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ABSTRACT 
Latent class (LC) analysis is a model-based clustering approach for categorical data, with a 
wide range of applications in the social sciences and beyond. When the data have a hier
archical structure, the multilevel LC model can be used to account for higher-level depend
encies between the units by means of a further categorical LC variable at the group level. 
The research interest of LC analysis typically lies in the relationship between the LCs and 
external covariates, or predictors. To estimate LC models with covariates, researchers can 
use the one-step approach, or the generally recommended stepwise estimators, which sep
arate the estimation of the clustering model from the subsequent estimation of the regres
sion model. The package multilevLCA has the most comprehensive set of model 
specifications and estimation approaches for this family of models in the open-source 
domain, estimating single- and multilevel LC models, with and without covariates, using the 
one-step and stepwise approaches.
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Introduction

Latent class (LC) analysis (Goodman, 1974a; 
Lazarsfeld & Henry, 1968; McCutcheon, 1979) is used 
to classify units into discrete types based on a set of 
observed categorical variables. The clustering is mod
eled as an underlying discrete variable with some 
number of categories or latent classes. LC analysis has 
been applied in diverse research domains in the social 
sciences and beyond. For example, in political 
research, Oser (2022) identified repertoires of political 
participation; in educational research, Hickendorff 
et al. (2010) identified patterns of mental strategies for 
division problems among elementary school students; 
in substance use research, Bray et al. (2023) identified 
types of opioid users among patients in the emergency 
department.

A basic assumption of standard LC analysis is that 
the units of analysis are independent of each other. 
This conditional independence assumption is often 
violated when the data have a multilevel, or hierarch
ical structure, for example when we observe voters 

within countries, students within schools, or patients 
within hospitals. In hierarchical data, units within 
groups are likely to be systematically more similar 
than units across groups.

To account for the higher-level dependencies in the 
hierarchical data, the baseline LC model can be 
extended by modeling a second categorical LC vari
able at the higher (group) level. In such a multilevel 
LC model, the distribution of the lower-level classes is 
allowed to vary between the higher-level classes. This 
random effect is effectively nonparametric (Aitkin, 
1999; Finch & French, 2014; Laird, 1978; Vermunt, 
2003), thus avoiding strict distributional assumptions. 
For instance, in their multilevel LC analysis of finan
cial product ownership across European countries, 
Bijmolt et al. (2004) identified 14 individual-level con
sumer segments and found that the prevalence of 
these segments varied between 7 country-level clus
ters. For example, the consumer segment that was the 
largest in the cluster of countries in North-Central 
Europe was rather small in the cluster of countries in 
North-Western Europe.
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In LC analysis, identifying the clustering structure 
of the data is usually only the first step of the empir
ical investigation. The research interest usually lies in 
the relationship between the classes and some covari
ates, or predictors. In the multilevel LC model, covari
ates can be included both on the lower level and on 
the higher level. For instance, in their multilevel LC 
analysis of adolescent smoking behavior across com
munities, Henry and Muth�en (2010) first identified 
three individual-level clusters - heavy smokers, moder
ate smokers, and nonsmokers, and two community- 
level clusters - low-use communities and high-use 
communities. Subsequently, they analyzed the regres
sion relationship between smoking behavior and 
lower-level covariates such as school performance and 
academic aspirations, and the regression relationship 
between community type and higher-level covariates 
such as the proportion of youth living in poverty.

Historically, multilevel LC models were estimated 
using the traditional one-step approach, which involves 
fitting the full model simultaneously (Lazarsfeld & 
Henry, 1968; Vermunt, 2003). While the one-step 
approach has attractive statistical properties – when the 
LC model is correctly specified, it is efficient and 
asymptotically unbiased - it also comes with serious 
defects (see e.g. the discussion in Bakk & Kuha, 2018). 
Whenever covariates are added or removed, the whole 
model needs to be refitted and the effective definitions 
of the latent classes can change. This complicates model 
interpretation and model selection. Furthermore, the 
one-step approach does not fit with the logic of most 
applied researchers, who tend to view the regression 
model as a distinct component that should be estimated 
only after the clustering model has been built. 
Therefore, the general recommendation is to use step
wise estimation approaches (Asparouhov & Muth�en, 
2014). These were traditionally only available in 
single-level LC analysis, but recent methodological 
advancements have shown how they can be extended to 
multilevel LC models (Bakk et al., 2022; Di Mari et al., 
2023; Lyrvall et al., 2024).

Stepwise approaches avoid the defects of the one- 
step approach by separating the estimation of the 
measurement model from the subsequent estimation 
of the structural model. Among the available stepwise 
approaches, the two-step approach is known to be the 
most efficient, least biased, most direct, and most flex
ible option (Bakk & Kuha, 2018; Di Mari et al., 2023). 
The two-stage approach (Bakk et al., 2022) is slightly 
less direct but otherwise largely shares the same prop
erties as the two-step approach. Compared to the one- 
step approach, the two-step and two-stage approaches 

come with enhanced algorithmic stability and 
improved speed of convergence (Di Mari et al., 2023). 
Regardless of which estimation approach is applied, 
the number of classes on the higher level and the 
lower level is taken as given. Because the complexity 
of the underlying clustering structure in the data 
tends to be unknown a priori, identification of the 
optimal number of classes is typically the first step of 
applied LC analysis.

In light of these recent methodological contributions, 
the first aim of this article is to provide a compilation of 
state-of-the-art methods for multilevel LC analysis with 
covariates. We describe benchmark model specifica
tions and estimation approaches. In addition, we detail 
initialization issues and model selection alternatives. 
Targeting both beginning LC analysts and more 
advanced LC analysts, we hope to strike a satisfying bal
ance between user-friendly ground-up exposition and 
technical detail.

A lack of general and easily available software solu
tions has limited the dissemination of these estimation 
and model selection approaches in the applied multi
level LC analysis literature. The recently published R 
package multilevLCA (Di Mari & Lyrvall, 2024) 
was developed to fill this gap. The package is available 
from the Comprehensive R Archive Network at http:// 
cran.r-project.org/package=multilevLCA. The second 
aim of this article is to propose the multilevLCA 
package to the open-source statistical software litera
ture. While the functionalities discussed in this article 
can be implemented in specialized software like Latent 
GOLD (Vermunt & Magidson, 2021) and Mplus 
(Muth�en & Muth�en, 2017), these software options are 
commercial and offer fewer automatic implementa
tions of stepwise and sequential routines. In this art
icle we focus on open-source software. We present the 
capabilities and syntax of multilevLCA. The pres
entation is organized in the article alongside the cor
responding LC analysis methodological exposition, to 
closely connect software implementation with theory. 
The software contribution has been written in such 
a way that we hope that this article can serve 
as a stand-alone reference for application of 
multilevLCA.

The multilevLCA package is both the first free
ware-software to implement stepwise estimation of 
multilevel LC models with covariates and the first to 
estimate multilevel LC models with both dichotomous 
and polytomous indicators. multilevLCA has the 
most comprehensive set of model specifications and 
estimation approaches; estimating single- and multi
level LC models, with and without covariates, using 
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the one-step, two-stage, and two-step approaches. The 
semi-automatic implementation of model selection in 
the package is more straightforward and efficient 
compared to when each model of interest needs to be 
fitted separately, which is the case when using other 
freeware-software for LC analysis.

The only existing freeware-software for multilevel 
LC analysis with covariates is the R package glca 
(Kim et al., 2022), but it is limited to the one-step 
approach, with no implementation of stepwise 
approaches. Moreover, it does not have the capacity 
to model polytomous indicators, which are typically 
used in applied research. As such, the scope of the use 
of glca is somewhat limited compared to 
multilevLCA. The comprehensive functionalities of 
multilevLCA also extend the freeware-software 
state-of-the-art in single-level LC analysis with covari
ates. Existing packages for it include the R packages 
poLCA (Linzer & Lewis, 2011) and MultiLCIRT 
(Bartolucci et al., 2014), but they estimate only single- 
level models using the one-step approach. The more 
complete alternative for single-level LC modeling is 
the Python package StepMix (Morin et al., 2023), 
with R interface stepmixr (Lacourse et al., 2024), 
which also implements stepwise estimation. However, 
unlike multilevLCA, StepMix does not compute 
maximum-likelihood standard errors of the regression 
parameters for the covariates, which is the statistical 
benchmark, instead applying the bootstrap method.

This article offers a comprehensive review of the 
key aspects of multilevel LC analysis with covariates, 
and a hands-on guide to the implementation of these 
techniques using the multilevLCA package. In the 
next section, we present the multilevel LC model and 
the multilevLCA syntax. Then, we describe pos
sible estimation strategies for the model and their 
implementation in multilevLCA, including strat
egies for class selection and initialization and a bench
mark simulation study of performance and estimation 
times. Next, we illustrate key features of 
multilevLCA by means of an empirical example, 
and conclude with a summary.

Model specifications

Theoretical framework

Let Yih denote the response of unit i ¼ 1, :::, N on the 
categorical item h ¼ 1, :::, H; with possible values 
Yih ¼ 1, :::, Rh; and let Yi ¼ ðYi1, :::, YiHÞ

0 denote the 
full response vector for the same unit. The elements 
of the vector are treated as observed indicators of the 
categorical latent variable Xi; with possible values 

f1, :::, Tg: The single-level latent class (LC) model 
defines the unconditional probability of observing a 
particular response pattern Yi as a mixture of T class- 
specific probabilities, that is, 

PðYiÞ ¼
XT

t¼1
PðXi ¼ tÞPðYijXi ¼ tÞ: (1) 

Here, the mixture weight PðXi ¼ tÞ describes the 
unconditional probability that unit i belongs to class t, 
while the mixture component PðYijXi ¼ tÞ describes 
the conditional probability of a particular response 
pattern Yi given class t. The responses of the different 
indicators are assumed to be conditionally independ
ent given class membership (the local independence 
assumption), leading to

PðYiÞ ¼
XT

t¼1
PðXi ¼ tÞ

YH

h¼1
PðYihjXi ¼ tÞ

¼
XT

t¼1
PðXi ¼ tÞ

YH

h¼1

YRh

r¼1
/

IðYih¼rÞ
rhjt , (2) 

where the quantity /rhjt is the probability of giving 
response r on item h given class t, and IðYih ¼ rÞ is 
equal to 1 if unit i gives response r on item h, and 0 
otherwise. For ease of notation, we will use 
PðYihjXi ¼ tÞ to denote 

QRh
r¼1 /

IðYih¼rÞ
rhjt in what follows.

Figure 1 graphically illustrates the single-level LC 
model defined in (2). The arrows describe a causal 
relationship from the LC variable Xi to the indicators 
Yih: There are no arrows between the indicators, 
reflecting the local independence assumption.

In a multilevel LC model we take the lower-level 
units i ¼ 1, :::, nj (e.g. individual respondents) to be 
nested within higher-level units j ¼ 1, :::, J (groups, 
e.g. countries). Let Wj be a higher-level categorical 
latent variable with possible categories m ¼ 1, :::, M;

and probabilities PðWj ¼ mÞ ¼ xm > 0; and let Xij 
now be a lower-level categorical latent variable that is 
defined conditional on the values of Wj; with possible 
values t ¼ 1, :::, T and conditional probabilities 
PðXij ¼ tjWj ¼ mÞ ¼ ptjm > 0: We collect all xm and 
ptjm respectively in the M-vector x; and the M � T 
matrix P: The multilevel (random-effect) LC model 

Figure 1. The single-level latent class model, with categorical 
indicators Y & a categorical latent class variable X.
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for Yij can be specified as

PðYiÞ ¼
XM

m¼1
PðWj ¼ mÞ

XT

t¼1
PðXij ¼ tjWj

¼ mÞ
YH

h¼1
PðYijhjXij ¼ tÞ, (3) 

where we assume that the conditional response proba
bilities of items Yijh depend on higher-level class 
membership only through Xij: The model specified in 
(3) is similar to the multilevel item response model 
(Gnaldi et al., 2016), but with categorical latent varia
bles on both levels.

While the assumption of conditional independence 
between Yijh and Wj given Xij is not necessary for model 
identification, it is a standard assumption in multilevel 
LC analysis for enhancing model interpretation 
(Luko�cien_e et al., 2010; Vermunt, 2003). The higher- 
level LC variable is typically included when it cannot be 
assumed that the distribution of the lower-level LCs be 
invariant across higher-level units j (this point is exem
plified in a substantive analysis in Section 5).

In Figure 2, we graphically illustrate the multilevel 
LC model defined in (3). The absence of arrows from 
the higher-level LC variable Wj to the indicators Yih 
reflect their conditional independence given the 
lower-level LC variable Xij:

Higher-level and lower-level covariates can be 
included to predict class membership. Let Zij ¼

ð1, Z01j , Z02ijÞ
0 be a vector of K covariates, which can be 

defined on the higher level ðZ01jÞ and the lower level 
ðZ02ijÞ: On the higher level, we consider the following 
multinomial logistic model

PðWj ¼ mjZH
j Þ ¼

exp ða0mZH
j Þ

1þ
PM

l¼2 exp ða0lZ
H
j Þ

, (4) 

where ZH
j ¼ ð1, Z01jÞ

0
; and am are regression coefficients 

for m ¼ 2, :::, M: When only the intercept term is 
included, then am is equal to the log-odds log ðxm=x1Þ:

On the lower level, class membership probabilities 
can be parameterized in the following analogous way,

PðXij ¼ tjWj ¼ m, ZijÞ ¼
exp ðc0tmZijÞ

1þ
PT

s¼2 exp ðc0smZijÞ
, (5) 

where ctm is a vector of regression coefficients for 
each t ¼ 2, :::, T; and m ¼ 1, :::, M: When only the 
intercept term is included, so that Zij ¼ 1; then ctm is 
equal to the log-odds log ðptjm=p1jmÞ: As can be seen, 
this parametrization allows the effects of Zij on Xij to 
vary across different m. The methodological expos
ition throughout this article holds also for the equiva
lent constrained parametrization in which the slopes 
are held fixed across different m and only the inter
cepts are allowed to vary (Di Mari et al., 2023; 
Vermunt, 2005). For generality of exposition, we focus 
on the unconstrained parametrization without fixed 
slopes in (5).

We further assume that the indicators Yijh are condi
tionally independent from the covariates given lower- 
level class membership. With these assumptions, the 
multilevel LC model for PðYijjZijÞ can be written as

PðYijjZijÞ ¼
XM

m¼1
PðWj ¼ mjZH

j Þ

�
XT

t¼1
PðXij ¼ tjWj

¼ m, ZijÞ
YH

h¼1
PðYijhjXij ¼ tÞ

�

:

(6) 

The conditional response probabilities PðYijhjXij ¼

tÞ define the LC measurement model, while the condi
tional class membership probabilities PðWj ¼ mjZH

j Þ

and PðXij ¼ tjWj ¼ m, ZijÞ define the LC structural 
models.

The multilevel LC model with covariates defined in 
(6) is graphically illustrated by means of a path dia
gram in Figure 3. The assumption of conditional inde
pendence between the indicators and the covariates 

Figure 2. The multilevel latent class model, with categorical indicators Y, a categorical lower-level latent class variable X, & a cat
egorical higher-level latent class variable W.
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given lower-level class membership is reflected in the 
absence of arrows from Zij and ZH

j to the Yijh:

As noted above, multilevel LCA is typically applied 
when the distribution of the lower-level LCs Xij can
not be assumed to be invariant across higher-level 
units j. The strategy of capturing this invariance by 
means of a higher-level clustering structure is known 
as the random-effect approach. This is the approach 
on which we focus. For completeness, we now briefly 
describe the alternative fixed-effect approach. In this 
approach the distribution of Xij is allowed to vary 
across each of the J higher-level units. This is achieved 
by treating higher-level unit membership as a (cat
egorical) covariate in a single-level LC model. Let 
IH

i ¼ ðIið1Þ, :::, IiðJÞÞ0 be a collection of vectors IiðjÞ
which are equal to unity if i belongs to j and zero 
otherwise. A fixed-effect multilevel LC model with 
covariates can be specified as

PðYijZijÞ ¼
XT

t¼1
PðXi ¼ tjIH

i , ZijÞ
YH

h¼1
PðYijhjXij ¼ tÞ,

(7) 

where, like in the random-effect specification, PðXi ¼

tjIH
i , ZijÞ can be parameterized by means of multi

nomial logistic equations.

Implementation in multilevLCA

The syntax used in the R package multilevLCA is 
aligned with the notation used in (6). The package’s 
multilevel modeling focuses on standard specifications 
with conditional independence between the items Yijh 
and the higher-level LC variable Wj are given the lower- 
level LC variable Xij: LC models are specified using the 
function multiLCA(), based on some combination of 
statements about the variables to be included in the 
model. This is structured by means of the following 
arguments:

� data: Matrix or data frame containing the observed 
data

� Y: Names of data columns with indicators
� iT: Number of lower-level classes
� id_high: Name of data column with higher- 

level id
� iM: Number of higher-level classes
� Z: Names of data columns with covariates in the 

model for the lower-level classes
� Zh: Names of data columns with covariates in 

the model for the higher-level classes

The multilevel LC model with covariates on the 
higher level and the lower level includes all the varia
bles corresponding to these statements - the indicators 
Y; specified by Y; the lower-level LC variable X ¼
1, :::, T; specified by iT; the higher-level LC variable 
W ¼ 1, :::, M; specified by id_high and iM; the 
covariates in the model for the lower-level classes Z;
specified by Z; and the covariates in the model for the 
higher-level classes ZH; specified by Zh. The syntax 
for specifying this model is1

multiLCA(data, Y, iT, id_high, iM, Z, Zh) 

Single-level LC models with covariates and multi
level fixed-effect LC models can be estimated by omit
ting to specify id_high, iM, and Zh (which default 
to NULL). More specifically, multilevel fixed-effect LC 
models can be estimated by specifying Z as the col
umn name which in random-effect modeling is speci
fied for id_high. We illustrate the multiLCA() 
syntax in greater detail by means of real-data exam
ples in Section 5.

The next section describes the currently existing 
approaches for estimating (6).

Figure 3. The multilevel latent class model with covariates.

1multilevLCA also estimates multilevel LC models in which the slopes for 
the lower-level structural model are held fixed across the higher-level 
classes. This constraint is managed by means of the argument fixedslopes 
in the multiLCA() function. The specification fixedslopes¼ TRUE fixes the 
slopes in the lower-level structural model. The default specification 
fixedslopes¼ FALSE estimates models without these constraints, which is 
the focus of this article.
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Methodology

Theoretical framework

Let Yj ¼ ðY1j, :::, YnjjÞ
0 denote the full set of item 

responses for all lower-level units belonging to higher- 
level unit j.2 Let h ¼ ðh01, h02Þ

0 denote the full set of 
model parameters in (6), where h01 contains the meas
urement parameters /rhjt; and h02 contains the struc
tural parameters am and ctm:

Figure 4 graphically illustrates the measurement 
parameters h01 by red arrows, and the structural 
parameters h02 by blue arrows.

Maximum-likelihood estimates ~h can be obtained by 
maximizing the observed-data log-likelihood function

lðhÞ ¼
XJ

j¼1
log

"
XM

m¼1
PðWj ¼ mjZH

j Þ
Ynj

i¼1

XT

t¼1
PðXij

¼ tjWj ¼ m, ZijÞ
YH

h¼1
PðYijhjXij ¼ tÞ

#

: (8) 

This is the classical one-step approach (Lazarsfeld & 
Henry, 1968; Vermunt, 2003). It is efficient and asymp
totically unbiased when the LC model is correctly speci
fied. However, simultaneous estimation of the 
measurement model and structural models has serious 
disadvantages when the correct specification is not 
known a priori (see e.g. the discussion in Bakk & Kuha, 
2018). Whenever the structural model is changed - for 

example adding or removing covariates - the measure
ment model will be affected, which distorts the class defi
nitions. In practice, this problem can occur to an extent 
that makes comparisons of estimated models meaning
less. As such, the one-step approach complicates model 
interpretation and model selection. Moreover, simultan
eous estimation of complex models involves demanding 
computations, which renders the one-step approach the 
more time consuming modeling option for multilevel LC 
analysis with covariates (Di Mari et al., 2023).

Stepwise methods overcome the drawbacks of the 
one-step approach by separating the estimation of the 
measurement model and structural model. The first 
stepwise method that was proposed in multilevel LC 
modeling with covariates is the two-stage approach 
(Bakk et al., 2022; Di Mari et al., 2022). Its first stage 
involves estimating the measurement parameters. This 
is further broken down into three sub-steps. In the 
first sub-step, the single-level LC model without cova
riates is estimated, ignoring the hierarchical structure 
of the data, by maximizing the log-likelihood function

lstage1:1ðh1Þ ¼
XN

i¼1
log

XT

t¼1
PðXij ¼ tÞ

YH

h¼1
PðYijhjXij ¼ tÞ

" #

,

(9) 

where N ¼
PH

j¼1 nj; to obtain measurement estimates 
~h1: In the second sub-step, the multilevel LC model 
without covariates is estimated, keeping the measure
ment parameters h1 fixed at their values from sub- 
step 1, by maximizing the log-likelihood function

lstage1:2ðh2jh1 ¼ ~h1Þ ¼
XJ

j¼1
log

"
XM

m¼1
PðWj ¼ mÞ

Ynj

i¼1    

XT

t¼1
PðXij ¼ tjWj ¼ mÞ

YH

h¼1
PðYijhjXij ¼ t, h1 ¼ ~h1Þ

#

,

(10) 

Figure 4. The measurement model (red) & structural models (blue).

2By default, multilevLCA discards any rows with missing values on 
the items, or incomplete item-response patterns, before estimation. An 
alternative strategy involves including incomplete item-response patterns 
by means of full-information maximum-likelihood (FIML) estimation, only 
discarding any rows with missing values on all the items. The choice 
between these strategies is managed by means of the argument 
incomplete in the function multiLCA(). The default specification 
incomplete¼FALSE implements row-wise deletion of incomplete 
item-response patterns. The alternative specification incomplete¼
TRUE implements the FIML strategy, including incomplete item-response 
patterns (except fully missing item-response patterns). Regardless of 
strategy for handling missing values, if covariates are included in the 
model, rows with missing values in the covariates are removed only in 
the estimation of the structural part of the LC model, i.e. (see below) step 
2 in the two-step estimator, stage 2 in the two-stage estimator, or the 
single step in the one-step estimator.
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where the structural parameters h2 now contain only the 
intercept terms, to obtain structural estimates ~h2: In the 
third sub-step, to stabilize the measurement estimates, the 
multilevel LC model is estimated again, this time keeping 
the structural parameters h2 fixed at their values from 
sub-step 2, by maximizing the log-likelihood function

lstage1:3ðh1jh2 ¼ ~h2Þ ¼

XJ

j¼1
log

"
XM

m¼1
PðWj ¼ mjh2 ¼ ~h2Þ

Ynj

i¼1

XT

t¼1
PðXij ¼ tjWj    

¼ m, h2 ¼ ~h2Þ
YH

h¼1
PðYijhjXij ¼ tÞ

#

: (11) 

Stage 2 of the two-stage approach involves adding 
the covariates to the multilevel LC model, and esti
mating the intercept and slope terms h2; keeping the 
measurement parameters fixed at their stage-1 values, 
by maximizing the log-likelihood function

lstage2ðh2jh1 ¼ ~h1Þ ¼

XJ

j¼1
log

"
XM

m¼1
PðWj ¼ mjZH

j Þ
Ynj

i¼1

XT

t¼1
PðXij ¼ tjWj ¼ m, ZijÞ

YH

h¼1
PðYijhjXij ¼ t, h1 ¼ ~h1Þ

#

: (12) 

The two-stage approach simplifies model interpret
ation and improves computation time compared to 
the one-step method, while demonstrating very similar 
properties when the model assumptions hold (Bakk 
et al., 2022). However, a difficulty of this approach is 
estimating asymptotic standard errors of the structural 
parameters. In the second stage, conditioning on the 
measurement parameters as if they were known, 
rather than estimated with sampling error, yields 
underestimation of the standard errors. Conditioning 
on this first-stage variability is complicated due to the 
multiple sub-steps of the first stage.

To address this difficulty, the more straightforward 
two-step approach (Di Mari et al., 2023) was devel
oped. It simplifies the estimation of the measurement 
model by means of a single first step. This involves 
maximizing the log-likelihood function

lstep1ðh1Þ ¼
XJ

j¼1
log

"
XM

m¼1
PðWj ¼ mÞ

Ynj

i¼1

XT

t¼1
PðXij

¼ tjWj ¼ mÞ
YH

h¼1
PðYijhjXij ¼ tÞ

#

,

(13) 

to obtain measurement estimates ~h1: The second step 
involves estimating the structural parameters, keeping 

the measurement parameters fixed at their step-1 val
ues, by maximizing the log-likelihood function for the 
second step as

lstep2ðh2jh1 ¼ ~h1Þ ¼

XJ

j¼1
log

XM

m¼1
PðWj ¼ mjZH

j Þ
Ynj

i¼1

XT

t¼1
PðXij ¼ tjWj ¼ m, ZijÞ

"

YH

h¼1
PðYijhjXij ¼ t, h1 ¼ ~h1Þ�: (14) 

The two-step approach retains the attractive proper
ties of the two-stage method, with the additional benefits 
of easy-to-derive asymptotic standard errors, and even 
greater computational efficiency (Di Mari et al., 2023).

The estimation approaches that were presented in 
this section take the number of classes on the higher 
level, M, and the lower level, T, as given. Selecting these 
values is a distinct but equally fundamental task. In 
Section 4, two model selection approaches are described.

Implementation in multilevLCA

Because of its attractive properties, the two-step 
approach is the default estimator in the R package 
multilevLCA. Users can also choose to estimate LC 
models using the one-step and two-stage approaches. 
This makes multilevLCA the first R package, and 
the first freeware software in any programming lan
guage, to implement stepwise estimation of multilevel 
LC models with covariates.

Estimation approaches are managed using the argu
ment fixedpars in the function multiLCA(). 
One-step, two-stage, and two-step estimation of the 
multilevel LC model with covariates on the higher 
level and the lower level are implemented by means 
of the syntax 

# One-step estimation:
multiLCA(data, Y, iT, id_high, iM, Z, 

Zh, fixedpars¼0) 

# Two-stage estimation:
multiLCA(data, Y, iT, id_high, iM, Z, 

Zh, fixedpars¼2) 

# Two-step estimation (the default):
multiLCA(data, Y, iT, id_high, iM, Z, 

Zh, fixedpars¼1) 

# Equivalent two-step estimation:
multiLCA(data, Y, iT, id_high, iM, 

Z, Zh)
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The estimators are labeled by the total number of 
fixed parameters; in one-step estimation, no parame
ters are kept fixed (fixedpars¼0); in two-stage 
estimation, the fixed parameters are obtained from 
two consecutive sub-steps (fixedpars¼2); in two- 
step estimation, the fixed parameters are obtained 
from a single step (fixedpars¼1).

Regardless of which estimator is used, estimation is 
performed using the expectation-maximization (EM) 
algorithm (Dempster et al., 1977). When covariates 
are included, the M step of the EM algorithm uses a 
Newton–Raphson (NR) algorithm. For computational 
efficiency, the EM and NR algorithms are imple
mented by integration of Cþþ code (Eddelbuettel & 
François, 2011; Eddelbuettel & Sanderson, 2014).

In stepwise estimation, the starting values for the EM 
algorithm are particularly important because subse
quent steps are conditional on estimates from previous 
steps. multilevLCA implements an initialization 
strategy based on Di Mari et al. (2023).

For the measurement model, the initialization strat
egy involves the following hierarchical procedure:

1. Fit a single-level LC model with T classes to the 
pooled data ðY11, :::, YnJ JÞ; ignoring the multilevel 
structure. To initialize the class proportions 
PðXi ¼ tÞ; perform a k-modes clustering on the 
dummy-coded data, with k ¼ T: Use the relative 
sizes of the resulting clusters for the initialization. 
From the single-level class solution, retain the 
estimates for the conditional response probabil
ities PðYijhjXij ¼ tÞ; and the modal posterior class 
assignments3 ~Xij: The estimates for PðYijhjXij ¼ tÞ
are passed to the EM-algorithm as starting values. 
For computational speed and stability, the class 
proportions PðXi ¼ tÞ can be initialized by the 
following alternative strategy. First, perform a 
principal component analysis on the dummy- 
coded data. Retain the first principal components 
that together explain at least 85% of the total vari
ance, or retain the first half of all principal com
ponents, if this is a greater number. Second, 
perform a k-means clustering on the reduced 
data, with k ¼ T: Use the relative sizes of the 
resulting clusters for the initialization.

2. Compute the relative sizes of ~Xij within each 
higher-level unit j. On the resulting J � T table, 
perform a k-means clustering, with k ¼ M: Let ~W j 
be the resulting clusters. The relative sizes of ~W j 
are passed to the EM-algorithm as starting values 
for the higher-level class proportions PðWj ¼ mÞ:

In the function multiLCA(), the choice between 
the k-modes strategy and the k-means on principal com
ponents strategy is managed using the logical argument 
kmea. The default argument is kmea¼TRUE, which 
indicates the k-means on principal components strategy. 
The user also has the option to specify custom starting 
values. This can be done by specifying, in the 
multiLCA() call, the argument startval (which 
defaults to NULL) as the name of the data column con
taining starting values for the lower-level class member
ship of each lower-level unit. The three initialization 
strategies are implemented by means of the syntax 

# k-means on principal components 

initialization:

multiLCA(data, Y, iT, id_high, iM, Z, Zh) 

# k-modes initialization:
multiLCA(data, Y, iT, id_high, iM, Z, 

Zh, kmea¼FALSE) 

# user-specified starting values:
multiLCA(data, Y, iT, id_high, iM, Z, 

Zh, startval) 

For the structural model, the initialization strategy 
is used to handle label switching on the higher level. 
Keeping the conditional response probabilities fixed 
cannot prevent that higher-level class labels can be 
switched, as there are still M! equivalent permutations 
of them. This is handled by initializing the intercept 
in am and the intercept in ctm at the measurement 
model estimates for log ðxm=x1Þ and log ðptjm=p1jmÞ;

respectively, while initializing the slope parameters in 
am and the slope parameters in ctm at zero.

Model selection

Theoretical framework

The general recommendation in LC analysis with 
covariates is to perform model selection on the model 
without covariates, defined in (3), and then estimate 
the full model given this value (Masyn, 2017). In 
multilevel LC analysis, different approaches can be 
used to identify the locally optimal number of 

3The modal posterior class assignment is the class for which the posterior 
class membership probability PðXij ¼ tjYijÞ; which describes the 
probability of belonging to class t given the observed response pattern 
Yij; is the greatest. Using the Bayes rule (Goodman, 1974a, 1974b; 
Hagenaars, 1992; MacLahlan & Peel, 2000), this quantity can be 
computed as

PðXij ¼ tjYijÞ ¼
PðXij¼tÞPðYij jXij¼tÞ

PðYijÞ
(15)
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higher-level classes, M, and lower-level classes, T, 
among a set of specifications. Using the straightfor
ward simultaneous approach, all crossed combinations 
of the values of interest for M and T are estimated.

Using the generally recommended sequential 
approach (Luko�cien_e et al., 2010), the optimal values 
for M and T are selected in a stepwise procedure. 
First, single-level LC models, defined in (2), are esti
mated to select the optimal number of lower-level 
classes, T�: Second, multilevel LC models are esti
mated, keeping the number of lower-level classes fixed 
at the step-1 value T�; to select the optimal number 
of higher-level classes, M�: Third, multilevel LC mod
els are estimated again, this time keeping the number 
of higher-level classes fixed at the step-2 value M�; to 
re-select the number of lower-level classes.

The optimal model can be selected based on stand
ard information criteria, such as the Bayesian informa
tion criterion (BIC) or the Akaike information criterion 
(AIC). BIC can be evaluated on the higher level and the 
lower level separately (e.g. Luko�cien_e et al., 2010). 
Another information criterion is the BIC-type approxi
mation of the integrated complete likelihood (ICL-BIC; 
e.g. Morgan, 2015), which can be defined on the higher 
level and the lower level separately, wherein a penalty 
for class separation is added to the BIC.

Implementation in multilevLCA

The R package multilevLCA implements semi- 
automatic4 model selection, for model specifications 
without covariates, using the simultaneous and 
sequential approaches. This is done using the same 
syntax as for standard model estimation, in the func
tion multiLCA(), with the number of classes on the 
higher level and the lower level specified as a range of 
consecutive integers, and model selection approaches 
managed using the argument sequential. The 
argument sequential¼TRUE indicates sequential 
model selection, and the argument sequential¼
FALSE indicates simultaneous model selection. The 
sequential approach is the default model selection 
approach.

Consider, for example, the multilevel LC model 
with an unknown number of lower-level classes, 
which is taken to be within the range 1-5, and an 
unknown number of higher-level classes, taken to be 
within the range 1-3. The syntax for implementing 
simultaneous and sequential model selection is

# Sequential model selection:
multiLCA(data, Y, iT¼1:5, id_high, 

iM¼1:3)

# Simultaneous model selection: 

multiLCA(data, Y, iT¼1:5, id_high, 

iM¼1:3, sequential¼FALSE) 

Regardless of which model selection approach is 
implemented, the function call returns the optimal 
model, and information criteria for all the estimated 
models. The information criteria include higher- and 
lower-level BIC, AIC, and higher- and lower-level 
ICL-BIC. The optimal model is selected based on BIC; 
with simultaneous model selection, the lower-level 
BIC, and with sequential model selection, the lower- 
level BIC for step 1, the higher-level BIC for step 2, 
and again the lower-level BIC for step 3. This is illus
trated by means of a real-data example in Section 5.

Performance and estimation time of model selection

To examine the performance and estimation time for 
the semi-automatic implementation of the simultan
eous and sequential model selection approaches in the 
multilevLCA package, we conduct a simulation 
study. The population model has twelve binary items 
Yijh: For all the lower-level classes, the probability of 
the most likely response is set to 0.8. We vary the 
number T of lower-level classes Xij from three to five, 
and the number M of higher-level classes Wj from 
two to three. The sample sizes on the lower level and 
the higher level are 500 and 30, respectively.

In all the simulation conditions, the first lower-level 
class Xij ¼ 1 has high probabilities (0.8) of endorsement 
for all the items and the last lower-level class Xij ¼ T 
low probabilities (0.2) of endorsement for all the items.

When the number of lower-level classes is T ¼ 3;
the second class has high probabilities for the first six 
items Yij1, :::, Yij6 and low probabilities for the last six 
items Yij7, :::, Yij12: The lower-level class proportions 
within the first and second higher-level classes are:

� PðXij ¼ 1jWj ¼ 1Þ ¼ PðXij ¼ 3jWj ¼ 2Þ ¼ 0:19
� PðXij ¼ 2jWj ¼ 1Þ ¼ PðXij ¼ 2jWj ¼ 2Þ ¼ 0:31
� PðXij ¼ 3jWj ¼ 1Þ ¼ PðXij ¼ 1jWj ¼ 2Þ ¼ 0:51
� PðXij ¼ tjWj ¼ 3Þ ¼ 1=T ¼ 0:33 for all t, when a 

third higher-level class is modeled

When the number of lower-level classes is T ¼ 4;
the second and third classes have high probabilities 
only for the first and last six items, respectively. The 

4Semi-automatic in the sense that the package implements model 
selection only over the range of specifications which is specified by the 
user.

MULTIVARIATE BEHAVIORAL RESEARCH 739



lower-level class proportions within the first and 
second higher-level classes are:

� PðXij ¼ 1jWj ¼ 1Þ ¼ PðXij ¼ 4jWj ¼ 2Þ ¼ 0:10
� PðXij ¼ 2jWj ¼ 1Þ ¼ PðXij ¼ 3jWj ¼ 2Þ ¼ 0:17
� PðXij ¼ 3jWj ¼ 1Þ ¼ PðXij ¼ 2jWj ¼ 2Þ ¼ 0:28
� PðXij ¼ 4jWj ¼ 1Þ ¼ PðXij ¼ 1jWj ¼ 2Þ ¼ 0:46
� PðXij ¼ tjWj ¼ 3Þ ¼ 1=T ¼ 0:25 for all t, when a 

third higher-level class is modeled

When the number of lower-level classes is T ¼ 5;
the second, third, and fourth classes have high proba
bilities only on the first, mid, and last four items, 
respectively. In this context, the lower-level class pro
portions within the first and second higher-level 
classes are:

� PðXij ¼ 1jWj ¼ 1Þ ¼ PðXij ¼ 5jWj ¼ 2Þ ¼ 0:06
� PðXij ¼ 2jWj ¼ 1Þ ¼ PðXij ¼ 4jWj ¼ 2Þ ¼ 0:10
� PðXij ¼ 3jWj ¼ 1Þ ¼ PðXij ¼ 3jWj ¼ 2Þ ¼ 0:16
� PðXij ¼ 4jWj ¼ 1Þ ¼ PðXij ¼ 2jWj ¼ 2Þ ¼ 0:26
� PðXij ¼ 5jWj ¼ 1Þ ¼ PðXij ¼ 1jWj ¼ 2Þ ¼ 0:43
� PðXij ¼ tjWj ¼ 3Þ ¼ 1=T ¼ 0:20 for all t, when a 

third higher-level class is modeled

In all the simulation conditions, model selection is 
performed over a range of values for T and M. The 
smallest value for these ranges is one, while we vary 
the highest values by means of the excess above the 
true number of classes, considering excesses equal to 
one or three. For example, with a lower-level excess of 
three for T ¼ 3 and a higher-level excess of one for 
T ¼ 2; we perform model selection over 1-6 lower- 
level classes and 1-3 higher-level classes.

Table 1 summarizes the resulting 24 fully crossed 
simulation conditions. For each of them, we generate 
50 random samples.

The sequential model selection approach correctly 
identified the true number of lower-level and higher- 
level classes for all the simulation conditions and ran
dom samples. The simultaneous approach performed 
equally well for the lower level, while, for the higher 
level, it yielded a 50/50 success rate across the random 
samples for 16 of the 24 simulation conditions. For 
the other simulation conditions, it yielded a success 
rate of 47-49/50 across the random samples.5

Figure 5 reports the average estimation time for the 
sequential and simultaneous model selection approaches 
across the 24 simulation conditions and 50 replications. 

As expected, the time cost for both approaches tends to 
be greater when the range of values for the number of 
classes is larger on the lower level or the higher level. It 
can clearly be seen that the sequential approach is con
sistently faster than the simultaneous approach. The 
time cost for the sequential approach is less sensitive to 
the range of values for T or M, so that the time cost dif
ference increases when these ranges increase.

Empirical example: citizenship norms

To illustrate the functionalities of the R package 
multilevLCA, we analyze data from the 
International Civic and Citizenship Education Study 
2016 (Schulz et al., 2018) of the International 
Association for the Evaluation of Educational 
Achievement (IEA), which have been used to advance 
political research on citizenship norms (Hooghe & 
Oser, 2015; Hooghe et al., 2016; Oser & Hooghe, 2013; 
Oser et al., 2023). For details on data cleaning and 
recoding, see Oser et al. (2023). These data are con
tained in multilevLCA as the data frame dataIEA. 
We can load the package and the data by executing 

library(multilevLCA)

data("dataIEA") 

We interpret the substantive results in relation to 
the LC analysis of the same data by Oser et al. (2023). 
Prior to their investigation, the political literature on 
citizenship norms had been focusing on societal-level 

Table 1. Fully crossed simulation conditions based on the 
true & excess number of lower-level classes T, & the true & 
excess number of higher-level classes M.
Sim. cond. T M T-exc. M-exc.

1 3 2 1 1
2 4 2 1 1
3 5 2 1 1
4 3 3 1 1
5 4 3 1 1
6 5 3 1 1
7 3 2 3 1
8 4 2 3 1
9 5 2 3 1
10 3 3 3 1
11 4 3 3 1
12 5 3 3 1
13 3 2 1 3
14 4 2 1 3
15 5 2 1 3
16 3 3 1 3
17 4 3 1 3
18 5 3 1 3
19 3 2 3 3
20 4 2 3 3
21 5 2 3 3
22 3 3 3 3
23 4 3 3 3
24 5 3 3 3

5The success rate was 47/50 for simulation condition 21; 48/50 for 
simulation condition 5; 49/50 for simulation conditions 1, 4, 7, 8, 16 
and 22.
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Figure 5. Estimation time for the sequential model selection approach & the simultaneous model selection approach, averaged 
across the 24 simulation conditions & the 50 replications.

analyses. The LC analysis informs the literature by taking a person-centered approach and investigating how 
individuals in different sub-groups of the population adhere to distinct citizenship norms.

As part of a comprehensive evaluation of education systems, the IEA conducted surveys in school classes of 
14–year olds to investigate civic education. The use of responses from adolescents to analyze citizenship norms 
is justified by political research showing that stabilization of individual political attitudes and behaviors occurs 
rather early in the life cycle (Prior, 2010; Van Deth et al., 2011). The survey lists a variety of activities for 
respondents to rate in terms of importance in order to be considered a good adult citizen. These can be catego
rized as self-expressive, engaged normative ideals: promoting human rights (rights), participating in local activ
ities (local), supporting activities to protect the environment (envir), participating in peaceful protest (protest), 
and engaging in political conversations (discuss); and traditional, duty-based normative ideals: obeying the law 
(obey), working hard (work), voting (vote), learning about the country’s history (history), showing respect for 
government representatives (respect), following political news (news), and joining a political party (party). The 
answer options “very important” and “quite important” are here coded as 1, while the answer options “not very 
important” and “not important at all” are coded as 0.

Similar to Oser et al. (2023), in our LC analysis, we treat the items as observed indicators Yij of an underlying 
structure of citizenship norms Xij; where i denotes a particular student, and j denotes the country in which the 
school is located. The data contain 90,221 students from 22 countries.

To illustrate the observed response patterns, we print the first three rows below (the observed responses to 
the questionnaire items are located in columns 5-16). 

head(dataIEA[,5:16], 3)

obey rights local work envir vote history respect news protest discuss party

1          1           1           1          1          1           1          1          1           1          0          0

1          1           1           1          1          1           1          1          1           1          0          0

1          1           1           1          1          1           1          1          1           0          0          0 

We begin the illustrative analysis with the five-class single-level LC model without covariates, which was 
defined in (2), replicating the analysis of Oser et al. (2023), by executing 

set.seed(2023)

multiLCA(data¼dataIEA, Y¼colnames(dataIEA)[5:16], iT¼5)

CLASS PROPORTIONS:

P(C1) 0.3956

P(C2) 0.3509

P(C3) 0.1111

P(C4) 0.1147

P(C5) 0.0277
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RESPONSE PROBABILITIES:

C1 C2 C3 C4 C5

P(obeyjC) 0.9801 0.9742 0.6335 0.9594 0.3408

P(rightsjC) 0.9802 0.9601 0.7386 0.2999 0.0485

P(localjC) 0.9678 0.9079 0.7267 0.3517 0.0527

P(workjC) 0.9364 0.8894 0.5991 0.8532 0.3150

P(envirjC) 0.9800 0.9767 0.7135 0.4771 0.1241

P(votejC) 0.9727 0.7893 0.6644 0.7476 0.1605

P(historyjC) 0.9399 0.8361 0.5992 0.7031 0.1744

P(respectjC) 0.9384 0.8569 0.5357 0.8351 0.1465

P(newsjC) 0.9621 0.7171 0.5150 0.7015 0.0783

P(protestjC) 0.8713 0.5701 0.6315 0.1672 0.0516

P(discussjC) 0.8400 0.1782 0.3945 0.1797 0.0122

P(partyjC) 0.6071 0.1439 0.3071 0.1519 0.0177

—————————————————————————

MODEL AND CLASSIFICATION STATISTICS:

ClassErr 0.1966

EntR-sqr 0.6181 

At the bottom of the partial multiLCA() output above, we can see class separation statistics for the class 
solution, namely, the average proportion of classification error (ClassErr; see Vermunt & Magidson, 2021), 
and the entropy-based R2 (EntR-sqr; see Magidson, 1981). To interpret these statistics, consider the task of 
predicting class membership based on the model parameters (using the modal assignment rule). Based on the 
average proportion of classification error, we can expect 20% of the respondents to be assigned to the wrong 
class. Based on the entropy-based R2, we can expect a 62% improvement of the class prediction when using the 
response probabilities and class proportions, compared to the prediction using only the class proportions.

The results show that estimated 11.1% and 11.5% of the respondents belong to class 3 and class 4, respectively. 
Class 3 is corresponding to the “Engaged” class and class 4 to the “Duty” class in Oser et al. (2023). The youth 
belonging to class 3 have consistently high conditional probabilities to score 1 (i.e., indicate high importance) on the 
self-expressive and engaged notions of good citizenship, and consider the traditional and duty-based items to be less 
important. Class 4 places high importance on the traditional items, except for joining a political party, while placing 
relatively low importance on the self-expressive items. From a theoretical perspective, the capacity of LCA to iden
tify these two distinctive citizenship norms allows us to address longstanding questions in the literature regarding 
the socio-demographic characteristics of people who adhere to these different norms.

We can automatically plot the estimated response probabilities by executing
plot(out) 

The resulting plot is shown in Figure 6.
To investigate whether the proportion of classification error differs between the classes, we request extensive 

multiLCA() output using the specification extout¼TRUE. The quantities of interest are contained in the 
element mClassErrProb, which we display below, rounded to two decimal points. The rows of the matrix 
correspond to true class membership, while columns correspond to predicted class membership. As shown, the 
expected proportion of correct classification for class 3 (Engaged) and class 4 (Duty) are 73% and 76%, respect
ively. The youth belonging to class 3 have 9% probability of being assigned to class 4, and those belonging to 
class 4 a 10% probability of being assigned to class 3. 

out¼multiLCA(data¼dataIEA, Y¼colnames(dataIEA)[5:16], iT¼5, extout¼TRUE)

round(out$mClassErrProb, 2)

C1_pred C2_pred C3_pred C4_pred C5_pred

C1_true                 0.87                 0.11                  0.02                  0.01                  0.00

C2_true                 0.13                 0.76                  0.07                  0.04                  0.00

C3_true                 0.04                 0.13                  0.73                  0.09                  0.01

C4_true                 0.01                 0.11                  0.10                  0.76                  0.02

C5_true                 0.00                 0.00                  0.04                  0.06                  0.90
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The element mU_modal, which is returned when extout¼TRUE, contains the modal class assignment of 
the units. As shown below, respondents scoring 0 on all the items are estimated to belong to class 5.

head(out$mU_modal, 1)

obey rights local work envir vote history respect news protest discuss party

0 0 0 0 0 0 0 0 0 0 0 0

C1 C2 C3 C4 C5

0 0 0 0 1

Next, we extend the analysis of Oser et al. (2023) by accounting for the hierarchical structure of the data using 
the multilevel LC model. The higher-level unit is the country of the respondent (the dataIEA column 
COUNTRY). The rationale of this multilevel modeling is that we do not assume the distribution of citizenship 
norms to be invariant across countries. We could reasonably accept that this distribution would vary across dif
ferent clusters of countries. We perform model selection on the higher level and, to illustrate how multilevel LC 
analysis is typically carried out, the lower level. For simplicity of illustration, we consider a small range of values; 
1-2 classes on the higher level and 4-5 classes on the lower level (in a more substantive LC analysis of these 
data, we should reasonably consider larger ranges, such as 1-4 on the higher level and 1-6 on the lower level). In 
applied LC analysis, the one-class specification is often included in model selection to test for the presence of a 
clustering structure in the data. We perform model selection using the sequential approach by executing

out¼multiLCA(data¼dataIEA, Y¼colnames(dataIEA)[5:16], iT¼4:5,

id_high ¼ "COUNTRY", iM¼1:2)

$step1
BIClow BIChigh AIC ICL_BIClow ICL_BIChigh

iT¼4 877289.33 876869.28 876813.64 - -

iT¼5 872987.19 872460.07 872390.24 - -

$step2
BIClow BIChigh AIC ICL_BIClow ICL_BIChigh

iT�,iM¼1 872987.19 872460.07 872390.24 - -

iT�,iM¼2 869122.92 868554.62 868479.34 952146.46 868554.62

$step3
BIClow BIChigh AIC ICL_BIClow ICL_BIChigh

iT¼4,iM� 873450.73 872997.73 872937.72 942352.88 872997.73

iT¼5,iM� 869122.92 868554.62 868479.34 952146.47 868554.62

$optimal

iT¼ 5

iM¼ 2

The multiLCA() output above shows that the model with two higher-level classes and five lower-level 
classes was selected as the local optimum across the considered specifications. The value T ¼ 5 was selected 

Figure 6. Plot generated using the function multiLCA().
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based on the lower-level BIC in the first step, M ¼ 2 selected based on the higher-level BIC in the second step, 
and T ¼ 5 re-selected based on the lower-level BIC in the third step.

The function call for model selection returns the results for the optimal model. This is equivalent to directly 
estimating the model of interest, if it were “known” to be the locally optimal specification, that is, by executing

out¼multiLCA(data¼dataIEA, Y¼colnames(dataIEA)[5:16], iT¼5,

id_high ¼ "COUNTRY", iM¼2)

For brevity, we do not print the output for this model. The equivalent fixed-effect model can be estimated by 
executing

out¼multiLCA(data¼dataIEA, Y¼colnames(dataIEA)[5:16], iT¼5,

Z ¼ "COUNTRY", fixedpars¼0)

Again, for brevity, we do not print the resulting output.
Next, we add covariates on both levels, specifying the model defined in (6). On the higher level, we consider 

as covariate the country’s gross domestic product (GDP) per capita in constant terms with log transformation 
(log_gdp_constant). These data are obtained from the International Monetary Fund, and included in 
dataIEA. On the lower level, we consider as covariates the respondent’s gender (female; 1 if the respondent 
is a girl, 0 if the respondent is a boy) and immigration status of the family (immigrantfam; 1 if the respond
ent comes from a family of immigrants, 0 otherwise). We estimate this model by executing

multiLCA(data¼dataIEA, Y¼colnames(dataIEA)[5:16], iT¼5,

id_high ¼ "COUNTRY", iM¼2,

Z¼c("female","immigrantfam"), Zh ¼ "log_gdp_constant")

GROUP PROPORTIONS (SAMPLE MEAN):

P(G1) 0.5909

P(G2) 0.4091

CLASS PROPORTIONS (SAMPLE MEAN):

G1 G2

P(C1jG) 0.2904 0.5494

P(C2jG) 0.4135 0.2729

P(C3jG) 0.1193 0.0884

P(C4jG) 0.1467 0.0667

P(C5jG) 0.0300 0.0226

—————————————————————————

LOGISTIC MODEL FOR HIGHER-LEVEL CLASS MEMBERSHIP:

MODEL FOR G2 (BASE G1)

Alpha S.E. Z-score p-value

alpha(InterceptjG2) 9.2286 0.1748 52.7958 0.0000���

alpha(log_gdp_constantjG2) −0.9376 0.0171 −54.6772 0.0000���

—————————————————————————

LOGISTIC MODEL FOR LOWER-LEVEL CLASS MEMBERSHIP:

MODEL FOR C4 (BASE C1) GIVEN G1

Gamma S.E. Z-score p-value

gamma(InterceptjC4,G1) −0.7142 0.1052 −6.7866 0.0000���

gamma(femalejC4,G1) 0.0789 0.0377 2.0914 0.0365��

gamma(immigrantfamjC4,G1) −0.2994 0.0697 −4.2963 0.0000���

MODEL FOR C4 (BASE C1) GIVEN G2

Gamma S.E. Z-score p-value

gamma(InterceptjC4,G2) −2.0883 0.1337 −15.6217 0.0000���

gamma(femalejC4,G2) −0.0653 0.0499 −1.3093 0.1904

gamma(immigrantfamjC4,G2) 0.4719 0.0867 5.4434 0.0000���

��� p<0.01, �� p<0.05, � p<0.1
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As shown in the partial multiLCA() output 
above, the results suggest that 59% of the countries 
belong to higher-level class 1, while 41% belong to 
higher-level class 2. The countries belonging to 
higher-level class 1 emphasize the citizenship norms 
of lower-level class 2, while the countries belonging to 
higher-level class 1 emphasize the citizenship norms 
of lower-level class 1. As such, we can label higher- 
level class 1 “Mainstream-emphasizing countries”, and 
higher-level class 2 “Maximalist-emphasizing 
countries”. The prevalence of the citizenship norms of 
lower-level class 4 (Duty) within higher-level class 1 
(Mainstream-emphasizing countries) is about twice as 
high compared to the prevalence within higher-level 
class 2 (Maximalist-emphasizing countries).

Below the class separation statistics and informa
tion criteria, we can see the estimated logistic regres
sion model for higher-level class membership. The 
negative and highly statistically significant estimate for 
the effect of GDP per capita - alpha(log_gdp_ 
constantjG2) - suggests that wealthier countries 
have smaller probabilities of belonging to higher-level 
class 2 relative to higher-level class 1 than less wealthy 
countries.

Furthermore, we can see the logistic regression par
ameter estimates for lower-level class membership, 
conditional on higher-level class membership. For 
brevity, we comment only on the logistic regression 
coefficient for gender in the model for membership 
lower-level class 4 (Duty) relative to lower-level class 
1, given higher-level class 1. This coefficient is labeled 
gamma(femalejC4,G1) in the above output. The 
positive sign and statistical significance (at the 5%- 
level) suggest that, in the countries belonging to 
higher-level class 1, girls have larger probabilities than 
boys of belonging to lower-level class 4 relative to 
lower-level class 1, when controlling for immigration 
background.

To investigate the posterior class membership prob
abilities, we specify extout¼TRUE. We focus on 
the posterior higher-level class membership probabil
ities for the countries, which is contained in the elem
ent mPW, rounding the values to two decimal points 
(R does not display decimal points when the values 
are very close to 0 or 1). In the printed partial output 
below, we can see that higher-level class 1 includes, 
for example, the Nordic countries: Denmark (DNK), 
Finland (FIN), Norway (NOR) and Sweden (SWE). 
Higher-level class 2 includes, for example, the Asian 
areas: Hong Kong (HKG), South Korea (KOR) and 
Taiwan (TWN).

out¼multiLCA(data¼dataIEA,  

Y¼colnames(dataIEA)[5:16], iT¼5,

id_high ¼ "COUNTRY", iM¼2,

Z¼c("female","immigrantfam"), Zh ¼

"log_gdp_constant",

extout¼TRUE)

round(out$mPW, 2)

log_gdp_constant G1 G2

DNK 10.70 1 0

FIN 10.56 1 0

HKG 10.89 0 1

KOR 10.44 0 1

NOR 11.08 1 0

SWE 10.73 1 0

TWN 10.69 0 1

Concluding remarks

We presented the state of the art of multilevel latent 
class modeling with covariates. The focus was on esti
mation approaches, model selection, and freeware- 
software. We presented the theoretical modeling 
framework, the most advantageous estimation 
approaches, and recommendations for model selec
tion, including a benchmark simulation study of per
formance and estimation times for model selection. 
We gave a tutorial of the user-friendly syntax of the R 
package multilevLCA that executes this estimation, 
visualizes the results, and implements semi-automatic 
model selection.

The aim of the article was to disseminate the use of 
advanced multilevel latent class modeling among 
applied researchers from a variety of academic disci
plines. Multilevel latent class analysis has a wide range 
of applications in fields such as the educational, polit
ical, economic, health and behavioral disciplines. 
There is considerable appeal in this methodology, 
which allows great flexibility in the parametrization of 
individual differences in a (possibly multidimensional) 
phenomenon of interest.
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