classes on the higher level and 4-5 classes on the lower level (in a more substantive LC analysis of these
data, we should reasonably consider larger ranges, such as 1-4 on the higher level and 1-6 on the lower level). In
applied LC analysis, the one-class specification is often included in model selection to test for the presence of a
clustering structure in the data. We perform model selection using the sequential approach by executing

out =multiLCA (data=dataIEA, Y=colnames (dataIEA) [5:16], iT=4:5,
id_high = "COUNTRY", iM=1:2)

Sstepl
BIClow BIChigh AIC ICL_BIClow ICL_BIChigh

iT=4 877289.33 876869.28 876813.64 - -
iT=5 872987.19 872460.07 872390.24 - -
Sstep2

BIClow BIChigh AIC ICL_BIClow ICL_BIChigh
iT*, iM=1 872987.19 872460.07 872390.24 - -
iT*, iM=2 869122.92 868554.62 868479.34 952146.46 868554.62
Sstep3

BIClow BIChigh AIC ICL_BIClow ICL_BIChigh
iT=4,iM* 873450.73 872997.73 872937.72 942352.88 872997.73
iT=5,iM* 869122.92 868554 .62 868479 .34 952146.47 868554.62
Soptimal
iT=>5
iM= 2

The multiLCA() output above shows that the model with two higher-level classes and five lower-level
classes was selected as the local optimum across the considered specifications. The value T =5 was selected
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based on the lower-level BIC in the first step, M = 2 selected based on the higher-level BIC in the second step,
and T = 5 re-selected based on the lower-level BIC in the third step.

The function call for model selection returns the results for the optimal model. This is equivalent to directly
estimating the model of interest, if it were “known” to be the locally optimal specification, that is, by executing

out =multiLCA (data=datalEA, Y=colnames (dataIEA) [5:16], iT=5,
id_high = "COUNTRY", iM=2)

For brevity, we do not print the output for this model. The equivalent fixed-effect model can be estimated by
executing

out =multiLCA (data=datalEA, Y=colnames (dataIEA) [5:16], iT=5,
Z = "COUNTRY", fixedpars=0)

Again, for brevity, we do not print the resulting output.

Next, we add covariates on both levels, specifying the model defined in (6). On the higher level, we consider
as covariate the country’s gross domestic product (GDP) per capita in constant terms with log transformation
(log_gdp_constant). These data are obtained from the International Monetary Fund, and included in
dataIEA. On the lower level, we consider as covariates the respondent’s gender (female; 1 if the respondent
is a girl, 0 if the respondent is a boy) and immigration status of the family (immigrantfam; 1 if the respond-
ent comes from a family of immigrants, 0 otherwise). We estimate this model by executing

multiLCA (data=dataIEA, Y=colnames (dataIEA) [5:16], 1T=5,
id_high = "COUNTRY", iM=2,
Zz=c("female", "immigrantfam"), Zzh = "log_gdp_constant")

GROUP PROPORTIONS (SAMPLE MEAN) :
P(G1l) 0.5909
P(G2) 0.4091

CLASS PROPORTIONS (SAMPLE MEAN) :

Gl G2
P(C1|G) 0.2904 0.5494
P (C2|G) 0.4135 0.2729
P(C3|G) 0.1193 0.0884
P (C4|G) 0.1467 0.0667
P (C5|G) 0.0300 0.0226

LOGISTIC MODEL FOR HIGHER-LEVEL CLASS MEMBERSHIP:
MODEL FOR G2 (BASE G1)

Alpha S.E. Z-score p-value
alpha(Intercept|G2) 9.2286 0.1748 52.7958 0.0000%***
alpha(log_gdp_constant|G2) —-0.9376 0.0171 —54.6772 0.0000%**

LOGISTIC MODEL FOR LOWER-LEVEL CLASS MEMBERSHIP:
MODEL FOR C4 (BASE Cl) GIVEN G1

Gamma S.E. Z-score p-value

gamma(Intercept|C4,G1) —0.7142 0.1052 —6.7866 0.0000%**
gamma(female|C4,Gl) 0.0789 0.0377 2.0914 0.0365**
gamma (immigrantfam|C4,G1) —-0.2994 0.0697 —4.2963 0.0000%**
MODEL FOR C4 (BASE Cl) GIVEN G2

Gamma S.E. Z-score p-value
gamma (Intercept|C4,G2) -2.0883 0.1337 —-15.6217 0.0000%**
gamma(female|C4,G2) —0.0653 0.0499 —1.3093 0.1904
gamma (immigrantfam|C4,G2) 0.4719 0.0867 5.4434 0.0000%**

¥R <0.01, *p<0.05, *p<0.1



As shown in the partial multiLCA() output
above, the results suggest that 59% of the countries
belong to higher-level class 1, while 41% belong to
higher-level class 2. The countries belonging to
higher-level class 1 emphasize the citizenship norms
of lower-level class 2, while the countries belonging to
higher-level class 1 emphasize the citizenship norms
of lower-level class 1. As such, we can label higher-
level class 1 “Mainstream-emphasizing countries”, and
higher-level  class 2 “Maximalist-emphasizing
countries”. The prevalence of the citizenship norms of
lower-level class 4 (Duty) within higher-level class 1
(Mainstream-emphasizing countries) is about twice as
high compared to the prevalence within higher-level
class 2 (Maximalist-emphasizing countries).

Below the class separation statistics and informa-
tion criteria, we can see the estimated logistic regres-
sion model for higher-level class membership. The
negative and highly statistically significant estimate for
the effect of GDP per capita - alpha (log_gdp_
constant|G2) - suggests that wealthier countries
have smaller probabilities of belonging to higher-level
class 2 relative to higher-level class 1 than less wealthy
countries.

Furthermore, we can see the logistic regression par-
ameter estimates for lower-level class membership,
conditional on higher-level class membership. For
brevity, we comment only on the logistic regression
coefficient for gender in the model for membership
lower-level class 4 (Duty) relative to lower-level class
1, given higher-level class 1. This coefficient is labeled
gamma (female|C4,G1l) in the above output. The
positive sign and statistical significance (at the 5%-
level) suggest that, in the countries belonging to
higher-level class 1, girls have larger probabilities than
boys of belonging to lower-level class 4 relative to
lower-level class 1, when controlling for immigration
background.

To investigate the posterior class membership prob-
abilities, we specify extout =TRUE. We focus on
the posterior higher-level class membership probabil-
ities for the countries, which is contained in the elem-
ent mPW, rounding the values to two decimal points
(R does not display decimal points when the values
are very close to 0 or 1). In the printed partial output
below, we can see that higher-level class 1 includes,
for example, the Nordic countries: Denmark (DNK),
Finland (FIN), Norway (NOR) and Sweden (SWE).
Higher-level class 2 includes, for example, the Asian
areas: Hong Kong (HKG), South Korea (KOR) and
Taiwan (TWN).
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out =multiLCA (data=dataIEA,
Y =colnames (datalIEA) [5:16], iT=5,
id_high = "COUNTRY", iM=2,
=c("female", "immigrantfam"), 2zZh =
"log_gdp_constant",
extout =TRUE)
round (out$SmPW, 2)
log_gdp_constant G1 G2

DNK 10.70 1 0
FIN 10.56 1 0
HKG 10.89 0 1
KOR 10.44 0 1
NOR 11.08 1 0
SWE 10.73 1 0
TWN 10.69 0 1

Concluding remarks

We presented the state of the art of multilevel latent
class modeling with covariates. The focus was on esti-
mation approaches, model selection, and freeware-
software. We presented the theoretical modeling
framework, the most advantageous estimation
approaches, and recommendations for model selec-
tion, including a benchmark simulation study of per-
formance and estimation times for model selection.
We gave a tutorial of the user-friendly syntax of the R
package multilevLCA that executes this estimation,
visualizes the results, and implements semi-automatic
model selection.

The aim of the article was to disseminate the use of
advanced multilevel latent class modeling among
applied researchers from a variety of academic disci-
plines. Multilevel latent class analysis has a wide range
of applications in fields such as the educational, polit-
ical, economic, health and behavioral disciplines.
There is considerable appeal in this methodology,
which allows great flexibility in the parametrization of
individual differences in a (possibly multidimensional)
phenomenon of interest.
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