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ABSTRACT

Continuous-time modeling using differential equations is a promising technique to model
change processes with longitudinal data. Among ways to fit this model, the Latent Differential
Structural Equation Modeling (LDSEM) approach defines latent derivative variables within a
structural equation modeling (SEM) framework, thereby allowing researchers to leverage advan-
tages of the SEM framework for model building, estimation, inference, and comparison pur-
poses. Still, a few issues remain unresolved, including performance of multilevel variations of
the LDSEM under short time lengths (e.g.,, 14 time points), particularly when coupled multivari-
ate processes and time-varying covariates are involved. Additionally, the possibility of using
Bayesian estimation to facilitate the estimation of multilevel LDSEM (M-LDSEM) models with
complex and higher-dimensional random effect structures has not been investigated. We pre-
sent a series of Monte Carlo simulations to evaluate three possible approaches to fitting M-
LDSEM, including: frequentist single-level and two-level robust estimators and Bayesian two-level
estimator. Our findings suggested that the Bayesian approach outperformed other frequentist
approaches. The effects of time-varying covariates are well recovered, and coupling parameters
are the least biased especially using higher-order derivative information with the Bayesian esti-

KEYWORDS

Latent differential
equations; Bayesian
statistics; coupled damped
linear oscillators; affect
dynamics

mator. Finally, an empirical example is provided to show the applicability of the approach.

Differential equation models quantify change processes
continuously, thereby providing projection of a system’s
values at any arbitrary time point, even in situations
where the observed time intervals are irregularly spaced.
Latent Differential ~ Structural Equation Models
(LDSEM), proposed by Boker et al. (2004), is a frame-
work for fitting differential equation models as struc-
tural equation models (SEMs) by specifying derivatives
as latent variables through constrained loadings that are
similar to those used to define intercepts, slopes, and
higher-order slopes in growth curve models. In doing
so, LDSEM allows researchers to leverage the benefits
afforded by the SEM framework, such as easy inclusion
of antecedent and outcome measures, and direct con-
solidation of multiple measures, possibly measured on
mixed (e.g., continuous, ordinal, and nominal) scales. In

addition, LDSEM shows notable improvements in

performance compared to alternative two-stage model
fitting approaches where derivatives are first computed
by means of some approximation methods and subse-
quently used as observed variables in SEM (Boker et al.,
2010; Boker & Graham, 1998; Chow, 2019).

There is no scarcity of applications utilizing differen-
tial equation models in the social and behavioral scien-
ces. For example, the linear damped oscillator model, a
model used to describe the movements of a swinging
pendulum under friction, has been used to describe
how individuals regulate their emotions (Chow et al.,
2005; Katinka et al., 2020). Bivariate extensions of the
damped oscillator model, which feature two swinging
pendulums as coupled to one another, have been used
to examine the relationships between emotional eating
and hormone change (Hu et al. (2014), interpersonal
co-regulation in body movement, emotions, and
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physiological signals (Chow et al., 2010; Ferrer &
Helm, 2013; Feinberg et al., 2017).

Unresolved methodological issues

Several unresolved issues need to be explored to
bridge the gaps between the current LDSEM models
and the needs of practical researchers. These issues,
elaborated in turn below, were crucial for testing key
aspects of our motivating empirical example, and
formed the basis of the methodological extensions
proposed and investigated in the present article.

Multilevel differential equation models and
Bayesian inference

Parameter estimation for differential equation models,
especially those involving multilevel data and high-
dimensional random effect structures, is not a trivial
task. Frequentist estimation approaches typically
require integration—whether analytically, numerically
(Durham & Gallant, 2002), or via alternative Monte
Carlo approaches (Chow et al.,, 2016), over the ran-
dom-effects distributions. Since most of these integrals
lack closed-form solutions, the model estimation pro-
cess is computationally expensive. Even though sig-
nificant advances have been achieved in fitting
multilevel latent variable models using frequentist
approaches (Asparouhov & Muthen, 2007), including
techniques for computing robust standard errors
(Huber, 1967; White, 1980, 1994), estimation results
are often unsatisfactory in situations involving a larger
number of and/or complex random effect structures.
In contrast, in the Bayesian paradigm, estimation of
all parameters, latent variables, and random effects is
performed via Markov Chain Monte Carlo (MCMC)
techniques that can handle integration over much
higher dimensions with substantially fewer distribu-
tional restrictions. Therefore, using a Bayesian frame-
work to conduct statistical inference offers clear
pragmatic advantages (Chen et al., 2023; Elerian et al.,
2001; Lu et al., 2015, 2019; Mbalawata et al., 2013;
Oravecz et al., 2011). Thus, one of key objectives of
this study is to compare the performance of Bayesian
and robust frequentist approaches for fitting multilevel
LDSEM (M-LDSEM) models to multilevel data. The
descriptions of the robust frequentist and Bayesian
estimators used in the present simulation study are
presented later in the Modeling Approach section.

Finite-length “intensive” longitudinal data
Another notable gap between published simulation
findings involving the LDSEM and applications that
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are “real-world” resides in the number of repeated
measures available from participants. According to
review papers about ecological momentary assessment
(EMA) designs as adopted in the studies of mood,
sleep, stress, social interaction, and clinical outcomes
(Konjarski et al., 2018; Liu et al., 2019; Rodriguez-
Blanco et al., 2018; Yang et al., 2019), the number of
occasions typically ranges from 3 to 336 (median =
14, mean = 20.1), with 14 days being one of the most
popular sample size configurations because it provides
the minimum number of repeated measures needed to
capture some recurrence in weekly dynamics, in add-
ition to revealing other momentary dynamics that
unfold on a faster (e.g., daily) time scale.

Although some EMA studies do incorporate mul-
tiple measurements a day, such sampling density may
not be feasible for many other constructs of interest
(e.g., sleep quality). Consequently, it is common for
longitudinal studies in the behavioral sciences to com-
prise relatively few measurement occasions compared
to data from the physical sciences, engineering, and
economics, in which applications of differential equa-
tions are prevalent. Even though a few recent studies
did provide some pointers on the recommended sam-
ple size configurations (in terms of the numbers of
participants and time points) for fitting multilevel
dynamic models, most of this work focuses heavily on
discrete-time dynamic models, not continuous-time
models (Li et al., 2022; Schultzberg & Muthén, 2018).
Thus, we aim to evaluate the performance of the
LDSEM under commonly adopted EMA sample size
configurations, and possible methodological enhance-
ments that aid estimation under such data constraints.

Time-varying covariates
Including exogenous time-varying
LDSEM allows researchers to address a broader range
of questions beyond just exploring the system’s
internal dynamics. For instance, in our motivating
example, we are interested in examining the implica-
tions of providing social support (a time-varying cova-
riate) to a partner with a chronic health condition on
a couple’s ebb and flow in positive emotion.
Incorporating time-varying covariates into LDSEM
is meaningful in terms of the modeling aspect as well
as the research question. Figure 1 shows how the tra-
jectory of an oscillator differs in the absence of and
with the influence of a simulated time-varying covari-
ate. If a time-varying covariate is omitted from a
model when it should be included, as in the second
plot in Figure 1, estimates of the unconditional mod-
els do not fully reflect the time-varying nature of the

covariates in
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Simulated Data without a Time-varying Covariate

Score
0
|

AW

— K

("IJ -
T T T T T T
0 20 40 60 80 100
Time
Simulated Data with a Time-varying Covariate
o — X
- = TVecov
e ] f\ \/\
o - )
é - VY v«\f/ Uf\/
('?l —
T T T T
0 20 40 60 80 100

Time

Figure 1. Simulated trajectories with and without the effect of a time-varying covariate.

Note. This figure demonstrates one possible way of conceptualizing the effects of a time-varying covariate, as adopted in our moti-
vating empirical example. In this case, the levels of the time-varying covariate are hypothesized to influence the second derivatives
(i.e., accelerations/decelerations, or changes and curvatures in the rises and declines) of the process of interest (X). The inclusion of
this time-varying covariate has the effect of shifting the equilibrium (the value to which the oscillator settles in the long run) verti-

cally upward/downward depending on the values of the covariate.

data, and may lead to substantively misguided conclu-
sions. For example, when an oscillatory model was fit-
ted to test data with a true frequency parameter of
—0.5, the estimate in the model with time-varying
covariates was —0.497, while it was —0.239 without
estimating the effect of the time-varying covariates.
Thus, in this article, we seek to examine a possible
way of incorporating time-varying covariate effects
into the LDSEM framework, key methodological con-
siderations, from an estimation standpoint.

LDSEM with coupled dynamic processes and recent
methodological enhancements

Even though bivariate variations of the linear oscilla-
tor model are gaining traction in studies of dyadic
and interpersonal dynamics (Niven, 2017), few Monte
Carlo simulation studies were available to clarify the
performance of the LDSEM method in fitting coupled
differential equation models. The one exception that
existed indicated that the coupling parameters that
summarize the mutual influences of two dyad mem-
bers on each other were not accurately estimated
under the LDSEM approach (Hu et al., 2014). Thus, a

comparison of the currently available estimation
methods for recovering coupling-related parameters,
especially under M-LDSEM, is warranted.

We consider in the present paper two possible
enhancements to current estimation methods for fit-
ting M-LDSEM. One of them is to use robust varia-
tions of frequentist (maximum likelihood) estimation
(Asparouhov, 2005; Freedman, 2006) to circumvent a
known issue in use of time-delay embedded data to fit
LDSEM their discrete-time counterparts (Molenaar,
1985). Previous simulations have shown that when
time-delay embedded data were used, the standard
error estimates tended to be biased, despite relatively
satisfactory point estimates (Chow et al., 2010). To
this end, robust maximum likelihood approaches offer
corrections to the standard error estimates and corre-
sponding violations of the independence assumptions
of the residuals, and may thus offer some improve-
ments in estimation results compared to standard fre-
quentist  approaches. In  addition, previous
comparisons of Bayesian and frequentist approaches
to estimating dynamic and longitudinal models also
indicated some advantages of the former over the



latter, especially under finite sample sizes (Zhang &
Nesselroade, 2007; Zhang et al., 2007, 2008).

In summary, this paper aims to build a differential
equation model that echoes substantive needs and
then evaluate whether variations of the LDSEM
approaches, which incorporate recent advanced mod-
eling techniques, perform well to fit the model. To do
so, we constructed a simulation model from our moti-
vating example: a coupled damped oscillator model
with mixed effects and time-varying covariates. Then,
we ran a Monte Carlo simulation to examine the per-
formance of the different LDSEM methods.
Specifically, we compared (1) standard LDSEM meth-
ods versus noble LDSEM methods that leverage
higher-order derivative information and (2) robust
frequentist versus Bayesian approaches. We also
examined whether the length of the time series limits
the use of the LDSEM technique.

The rest of the article is organized as follows. First,
we introduce our motivating example and its corre-
sponding differential equation model. Second, back-
grounds for the LDSEM and its fourth-order variation
(Boker et al, 2004) are briefly reviewed. Then, a
Monte Carlo simulation is conducted to evaluate the
performance of each LDSEM variation. The recom-
mended LDSEM procedure is applied to empirical
data based on the simulation result.

Motivating example

For married individuals suffering from chronic illness,
their spouses often become primary caregivers
(Sanders & Power, 2009), and such spousal support
for patients is related to couples’ well-being. Our
modeling framework was motivated by data from 22-
day daily diary data from patients with knee osteo-
arthritis (OA) and their spouses (Martire et al., 2013).
Both patients and spouses reported daily ratings of
positive affect and spousal instrumental support in
coping with OA. Spousal instrumental support means
tangible aid from spouses, such as housework and
personal care, to help patients avoid pain. Since
spouses diagnosed with moderate to severe OA were
excluded from participation, each couple member
evaluated support provision only from spouses. We
sought to study couples’ emotional dynamics and how
instrumental support from spouses for patients influ-
enced coupless emotional regulation processes.
Specifically, we were interested in addressing the
extent and directionality of the patients’ and their
spouses’ influences on each other (i.e., emotional
covariation). In this section, we begin by describing a
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univariate version of our proposed empirical model
before transitioning to its bivariate variation moti-
vated by our empirical example.

Damped linear oscillator model as a model of
individuals’ emotion regulation

Researchers differ slightly on the exact functional
forms of such emotion regulation processes. Some
conceptualized the corresponding trajectories as
monotonic (i.e., without changes in directions) returns
to baseline (Koval et al., 2012; Kuppens et al., 2010;
Oravecz et al., 2011), which can be operationalized as
a first-order differential equation focusing on repre-
senting the amounts of instantaneous changes (first
derivatives) in affect. Other researchers have used the
analogy of emotion as a “thermostat” to describe the
homeostatic process through which individuals self-
regulate their emotions toward some affective (pos-
sibly person-specific) baseline (Chow et al, 2005;
Larsen, 2000) in the absence of interventions or
actions from other individuals. Mathematically, this
may be captured using a second-order differential
equation, which delineates changes in second deriva-
tives, or the amounts of instantaneous changes from
one time interval to the next (e.g., accelerations and
decelerations). Under this framework, individuals’
self-regulatory processes are typically viewed as oscil-
latory in nature, even though monotonic return to
baseline (i.e., approaching baseline without changes in
directions of such changes) is possible in some indi-
viduals. In other words, individuals are conceptualized
to show some ebbs and flows—sometimes “over-” or
even “under-regulating” to levels beyond or less than
their affective baselines—before they settle into their
baselines.

The second-order differential equation used by
Chow et al. (2005) to depict daily ebbs and flows of
emotions as a “thermostat”, often denoted in the lit-
erature as a damped linear oscillator model (Boker &
Nesselroade, 2002), is defined as:

Xip = nxie + (Xt (1)

where x;; is the level of positive affect relative to its
typical level (for person i at time #); X;; and X; are the
first derivative and the second derivative of positive
affect. The first derivative expresses the rate of change,
or the amount of change in x; from one time point
to the next as the time interval gets infinitely small.
The second derivative expresses how rapidly the first
derivative is changing (changes in the rates of
change), indicating whether the instantaneous changes
in x; are increasing (accelerating) or decreasing
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(decelerating). # is a parameter that governs the fre-
quency, or how rapidly x;; changes over time, and ( is
a parameter that controls the changes in amplitude of
the process over time, with negative values of { lead-
ing to damping (decrease in amplitude) and positive
values to amplification (increase in amplitude) of the
oscillations over time. In specific ranges of # and (
(Zill, 1993), the process shows oscillations with damp-
ing over time (see Figure 2 for examples).

Coupled damped linear oscillator model as a
representation of couples’ dynamics

Interpersonal emotion regulation studies (Elfenbein,
2014; Niven, 2017) suggest that there may be recipro-
cal influences, or coupling, between patients and their
caregivers in everyday emotion regulation. There can
be various patterns of co-regulation or mutual influ-
ence. For example, a patient’s affect may easily impact
the state of a spouse but may not be influenced by the
spouse’s state. In close relationships, when their part-
ner is highly aroused, one may become calm grad-
ually, while another may become aroused together.
Consistent with evidence that emerged from other
empirical work involving EMA data of affect in dyads
(Feinberg et al, 2017), we sought to use a coupled
damped linear oscillator model as the basis of our
modeling framework to examine self-regulation as
well as co-regulation—the extent to which two
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Figure 2. Simulated trajectories according to # and (.

Note. When a damping parameter { = 0, the amplitude of the
process does not change over time unless external forces work
on it, and faster oscillation occurs under a more negative value
of 1 (see subfigures A and B). If { < 0, the process shows
damping over time, and if { > 0, the amplitude of the oscilla-
tion will increase over time (see subfigures C and D).

individuals (patients and spouses in this case) influ-
ence each other in their emotion regulation processes.
Mathematically, a coupled damped linear oscillator
model is a bivariate version of the model in Equation
(1) and is expressed as follows:

Xie = X + {iXie + 91 (2)
Vie = Moyt + &Yy + 2% (3)

in which x refers to the positive affect of the patient
and y is the positive affect of the spouse in our
example. Equation (2) represents the equation of the
patient, and Equation (3) is for the spouse. In add-
ition to the parameters #,;, #1,, {; and {,, this model
includes two coupling parameters, y, and y,. y, repre-
sents the degree to which a patient’s emotion regula-
tion process is influenced by the current level of the
spouse’s affect (y;) in addition to the patient’s own
affect level (x;) and rate of change (x;). Hence, the
coupling parameter can also be interpreted as perme-
ability or sensitivity (Butler, 2011). For example, a
high absolute value of the coupling parameter can
indicate that the person has more permeable interper-
sonal boundaries, which means that the partner’s
affect can easily impact the state of the other. For
details on the interpretation of coupling parameters,
see Hu et al. (2014).

This model is increasingly employed because of its
ability to capture the extent and directionality of the
co-regulation dynamics (e.g., which partner is leading
the covariations in the dyad’s dynamics as a whole),
which cannot be tested by examining the day-to-day
covariance of the variable. For instance, Steele and
Ferrer (2011) found that, on average across the sam-
ple, both females and males were sensitive to their
partners’ overall affect levels but only females were
sensitive to males’ rate of change of positive affect.

Instrumental support as time-varying covariate
and multilevel extensions

A second key research question was the role of instru-
mental support on both patients’ and spouses’ emo-
tion regulation processes. The effect of spousal
support has been reported as being rather mixed.
Reduced mental and physical health of caregivers has
been linked to caring for a chronically sick spouse in
daily activities (Monin & Schulz, 2009); however, it
has also been found that caring for a partner provides
advantages for caregivers’ mental health (Beach et al,
2000; Poulin et al., 2010). Likewise, receiving instru-
mental support from spouses can benefit patients’
well-being, while it does not reduce patients’



depressive symptoms and can backfire when it
emphasizes the inability of the recipient (De Leeuw
et al., 2000; Reinhardt et al., 2006).

Such inconsistency may be resolved by considering
inter-individual differences in the effect of daily
instrumental support provision/receipt. For instance,
providing a high level of support on a day is some-
thing that happens in an extraordinary situation to
someone who does not usually take care of patients,
and providing higher support than their usual level
may greatly impact their emotions of the day.
Conversely, based on the desensitization theory
(McGlynn et al., 1981), for people whose typical level
of support provision is high, since caregiving behavior
is just an ordinary event that usually happens, their
response to the elevated daily support provision would
be reduced. To incorporate such interindividual differ-
ences, we will use a multilevel model that allows the
effect of daily support to differ between couples.
Consequently, our motivating model is expressed as:

Patient; = n,Patient; + vy,;Spouse; + ,Bp,-PatientSupporti, + ep,it
Ypi = Vpo + yplm + Uy, pi
ﬂpi = ﬁpo + ﬂpqupporti + U, pi
Spouse;, = n,Spouse;, + y;Patient; + P, SpouseSupport;; + e it
Vsi = V5o + v PatientSupport; + u,
B = By + P SpouseSupport; + ug

(4)

where Patient;; and Spouse, refer to positive affect of
each couple member. Spousal instrumental support
that patients or spouses reported (PatientSupport;,
SpouseSupport;) is a time-varying covariate in the
patient’s or  spouse’s  equation,  respectively.
PatientSupport; and SpouseSupport; represent time-
invariant covariates, the average levels of instrumental
support over 22 days.

Using this model, we can examine not only
whether the daily positive affect of a couple shows an
oscillatory self-regulation process (17, and #,) and
whether their affect dynamics co-regulate each other
(coupling effect; 7,y and 7)), but also whether the
daily spousal instrumental support, the time-varying
covariate, is associated with the accelerations and
decelerations in the daily affect of each couple mem-
ber (B, and f). Further, to capture possible sources
of interindividual differences, the effect of daily
instrumental support is allowed to differ between cou-
ples, and time-invariant covariates are included as
predictors in the model. As co-regulation patterns
could also vary across couples, random variances for
coupling effects and time-invariant covariates to
explain the random variance are included in the
model.
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We described our motivating example and intro-
duced univariate and bivariate dynamic models that
consider the over-time evolution of each dyad mem-
ber’s emotions. We also illustrated a model that shows
how time-varying and time-invariant covariates can
be incorporated into those models. We will revisit this
example in section Empirical Example by fitting the
model in Equation (4) to the empirical data.

Steps for fitting M-LDSEM

In this section, we outline the procedures involved in
fitting an M-LDSEM into two major steps: (1) prepa-
rations of time-delay embedded data, and (2) specifi-
cation of M-LDSEM, including possible ways to
leverage higher-derivative information from the
dependent variables and time-varying covariates.

Step 1: Preparations of time-delay embedded data

To fit differential equation models to empirical data
using the LDSEM method in SEM software, the first
step is to prepare the data that enables specification of
derivatives as latent factors (Boker et al., 2004). Time
delay embedding is a data preparation process that
involves rearranging individuals’ raw time series data
to create successively lagged (or delayed) blocks of the
original time series. For example, consider a 100 x 1
time series consisting of data of an individual meas-
ured on one variable over 100 time points. To con-
struct time-delay embedded data, a researcher first has
to determine the number of embedding dimensions
(d), namely, how many lagged occasions have to be
paired with the data at each time point. With d=6,
the value of x; at time t (lag of 0) would be paired
with the corresponding measurements from that per-
son at lag of 1, 2, ..., 5 (Xi—s, Xe—4r Xi—3, X¢—2, Xi—1
x¢), thus creating a total of six variables that represent
concurrent and lagged versions of the original time
series. In this case, the final input data matrix for
model fitting, denoted as X©) is a 95 x 6 data matrix,
with structure shown as follows.
Original time series:

X:[Xl,l X1,2  X1,3 X1,98  X1,99 xl,lOO}

Time-delay embedded data of d =6 :

X1,1 X1,2  X1,3  XL,4  X1,5 X1,6

X1,2  X1,3 X1,4 X155  X1,6 X1,7
X6 —

X1,95  X1,96 X1,97 X1,98 X1,99  X1,100

where x;, is the value of the variable x for the ith
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individual at time t. von Oertzen and Boker (2010)
has shown that this time delay embedding technique
improved the estimation properties of parameters for
models of intraindividual dynamic processes.

Step 2: Specification of M-LDSEM as factor model
with constrained loadings

After time-delay embedding, a differential equation
model is fitted to the time-delay embedded data. In
the LDSEM method (Boker et al., 2004), the deriva-
tives (i.e., x, x, X) are specified as latent factors in an
SEM framework with specialized loadings. This is
what differentiates the LDSEM method from previous
two-step approaches such as the Generalized Local
Linear Approximation (GLLA) method, in which
derivatives are first calculated explicitly and then used
as observed variables in differential equation models
(Boker et al., 2010). Additionally, GLLA assumes
equal intervals between measurement occasions, which
may not always be the case in LDSEM.

Specifically, the LDSEM method simultaneously
constructs the latent derivative factors in the measure-
ment model and estimates the parameters of the dif-
ferential equation (i.e., the relationships between the
latent derivative variables) in the structural model.
The first diagram in Figure 3 represents a standard
2nd-order differential equation model using the
LDSEM approach. In the measurement model, the
latent derivatives are constructed by specifying prede-
termined factor loadings (L) for the relationships
between the latent derivatives (factors) and the
observed measures (indicators). The six indicators in
Figure 3 correspond to columns in the time-delay
embedded matrix (e.g, X®). Factor loading, L, is
determined by polynomials of the Taylor series expan-
sion (Chow et al., 2016) based on the time-delay
embedding dimension (d), the designated time inter-
val (At), and the highest order of the derivatives used.
Figure 3 shows an example of L with d=6, At =1,
and the highest order = 2. For more details on the
calculation of L, see Boker et al. (2010). This particu-
lar specification of LDSEM can be viewed as an SEM
consisting of a factor model with specialized con-
strained loadings, and is also comparable to how fixed
loadings are used to construct the latent intercept and
slopes in a latent growth curve model in the SEM
framework.

Extension from single-level to multilevel LDSEM
We introduce M-LDSEM by integrating LDSEMs with
multilevel modeling within the framework of

multilevel structural equation models (MSEM). MSEM
is employed when dealing with nested data structures,
necessitating the simultaneous modeling of latent vari-
ables, measurement errors, and pathways. In the sub-
sequent sections, we will provide an overview of
MSEM and then present the M-LDSEM.

Multilevel structural equation modeling

In MSEM, observed variables can be decomposed into
components that vary within groups (in this context,
within individuals across days) and between groups
(across individuals). For instance, with daily positive
emotion scores collected over T days (t =1,...,T) for
N individuals (i = 1,...,N), the daily observations are
nested within individuals, creating a multilevel struc-
ture. The observed individual-level scores can be
decomposed into within and between components as
Xit = Xyir + Xpi» Where x,; reflects daily fluctuations
in positive emotions for individual i, and x;; captures
consistent individual differences over time.

Each component is modeled as follows:

Xyit = AW’IW + &w (5)
Xpi = p+ Apnp + e (6)

where 1y, and 5 are within- and between-level latent
factors; Ay and Ap are within- and between-level fac-
tor loadings; p is the overall mean across individuals;
sw and &g are within- and between-level residuals.
Time-varying covariates would need to be inserted
into ny, in Equation (5).

The structural equations for latent variables can be
expressed as:

ny = Lwy + ey (7)
ng =Dsng+ep (8)

where I'yy and I'p contain coefficients that define
structural relationships between factors; ey and ep
contain residual terms.

Multilevel LDSEM

In a similar way, the specific M-LDSEM that allows
for individual-specific dynamic coefficients with one
between-level covariate is stated as follows:

(6) (6) (6)

Xj = Xy + Xp; )

where ng ) is a vector of six lagged observed variables

(from x,_5 to x;). The within-person component is
defined as:

X(M6/Z‘t =Lg,; + € (10)
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Figure 3. Standard second-order vs. fourth-order LDSEM.
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Note. The first diagram represents the standard second-order LDSEM model. The second diagram represents the fourth-order
LDSEM model. L represents the specialized factor loadings that constrain the relationships between the observed variables (e.g., x;
to xg) and the latent derivatives. x refers to the smoothed level of the variable x. dx, d2x, d3x, and d4x refer to the first to the
fourth derivative of x. We show an example of L with d=6, At = 1, and the highest order = 2. This figure does not encapsulate

the multilevel component.

Consistent with the formulation of multiple regression models within the structural equation modeling framework in which all
independent variables are allowed to freely covary, x and dx are also allowed to freely covary with each other.

where L is a fixed factor loading matrix' shown in
Figure 3 and g, is a vector of unobserved latent

. . . . / .
derivative scores, [xi, X, X;] . The structural equations
for g, are represented as:

8 = Aigy + et (11)
0 0 O
A=10 0 O
m G 0

where #; and (; are person-specific parameters poten-
tially influencing daily fluctuations in positive emo-
tions as described in Equation (1).

For the between-person component, we have:

- [E] Bl o

where the intercepts (#,,(,) are the predicted values
for the frequency and damping parameters, respect-
ively when the covariate (Covg;) is zero, and the
regression coefficients (f;,5,) indicate changes in
these parameter values with each unit of increase in
the person-specific covariate, Covg;. Note that in our

'L can in principle be person- and time-specific when the time intervals
between successive occasions are different across individuals and over
time.

proposed model, xg} in Equation (9) is simply a vec-

tor of zeros because we assumed the baseline of all
individuals’ processes is fixed at zero, thus rendering
their intercepts 0 in the corresponding time delay
embedded data. However, this can be further modeled
as described in a regular MSEM. For a more detailed
exploration of MSEM, please refer to Depaoli and
Clifton (2015) and Hox (2013).

Leveraging higher-derivative information

One determinant of the performance of the M-
LDSEM is whether the time-delay embedding dimen-
sion is well selected. In addition to that, specifying the
extraction of higher-order derivatives (i.e., up to the
fourth order) in an M-LDSEM, as proposed by Boker
et al. (2020), can significantly improve the perform-
ance of the approach (Chow, 2019), even if the
dimension of time-delay embedding is less than
optimal.

The 4th-order LDSEM entails the use of higher-
order derivative information in the Taylor series
approximation of the observed measurements, which
is a second-order differential equation including the
3rd or 4th-order derivatives as a dependent variable
in the model as shown in the second diagram in
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Figure 3. This is feasible by using specialized factor
loading (L) described above and some invariance con-
straints imposed across derivative orders such that the
frequency parameters () and damping parameters ({)
in each equation are constrained to be equal, respect-
ively. More details about the 4th-order LDSEM can be
found in Boker et al. (2020).

Simulation study

The main purposes of the current simulation study
are to compare the relative performance of Bayesian
and robust Frequentist estimation approaches, and
clarify the benefits of including higher-order deriva-
tive information. Specifically, we were interested in fit-
ting differential equation models with finite-length
data, time-varying covariates, and coupling effects.
With these goals in mind, three design factors (i.e.,
derivative order, estimation approach, and data con-
figuration) were varied within our simulation study.

Simulation conditions

Modeling approach

As modeling approaches, 2 derivative orders x 3 esti-
mation approaches = 6 conditions were considered.
First, two derivative order specifications were used as
described in Figures 3: (1) second-order and (2)
fourth-order M-LDSEM. Then, three estimation
approaches (i.e., two frequentist and one Bayesian
approaches) were considered: (1) single-level robust
estimator, (2) two-level robust estimator, and (3) two-
level Bayesian estimator.

For the single-level robust estimator, the estimator
MLR and TYPE=COMPLEX commands in Mplus
were used to obtain maximum likelihood estimates
with standard errors robust to non-normality and
non-independence (Asparouhov, 2005). This single-
level approach does not account for the random
effects in the data generation model but offers correc-
tions to the standard error estimates under such
model misspecification through the Hubert-White
sandwich estimator (Freedman, 2006).

The other two-level approaches allow for the esti-
mation of random effects, as consistent with our data
generation model. For the two-level robust approach,
the estimator MLR and TYPE=TWOLEVEL com-
mands in Mplus were used to compute maximum
likelihood robust standard errors (Asparouhov &
Muthen, 2006) with Monte Carlo integration to han-
dle estimation of the random effects. The two-level
Bayesian estimator condition used the Markov Chain

Monte Carlo (MCMC) algorithm based on the Gibbs
sampler (Gelman et al., 1995), with default settings for
Mplus (see Asparouhov & Muthen, 2010). Specifically,
conjugate priors were used’. Convergence was deter-
mined based on the potential scale reduction (PSR)
values calculated from two MCMC chains, with PSR
values < 1.1 across all parameters used as a cutoff for
convergence. The first half of each chain was desig-
nated as burn-in iterations and not utilized for esti-
mation purposes. The point estimates were then
derived from the median of the MCMC samples
obtained from the second half of each chain.

Sample size configuration

The sample size configuration was decided based on
our motivating empirical data (T=22, N=140) and
our key interest in elucidating the effects of the length
of the series, especially in scenarios involving short,
multi-subject time series. Three conditions of the
length of the series were considered. T = 100 corre-
sponds to typical time series lengths seen in other
simulation studies involving time-intensive dynamical
systems models and data (Boker et al., 2020; Chow,
2019). T = 20 and 10 were picked to evaluate how
well the M-LDSEM approach worked under sample
size configurations that mirrored those seen in com-
mon EMA designs (Konjarski et al., 2018; Rodriguez-
Blanco et al,, 2018). The number of subjects was set
to n = 150 taking into account characteristics of our
motivating empirical data, and common EMA sample
sizes as reported in recent review papers of EMA
studies (mean number of subjects = 146.3; median =
87; Konjarski et al., 2018; Liu et al., 2019; Yang et al,,
2019). Additionally, a condition with n=300 was add-
itionally tested for T=10 to examine the effect of
doubling the number of subjects. Consequently, four
sample size configurations were considered: (1)
n=150 & T=100, (2) n=150 & T=20, (3) n=150
& T=10, and (4) n=300 & T=10.

Data generation and implementation of M-LDSEM

We have 2 derivative orders x 3 modeling approaches
x 4 sample size configurations =24 simulation condi-
tions. In each condition, 500 Monte Carlo replications
were simulated. Specifically, data following the
coupled damped oscillator model in Equation (13)
were simulated in R (R Core Team, 2022) using the

’The default prior for intercepts, loadings, and slopes for continuous
variables is N(0,10'). The default prior for variance-covariance matrices
for continuous variables is IW(0, —p — 1), where p is the number of
observed continuous variables in the model.



Isoda function in the R package, deSolve (Soetaert
et al., 2010).

Xip = mxie + X + i + PruXTVeovi + ey it
) Bii = By + B Covi + uy (13)
Vi = M)t + Cz)’it + VoXir + ﬁz,‘YTVCOVit + €y, it

Bai = Byo + B,1Covi + uy,

where x; and y; are values of variables of interest
(e.g., affect of patients and spouses) at time ¢t for dyad
i; XTVcovy and YTVcov; are time-varying covariates
(e.g., daily instrumental support received/provided);
Cov; represents a time-invariant covariate; and uy; &
u},,-va(O,rz)3 and e.; & ey, ~ N(0,6%). For all
simulation conditions, the model parameters were
specified as follows: #; =1, = —0.5, {; = {, = —0.04,
N=7=-01 fo= ﬂyO =03, fy= ﬁyl =0.1,
> =10.04, and ¢*=1. The simulation parameters
were selected to reflect the estimated values from pre-
vious studies using similar affect variables (Chow
et al., 2005; Hilpert et al., 2020; Steele & Ferrer, 2011).
Specifically, previous studies reported that 1 was esti-
mated to be between —0.4 to —0.9, while { was either
insignificant or very small, ranging from —0.01 to
—0.04. We assumed that a single manifest indicator
was used, and the baseline was fixed at zero for
everyone.

The time-invariant covariate was simulated from a
uniform distribution over [-3, 3]. Two time-varying
covariates were simulated separately following the sto-
chastic Ornstein-Uhlenbeck (OU) process with zero
home-base (Oravecz et al., 2011) as: dx;; = —0Ox;;dt +
¢dWy, where x;; is the value of the time-varying
covariate of person i at time ¢, W; is the standard
process, 0 =0.03, and ¢ ~ N(0,0.1).
Although detrending is a commonly adapted data
preparation step (e.g., Chow et al., 2005; Hilpert et al.,
2020), we did not detrend in this case, because the
simulated time-varying covariate following the OU
process shows a linear time trend. Detrending in this
case would remove key information related to the
time-varying covariate and would not be appropriate

Wiener

for the purposes of the current study. We verified, via
a targeted Monte Carlo simulation, that removal of a
linear time trend would not lead to biases in the esti-
mation results when the time-varying -covariate

3Note that we only allowed random variance for the time-varying
covariates in our simulation for simplicity as this study is an initial
comparison of the Bayesian and frequentist approaches using M-LDSEM.
However, it is possible to specify more complex random effect structures
in practice, such as allowing #s, {s, and s to vary across dyads. This was
demonstrated in the Empirical Example section where we allowed inter-
dyad differences in coupling parameters.
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assumed other alternative forms of change, such as a
sine function (see Appendix A for details).

Following Step 1 of the M-LDSEM approach, a
time-delay embedded matrix was created for each
Monte Carlo replication. Consonant with the settings
adopted in the empirical example, the dimension of
the time delay embedding, d, was set to six. Latent
factors were also specified for time-varying covariates
with d = 6. Please note that d does not necessarily
need to always be six. Detailed rationales and guide-
lines for selecting this particular value of d are pro-
vided in Empirical Example.

Performance measures

Analyses were conducted using Mplus 8.7 (Muthen &
Muthen, 2017) and an R package, Mplusautomation
(Hallquist & Wiley, 2018). Performance measures
were calculated for the 500 replications in each condi-
tion. To quantify the performance of the point esti-
mates, the mean point estimate, relative bias, and root
mean squared error (RMSE) were used. To quantify
the variability of the estimation, the standard devi-
ation of the parameter estimates in all Monte Carlo
simulations (MCSD; Monte Carlo Standard Deviation)
was used. As a measure of the relative performance of
the SE estimates, the relative deviance of the standard
error (RDSE) was calculated based on the difference
between the SE estimate and the empirical standard
deviation of each parameter (the “true” SE; MCSD).
The estimated SE was calculated as the average of the
SE estimates from the model results (a@). Power was
computed by tallying the proportion of all trials in
which the 95 % CIs did not include zero. Details of
these performance measures are included as footnotes
in Tables 2 and 3.

Simulation results

Are there benefits to including higher-order
derivatives?

Models using Single-level robust and the two-level
Bayesian approaches converged 100% across all Monte
Carlo replications regardless of the derivative order or
sample size configuration. Under the two-level robust
approach, convergence rates varied between 49 to
86.2%, as dependent on the highest derivative order of
the M-LDSEM and sample configuration. As shown
in Table 1, the length of the time series was a critical
factor that influenced the convergence rate; even
though doubling the sample size from n=150 to 300
helped increase the convergence rates, data with
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T=10 resulted in convergence rates that were around
50%. Despite the complexity of the 4th order model,
inclusion of higher derivatives for the same n and T
configurations led to higher convergence rates than
only using the same order of derivatives (second
derivatives) as the data generation model.

Other key simulation results comparing the 2nd to
4th derivative order are presented in Table 2.

Table 1. Convergence rates of the two-level robust modeling
approach.

Conditions

Order n T Convergence rate
2 150 100 85.6%

2 150 20 79.6%

2 150 10 49.0%

2 300 10 64.6%

4 150 100 86.2%

4 150 20 85.6%

4 150 10 53.6%

4 300 10 72.6%

Note. Convergence rates were calculated as the percentage of the 500
replications that did not encounter convergence errors. Convergence
errors resulted from either the failure to find an optimized solution or
the optimizer exceeding the maximum allotted iterations.

Performance measures for parameters of the same
type (e.g., coupling parameters for patients and
spouses) were aggregated to ease presentation. In
terms of point estimates, the 4th-order models led to
smaller biases than the 2nd-order models for all
parameters except for the damping parameter ({ dem-
onstrated a minimal relative bias, —0.03, when the
highest derivative order was 2). In contrast to the
point estimates, the 2nd-order models resulted in
smaller MCSD than the 4th-order models for all
parameters but (. This suggested that inclusion of
higher derivatives helped improve convergence rates
and point estimates for most parameters, even though
some overestimation in SEs was observed under the
4th compared to 2nd-order models particularly under
the multilevel robust frequentist approach.

How does the Bayesian approach perform relative
to the frequentist approaches?

When the three estimation approaches were com-
pared, the two-level Bayesian estimator resulted in the
most accurate estimates with smaller relative biases

Table 2. Summary statistics of parameter estimates across model derivative orders and modeling approaches across 500 Monte

Carlo replications when n = 150, T = 100.

Order Estimator 0 Mean 0 rBias RMSE MCSD aSE RDSE
n 2 2-Bayes —0.50 —0.38 -0.23 0.116 0.0020 0.0020 0.010
n 2 2-Robust —-0.50 -0.34 -0.32 0.160 0.0151 0.0168 0.110
n 2 1-Robust —0.50 —0.30 —0.40 0.200 0.0125 0.0123 —0.013
n 4 2-Bayes —-0.50 -0.50 0.00 0.005 0.0047 0.0051 0.095
n 4 2-Robust —0.50 —-0.43 -0.15 0.076 0.0223 0.0341 0.531
n 4 1-Robust —-0.50 —0.38 -0.25 0.126 0.0166 0.0165 —-0.011
14 2 2-Bayes —0.04 —0.04 —0.03 0.003 0.0028 0.0043 0.503
14 2 2-Robust —-0.04 -0.03 -0.20 0.009 0.0034 0.0060 0.760
14 2 1-Robust —0.04 —0.03 -0.23 0.010 0.0030 0.0031 0.031
14 4 2-Bayes -0.04 -0.02 -0.41 0.017 0.0023 0.0036 0.574
14 4 2-Robust —0.04 —0.02 —0.50 0.020 0.0025 0.0032 0.258
14 4 1-Robust —-0.04 -0.02 —-0.51 0.021 0.0024 0.0024 0.022
y 2 2-Bayes —0.10 —0.07 -0.33 0.033 0.0019 0.0017 —0.128
y 2 2-Robust -0.10 -0.06 -0.36 0.036 0.0048 0.0067 0.409
y 2 1-Robust -0.10 —0.06 —-0.42 0.042 0.0055 0.0054 —0.013
Y 4 2-Bayes -0.10 —0.08 -0.17 0.017 0.0027 0.0022 —0.188
y 4 2-Robust -0.10 —0.08 —0.22 0.023 0.0060 0.0109 0.806
y 4 1-Robust -0.10 -0.07 -0.28 0.028 0.0066 0.0065 —-0.011
Bo 2 2-Bayes 0.30 0.23 —0.22 0.066 0.0133 0.0135 0.014
Bo 2 2-Robust 0.30 0.22 -0.27 0.084 0.0194 0.0179 —-0.076
bo 2 1-Robust 0.30 0.19 —0.36 0.110 0.0158 0.0150 —0.053
Bo 4 2-Bayes 0.30 0.31 0.03 0.019 0.0173 0.0176 0.019
Bo 4 2-Robust 0.30 0.28 —0.08 0.036 0.0258 0.0313 0.212
Bo 4 1-Robust 0.30 0.24 -0.20 0.064 0.0205 0.0194 —0.053
b 2 2-Bayes 0.10 0.08 —0.21 0.023 0.0075 0.0078 0.032
P 2 2-Robust 0.10 0.07 -0.27 0.029 0.0093 0.0117 0.260
I3 2 1-Robust 0.10 0.06 —0.36 0.037 0.0080 0.0079 —0.012
b 4 2-Bayes 0.10 0.10 0.03 0.010 0.0099 0.0104 0.049
b 4 2-Robust 0.10 0.09 —0.08 0.014 0.0122 0.0142 0.163
P 4 1-Robust 0.10 0.08 -0.20 0.022 0.0101 0.0100 -0.010
72 2 2-Bayes 0.04 0.03 —0.34 0.014 0.0030 0.0032 0.089
72 2 2-Robust 0.04 0.01 —0.66 0.027 0.0046 0.0031 —0.325
2 4 2-Bayes 0.04 0.04 0.14 0.007 0.0051 0.0056 0.096
72 4 2-Robust 0.04 0.02 -0.45 0.019 0.0074 0.0051 -0.309

Note. 1-Robust: smgle level robust estimator; 2-Robust: two-level robust estimator; 2-Bayes: two-level Bayesian estimator; 0 = true value of a parameter;
Mean 0= HZ,, 1 0n, where 9,, = estimate of 0 from the hth Monte Carlo (MC) runs; rBias = relative bias = HZ,, 1 Hh—trueé)) / trued; RMSE =
th 1 (Oh— -trued)); MCSD = standard deviation of 0 across MC runs, aSE = average standard error estimate across MC runs, RDSE = average relative

deviance of SE = (aSE — MCSD)/MCSD.
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Table 3. Summary statistics of the parameter estimates with two-level Bayesian estimation and 4th-order model across 500

Monte Carlo replications.

T n 0 Mean 0 rBias RMSE MCSD aSE RDSE Power Cvr
n 100 150 -0.50 —0.500 0.000 0.005 0.0047 0.0051 0.0946 100 95.8
n 20 150 —0.50 —0.505 0.009 0.009 0.0082 0.0073 —0.1154 100 84.2
n 10 150 -0.50 —0.508 0.016 0.018 0.0160 0.0105 —0.3403 100 741
n 10 300 —0.50 —0.505 0.011 0.012 0.0111 0.0072 —0.3534 100 72.1
14 100 150 —0.04 —0.024 -0.411 0.017 0.0023 0.0036 0.5744 100 0
14 20 150 —0.04 —0.028 —0.309 0.014 0.0073 0.0093 0.2706 90 77.4
14 10 150 —0.04 —0.023 -0.426 0.024 0.0165 0.0128 —0.2254 44 69.5
14 10 300 —0.04 —0.023 —0.415 0.021 0.0123 0.0098 —0.2022 65 56.9
y 100 150 -0.10 —0.083 —0.168 0.017 0.0027 0.0022 —0.1880 100 0
y 20 150 —0.10 —0.079 —0.206 0.021 0.0048 0.0046 —0.0383 100 0.8
Y 10 150 -0.10 —0.081 —0.194 0.021 0.0092 0.0078 —0.1458 100 30.9
y 10 300 —0.10 —0.083 -0.174 0.018 0.0062 0.0047 —0.2374 100 7.4
Bo 100 150 0.30 0.308 0.028 0.019 0.0173 0.0176 0.0188 100 93.4
bo 20 150 0.30 0.313 0.044 0.025 0.0218 0.0218 0.0012 100 91
Po 10 150 0.30 0.311 0.037 0.029 0.0269 0.0258 —0.0424 100 92.8
Bo 10 300 0.30 0.309 0.030 0.021 0.0188 0.0179 —0.0455 100 89.8
b 100 150 0.10 0.103 0.029 0.010 0.0099 0.0104 0.0492 100 95.6
b 20 150 0.10 0.104 0.038 0.013 0.0123 0.0126 0.0247 100 94.8
I 10 150 0.10 0.103 0.029 0.015 0.0144 0.0146 0.0111 100 95.2
I3 10 300 0.10 0.103 0.028 0.010 0.0099 0.0101 0.0213 100 95.6
72 100 150 0.04 0.045 0.137 0.007 0.0051 0.0056 0.0957 100 87.8
72 20 150 0.04 0.057 0.419 0.019 0.0089 0.0083 —0.0661 100 49.8
72 10 150 0.04 0.059 0.468 0.022 0.0121 0.0113 —0.0652 100 69.9
72 10 300 0.04 0.057 0.419 0.019 0.0082 0.0076 —0.0831 100 373

Note. 9 = true value of a parameter; Mean 9 = Z,, 19;., where Hh = estimate of () from the hth Monte Carlo (MC) runs; rBias = relative bias =
th 1 (04— trued) / trued; RMSE = th 1(6h true9) MCSD = standard deviation of 0 across MC runs, aSE = average standard error estimate across
MC runs, RDSE = average relative deviance of SE = (aSE SE)/SE; Power = 1 — the proportion of 95% credible intervals that contain 0 across MC
runs; Cvr = Coverage = proportion of 95% credible intervals that contain 6 across MC runs.

and RMSEs. The notably higher relative bias for { was
accentuated in part by the division of a small average
bias (0.02) by the near-zero true value of { (0.04). In
addition, the relative bias for { decreased considerably
from —0.41 for the 4th-order model to —0.03 for the
2nd-order model. This suggests that, for {, using 4th-
order information in the Bayesian model extracted too
much nuanced fluctuations in the data that led to
underestimation of the amount of true damping. Still,
given the relatively superior performance of the 4th-
order approach for all other parameters except for {,
we would still recommend use of the 4th over the
2nd-order derivative information. The Bayesian esti-
mator also yielded the best efficiency (smaller magni-
tudes of aSE and MCSD were regarded as higher
efficiency), for all but the damping parameters, as well
as accurate quantification of the uncertainty around
these estimates (based on smaller RDSE). It is note-
worthy that inclusion of 4th-order derivatives in con-
junction with the Bayesian estimator led to notable
improvements in estimation quality in general, espe-
cially for coupling parameters when compared to pre-
vious simulation results utilizing the 2nd-order
LDSEM method (Hu et al., 2014).

In contrast to the Bayesian estimator, other fre-
quentist approaches were characterized by relatively
high biases, especially in the parameters #, 7, and the
random effect variances (t?). As expected, the single-
level frequentist approach with sandwich-type SE

estimator was associated with the greatest biases com-
pared to other approaches that did incorporate the
correctly specified random effects structure. However,
this approach vyielded reasonably accurate SE esti-
mates, with smaller RDSEs compared to the multilevel
robust frequentist approach, which was frequently
characterized by overestimation in SE estimates, and
even the Bayesian estimator for the parameters { and
y. The power estimates were close to 100% in all con-
ditions and are thus omitted from Table 2.

The efficacy of the DIC as Bayesian model selection
criteria in M-LDSEM

Although the use of DIC with a time-delayed embed-
ding matrix is not well-established, the Deviance
Information Criterion (DIC) is a well-known model
fit index in the Bayesian framework, where a smaller
DIC indicates a better fit. Therefore, we explored the
use of DIC in M-LDSEM and found that the DIC
consistently favored the 4th-order model over the
standard 2nd-order model across all sample size
configurations.

To further examine the usefulness of DIC in M-
LDSEM, we conducted two additional simulations
with 500 replications with T'= 100 and n = 150. Our
findings suggested that using DIC as a measure of
model fit in M-LDSEM may have limitations. Firstly,
we fitted a “reduced” model to our simulation data by
omitting the estimation of the effect of a time-varying
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covariate. Ideally, if DIC were effective, the true “full”
model, which we used in our original simulation,
should have a smaller DIC. However, only 19.2% of
cases correctly selected the true model as the preferred
model. Secondly, when an “over-parameterized”
model that included a time-varying covariate’s effect
was fitted to data generated without any time-varying
covariate, the correct (less complex) model was pre-
ferred by the DIC in only 68.2% of the replications.
Given our findings and the weak theoretical justifica-
tion for DIC (Spiegelhalter et al., 2014), caution is
necessary when using DIC as a model selection criter-
ion in M-LDSEM.

Can model parameters be recovered with short time
series?

In this section, we focus on addressing the relative
performance of the “best-performing” approach,
namely, the Bayesian estimation approach under 4th-
order derivatives, under three time series length con-
ditions and n of 150 and 300. Table 3 shows the sum-
mary statistics of the results. Overall, even though
greater biases in all parameters were observed under
small T, the relative biases and RMSEs of all parame-
ters were still relatively low compared to comparable
results observed earlier for T=100 and n=150 in
Table 2 under the frequentist approaches. For infer-
ences involving the covariate-related regression coeffi-
cients (f, and f3,), relative biases, RMSEs, and RDSEs
were particularly low.

For n and {, doubling T from 10 to 20 led to a
greater reduction in RMSEs than doubling n from 150
to 300. Among the parameters associated with the
time-varying covariate effects (8, and f,), y and %,
slightly greater decreases in RMSEs were observed in
doubling # than in doubling T. Recovery of the damp-
ing parameters was particularly challenging; the results
for { were biased for all time lengths. It is not surpris-
ing considering that the damping parameter was less
biased under the conventional 2nd-order LDSEM
model. More importantly, unlike other parameters,
only reached 44% of power when T'=10. This was in
stark contrast to all other parameters, whose power
estimates were close to or at 100% even with T'= 10.

Despite the decent coverage rates for most varia-
bles, the coverage rates for { and y remained low even
under the most ideal conditions. We observed that
while biases decreased for other parameters as the
number of time points increased, the biases for { and
7 remained constant. In contrast, the standard error
for these parameters decreased as expected.
Consequently, the underestimation of the standard

error combined with the biases led to even worse
coverage rates with an increase in the number of time
points.

Summary of simulation results

Overall, the present study validated the relative gains
in estimation quality when higher-order derivative
information was included in M-LDSEM. Also, the
Bayesian estimator outperformed other frequentist
approaches in general. Combining the 4th-order
model and the Bayesian estimator yielded relatively
good estimation quality even with short time series
such as T=10 or 20. Understandably, greater T still
played a critical role in improving estimation proper-
ties, but the relatively high power estimates provided
some reassurance of the feasibility of making infer-
ences on intra- and inter-personal dynamics and cor-
responding predictors in the context of relatively
small T. Further, considering the low model conver-
gence rates when the two-level robust approach was
used (see Table 1), the practical utility of the Bayesian
estimator was especially pronounced when T is short.

Empirical example

In our simulation study, we verified that use of the
Bayesian estimator combined with inclusion of higher
derivative information performed relatively well even
with short, multiple-subject time series data. To show
the practical utility of the proposed approach, we pro-
vide an illustrative example using the 22-day daily
diary data of 140 couples of OA patients and their
spouses (Martire et al., 2013). Of the 22days, the
median completion rate was 17 days. Positive affect of
the couples was measured three times a day, and these
measurements were aggregated into daily positive
affect scores for each dyad member. Spousal instru-
mental support was reported by both patients and
spouses at the end of the day (e.g., whether the I/
spouse tried to get the patient to rest when they
seemed to be in pain).

Empirical analysis

As described in section Motivating Example, we
sought to investigate how spousal instrumental sup-
port was related to patients’ and spouses’ positive
affect. Caring for chronically ill partners is a complex
phenomenon for both providers and recipients; the
consequences of support are not always positive and
differ across couples (Beach et al., 2000; Newton-John,
2013; Reinhardt et al., 2006). Although previous



studies have used primarily day-to-day covariance as
an indication of the average daily association between
instrumental support and couple’s affect (Gremore
et al., 2011; Marini et al., 2021), few studies have pro-
vided adequate consideration of how each dyad mem-
ber’s emotions evolve over time and the degree to
which patients’ and spouses’ patterns of change covary
with one another (Sbarra & Hazan, 2008; Sels et al.,
2018). Thus, following insights from the simulation
study, we fitted a bivariate oscillator model in
Equation (4). Utilizing this model also allows
researchers and practitioners to disentangle the patient
— spouse and spouse — patient influences while elu-
cidating the role of instrumental support.

In Equation (4), the instrumental support that
patients or spouses reported was used as a time-vary-
ing covariate in the patient’s or spouse’s equation,
respectively. To limit modeling complexity associated
with the number of random effects, random effects
were included only for the coupling parameters (7,
and 7,) as well as the regression parameters for
instrumental support (f,; and f;), given our key
interest in understanding the influences between
patients and their caregivers. Further, we tested
whether the typical level of instrumental support in
each couple indirectly influences the couple’s positive
affect as moderators of the coupling effect and the
effect of daily support. All time-varying variables (i.e.,
Patient, Spouse,,, PatientSupport, and
SpouseSupport;;) were centered within subjects.* The
average instrumental support scores were grand mean
centered and standardized across individuals. Since we
did not expect any damping over the 22 days and the
damping parameters were not different from zero in
an initial model fitting, they were fixed at zero and
omitted in Equation (4).

The model was fitted using a six-dimensional time-
delayed embedded matrix consisting of data at time
to, t1, ..., ts. This imposed a constraint that at least 5
time points from each dyad are needed to construct
the input data matrix. To allow for at least 3 repli-
cated rows of time-delay embedded data from each
dyad for inference of interindividual differences, we
retained data only from dyads with at least 8 days of
measurements, yielding a total of N = 121 dyads for
model fitting purposes. As illustrated, available input
data (i.e., the number of rows in the time-delay
embedded matrix) decreases as d increases. When

“Please note that centering was unnecessary for our simulation since each
time series was generated to fluctuate around zero. However, if the time-
varying covariate is not already centered at zero, it can be centered
within individual, as we did in our empirical example.
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deciding on an embedding dimension (d), this may
not be critical for time series with ample time points,
but for short time series with many missing data, it
could be a crucial factor. Therefore, we recommend
considering the remaining sample size depending on
the selected d.

We also recommend considering the characteristics
of the dynamics of interest based on previous studies.
While a higher d will be more robust to noisy data,
for data with relatively salient signals and low noise, a
smaller d would be sufficient. For instance, daily
affective assessment may not have high noise as typ-
ical physiological signal processes have. Thereby, stud-
ies that examined daily emotion regulation have
typically used d of 4, 5, or 6 (Chow et al, 2005;
Hilpert et al, 2020; Steele & Ferrer, 2011).
Additionally, Boker et al. (2020)’s experiment with d
values suggests that d =6 is appropriate for short time
series (T'=50), given processes with n = —0.5, { =
—0.1, which is close to the expected range of the fre-
quency of affect dynamics.

While it has been demonstrated that the 4th order
LDSEM is less sensitive to the selection of embedding
dimension (Boker et al,, 2020), we acknowledge that
more complex models, such as the coupled oscillator
model with multilevel structure, may still be sensitive
to the choice of embedding dimension and require
further research.

Before proceeding to the empirical result, we
acknowledge that the empirical model has more com-
plexity than the main simulation model in the sense
that it has random effects for their coupling parame-
ters. To closely resemble the complexity of the empir-
ical model, we additionally conducted a simulation
study that incorporated individual variability in the
coupling parameter and used zero damping param-
eter, which is presented in Appendix B. Consistent
with our main simulations, we observed an underesti-
mation of the coupling parameter and its related cova-
riate effect. As anticipated, introducing individual
differences in the coupling parameters made the esti-
mation slightly more challenging. Thus, more caution
is needed to interpret the coupling parameters when
they are allowed to differ across participants.
However, the directionality of the effects remained
accurate, and the power was consistently at 100% for
all parameters. Despite the integration of random
effects and the increased model complexity, the recov-
ery of the parameters related to time-varying covari-
Hence,
method may not be flawless, it still provides valuable

ates remained commendable. while our
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Table 4. Parameter estimates from the empirical model.

95% Cl

Parameter Description Est. Post. SD LL UL
o B Frequency —0.78 0.03 —-0.83 —0.73
Vpi = Vpo T Vp1PatientSupport; Coupling
o 0.13 0.06 0.01 0.26
Vp1 B -0.11 011 -033 0.1
Bpi = Bpo + By PatientSupport; Support
ﬁpo 0.05 0.08 -0.11 0.21
B 0.13 019 -0.26 0.1
7 - Frequency —0.87 0.03 —0.93 —0.80
Vs = V50 + 751 PatientSupport;  Coupling
Y50 009 005 001 019
Vsi 0.1 011 —-0.10 032
By = By + Py PatientSupport; Support
Beo 019 008 003 035

» —051 023 —0.95 —0.03
Random Effect
var(uy, p;) 0.19 0.05 0.12 032
var(u,, ) 0.14 0.03 0.09 0.22
cov(uy, pi, Uy,si) 006 002 002 011
var(ug, p;) 0.45 0.09 031 0.67
var(ug, si) 0.40 0.10 0.25 0.66
cov(ug, pir Up,si) 0.11 0.07 -0.01 0.26
a2 025 001 024 026
ot 024 001 023 025

S

Note. Post. SD=Standard deviation of the posterior distribution;
LL =lower limit; UL = upper limit.

insights, particularly when considering its computa-
tional efficiency.

Empirical results

The results are presented in Table 4. Consonant with
findings in affect literature (Bonanno, 2001; Chow
et al., 2005), the positive affect of couples was found
to be oscillatory in nature, as indicated by the negative
frequency parameters (1 s). In line with interpersonal
emotion regulation theories (Elfenbein, 2014; Niven,
2017), the coupling effects (y s) were positive. The sig-
nificant coupling effects in both the directions of
Patient — Spouse and Spouse — Patient indicated that
on days with typical amounts of instrumental support
(see the middle plot of (a) in Figure 4), the patients
and spouses reported reciprocal influences on each
other. In other words, when one dyad member
reported higher-than-usual levels of positive affect,
such positive deviations in affect accelerated and ele-
vated the partner’s positive affect. Significant between-
dyad differences were found in the magnitudes of
these coupling effects; however, the typical level of
instrumental support did not explain these differences.

The effect of daily instrumental support was only
significant for the spouses, even though significant
between-couple differences were found in the magni-
tudes of this covariate on patients as well as spouses.
Since the daily support variable was within-person
mean-centered, a high (> 0) value of support variable
represents a day on which the spousal instrumental

support was high relative to the spouse’s typical level
of support (e.g., average support over the 22 days).
Thus, our result suggested that, on the days when the
spouses reported providing a higher-than-usual level
of instrumental support (i.e., +1SD), greater accelera-
tions in their positive affect were evidenced, resulting
in more extreme, positive upward shifts in their posi-
tive affect over time. See Figure 4(a) for the simulated
trajectories. This outcome is in line with an earlier
finding that suggests supporting their loved ones may
be beneficial to their own well-being (Poulin et al.,
2010). Our result further clarified that contrary to the
direct effect characterized by provision of instrumental
support on spouses, the patients’ positive affect was
not significantly associated with variations in daily
support received. Rather, patients’ positive affect
showed greater fluctuations (in both the positive and
negative directions), presumably due to the positive
coupling effect on their spouses.

To further evaluate the robustness of our signifi-
cant findings, we conducted additional simulations to
examine Type I error rates when using the proposed
approach. This time, we fixed either the effect of daily
instrumental support or the moderation effect of the
average levels of support for the daily support’s effect
at zero, respectively. The results showed a Type I
error rate of 3.6% for the fixed effect of daily support
and 5.6% for the fixed moderation effect. These results
suggested that the proposed approach yielded Type I
error rates that were close to the nominal rate of 5%.

Finally, the effect of daily support for spouses var-
ied depending on their average support levels (le =
—0.51). Figure 4(b) shows that, for spouses who typic-
ally provide high instrumental support (+1SD),
higher-than-average provision of daily support did
accelerate their positive emotions, but the effect was
weaker compared to those whose typical support level
was low (-1SD). It is in line with our hypothesis that
for those who are used to providing abundant sup-
port, the effect of daily ups/downs of the support pro-
vision would be reduced. This may shed light on past
inconsistent results on the impact of daily instrumen-
tal support by explaining the inter-couple differences.

As a rudimentary measure of effect sizes for the
proposed M-LDSEM, we report the averaged level-1
R? across clusters (individuals) provided by MPlus’.
In our study, we used a 6-dimensional embedded

Since R? at the within-person level (level-1) is not a constant value but
rather, is person-specific if there are random slopes and effects of person-
specific predictors in the model, Mplus provides R? that is within-level
averaged over clusters (Schuurman et al., 2016). Furthermore, Mplus
provides an R? for each dependent variable in the model, without
breaking it down by covariate.
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(@) Trajectories of positive affect at low (-1SD), average (at person-specific mean), and high
(+1SD) levels of daily instrumental support.
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(b) Trajectories of positive affect across low (-1SD), average, and high (+1SD) levels of mean
instrumental support (over 22 days).
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Figure 4. Simulated trajectories of a couple’s positive affect.

Note. The black dashed line represents a patient’s trend, and the red line represents a spouse’s trend. Subfigure (a) shows that
when spouses provide a higher-than-usual (+1SD) level of instrumental support over time, more extreme and positive upward
shifts in their positive affect are expected over time. Under subfigure (b), the spouse’s daily instrumental support provision was
assumed to be consistently higher than usual (4-1SD). Three trajectory plots in subfigure (b) indicate that the effect of providing
higher-than-average daily support was much reduced for spouses whose typical level of instrumental support provision is high
compared to those whose typical support level was low.
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matrix as our input, resulting in six R%*s for patients’
positive affect: 0.323, 0.243, 0.214, 0.201, 0.232, and
0.324, with an average of 0.256. Therefore, approxi-
mately 25% of the level-1 variance in the spouse’s
positive affect was explained by the intercept and
specified predictors, including both the fixed and ran-
dom effects of the predictors. Regarding the effect of
daily social support on a spouse’s positive affect (f;),
the level-2 R? was 0.044, indicating that relatively little
(approximately 4.4% of the) variance of the effect of
daily social support was explained by its intercept and
average social support.

In summary, we utilized a multilevel bivariate oscil-
lator model structured as an M-LDSEM to investigate
between-couple differences in coupling dynamics and
the roles of instrumental support at the within- and
between-person levels. Furthermore, applying the
Bayesian framework to M-LDSEM allowed us to
incorporate  relatively  high-dimensional random
effects, while it did not converge when the same cor-
responding model was specified using the frequentist
approach.

Discussion

We sought to address several key challenges of apply-
ing the M-LDSEM method to multivariate short time
series, which are frequently observed in the behavioral
sciences. We also expanded the usability of M-LDSEM
by investigating the tenability of incorporating time-
and person-specific covariates into differential equa-
tion models. Our simulation results demonstrated the
benefits of the inclusion of higher-order derivatives
and a Bayesian inferential method in parameter and
SE estimation. In line with the previous study by
Boker et al. (2020), we found that the 4th-order model
is preferred in general to the 2nd-order model given
that the improvement of accuracy for most parameters
far outweighed the increased variability associated
with the use of the 4th-order M-LDSEM compared to
the conventional 2nd-order approach. However, we
suggest employing the 2nd-order model for those
focusing on obtaining an accurate estimate of the
damping parameter.

Consonant with the expected improvements
afforded by Bayesian methods in estimating complex
models (i.e., analyzing nested data with differential
equation model with random slopes), the Bayesian
approach outperformed the frequentist estimations
considered not only in terms of the convergence rate
but also the properties of the point and SE estimates.
The Bayesian approach adopted in the current study

utilized relatively uninformative priors that have been
shown, in some special cases, to yield results that are
similar to frequentist approaches. In addition, our
inferential conclusions and conceptualization of the
parameters in the data generation processes (e.g.,
specifying the true parameter values as fixed as
opposed to random) also mirror common principles
in the frequentist framework. Thus, key differences
between the approaches compared were primarily in
the estimation engines that underlie these approaches
(e.g., sampling from the joint posterior distribution
versus maximizing a likelihood). All of the approaches
considered involved some form of approximation, but
the specific Bayesian approach considered outper-
formed other frequentist alternatives in the proposed
model. By adopting the Bayesian framework, we also
have access to the empirical posterior distributions of
modeling parameters, which offer more possibilities
for quantifying the uncertainty of these components.

Moreover, in cases where there are clear reasons to
suspect deviations from normality, the Bayesian
framework provides the flexibility to accommodate
non-Gaussian distributional assumptions (Berger
et al,, 1994). For instance, adopting alternative non-
Gaussian prior distributions, such as heavy-tailed t
distributions, may prove robust in handling violations
of the independent residual assumption, especially in
the context of using time delay embedded data. It is
important to note that a thorough exploration of these
robust variations could improve Bayesian estimation
performance even further, although such in-depth
analysis is beyond the scope of the present study and
warrants additional investigation. We do acknowledge
that frequentist approaches might provide much
greater computational efficiency in cases involving
simpler models, and appropriate prior choices also
play a critical role in successful Bayesian estimation
(Van Dongen, 2006).

In summary, through both empirical and simula-
tion results, we have demonstrated that the Bayesian
estimator with the 4th-order M-LDSEM can be
applied to relatively short time series. However, there
remain a few unresolved issues that warrant further
evaluation in future studies. First, although power
estimates remained consistently high, the best-per-
forming combination still displayed notable biases in
coupling parameter accuracy. This approach shows
substantial improvements over conventional LDSEM
results reported in the previous simulation study (Hu
et al, 2014), despite the increased complexity of the
models considered here, notably the incorporation of
a multilevel extension and time-varying covariates.



Despite these developments not completely meeting
the stringent criteria of empirical researchers, they
contribute valuable insights in a field where simula-
tion studies on the effects of coupling in differential
equations are scarce. Additionally, our novel compari-
son between robust variants and the Bayesian method
in a complex model with limited samples offers prac-
tical benefits, warranting future research to expand on
our findings.

Our study highlighted the need to evaluate the con-
sequences of data preparation procedures such as
detrending when time-varying covariates are included.
Researchers should carefully consider the functional
form and theoretical aspect of the time-varying cova-
riates when deciding whether detrending is necessary.
If an existing time trend is not relevant to the core
research interest and may lead to incorrect conclu-
sions concerning the key processes of interest,
detrending is recommended. However, if the trend
over time is meaningful and could potentially explain
the dynamics of interest (as in our case with the OU
time-varying covariate), we do not recommend
detrending but rather, would suggest direct inclusion
of all relevant variables in the fitted model.

Another issue concerns ways of handling missing
data. Differential equation models by nature posit the
unfolding of the processes of interest continuously at
any time point. Thus, missingness that arises in
designs targeting equally spaced measurement inter-
vals can just be incorporated seamlessly into differen-
tial equation models as unequally spaced time
intervals (Oud & Voelkle, 2014). However, it still
entails unnecessary data losses in M-LDSEM. It is
because individual data with severe missingness are
(or have to be) omitted from analyses if measured
occasions are sparser than the embedding dimension.
Thus, researchers should consider the cost and bene-
fits of using the M-LDSEM approach when the total
number of occasions is not long and missingness is
severe. As other possibilities, we could insert missing-
ness into the input data or utilize missing data han-
dling methods in the time series (Li et al., 2019; Ji
et al, 2020). Further investigation of missing data
handling methods in the context of M-LDSEM models
is an important methodological extension.

While our findings support the effectiveness of the
4th-order M-LDSEM plus Bayesian estimator with
short time series, our simulation scope is limited.
Assessing the viability of M-LDSEM methods with
panel data (< 10 time points) is crucial, considering
potential drawbacks in using time-delay embedding in
such cases. Comparing with other continuous-time
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methods, such as exact discrete (Oud & Jansen, 2000),
successfully applied to panel data with as few as 4
time points (Oud, 2017), would be worthwhile.
Furthermore, all the sample sizes considered in the
present study were larger than the median sample size
of n=87 reported in previous review studies
Konjarski et al. (2018); Liu et al. (2019); Yang et al.
(2019). A more thorough evaluation of the effects of
using even smaller sample sizes is warranted.
Additionally, the results of the simulation may differ
under a different set of parameters, necessitating fur-
ther studies to explore diverse parameter sets for valu-
able insights.

Another topic for future direction is investigating
the optimal level of the highest derivative. Although
using higher-order derivatives is likely to improve
accuracy, it is important to note that excessive use of
terms in the expansion may increase the computa-
tional burden and may not necessarily lead to a more
precise estimation (e.g., damping parameter). Thus,
this topic warrants further systematic investigation.

Further research on effect size measures for M-
LDSEM is needed. While the R?> measures available in
Mplus can serve as computationally viable proxies for
effect sizes, further work to derive effect size measures
for M-LDSEM based on similar concepts of effect
sizes for multi-level models Rights and Sterba (2020)
could lead to more meaningfully decomposed effect
size measures. Furthermore, as shown in the empirical
results, the use of a time-delay embedded matrix as
input data presents challenges that require additional
investigation.

LDSEM methods were designed to handle ordinary
differential equation models. They may not be appro-
priate for fitting stochastic differential equation mod-
els with process noises (McKee et al., 2020). To the
extent that the assumptions of LDSEM methods are
fulfilled, the implementation of LDSEM is relatively
straightforward, computationally efficient, and allows
users to leverage the advantages afforded by the SEM
framework, such as ease of incorporating multiple
measures and availability of fit indices. For instance,
model fit could be assessed to determine the order of
models.

Despite all the above limitations, our study pro-
vides a scaffold to explore the evolving relationships
of variables of interest in a more natural way by pro-
posing a feasible approach to fit a continuous-time
model that works even in the context of the time ser-
ies of the finite length and the multilevel extension.
Moreover, our approach offers several practical advan-
tages. Being seamlessly integrated into SEM, it readily
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accommodates multivariate measures and incorporates
the effects on antecedents and outcomes, enhancing
the  investigation  of relationships.
Additionally, it is computationally efficient compared
to other continuous-time modeling methods (Driver
et al., 2017; Ruissen et al., 2022), providing a faster
alternative for model fitting, particularly useful for

complex

large datasets or intricate models. This will bridge the
gap between methodology and reality, making con-
tinuous-time models with numerous advantages more
accessible and practical in the field of behavioral
science.
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Appendix A. Additional simulation with time-
varying covariates following sine functions

In the current simulation study, the simulated time-varying
covariate, which follows the Ornstein-Uhlenbeck (OU) pro-
cess, exhibits a linear time trend. In our preliminary ana-
lysis, we found that detrending, in this case, could lead to
the inadvertent removal of some effects of time-varying
covariates, leading to poor estimation of parameters related
to these covariates.

To address concerns about the potential effects of
detrending on estimation results, we conducted an add-
itional Monte Carlo simulation study in which the time-
varying covariate followed a sine function, rather than a lin-
ear function of time. Specifically, we generated 500 replica-
tions with T =100 and n = 150. We used the proposed
Bayesian 4th-order M-LDSEM approach to fit our simula-
tion model to the data. In this case, the removal of a linear
time trend did not lead to biases in estimations, as shown
in Table Al.

Table A1. Results with time-varying covariates following sine
functions.

0 Mean 0 rBias RMSE ~ MCSD aSE RDSE
Result without detrending
n -0.5 —-0.514 0.028 0.022 0.0169 0.0096 —0.429
¢ -0.04 —-0.027 —0331 0.014 0.0044 0.0062 0.3986
b -0.1 —0.078 —-0.221 0.023 0.0058 0.0042 —0.2804
Po 0.3 0313 0.045 0.025 0.0207 0.0195 —0.0584
b 0.1 0.104 0.042 0.012 0.0117 0.0112 —0.0453
Result with detrending
n -0.5 —0.505 0.011  0.016 0.015 0.0093 —-0.3812
14 —-0.04 -0.027 0333 0.014 0.0042 0.0064 05141
b -0.1 —0.075 —0.249 0.026 0.006 0.0042 -0.3017
Bo 0.3 0.309 0.029 0.023 0.0209 0.0192 —0.0783
I 0.1 0.101 0.014 0.012 0.0115 0.011 —0.0366

Appendix B. Additional simulation with
empirical model

There were gaps between our main simulation and the
model used in our empirical analysis. To closely resemble
the complexity of the empirical model presented in
Equation 4, this simulation incorporated individual variabil-
ity in the coupling parameter and used the damping param-
eter fixed at zero. We generated 500 replications with
T =100 and n = 150. We used the proposed Bayesian 4th-
order M-LDSEM approach to fit our simulation model to
the data. The result is shown in Table Bl.

Consistent with our main simulations, we observed an
underestimation of the coupling parameter and its related
covariate effect. As anticipated, introducing individual dif-
ferences in the coupling parameters made the estimation
slightly more challenging. Thus, more caution is needed to
interpret the coupling parameters when they are allowed to
differ across participants. However, the directionality of the
effects remained accurate, and the power was consistently at
100% for all parameters. Despite the integration of random
effects and the increased model complexity, the recovery of
the parameters related to time-varying covariates remained
commendable. Hence, while our method may not be flaw-
less, it still provides valuable insights, particularly when
considering its computational efficiency.

Table B1. Results of the fixed parameters from the empirical
model.

0 Mean 0 rBias RMSE  MCSD aSE RDSE
n -0.5 —0457 —0.085 0.043 0.0036 0.0014 —0.6172
7o —0.1 —0.067 —0328 0.034 0.0067 0.0042 0.1595
2 0.1 0.072 —0.285 0.029 0.0045 0.0042 0.1938
Bo 0.3 0285 —0.050 0.023 0.0180 0.01770 —0.0513
b 0.1 0.098 —0.023 0.010 0.0099 0.0097 -0.0219
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