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ABSTRACT 
Continuous-time modeling using differential equations is a promising technique to model 
change processes with longitudinal data. Among ways to fit this model, the Latent Differential 
Structural Equation Modeling (LDSEM) approach defines latent derivative variables within a 
structural equation modeling (SEM) framework, thereby allowing researchers to leverage advan
tages of the SEM framework for model building, estimation, inference, and comparison pur
poses. Still, a few issues remain unresolved, including performance of multilevel variations of 
the LDSEM under short time lengths (e.g., 14 time points), particularly when coupled multivari
ate processes and time-varying covariates are involved. Additionally, the possibility of using 
Bayesian estimation to facilitate the estimation of multilevel LDSEM (M-LDSEM) models with 
complex and higher-dimensional random effect structures has not been investigated. We pre
sent a series of Monte Carlo simulations to evaluate three possible approaches to fitting M- 
LDSEM, including: frequentist single-level and two-level robust estimators and Bayesian two-level 
estimator. Our findings suggested that the Bayesian approach outperformed other frequentist 
approaches. The effects of time-varying covariates are well recovered, and coupling parameters 
are the least biased especially using higher-order derivative information with the Bayesian esti
mator. Finally, an empirical example is provided to show the applicability of the approach.
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Differential equation models quantify change processes 
continuously, thereby providing projection of a system’s 
values at any arbitrary time point, even in situations 
where the observed time intervals are irregularly spaced. 
Latent Differential Structural Equation Models 
(LDSEM), proposed by Boker et al. (2004), is a frame
work for fitting differential equation models as struc
tural equation models (SEMs) by specifying derivatives 
as latent variables through constrained loadings that are 
similar to those used to define intercepts, slopes, and 
higher-order slopes in growth curve models. In doing 
so, LDSEM allows researchers to leverage the benefits 
afforded by the SEM framework, such as easy inclusion 
of antecedent and outcome measures, and direct con
solidation of multiple measures, possibly measured on 
mixed (e.g., continuous, ordinal, and nominal) scales. In 
addition, LDSEM shows notable improvements in 

performance compared to alternative two-stage model 
fitting approaches where derivatives are first computed 
by means of some approximation methods and subse
quently used as observed variables in SEM (Boker et al., 
2010; Boker & Graham, 1998; Chow, 2019).

There is no scarcity of applications utilizing differen
tial equation models in the social and behavioral scien
ces. For example, the linear damped oscillator model, a 
model used to describe the movements of a swinging 
pendulum under friction, has been used to describe 
how individuals regulate their emotions (Chow et al., 
2005; Katinka et al., 2020). Bivariate extensions of the 
damped oscillator model, which feature two swinging 
pendulums as coupled to one another, have been used 
to examine the relationships between emotional eating 
and hormone change (Hu et al. (2014), interpersonal 
co-regulation in body movement, emotions, and 
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physiological signals (Chow et al., 2010; Ferrer & 
Helm, 2013; Feinberg et al., 2017).

Unresolved methodological issues

Several unresolved issues need to be explored to 
bridge the gaps between the current LDSEM models 
and the needs of practical researchers. These issues, 
elaborated in turn below, were crucial for testing key 
aspects of our motivating empirical example, and 
formed the basis of the methodological extensions 
proposed and investigated in the present article.

Multilevel differential equation models and 
Bayesian inference
Parameter estimation for differential equation models, 
especially those involving multilevel data and high- 
dimensional random effect structures, is not a trivial 
task. Frequentist estimation approaches typically 
require integration—whether analytically, numerically 
(Durham & Gallant, 2002), or via alternative Monte 
Carlo approaches (Chow et al., 2016), over the ran
dom-effects distributions. Since most of these integrals 
lack closed-form solutions, the model estimation pro
cess is computationally expensive. Even though sig
nificant advances have been achieved in fitting 
multilevel latent variable models using frequentist 
approaches (Asparouhov & Muthen, 2007), including 
techniques for computing robust standard errors 
(Huber, 1967; White, 1980, 1994), estimation results 
are often unsatisfactory in situations involving a larger 
number of and/or complex random effect structures. 
In contrast, in the Bayesian paradigm, estimation of 
all parameters, latent variables, and random effects is 
performed via Markov Chain Monte Carlo (MCMC) 
techniques that can handle integration over much 
higher dimensions with substantially fewer distribu
tional restrictions. Therefore, using a Bayesian frame
work to conduct statistical inference offers clear 
pragmatic advantages (Chen et al., 2023; Elerian et al., 
2001; Lu et al., 2015, 2019; Mbalawata et al., 2013; 
Oravecz et al., 2011). Thus, one of key objectives of 
this study is to compare the performance of Bayesian 
and robust frequentist approaches for fitting multilevel 
LDSEM (M-LDSEM) models to multilevel data. The 
descriptions of the robust frequentist and Bayesian 
estimators used in the present simulation study are 
presented later in the Modeling Approach section.

Finite-length “intensive” longitudinal data
Another notable gap between published simulation 
findings involving the LDSEM and applications that 

are “real-world” resides in the number of repeated 
measures available from participants. According to 
review papers about ecological momentary assessment 
(EMA) designs as adopted in the studies of mood, 
sleep, stress, social interaction, and clinical outcomes 
(Konjarski et al., 2018; Liu et al., 2019; Rodr�ıguez- 
Blanco et al., 2018; Yang et al., 2019), the number of 
occasions typically ranges from 3 to 336 (median ¼
14, mean ¼ 20.1), with 14 days being one of the most 
popular sample size configurations because it provides 
the minimum number of repeated measures needed to 
capture some recurrence in weekly dynamics, in add
ition to revealing other momentary dynamics that 
unfold on a faster (e.g., daily) time scale.

Although some EMA studies do incorporate mul
tiple measurements a day, such sampling density may 
not be feasible for many other constructs of interest 
(e.g., sleep quality). Consequently, it is common for 
longitudinal studies in the behavioral sciences to com
prise relatively few measurement occasions compared 
to data from the physical sciences, engineering, and 
economics, in which applications of differential equa
tions are prevalent. Even though a few recent studies 
did provide some pointers on the recommended sam
ple size configurations (in terms of the numbers of 
participants and time points) for fitting multilevel 
dynamic models, most of this work focuses heavily on 
discrete-time dynamic models, not continuous-time 
models (Li et al., 2022; Schultzberg & Muth�en, 2018). 
Thus, we aim to evaluate the performance of the 
LDSEM under commonly adopted EMA sample size 
configurations, and possible methodological enhance
ments that aid estimation under such data constraints.

Time-varying covariates
Including exogenous time-varying covariates in 
LDSEM allows researchers to address a broader range 
of questions beyond just exploring the system’s 
internal dynamics. For instance, in our motivating 
example, we are interested in examining the implica
tions of providing social support (a time-varying cova
riate) to a partner with a chronic health condition on 
a couple’s ebb and flow in positive emotion.

Incorporating time-varying covariates into LDSEM 
is meaningful in terms of the modeling aspect as well 
as the research question. Figure 1 shows how the tra
jectory of an oscillator differs in the absence of and 
with the influence of a simulated time-varying covari
ate. If a time-varying covariate is omitted from a 
model when it should be included, as in the second 
plot in Figure 1, estimates of the unconditional mod
els do not fully reflect the time-varying nature of the 
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data, and may lead to substantively misguided conclu
sions. For example, when an oscillatory model was fit
ted to test data with a true frequency parameter of 
−0.5, the estimate in the model with time-varying 
covariates was −0.497, while it was −0.239 without 
estimating the effect of the time-varying covariates. 
Thus, in this article, we seek to examine a possible 
way of incorporating time-varying covariate effects 
into the LDSEM framework, key methodological con
siderations, from an estimation standpoint.

LDSEM with coupled dynamic processes and recent 
methodological enhancements
Even though bivariate variations of the linear oscilla
tor model are gaining traction in studies of dyadic 
and interpersonal dynamics (Niven, 2017), few Monte 
Carlo simulation studies were available to clarify the 
performance of the LDSEM method in fitting coupled 
differential equation models. The one exception that 
existed indicated that the coupling parameters that 
summarize the mutual influences of two dyad mem
bers on each other were not accurately estimated 
under the LDSEM approach (Hu et al., 2014). Thus, a 

comparison of the currently available estimation 
methods for recovering coupling-related parameters, 
especially under M-LDSEM, is warranted.

We consider in the present paper two possible 
enhancements to current estimation methods for fit
ting M-LDSEM. One of them is to use robust varia
tions of frequentist (maximum likelihood) estimation 
(Asparouhov, 2005; Freedman, 2006) to circumvent a 
known issue in use of time-delay embedded data to fit 
LDSEM their discrete-time counterparts (Molenaar, 
1985). Previous simulations have shown that when 
time-delay embedded data were used, the standard 
error estimates tended to be biased, despite relatively 
satisfactory point estimates (Chow et al., 2010). To 
this end, robust maximum likelihood approaches offer 
corrections to the standard error estimates and corre
sponding violations of the independence assumptions 
of the residuals, and may thus offer some improve
ments in estimation results compared to standard fre
quentist approaches. In addition, previous 
comparisons of Bayesian and frequentist approaches 
to estimating dynamic and longitudinal models also 
indicated some advantages of the former over the 

Figure 1. Simulated trajectories with and without the effect of a time-varying covariate. 
Note. This figure demonstrates one possible way of conceptualizing the effects of a time-varying covariate, as adopted in our moti
vating empirical example. In this case, the levels of the time-varying covariate are hypothesized to influence the second derivatives 
(i.e., accelerations/decelerations, or changes and curvatures in the rises and declines) of the process of interest (X). The inclusion of 
this time-varying covariate has the effect of shifting the equilibrium (the value to which the oscillator settles in the long run) verti
cally upward/downward depending on the values of the covariate.

936 Y. W. CHO ET AL.



latter, especially under finite sample sizes (Zhang & 
Nesselroade, 2007; Zhang et al., 2007, 2008).

In summary, this paper aims to build a differential 
equation model that echoes substantive needs and 
then evaluate whether variations of the LDSEM 
approaches, which incorporate recent advanced mod
eling techniques, perform well to fit the model. To do 
so, we constructed a simulation model from our moti
vating example: a coupled damped oscillator model 
with mixed effects and time-varying covariates. Then, 
we ran a Monte Carlo simulation to examine the per
formance of the different LDSEM methods. 
Specifically, we compared (1) standard LDSEM meth
ods versus noble LDSEM methods that leverage 
higher-order derivative information and (2) robust 
frequentist versus Bayesian approaches. We also 
examined whether the length of the time series limits 
the use of the LDSEM technique.

The rest of the article is organized as follows. First, 
we introduce our motivating example and its corre
sponding differential equation model. Second, back
grounds for the LDSEM and its fourth-order variation 
(Boker et al., 2004) are briefly reviewed. Then, a 
Monte Carlo simulation is conducted to evaluate the 
performance of each LDSEM variation. The recom
mended LDSEM procedure is applied to empirical 
data based on the simulation result.

Motivating example

For married individuals suffering from chronic illness, 
their spouses often become primary caregivers 
(Sanders & Power, 2009), and such spousal support 
for patients is related to couples’ well-being. Our 
modeling framework was motivated by data from 22- 
day daily diary data from patients with knee osteo
arthritis (OA) and their spouses (Martire et al., 2013). 
Both patients and spouses reported daily ratings of 
positive affect and spousal instrumental support in 
coping with OA. Spousal instrumental support means 
tangible aid from spouses, such as housework and 
personal care, to help patients avoid pain. Since 
spouses diagnosed with moderate to severe OA were 
excluded from participation, each couple member 
evaluated support provision only from spouses. We 
sought to study couples’ emotional dynamics and how 
instrumental support from spouses for patients influ
enced couples’ emotional regulation processes. 
Specifically, we were interested in addressing the 
extent and directionality of the patients’ and their 
spouses’ influences on each other (i.e., emotional 
covariation). In this section, we begin by describing a 

univariate version of our proposed empirical model 
before transitioning to its bivariate variation moti
vated by our empirical example.

Damped linear oscillator model as a model of 
individuals’ emotion regulation

Researchers differ slightly on the exact functional 
forms of such emotion regulation processes. Some 
conceptualized the corresponding trajectories as 
monotonic (i.e., without changes in directions) returns 
to baseline (Koval et al., 2012; Kuppens et al., 2010; 
Oravecz et al., 2011), which can be operationalized as 
a first-order differential equation focusing on repre
senting the amounts of instantaneous changes (first 
derivatives) in affect. Other researchers have used the 
analogy of emotion as a “thermostat” to describe the 
homeostatic process through which individuals self- 
regulate their emotions toward some affective (pos
sibly person-specific) baseline (Chow et al., 2005; 
Larsen, 2000) in the absence of interventions or 
actions from other individuals. Mathematically, this 
may be captured using a second-order differential 
equation, which delineates changes in second deriva
tives, or the amounts of instantaneous changes from 
one time interval to the next (e.g., accelerations and 
decelerations). Under this framework, individuals’ 
self-regulatory processes are typically viewed as oscil
latory in nature, even though monotonic return to 
baseline (i.e., approaching baseline without changes in 
directions of such changes) is possible in some indi
viduals. In other words, individuals are conceptualized 
to show some ebbs and flows—sometimes “over-” or 
even “under-regulating” to levels beyond or less than 
their affective baselines—before they settle into their 
baselines.

The second-order differential equation used by 
Chow et al. (2005) to depict daily ebbs and flows of 
emotions as a “thermostat”, often denoted in the lit
erature as a damped linear oscillator model (Boker & 
Nesselroade, 2002), is defined as:

€xit ¼ gxit þ f _xit (1) 

where xit is the level of positive affect relative to its 
typical level (for person i at time t); _xit and €xit are the 
first derivative and the second derivative of positive 
affect. The first derivative expresses the rate of change, 
or the amount of change in xit from one time point 
to the next as the time interval gets infinitely small. 
The second derivative expresses how rapidly the first 
derivative is changing (changes in the rates of 
change), indicating whether the instantaneous changes 
in xit are increasing (accelerating) or decreasing 
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(decelerating). g is a parameter that governs the fre
quency, or how rapidly xit changes over time, and f is 
a parameter that controls the changes in amplitude of 
the process over time, with negative values of f lead
ing to damping (decrease in amplitude) and positive 
values to amplification (increase in amplitude) of the 
oscillations over time. In specific ranges of g and f 

(Zill, 1993), the process shows oscillations with damp
ing over time (see Figure 2 for examples).

Coupled damped linear oscillator model as a 
representation of couples’ dynamics

Interpersonal emotion regulation studies (Elfenbein, 
2014; Niven, 2017) suggest that there may be recipro
cal influences, or coupling, between patients and their 
caregivers in everyday emotion regulation. There can 
be various patterns of co-regulation or mutual influ
ence. For example, a patient’s affect may easily impact 
the state of a spouse but may not be influenced by the 
spouse’s state. In close relationships, when their part
ner is highly aroused, one may become calm grad
ually, while another may become aroused together.

Consistent with evidence that emerged from other 
empirical work involving EMA data of affect in dyads 
(Feinberg et al., 2017), we sought to use a coupled 
damped linear oscillator model as the basis of our 
modeling framework to examine self-regulation as 
well as co-regulation—the extent to which two 

individuals (patients and spouses in this case) influ
ence each other in their emotion regulation processes. 
Mathematically, a coupled damped linear oscillator 
model is a bivariate version of the model in Equation 
(1) and is expressed as follows:

€xit ¼ g1xit þ f1 _xit þ c1yit (2) 

€yit ¼ g2yit þ f2 _yit þ c2xit , (3) 

in which x refers to the positive affect of the patient 
and y is the positive affect of the spouse in our 
example. Equation (2) represents the equation of the 
patient, and Equation (3) is for the spouse. In add
ition to the parameters g1, g2, f1 and f2, this model 
includes two coupling parameters, c1 and c2: c1 repre
sents the degree to which a patient’s emotion regula
tion process is influenced by the current level of the 
spouse’s affect (yit) in addition to the patient’s own 
affect level (xit) and rate of change ( _xit). Hence, the 
coupling parameter can also be interpreted as perme
ability or sensitivity (Butler, 2011). For example, a 
high absolute value of the coupling parameter can 
indicate that the person has more permeable interper
sonal boundaries, which means that the partner’s 
affect can easily impact the state of the other. For 
details on the interpretation of coupling parameters, 
see Hu et al. (2014).

This model is increasingly employed because of its 
ability to capture the extent and directionality of the 
co-regulation dynamics (e.g., which partner is leading 
the covariations in the dyad’s dynamics as a whole), 
which cannot be tested by examining the day-to-day 
covariance of the variable. For instance, Steele and 
Ferrer (2011) found that, on average across the sam
ple, both females and males were sensitive to their 
partners’ overall affect levels but only females were 
sensitive to males’ rate of change of positive affect.

Instrumental support as time-varying covariate 
and multilevel extensions

A second key research question was the role of instru
mental support on both patients’ and spouses’ emo
tion regulation processes. The effect of spousal 
support has been reported as being rather mixed. 
Reduced mental and physical health of caregivers has 
been linked to caring for a chronically sick spouse in 
daily activities (Monin & Schulz, 2009); however, it 
has also been found that caring for a partner provides 
advantages for caregivers’ mental health (Beach et al., 
2000; Poulin et al., 2010). Likewise, receiving instru
mental support from spouses can benefit patients’ 
well-being, while it does not reduce patients’ 

Figure 2. Simulated trajectories according to g and f:
Note. When a damping parameter f ¼ 0, the amplitude of the 
process does not change over time unless external forces work 
on it, and faster oscillation occurs under a more negative value 
of g (see subfigures A and B). If f < 0, the process shows 
damping over time, and if f > 0, the amplitude of the oscilla
tion will increase over time (see subfigures C and D).
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depressive symptoms and can backfire when it 
emphasizes the inability of the recipient (De Leeuw 
et al., 2000; Reinhardt et al., 2006).

Such inconsistency may be resolved by considering 
inter-individual differences in the effect of daily 
instrumental support provision/receipt. For instance, 
providing a high level of support on a day is some
thing that happens in an extraordinary situation to 
someone who does not usually take care of patients, 
and providing higher support than their usual level 
may greatly impact their emotions of the day. 
Conversely, based on the desensitization theory 
(McGlynn et al., 1981), for people whose typical level 
of support provision is high, since caregiving behavior 
is just an ordinary event that usually happens, their 
response to the elevated daily support provision would 
be reduced. To incorporate such interindividual differ
ences, we will use a multilevel model that allows the 
effect of daily support to differ between couples. 
Consequently, our motivating model is expressed as:

€Patientit ¼ gpPatientit þ cpiSpouseit þ bpiPatientSupportit þ ep, it

cpi ¼ cp0 þ cp1PatientSupporti þ uc, pi

bpi ¼ bp0 þ bp1PatientSupporti þ ub, pi
€Spouseit ¼ gsSpouseit þ csiPatientit þ bsiSpouseSupportit þ es, it

csi ¼ cs0 þ cs1PatientSupporti þ uc, si
bsi ¼ bs0 þ bs1SpouseSupporti þ ub, si

(4) 

where Patientit and Spouseit refer to positive affect of 
each couple member. Spousal instrumental support 
that patients or spouses reported (PatientSupportit , 
SpouseSupportit) is a time-varying covariate in the 
patient’s or spouse’s equation, respectively. 
PatientSupporti and SpouseSupporti represent time- 
invariant covariates, the average levels of instrumental 
support over 22 days.

Using this model, we can examine not only 
whether the daily positive affect of a couple shows an 
oscillatory self-regulation process (gp and gs) and 
whether their affect dynamics co-regulate each other 
(coupling effect; cp0 and cs0), but also whether the 
daily spousal instrumental support, the time-varying 
covariate, is associated with the accelerations and 
decelerations in the daily affect of each couple mem
ber (bp0 and bs0). Further, to capture possible sources 
of interindividual differences, the effect of daily 
instrumental support is allowed to differ between cou
ples, and time-invariant covariates are included as 
predictors in the model. As co-regulation patterns 
could also vary across couples, random variances for 
coupling effects and time-invariant covariates to 
explain the random variance are included in the 
model.

We described our motivating example and intro
duced univariate and bivariate dynamic models that 
consider the over-time evolution of each dyad mem
ber’s emotions. We also illustrated a model that shows 
how time-varying and time-invariant covariates can 
be incorporated into those models. We will revisit this 
example in section Empirical Example by fitting the 
model in Equation (4) to the empirical data.

Steps for fitting M-LDSEM

In this section, we outline the procedures involved in 
fitting an M-LDSEM into two major steps: (1) prepa
rations of time-delay embedded data, and (2) specifi
cation of M-LDSEM, including possible ways to 
leverage higher-derivative information from the 
dependent variables and time-varying covariates.

Step 1: Preparations of time-delay embedded data

To fit differential equation models to empirical data 
using the LDSEM method in SEM software, the first 
step is to prepare the data that enables specification of 
derivatives as latent factors (Boker et al., 2004). Time 
delay embedding is a data preparation process that 
involves rearranging individuals’ raw time series data 
to create successively lagged (or delayed) blocks of the 
original time series. For example, consider a 100 � 1 
time series consisting of data of an individual meas
ured on one variable over 100 time points. To con
struct time-delay embedded data, a researcher first has 
to determine the number of embedding dimensions 
(d), namely, how many lagged occasions have to be 
paired with the data at each time point. With d¼ 6, 
the value of xt at time t (lag of 0) would be paired 
with the corresponding measurements from that per
son at lag of 1, 2, :::, 5 (xt−5, xt−4, xt−3, xt−2, xt−1, 
xt), thus creating a total of six variables that represent 
concurrent and lagged versions of the original time 
series. In this case, the final input data matrix for 
model fitting, denoted as Xð6Þ, is a 95� 6 data matrix, 
with structure shown as follows.

Original time series:

x ¼ x1, 1 x1, 2 x1, 3 ::: x1, 98 x1, 99 x1, 100
� �

Time-delay embedded data of d ¼ 6 :

Xð6Þ ¼

x1, 1 x1, 2 x1, 3 x1, 4 x1, 5 x1, 6
x1, 2 x1, 3 x1, 4 x1, 5 x1, 6 x1, 7

..

. ..
. ..

. ..
. ..

. ..
.

x1, 95 x1, 96 x1, 97 x1, 98 x1, 99 x1, 100

2

6
6
6
4

3

7
7
7
5

where xi, t is the value of the variable x for the ith 
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individual at time t. von Oertzen and Boker (2010) 
has shown that this time delay embedding technique 
improved the estimation properties of parameters for 
models of intraindividual dynamic processes.

Step 2: Specification of M-LDSEM as factor model 
with constrained loadings

After time-delay embedding, a differential equation 
model is fitted to the time-delay embedded data. In 
the LDSEM method (Boker et al., 2004), the deriva
tives (i.e., x, _x, €x) are specified as latent factors in an 
SEM framework with specialized loadings. This is 
what differentiates the LDSEM method from previous 
two-step approaches such as the Generalized Local 
Linear Approximation (GLLA) method, in which 
derivatives are first calculated explicitly and then used 
as observed variables in differential equation models 
(Boker et al., 2010). Additionally, GLLA assumes 
equal intervals between measurement occasions, which 
may not always be the case in LDSEM.

Specifically, the LDSEM method simultaneously 
constructs the latent derivative factors in the measure
ment model and estimates the parameters of the dif
ferential equation (i.e., the relationships between the 
latent derivative variables) in the structural model. 
The first diagram in Figure 3 represents a standard 
2nd-order differential equation model using the 
LDSEM approach. In the measurement model, the 
latent derivatives are constructed by specifying prede
termined factor loadings (L) for the relationships 
between the latent derivatives (factors) and the 
observed measures (indicators). The six indicators in 
Figure 3 correspond to columns in the time-delay 
embedded matrix (e.g., Xð6Þ). Factor loading, L, is 
determined by polynomials of the Taylor series expan
sion (Chow et al., 2016) based on the time-delay 
embedding dimension (d), the designated time inter
val (Dt), and the highest order of the derivatives used. 
Figure 3 shows an example of L with d¼ 6, Dt ¼ 1, 
and the highest order ¼ 2. For more details on the 
calculation of L, see Boker et al. (2010). This particu
lar specification of LDSEM can be viewed as an SEM 
consisting of a factor model with specialized con
strained loadings, and is also comparable to how fixed 
loadings are used to construct the latent intercept and 
slopes in a latent growth curve model in the SEM 
framework.

Extension from single-level to multilevel LDSEM
We introduce M-LDSEM by integrating LDSEMs with 
multilevel modeling within the framework of 

multilevel structural equation models (MSEM). MSEM 
is employed when dealing with nested data structures, 
necessitating the simultaneous modeling of latent vari
ables, measurement errors, and pathways. In the sub
sequent sections, we will provide an overview of 
MSEM and then present the M-LDSEM.

Multilevel structural equation modeling

In MSEM, observed variables can be decomposed into 
components that vary within groups (in this context, 
within individuals across days) and between groups 
(across individuals). For instance, with daily positive 
emotion scores collected over T days (t ¼ 1, :::, T) for 
N individuals (i ¼ 1, :::, N), the daily observations are 
nested within individuals, creating a multilevel struc
ture. The observed individual-level scores can be 
decomposed into within and between components as 
xit ¼ xwit þ xbi, where xwit reflects daily fluctuations 
in positive emotions for individual i, and xbi captures 
consistent individual differences over time.

Each component is modeled as follows:

xwit ¼ KWgW þ eW (5) 

xbi ¼ lþ KBgB þ eB (6) 

where gW and gB are within- and between-level latent 
factors; KW and KB are within- and between-level fac
tor loadings; l is the overall mean across individuals; 
eW and eB are within- and between-level residuals. 
Time-varying covariates would need to be inserted 
into gW in Equation (5).

The structural equations for latent variables can be 
expressed as:

gW ¼ CWgW þ eW (7) 

gB ¼ CBgB þ eB (8) 

where CW and CB contain coefficients that define 
structural relationships between factors; eW and eB 
contain residual terms.

Multilevel LDSEM

In a similar way, the specific M-LDSEM that allows 
for individual-specific dynamic coefficients with one 
between-level covariate is stated as follows:

xð6Þit ¼ xð6ÞWit þ xð6ÞBi (9) 

where xð6Þit is a vector of six lagged observed variables 
(from xt−5 to xt). The within-person component is 
defined as:

xð6ÞWit ¼ Lg it þ eit (10) 
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where L is a fixed factor loading matrix1 shown in 
Figure 3 and g it is a vector of unobserved latent 
derivative scores, xit , _xit , €xit½ �

0
: The structural equations 

for g it are represented as:

g it ¼ Aig it þ eit (11) 

Ai ¼

0 0 0
0 0 0
gi fi 0

2

4

3

5

where gi and fi are person-specific parameters poten
tially influencing daily fluctuations in positive emo
tions as described in Equation (1).

For the between-person component, we have:

gi
fi

� �

¼
g0
f0

� �

þ
b1
b2

� �

CovBi þ nBi (12) 

where the intercepts (g0, f0) are the predicted values 
for the frequency and damping parameters, respect
ively when the covariate (CovBi) is zero, and the 
regression coefficients (b1, b2) indicate changes in 
these parameter values with each unit of increase in 
the person-specific covariate, CovBi: Note that in our 

proposed model, xð6ÞBi in Equation (9) is simply a vec
tor of zeros because we assumed the baseline of all 
individuals’ processes is fixed at zero, thus rendering 
their intercepts 0 in the corresponding time delay 
embedded data. However, this can be further modeled 
as described in a regular MSEM. For a more detailed 
exploration of MSEM, please refer to Depaoli and 
Clifton (2015) and Hox (2013).

Leveraging higher-derivative information

One determinant of the performance of the M- 
LDSEM is whether the time-delay embedding dimen
sion is well selected. In addition to that, specifying the 
extraction of higher-order derivatives (i.e., up to the 
fourth order) in an M-LDSEM, as proposed by Boker 
et al. (2020), can significantly improve the perform
ance of the approach (Chow, 2019), even if the 
dimension of time-delay embedding is less than 
optimal.

The 4th-order LDSEM entails the use of higher- 
order derivative information in the Taylor series 
approximation of the observed measurements, which 
is a second-order differential equation including the 
3rd or 4th-order derivatives as a dependent variable 
in the model as shown in the second diagram in 

Figure 3. Standard second-order vs. fourth-order LDSEM. 
Note. The first diagram represents the standard second-order LDSEM model. The second diagram represents the fourth-order 
LDSEM model. L represents the specialized factor loadings that constrain the relationships between the observed variables (e.g., x1 

to x6) and the latent derivatives. x refers to the smoothed level of the variable x. dx, d2x, d3x, and d4x refer to the first to the 
fourth derivative of x. We show an example of L with d¼ 6, Dt ¼ 1, and the highest order ¼ 2. This figure does not encapsulate 
the multilevel component. 
Consistent with the formulation of multiple regression models within the structural equation modeling framework in which all 
independent variables are allowed to freely covary, x and dx are also allowed to freely covary with each other.

1L can in principle be person- and time-specific when the time intervals 
between successive occasions are different across individuals and over 
time.
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Figure 3. This is feasible by using specialized factor 
loading (L) described above and some invariance con
straints imposed across derivative orders such that the 
frequency parameters (g) and damping parameters (f) 
in each equation are constrained to be equal, respect
ively. More details about the 4th-order LDSEM can be 
found in Boker et al. (2020).

Simulation study

The main purposes of the current simulation study 
are to compare the relative performance of Bayesian 
and robust Frequentist estimation approaches, and 
clarify the benefits of including higher-order deriva
tive information. Specifically, we were interested in fit
ting differential equation models with finite-length 
data, time-varying covariates, and coupling effects. 
With these goals in mind, three design factors (i.e., 
derivative order, estimation approach, and data con
figuration) were varied within our simulation study.

Simulation conditions

Modeling approach
As modeling approaches, 2 derivative orders � 3 esti
mation approaches ¼ 6 conditions were considered. 
First, two derivative order specifications were used as 
described in Figures 3: (1) second-order and (2) 
fourth-order M-LDSEM. Then, three estimation 
approaches (i.e., two frequentist and one Bayesian 
approaches) were considered: (1) single-level robust 
estimator, (2) two-level robust estimator, and (3) two- 
level Bayesian estimator.

For the single-level robust estimator, the estimator 
MLR and TYPE¼COMPLEX commands in Mplus 
were used to obtain maximum likelihood estimates 
with standard errors robust to non-normality and 
non-independence (Asparouhov, 2005). This single- 
level approach does not account for the random 
effects in the data generation model but offers correc
tions to the standard error estimates under such 
model misspecification through the Hubert-White 
sandwich estimator (Freedman, 2006).

The other two-level approaches allow for the esti
mation of random effects, as consistent with our data 
generation model. For the two-level robust approach, 
the estimator MLR and TYPE¼TWOLEVEL com
mands in Mplus were used to compute maximum 
likelihood robust standard errors (Asparouhov & 
Muthen, 2006) with Monte Carlo integration to han
dle estimation of the random effects. The two-level 
Bayesian estimator condition used the Markov Chain 

Monte Carlo (MCMC) algorithm based on the Gibbs 
sampler (Gelman et al., 1995), with default settings for 
Mplus (see Asparouhov & Muthen, 2010). Specifically, 
conjugate priors were used2. Convergence was deter
mined based on the potential scale reduction (PSR) 
values calculated from two MCMC chains, with PSR 
values � 1.1 across all parameters used as a cutoff for 
convergence. The first half of each chain was desig
nated as burn-in iterations and not utilized for esti
mation purposes. The point estimates were then 
derived from the median of the MCMC samples 
obtained from the second half of each chain.

Sample size configuration
The sample size configuration was decided based on 
our motivating empirical data (T¼ 22, N¼ 140) and 
our key interest in elucidating the effects of the length 
of the series, especially in scenarios involving short, 
multi-subject time series. Three conditions of the 
length of the series were considered. T ¼ 100 corre
sponds to typical time series lengths seen in other 
simulation studies involving time-intensive dynamical 
systems models and data (Boker et al., 2020; Chow, 
2019). T ¼ 20 and 10 were picked to evaluate how 
well the M-LDSEM approach worked under sample 
size configurations that mirrored those seen in com
mon EMA designs (Konjarski et al., 2018; Rodr�ıguez- 
Blanco et al., 2018). The number of subjects was set 
to n ¼ 150 taking into account characteristics of our 
motivating empirical data, and common EMA sample 
sizes as reported in recent review papers of EMA 
studies (mean number of subjects ¼ 146.3; median ¼
87; Konjarski et al., 2018; Liu et al., 2019; Yang et al., 
2019). Additionally, a condition with n¼ 300 was add
itionally tested for T¼ 10 to examine the effect of 
doubling the number of subjects. Consequently, four 
sample size configurations were considered: (1) 
n¼ 150 & T¼ 100, (2) n¼ 150 & T¼ 20, (3) n¼ 150 
& T¼ 10, and (4) n¼ 300 & T¼ 10.

Data generation and implementation of M-LDSEM

We have 2 derivative orders � 3 modeling approaches 
� 4 sample size configurations ¼24 simulation condi
tions. In each condition, 500 Monte Carlo replications 
were simulated. Specifically, data following the 
coupled damped oscillator model in Equation (13) 
were simulated in R (R Core Team, 2022) using the 

2The default prior for intercepts, loadings, and slopes for continuous 
variables is Nð0, 1010Þ: The default prior for variance-covariance matrices 
for continuous variables is IWð0, − p − 1Þ, where p is the number of 
observed continuous variables in the model.
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lsoda function in the R package, deSolve (Soetaert 
et al., 2010).

€xit ¼ g1xit þ f1 _xit þ c1yit þ b1iXTVcovit þ ex, it
b1i ¼ bx0 þ bx1Covi þ uxi

€yit ¼ g2yit þ f2 _yit þ c2xit þ b2iYTVcovit þ ey, it
b2i ¼ by0 þ by1Covi þ uyi

(13) 

where xit and yit are values of variables of interest 
(e.g., affect of patients and spouses) at time t for dyad 
i; XTVcovit and YTVcovit are time-varying covariates 
(e.g., daily instrumental support received/provided); 
Covi represents a time-invariant covariate; and uxi & 
uyi � Nð0, s2Þ3 and ex, it & ey, it � Nð0, r2Þ: For all 
simulation conditions, the model parameters were 
specified as follows: g1 ¼ g2 ¼ −0:5, f1 ¼ f2 ¼ −0:04, 
c1 ¼ c2 ¼ −0:1, bx0 ¼ by0 ¼ 0:3, bx1 ¼ by1 ¼ 0:1, 
s2 ¼ 0:04, and r2 ¼ 1: The simulation parameters 
were selected to reflect the estimated values from pre
vious studies using similar affect variables (Chow 
et al., 2005; Hilpert et al., 2020; Steele & Ferrer, 2011). 
Specifically, previous studies reported that g was esti
mated to be between −0.4 to −0.9, while f was either 
insignificant or very small, ranging from −0.01 to 
−0.04. We assumed that a single manifest indicator 
was used, and the baseline was fixed at zero for 
everyone.

The time-invariant covariate was simulated from a 
uniform distribution over [-3, 3]. Two time-varying 
covariates were simulated separately following the sto
chastic Ornstein–Uhlenbeck (OU) process with zero 
home-base (Oravecz et al., 2011) as: dxit ¼ −hxitdt þ
/dWit , where xit is the value of the time-varying 
covariate of person i at time t, Wt is the standard 
Wiener process, h ¼ 0:03, and / � Nð0, 0:1Þ:
Although detrending is a commonly adapted data 
preparation step (e.g., Chow et al., 2005; Hilpert et al., 
2020), we did not detrend in this case, because the 
simulated time-varying covariate following the OU 
process shows a linear time trend. Detrending in this 
case would remove key information related to the 
time-varying covariate and would not be appropriate 
for the purposes of the current study. We verified, via 
a targeted Monte Carlo simulation, that removal of a 
linear time trend would not lead to biases in the esti
mation results when the time-varying covariate 

assumed other alternative forms of change, such as a 
sine function (see Appendix A for details).

Following Step 1 of the M-LDSEM approach, a 
time-delay embedded matrix was created for each 
Monte Carlo replication. Consonant with the settings 
adopted in the empirical example, the dimension of 
the time delay embedding, d, was set to six. Latent 
factors were also specified for time-varying covariates 
with d ¼ 6: Please note that d does not necessarily 
need to always be six. Detailed rationales and guide
lines for selecting this particular value of d are pro
vided in Empirical Example.

Performance measures

Analyses were conducted using Mplus 8.7 (Muthen & 
Muthen, 2017) and an R package, Mplusautomation 
(Hallquist & Wiley, 2018). Performance measures 
were calculated for the 500 replications in each condi
tion. To quantify the performance of the point esti
mates, the mean point estimate, relative bias, and root 
mean squared error (RMSE) were used. To quantify 
the variability of the estimation, the standard devi
ation of the parameter estimates in all Monte Carlo 
simulations (MCSD; Monte Carlo Standard Deviation) 
was used. As a measure of the relative performance of 
the SE estimates, the relative deviance of the standard 
error (RDSE) was calculated based on the difference 
between the SE estimate and the empirical standard 
deviation of each parameter (the “true” SE; MCSD). 
The estimated SE was calculated as the average of the 
SE estimates from the model results (acSE). Power was 
computed by tallying the proportion of all trials in 
which the 95 % CIs did not include zero. Details of 
these performance measures are included as footnotes 
in Tables 2 and 3.

Simulation results

Are there benefits to including higher-order 
derivatives?
Models using Single-level robust and the two-level 
Bayesian approaches converged 100% across all Monte 
Carlo replications regardless of the derivative order or 
sample size configuration. Under the two-level robust 
approach, convergence rates varied between 49 to 
86.2%, as dependent on the highest derivative order of 
the M-LDSEM and sample configuration. As shown 
in Table 1, the length of the time series was a critical 
factor that influenced the convergence rate; even 
though doubling the sample size from n¼ 150 to 300 
helped increase the convergence rates, data with 

3Note that we only allowed random variance for the time-varying 
covariates in our simulation for simplicity as this study is an initial 
comparison of the Bayesian and frequentist approaches using M-LDSEM. 
However, it is possible to specify more complex random effect structures 
in practice, such as allowing gs, fs, and cs to vary across dyads. This was 
demonstrated in the Empirical Example section where we allowed inter- 
dyad differences in coupling parameters.
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T¼ 10 resulted in convergence rates that were around 
50%. Despite the complexity of the 4th order model, 
inclusion of higher derivatives for the same n and T 
configurations led to higher convergence rates than 
only using the same order of derivatives (second 
derivatives) as the data generation model.

Other key simulation results comparing the 2nd to 
4th derivative order are presented in Table 2. 

Performance measures for parameters of the same 
type (e.g., coupling parameters for patients and 
spouses) were aggregated to ease presentation. In 
terms of point estimates, the 4th-order models led to 
smaller biases than the 2nd-order models for all 
parameters except for the damping parameter (f dem
onstrated a minimal relative bias, −0.03, when the 
highest derivative order was 2). In contrast to the 
point estimates, the 2nd-order models resulted in 
smaller MCSD than the 4th-order models for all 
parameters but f: This suggested that inclusion of 
higher derivatives helped improve convergence rates 
and point estimates for most parameters, even though 
some overestimation in SEs was observed under the 
4th compared to 2nd-order models particularly under 
the multilevel robust frequentist approach.

How does the Bayesian approach perform relative 
to the frequentist approaches?
When the three estimation approaches were com
pared, the two-level Bayesian estimator resulted in the 
most accurate estimates with smaller relative biases 

Table 2. Summary statistics of parameter estimates across model derivative orders and modeling approaches across 500 Monte 
Carlo replications when n ¼ 150, T ¼ 100:

Order Estimator h Mean ĥ rBias RMSE MCSD acSE RDSE

g 2 2-Bayes −0.50 −0.38 −0.23 0.116 0.0020 0.0020 0.010
g 2 2-Robust −0.50 −0.34 −0.32 0.160 0.0151 0.0168 0.110
g 2 1-Robust −0.50 −0.30 −0.40 0.200 0.0125 0.0123 −0.013
g 4 2-Bayes −0.50 −0.50 0.00 0.005 0.0047 0.0051 0.095
g 4 2-Robust −0.50 −0.43 −0.15 0.076 0.0223 0.0341 0.531
g 4 1-Robust −0.50 −0.38 −0.25 0.126 0.0166 0.0165 −0.011
f 2 2-Bayes −0.04 −0.04 −0.03 0.003 0.0028 0.0043 0.503
f 2 2-Robust −0.04 −0.03 −0.20 0.009 0.0034 0.0060 0.760
f 2 1-Robust −0.04 −0.03 −0.23 0.010 0.0030 0.0031 0.031
f 4 2-Bayes −0.04 −0.02 −0.41 0.017 0.0023 0.0036 0.574
f 4 2-Robust −0.04 −0.02 −0.50 0.020 0.0025 0.0032 0.258
f 4 1-Robust −0.04 −0.02 −0.51 0.021 0.0024 0.0024 0.022
c 2 2-Bayes −0.10 −0.07 −0.33 0.033 0.0019 0.0017 −0.128
c 2 2-Robust −0.10 −0.06 −0.36 0.036 0.0048 0.0067 0.409
c 2 1-Robust −0.10 −0.06 −0.42 0.042 0.0055 0.0054 −0.013
c 4 2-Bayes −0.10 −0.08 −0.17 0.017 0.0027 0.0022 −0.188
c 4 2-Robust −0.10 −0.08 −0.22 0.023 0.0060 0.0109 0.806
c 4 1-Robust −0.10 −0.07 −0.28 0.028 0.0066 0.0065 −0.011
b0 2 2-Bayes 0.30 0.23 −0.22 0.066 0.0133 0.0135 0.014
b0 2 2-Robust 0.30 0.22 −0.27 0.084 0.0194 0.0179 −0.076
b0 2 1-Robust 0.30 0.19 −0.36 0.110 0.0158 0.0150 −0.053
b0 4 2-Bayes 0.30 0.31 0.03 0.019 0.0173 0.0176 0.019
b0 4 2-Robust 0.30 0.28 −0.08 0.036 0.0258 0.0313 0.212
b0 4 1-Robust 0.30 0.24 −0.20 0.064 0.0205 0.0194 −0.053
b1 2 2-Bayes 0.10 0.08 −0.21 0.023 0.0075 0.0078 0.032
b1 2 2-Robust 0.10 0.07 −0.27 0.029 0.0093 0.0117 0.260
b1 2 1-Robust 0.10 0.06 −0.36 0.037 0.0080 0.0079 −0.012
b1 4 2-Bayes 0.10 0.10 0.03 0.010 0.0099 0.0104 0.049
b1 4 2-Robust 0.10 0.09 −0.08 0.014 0.0122 0.0142 0.163
b1 4 1-Robust 0.10 0.08 −0.20 0.022 0.0101 0.0100 −0.010
s2 2 2-Bayes 0.04 0.03 −0.34 0.014 0.0030 0.0032 0.089
s2 2 2-Robust 0.04 0.01 −0.66 0.027 0.0046 0.0031 −0.325
s2 4 2-Bayes 0.04 0.04 0.14 0.007 0.0051 0.0056 0.096
s2 4 2-Robust 0.04 0.02 −0.45 0.019 0.0074 0.0051 −0.309

Note. 1-Robust: single-level robust estimator; 2-Robust: two-level robust estimator; 2-Bayes: two-level Bayesian estimator; h ¼ true value of a parameter; 
Mean ĥ ¼ 1

H

PH
h¼1 ĥh , where ĥh ¼ estimate of h from the hth Monte Carlo (MC) runs; rBias¼ relative bias ¼ 1

H

PH
h¼1ðĥh− trueh) / trueh; RMSE ¼

1
H

PH
h¼1ðĥh− trueh); MCSD¼ standard deviation of ĥ across MC runs, acSE ¼ average standard error estimate across MC runs, RDSE ¼ average relative 

deviance of cSE ¼ ðacSE − MCSDÞ=MCSD:

Table 1. Convergence rates of the two-level robust modeling 
approach.
Conditions
Order n T Convergence rate

2 150 100 85.6%
2 150 20 79.6%
2 150 10 49.0%
2 300 10 64.6%
4 150 100 86.2%
4 150 20 85.6%
4 150 10 53.6%
4 300 10 72.6%

Note. Convergence rates were calculated as the percentage of the 500 
replications that did not encounter convergence errors. Convergence 
errors resulted from either the failure to find an optimized solution or 
the optimizer exceeding the maximum allotted iterations.
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and RMSEs. The notably higher relative bias for f was 
accentuated in part by the division of a small average 
bias (0.02) by the near-zero true value of f (0.04). In 
addition, the relative bias for f decreased considerably 
from −0.41 for the 4th-order model to −0.03 for the 
2nd-order model. This suggests that, for f, using 4th- 
order information in the Bayesian model extracted too 
much nuanced fluctuations in the data that led to 
underestimation of the amount of true damping. Still, 
given the relatively superior performance of the 4th- 
order approach for all other parameters except for f, 
we would still recommend use of the 4th over the 
2nd-order derivative information. The Bayesian esti
mator also yielded the best efficiency (smaller magni
tudes of acSE and MCSD were regarded as higher 
efficiency), for all but the damping parameters, as well 
as accurate quantification of the uncertainty around 
these estimates (based on smaller RDSE). It is note
worthy that inclusion of 4th-order derivatives in con
junction with the Bayesian estimator led to notable 
improvements in estimation quality in general, espe
cially for coupling parameters when compared to pre
vious simulation results utilizing the 2nd-order 
LDSEM method (Hu et al., 2014).

In contrast to the Bayesian estimator, other fre
quentist approaches were characterized by relatively 
high biases, especially in the parameters g, c, and the 
random effect variances (s2). As expected, the single- 
level frequentist approach with sandwich-type SE 

estimator was associated with the greatest biases com
pared to other approaches that did incorporate the 
correctly specified random effects structure. However, 
this approach yielded reasonably accurate SE esti
mates, with smaller RDSEs compared to the multilevel 
robust frequentist approach, which was frequently 
characterized by overestimation in SE estimates, and 
even the Bayesian estimator for the parameters f and 
c: The power estimates were close to 100% in all con
ditions and are thus omitted from Table 2.

The efficacy of the DIC as Bayesian model selection 
criteria in M-LDSEM
Although the use of DIC with a time-delayed embed
ding matrix is not well-established, the Deviance 
Information Criterion (DIC) is a well-known model 
fit index in the Bayesian framework, where a smaller 
DIC indicates a better fit. Therefore, we explored the 
use of DIC in M-LDSEM and found that the DIC 
consistently favored the 4th-order model over the 
standard 2nd-order model across all sample size 
configurations.

To further examine the usefulness of DIC in M- 
LDSEM, we conducted two additional simulations 
with 500 replications with T ¼ 100 and n ¼ 150. Our 
findings suggested that using DIC as a measure of 
model fit in M-LDSEM may have limitations. Firstly, 
we fitted a “reduced” model to our simulation data by 
omitting the estimation of the effect of a time-varying 

Table 3. Summary statistics of the parameter estimates with two-level Bayesian estimation and 4th-order model across 500 
Monte Carlo replications.

T n h Mean ĥ rBias RMSE MCSD acSE RDSE Power Cvr

g 100 150 −0.50 −0.500 0.000 0.005 0.0047 0.0051 0.0946 100 95.8
g 20 150 −0.50 −0.505 0.009 0.009 0.0082 0.0073 −0.1154 100 84.2
g 10 150 −0.50 −0.508 0.016 0.018 0.0160 0.0105 −0.3403 100 74.1
g 10 300 −0.50 −0.505 0.011 0.012 0.0111 0.0072 −0.3534 100 72.1
f 100 150 −0.04 −0.024 −0.411 0.017 0.0023 0.0036 0.5744 100 0
f 20 150 −0.04 −0.028 −0.309 0.014 0.0073 0.0093 0.2706 90 77.4
f 10 150 −0.04 −0.023 −0.426 0.024 0.0165 0.0128 −0.2254 44 69.5
f 10 300 −0.04 −0.023 −0.415 0.021 0.0123 0.0098 −0.2022 65 56.9
c 100 150 −0.10 −0.083 −0.168 0.017 0.0027 0.0022 −0.1880 100 0
c 20 150 −0.10 −0.079 −0.206 0.021 0.0048 0.0046 −0.0383 100 0.8
c 10 150 −0.10 −0.081 −0.194 0.021 0.0092 0.0078 −0.1458 100 30.9
c 10 300 −0.10 −0.083 −0.174 0.018 0.0062 0.0047 −0.2374 100 7.4
b0 100 150 0.30 0.308 0.028 0.019 0.0173 0.0176 0.0188 100 93.4
b0 20 150 0.30 0.313 0.044 0.025 0.0218 0.0218 0.0012 100 91
b0 10 150 0.30 0.311 0.037 0.029 0.0269 0.0258 −0.0424 100 92.8
b0 10 300 0.30 0.309 0.030 0.021 0.0188 0.0179 −0.0455 100 89.8
b1 100 150 0.10 0.103 0.029 0.010 0.0099 0.0104 0.0492 100 95.6
b1 20 150 0.10 0.104 0.038 0.013 0.0123 0.0126 0.0247 100 94.8
b1 10 150 0.10 0.103 0.029 0.015 0.0144 0.0146 0.0111 100 95.2
b1 10 300 0.10 0.103 0.028 0.010 0.0099 0.0101 0.0213 100 95.6
s2 100 150 0.04 0.045 0.137 0.007 0.0051 0.0056 0.0957 100 87.8
s2 20 150 0.04 0.057 0.419 0.019 0.0089 0.0083 −0.0661 100 49.8
s2 10 150 0.04 0.059 0.468 0.022 0.0121 0.0113 −0.0652 100 69.9
s2 10 300 0.04 0.057 0.419 0.019 0.0082 0.0076 −0.0831 100 37.3

Note. h ¼ true value of a parameter; Mean ĥ ¼ 1
H

PH
h¼1 ĥh, where ĥh ¼ estimate of h from the hth Monte Carlo (MC) runs; rBias¼ relative bias ¼

1
H

PH
h¼1ðĥh− trueh) / trueh; RMSE ¼ 1

H

PH
h¼1ðĥh− trueh); MCSD¼ standard deviation of ĥ across MC runs, acSE ¼ average standard error estimate across 

MC runs, RDSE ¼ average relative deviance of cSE ¼ ðacSE − SEÞ=SE; Power ¼ 1 − the proportion of 95% credible intervals that contain 0 across MC 
runs; Cvr¼ Coverage¼ proportion of 95% credible intervals that contain h across MC runs.
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covariate. Ideally, if DIC were effective, the true “full” 
model, which we used in our original simulation, 
should have a smaller DIC. However, only 19.2% of 
cases correctly selected the true model as the preferred 
model. Secondly, when an ”over-parameterized” 
model that included a time-varying covariate’s effect 
was fitted to data generated without any time-varying 
covariate, the correct (less complex) model was pre
ferred by the DIC in only 68.2% of the replications. 
Given our findings and the weak theoretical justifica
tion for DIC (Spiegelhalter et al., 2014), caution is 
necessary when using DIC as a model selection criter
ion in M-LDSEM.

Can model parameters be recovered with short time 
series?
In this section, we focus on addressing the relative 
performance of the “best-performing” approach, 
namely, the Bayesian estimation approach under 4th- 
order derivatives, under three time series length con
ditions and n of 150 and 300. Table 3 shows the sum
mary statistics of the results. Overall, even though 
greater biases in all parameters were observed under 
small T, the relative biases and RMSEs of all parame
ters were still relatively low compared to comparable 
results observed earlier for T¼ 100 and n¼ 150 in 
Table 2 under the frequentist approaches. For infer
ences involving the covariate-related regression coeffi
cients ðb0 and b1), relative biases, RMSEs, and RDSEs 
were particularly low.

For g and f, doubling T from 10 to 20 led to a 
greater reduction in RMSEs than doubling n from 150 
to 300. Among the parameters associated with the 
time-varying covariate effects (b0 and b1), c and s2, 
slightly greater decreases in RMSEs were observed in 
doubling n than in doubling T. Recovery of the damp
ing parameters was particularly challenging; the results 
for f were biased for all time lengths. It is not surpris
ing considering that the damping parameter was less 
biased under the conventional 2nd-order LDSEM 
model. More importantly, unlike other parameters, f 
only reached 44% of power when T¼ 10. This was in 
stark contrast to all other parameters, whose power 
estimates were close to or at 100% even with T¼ 10.

Despite the decent coverage rates for most varia
bles, the coverage rates for f and c remained low even 
under the most ideal conditions. We observed that 
while biases decreased for other parameters as the 
number of time points increased, the biases for f and 
c remained constant. In contrast, the standard error 
for these parameters decreased as expected. 
Consequently, the underestimation of the standard 

error combined with the biases led to even worse 
coverage rates with an increase in the number of time 
points.

Summary of simulation results
Overall, the present study validated the relative gains 
in estimation quality when higher-order derivative 
information was included in M-LDSEM. Also, the 
Bayesian estimator outperformed other frequentist 
approaches in general. Combining the 4th-order 
model and the Bayesian estimator yielded relatively 
good estimation quality even with short time series 
such as T¼ 10 or 20. Understandably, greater T still 
played a critical role in improving estimation proper
ties, but the relatively high power estimates provided 
some reassurance of the feasibility of making infer
ences on intra- and inter-personal dynamics and cor
responding predictors in the context of relatively 
small T. Further, considering the low model conver
gence rates when the two-level robust approach was 
used (see Table 1), the practical utility of the Bayesian 
estimator was especially pronounced when T is short.

Empirical example

In our simulation study, we verified that use of the 
Bayesian estimator combined with inclusion of higher 
derivative information performed relatively well even 
with short, multiple-subject time series data. To show 
the practical utility of the proposed approach, we pro
vide an illustrative example using the 22-day daily 
diary data of 140 couples of OA patients and their 
spouses (Martire et al., 2013). Of the 22 days, the 
median completion rate was 17 days. Positive affect of 
the couples was measured three times a day, and these 
measurements were aggregated into daily positive 
affect scores for each dyad member. Spousal instru
mental support was reported by both patients and 
spouses at the end of the day (e.g., whether the I/ 
spouse tried to get the patient to rest when they 
seemed to be in pain).

Empirical analysis

As described in section Motivating Example, we 
sought to investigate how spousal instrumental sup
port was related to patients’ and spouses’ positive 
affect. Caring for chronically ill partners is a complex 
phenomenon for both providers and recipients; the 
consequences of support are not always positive and 
differ across couples (Beach et al., 2000; Newton-John, 
2013; Reinhardt et al., 2006). Although previous 
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studies have used primarily day-to-day covariance as 
an indication of the average daily association between 
instrumental support and couple’s affect (Gremore 
et al., 2011; Marini et al., 2021), few studies have pro
vided adequate consideration of how each dyad mem
ber’s emotions evolve over time and the degree to 
which patients’ and spouses’ patterns of change covary 
with one another (Sbarra & Hazan, 2008; Sels et al., 
2018). Thus, following insights from the simulation 
study, we fitted a bivariate oscillator model in 
Equation (4). Utilizing this model also allows 
researchers and practitioners to disentangle the patient 
! spouse and spouse ! patient influences while elu
cidating the role of instrumental support.

In Equation (4), the instrumental support that 
patients or spouses reported was used as a time-vary
ing covariate in the patient’s or spouse’s equation, 
respectively. To limit modeling complexity associated 
with the number of random effects, random effects 
were included only for the coupling parameters (cpi 
and cpi) as well as the regression parameters for 
instrumental support (bpi and bsi), given our key 
interest in understanding the influences between 
patients and their caregivers. Further, we tested 
whether the typical level of instrumental support in 
each couple indirectly influences the couple’s positive 
affect as moderators of the coupling effect and the 
effect of daily support. All time-varying variables (i.e., 
Patientit , Spouseit , PatientSupportit , and 
SpouseSupportit) were centered within subjects.4 The 
average instrumental support scores were grand mean 
centered and standardized across individuals. Since we 
did not expect any damping over the 22 days and the 
damping parameters were not different from zero in 
an initial model fitting, they were fixed at zero and 
omitted in Equation (4).

The model was fitted using a six-dimensional time- 
delayed embedded matrix consisting of data at time 
t0, t1, :::, t5: This imposed a constraint that at least 5 
time points from each dyad are needed to construct 
the input data matrix. To allow for at least 3 repli
cated rows of time-delay embedded data from each 
dyad for inference of interindividual differences, we 
retained data only from dyads with at least 8 days of 
measurements, yielding a total of N ¼ 121 dyads for 
model fitting purposes. As illustrated, available input 
data (i.e., the number of rows in the time-delay 
embedded matrix) decreases as d increases. When 

deciding on an embedding dimension (d), this may 
not be critical for time series with ample time points, 
but for short time series with many missing data, it 
could be a crucial factor. Therefore, we recommend 
considering the remaining sample size depending on 
the selected d.

We also recommend considering the characteristics 
of the dynamics of interest based on previous studies. 
While a higher d will be more robust to noisy data, 
for data with relatively salient signals and low noise, a 
smaller d would be sufficient. For instance, daily 
affective assessment may not have high noise as typ
ical physiological signal processes have. Thereby, stud
ies that examined daily emotion regulation have 
typically used d of 4, 5, or 6 (Chow et al., 2005; 
Hilpert et al., 2020; Steele & Ferrer, 2011). 
Additionally, Boker et al. (2020)’s experiment with d 
values suggests that d¼ 6 is appropriate for short time 
series (T¼ 50), given processes with g ¼ −0.5, f ¼

−0.1, which is close to the expected range of the fre
quency of affect dynamics.

While it has been demonstrated that the 4th order 
LDSEM is less sensitive to the selection of embedding 
dimension (Boker et al., 2020), we acknowledge that 
more complex models, such as the coupled oscillator 
model with multilevel structure, may still be sensitive 
to the choice of embedding dimension and require 
further research.

Before proceeding to the empirical result, we 
acknowledge that the empirical model has more com
plexity than the main simulation model in the sense 
that it has random effects for their coupling parame
ters. To closely resemble the complexity of the empir
ical model, we additionally conducted a simulation 
study that incorporated individual variability in the 
coupling parameter and used zero damping param
eter, which is presented in Appendix B. Consistent 
with our main simulations, we observed an underesti
mation of the coupling parameter and its related cova
riate effect. As anticipated, introducing individual 
differences in the coupling parameters made the esti
mation slightly more challenging. Thus, more caution 
is needed to interpret the coupling parameters when 
they are allowed to differ across participants. 
However, the directionality of the effects remained 
accurate, and the power was consistently at 100% for 
all parameters. Despite the integration of random 
effects and the increased model complexity, the recov
ery of the parameters related to time-varying covari
ates remained commendable. Hence, while our 
method may not be flawless, it still provides valuable 

4Please note that centering was unnecessary for our simulation since each 
time series was generated to fluctuate around zero. However, if the time- 
varying covariate is not already centered at zero, it can be centered 
within individual, as we did in our empirical example.
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insights, particularly when considering its computa
tional efficiency.

Empirical results

The results are presented in Table 4. Consonant with 
findings in affect literature (Bonanno, 2001; Chow 
et al., 2005), the positive affect of couples was found 
to be oscillatory in nature, as indicated by the negative 
frequency parameters (g s). In line with interpersonal 
emotion regulation theories (Elfenbein, 2014; Niven, 
2017), the coupling effects (c s) were positive. The sig
nificant coupling effects in both the directions of 
Patient ! Spouse and Spouse! Patient indicated that 
on days with typical amounts of instrumental support 
(see the middle plot of (a) in Figure 4), the patients 
and spouses reported reciprocal influences on each 
other. In other words, when one dyad member 
reported higher-than-usual levels of positive affect, 
such positive deviations in affect accelerated and ele
vated the partner’s positive affect. Significant between- 
dyad differences were found in the magnitudes of 
these coupling effects; however, the typical level of 
instrumental support did not explain these differences.

The effect of daily instrumental support was only 
significant for the spouses, even though significant 
between-couple differences were found in the magni
tudes of this covariate on patients as well as spouses. 
Since the daily support variable was within-person 
mean-centered, a high (> 0) value of support variable 
represents a day on which the spousal instrumental 

support was high relative to the spouse’s typical level 
of support (e.g., average support over the 22 days). 
Thus, our result suggested that, on the days when the 
spouses reported providing a higher-than-usual level 
of instrumental support (i.e., þ1SD), greater accelera
tions in their positive affect were evidenced, resulting 
in more extreme, positive upward shifts in their posi
tive affect over time. See Figure 4(a) for the simulated 
trajectories. This outcome is in line with an earlier 
finding that suggests supporting their loved ones may 
be beneficial to their own well-being (Poulin et al., 
2010). Our result further clarified that contrary to the 
direct effect characterized by provision of instrumental 
support on spouses, the patients’ positive affect was 
not significantly associated with variations in daily 
support received. Rather, patients’ positive affect 
showed greater fluctuations (in both the positive and 
negative directions), presumably due to the positive 
coupling effect on their spouses.

To further evaluate the robustness of our signifi
cant findings, we conducted additional simulations to 
examine Type I error rates when using the proposed 
approach. This time, we fixed either the effect of daily 
instrumental support or the moderation effect of the 
average levels of support for the daily support’s effect 
at zero, respectively. The results showed a Type I 
error rate of 3.6% for the fixed effect of daily support 
and 5.6% for the fixed moderation effect. These results 
suggested that the proposed approach yielded Type I 
error rates that were close to the nominal rate of 5%.

Finally, the effect of daily support for spouses var
ied depending on their average support levels (b̂s1 ¼

−0.51). Figure 4(b) shows that, for spouses who typic
ally provide high instrumental support (þ1SD), 
higher-than-average provision of daily support did 
accelerate their positive emotions, but the effect was 
weaker compared to those whose typical support level 
was low (-1SD). It is in line with our hypothesis that 
for those who are used to providing abundant sup
port, the effect of daily ups/downs of the support pro
vision would be reduced. This may shed light on past 
inconsistent results on the impact of daily instrumen
tal support by explaining the inter-couple differences.

As a rudimentary measure of effect sizes for the 
proposed M-LDSEM, we report the averaged level-1 
R2 across clusters (individuals) provided by MPlus5. 
In our study, we used a 6-dimensional embedded 

Table 4. Parameter estimates from the empirical model.
95% CI

Parameter Description Est. Post. SD LL UL

gp Frequency −0.78 0.03 −0.83 −0.73
cpi ¼ cp0 þ cp1

�PatientSupport i Coupling
cp0 0.13 0.06 0.01 0.26
cp1 −0.11 0.11 −0.33 0.11
bpi ¼ bp0 þ bp1

�PatientSupporti Support
bp0 0.05 0.08 −0.11 0.21
bp1 0.13 0.19 −0.26 0.51
gs Frequency −0.87 0.03 −0.93 −0.80
csi ¼ cs0 þ cs1

�PatientSupporti Coupling
cs0 0.09 0.05 0.01 0.19
cs1 0.11 0.11 −0.10 0.32
bsi ¼ bs0 þ bs1

�PatientSupporti Support
bs0 0.19 0.08 0.03 0.35
bs1 −0.51 0.23 −0.95 −0.03

Random Effect
var(uc, pi) 0.19 0.05 0.12 0.32
var(uc, si) 0.14 0.03 0.09 0.22
cov(uc, pi, uc, si) 0.06 0.02 0.02 0.11
var(ub, pi) 0.45 0.09 0.31 0.67
var(ub, si) 0.40 0.10 0.25 0.66
cov(ub, pi , ub, si) 0.11 0.07 −0.01 0.26
r2

p 0.25 0.01 0.24 0.26
r2

s 0.24 0.01 0.23 0.25

Note. Post. SD¼ Standard deviation of the posterior distribution; 
LL¼ lower limit; UL¼ upper limit.

5Since R2 at the within-person level (level-1) is not a constant value but 
rather, is person-specific if there are random slopes and effects of person- 
specific predictors in the model, Mplus provides R2 that is within-level 
averaged over clusters (Schuurman et al., 2016). Furthermore, Mplus 
provides an R2 for each dependent variable in the model, without 
breaking it down by covariate.
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Figure 4. Simulated trajectories of a couple’s positive affect. 
Note. The black dashed line represents a patient’s trend, and the red line represents a spouse’s trend. Subfigure (a) shows that 
when spouses provide a higher-than-usual (þ1SD) level of instrumental support over time, more extreme and positive upward 
shifts in their positive affect are expected over time. Under subfigure (b), the spouse’s daily instrumental support provision was 
assumed to be consistently higher than usual (þ1SD). Three trajectory plots in subfigure (b) indicate that the effect of providing 
higher-than-average daily support was much reduced for spouses whose typical level of instrumental support provision is high 
compared to those whose typical support level was low.
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matrix as our input, resulting in six R2s for patients’ 
positive affect: 0.323, 0.243, 0.214, 0.201, 0.232, and 
0.324, with an average of 0.256. Therefore, approxi
mately 25% of the level-1 variance in the spouse’s 
positive affect was explained by the intercept and 
specified predictors, including both the fixed and ran
dom effects of the predictors. Regarding the effect of 
daily social support on a spouse’s positive affect (bsi), 
the level-2 R2 was 0.044, indicating that relatively little 
(approximately 4.4% of the) variance of the effect of 
daily social support was explained by its intercept and 
average social support.

In summary, we utilized a multilevel bivariate oscil
lator model structured as an M-LDSEM to investigate 
between-couple differences in coupling dynamics and 
the roles of instrumental support at the within- and 
between-person levels. Furthermore, applying the 
Bayesian framework to M-LDSEM allowed us to 
incorporate relatively high-dimensional random 
effects, while it did not converge when the same cor
responding model was specified using the frequentist 
approach.

Discussion

We sought to address several key challenges of apply
ing the M-LDSEM method to multivariate short time 
series, which are frequently observed in the behavioral 
sciences. We also expanded the usability of M-LDSEM 
by investigating the tenability of incorporating time- 
and person-specific covariates into differential equa
tion models. Our simulation results demonstrated the 
benefits of the inclusion of higher-order derivatives 
and a Bayesian inferential method in parameter and 
SE estimation. In line with the previous study by 
Boker et al. (2020), we found that the 4th-order model 
is preferred in general to the 2nd-order model given 
that the improvement of accuracy for most parameters 
far outweighed the increased variability associated 
with the use of the 4th-order M-LDSEM compared to 
the conventional 2nd-order approach. However, we 
suggest employing the 2nd-order model for those 
focusing on obtaining an accurate estimate of the 
damping parameter.

Consonant with the expected improvements 
afforded by Bayesian methods in estimating complex 
models (i.e., analyzing nested data with differential 
equation model with random slopes), the Bayesian 
approach outperformed the frequentist estimations 
considered not only in terms of the convergence rate 
but also the properties of the point and SE estimates. 
The Bayesian approach adopted in the current study 

utilized relatively uninformative priors that have been 
shown, in some special cases, to yield results that are 
similar to frequentist approaches. In addition, our 
inferential conclusions and conceptualization of the 
parameters in the data generation processes (e.g., 
specifying the true parameter values as fixed as 
opposed to random) also mirror common principles 
in the frequentist framework. Thus, key differences 
between the approaches compared were primarily in 
the estimation engines that underlie these approaches 
(e.g., sampling from the joint posterior distribution 
versus maximizing a likelihood). All of the approaches 
considered involved some form of approximation, but 
the specific Bayesian approach considered outper
formed other frequentist alternatives in the proposed 
model. By adopting the Bayesian framework, we also 
have access to the empirical posterior distributions of 
modeling parameters, which offer more possibilities 
for quantifying the uncertainty of these components.

Moreover, in cases where there are clear reasons to 
suspect deviations from normality, the Bayesian 
framework provides the flexibility to accommodate 
non-Gaussian distributional assumptions (Berger 
et al., 1994). For instance, adopting alternative non- 
Gaussian prior distributions, such as heavy-tailed t 
distributions, may prove robust in handling violations 
of the independent residual assumption, especially in 
the context of using time delay embedded data. It is 
important to note that a thorough exploration of these 
robust variations could improve Bayesian estimation 
performance even further, although such in-depth 
analysis is beyond the scope of the present study and 
warrants additional investigation. We do acknowledge 
that frequentist approaches might provide much 
greater computational efficiency in cases involving 
simpler models, and appropriate prior choices also 
play a critical role in successful Bayesian estimation 
(Van Dongen, 2006).

In summary, through both empirical and simula
tion results, we have demonstrated that the Bayesian 
estimator with the 4th-order M-LDSEM can be 
applied to relatively short time series. However, there 
remain a few unresolved issues that warrant further 
evaluation in future studies. First, although power 
estimates remained consistently high, the best-per
forming combination still displayed notable biases in 
coupling parameter accuracy. This approach shows 
substantial improvements over conventional LDSEM 
results reported in the previous simulation study (Hu 
et al., 2014), despite the increased complexity of the 
models considered here, notably the incorporation of 
a multilevel extension and time-varying covariates. 
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Despite these developments not completely meeting 
the stringent criteria of empirical researchers, they 
contribute valuable insights in a field where simula
tion studies on the effects of coupling in differential 
equations are scarce. Additionally, our novel compari
son between robust variants and the Bayesian method 
in a complex model with limited samples offers prac
tical benefits, warranting future research to expand on 
our findings.

Our study highlighted the need to evaluate the con
sequences of data preparation procedures such as 
detrending when time-varying covariates are included. 
Researchers should carefully consider the functional 
form and theoretical aspect of the time-varying cova
riates when deciding whether detrending is necessary. 
If an existing time trend is not relevant to the core 
research interest and may lead to incorrect conclu
sions concerning the key processes of interest, 
detrending is recommended. However, if the trend 
over time is meaningful and could potentially explain 
the dynamics of interest (as in our case with the OU 
time-varying covariate), we do not recommend 
detrending but rather, would suggest direct inclusion 
of all relevant variables in the fitted model.

Another issue concerns ways of handling missing 
data. Differential equation models by nature posit the 
unfolding of the processes of interest continuously at 
any time point. Thus, missingness that arises in 
designs targeting equally spaced measurement inter
vals can just be incorporated seamlessly into differen
tial equation models as unequally spaced time 
intervals (Oud & Voelkle, 2014). However, it still 
entails unnecessary data losses in M-LDSEM. It is 
because individual data with severe missingness are 
(or have to be) omitted from analyses if measured 
occasions are sparser than the embedding dimension. 
Thus, researchers should consider the cost and bene
fits of using the M-LDSEM approach when the total 
number of occasions is not long and missingness is 
severe. As other possibilities, we could insert missing
ness into the input data or utilize missing data han
dling methods in the time series (Li et al., 2019; Ji 
et al., 2020). Further investigation of missing data 
handling methods in the context of M-LDSEM models 
is an important methodological extension.

While our findings support the effectiveness of the 
4th-order M-LDSEM plus Bayesian estimator with 
short time series, our simulation scope is limited. 
Assessing the viability of M-LDSEM methods with 
panel data (< 10 time points) is crucial, considering 
potential drawbacks in using time-delay embedding in 
such cases. Comparing with other continuous-time 

methods, such as exact discrete (Oud & Jansen, 2000), 
successfully applied to panel data with as few as 4 
time points (Oud, 2017), would be worthwhile. 
Furthermore, all the sample sizes considered in the 
present study were larger than the median sample size 
of n¼ 87 reported in previous review studies 
Konjarski et al. (2018); Liu et al. (2019); Yang et al. 
(2019). A more thorough evaluation of the effects of 
using even smaller sample sizes is warranted. 
Additionally, the results of the simulation may differ 
under a different set of parameters, necessitating fur
ther studies to explore diverse parameter sets for valu
able insights.

Another topic for future direction is investigating 
the optimal level of the highest derivative. Although 
using higher-order derivatives is likely to improve 
accuracy, it is important to note that excessive use of 
terms in the expansion may increase the computa
tional burden and may not necessarily lead to a more 
precise estimation (e.g., damping parameter). Thus, 
this topic warrants further systematic investigation.

Further research on effect size measures for M- 
LDSEM is needed. While the R2 measures available in 
Mplus can serve as computationally viable proxies for 
effect sizes, further work to derive effect size measures 
for M-LDSEM based on similar concepts of effect 
sizes for multi-level models Rights and Sterba (2020) 
could lead to more meaningfully decomposed effect 
size measures. Furthermore, as shown in the empirical 
results, the use of a time-delay embedded matrix as 
input data presents challenges that require additional 
investigation.

LDSEM methods were designed to handle ordinary 
differential equation models. They may not be appro
priate for fitting stochastic differential equation mod
els with process noises (McKee et al., 2020). To the 
extent that the assumptions of LDSEM methods are 
fulfilled, the implementation of LDSEM is relatively 
straightforward, computationally efficient, and allows 
users to leverage the advantages afforded by the SEM 
framework, such as ease of incorporating multiple 
measures and availability of fit indices. For instance, 
model fit could be assessed to determine the order of 
models.

Despite all the above limitations, our study pro
vides a scaffold to explore the evolving relationships 
of variables of interest in a more natural way by pro
posing a feasible approach to fit a continuous-time 
model that works even in the context of the time ser
ies of the finite length and the multilevel extension. 
Moreover, our approach offers several practical advan
tages. Being seamlessly integrated into SEM, it readily 
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accommodates multivariate measures and incorporates 
the effects on antecedents and outcomes, enhancing 
the investigation of complex relationships. 
Additionally, it is computationally efficient compared 
to other continuous-time modeling methods (Driver 
et al., 2017; Ruissen et al., 2022), providing a faster 
alternative for model fitting, particularly useful for 
large datasets or intricate models. This will bridge the 
gap between methodology and reality, making con
tinuous-time models with numerous advantages more 
accessible and practical in the field of behavioral 
science.

Article information

Conflict of interest disclosures: Each author signed a 
form for disclosure of potential conflicts of interest. 
No authors reported any financial or other conflicts of 
interest in relation to the work described.

Ethical principles: The authors affirm having fol
lowed professional ethical guidelines in preparing this 
work. These guidelines include obtaining informed 
consent from human participants, maintaining ethical 
treatment and respect for the rights of human or ani
mal participants, and ensuring the privacy of partici
pants and their data, such as ensuring that individual 
participants cannot be identified in reported results or 
from publicly available original or archival data.

Funding: This work was supported by the NIH 
Intensive Longitudinal Health Behavior Cooperative 
Agreement Program under U24AA027684, National 
Science Foundation grants IGE-1806874, and SES- 
1823633, the National Center for Advancing 
Translational Sciences under UL1TR002014-06, and 
the National Institutes of Health under R01 
AG026010.

Role of the funders/sponsors: None of the funders 
or sponsors of this research had any role in the design 
and conduct of the study; collection, management, 
analysis, and interpretation of data; preparation, 
review, or approval of the manuscript; or decision to 
submit the manuscript for publication.

Disclosure statement

No potential conflict of interest was reported by the 
author(s).

References

Asparouhov, T. (2005). Sampling weights in latent variable 
modeling. Structural Equation Modeling: A 
Multidisciplinary Journal, 12(3), 411–434. https://doi.org/ 
10.1207/s15328007sem1203_4

Asparouhov, T., & Muthen, B. (2010). Bayesian analysis of 
latent variable models using mplus.

Asparouhov, T., Muthen, B. (2006). Multilevel modeling of 
complex survey data. Proceedings of the Joint Statistical 
Meeting in Seattle, 2718–2726.

Asparouhov, T., Muthen, B. (2007). Computationally effi
cient estimation of multilevel high-dimensional latent 
variable models. Proceedings of the 2007 Joint Statistical 
Meeting in Salt Lake City, Utah, Section on Statistics in 
Epidemiology, 2531–2535.

Beach, S. R., Schulz, R., Yee, J. L., & Jackson, S. (2000). 
Negative and positive health effects of caring for a dis
abled spouse: Longitudinal findings from the caregiver 
health effects study. Psychology and Aging, 15(2), 259– 
271. https://doi.org/10.1037/0882-7974.15.2.259

Berger, J. O., Moreno, E., Pericchi, L. R., Bayarri, M. J., 
Bernardo, J. M., Cano, J. A., De la Horra, J., Mart�ın, J., 
R�ıos-Ins�ua, D., Betr�o, B., Dasgupta, A., Gustafson, P., 
Wasserman, L., Kadane, J. B., Srinivasan, C., Lavine, M., 
O’Hagan, A., Polasek, W., Robert, C. P., … Sivaganesan, 
S. (1994). An overview of robust Bayesian analysis. Test, 
3(1), 5–124. https://doi.org/10.1007/BF02562676

Boker, S. M., Deboeck, P. R., Edler, C., & Keel, P. K. 
(2010). Generalized local linear approximation of deriva
tives from time series. In Statistical methods for modeling 
human dynamics: An interdisciplinary dialogue (pp. 161– 
178). Routledge.

Boker, S. M., & Graham, J. (1998). A dynamical systems 
analysis of adolescent substance abuse. Multivariate 
Behavioral Research, 33(4), 479–507. https://doi.org/10. 
1207/s15327906mbr3304_3

Boker, S. M., Moulder, R. G., & Sjobeck, G. R. (2020). 
Constrained fourth order latent differential equation 
reduces parameter estimation bias for damped linear 
oscillator models. Structural Equation Modeling: A 
Multidisciplinary Journal, 27(2), 202–218. https://doi.org/ 
10.1080/10705511.2019.1641816

Boker, S. M., Neale, M., & Rausch, J. (2004). Latent differ
ential equation modeling with multivariate multi-occasion 
indicators. In Recent developments on structural equation 
models (pp. 151–174). Springer.

Boker, S. M., & Nesselroade, J. R. (2002). A method for 
modeling the intrinsic dynamics of intraindividual vari
ability: Recovering the parameters of simulated oscillators 
in multi-wave panel data. Multivariate Behavioral 
Research, 37(1), 127–160. https://doi.org/10.1207/ 
S15327906MBR3701_06

Bonanno, G. A. (2001). Emotion self-regulation.

952 Y. W. CHO ET AL.



Butler, E. A. (2011). Temporal interpersonal emotion sys
tems: The “ties” that form relationships. Personality and 
Social Psychology Review, 15(4), 367–393. https://doi.org/ 
10.1177/1088868311411164

Chen, M., Chow, S.-M., Oravecz, Z., & Ferrer, E. (2023). 
Fitting Bayesian stochastic differential equation models 
with mixed effects through a filtering approach. 
Multivariate Behavioral Research, 58(5), 1014–1038. 
https://doi.org/10.1080/00273171.2023.2171354

Chow, S.-M. (2019). Practical tools and guidelines for 
exploring and fitting linear and nonlinear dynamical sys
tems models. Multivariate Behavioral Research, 54(5), 
690–718. https://doi.org/10.1080/00273171.2019.1566050

Chow, S.-M., Haltigan, J. D., & Messinger, D. S. (2010). 
Dynamic infant–parent affect coupling during the face- 
to-face/still-face. Emotion (Washington, D.C.), 10(1), 101– 
114. https://doi.org/10.1037/a0017824

Chow, S.-M., Ho, M-h R., Hamaker, E. L., & Dolan, C. V. 
(2010). Equivalence and differences between structural 
equation modeling and state-space modelling techniques. 
Structural Equation Modeling: A Multidisciplinary 
Journal, 17(2), 303–332. https://doi.org/10.1080/ 
10705511003661553

Chow, S.-M., Lu, Z., Sherwood, A., & Zhu, H. (2016). 
Fitting nonlinear ordinary differential equation models 
with random effects and unknown initial conditions 
using the stochastic approximation expectation maxi
mization (SAEM) algorithm. Psychometrika, 81(1), 102– 
134. https://doi.org/10.1007/s11336-014-9431-z

Chow, S.-M., Ram, N., Boker, S. M., Fujita, F., & Clore, G. 
(2005). Emotion as a thermostat: Representing emotion 
regulation using a damped oscillator model. Emotion 
(Washington, D.C.), 5(2), 208–225. https://doi.org/10. 
1037/1528-3542.5.2.208

De Leeuw, J., De Graeff, A., Ros, W., Hordijk, G., Blijham, 
G., & Winnubst, J. (2000). Negative and positive influen
ces of social support on depression in patients with head 
and neck cancer: A prospective study. Psycho-Oncology, 
9(1), 20–28. https://doi.org/10.1002/(SICI)1099- 
1611(200001/02)9:1<20::AID-PON425>3.0.CO;2-Y

Depaoli, S., & Clifton, J. P. (2015). A Bayesian approach to 
multilevel structural equation modeling with continuous 
and dichotomous outcomes. Structural Equation 
Modeling: A Multidisciplinary Journal, 22(3), 327–351. 
https://doi.org/10.1080/10705511.2014.937849

Driver, C. C., Oud, J. H., & Voelkle, M. C. (2017). 
Continuous time structural equation modeling with r 
package ctsem. Journal of Statistical Software, 77(5), 1–35. 
https://doi.org/10.18637/jss.v077.i05

Durham, G. B., & Gallant, A. R. (2002). Numerical techni
ques for maximum likelihood estimation of continuous- 
time diffusion processes. Journal of Business & Economic 
Statistics, 20(3), 297–338. https://doi.org/10.1198/ 
073500102288618397

Elerian, O., Chib, S., & Shephard, N. (2001). Likelihood 
inference for discretely observed nonlinear diffusions. 
Econometrica, 69(4), 959–993. https://doi.org/10.1111/ 
1468-0262.00226

Elfenbein, H. A. (2014). The many faces of emotional con
tagion: An affective process theory of affective linkage. 
Organizational Psychology Review, 4(4), 326–362. https:// 
doi.org/10.1177/2041386614542889

Feinberg, M. E., Xia, M., Fosco, G. M., Heyman, R. E., & 
Chow, S.-M. (2017). Dynamical systems modeling of cou
ple interaction: A new method for assessing intervention 
impact across the transition to parenthood. Prevention 
Science: The Official Journal of the Society for Prevention 
Research, 18(8), 887–898. https://doi.org/10.1007/s11121- 
017-0803-3

Ferrer, E., & Helm, J. L. (2013). Dynamical systems model
ing of physiological coregulation in dyadic interactions. 
International Journal of Psychophysiology: Official Journal 
of the International Organization of Psychophysiology, 
88(3), 296–308. https://doi.org/10.1016/j.ijpsycho.2012.10. 
013

Freedman, D. A. (2006). On the so-called “Huber sandwich 
estimator” and “robust standard errors”. The American 
Statistician, 60(4), 299–302. https://doi.org/10.1198/ 
000313006X152207

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. 
(1995). Bayesian data analysis. Chapman; Hall/CRC.

Gremore, T. M., Baucom, D. H., Porter, L. S., Kirby, J. S., 
Atkins, D. C., & Keefe, F. J. (2011). Stress buffering 
effects of daily spousal support on women’s daily emo
tional and physical experiences in the context of breast 
cancer concerns. Health Psychology: Official Journal of the 
Division of Health Psychology, American Psychological 
Association, 30(1), 20–30. https://doi.org/10.1037/ 
a0021798

Hallquist, M. N., & Wiley, J. F. (2018). Mplusautomation: 
An r package for facilitating large-scale latent variable 
analyses in m plus. Structural Equation Modeling: A 
Multidisciplinary Journal, 25(4), 621–638. https://doi.org/ 
10.1080/10705511.2017.1402334

Hilpert, P., Brick, T. R., Fl€uckiger, C., Vowels, M. J., 
Ceulemans, E., Kuppens, P., & Sels, L. (2020). What can 
be learned from couple research: Examining emotional 
co-regulation processes in face-to-face interactions. 
Journal of Counseling Psychology, 67(4), 475–487. https:// 
doi.org/10.1037/cou0000416

Hox, J. J. (2013). Multilevel regression and multilevel struc
tural equation modeling. Oxford Handbook of 
Quantitative Methods, 2(1), 281–294.

Hu, Y., Boker, S. M., Neale, M., & Klump, K. L. (2014). 
Coupled latent differential equation with moderators: 
Simulation and application. Psychological Methods, 19(1), 
56–71. https://doi.org/10.1037/a0032476

Huber, P. J. (1967). The behavior of maximum likelihood 
estimates under nonstandard conditions. Proceedings of 
the Fifth Berkeley Symposium on Mathematical Statistics 
and Probability (Vol. 1, pp. 221–233). University of 
California Press.

Ji, L., Chen, M., Oravecz, Z., Cummings, E. M., Lu, Z.-H., 
& Chow, S.-M. (2020). A Bayesian vector autoregressive 
model with nonignorable missingness in dependent varia
bles and covariates: Development, evaluation, and appli
cation to family processes. Structural Equation Modeling: 
A Multidisciplinary Journal, 27(3), 442–467. https://doi. 
org/10.1080/10705511.2019.1623681

Katinka, H., Boker, S. M., & Bergeman, C. S. (2020). A note 
on the usefulness of constrained fourth-order latent dif
ferential equation models in the case of small t. 
Psychometrika, 85(4), 1016–1027. https://doi.org/10.1007/ 
s11336-020-09738-x

MULTIVARIATE BEHAVIORAL RESEARCH 953



Konjarski, M., Murray, G., Lee, V. V., & Jackson, M. L. 
(2018). Reciprocal relationships between daily sleep and 
mood: A systematic review of naturalistic prospective 
studies. Sleep Medicine Reviews, 42, 47–58. https://doi. 
org/10.1016/j.smrv.2018.05.005

Koval, P., Kuppens, P., Allen, N. B., & Sheeber, L. (2012). 
Getting stuck in depression: The roles of rumination and 
emotional inertia. Cognition & Emotion, 26(8), 1412– 
1427. https://doi.org/10.1080/02699931.2012.667392

Kuppens, P., Allen, N. B., & Sheeber, L. B. (2010). 
Emotional inertia and psychological adjustment. 
Psychological Science, 21(7), 984–991. https://doi.org/10. 
1177/0956797610372634

Larsen, R. J. (2000). Toward a science of mood regulation. 
Psychological Inquiry, 11(3), 129–141. https://doi.org/10. 
1207/S15327965PLI1103_01

Li, Y., Ji, L., Oravecz, Z., Brick, T. R., Hunter, M. D., & 
Chow, S.-M. (2019). Dynr. mi: An r program for multiple 
imputation in dynamic modeling. World Academy of 
Science, Engineering and Technology, 13(5), 302.

Liu, H., Xie, Q. W., & Lou, V. W. (2019). Everyday social 
interactions and intra-individual variability in affect: A 
systematic review and meta-analysis of ecological 
momentary assessment studies. Motivation and Emotion, 
43(2), 339–353. https://doi.org/10.1007/s11031-018-9735-x

Li, Y., Wood, J., Ji, L., Chow, S.-M., & Oravecz, Z. (2022). 
Fitting multilevel vector autoregressive models in stan, 
jags, and mplus. Structural Equation Modeling: A 
Multidisciplinary Journal, 29(3), 452–475. https://doi.org/ 
10.1080/10705511.2021.1911657

Lu, Z.-H., Chow, S.-M., Ram, N., & Cole, P. M. (2019). 
Zero-inflated regime-switching stochastic differential 
equation models for highly unbalanced multivariate, 
multi-subject time-series data. Psychometrika, 84(2), 611– 
645. https://doi.org/10.1007/s11336-019-09664-7

Lu, Z.-H., Chow, S.-M., Sherwood, A., & Zhu, H. (2015). 
Bayesian analysis of ambulatory cardiovascular dynamics 
with application to irregularly spaced sparse data. Annals 
of Applied Statistics, 9(3), 1601–1620. https://doi.org/10. 
1214/15-aoas846

Marini, C. M., Wilson, S. J., Tate, A. M., Martire, L. M., & 
Franks, M. M. (2021). Short-and long-term effects of sup
port visibility on support providers’ negative affect. 
Journals of Gerontology. Series B, Psychological Sciences 
and Social Sciences, 76(3), 461–470. https://doi.org/10. 
1093/geronb/gbz114

Martire, L. M., Stephens, M. A. P., Mogle, J., Schulz, R., 
Brach, J., & Keefe, F. J. (2013). Daily spousal influence 
on physical activity in knee osteoarthritis. Annals of 
Behavioral Medicine: A Publication of the Society of 
Behavioral Medicine, 45(2), 213–223. https://doi.org/10. 
1007/s12160-012-9442-x

Mbalawata, I. S., S€arkk€a, S., & Haario, H. (2013). Parameter 
estimation in stochastic differential equations with 
Markov chain Monte Carlo and non-linear Kalman filter
ing. Computational Statistics, 28(3), 1195–1223. https:// 
doi.org/10.1007/s00180-012-0352-y

McGlynn, F. D., Mealiea, W. L., Jr,., & Landau, D. L. 
(1981). The current status of systematic desensitization. 
Clinical Psychology Review, 1(2), 149–179. https://doi.org/ 
10.1016/0272-7358(81)90001-5

McKee, K. L., Hunter, M. D., & Neale, M. C. (2020). A 
method of correcting estimation failure in latent differen
tial equations with comparisons to kalman filtering. 
Multivariate Behavioral Research, 55(3), 405–424. https:// 
doi.org/10.1080/00273171.2019.1642730

Molenaar, P. C. M. (1985). A dynamic factor model for the 
analysis of multivariate time series. Psychometrika, 50(2), 
181–202. https://doi.org/10.1007/BF02294246

Monin, J. K., & Schulz, R. (2009). Interpersonal effects of 
suffering in older adult caregiving relationships. 
Psychology and Aging, 24(3), 681–695. https://doi.org/10. 
1037/a0016355

Muthen, L., & Muthen, B. (2017). Mplus user’s guide. 
Eighth version. Los Angeles, CA: Muthen & Muthen, 10, 
1600–0447.

Newton-John, T. R. (2013). How significant is the signifi
cant other in patient coping in chronic pain? Pain 
Management, 3(6), 485–493. https://doi.org/10.2217/pmt. 
13.52

Niven, K. (2017). The four key characteristics of interper
sonal emotion regulation. Current Opinion in Psychology, 
17, 89–93. https://doi.org/10.1016/j.copsyc.2017.06.015

Oravecz, Z., Tuerlinckx, F., & Vandekerckhove, J. (2011). A 
hierarchical latent stochastic differential equation model 
for affective dynamics. Psychological Methods, 16(4), 468– 
490. https://doi.org/10.1037/a0024375

Oud, J. H. (2017). Comparison of four procedures to esti
mate the damped linear differential oscillator for panel 
data. In Longitudinal models in the behavioral and related 
sciences (pp. 19–39) Routledge.

Oud, J. H., & Jansen, R. A. (2000). Continuous time state 
space modeling of panel data by means of SEM. 
Psychometrika, 65(2), 199–215. https://doi.org/10.1007/ 
BF02294374

Oud, J. H., & Voelkle, M. C. (2014). Do missing values 
exist? Incomplete data handling in cross-national longitu
dinal studies by means of continuous time modeling. 
Quality & Quantity, 48(6), 3271–3288. https://doi.org/10. 
1007/s11135-013-9955-9

Poulin, M. J., Brown, S. L., Ubel, P. A., Smith, D. M., 
Jankovic, A., & Langa, K. M. (2010). Does a helping 
hand mean a heavy heart? Helping behavior and well- 
being among spouse caregivers. Psychology and Aging, 
25(1), 108–117. https://doi.org/10.1037/a0018064

R Core Team. (2022). R: A language and environment for 
statistical computing. R Foundation for Statistical 
Computing. Vienna, Austria. https://www.R-project.org/

Reinhardt, J. P., Boerner, K., & Horowitz, A. (2006). Good 
to have but not to use: Differential impact of perceived 
and received support on well-being. Journal of Social and 
Personal Relationships, 23(1), 117–129. https://doi.org/10. 
1177/0265407506060182

Rights, J. D., & Sterba, S. K. (2020). New recommendations 
on the use of r-squared differences in multilevel model 
comparisons. Multivariate Behavioral Research, 55(4), 
568–599. https://doi.org/10.1080/00273171.2019.1660605

Rodr�ıguez-Blanco, L., Carballo, J. J., & Baca-Garc�ıa, E. 
(2018). Use of ecological momentary assessment (EMA) 
in non-suicidal self-injury (NSSI): A systematic review. 
Psychiatry Research, 263, 212–219. https://doi.org/10. 
1016/j.psychres.2018.02.051

954 Y. W. CHO ET AL.



Ruissen, G. R., Beauchamp, M. R., Puterman, E., Zumbo, 
B. D., Rhodes, R. E., Hives, B. A., Sharpe, B. M., Vega, J., 
Low, C. A., & Wright, A. G. (2022). Continuous-time 
modeling of the bidirectional relationship between inci
dental affect and physical activity. Annals of Behavioral 
Medicine: A Publication of the Society of Behavioral 
Medicine, 56(12), 1284–1299. https://doi.org/10.1093/ 
abm/kaac024

Sanders, S., & Power, J. (2009). Roles, responsibilities, and 
relationships among older husbands caring for wives with 
progressive dementia and other chronic conditions. 
Health & Social Work, 34(1), 41–51. https://doi.org/10. 
1093/hsw/34.1.41

Sbarra, D. A., & Hazan, C. (2008). Coregulation, dysregula
tion, self-regulation: An integrative analysis and empirical 
agenda for understanding adult attachment, separation, 
loss, and recovery. Personality and Social Psychology 
Review: An Official Journal of the Society for Personality 
and Social Psychology, Inc, 12(2), 141–167. https://doi. 
org/10.1177/1088868308315702

Schultzberg, M., & Muth�en, B. (2018). Number of subjects 
and time points needed for multilevel time-series ana
lysis: A simulation study of dynamic structural equation 
modeling. Structural Equation Modeling: A 
Multidisciplinary Journal, 25(4), 495–515. https://doi.org/ 
10.1080/10705511.2017.1392862

Schuurman, N. K., Ferrer, E., de Boer-Sonnenschein, M., & 
Hamaker, E. L. (2016). How to compare cross-lagged 
associations in a multilevel autoregressive model. 
Psychological Methods, 21(2), 206–221. https://doi.org/10. 
1037/met0000062

Sels, L., Ceulemans, E., & Kuppens, P. (2018). A general 
framework for capturing interpersonal emotion dynamics: 
Associations with psychological and relational adjust
ment. In A. K. Randall & D. Schoebi (Eds.), Interpersonal 
emotion dynamics in close relationships (1st ed., pp. 27– 
46) Cambridge University Press.

Soetaert, K., Petzoldt, T., & Setzer, R. W. (2010). Solving 
differential equations in r: Package desolve. Journal of 
Statistical Software, 33(9), 1–25. https://doi.org/10.18637/ 
jss.v033.i09

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Linde, A. 
(2014). The deviance information criterion: 12 years on. 
Journal of the Royal Statistical Society Series B: Statistical 

Methodology, 76(3), 485–493. https://doi.org/10.1111/rssb. 
12062

Steele, J. S., & Ferrer, E. (2011). Latent differential equation 
modeling of self-regulatory and coregulatory affective 
processes. Multivariate Behavioral Research, 46(6), 956– 
984. https://doi.org/10.1080/00273171.2011.625305

Van Dongen, S. (2006). Prior specification in Bayesian sta
tistics: Three cautionary tales. Journal of Theoretical 
Biology, 242(1), 90–100. https://doi.org/10.1016/j.jtbi.2006. 
02.002

von Oertzen, T., & Boker, S. M. (2010). Time delay embed
ding increases estimation precision of models of intrain
dividual variability [Num Pages: 158-175 Place: 
Williamsburg, Netherlands Publisher: Springer Nature 
B.V.]. Psychometrika, 75(1), 158–175. https://doi.org/10. 
1007/S11336-009-9137-9

White, H. (1980). A heteroskedasticity-consistent covariance 
matrix estimator and a direct test for heteroskedasticity. 
Econometrica, 48(4), 817–838. https://doi.org/10.2307/ 
1912934

White, H. (1994). Estimation, inference and specification 
analysis. Cambridge University Press.

Yang, Y. S., Ryu, G. W., & Choi, M. (2019). Methodological 
strategies for ecological momentary assessment to evalu
ate mood and stress in adult patients using mobile 
phones: Systematic review. JMIR mHealth and uHealth, 
7(4), e11215. https://doi.org/10.2196/11215

Zhang, Z., Hamagami, F., Lijuan Wang, L., Nesselroade, 
J. R., & Grimm, K. J. (2007). Bayesian analysis of longitu
dinal data using growth curve models. International 
Journal of Behavioral Development, 31(4), 374–383. 
https://doi.org/10.1177/0165025407077764

Zhang, Z., Hamaker, E. L., & Nesselroade, J. R. (2008). 
Comparisons of four methods for estimating a dynamic 
factor model. Structural Equation Modeling: A 
Multidisciplinary Journal, 15(3), 377–402. https://doi.org/ 
10.1080/10705510802154281

Zhang, Z., & Nesselroade, J. R. (2007). Bayesian estimation 
of categorical dynamic factor models. Multivariate 
Behavioral Research, 42(4), 729–756. https://doi.org/10. 
1080/00273170701715998

Zill, D. G. (1993). A first course in differential equations 
(5th ed.). PWS-KENT Publishing Company.

MULTIVARIATE BEHAVIORAL RESEARCH 955



Appendix A. Additional simulation with time- 
varying covariates following sine functions

In the current simulation study, the simulated time-varying 
covariate, which follows the Ornstein-Uhlenbeck (OU) pro
cess, exhibits a linear time trend. In our preliminary ana
lysis, we found that detrending, in this case, could lead to 
the inadvertent removal of some effects of time-varying 
covariates, leading to poor estimation of parameters related 
to these covariates.

To address concerns about the potential effects of 
detrending on estimation results, we conducted an add
itional Monte Carlo simulation study in which the time- 
varying covariate followed a sine function, rather than a lin
ear function of time. Specifically, we generated 500 replica
tions with T ¼ 100 and n ¼ 150: We used the proposed 
Bayesian 4th-order M-LDSEM approach to fit our simula
tion model to the data. In this case, the removal of a linear 
time trend did not lead to biases in estimations, as shown 
in Table A1.

Appendix B. Additional simulation with 
empirical model

There were gaps between our main simulation and the 
model used in our empirical analysis. To closely resemble 
the complexity of the empirical model presented in 
Equation 4, this simulation incorporated individual variabil
ity in the coupling parameter and used the damping param
eter fixed at zero. We generated 500 replications with 
T ¼ 100 and n ¼ 150: We used the proposed Bayesian 4th- 
order M-LDSEM approach to fit our simulation model to 
the data. The result is shown in Table B1.

Consistent with our main simulations, we observed an 
underestimation of the coupling parameter and its related 
covariate effect. As anticipated, introducing individual dif
ferences in the coupling parameters made the estimation 
slightly more challenging. Thus, more caution is needed to 
interpret the coupling parameters when they are allowed to 
differ across participants. However, the directionality of the 
effects remained accurate, and the power was consistently at 
100% for all parameters. Despite the integration of random 
effects and the increased model complexity, the recovery of 
the parameters related to time-varying covariates remained 
commendable. Hence, while our method may not be flaw
less, it still provides valuable insights, particularly when 
considering its computational efficiency.

Table A1. Results with time-varying covariates following sine 
functions.

h Mean ĥ rBias RMSE MCSD acSE RDSE

Result without detrending
g −0.5 −0.514 0.028 0.022 0.0169 0.0096 −0.429
f −0.04 −0.027 −0.331 0.014 0.0044 0.0062 0.3986
c −0.1 −0.078 −0.221 0.023 0.0058 0.0042 −0.2804
b0 0.3 0.313 0.045 0.025 0.0207 0.0195 −0.0584
b1 0.1 0.104 0.042 0.012 0.0117 0.0112 −0.0453

Result with detrending
g −0.5 −0.505 0.011 0.016 0.015 0.0093 −0.3812
f −0.04 −0.027 −0.333 0.014 0.0042 0.0064 0.5141
c −0.1 −0.075 −0.249 0.026 0.006 0.0042 −0.3017
b0 0.3 0.309 0.029 0.023 0.0209 0.0192 −0.0783
b1 0.1 0.101 0.014 0.012 0.0115 0.011 −0.0366

Table B1. Results of the fixed parameters from the empirical 
model.

h Mean ĥ rBias RMSE MCSD acSE RDSE

g −0.5 −0.457 −0.085 0.043 0.0036 0.0014 −0.6172
c0 −0.1 −0.067 −0.328 0.034 0.0067 0.0042 0.1595
c1 0.1 0.072 −0.285 0.029 0.0045 0.0042 0.1938
b0 0.3 0.285 −0.050 0.023 0.0180 0.0170 −0.0513
b1 0.1 0.098 −0.023 0.010 0.0099 0.0097 −0.0219
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