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ABSTRACT 
Missingness in intensive longitudinal data triggered by latent factors constitute one type of 
nonignorable missingness that can generate simultaneous missingness across multiple items 
on each measurement occasion. To address this issue, we propose a multiple imputation 
(MI) strategy called MI-FS, which incorporates factor scores, lag/lead variables, and missing 
data indicators into the imputation model. In the context of process factor analysis (PFA), 
we conducted a Monte Carlo simulation study to compare the performance of MI-FS to list
wise deletion (LD), MI with manifest variables (MI-MV, which implements MI on both 
dependent variables and covariates), and partial MI with MVs (PMI-MV, which implements 
MI on covariates and handles missing dependent variables via full-information maximum 
likelihood) under different conditions. Across conditions, we found MI-based methods over
all outperformed the LD; the MI-FS approach yielded lower root mean square errors (RMSEs) 
and higher coverage rates for auto-regression (AR) parameters compared to MI-MV; and the 
PMI-MV and MI-MV approaches yielded higher coverage rates for most parameters except 
AR parameters compared to MI-FS. These approaches were also compared using an empir
ical example investigating the relationships between negative affect and perceived stress 
over time. Recommendations on when and how to incorporate factor scores into MI proc
esses were discussed.
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Introduction

Missing data handling is a critical issue in statistical 
analysis that has continued to garner attention from 
the statistical, data science, and other related com
munities in the past decades (Little, 1988; Rubin, 
1976). One area that has evidenced some (see, e.g., Ji 
et al., 2018, 2020) but could benefit from much 
greater growth is the development of tailored tools for 
handling missingness in intensive longitudinal data 
(ILD), such as ecological momentary assessments 
(EMAs) of daily life experiences that capture nuanced 
changes in behavioral dynamics in naturalistic eco
logical settings (Bolger & Laurenceau, 2013).

One common characteristic of EMAs and other 
related ILD is that the constructs of interest are often 
latent factors (e.g., affect, attitudes, personality traits) 
that are measured using multiple items. In this 

scenario, if the reasons for missing data (referred to 
as missingness mechanisms in this article) are trig
gered by values of a latent factor, the missingness 
would likely be observed on all items that load on the 
same factor, yielding pervasive simultaneous missing
ness that would reduce the efficacy of many missing 
data handling techniques. For instance, an individual 
may skip an entire stress-related survey when they 
feel extremely stressful, in which case the individual’s 
level on a latent factor, stress, would lead to missing
ness on all the items. Such simultaneous missingness 
patterns may generate a nonignorable missingness—or 
in other words, not missing at random (NMAR)— 
scenario where the missingness depends on informa
tion that is not available in the data set (Rubin, 1976). 
Such type of missingness, if not appropriately 
accounted for, would lead to severe biases in estimates 
and thus misleading inferential results (Ji et al., 2018; 
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Tang et al., 2017). In addition, simultaneous missing 
data patterns are more challenging to handle com
pared with missingness in specific, scattered items 
because in the latter, many existing techniques can 
still be used to yield reasonable imputed scores for the 
missing values based on other observed items measur
ing the same latent construct (Roth et al., 1999). In 
contrast, few relevant variables can be used to inform 
imputations when the best items that convey the rich
est information are themselves missing on the same 
occasion.

Although many missing data handling techniques 
exist, few of them have been tailored for handling 
(simultaneous) missingness in longitudinal data. For 
instance, one convenient way of handling missing 
data, the listwise deletion (LD) approach, is known to 
yield biased estimates in longitudinal settings since 
the deletion of rows of data alters the time dependen
cies between observations (Ji et al., 2018). Some alter
native approaches, such as full-information maximum 
likelihood (FIML; Anderson, 1957) and multiple 
imputation (MI; Rubin, 2004) have been shown to 
work well under certain missing data mechanisms in 
longitudinal settings (Ji et al., 2018; Liu & Molenaar, 
2014; Rubin, 2004). Among these two approaches, 
FIML handles missing data by constructing the raw 
data likelihood function based on the observed data 
and then optimizing the likelihood function to per
form parameter estimation (Arbuckle et al., 1996). 
This method generally works well for handling miss
ingness in dependent variables provided that the 
model for dependent variables is correctly specified 
and the data are missing completely at random 
(MCAR) or missing at random (MAR). However, 
since FIML handles missingness in covariates by 
including the covariates as dependent variables in the 
model, this approach may not be practically feasible 
when there are a large number of covariates, especially 
for categorical covariates and those whose change 
mechanisms are poorly understood to support reason
able model specification (Ji et al., 2018). In contrast, 
MI offers considerable flexibility in handling missing 
data in both dependent variables and covariates, and 
may benefit from the added information afforded by 
auxiliary variables, namely, variables that are not 
included in the model of interest, but are correlated 
with the variables of interest to some extent or can 
help explain the missingness mechanisms of certain 
variables. Therefore, the auxiliary variables, when 
appropriately chosen, can inform the imputation pro
cess and thus reduce biases (Thoemmes & Rose, 
2014). In fact, many adaptations of MI methods 

involved novel selection of auxiliary variables that best 
suit data characteristics and/or model specifications. 
For instance, Ji and colleagues proposed two MI strat
egies (i.e., partial MI and full MI) that were tailored 
for handling missingness in ILD by including the pre
ceding or following observations of the missing values 
in the imputation model (Ji et al., 2018). The differ
ence between partial and full MI is that partial MI 
handles missingness in dependent variables via FIML, 
whereas full MI imputes missing values in dependent 
variables via MI. Despite the growth in the develop
ment of tailored tools for handling missingness in 
ILD, to our best knowledge, there are no MI strategies 
tailored for handling simultaneous missingess across 
all manifest variables associated with one common 
latent variable.

In the present article, we propose an MI strategy 
called MI with factor scores (MI-FS), which incorpo
rates a series of variables, including factor scores, lag/ 
lead variables (i.e., variables that are lagged/leading in 
time; for instance, variable Yt−1 (Ytþ1) is a lagged 
(leading) variable of variable Yt with a lag (lead) of 
one timepoint), and missingness indicators (i.e., a 
dummy variable indicating whether the data are miss
ing on a specific variable), into the imputation model 
to respectively account for missingness associated with 
latent factors, time dependencies between observations 
in longitudinal data, and missingness mechanisms. 
Our novel contribution lies in the development and 
evaluation of ways to leverage information from latent 
variables through use of longitudinal factor scores in 
the imputation model to inform the missing data 
mechanism (i.e., missingness associated with latent 
factors). Our method also capitalizes on previous use
ful MI strategies such as including lag/lead variables 
and missingness indicators in the imputation model. 
For instance, previous research found that including 
missingness indicators as auxiliary variables in MI 
would not introduce bias for parameter estimates 
under MCAR and MAR, and would reduce bias under 
NMAR (Beesley et al., 2021; Sperrin & Martin, 2020). 
The inclusion of missingness indicators in the imput
ation model allows us to model the relationship 
between missingness as indicated by missingness indi
cators and possible variables that may help explain the 
missingness mechanism, which is essential when miss
ing data follow the NMAR mechanism.

The remainder of the article is organized as follows. 
We first introduce the empirical data example that 
motivates our development of the proposed method, 
with a brief introduction of the model to be fitted to 
the empirical data. Then we describe the general 
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modeling framework and provide a step-by-step guide 
on implementing the MI-FS method. Using the pro
cess factor analysis model as a basis, we report results 
from a Monte Carlo simulation study comparing the 
performance of the MI-FS with that of LD and MI 
without factor scores under different conditions. We 
then present an empirical illustration using our empir
ical data and the four missing data handling methods 
considered in this study. Finally, we discuss the 
results, limitations, and future directions.

Motivating example

The motivating example was inspired by the Affective 
Dynamics and Individual Differences (ADID; 
Emotions and Dynamic Systems Laboratory, 2010) 
study where participants were asked to rate their 
momentary emotions five times a day over a month. 
All participants provided informed consent prior to 
participation in the study. In the present article, we 
were interested in the reciprocal and dynamical link
ages between two latent variables, negative affect (NA) 
and perceived stress (PSS), both of which were meas
ured via multiple-item scales over time. Figure 1
shows dynamics of three NA parcels (i.e., item parcels 
created as indicators for NA; see details in the 
Empirical Illustration section) for two randomly 
selected participants. In both plots, the trajectories of 
three NA parcel scores displayed overall similar pat
terns since these parcels/indicators were associated 
with the same underlying latent construct. From the 
plots we can also see that Participant 1 had a slightly 
higher baseline level of NA than Participant 2, indi
cating between-individual differences in affect levels. 
Importantly, Figure 1 also shows that the missingness 
in our empirical data was featured by simultaneous 

missingness across parcels/indicators at a particular 
timepoint. That is, participants tended to skip all 
questions in the scale. Therefore, it was reasonable to 
assume that the missingness was triggered by the 
latent variable, which motivated us to develop and 
apply the MI-FS method to address such missingness 
pattern.

Process factor analysis model

In this section, we introduce the model to be used in 
analyzing the empirical data—the process factor ana
lysis (PFA) model and more generally, the dynamic 
factor analysis (DFA) model (see, e.g., Browne & 
Nesselroade, 2005; Molenaar, 1985). Conventional fac
tor analysis models are insufficient for studying the 
intraindividual changes in psychological processes 
over time, whereas DFA models which can be concep
tually understood as a combination of factor analysis 
and dynamic models allow for simultaneous evalua
tions of temporal characteristics of latent factors and 
their relationships with manifest variables over time. 
Recent decades have seen various applications of DFA 
models in social and behavioral science fields such as 
affective processes in dyadic relations (Ferrer & 
Nesselroade, 2003) and relationships between positive 
and negative affect (Chow & Zhang, 2013).

In this study, a multilevel PFA model was fitted to 
the data to investigate (1) intraindividual dynamics of 
two latent variables, NA and PSS, and their reciprocal 
linkages over time; (2) effects of other momentary 
experiences on NA and PSS, such as negative events 
occurred since the last measurement and personality 
states (e.g., extraversion, emotional stability, and 
agreeableness); and (3) individual differences in the 
baseline levels of NA and PSS, and specifically, how 

Figure 1. Dynamics of three indicators of negative affect (parcel 1 to 3) for two randomly selected participants.
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age, gender, and personality traits affected baseline 
levels. Note that the PFA model considered in this 
article can be viewed as a special case of DFA models 
in that the manifest variables are only linked to the 
latent variables at the same timepoint. Other specifica
tions of DFA models can be found in the relevant lit
erature (e.g., Browne & Nesselroade, 2005).

Based on previous findings on the relationships 
between NA, PSS, and personality states (Ching et al., 
2014; Ebstrup et al., 2011; Leger et al., 2016), we chose 
to use extraversion, emotional stability, and agreeable
ness as time-varying covariates because of their pur
ported associations with NA and PSS, while openness 
and conscientiousness were used as auxiliary variables 
to inform the MI procedure. As discussed before, 
individuals may have different affect levels which need 
to be accounted for in the model fitting. With all 
these being considered, our final PFA model was 
defined as follows.
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Here, Equations (1) and (2) jointly defined a 
dynamic model, which was a multilevel vector autore
gressive (VAR) model with exogenous variables (i.e., a 
multilevel VAR-X model) where the dynamics of NA 
and PSS and their associations with time-varying 
covariates were modeled in Equation (1). The VAR 
models are widely used in time series research to cap
ture the dynamic relationships among variables (e.g., 

NA and PSS in our case) whose past values affect 
each others’ current values. The graphic representa
tion of such dynamic relationships was presented in 
the PFA diagram in Figure 2. The exogenous variables 
(covariates) capture the effects of other measured per
son- and time-varying (e.g., situational or contextual) 
variables on the process variables of interest (i.e., NA 
and PSS). The individual differences in two intercepts 
(i.e., baseline levels of NA and PSS, l1, i and l2, i) and 
the effects of person-specific characteristics on base
line levels of NA and PSS were accounted for by the 
level-2 model in Equation (2). In this empirical 
example, the random effects were only added for two 
intercepts to account for possible individual differen
ces in baseline levels of NA and PSS as observed in 
Figure 1. The random effects were specified as latent 
variables in the current modeling framework (see, e.g., 
Chow et al., 2010; Ou, 2018).

Specifically, in the level-1 model in Equation (1), 
NAi, t and PSSi, t denoted NA and PSS for person i 
(i ¼ 1, :::, N) at time t (t ¼ 1, :::, Ti), respectively; a1 

and a2 represented auto-regression (AR) parameters 
which described the relationship between concurrent 
and lagged values of NA or PSS; and b1 and b2 

represented cross-regression (CR) parameters describ
ing the cross-lagged relationship between NA and 
PSS. The time-varying covariates, Extravi, t , 
EmoStabi, t , Agreei, t , NegEventsi, t, were collected in a 
vector, with a corresponding matrix of regression 
coefficients, c1 - f2. The process noise terms were 
denoted by f1, i, t and f2, i, t, which reflected unmeas
ured sources that affected the dynamics of NAi, t and 
PSSi, t, respectively, and followed a multivariate nor
mal distribution with zero means and covariance 
matrix Rf:

In the level-2 model in Equation (2), the person- 
specific baseline levels of NA and PSS (i.e., l1, i, t and 
l2, i, t) were respectively regressed on a set of person- 
specific predictors, including gender, age, and average 
levels of extraversion, emotional stability, and agree
ableness for each person over the course of the study. 
The regression coefficients were denoted by c parame
ters, with c10 and c20 being the intercepts, and c11— 
c26 being the regression weights corresponding to the 
6 predictors. We hypothesized that participants’ base
line levels of NA and PSS were negatively related to 
these personality traits. Finally, the random effects 
were denoted by e1, i and e2, i, which represented per
son i’s deviations in the values of l1, i and l2, i not 
accounted for by person-specific predictors. These 
random effects followed a multivariate normal distri
bution with zero means and covariance matrix Rw, 
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where the random effect variances were denoted by 
r2

w1 
and r2

w2
; and the random effect covariance was 

denoted by rw12:

Equation (3) defined the measurement model which 
described the factor structures of NA and PSS, which 
was also shown in Figure 2. The left-hand side of the 
equation were indicators of NA and PSS (see detailed 
descriptions about these indicators in the Empirical 
Illustration section), which were linked to NA and 
PSS via the factor loadings, k1 and k2. The first factor 
loading for each factor was fixed at unity for identifi
cation purposes. We allowed measurement errors of 
NA (i.e., �1, i, t - �3, i, t) to be correlated to account for 
common errors associated with the latent factor. We 
used r�12 , r�13 , and r�23 to denote the covariance 
between �1, i, t and �2, i, t, �1, i, t and �3, i, t , and �2, i, t and 
�3, i, t , respectively.

General modeling framework

The PFA model presented above can be viewed as a 
special case of linear discrete-time state-space models. 
In this section, we introduce this general modeling 

framework as the general notations will help illustrate 
the estimation procedure used in our proposed 
approach. Overall, the general modeling framework is 
composed of a dynamic model which describes how 
the latent variables change over time, and a measure
ment model which relates the observed variables to 
latent variables at a specific time.

Specifically, the dynamic model exists in a state- 
space form (Durbin & Koopman, 2001) as

gi, t ¼ aþ Fgi, t−1 þ Bxi, t þ fi, t
fi, t � Nð0, RfÞ

(4) 

where gi, t is a q-dimensional vector of latent variables 
for person i at time t, and is linked to their previous 
values, gi, t−1 via a q� q transition matrix, F; a is a 
q-dimensional vector of intercepts; B is a matrix of 
regression weights relating the covariates in xi, t to gi, t;

and fi, t is a q-dimensional vector of process noises 
following a multivariate normal distribution with zero 
means and a covariance matrix Rf: Due to the 
dependencies of gi, t on gi, t−1, the initial conditions 
for the dynamic processes have to be specified. Here, 
we specify these initial conditions for gi, 1 to be 

Figure 2.  A diagram illustrating the idea of the PFA model presented in Equations (1)–(3). The purpose of this diagram was to 
visualize the relationships between latent factors of interest, and between latent factors and their corresponding indicators, thus 
covariates and level-2 predictors were not included. NA: negative affect; PSS: perceived stress.
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normally distributed with means lg1 
and covariance 

matrix Rg1:

In the measurement model, the latent variables at 
time t, gi, t, are indicated by a p-dimensional vector of 
manifest variables at time t, yi, t , as follows.

yi, t ¼ sþ Kgi, t þ Axi, t þ ei, t
ei, t � Nð0, ReÞ

(5) 

where s is a p-dimensional vector of intercepts; A is a 
matrix of regression weights relating the covariates in 
xi, t to yi, t; K is a p� q factor loading matrix relating 
the manifest variables to the latent variables; and ei, t 
is a vector of measurement errors assumed to be seri
ally uncorrelated over time and normally distributed 
with zero means and covariance matrix Re:

Step-by-step guide on implementing MI-FS

Successful use of factor scores in MI processes for 
ILD are contingent on the availability of a reasonable 
factor analytic model and corresponding longitudinal 
factor score estimation approach. In the following sec
tion, we group some of these decisions into a five-step 
description of how to implement the MI-FS approach 
under the general state-space modeling framework 
described in Equations (4) and (5), of which our 
model of interest, the PFA, is a special case.

Step 1. Constructing factor models

Obtaining factor scores is a critical step in MI-FS. An 
intuitive approach for obtaining factor scores is factor 
analysis, such as exploratory factor analysis (EFA) and 
confirmatory factor analysis (CFA). Below we intro
duce two types of dynamic CFA models in the context 
of PFA and VAR models, respectively. Alternative 
models such as EFA models (see, e.g., Gilbert & 
Meijer, 2005) can also be potentially used for obtain
ing factor scores, but we focus on CFA models in the 
present article.

For longitudinal models that can be expressed in 
state-space form, such as the PFA utilized in our 
motivating example, the measurement model of the 
state-space model (Equation (5)) is itself a factor ana
lytic model. The state-space model thus serves as a 
rubric for obtaining longitudinal factor scores for 
imputation purposes. Other cross-sectional factor ana
lytic models can also be specified as special cases of 
the state-space model (with F in Equation (4) set to 
be a null matrix). If any information is available to 
define the dynamics of the implicated variables, a 
state-space model that includes both the measurement 
and dynamic models should be utilized whenever 

possible. For instance, when the PFA model is used 
for data analysis and missingness occurs in both 
dependent variables and covariates, one can fit a PFA 
model without covariates to obtain factor scores using 
the Kalman filter or Kalman smoother (see more 
details in Step 2 below)—for instance, excluding the 
time-varying covariates in Equation (1) from the ana
lysis so that we do not need to handle missingness in 
covariates. Such omission of covariate effects when 
they are indeed present in the true model would 
induce biases, particularly in the dynamic-related 
parameters (e.g., F and Rf in Equation (4)). In our 
simulation study, we verified that these biased factor 
score estimates may still be informative for the MI 
procedure by providing information about the dynam
ics of the latent variables, especially when the missing
ness is associated with the values of latent variables.

As another example, the VAR model may also be 
specified as another special case of the state-space 
model. In this case, the latent variable estimators 
described in the next step can provide model-implied 
estimates of the missing observed variables at a par
ticular timepoint, as opposed to just their observed 
lead or lagged values at other nonmissing timepoints. 
Alternatively, if missingness in dependent variables is 
hypothesized to be triggered by a common latent vari
able, one may fit a CFA model in which the depend
ent variables in the VAR model are specified as 
indicators of a common factor. In this case, even 
though the dependent variables that constitute the 
VAR processes do not share any theoretically mean
ingful common factors, their shared missingness 
mechanisms might constitute a source of covariation 
that needs to be accounted for. The present study 
explored this possibility in the context of a Monte 
Carlo simulation study. In other contexts, an EFA 
may need to be performed to facilitate the derivation 
of a heuristic factor structure.

Step 2. Estimating latent variable values

Once a factor analytic model of choice has been speci
fied, popular factor score estimators, such as the 
Kalman filter (KF; Kalman, 1960) or the related 
Kalman smoothers (Ansley & Kohn, 1985; Chow 
et al., 2010; Dolan & Molenaar, 1991; Oud et al., 
1990) can then be applied to obtain the estimates of 
latent variable values.

Here, we briefly describe the key estimation proce
dures. More detailed estimation procedures for fitting 
the model shown in Equations (4) and (5) can be 
found in Harvey (1990) and Chow et al. (2010). In 

66 Y. LI ET AL.



brief, the KF provides the conditional latent variable 
estimates for each person at a particular time t based 
on observed data available up to time t, namely, 
Eðgi, tjfyi, j, j ¼ 1, :::, tgÞ, and the corresponding covari
ance matrix, Covðgi, tjfyi, j, j ¼ 1, :::, tgÞ: In applications 
where the entire time series of observations is avail
able for estimation purposes, a closely related alterna
tive is a Kalman smoothing technique known as the 
fixed interval approach, which yields the smoothed 
latent variable estimates, Eðgi, tjfyi, j; j ¼ 1, :::, TigÞ, 
and the corresponding covariance matrix, 
Covðgi, tjfyi, j, j ¼ 1, :::, TigÞ, where Ti is the number of 
observations for person i. This approach has been 
shown to be equivalent to the well-known regression 
approach for estimating factor scores (Chow et al., 
2010; Dolan & Molenaar, 1991).

Application of the KF and related techniques 
assumes that the parameter are fixed at their known 
values. We provide a brief description about ways to 
obtain these parameter estimates. Under normality 
assumptions of the measurement and process noise 
components and linearity of the dynamic and meas
urement functions (see Equations (4) and (5)), the 
prediction errors, yi, t − Eðyi, tjfyi, j, j ¼ 1, :::, t − 1gÞ, 
which capture the discrepancies between the manifest 
observations and the predictions implied by the model 
at time t, are multivariate normally distributed. This 
yields a log-likelihood function, also known as the 
prediction error decomposition function (Schweppe, 
1965), computed using by-products from the KF, 
that can be optimized to yield estimates of all the 
time-invariant parameters. This is similar to the FIML 
parameter estimates which are based on only the 
available observed variables. In sum, following 
the specification of a factor analytic model, the KF, 
the Kalman smoother, and optimization of the predic
tion error decomposition function can be utilized to 
yield maximum likelihood point estimates for all the 
time-invariant parameters, and smoothed estimates of 
all the latent variables for all individuals and 
timepoints.

Step 3. Implementing multiple imputation

The factor scores obtained in Step 2 will be used in 
MI to inform the missingness mechanism (i.e., 
missingness associated with latent factors). With MI, 
missing observations are repeatedly imputed based on 
prespecified imputation models to yield multiple 
imputed data sets. One commonly used method for 
imputing missing values is the fully conditional speci
fication (FCS) method (van Buuren & Oudshoorn, 

2000), which can be carried out with the Multivariate 
Imputation by Chained Equations R package 
(MICE; van Buuren & Groothuis-Oudshoorn, 2011). 
The specific algorithm adopted in MICE is called 
“chained equations” (Raghunathan et al., 2001), which 
imputes missing values in each variable iteratively, 
conditional on the observed and imputed values prior 
to the current imputation.

Assume that we have p dependent variables, y ¼
ðy1, :::, ypÞ, and q covariates, x ¼ ðx1, :::, xqÞ: The 
observed parts of y and x are denoted by yobs ¼

ðyobs
1 , :::, yobs

p Þ and xobs ¼ ðxobs
1 , :::, xobs

q Þ, respectively. 
Let z be a vector containing all fully observed auxil
iary variables that are hypothesized to be associated 
with the missingness in y and x; y−j ¼

ðy1, :::, yj−1, yjþ1, :::, ypÞ be the collection of the p − 1 
variables in y without yj, and x−j ¼

ðx1, :::, xj−1, xjþ1, :::, xqÞ be the collection of the q − 1 
variables in x without xj. Then the conditional distri
bution of yj and xj are Pðyjjhyj , y−j, x, zÞ and 
Pðxjjhxj , x−j, y, zÞ, respectively, where hyj and hxj are 
unknown parameters that are specific to the respective 
conditional distributions. Then starting from a simple 
draw from observed marginal distributions of yj, the 
tth iteration of the chained equations algorithm will 
successively draw samples (denoted by 
h�ðtÞyj

, h�ðtÞxj
, y�ðtÞj , and x�ðtÞj ) from the respective condi

tional distribution of hyj , hxj , yj, and xj. Here, y�ðtÞj 
can be viewed as the imputed values for the jth 
dependent variable at the tth iteration, and we let 
yðtÞj ¼ ðyobs

j , y�ðtÞj Þ represent the jth imputed dependent 
variable at the tth iteration, which consists of both 
observed and imputed values. Similarly, we use x�ðtÞj 
to denote the imputed values for the jth covariate at 
the tth iteration, and xðtÞj ¼ ðxobs

j , x�ðtÞj Þ to represent 
the jth imputed covariate.

The process of drawing these samples can be sum
marized as follows.

Update y�ðtÞ1 , :::, y�ðtÞp :

h�ðtÞy1
� Pðhy1 jyobs

1 , yðt−1Þ
−1 , xðt−1Þ, zÞ

y�ðtÞ1 � Pðy1jh
�ðtÞ
y1

, yðt−1Þ
−1 , xðt−1Þ, zÞ

:::

h�ðtÞyp
� Pðhyp jyobs

p , yðtÞ−p, xðt−1Þ, zÞ

y�ðtÞp � Pðypjh
�ðtÞ
yp

, yðtÞ−p, xðt−1Þ, zÞ

Update x�ðtÞ1 , :::, x�ðtÞq :

h�ðtÞx1
� Pðhx1 jxobs

1 , yðtÞ, xðt−1Þ
−1 , zÞ

x�ðtÞ1 � Pðx1jh
�ðtÞ
x1

, yðtÞ, xðt−1Þ
−1 , zÞ

:::

h�ðtÞxq
� Pðhxq jxobs

q , yðtÞ, xðtÞ−q, zÞ

x�ðtÞq � Pðxqjh
�ðtÞ
xq

, yðtÞ, xðtÞ−q, zÞ

Note that the chained equations algorithm is essen
tially Gibbs sampling, a widely used Markov chain 
Monte Carlo (MCMC) algorithm, but different from 
many MCMC algorithms, the chained equations algo
rithm often converges faster (e.g., convergence can be 
achieved after 10–20 iterations). Finally, the chained 
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equations algorithm will be implemented multiple 
times to generate multiple imputed data sets.

With MICE, users can specify a univariate imput
ation model for each incomplete variable, so that at 
each iteration of the above algorithm, missing values in 
each variable will be imputed based on the prespecified 
imputation model (i.e., Pðyjjhyj , y−j, x, zÞ for dependent 
variables and Pðxjjhxj , x−j, y, zÞ for covariates). In the 
present study, we use the default imputation models in 
MICE to impute different types of variables—for 
instance, predictive mean matching (PMM; Little, 
1988) for continuous variables and multinomial logistic 
regression for categorical variables. Specifically, con
sider a variable c which has some cases with missing 
data. The PMM method works by first estimating the 
conditional distribution of c given all observed variables 
that are hypothesized to be related to the missingness 
in c, using a predictive model (typically linear regres
sion). Then, for each missing value of c, the algorithm 
selects an observed value of c that is close to the pre
dicted value. This observed value is used to replace the 
missing value. This method is particularly useful when 
dealing with continuous variables, and can produce 
imputations that preserve the distribution and relation
ships between variables in the original data set. For 
missing categorical variables, multinomial logistic 
regression models are often used to generate the pre
dictive distribution.

The proposed approach considers the following vari
ables to be included in the imputation model: (1) varia
bles in the model of interest, including both dependent 
variables and covariates; (2) factor scores obtained 
from Step 2; (3) lags/leads of variables in (1) and (2); 
(4) missing data indicators; and (5) other auxiliary vari
ables hypothesized to be related to variables of interest 
and/or missing data mechanisms. Among these varia
bles, the factor scores are important missingness-related 
variables when the missingness is associated with latent 
factors; the lagged and leading variables are helpful in 
capturing the time dependencies between observations; 
and missing data indicators are important auxiliary 
variables as evidenced in previous research (Beesley 
et al., 2021; Sperrin & Martin, 2020).

Step 4. Fitting models of interest and pooling 
estimation results

Assume that we obtain m imputed data sets from Step 
3, then we can fit our model of interest to each 
imputed data set to obtain m sets of parameter esti
mates, which are then pooled following Rubin’s rules 
(Rubin, 1976) to obtain the final estimation results 

(i.e., point and standard error estimates, confidence 
intervals, etc.).

Finally, the MI-FS approach can be implemented 
using an utility function called dynr.mi() in an R pack
age called Dynamic Modeling in R (dynr; Ou et al., 
2019), which was designed to handle possibly nonign
orable missingness in the dependent variables and/or 
covariates by performing the MI procedure adapted to 
ILD with dynamic systems modeling within dynr. A 
more thorough introduction of the general modeling 
framework and estimation procedures underlying dynr, 
as well as a detailed introduction about dynr.mi() can 
be found in the relevant literature (Chow et al., 2018; 
Li et al., 2019; Ou et al., 2019).

Missing data handling approaches considered

The proposed approach was compared with LD (a 
baseline approach) and two MI strategies without fac
tor scores, referred to as “full MI” and “partial MI” in 
Ji et al. (2018), and “MI with manifest variables (MI- 
MV)” and “partial MI with manifest variables (PMI- 
MV)” in the present article. The four approaches are 
detailed below, with a brief summary and comparison 
of these approaches in Table 1.

LD

The LD approach was designed to mirror common prac
tice of deleting an entire instance (row) of observations 
with missingness in any variable, whereas the LD 
approach was implemented in the present study by 
removing rows with missing entries in covariates, 
whereas rows with missing entries only in the dependent 
variables were kept in the data set and handled via FIML.

MI-FS

Following the four steps described before, we first 
obtained factor scores by fitting a PFA model with no 
covariates. Then we multiply imputed both dependent 
variables and covariates using an imputation model 
consisting of (1) variables in the model of interest, 
including both dependent variables and covariates; (2) 

Table 1. Summary of missing data handling methods consid
ered in the present study.
Method Missingness in DVs Missingness in covariates Use factor scores

LD FIML Removed No
PMI-MV FIML MI No
MI-MV MI MI No
MI-FS MI MI Yes

Note: DV: dependent variables; MI: multiple imputation; FIML: full-informa
tion maximum likelihood; LD: listwise deletion; PMI-MV: partial MI with 
manifest variables; MI-MV: MI with manifest variables; MI-FS: MI with 
factor scores.
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factor scores; (3) lags/leads of variables in (1) and (2); 
(4) missing data indicators; and (5) other auxiliary 
variables. Lastly, we fitted the PFA model to each 
imputed data set and pooled estimation results.

MI-MV

The MI with manifest variables approach was almost 
identical to the MI-FS, except that factor scores did 
not need to be estimated and included in the imput
ation model.

PMI-MV

Both MI-MV and PMI-MV included dependent varia
bles and covariates in the imputation model. The dif
ference was that, with MI-MV, the imputed 
dependent variables were used in the following model 
fitting as if they were completely observed, whereas 
with PMI-MV, the imputed values of dependent varia
bles were discarded since the missingness in depend
ent variables was handled via FIML.

Simulation study

The goals of this simulation study were to evaluate: 
(1) whether and how the incorporation of factor 
scores into MI affect the estimation accuracy and 
uncertainty compared to LD and MI without factor 
scores; (2) the effects of the autocorrelation level of 
the process on the performance of these approaches; 
(3) the effects of missingness mechanisms on the per
formance of these approaches; (4) the role of missing
ness indicators in data imputation; and (5) the effects 
of misspecification of factor analytic structure in 
deriving factor scores for MI purposes. The results 
will help guide researchers to select missing data 
handling approaches that are better suited for their 
study questions, hypotheses about missing data mech
anisms, as well as data characteristics.

Specifically, using the PFA model, we simulated 
data by crossing two factors with two conditions each, 
yielding four conditions in total. The first factor was 
the autocorrelation level of the VAR process, which 
was set to either low or high to investigate the per
formance of missing data handling approaches when 
they are applied to longitudinal data with different 
autocorrelation levels. The second factor was the miss
ingness mechanism, namely, whether missingness was 
driven by items versus latent factors. Four missing 
data handling approaches were considered, including 

LD, MI-FS, MI-MV and PMI-MV. For each of the 
three MI-based approaches, we also considered MI 
with and without the inclusion of missingness indica
tors in the imputation model. Finally, based on simu
lation results designed to address our first three 
request questions of interest, we performed targeted 
simulations within one the four conditions—missing 
mechanisms driven by latent factors and data with 
low autocorrelations, to further examine the perform
ance of our proposed method under misspecification 
of the factor analytic structure. In the following sec
tion, we describe the data generating model, followed 
by details of the two design factors, the four missing 
data handling approaches considered in this study, as 
well as a set of summary statistics used to evaluate the 
estimation performance. The R code for generating 
complete and missing data as well as implementing 
different missing data handling approaches can be 
accessed via https://github.com/yanlingli1/MI-with- 
factor-scores.

Complete data generation model

The complete data generation model was similar to 
the PFA model presented in Equations (1)–(3), except 
that we did not allow the intercepts in the dynamic 
model to be person-specific and the measurement 
errors to be correlated, as well as reduced the number 
of covariates for simplicity purposes.

The dynamic model was specified below, where 
most notations have been described in the Motivating 
Example section, reiterated here for clarity with 
“context–neutral” notations for the dependent varia
bles (i.e., g1, i, t and g2, i, t) and time-varying covariates 
(i.e., x1, i, t, a binary covariate, and x2, i, t, a continuous 
covariate). Specifically, the dynamic model was speci
fied as:

g1, i, t

g2, i, t

" #

¼
a1 b1

b2 a2

" #
g1, i, t−1

g2, i, t−1

" #

þ
c1 d1

c2 d2

" #
x1, i, t

x2, i, t

" #

þ
f1, i, t

f2, i, t

" #

,
f1, i, t

f2, i, t

" #

� Nð0, Rf ¼
r2

f1
rf12

rf12 r2
f2

" #!

(6) 

whereas the measurement model was defined as:

y1, i, t
y2, i, t
y3, i, t
y4, i, t
y5, i, t
y6, i, t

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

¼

l1 1 0
l2 k1 0
l3 k2 0
l4 0 1
l5 0 k3
l6 0 k4

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

1
g1, i, t
g2, i, t

2

4

3

5þ

�1, i, t
�2, i, t
�3, i, t
�4, i, t
�5, i, t
�6, i, t

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

, �j, i, t � Nð0, r2
�j
Þ

(7) 
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in which the manifest variables, y1, i, t − y3, i, t, were 
indicators for g1, i, t , with k1 and k2 being the factor 
loadings; and y4, i, t − y6, i, t were linked to g2, i, t via 
factor loadings, k3 and k4. Note that the first factor 
loading for each factor was fixed at unity for 
identification purposes. We also freely estimated the 
intercepts, l1 - l6. Each manifest process’s measure
ment errors were hypothesized to follow a univariate 
normal distribution.

The complete data set that consisted of 
30 participants and 100 timepoints for each partici
pant was simulated based on the PFA model defined 
in Equations (6) and (7), where the true values of 
model parameters were set mainly based on estima
tion results in previous studies (e.g., You et al., 2020). 
Specifically, in the dynamic model, the true values for 
a1 and a2 were set to 0.5 for the low-autocorrelation 
condition and 0.7 for the high-autocorrelation condi
tion. Under the low-autocorrelation condition, the 
relationship between a variable’s current value and its 
previous values was low to moderate, whereas under 
the high-autocorrelation condition, such relationship 
was high. These values were specifically selected so 
the resultant VAR process is stable. A system is said 
to be stable (L€utkepohl, 2005) when all of its statistical 
properties, including mean and variance, are constant 
over time. For the case of the VAR process shown in 
Equation (4), the process is stable when the roots of 
the determinant of the matrix I − FB all have moduli 
greater than unity, where B is the backshift operator 
such that Bgt ¼ gt−1: An AR(1) process is stable when 
the AR parameter (e.g., a1 and a2 in Equation (6)) is 
between −1 and 1 (noninclusive). Processes that are 
unstable, or close to being unstable, are generally 
associated with greater estimation challenges, although 
they also highlight more clearly the impact of using 
factor scores in the imputation process.

The CR parameters were set as b1 ¼ −0:2 and b2 ¼

−0:3; the covariate-related coefficients were specified 
as c1 ¼ 0:3, c2 ¼ −0:3, d1 ¼ 0:5, and d2 ¼ −0:4; and 
elements in Rf were set as r2

f1
¼ 2, rf12 ¼ 0:5, and 

r2
f2
¼ 6: In terms of parameters in the measurement 

model, the intercepts were set to 3 for l1 - l6; the fac
tor loadings were set as k1 ¼ k3 ¼ 2 and k2 ¼ k4 ¼ 1;

and measurement error variances were set as 1 for r2
�1 

- r2
�6
:

Missing data generation models

To investigate the roles of different missing data 
mechanisms and implications on the utility of 
including factor scores in the imputation process, we 

examined two possible nonignorable missingness 
mechanisms, namely, when the missingness was 
triggered by (1) values of individual items (i.e., item- 
dependent missingness); and (2) values of latent fac
tors (i.e., factor-dependent missingness). The former 
would generate missingness in scattered items when 
the values of these items were extreme, whereas the 
latter would yield simultaneous missingness on all 
items that loaded on the implicated factor when the 
values of this factor were extreme. The coefficients in 
the missing data generation model below were speci
fied to generate about 30% missingness in both 
dependent variables and covariates. This missingness 
rate was decided based on the range of percentages of 
missing data in previous longitudinal studies. For 
instance, a review article found that among 82 longi
tudinal studies, the percentage of missing data varied 
from 10% to 55%, with an average of 14% (Okpara 
et al., 2022). In addition, this setting also allowed us 
to compare the proposed method with two existing 
methods proposed by Ji and colleagues (see details 
below), who conducted their simulation studies also 
under a missingness rate of 30%.

Item-dependent missingness

The missingness associated with individual items was 
generated based on the missing data generation model 
below.

logitðPðRxj, i, t ¼ 1jxj, i, t , z1, i, t , z2, i, tÞÞ

¼ /0 þ /1z1, i, t þ /2z2, i, t þ /3xj, i, t , j ¼ 1, 2 (8) 

logitðPðRyj, i, t ¼ 1jyj, i, t, z1, i, t, z2, i, tÞÞ

¼ /0 þ /1z1, i, t þ /2z2, i, t þ /3yj, i, t , j ¼ 1, :::, 6 (9) 

where Rxj, i, t and Ryj, i, t were missingness indicators 
(1¼missing) for covariates and dependent variables, 
respectively. /1 – /2 were both set to 0.6; /3 was set 
to −0.8 for covariates, −0.6 for y1 – y3, and 0.6 for y4 

– y6; and /0 was adjusted for each manifest variable 
and covariate to make sure the final missingness rate 
for each of them was approximately 30%. The prob
ability of missingness was dependent on (1) two fully 
observed variables, z1, i, t and z2, i, t , simulated from a 
uniform distribution, U[−3, 3] and (2) the variable 
itself, thus yielding a combination of MAR and 
NMAR conditions.

Based on the above specifications, the manifest 
dependent variable, yj, i, t accounted for a relatively 
substantial portion of the variability in the log odds of 
missingness in the corresponding dependent variable. 
Specifically, we calculated R-squared values (McKelvey 
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& Zavoina, 1975) to quantify the extent to which yj, i, t 
contributed to the prediction of missingness in yj, i, t:

The contribution of z1, i, t and z2, i, t, based on 
McKelvey and Zavoina’s R-squared, were both around 
0.2, while the contribution of y1, i, t − y3, i, t and y4, i, t − 
y6, i, t were round 0.29 and 0.46, respectively, in 
Equation (9). Thus, the dependent variable itself was 
designed to play a slightly higher role than the fully 
observed covariates in affecting the log odds of miss
ingness in the dependent variable under this item- 
dependent missingness condition.

After incorporating such item-dependent missing
ness, each item would have 30% missing entries and it 
would be rare that all items were missing for the same 
participant given the nature of the missing data gener
ation model—that is, the missingness in each item 
depended on this item itself.

Factor-dependent missingness

Under this condition, missingness in covariates was 
generated based on the same missing data generation 
model as specified above (see Equation (8)), whereas 
missingness in dependent variables was generated 
based on the following missing data generation mod
els.

logitðPðRyj, i, t ¼ 1jg1, i, t, z1, i, t, z2, i, tÞÞ

¼ /0 þ /1z1, i, t þ /2z2, i, t þ /3g1, i, t , j ¼ 1, 2, 3
(10) 

logitðPðRyj, i, t ¼ 1jg2, i, t, z1, i, t, z2, i, tÞÞ

¼ /0 þ /1z1, i, t þ /2z2, i, t þ /3g2, i, t , j ¼ 4, 5, 6
(11) 

The difference between Equation (9) and Equations 
(10) and (11) was that the probability of missingness 
in each dependent variable (e.g., y1—y3) was specified 
to be associated with the corresponding latent variable 
(e.g., g1), rather than the dependent variable itself. 
/1—/2 were both set to 0.6; /3 was set to −0.6 for g1 
and 0.6 for g2 to represent two different scenarios— 
the dependent variables (e.g., y1—y3) were more likely 
to be missing when the values of the corresponding 
latent variable (e.g., g1) were low/high; and /0 was 
adjusted to make sure the final missingness rate for 
each manifest variable was approximately 30%.

Based on McKelvey and Zavoina’s R-squared, the 
contribution of z1, i, t and z2, i, t , were both around 0.2, 
while the contribution of g1, i, t was 0.26 in Equation 
(10) and 0.39 in Equation (11). Thus, the latent fac
tors were also designed to contribute more than the 
fully observed covariates in affecting the log odds of 

missingness in the latent variables under the factor- 
dependent missingness condition, as the manifest 
dependent variables were under the item-dependent 
missingness condition. However, note that missing
ness in the time-varying covariates was never depend
ent on the latent factors or manifest dependent 
variables but just the fully observed auxiliary variables 
(see Equation (8)).

The factor-dependent missing data model defined 
in Equations (10) and (11) specifies the same prob
ability of missingness for all indicators of the same 
latent factor. In other words, when one indicator is 
missing, all other indicators for the same factor would 
also be missing. In contrast, the item-dependent miss
ing data model in Equation (9) would not yield such 
simultaneous missingness in general because the prob
ability of missingness is item-specific. In other words, 
the simultaneous vs. scattered missing data patterns 
were direct consequences of the two different missing
ness mechanisms.

Implementation of missing data handling 
approaches

Four missing data handling approaches were imple
mented, including LD, MI-FS, MI-MV, and PMI-MV. 
The implementation of MI-FS followed the four steps 
described before. We first obtained factor scores by 
fitting the PFA model in Equations (6) and (7) with 
no covariates. Then we multiply imputed both 
dependent variables and covariates using an imput
ation model consisting of (1) six dependent variables 
(y1, i, t—y6, i, t) and two covariates (x1, i, t and x2, i, t); (2) 
two factor scores (smoothed estimates of g1, i, t and 
g2, i, t); (3) lags of variables in (1) and (2); (4) eight 
indicators for missingness in dependent variables and 
covariates; and (5) two auxiliary variables associated 
with missingness mechanisms (z1, i, t and z2, i, t). Here, 
the default imputation models in the MICE package 
were used to impute different types of variables. 
Specifically, the PMM method (introduced before) 
was used for continuous variables (e.g., y1, i, t—y6, i, t , 
and x2, i, t), and logistic regression was used for cat
egorical variables (e.g., x1, i, t). Lastly, we fitted the PFA 
model defined in Equations (6) and (7) to each 
imputed data set and pooled estimation results. The 
implementation of other three approaches can be 
found in the previous section.

For all MI-based approaches, 5 imputations were 
implemented with 30 iterations in the MCMC proced
ure in each imputation. Although more imputations 
may be needed for more complex models, we found 
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that 5 imputations might be sufficient given the good 
estimation results (see simulation results). In addition, 
the number of iterations was determined based on the 
trace plots generated by the MICE package, which dis
played the mean and standard deviation of the 
imputed values against the iteration number for each 
of the 5 imputations. When the number of iterations 
was set to 30, the trace lines showed good mixing for 
all variables without any systematic trends. In add
ition, based on the R̂ values (a summary statistic to 
assess the convergence across multiple MCMC chains 
by comparing the within-chain variance to the vari
ance of the pooled draws across multiple chains; 
Gelman et al., 2013) output by the dynr.mi() utility 
function in dynr, satisfactory convergence (i.e., 
R< 1.1) was achieved for all variables under 30 
iterations.
Among these four approaches, we hypothesized that 
LD would generally yield the worst performance on 
estimation accuracy because the deletion of rows of 
data would alter the time dependencies between 
observations and reduce the sample size available for 
estimation purposes. Among the three MI-based 
approaches, given the nature of the hypothesized 
model (i.e., based on dynamics of factors) and the 
missingness mechanism (i.e., factor-dependent miss
ingness), we hypothesized that MI-FS would outper
form MI-MV under conditions with factor-dependent 
missingness because the inclusion of factor scores and 
their lagged values would facilitate recovery of the 
true temporal relationships among latent variables, 
provided that the factor score estimates were reason
able approximations to the true factor scores. The 
relative performance of the MI-FS and PMI-MV was 
unknown and a focus of the simulation study. The 
PMI-MV uses FIML to handle missingness in depend
ent variables, which generally works well when the 
model is correctly specified, even under some NMAR 
scenarios. For instance, Ji et al. (2018) examined the 
performance of PMI-MV and MI-MV in the context 
of VAR models under the low-autocorrelation condi
tion, and the simulation results showed that regardless 
of the missingness mechanism (i.e., MCAR, MAR, 
and NMAR), the PMI-MV approach generally outper
formed the MI-MV approach in terms of parameter 
estimation (Ji et al., 2018). However, they only com
pared these approaches under the low-autocorrelation 
condition. The increase in the level of autocorrelations 
may pose additional challenges to imputation and par
ameter estimation given that time series with a high 
level of autocorrelation tends to be close to 
the unstable range. Hence, an investigation of the 

performance of these MI strategies with highly auto
correlated data was warranted.

In this simulation study, we compared the perform
ance of these methods with data generated using the 
PFA model in Equations (6) and (7) across four scen
arios (two missing data models� two autocorrelation 
conditions), with the goal of investigating under what 
circumstances one method outperforms the other in 
terms of estimation accuracy and uncertainty.

Performance measures

For each condition and method, we ran 500 Monte 
Carlo replications, based on which we calculated sum
mary statistics such as biases, relative biases, standard 
errors (SEs), Monte Carlo standard errors (MCSEs), 
and root-mean-square errors (RMSEs), as defined 
below.

Suppose that h was the true value of a particular 
parameter, and the point and standard error estimates 
of h in the hth (h ¼ 1, :::, H) replication were ĥh and 
SE

ĥh
, respectively. Let the average of point estimates 

across H replications be �h, then the bias, relative bias, 
SE, MCSE and RMSE were defined as follows:

bias ¼
1
H

XH

h¼1
ðĥh − hÞ, (12) 

relative bias ¼
1
H

XH

h¼1

ĥh − h

h
, (13) 

SE ¼
1
H

XH

h¼1
SE

ĥh
, (14) 

MCSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
H − 1

XH

h¼1
ðĥh − �hÞ

2

v
u
u
t , (15) 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
H

XH

h¼1
ðĥh − hÞ

2

v
u
u
t : (16) 

Here, the SE represents the average estimated 
standard error for parameter h, which was compared 
to the MCSE, the Monte Carlo or empirical standard 
error, obtained from the standard deviation of point 
estimates for h over H replications. It was expected 
that the SE and MCSE measures would be close to 
each other in the simulation study. In addition, to 
compare the quality of the SE estimates to the 
“benchmark” SE estimates obtained from the complete 
data set, we calculated “dSEfulls,” defined as the dif
ference between SEs obtained using any of the four 
missing data handling methods and SEs obtained 
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based on complete data without missingness. Despite 
the fact that missing data would typically lead to 
larger SE estimates compared to complete data, this 
specific measure allowed us to evaluate the relative 
performance of the four missing data handing meth
ods in terms of the deviation from the SEs based on 
complete data. That is, the SEs based on complete 
data were used as “benchmark” estimates. We also 
calculated power, defined as the proportion of replica
tions whose confidence intervals did not contain 0, 
and coverage rates, defined as the percentages of repli
cations whose confidence intervals contained the true 
values. Simulation results with higher power and 
coverage rates close to the nominal rate of 95% would 
be considered ideal. Note that the power reported in 
this simulation study was based on the current specifi
cations of effect sizes and sample sizes.

Simulation results

Due to space limits, we focus in this section on three 
summary statistics—RMSEs, dSEfulls, and coverage 
rates. Other summary statistics (e.g., biases, SEs, 
MCSEs, and power) can be found in the full simula
tion results, as summarized in Tables S1–S26 in the 
Supplementary Material. Across all simulation condi
tions, we verified that the SE and MCSE measures 
were relatively close to each other. Since parameters 
in the dynamic model were of key interest, we pre
sented results for most parameters in the dynamic 
model but aggregated other parameters by parameter 
type and then calculated the average of each summary 
statistic for parameters within the same group (see 
details about parameter groups in Figures 3–9).

In the following discussion of simulation results, 
we first described results under the low-autocorrel
ation condition because this autocorrelation level mir
rored the range of autocorrelations reported in most 
published studies, and then focused on comparisons 
between different simulation conditions to provide a 
more thorough comparison. We then discussed the 
role of missing data indicators, the effects of misspeci
fication of the factor analytic structure, and other 
findings. Finally, we provided our recommendations 
for the selection of missing data handling methods in 
different scenarios.

Effects of incorporating factor scores into MI 
(focusing on the low-autocorrelation condition)

This subsection focused on results under the low- 
autocorrelation condition. First, comparisons of 

RMSEs across the four methods (see Figures 3–5) 
showed that MI-based methods (i.e., MI-FS, MI-MV 
and PMI-MV) substantially outperformed LD on most 
parameters except for factor loadings, variance param
eters (e.g., process noise variances, measurement error 
variances), and one covariate-related coefficient in the 
dynamic model (see “d1” in Figure 4). The worse per
formance of LD on most parameters in the dynamic 
model was expected since the deletion of rows of data 
altered the time dependencies between observations.

Focusing next on the three MI-based methods, the 
simulation results highlighted the advantage of the 
MI-FS over MI-MV in recovering AR parameters (see 
“a1” and “a2” in Figure 3), suggesting that the inclu
sion of factor scores in imputation models did help 
capture the time-lagged relationship among latent fac
tors and the missingness mechanism. Compared with 
PMI-MV, MI-FS yielded smaller RMSEs for a2 and 
comparable RMSEs for a1 under the low-autocorrel
ation condition. The difference in the relative per
formance on a1 and a2 might be due to different 
variability levels of g1, i, t and g2, i, t: In fact, in this low- 
autocorrelation condition, although the autocorrel
ation level was set to be the same (i.e., 0.5) for g1, i, t 
and g2, i, t, g2, i, t was characterized by higher variability 
due to its larger process noise variances. Typically, it 
would be harder to recover a2 than a1 in this scenario. 
These results suggested that under the low-autocorrel
ation condition, MI-FS might be more robust to high- 
variability time series.

In term of CR parameters, the three MI-based 
methods yielded almost identical results on RMSEs 
(see “b1” and “b2” in Figure 3). By contrast, compari
sons on the coefficients of time-varying covariates (see 
Figure 4) differed between low- and high-autocorrel
ation conditions and will be discussed in detail in the 
following subsection. Note that the larger RMSEs (i.e., 
close to 0.1) for coefficients of the binary time-varying 
covariate (i.e., “c1” and “c2”) indicated more difficulty 
in recovering this type of parameters than other 
dynamic model parameters.

Despite the promising use of MI-FS in recovering 
dynamics of latent factors, we found that the MI-FS 
yielded worse performance than MI-MV and PMI- 
MV on variance parameters, including both process 
noise variances and measurement error variances (see 
Figure 5). The RMSEs for these parameters under MI- 
FS were twice as high as under MI-MV or PMI-MV. 
Further inspection revealed that the MI-FS tended to 
underestimate process noise variances, which might 
be due to some losses in data variability at the item 
level when factor scores were included to generate 
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imputed values. Also note that a model without cova
riates was used to obtain factor scores, which might 
also lead to biased process noise variance estimates. 
By contrast, there were no systematic under/overesti
mates of measurement error variances under the 
MI-FS.

Comparisons of dSEfulls are displayed in Figure 6. 
Similar to comparisons of RMSEs, MI-based methods 
substantially outperformed LD on dynamic model 
parameters because the deletion of records with miss
ing covariates reduced the sample size and led to 
larger SE estimates. Across all methods, the MI-FS led 

to the least biased SE estimates for most parameters, 
using the complete data set as a “benchmark.” The 
only exceptions resided in the intercept and error 
variance parameters in the measurement model, which 
was reasonable given the biased estimates of these 
parameters, which were usually associated with more 
estimation uncertainty. Note that for process noise 
variance and covariance parameters, the MI-FS tended 
to underestimate their SEs, compared with SE esti
mates obtained based on the complete data (see nega
tive dSEfull values in Figure 6). As mentioned before, 
the MI-FS tended to underestimate these parameters, 

Figure 3. Comparisons of RMSEs across conditions based on 500 Monte Carlo replications (part 1). This plot shows results for AR 
(a1, a2) and CR (b1, b2) parameters in the dynamic model (see Equation (6)). RMSE: root mean square error; LD: listwise deletion; 
PMI-MV: partial MI with manifest variables; MI-MV: MI with manifest variables; MI-FS: MI with factor scores.
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probably due to the reduced data variability—specific
ally, measurement noises—carried by the factor scores 
used for MI purposes, and such underestimation 
might in turn lead to underestimated SEs associated 
with these parameters.

Figures 7–9 provide some clarifications on the 
extent to which the coverage rates met the nominal 
levels of coverage probability (e.g., 95%). Under the 
low-autocorrelation condition, the MI-FS yielded the 
highest coverage rates on AR parameters but relatively 
low coverage rates (below 50%) on factor loadings 
and variance and covariance parameters. The worse 

performance on process noise variances and covari
ance was due to smaller SE estimates, more biased 
point estimates (discussed before), or both, while the 
worse performance on factor loadings and error vari
ance parameters in the measurement model was 
mainly resulted from more biased point estimates. By 
contrast, MI-MV and PMI-MV were generally charac
terized by comparable or higher coverage rates than 
the MI-FS on all but the AR parameters, partially due 
to larger SE estimates and thus larger confidence 
intervals generated by these MI with manifest variable 
approaches.

Figure 4. Comparisons of RMSEs across conditions based on 500 Monte Carlo replications (part 2). This plot shows results for coef
ficients of covariates (i.e., c1, c2, d1, d2) in the dynamic model (see Equation (6)). RMSE: root mean square error; LD: listwise dele
tion; PMI-MV: partial MI with manifest variables; MI-MV: MI with manifest variables; MI-FS: MI with factor scores.
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In sum, under the low-autocorrelation condition, 
compared to other MI methods, the MI-FS yielded 
less to comparable biases for AR and CR parameters 
but more biases in variance parameters. The compari
son of coverage rates showed lower coverage rates 
under MI-FS for most parameters except for AR 
parameters, which was partially due to the smaller SE 
estimates compared to other MI methods. It should 
be noted that all these simulation results were dis
cussed based on the PFA model in Equations (6) and 
(7). Also note that the performance of the MI-FS 

method relies heavily on the specification of the factor 
analytic model. The effects of misspecification will be 
discussed later.

Effects of autocorrelation levels

Different strengths of the AR parameters could alter 
the levels of stability of a system’s dynamics as well as 
its signal-to-noise ratio, thus affecting the 
consequences of including factor scores in the MI 
process. By comparing RMSEs between low- and 

Figure 5. Comparisons of RMSEs across conditions based on 500 Monte Carlo replications (part 3). This plots shows results for the 
remaining parameters in the model. Specifically, “d_var” and “d_cov”: process noise variances (r2

f1
, r2

f2
) and covariance (rf12

) in 
the dynamic model (see Equation (6)); “m_int”, “m_var” and “m_load”: intercepts (l1 – l6), measurement error variances (r2

�1 
– 

r2
�6

), and factor loadings (k1 – k4) in the measurement model (see Equation (7)). RMSE: root mean square error; LD: listwise dele
tion; PMI-MV: partial MI with manifest variables; MI-MV: MI with manifest variables; MI-FS: MI with factor scores.
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high-autocorrelation conditions, we found MI-based 
methods were more robust to the change of levels of 
autocorrelation in the data set, whereas LD generally 
yielded relatively worse estimation results under the 
high-autocorrelation condition. In addition, the inter
cepts of dependent variables (see “m_int” in Figure 5) 
were harder to recover under the high-autocorrelation 
condition regardless of the method used (e.g., RMSEs 
were close to 1 under MI-based approaches and above 
2 under the LD approach), which was expected 
because there were more instances of time series close 
to the unstable range under this situation.

In terms of comparisons across MI-based methods, 
the low- and high-autocorrelation conditions led to 
similar results in terms of the relative performance of 
these MI approaches, except for comparisons between 

MI-FS and PMI-MV. First, compared with PMI-MV, 
the MI-FS yielded smaller RMSEs and higher coverage 
rates on AR parameters, especially a2, under the low- 
autocorrelation condition but comparable RMSEs 
and coverage rates under the high-autocorrelation 
condition. That is, the MI-FS lost its advantage over 
PMI-MV in recovering AR parameters in the high- 
autocorrelation scenario. Second, the MI-FS overall 
outperformed the PMI-MV on the coefficients of the 
second time-varying covariate (i.e., x2, i, t) under the 
low-autocorrelation condition, but the reverse was 
observed under the high-autocorrelation condition 
(see “d1” and “d2” in Figures 4 and 8). These might 
be due to the increased difficulty in imputation and 
thus more uncertainty around imputed values in this 
high-autocorrelation scenario. Since MI-FS and PMI- 

Figure 6. Comparisons of dSEfulls across conditions based on 500 Monte Carlo replications. The dSEfull measure was defined as 
the difference between SEs obtained using any of the four missing data handling methods and SEs obtained based on complete 
data without missingness. “d_ar” and “d_cr”: AR (a1, a2) and CR (b1, b2) parameters in the dynamic model (see Equation (6)); “d_ 
x1” and “d_x2”: coefficients of covariates (i.e., c1, c2, d1, d2) in Equation (6); “d_var” and “d_cov”: process noise variances (r2

f1
, r2

f2
) 

and covariance (rf12
) in Equation (6); “m_int,” “m_var” and “m_load”: intercepts (l1 – l6), measurement error variances (r2

�1 
– r2

�6
), 

and factor loadings (k1 – k4) in the measurement model (see Equation (7)). LD: listwise deletion; PMI-MV: partial MI with manifest 
variables; MI-MV: MI with manifest variables; MI-FS: MI with factor scores.
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MV handle missingness in dependent variables differ
ently, with MI-FS using MI while PMI-MV using 
FIML, a possible reason for the reduced performance 
of the MI-FS would be that under the high-autocorrel
ation condition, the MI approach might generate some 
imputed values that rendered the corresponding time 
series unstable. More specifically, the default imput
ation model in the MICE package (e.g., see the PMM 
method introduced before) was used to perform MI 
without regard to what the true data generation model 
was, so imputations were basically performed without 
any stability constraints. In contrast, the PMI-MV 
approach, through use of the FIML, propagated for
ward in time model-implied values based on the cor
rectly specified dynamic model (i.e., PFA) at the values 
of the parameter estimates for each iteration. Thus, 
when the parameter values are in the stability range 
(which can be accomplished through constraints on the 
time series parameters during the optimization 

process), this approach would yield stable (in contrast 
to unstable, with increasing variability) model-implied 
latent variable values, unlike alternatives such as MI-FS 
and MI-MV which impute with much less constraints 
and more extraneous (sometimes noisy) information.

Effects of missingness mechanisms

In addition to autocorrelation levels, missingness 
mechanisms may also affect the (relative) performance 
of different missing data handling approaches. First, 
across all methods, we observed substantial increases 
in coverage rates on a set of parameters from item- 
dependent missingness to factor-dependent missing
ness, under the low-autocorrelation condition (see, 
e.g., “d_cov,” “m_int,” and “m_load” in Figure 9(a) 
and (c)). Such increase in coverage rates was mainly 
related to the larger SE estimates (i.e., larger confi
dence intervals) of these parameters.

Figure 7. Comparisons of coverage rates across conditions based on 500 Monte Carlo replications. The red dash line represents 
95%. This plot shows results for AR (a1, a2) and CR (b1, b2) parameters in the dynamic model (see Equation (6)). CR: cross-regres
sion; LD: listwise deletion; PMI-MV: partial MI with manifest variables; MI-MV: MI with manifest variables; MI-FS: MI with factor 
scores.
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Second, comparisons across methods did not 
change substantially under two different missing data 
mechanisms, except for more notable differences 
between MI-FS and MI-MV. Specifically, in terms of 
RMSEs on AR parameters and the process noise 
covariance, the discrepancy between MI-FS and MI- 
MV was more notable when the missingness was asso
ciated with latent factors and the autocorrelation level 
was high (see Figure 3(d) and Figure 5(d)). Such not
able improvement highlighted the power of using fac
tor scores in the imputation, especially when the 
missing data mechanism was related to latent factors 
and the autocorrelation level was high.

The role of missing data indicators

To verify the role of missing data indicators in MI, 
we replicated the simulation without including miss
ingness indicators in the implementation of MI-MV, 

PMI-MV, and MI-FS. As a result, the performance of 
PMI-MV and MI-FS remained similar, but the per
formance of MI-MV changed dramatically. That is, 
MI-MV could only yield comparable performance to 
other MI-based methods when missingness indicators 
were included in the imputation model. Otherwise, it 
would produce much larger biases in most parame
ters, some of which were even close to biases under 
LD. The results suggested that if MIs were to be used, 
missingness indicators should be selected as critical 
auxiliary variables under NMAR missingness, unless 
other variables closely related to the missingness have 
already been included in the imputation model, such 
as the inclusion of factor scores when missingness was 
associated with latent factors. However, it should be 
noted that adding too many missing data indicators as 
auxiliary variables may cause convergence problems, 
so it is highly recommended to examine the conver
gence of the MI algorithm. As mentioned before, both 

Figure 8. Comparisons of coverage rates across conditions based on 500 Monte Carlo replications. The red dash line represents 
95%. This plot shows results for coefficients of covariates (i.e., c1, c2, d1, d2) in the dynamic model (see Equation (6)). CR: cross- 
regression; LD: listwise deletion; PMI-MV: partial MI with manifest variables; MI-MV: MI with manifest variables; MI-FS: MI with fac
tor scores.
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the trace plots generated by MICE and the diagnostic 
R̂ plots generated by the dynr.mi() function can be 
leveraged to examine the convergence issue. The 
MICE package also provides logged events warnings 
which may arise from a variety of issues such as 
collinearity.

Effects of misspecification of the factor 
analytic structure

In our main simulation study, the estimated factor 
scores obtained by fitting a model without covariates 
were highly correlated with the true latent factors 
(e.g., correlations higher than 0.9), indicating a rela
tively good recovery of the latent factors. We also 
conducted a small simulation study to examine the 
performance of MI-FS under more misspecified factor 

analytic models, where we focused on one of the four 
conditions (i.e., factor-dependent missingness and low 
autocorrelation). The data were generated based on a 
tri-VAR model where the missingness in three mani
fest/observed variables was dependent on a common 
factor, the values of which were generated as the com
posite scores of the three manifest variables. Then we 
fitted a single factor CFA model, a more misspecified 
factor analytic model compared to the PFA scenario, 
to obtain the factor scores. Results showed that PMI- 
MV performed the best in recovering parameters, fol
lowed by MI-FS and MI-MV, which yielded similar 
results. The comparison between MI-FS and MI-MV 
indicated that even when the dynamics of the under
lying processes unfold at the item as opposed to factor 
level, the inclusion of factor scores in the MI process 
did not help improve, but also did not induce notably 

Figure 9. Comparisons of coverage rates across conditions based on 500 Monte Carlo replications. The red dash line represents 
95%. This plots shows results for the remaining parameters in the model. Specifically, “d_var” and “d_cov”: process noise variances 
(r2

f1
, r2

f2
) and covariance (rf12

) in the dynamic model (see Equation (6)); “m_int,” “m_var” and “m_load”: intercepts (l1 – l6), 
measurement error variances (r2

�1 
– r2

�6
), and factor loadings (k1 – k4) in the measurement model (see Equation (7)). CR: cross- 

regression; LD: listwise deletion; PMI-MV: partial MI with manifest variables; MI-MV: MI with manifest variables; MI-FS: MI with fac
tor scores.
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greater biases in the estimation process. In contrast, 
including factor scores in the MI process greatly 
improved model estimation properties when the 
underlying dynamics were driven by latent factors, as 
in the PFA model. However, given the better perform
ance of PMI-MV, the use of MI-FS may not be neces
sary in this specific scenario. Therefore, inclusion of 
factor scores in the MI process helps more in some 
scenarios than others, and we recommend that the 
usefulness of incorporating factor scores into MI be 
examined via sensitivity analysis by comparing estima
tion results with alternative approaches not using fac
tor scores.

Other remarks

First, the simulation results showed that the MI-FS 
would generally outperform MI-MV in recovering the 
temporal relationships between latent variables (pro
vided that the factor scores were reasonable estimates 
of the true latent factor scores), suggesting that 
although the observed indicators contained informa
tion about the latent factors, just including observed 
indicators might not be sufficient to provide critical 
information in the MI process. In fact, this point can 
also be understood analytically. Specifically, under the 
hypothesized model in Equations (4) and (5), the con
ditional distribution of the observed indicators is 
yi, tjgi, t � Nðsþ Kgi, t þ Axi, t, ReÞ: Thus, information 
on latent factors, gi, t , (e.g., factor scores) should be 
included in the imputation process to facilitate imput
ation of the observed indicators, yi, t: Under factor- 
dependent missingness (as generated e.g., with 
Equations (10) and (11)), good estimates of latent fac
tors could further help recover the true missingness 
mechanism.

On the contrary, if manifest variables were not 
included in MI—that is, when imputing a specific 
manifest variable (yj), other manifest variables (y−j) 
would not be included in the imputation model, then 
the variables used in the imputation model would 
contain no information about the measurement errors 
and thus parameters such as measurement error var
iances are expected to be more biased. To validate our 
analytically driven conjectures, we tested the perform
ance of this approach under one simulation condition 
(i.e., high-autocorrelation and factor-dependent miss
ingness) by running a small simulation (100 replica
tions). Detailed simulation results can be found in 
Table S17 in the Supplementary Material. We found 
that although estimates of the dynamic model (see 
Equation (6)) were satisfactory, estimates of 

parameters in the measurement model (e.g., factor 
loadings and measurement error variances in 
Equation (7)) were more biased with this approach 
compared with either MI-FS or MI-MV. In sum, the 
comparisons between these three approaches (i.e., MI- 
FS, MI-MV, and MI with only factor scores) indicated 
that both manifest variables (or observed indicators) 
and factor scores played critical roles in the MI 
process.

Second, to make sure that the simultaneous vs. 
scattered missing data patterns did not confound the 
comparisons across missing data handling approaches, 
we conducted a small simulation study (under the 
low-autocorrelation condition) by considering an 
alternative missingness generation scenario in which 
we defined a fully observed location indicator variable, 
which took the value of either 0 or 1, with 1 marking 
data locations for scattered/simultaneous missingness. 
For instance, under the simultaneous missingness 
scenario, we had an indicator for simultaneous miss
ingness in y1, y2, and y3, denoted as Rg1 : If Rg1 ¼ 1 
for a specific case, then we would set the correspond
ing cases of y1, y2, and y3 to missing values (similar 
relationships between Rg2 and y4, y5, and y6). In con
trast, in the scattered missingness scenario, we used 
distinct missing location indicators for y1, y2, and y3, 
denoted as Ry1 , Ry2 , and Ry3 : If Ry1 ¼ 1, we would 
set the corresponding case of y1 but not that of the 
remaining ys to be missing. These missing data loca
tions were determined randomly, and we included Rg1 

and Rg2 as auxiliary variables under simultaneous 
missingness, and Ry1 , Ry2 , and Ry3 as auxiliary varia
bles under scattered missingness. This led to two new 
alternative MAR scenarios that helped to clarify 
potential confounds due to simultaneous vs. scattered 
missingness. The simulation results can be found in 
Tables S18–S23 in the Supplemental Material. We 
found comparable estimation results between these 
two scenarios regardless of which missing data hand
ling approach we used. That is, differences in missing 
data patterns were not a contributor of the different 
estimation results evidenced across missing data hand
ling approaches.

Finally, the simulation studies thus far did not 
evaluate the effects of the different missing data hand
ling approaches on type I error rates, namely, the 
probability of falsely rejecting the null hypothesis (typ
ically a statement of null effects). To examine whether 
there was a type I error inflation issue in our study, 
we chose one condition (i.e., the low-autocorrelation 
and factor-dependent missingness condition since low 
autocorrelation has been found in many previous 
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empirical studies (e.g., Li et al., 2022; You et al., 2020) 
and factor-dependent missingness is of particular 
interest in this study) and conducted a small simula
tion study with a model with several null effects by 
setting the true values of cross-regression parameters 
and coefficients of covariates to 0. Results can be 
found in Tables S24–S26 in the Supplementary 
Material. We found that the type I error rates gener
ally fell into a reasonable range (e.g., below 0.08) for 
most parameters, except for certain covariate-related 
coefficients under PMI-MV and MI-FS, for which the 
type I error rate were elevated (around 0.14). Further 
inspection showed that the MI-MV consistently 
yielded higher coverage rates than PMI-MV and MI- 
FS for covariate-related parameters across the four 
simulation conditions (see, e.g., c1, c2, d1, d2 in 
Figure 8). Our speculation was that that these infla
tions in type I errors might stem from distinct sources 
of misspecification of the imputation models utilized 
under these approaches. That is, in the true missing 
data generation model, the missingness in the covari
ates depended on the covariate values, but not latent 
factors or the manifest dependent variables (see 
Equation (8)). As mentioned before, in the imputation 
model for the PMI-MV, missing values in both 
dependent variables and covariates were iteratively 
imputed via chained equations, while the imputed val
ues of dependent variables were discarded. Thus, 
some of the variability contained in imputed depend
ent variables was lost. In the MI-FS, the latent factor 
scores used in the imputation model were estimates 
based on a model with no covariates. Whereas these 
factor scores were still helpful in improving the 
dynamic parameter estimates (e.g., cross-regression 
parameters, b1 and b2) without notable inflation in 
type I error rates, the inclusion of both dependent 
variables and factor scores for imputation purposes in 
the current MI-FS approach might have induced add
itional spurious associations shared by the dependent 
variables and covariates. Overall, this suggested that 
these approaches would benefit from having improved 
imputation models and variables for generating miss
ing covariate values.

Recommendations for the selection of missing 
data handling methods

To summarize, no one method could be declared as 
the best method universally, but we could select more 
appropriate methods depending on our needs. Based 
on our simulation results across 2� 2 conditions, we 
can offer the following recommendations. First, the 

LD approach would not be recommended under any 
circumstances when handling longitudinal missing 
data. Second, if missingness was triggered by or at 
least associated with latent factors and the dynamics 
of latent factors (e.g., AR and CR parameters) were of 
more interest to researchers, then MI-FS and PMI- 
MV would be recommended given their better overall 
performances on these dynamic parameters. Third, 
the PMI-MV approach may be preferred under the 
high-autocorrelation condition, due to its comparable 
to better performance compared to MI-FS (e.g., com
parable to smaller RMSEs, as well as higher coverage 
rates), and it is relatively easier to implement. Fourth, 
it is recommended to include missingness indicators 
as auxiliary variables in the imputation model, espe
cially under NMAR missingness to inform the miss
ingness mechanism. However, convergence needs to 
be guaranteed while implementing the MI algorithm. 
Finally, it is always recommended that users try all 
three MI-based methods to see if there are notable 
discrepancies. If different directions of effect were 
found under different approaches, it is suggested that 
users do not trust those specific results and implement 
further inspections to see if there are any mistakes 
made in the imputation and/or model fitting process.

Empirical illustration

Data descriptions

Data analyzed below were collected as part of the 
ADID study, in which 217 participants aged from 18 
to 86 years old were asked to rate their momentary 
emotions five times a day over a month. Participants’ 
self-reported negative affect (NA) was measured using 
items from the Positive Affect and Negative Affect 
Schedule (PANAS; Watson et al., 1988) and other 
items posited in the circumplex model of affect 
(Larsen & Diener, 1992; Russell, 1980). For each item, 
participants were asked to rate on a four-point scale 
(1¼never; 4¼ very often) the extent to which the 
affect has been experienced. Through item parceling 
(Kishton & Widaman, 1994), we created three item 
parcels1 as indicators of the latent variable, NA. 
Participants’ levels of PSS were measured via a five- 
item short-form of the Perceived Stress Scale (Cohen 
et al., 1983). For each item, participants were asked to 
rate on a five-point scale (1¼never; 5¼ very often) 
how often they felt or thought in a certain way (e.g., 

1Items included in the three parcels were: (1) parcel 1: angry, sad, 
distressed, jittery, guilty and afraid; (2) parcel 2: upset, hostile, irritable, 
tense and ashamed, and (3) parcel 3: depressed, agitated, nervous, 
anxious and scared.
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how often they have felt nervous and stressed). We 
then computed the composite score on these items 
and used it as the indicator of PSS. Finally, partici
pants’ personality states, including extraversion, emo
tional stability (reversely coded neuroticism), 
agreeableness, openness, and conscientiousness, were 
measured via selected questions from the revised NEO 
personality inventory (NEO-PI-R) where participants 
were asked to rate on a four-point scale (1¼never; 
4¼ very often) the extent to which they have felt 
about a word describing emotions since the last 
assessment.2

Because the proposed model hypothesized that the 
data were equally spaced, we followed the data pre
processing procedures adopted in previous studies 
(Chow & Zhang, 2013; You et al., 2020), and aggre
gated the data to two equally spaced data blocks per 
day, yielding a total of 26 to 74 measurement occa
sions per participant, with an average missing data 
proportion of 0.18. To remove the linear trends in 
NA and PSS, we first regressed the indicators of NA 
and PSS on measurement occasions, respectively. We 
then extracted the corresponding residuals, and added 
the person-specific means back to obtain the final 
scores for indicators of NA and PSS to be used in 
modeling fitting.

After all these data preprocessing, we fitted the 
model presented in the Motivating Example Section to 
the data, where missingness were handled by the four 
missing data handling approaches (i.e., LD, MI-MV, 
PMI-MV, MI-FS) to compare the results. The steps 
for implementing the MI-FS approach are provided 
below. MI-MV and PMI-MV approaches basically fol
lowed the same steps except for the differences illus
trated in the previous section. Specifically, we first 
obtained factor scores by fitting a PFA model without 
including the four time-varying covariates in Equation 
(1). Then we multiply imputed both dependent varia
bles and covariates using an imputation model con
sisting of (1) four dependent variables (three 
indicators of NA and one indicator of PSS) and four 
time-varying covariates (extraversion, emotional sta
bility, agreeableness, and negative events); (2) two fac
tor scores (smoothed estimates of latent factors, NA 
and PSS); (3) lags of variables in (1) and (2); (4) eight 
indicators for missingness in dependent variables and 
covariates; and (5) two auxiliary variables (openness 
and conscientiousness). Lastly, we fitted the PFA 
model defined in Equations (1)–(3) to each imputed 
data set and pooled estimation results.

Empirical results

The empirical results are summarized in Table 2. We 
will first discuss similar results found across all four 
methods, followed by major differences on certain 
parameters across different methods.

First, with all methods, we found moderate inertia 
(see a1 and a2 in Table 2) in the dynamics of NA and 
PSS, indicating that levels of NA (PSS) were positively 
associated with previous levels of NA (PSS). Second, 
consistent with previous studies (Park et al., 2020), we 
found positive and moderate associations between 
concurrent NA and PSS, as indicated by the process 
noise covariance estimate (i.e., rf12 ). Third, in terms 
of relationships between personality states, NA, and 
PSS, previous studies have reported that extraversion 
and agreeableness were negatively associated with NA 
and PSS, while neuroticism was positively associated 
with NA and PSS (Ching et al., 2014; Ebstrup et al., 
2011; Leger et al., 2016). With the exception of MI-FS 
on d1, most missingness handling approaches sug
gested that participants tended to report lower levels 
of NA and PSS when they had higher concurrent lev
els of emotional stability (see d1 and d2) and agree
ableness (see e1 and e2). Participants’ levels of 
extraversion were found to be negatively associated 
with PSS (see c2) but not NA (see c1). Fourth, from 
the inter-individual perspective, our study found indi
vidual differences in participants’ baseline levels of 
NA and PSS. Specifically, we found lower average lev
els of PSS among older people (see c22), which might 
be due to less exposure to daily stressors reported in 
old age (Stawski et al., 2008), and lower emotional 
and physical reactivity to interpersonal stressors 
(Neupert et al., 2007). Lower average levels of NA and 
PSS were also found associated with higher average 
levels of emotional stability (see c14 and c24), which 
was consistent with previous findings about positive 
associations between neuroticism and NA (Leger 
et al., 2016; Zhang & Zheng, 2019) as well as between 
neuroticism and PSS (Ebstrup et al., 2011). In particu
lar, Duggan et al. (1995) found that individuals high 
in neuroticism responded more negatively to daily 
stressors and reported more daily stressful events and 
higher levels of daily stress (Duggan et al., 1995). 
Lastly, gender and other personality traits including 
extraversion and agreeableness were not found to be 
associated with individual differences in baseline levels 
of NA and PSS. This was in line with some previous 
studies showing that different from neuroticism, extra
version was not associated with between-person differ
ences in the average levels of daily negative emotion 
(Zhang & Zheng, 2019).

2For instance, words used to measure extraversion included Passive vs. 
Active; Unenergetic vs. Energetic; and Dominant vs. Submissive.
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In addition to the abovementioned consistent find
ings, the four missing data handling methods yielded 
different estimation results and/or levels of estimation 
uncertainty on several parameters. First, although AR 
parameters were found significant across all methods, 
their magnitudes differed—that is, lower levels of 
autocorrelation were found under LD and MI-MV. 
The smaller AR parameter estimates under LD were 
expected since removing cases with missing covariates 
altered the time dependency between observations, 
thus yielding less autocorrelation in the time series. 
The notable deviations in AR parameter estimates 
(especially a1) under MI-MV might be due to the 

relatively worse imputation of indicators of NA which 
did not incorporate factor scores in the imputation 
model, thus highlighting the necessity of including 
factor scores in MI-MV.

Second, in terms of CR parameters, for the cross- 
lagged effect of PSS on NA (i.e., b1), the estimates 
under LD and MI-MV were close to 0 and not signifi
cant, while under PMI-MV and MI-FS, the magni
tudes of cross-lagged effect were a bit larger and the 
estimates were significant; for the cross-lagged effect 
of NA on PSS (i.e., b2), all methods yielded significant 
results with different magnitudes of point estimates. 
Previous studies utilizing VAR models have found 

Table 2. Comparison of empirical results.
LD MI-MV PMI-MV MI-FS

Parameter Est SE Est SE Est SE Est SE

Level 1 dynamic model parameters (see Equation (1))
AR and CR parameters
a1, NAi, t−1 ! NAi, t 0.308� 0.028 0.198� 0.079 0.399� 0.028 0.448� 0.031
a2, PSSi, t−1 ! PSSi, t 0.404� 0.032 0.419� 0.073 0.444� 0.032 0.461� 0.027
b1, PSSi, t−1 ! NAi, t −0.026 0.023 0.003 0.077 −0.080� 0.023 −0.049� 0.018
b2, NAi, t−1 ! PSSi, t −0.106� 0.028 −0.171 0.087 −0.140� 0.029 −0.083� 0.025

Covariate-related coefficients
c 1, Extrav ! NA −0.006 0.008 0.040 0.062 −0.010 0.008 −0.025 0.014
c2, Extrav ! PSS −0.032� 0.009 −0.027 0.042 −0.030� 0.009 −0.043� 0.015
d1, EmoStab ! NA −0.123� 0.009 −0.167� 0.050 −0.115� 0.009 −0.035 0.024
d2, EmoStab ! PSS −0.139� 0.010 −0.108� 0.041 −0.134� 0.010 −0.057� 0.017
e1, Agree ! NA −0.183� 0.009 −0.214� 0.037 −0.181� 0.009 −0.117� 0.028
e2, Agree ! PSS −0.177� 0.010 −0.186� 0.029 −0.177� 0.010 −0.113� 0.025
f1, NegEvents ! NA 0.043� 0.008 0.028 0.021 0.042� 0.008 0.051� 0.012
f2, NegEvents ! PSS 0.045� 0.009 0.048 0.030 0.045� 0.009 0.053� 0.016

Process noise (co)variances
r2

f1
0.478� 0.030 0.688� 0.182 0.415� 0.021 0.356� 0.019

rf12
0.365� 0.009 0.481� 0.038 0.364� 0.009 0.302� 0.010

r2
f2

0.516� 0.028 0.578� 0.067 0.499� 0.025 0.460� 0.025
Level 2 dynamic model parameters (see Equation (2))
Fixed effects
c10, Intercept, NA 1.424� 0.084 1.563� 0.127 1.457� 0.085 1.384� 0.085
c20, Intercept, PSS 1.917� 0.112 1.927� 0.113 1.916� 0.110 1.850� 0.108
c11, Gender ! NA −0.043 0.048 −0.067 0.053 −0.058 0.048 −0.045 0.046
c21, Gender ! PSS −0.017 0.063 −0.018 0.057 −0.015 0.062 0.000 0.059
c12, Age ! NA −0.022 0.023 −0.047 0.027 −0.021 0.023 −0.010 0.022
c22, Age ! PSS −0.098� 0.030 −0.094� 0.032 −0.092� 0.030 −0.086� 0.030
c13, ExtravMean ! NA −0.033 0.024 −0.025 0.023 −0.024 0.024 −0.021 0.023
c23, ExtravMean ! PSS −0.043 0.032 −0.043 0.028 −0.042 0.031 −0.040 0.030
c14, EmoStabMean ! NA −0.109� 0.028 −0.091� 0.027 −0.100� 0.028 −0.107� 0.027
c24, EmoStabMean ! PSS −0.138� 0.037 −0.130� 0.033 −0.129� 0.036 −0.134� 0.035
c15, AgreeMean ! NA −0.035 0.029 −0.050 0.028 −0.043 0.029 −0.042 0.028
c25, AgreeMean ! PSS −0.046 0.039 −0.061 0.035 −0.060 0.037 −0.062 0.036
c16, NegEventsMean ! NA 0.083� 0.024 0.074� 0.024 0.075� 0.024 0.077� 0.023
c26, NegEventsMean ! PSS 0.108� 0.032 0.102� 0.029 0.104� 0.031 0.105� 0.030

Random effects
r2

e1
0.076� 0.010 0.069� 0.013 0.080� 0.010 0.071� 0.009

re12 0.068� 0.011 0.056� 0.010 0.071� 0.011 0.064� 0.010
r2

e2
0.142� 0.017 0.111� 0.013 0.142� 0.017 0.133� 0.015

Measurement model parameters (see Equation (3))
k1 1.028� 0.015 1.057� 0.070 1.031� 0.015 1.032� 0.022
k2 0.999� 0.015 0.999� 0.037 1.003� 0.015 1.026� 0.022
r2
�1

0.360� 0.028 0.476� 0.097 0.420� 0.019 0.384� 0.024
r2
�2

0.320� 0.028 0.365� 0.111 0.379� 0.020 0.353� 0.019
r2
�3

0.361� 0.027 0.427� 0.107 0.417� 0.019 0.365� 0.016
r2
�4

0.290� 0.025 0.389� 0.056 0.307� 0.022 0.222� 0.020
r�12 0.015 0.027 0.049 0.104 0.070� 0.018 0.041 0.023
r�13 0.025 0.026 0.076 0.103 0.078� 0.018 0.034� 0.017
r�23 0.017 0.027 0.045 0.108 0.078� 0.018 0.037 0.022

Notes: Est: point estimates; SE: standard error estimates; �p < 0.05. Results were obtained based on 217 participants and 26 to 74 measurement occasions 
per participant.
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individuals who experienced higher levels of PSS 
tended to have higher levels of NA at the subsequent 
timepoint. In contrast, our results suggested negative 
associations between current levels of PSS and subse
quent levels of NA and vice versa. This might be 
related to our data preprocessing where we aggregated 
data into four equally-spaced blocks per day. One 
speculation was that the length of time window in 
each block (i.e., 6 h) might lead to diminished influ
ence of PSS on itself as well as on NA in the next 
time block. We note that cross-lagged relationships 
appeared highly sensitive to choices of the missing 
data handling techniques and would thus caution the 
reader to exercise caution in interpreting CR 
parameters.

Third, in terms of the effects of a set of time-vary
ing covariates (e.g., personality states and negative 
events) on participants’ levels of NA and PSS, LD and 
PMI-MV yielded similar results. In contrast, MI-MV 
and MI-FS, produced slightly different results. 
Specifically, due to considerably larger standard error 
estimates under MI-MV, even if the point estimates 
were comparable to those under other approaches, 
some of them were not significant (e.g., c2, f1, and f2). 
In addition, MI-FS yielded much smaller point esti
mates on d1 than other methods. The reasons why the 
effect of emotional stability on levels of NA (i.e., d1) 
was smaller under the MI-FS method might be that 
such effect was mostly captured by the higher AR par
ameter (i.e., a1) which can be conceptually understood 
as higher inertia in NA dynamics and thus higher 
emotional stability (Kuppens et al., 2010).

Fourth, the MI-FS led to the smallest estimates of 
process noise (co)variance parameters, which was con
sistent with our findings in the simulation study that 
the MI-FS tended to underestimate process noise var
iances probably due to some losses in data variability 
at the item level when factor scores were included to 
the imputation model.

Fifth, another major difference between these meth
ods lied in the estimates of covariances between meas
urement errors of three indicators of NA, which were 
significant and positive under PMI-MV. This might 
indicate that other methods failed to discover the 
existence of some common factors influencing these 
indicator variables. For instance, there might be sys
tematic response patterns among indicator variables 
that were unrelated to the latent factor.

Finally, in terms of estimation efficiency, the MI-FS 
yielded more efficient estimates on AR and CR 
parameters than other methods, as indicated by 
smaller SE estimates, which were consistent with our 

findings in the simulation study. However, both MI- 
FS and MI-MV yielded larger SE estimates for the 
effects of time-varying covariates (see c1—f2) than LD 
and PMI-MV. Since the only difference between MI- 
MV and PMI-MV was whether MI was applied to 
dependent variables, the reason for such discrepancy 
in SE estimates might be that the MI approach gener
ated some imputed values for dependent variables that 
rendered the corresponding time series unstable, 
which in turn affected the estimates of the relation
ships between dependent variables and time-varying 
covariates.

Overall, the four missing data handling approaches 
yielded consistent findings in terms of (1) moderate 
inertia in NA and PSS dynamics; (2) negative associa
tions between concurrent NA/PSS and extraversion, 
emotional stability, and agreeableness; and (3) individ
ual differences in the baseline levels of NA and PSS. 
Specifically, we found lower average levels of PSS 
among older people as well as lower average levels of 
NA and PSS among people with higher levels of emo
tional stability. Among the four approaches, MI-FS 
and PMI-MV yielded similar point estimates of AR 
and CR parameters, whereas MI-MV and LD tended 
to yield lower estimates of these parameters. 
Consistent with findings from the simulation study, 
the MI-FS yielded overall smaller SE estimates on 
dynamic model parameters compared with other 
approaches, indicating a reduction in estimation 
uncertainty by including factor scores in MI.

Discussion

In this article, we proposed a novel multiple imput
ation strategy for longitudinal data, called MI-FS, to 
address possible types of nonignorable missingness 
across all items linked to the same common factor(s). 
The proposed method was designed with features tail
ored to the analysis of changes in latent factors over 
time, including factor scores, lag/lead variables, and 
missingness indicators into the imputation model to 
respectively account for missingness associated with 
latent factors, time dependencies between observations 
in longitudinal data, and missingness mechanisms.

The proposed method was evaluated and compared 
to LD and two MI methods without factor scores— 
MI-MV and PMI-MV, via both simulation and empir
ical studies. Simulation results showed that compared 
with MI without factor scores, MI-FS could yield 
overall less biased or similar estimates of AR and CR 
parameters. The advantage of MI-FS over MI-MV was 
more prominent when missingness was associated 
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with latent factors. However, MI-FS tended to result 
in more biases in the variance parameters, which 
might be due to some losses in data variability at the 
item level when factor scores were included to gener
ate imputed values. In addition, PMI-MV could yield 
comparable performance to MI-FS in recovering AR 
parameters under the high-autocorrelation condition, 
thus highlighting the capability of the FIML approach 
in handling missing data when combined with MI of 
missing covariates. In fact, the PMI-MV approach 
may offer advantages in terms of ease of implementa
tion compared to MI-FS, particularly given its com
parable performance to MI-FS in high-autocorrelation 
scenarios. Finally, compared to the LD method, which 
showed notable decrements in performance under 
high autocorrelations, the MI-based methods were 
relatively robust to variations in autocorrelations in 
the data set.

Our empirical illustration investigated the recipro
cal linkages between NA and PSS over time as well as 
individual differences in their baseline levels. Despite 
the slight differences in the magnitudes of point esti
mates, the four missing data handling approaches led 
to overall similar results in terms of how NA and PSS 
were associated with each other and certain personal
ity states over time, as well as the effects of personality 
traits on baseline levels of NA/PSS. Compared with 
other approaches, MI-FS yielded higher efficiency in 
AR and CR parameters, as indicated by their smaller 
SE estimates.

There were several unresolved issues in our studies. 
First of all, since our empirical study consisted of 
items characterized by theoretically informed factor 
structures, we adopted CFA models where indicators 
were item parcels used in previous studies (You et al., 
2020). However, when the underlying factor structures 
are unknown or of interest, EFA needs to be con
ducted first to determine the number of latent con
structs and the factor structure of a set of items/ 
variables (Gilbert & Meijer, 2005). Second, in addition 
to the latent variables considered in the model (i.e., 
NA and PSS), the missingness in indicators may also 
be triggered by other common factors, which were 
not taken into account in this study. Third, as men
tioned before, the time intervals between measure
ment points varied within and/or between individuals 
over time, and thus the raw data were aggregated to 
be equally spaced so that a discrete-time model could 
be fitted. However, modeling continuously changed 
processes simply as changing in discrete-time can be 
problematic. For instance, classical concerns include 
sign flipping and counter-intuitive effect directions in 

VAR models (Driver, 2022). Future research may con
sider applying continuous-time models such as con
tinuous-time structural equation models (Voelkle 
et al., 2012) to accommodate unequally spaced EMA 
assessments.

Some possible future directions can be considered. 
First, our simulation study utilized relatively simple 
missing data generation models where the missingness 
in manifest variables was associated with either them
selves or their corresponding latent variables. Under 
this simulation design, PMI-MV could yield compar
able or even better results than MI-FS for most 
parameters. Future simulation studies may increase 
the complexity of the missing data generation model 
(e.g., missingness associated with both unobserved 
manifest variables and latent variables) and test the 
performance of PMI-MV under this more challenging 
situation. Also, future work may consider integrating 
features of MI-FS into joint modeling of the change 
processes of interest and their corresponding missing
ness mechanisms, such as through selection modeling 
or shared parameter approach (Creemers et al., 2010). 
Second, the model specified for the simulation study 
did not allow for any person-specific parameters. 
Since our focus was on the comparison between dif
ferent missing data handling approaches, the model 
setup was sufficient for illustration purposes. 
However, in real data analysis, some modifications 
can be made to capture meaningful aspects of individ
ual differences. For instance, in our empirical illustra
tion, we included random effects for intercept 
parameters given the notable individual differences in 
baseline levels. Future work may consider also includ
ing random effects for AR parameters and investigate 
how predictors affect AR parameters—for instance, 
whether and how emotional stability is associated 
with the AR parameters. In addition to the multilevel 
modeling framework adopted in the present study, 
some alternative approaches also allow for higher- 
dimensional random effects, such as mixed effects 
models (Henderson, 1982) and fitting relevant models 
in the Bayesian framework to aid computational effi
ciency (Li et al., 2022). Note that missing data hand
ling in the presence of these complex models may 
involve complex imputation models such as models 
with random slopes or nonlinear terms, in which 
scenario the incompatibility issue may arise in the MI 
procedure and Bartlett’s model-compatible specifica
tion may be utilized to address this issue (Bartlett & 
Morris, 2015). Finally, though illustrated in the con
text of the PFA models, the propose method can 
potentially be used with any dynamic models 
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capturing changes of latent variables such as nonlinear 
dynamic factor models (Chow & Zhang, 2013; Tang 
et al., 2017), various types of latent variable models 
(Muth�en & Curran, 1997; Roy & Lin, 2000), and con
tinuous-time structural equation models (Voelkle 
et al., 2012). Future work may consider investigating 
the performance of MI-FS in the context of these dif
ferent types of models.

Overall, we proposed an MI strategy suited for lon
gitudinal analysis of psychological constructs. The idea 
of including factor scores in MI was guided by the 
general rule of choosing appropriate and relevant vari
ables as predictors in the imputation model by taking 
missing data mechanisms into consideration. Through 
comparisons with other existing methods under vari
ous conditions in the simulation study, we provided 
our suggestions on the selection of missing data hand
ling methods in different scenarios. Our proposed 
method is highly recommended for handling missing 
data in multiple-item scales as well as data analysis 
involving factor-analytic models.
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