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ABSTRACT

Missingness in intensive longitudinal data triggered by latent factors constitute one type of
nonignorable missingness that can generate simultaneous missingness across multiple items
on each measurement occasion. To address this issue, we propose a multiple imputation
(MI) strategy called MI-FS, which incorporates factor scores, lag/lead variables, and missing
data indicators into the imputation model. In the context of process factor analysis (PFA),
we conducted a Monte Carlo simulation study to compare the performance of MI-FS to list-
wise deletion (LD), Ml with manifest variables (MI-MV, which implements Ml on both
dependent variables and covariates), and partial Ml with MVs (PMI-MV, which implements
MI on covariates and handles missing dependent variables via full-information maximum
likelihood) under different conditions. Across conditions, we found Ml-based methods over-
all outperformed the LD; the MI-FS approach yielded lower root mean square errors (RMSEs)
and higher coverage rates for auto-regression (AR) parameters compared to MI-MV; and the
PMI-MV and MI-MV approaches yielded higher coverage rates for most parameters except
AR parameters compared to MI-FS. These approaches were also compared using an empir-
ical example investigating the relationships between negative affect and perceived stress
over time. Recommendations on when and how to incorporate factor scores into Ml proc-
esses were discussed.

Introduction scenario, if the reasons for missing data (referred to
as missingness mechanisms in this article) are trig-
gered by values of a latent factor, the missingness
would likely be observed on all items that load on the
same factor, yielding pervasive simultaneous missing-
ness that would reduce the efficacy of many missing
data handling techniques. For instance, an individual
may skip an entire stress-related survey when they
feel extremely stressful, in which case the individual’s

level on a latent factor, stress, would lead to missing-

Missing data handling is a critical issue in statistical
analysis that has continued to garner attention from
the statistical, data science, and other related com-
munities in the past decades (Little, 1988; Rubin,
1976). One area that has evidenced some (see, e.g., Ji
et al., 2018, 2020) but could benefit from much
greater growth is the development of tailored tools for
handling missingness in intensive longitudinal data

(ILD), such as ecological momentary assessments
(EMAs) of daily life experiences that capture nuanced
changes in behavioral dynamics in naturalistic eco-
logical settings (Bolger & Laurenceau, 2013).

One common characteristic of EMAs and other
related ILD is that the constructs of interest are often
latent factors (e.g., affect, attitudes, personality traits)
that are measured using multiple items. In this

ness on all the items. Such simultaneous missingness
patterns may generate a nonignorable missingness—or
in other words, not missing at random (NMAR)—
scenario where the missingness depends on informa-
tion that is not available in the data set (Rubin, 1976).
Such type of missingness, if not appropriately
accounted for, would lead to severe biases in estimates
and thus misleading inferential results (Ji et al., 2018;
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Tang et al, 2017). In addition, simultaneous missing
data patterns are more challenging to handle com-
pared with missingness in specific, scattered items
because in the latter, many existing techniques can
still be used to yield reasonable imputed scores for the
missing values based on other observed items measur-
ing the same latent construct (Roth et al., 1999). In
contrast, few relevant variables can be used to inform
imputations when the best items that convey the rich-
est information are themselves missing on the same
occasion.

Although many missing data handling techniques
exist, few of them have been tailored for handling
(simultaneous) missingness in longitudinal data. For
instance, one convenient way of handling missing
data, the listwise deletion (LD) approach, is known to
yield biased estimates in longitudinal settings since
the deletion of rows of data alters the time dependen-
cies between observations (Ji et al., 2018). Some alter-
native approaches, such as full-information maximum
likelihood (FIML; Anderson, 1957) and multiple
imputation (MI; Rubin, 2004) have been shown to
work well under certain missing data mechanisms in
longitudinal settings (Ji et al., 2018; Liu & Molenaar,
2014; Rubin, 2004). Among these two approaches,
FIML handles missing data by constructing the raw
data likelihood function based on the observed data
and then optimizing the likelihood function to per-
form parameter estimation (Arbuckle et al., 1996).
This method generally works well for handling miss-
ingness in dependent variables provided that the
model for dependent variables is correctly specified
and the data are missing completely at random
(MCAR) or missing at random (MAR). However,
since FIML handles missingness in covariates by
including the covariates as dependent variables in the
model, this approach may not be practically feasible
when there are a large number of covariates, especially
for categorical covariates and those whose change
mechanisms are poorly understood to support reason-
able model specification (Ji et al., 2018). In contrast,
MI offers considerable flexibility in handling missing
data in both dependent variables and covariates, and
may benefit from the added information afforded by
auxiliary variables, namely, variables that are not
included in the model of interest, but are correlated
with the variables of interest to some extent or can
help explain the missingness mechanisms of certain
variables. Therefore, the auxiliary variables, when
appropriately chosen, can inform the imputation pro-
cess and thus reduce biases (Thoemmes & Rose,
2014). In fact, many adaptations of MI methods

involved novel selection of auxiliary variables that best
suit data characteristics and/or model specifications.
For instance, Ji and colleagues proposed two MI strat-
egies (i.e., partial MI and full MI) that were tailored
for handling missingness in ILD by including the pre-
ceding or following observations of the missing values
in the imputation model (Ji et al., 2018). The differ-
ence between partial and full MI is that partial MI
handles missingness in dependent variables via FIML,
whereas full MI imputes missing values in dependent
variables via MI. Despite the growth in the develop-
ment of tailored tools for handling missingness in
ILD, to our best knowledge, there are no MI strategies
tailored for handling simultaneous missingess across
all manifest variables associated with one common
latent variable.

In the present article, we propose an MI strategy
called MI with factor scores (MI-FS), which incorpo-
rates a series of variables, including factor scores, lag/
lead variables (i.e., variables that are lagged/leading in
time; for instance, variable Y, ; (Y1) is a lagged
(leading) variable of variable Y, with a lag (lead) of
one timepoint), and missingness indicators (i.e., a
dummy variable indicating whether the data are miss-
ing on a specific variable), into the imputation model
to respectively account for missingness associated with
latent factors, time dependencies between observations
in longitudinal data, and missingness mechanisms.
Our novel contribution lies in the development and
evaluation of ways to leverage information from latent
variables through use of longitudinal factor scores in
the imputation model to inform the missing data
mechanism (i.e., missingness associated with latent
factors). Our method also capitalizes on previous use-
ful MI strategies such as including lag/lead variables
and missingness indicators in the imputation model.
For instance, previous research found that including
missingness indicators as auxiliary variables in MI
would not introduce bias for parameter estimates
under MCAR and MAR, and would reduce bias under
NMAR (Beesley et al., 2021; Sperrin & Martin, 2020).
The inclusion of missingness indicators in the imput-
ation model allows us to model the relationship
between missingness as indicated by missingness indi-
cators and possible variables that may help explain the
missingness mechanism, which is essential when miss-
ing data follow the NMAR mechanism.

The remainder of the article is organized as follows.
We first introduce the empirical data example that
motivates our development of the proposed method,
with a brief introduction of the model to be fitted to
the empirical data. Then we describe the general



modeling framework and provide a step-by-step guide
on implementing the MI-FS method. Using the pro-
cess factor analysis model as a basis, we report results
from a Monte Carlo simulation study comparing the
performance of the MI-FS with that of LD and MI
without factor scores under different conditions. We
then present an empirical illustration using our empir-
ical data and the four missing data handling methods
considered in this study. Finally, we discuss the
results, limitations, and future directions.

Motivating example

The motivating example was inspired by the Affective
Dynamics and Individual Differences (ADID;
Emotions and Dynamic Systems Laboratory, 2010)
study where participants were asked to rate their
momentary emotions five times a day over a month.
All participants provided informed consent prior to
participation in the study. In the present article, we
were interested in the reciprocal and dynamical link-
ages between two latent variables, negative affect (NA)
and perceived stress (PSS), both of which were meas-
ured via multiple-item scales over time. Figure 1
shows dynamics of three NA parcels (i.e., item parcels
created as indicators for NA; see details in the
Empirical Illustration section) for two randomly
selected participants. In both plots, the trajectories of
three NA parcel scores displayed overall similar pat-
terns since these parcels/indicators were associated
with the same underlying latent construct. From the
plots we can also see that Participant 1 had a slightly
higher baseline level of NA than Participant 2, indi-
cating between-individual differences in affect levels.
Importantly, Figure 1 also shows that the missingness
in our empirical data was featured by simultaneous

Participant 1
Parcel 1
-+ Parcel 2

Parcel 3

w e

NA parcel scores

N

MULTIVARIATE BEHAVIORAL RESEARCH 63

missingness across parcels/indicators at a particular
timepoint. That is, participants tended to skip all
questions in the scale. Therefore, it was reasonable to
assume that the missingness was triggered by the
latent variable, which motivated us to develop and
apply the MI-FS method to address such missingness
pattern.

Process factor analysis model

In this section, we introduce the model to be used in
analyzing the empirical data—the process factor ana-
lysis (PFA) model and more generally, the dynamic
factor analysis (DFA) model (see, e.g., Browne &
Nesselroade, 2005; Molenaar, 1985). Conventional fac-
tor analysis models are insufficient for studying the
intraindividual changes in psychological processes
over time, whereas DFA models which can be concep-
tually understood as a combination of factor analysis
and dynamic models allow for simultaneous evalua-
tions of temporal characteristics of latent factors and
their relationships with manifest variables over time.
Recent decades have seen various applications of DFA
models in social and behavioral science fields such as
affective processes in dyadic relations (Ferrer &
Nesselroade, 2003) and relationships between positive
and negative affect (Chow & Zhang, 2013).

In this study, a multilevel PFA model was fitted to
the data to investigate (1) intraindividual dynamics of
two latent variables, NA and PSS, and their reciprocal
linkages over time; (2) effects of other momentary
experiences on NA and PSS, such as negative events
occurred since the last measurement and personality
states (e.g., extraversion, emotional stability, and
agreeableness); and (3) individual differences in the
baseline levels of NA and PSS, and specifically, how
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Figure 1. Dynamics of three indicators of negative affect (parcel 1 to 3) for two randomly selected participants.
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age, gender, and personality traits affected baseline
levels. Note that the PFA model considered in this
article can be viewed as a special case of DFA models
in that the manifest variables are only linked to the
latent variables at the same timepoint. Other specifica-
tions of DFA models can be found in the relevant lit-
erature (e.g., Browne & Nesselroade, 2005).

Based on previous findings on the relationships
between NA, PSS, and personality states (Ching et al.,
2014; Ebstrup et al., 2011; Leger et al., 2016), we chose
to use extraversion, emotional stability, and agreeable-
ness as time-varying covariates because of their pur-
ported associations with NA and PSS, while openness
and conscientiousness were used as auxiliary variables
to inform the MI procedure. As discussed before,
individuals may have different affect levels which need
to be accounted for in the model fitting. With all
these being considered, our final PFA model was
defined as follows.

NA; ¢ _I::ul,i + a b NAi,t—l_:ul,i:|
PSS; ¢ Mo b, a PSSi,t—l—,Uz,i
Extrav; ;
N a d e h EmoStab; , |:§1,i,t:|
o d e f Agree, , Coit
NegEventsi) ¢
(1)
[Ml,ilzl%o _i_l”/n Yi2 Y13 Y1a V15 Vie 1
i 720 Y21 Va2 V23 Y Vs V2e
[ Gender;
Age;
ExtravMean; 128
EmoStabMean; N lﬁz,i]
AgreeMean,
i NegEventsMean,
(2)
NA_Ind1;; 1 0 €1t
NA_Ind2; ; A 0] [ NA;, €2,i,t
NAInd3, |~ |/ 0 {PSS{JJ“ | @
PSS Ind; , 0 1 €4,it

Here, Equations (1) and (2) jointly defined a
dynamic model, which was a multilevel vector autore-
gressive (VAR) model with exogenous variables (i.e., a
multilevel VAR-X model) where the dynamics of NA
and PSS and their associations with time-varying
covariates were modeled in Equation (1). The VAR
models are widely used in time series research to cap-
ture the dynamic relationships among variables (e.g.,

NA and PSS in our case) whose past values affect
each others’ current values. The graphic representa-
tion of such dynamic relationships was presented in
the PFA diagram in Figure 2. The exogenous variables
(covariates) capture the effects of other measured per-
son- and time-varying (e.g., situational or contextual)
variables on the process variables of interest (i.e., NA
and PSS). The individual differences in two intercepts
(i.e., baseline levels of NA and PSS, y, ; and p, ;) and
the effects of person-specific characteristics on base-
line levels of NA and PSS were accounted for by the
level-2 model in Equation (2). In this empirical
example, the random effects were only added for two
intercepts to account for possible individual differen-
ces in baseline levels of NA and PSS as observed in
Figure 1. The random effects were specified as latent
variables in the current modeling framework (see, e.g.,
Chow et al., 2010; Ou, 2018).

Specifically, in the level-1 model in Equation (1),
NA;; and PSS;; denoted NA and PSS for person i
(i=1,..,N) at time t (t=1,...,T;), respectively; a;
and a, represented auto-regression (AR) parameters
which described the relationship between concurrent
and lagged values of NA or PSS; and b; and b,
represented cross-regression (CR) parameters describ-
ing the cross-lagged relationship between NA and
PSS. The time-varying covariates, Extrav;,,
EmoStab; ;, Agree; ,, NegEvents, ,, were collected in a
vector, with a corresponding matrix of regression
coefficients, ¢; - f,. The process noise terms were
denoted by {;;; and {,;; which reflected unmeas-
ured sources that affected the dynamics of NA;,; and
PSS, ;, respectively, and followed a multivariate nor-
mal distribution with zero means and covariance
matrix X.

In the level-2 model in Equation (2), the person-
specific baseline levels of NA and PSS (i.e., u; ;; and
Ly, ;) were respectively regressed on a set of person-
specific predictors, including gender, age, and average
levels of extraversion, emotional stability, and agree-
ableness for each person over the course of the study.
The regression coefficients were denoted by y parame-
ters, with y;o and 7y, being the intercepts, and y;;—
726 being the regression weights corresponding to the
6 predictors. We hypothesized that participants’ base-
line levels of NA and PSS were negatively related to
these personality traits. Finally, the random effects
were denoted by e; ; and e, ;, which represented per-
son i’s deviations in the values of yu,; and u,; not
accounted for by person-specific predictors. These
random effects followed a multivariate normal distri-
bution with zero means and covariance matrix X,



O O O

MULTIVARIATE BEHAVIORAL RESEARCH 65

O O O

NA_ITLdli,t_gl NA_I’I‘Ld2i’t_1 NA_ITLd?)i‘tAl NA_I’)’Ldl.i’t NA_Ind2z-,t NA_Ind'?’i,t
1A A 1A

() ()

ai
NA;; 1 b = NA,;;
2

» < »

a2

PSS_Indi,t_l

O

Y

PSS;,

PSS_Ind;,

O

Figure 2. A diagram illustrating the idea of the PFA model presented in Equations (1)—(3). The purpose of this diagram was to
visualize the relationships between latent factors of interest, and between latent factors and their corresponding indicators, thus
covariates and level-2 predictors were not included. NA: negative affect; PSS: perceived stress.

where the random effect variances were denoted by
ail and 0'2%, and the random effect covariance was
denoted by gy, .

Equation (3) defined the measurement model which
described the factor structures of NA and PSS, which
was also shown in Figure 2. The left-hand side of the
equation were indicators of NA and PSS (see detailed
descriptions about these indicators in the Empirical
Ilustration section), which were linked to NA and
PSS via the factor loadings, 4, and 4,. The first factor
loading for each factor was fixed at unity for identifi-
cation purposes. We allowed measurement errors of
NA (ie., €1,;,¢ - €3,;,1) to be correlated to account for
common errors associated with the latent factor. We
used o.,, 0.,, and o, to denote the covariance
between € ;; and €, €,;; and €3, and €, and
€3,i,+» respectively.

General modeling framework

The PFA model presented above can be viewed as a
special case of linear discrete-time state-space models.
In this section, we introduce this general modeling

framework as the general notations will help illustrate
the estimation procedure used in our proposed
approach. Overall, the general modeling framework is
composed of a dynamic model which describes how
the latent variables change over time, and a measure-
ment model which relates the observed variables to
latent variables at a specific time.

Specifically, the dynamic model exists in a state-
space form (Durbin & Koopman, 2001) as

N, =o+Fn,,+Bxi;+,

Ci,t ~ N(O’ ZC) )

where 1, , is a g-dimensional vector of latent variables
for person i at time ¢, and is linked to their previous
values, M via a q X q transition matrix, F; « is a
g-dimensional vector of intercepts; B is a matrix of
regression weights relating the covariates in x; ; to #; ;
and {;, is a g-dimensional vector of process noises
following a multivariate normal distribution with zero
means and a covariance matrix X;. Due to the
dependencies of #,, on n,,;, the initial conditions
for the dynamic processes have to be specified. Here,
we specify these initial conditions for #;, to be
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normally distributed with means g, and covariance
matrix X, .

In the measurement model, the latent variables at
time t, n, ;, are indicated by a p-dimensional vector of
manifest variables at time £, y, ;, as follows.

Vi, =Tt An, +Ax + €,

€.~ N(0,Z.) (5)

where 7 is a p-dimensional vector of intercepts; A is a
matrix of regression weights relating the covariates in
xi; to y; ;5 Ais a pxgq factor loading matrix relating
the manifest variables to the latent variables; and €; ;
is a vector of measurement errors assumed to be seri-
ally uncorrelated over time and normally distributed
with zero means and covariance matrix X..

Step-by-step guide on implementing MI-FS

Successful use of factor scores in MI processes for
ILD are contingent on the availability of a reasonable
factor analytic model and corresponding longitudinal
factor score estimation approach. In the following sec-
tion, we group some of these decisions into a five-step
description of how to implement the MI-FS approach
under the general state-space modeling framework
described in Equations (4) and (5), of which our
model of interest, the PFA, is a special case.

Step 1. Constructing factor models

Obtaining factor scores is a critical step in MI-FS. An
intuitive approach for obtaining factor scores is factor
analysis, such as exploratory factor analysis (EFA) and
confirmatory factor analysis (CFA). Below we intro-
duce two types of dynamic CFA models in the context
of PFA and VAR models, respectively. Alternative
models such as EFA models (see, e.g., Gilbert &
Meijer, 2005) can also be potentially used for obtain-
ing factor scores, but we focus on CFA models in the
present article.

For longitudinal models that can be expressed in
state-space form, such as the PFA utilized in our
motivating example, the measurement model of the
state-space model (Equation (5)) is itself a factor ana-
lytic model. The state-space model thus serves as a
rubric for obtaining longitudinal factor scores for
imputation purposes. Other cross-sectional factor ana-
lytic models can also be specified as special cases of
the state-space model (with F in Equation (4) set to
be a null matrix). If any information is available to
define the dynamics of the implicated variables, a
state-space model that includes both the measurement
and dynamic models should be utilized whenever

possible. For instance, when the PFA model is used
for data analysis and missingness occurs in both
dependent variables and covariates, one can fit a PFA
model without covariates to obtain factor scores using
the Kalman filter or Kalman smoother (see more
details in Step 2 below)—for instance, excluding the
time-varying covariates in Equation (1) from the ana-
lysis so that we do not need to handle missingness in
covariates. Such omission of covariate effects when
they are indeed present in the true model would
induce biases, particularly in the dynamic-related
parameters (e.g., F and X; in Equation (4)). In our
simulation study, we verified that these biased factor
score estimates may still be informative for the MI
procedure by providing information about the dynam-
ics of the latent variables, especially when the missing-
ness is associated with the values of latent variables.

As another example, the VAR model may also be
specified as another special case of the state-space
model. In this case, the latent variable estimators
described in the next step can provide model-implied
estimates of the missing observed variables at a par-
ticular timepoint, as opposed to just their observed
lead or lagged values at other nonmissing timepoints.
Alternatively, if missingness in dependent variables is
hypothesized to be triggered by a common latent vari-
able, one may fit a CFA model in which the depend-
ent variables in the VAR model are specified as
indicators of a common factor. In this case, even
though the dependent variables that constitute the
VAR processes do not share any theoretically mean-
ingful common factors, their shared missingness
mechanisms might constitute a source of covariation
that needs to be accounted for. The present study
explored this possibility in the context of a Monte
Carlo simulation study. In other contexts, an EFA
may need to be performed to facilitate the derivation
of a heuristic factor structure.

Step 2. Estimating latent variable values

Once a factor analytic model of choice has been speci-
fied, popular factor score estimators, such as the
Kalman filter (KF; Kalman, 1960) or the related
Kalman smoothers (Ansley & Kohn, 1985; Chow
et al, 2010; Dolan & Molenaar, 1991; Oud et al,
1990) can then be applied to obtain the estimates of
latent variable values.

Here, we briefly describe the key estimation proce-
dures. More detailed estimation procedures for fitting
the model shown in Equations (4) and (5) can be
found in Harvey (1990) and Chow et al. (2010). In



brief, the KF provides the conditional latent variable
estimates for each person at a particular time ¢ based
on observed data available up to time #, namely,
E(n; ¢/{y;»j =1,...t}), and the corresponding covari-
ance matrix, Cov(; ,[{y; »j = 1,...,t}). In applications
where the entire time series of observations is avail-
able for estimation purposes, a closely related alterna-
tive is a Kalman smoothing technique known as the
fixed interval approach, which yields the smoothed
latent variable estimates, E(n; ,[{y;;ij = 1,... Ti}),
and the  corresponding  covariance  matrix,
Cov(n; |{; »j = 1,..., Ti}), where T; is the number of
observations for person i. This approach has been
shown to be equivalent to the well-known regression
approach for estimating factor scores (Chow et al,
2010; Dolan & Molenaar, 1991).

Application of the KF and related techniques
assumes that the parameter are fixed at their known
values. We provide a brief description about ways to
obtain these parameter estimates. Under normality
assumptions of the measurement and process noise
components and linearity of the dynamic and meas-
urement functions (see Equations (4) and (5)), the
prediction errors, y;, —E(y; [{y;j=1...t —1}),
which capture the discrepancies between the manifest
observations and the predictions implied by the model
at time f, are multivariate normally distributed. This
yields a log-likelihood function, also known as the
prediction error decomposition function (Schweppe,
1965), computed using by-products from the KEF,
that can be optimized to yield estimates of all the
time-invariant parameters. This is similar to the FIML
parameter estimates which are based on only the
available observed variables. In sum, following
the specification of a factor analytic model, the KF,
the Kalman smoother, and optimization of the predic-
tion error decomposition function can be utilized to
yield maximum likelihood point estimates for all the
time-invariant parameters, and smoothed estimates of
all the latent variables for all individuals and
timepoints.

Step 3. Implementing multiple imputation

The factor scores obtained in Step 2 will be used in
MI to inform the missingness mechanism (i.e.,
missingness associated with latent factors). With MI,
missing observations are repeatedly imputed based on
prespecified imputation models to yield multiple
imputed data sets. One commonly used method for
imputing missing values is the fully conditional speci-
fication (FCS) method (van Buuren & Oudshoorn,
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2000), which can be carried out with the Multivariate
Imputation by Chained Equations R package
(MICE; van Buuren & Groothuis-Oudshoorn, 2011).
The specific algorithm adopted in MICE is called
“chained equations” (Raghunathan et al., 2001), which
imputes missing values in each variable iteratively,
conditional on the observed and imputed values prior
to the current imputation.

Assume that we have p dependent variables, y =
(y1>--»¥p)> and g covariates, x = (x1,....%;). The
observed parts of y and x are denoted by y° =

0, o po) and X% = (x§%, .., x0%),  respectively.
Let z be a vector containing all fully observed auxil-
iary variables that are hypothesized to be associated
with  the missingness in y and x y ;=
(V15 Yj=1>Yj+15 - ¥p) be the collection of the p—1
variables in y  without y, and x_ ;=
(X150 Xj—15 Xjy15 -, X4) be the collection of the g—1
variables in x without x;. Then the conditional distri-
bution of y and x; are P(yj0,,y_,x2) and
P(x;|0,,x_j,y.2), respectively, where 0, and 0, are
unknown parameters that are specific to the respective
conditional distributions. Then starting from a simple
draw from observed marginal distributions of y;, the
tth iteration of the chained equations algorithm will

successively draw samples (denoted by
G;jm, 9;}@, y}k(t), and x;(t)) from the respective condi-

tional distribution of 0,, 0y, y;, and x; Here, y;(t)
can be viewed as the imputed values for the jth
deyendent variable at the tth iteration, and we let
y;t = (y]‘?bs, y;(t)) represent the jth imputed dependent
variable at the tth iteration, which consists of both
observed and imputed values. Similarly, we use x;(t)
th covariate at

) to represent

to denote the imputed values for the {
the tth iteration, and x;t) = (x‘?bs,x;(t
the jth imputed covariate.

The process of drawing these samples can be sum-

marized as follows.

J

IO

t

Update xi( s Xg
-1

~ P(0y, ‘le)bs’y(t)’x(jl )’z)

~ P(a 0,y 2)

Update yi(t),...,y;(t) :
0,0 ~ PO,y y T, 50, 2) 00
J’T([) ~ P()’l\H;l(t),y(_tl_l),x“’l),z) xi([)

00~ PO by G0z 0
* * _ *(t)
A A R R I

~ P(qu\xgbs,y(’),x(_t;,z)
~ P(xq\Gist),y(‘),x(_t,),,z)

Note that the chained equations algorithm is essen-
tially Gibbs sampling, a widely used Markov chain
Monte Carlo (MCMC) algorithm, but different from
many MCMC algorithms, the chained equations algo-
rithm often converges faster (e.g., convergence can be
achieved after 10-20 iterations). Finally, the chained
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equations algorithm will be implemented multiple
times to generate multiple imputed data sets.

With MICE, users can specify a univariate imput-
ation model for each incomplete variable, so that at
each iteration of the above algorithm, missing values in
each variable will be imputed based on the prespecified
imputation model (i.e., P(yj|0y,y_;%,2) for dependent
variables and P(xj|0x].,x_j, y,z) for covariates). In the
present study, we use the default imputation models in
MICE to impute different types of variables—for
instance, predictive mean matching (PMM; Little,
1988) for continuous variables and multinomial logistic
regression for categorical variables. Specifically, con-
sider a variable ¢ which has some cases with missing
data. The PMM method works by first estimating the
conditional distribution of ¢ given all observed variables
that are hypothesized to be related to the missingness
in ¢, using a predictive model (typically linear regres-
sion). Then, for each missing value of ¢, the algorithm
selects an observed value of ¢ that is close to the pre-
dicted value. This observed value is used to replace the
missing value. This method is particularly useful when
dealing with continuous variables, and can produce
imputations that preserve the distribution and relation-
ships between variables in the original data set. For
missing categorical variables, multinomial logistic
regression models are often used to generate the pre-
dictive distribution.

The proposed approach considers the following vari-
ables to be included in the imputation model: (1) varia-
bles in the model of interest, including both dependent
variables and covariates; (2) factor scores obtained
from Step 2; (3) lags/leads of variables in (1) and (2);
(4) missing data indicators; and (5) other auxiliary vari-
ables hypothesized to be related to variables of interest
and/or missing data mechanisms. Among these varia-
bles, the factor scores are important missingness-related
variables when the missingness is associated with latent
factors; the lagged and leading variables are helpful in
capturing the time dependencies between observations;
and missing data indicators are important auxiliary
variables as evidenced in previous research (Beesley
et al., 2021; Sperrin & Martin, 2020).

Step 4. Fitting models of interest and pooling
estimation results

Assume that we obtain m imputed data sets from Step
3, then we can fit our model of interest to each
imputed data set to obtain m sets of parameter esti-
mates, which are then pooled following Rubin’s rules
(Rubin, 1976) to obtain the final estimation results

(i.e., point and standard error estimates, confidence
intervals, etc.).

Finally, the MI-FS approach can be implemented
using an utility function called dynr.mi() in an R pack-
age called Dynamic Modeling in R (dynr; Ou et al,
2019), which was designed to handle possibly nonign-
orable missingness in the dependent variables and/or
covariates by performing the MI procedure adapted to
ILD with dynamic systems modeling within dynr. A
more thorough introduction of the general modeling
framework and estimation procedures underlying dynr,
as well as a detailed introduction about dynr.mi() can
be found in the relevant literature (Chow et al., 2018;
Li et al., 2019; Ou et al., 2019).

Missing data handling approaches considered

The proposed approach was compared with LD (a
baseline approach) and two MI strategies without fac-
tor scores, referred to as “full MI” and “partial MI” in
Ji et al. (2018), and “MI with manifest variables (MI-
MV)” and “partial MI with manifest variables (PMI-
MV)” in the present article. The four approaches are
detailed below, with a brief summary and comparison
of these approaches in Table 1.

LD

The LD approach was designed to mirror common prac-
tice of deleting an entire instance (row) of observations
with missingness in any variable, whereas the LD
approach was implemented in the present study by
removing rows with missing entries in covariates,
whereas rows with missing entries only in the dependent
variables were kept in the data set and handled via FIML.

MI-FS

Following the four steps described before, we first
obtained factor scores by fitting a PFA model with no
covariates. Then we multiply imputed both dependent
variables and covariates using an imputation model
consisting of (1) variables in the model of interest,
including both dependent variables and covariates; (2)

Table 1. Summary of missing data handling methods consid-
ered in the present study.

Method Missingness in DVs Missingness in covariates Use factor scores

LD FIML Removed No
PMI-MV FIML Mi No
MI-MV M M No
MI-FS M M Yes

Note: DV: dependent variables; MI: multiple imputation; FIML: full-informa-
tion maximum likelihood; LD: listwise deletion; PMI-MV: partial MI with
manifest variables; MI-MV: MI with manifest variables; MI-FS: MI with
factor scores.



factor scores; (3) lags/leads of variables in (1) and (2);
(4) missing data indicators; and (5) other auxiliary
variables. Lastly, we fitted the PFA model to each
imputed data set and pooled estimation results.

MI-MV

The MI with manifest variables approach was almost
identical to the MI-FS, except that factor scores did
not need to be estimated and included in the imput-
ation model.

PMI-MV

Both MI-MV and PMI-MV included dependent varia-
bles and covariates in the imputation model. The dif-
ference was that, with MI-MV, the imputed
dependent variables were used in the following model
fitting as if they were completely observed, whereas
with PMI-MV, the imputed values of dependent varia-
bles were discarded since the missingness in depend-
ent variables was handled via FIML.

Simulation study

The goals of this simulation study were to evaluate:
(1) whether and how the incorporation of factor
scores into MI affect the estimation accuracy and
uncertainty compared to LD and MI without factor
scores; (2) the effects of the autocorrelation level of
the process on the performance of these approaches;
(3) the effects of missingness mechanisms on the per-
formance of these approaches; (4) the role of missing-
ness indicators in data imputation; and (5) the effects
of misspecification of factor analytic structure in
deriving factor scores for MI purposes. The results
will help guide researchers to select missing data
handling approaches that are better suited for their
study questions, hypotheses about missing data mech-
anisms, as well as data characteristics.

Specifically, using the PFA model, we simulated
data by crossing two factors with two conditions each,
yielding four conditions in total. The first factor was
the autocorrelation level of the VAR process, which
was set to either low or high to investigate the per-
formance of missing data handling approaches when
they are applied to longitudinal data with different
autocorrelation levels. The second factor was the miss-
ingness mechanism, namely, whether missingness was
driven by items versus latent factors. Four missing
data handling approaches were considered, including
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LD, MI-ES, MI-MV and PMI-MV. For each of the
three MI-based approaches, we also considered MI
with and without the inclusion of missingness indica-
tors in the imputation model. Finally, based on simu-
lation results designed to address our first three
request questions of interest, we performed targeted
simulations within one the four conditions—missing
mechanisms driven by latent factors and data with
low autocorrelations, to further examine the perform-
ance of our proposed method under misspecification
of the factor analytic structure. In the following sec-
tion, we describe the data generating model, followed
by details of the two design factors, the four missing
data handling approaches considered in this study, as
well as a set of summary statistics used to evaluate the
estimation performance. The R code for generating
complete and missing data as well as implementing
different missing data handling approaches can be
accessed via https://github.com/yanlinglil/MI-with-
factor-scores.

Complete data generation model

The complete data generation model was similar to
the PFA model presented in Equations (1)-(3), except
that we did not allow the intercepts in the dynamic
model to be person-specific and the measurement
errors to be correlated, as well as reduced the number
of covariates for simplicity purposes.

The dynamic model was specified below, where
most notations have been described in the Motivating
Example section, reiterated here for clarity with
“context-neutral” notations for the dependent varia-
bles (i.e., #,;, and #,;,) and time-varying covariates
(i.e., x1,;+» a binary covariate, and x, ;;, a continuous
covariate). Specifically, the dynamic model was speci-
fied as:

Myt | |4 bi | [ M50 I a di| | X
Mo, it by ax || My o dy| | X2
. . O'% a¢
+ zl,z,t , gl,t,t ~ N(O, ZC _ G .212
Goie Coit 0t, O,

(6)
whereas the measurement model was defined as:

Vit m 10 €1,it
Y2t W A0 1 €2t
Vait| _ | #s A2 O . €3,i,t o 2
Yuie|  |He O 1 [zltt} ! gt | Gt~ N0, 7;)
Vs,it Us 0 73 »it €s,it
Yo, it U 0 A4 €6,i,t

(7)
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in which the manifest variables, y;,;,— ysi Wwere
indicators for 1, ;,, with 4; and A, being the factor
loadings; and y4; — ysi: were linked to #,;, via
factor loadings, 4; and 4. Note that the first factor
loading for each factor was fixed at unity for
identification purposes. We also freely estimated the
intercepts, u; - us. Each manifest process’s measure-
ment errors were hypothesized to follow a univariate
normal distribution.

The complete data set that consisted of
30 participants and 100 timepoints for each partici-
pant was simulated based on the PFA model defined
in Equations (6) and (7), where the true values of
model parameters were set mainly based on estima-
tion results in previous studies (e.g., You et al., 2020).
Specifically, in the dynamic model, the true values for
a, and a, were set to 0.5 for the low-autocorrelation
condition and 0.7 for the high-autocorrelation condi-
tion. Under the low-autocorrelation condition, the
relationship between a variable’s current value and its
previous values was low to moderate, whereas under
the high-autocorrelation condition, such relationship
was high. These values were specifically selected so
the resultant VAR process is stable. A system is said
to be stable (Liitkepohl, 2005) when all of its statistical
properties, including mean and variance, are constant
over time. For the case of the VAR process shown in
Equation (4), the process is stable when the roots of
the determinant of the matrix I — FB all have moduli
greater than unity, where B is the backshift operator
such that By, = 1,_;. An AR(1) process is stable when
the AR parameter (e.g., a; and a, in Equation (6)) is
between —1 and 1 (noninclusive). Processes that are
unstable, or close to being unstable, are generally
associated with greater estimation challenges, although
they also highlight more clearly the impact of using
factor scores in the imputation process.

The CR parameters were set as b; = —0.2 and b, =
—0.3; the covariate-related coefficients were specified
as ¢ = 0.3, ¢; =-0.3, dy =0.5, and d, = —0.4; and
elements in X; were set as 0'%] =2, g7, =0.5 and
afz = 6. In terms of parameters in the measurement
model, the intercepts were set to 3 for u; - u; the fac-
tor loadings were set as A; =43 =2 and 4, = 44 = 1;
and measurement error variances were set as 1 for 67,

2
- o,

Missing data generation models

To investigate the roles of different missing data
mechanisms and implications on the utility of
including factor scores in the imputation process, we

examined two possible nonignorable missingness
mechanisms, namely, when the missingness was
triggered by (1) values of individual items (i.e., item-
dependent missingness); and (2) values of latent fac-
tors (i.e., factor-dependent missingness). The former
would generate missingness in scattered items when
the values of these items were extreme, whereas the
latter would yield simultaneous missingness on all
items that loaded on the implicated factor when the
values of this factor were extreme. The coefficients in
the missing data generation model below were speci-
fied to generate about 30% missingness in both
dependent variables and covariates. This missingness
rate was decided based on the range of percentages of
missing data in previous longitudinal studies. For
instance, a review article found that among 82 longi-
tudinal studies, the percentage of missing data varied
from 10% to 55%, with an average of 14% (Okpara
et al,, 2022). In addition, this setting also allowed us
to compare the proposed method with two existing
methods proposed by Ji and colleagues (see details
below), who conducted their simulation studies also
under a missingness rate of 30%.

Item-dependent missingness

The missingness associated with individual items was
generated based on the missing data generation model
below.

logit(P(Ry,,, = 1]%;,i,1, 21,1, 22,i,t))
= Qo+ G121,it + Grz2it + P3xjies j=1,2 (8)
logit(P(Ry,,, = 1

Vi i, t>21,i,t> Zz,i,t))
= ¢o+ P121,i0 + Drzit + ¢3)’j,i,t> j=1..6 (9)

where R, , and R, , were missingness indicators
(1 =missing) for covariates and dependent variables,
respectively. ¢, - ¢, were both set to 0.6; ¢; was set
to —0.8 for covariates, —0.6 for y; — y;, and 0.6 for y,
- ¥s and ¢, was adjusted for each manifest variable
and covariate to make sure the final missingness rate
for each of them was approximately 30%. The prob-
ability of missingness was dependent on (1) two fully
observed variables, z; ;; and z; ;;, simulated from a
uniform distribution, U[-3, 3] and (2) the variable
itself, thus vyielding a combination of MAR and
NMAR conditions.

Based on the above specifications, the manifest
dependent variable, y;;; accounted for a relatively
substantial portion of the variability in the log odds of
missingness in the corresponding dependent variable.
Specifically, we calculated R-squared values (McKelvey



& Zavoina, 1975) to quantify the extent to which y;;
contributed to the prediction of missingness in y; ;.
The contribution of z;;; and 2z ;; based on
McKelvey and Zavoina’s R-squared, were both around
0.2, while the contribution of y; ;; — 3¢ and ya;; —
Ye,i,t were round 0.29 and 0.46, respectively, in
Equation (9). Thus, the dependent variable itself was
designed to play a slightly higher role than the fully
observed covariates in affecting the log odds of miss-
ingness in the dependent variable under this item-
dependent missingness condition.

After incorporating such item-dependent missing-
ness, each item would have 30% missing entries and it
would be rare that all items were missing for the same
participant given the nature of the missing data gener-
ation model—that is, the missingness in each item
depended on this item itself.

Factor-dependent missingness

Under this condition, missingness in covariates was
generated based on the same missing data generation
model as specified above (see Equation (8)), whereas
missingness in dependent variables was generated
based on the following missing data generation mod-
els.

logit(P(R}’],[,i = 1Ny 2100 220t))

= o+ O121,i0 + Q222 + P3Ny j=1,2,3
(10)

logit(P(R}’j,[,t = 1Ny ;2100 22i0t))

= o+ &121,i0 + Q220 + O3y =456
(11)

The difference between Equation (9) and Equations
(10) and (11) was that the probability of missingness
in each dependent variable (e.g., y;—y3) was specified
to be associated with the corresponding latent variable
(e.g., 1), rather than the dependent variable itself.
¢,—¢p, were both set to 0.6; ¢ was set to —0.6 for 7,
and 0.6 for n, to represent two different scenarios—
the dependent variables (e.g., y;—y;) were more likely
to be missing when the values of the corresponding
latent variable (e.g., n;) were low/high; and ¢, was
adjusted to make sure the final missingness rate for
each manifest variable was approximately 30%.

Based on McKelvey and Zavoina’s R-squared, the
contribution of z; ;; and z, ;;, were both around 0.2,
while the contribution of #, ;, was 0.26 in Equation
(10) and 0.39 in Equation (11). Thus, the latent fac-
tors were also designed to contribute more than the
fully observed covariates in affecting the log odds of
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missingness in the latent variables under the factor-
dependent missingness condition, as the manifest
dependent variables were under the item-dependent
missingness condition. However, note that missing-
ness in the time-varying covariates was never depend-
ent on the latent factors or manifest dependent
variables but just the fully observed auxiliary variables
(see Equation (8)).

The factor-dependent missing data model defined
in Equations (10) and (11) specifies the same prob-
ability of missingness for all indicators of the same
latent factor. In other words, when one indicator is
missing, all other indicators for the same factor would
also be missing. In contrast, the item-dependent miss-
ing data model in Equation (9) would not yield such
simultaneous missingness in general because the prob-
ability of missingness is item-specific. In other words,
the simultaneous vs. scattered missing data patterns
were direct consequences of the two different missing-
ness mechanisms.

Implementation of missing data handling
approaches

Four missing data handling approaches were imple-
mented, including LD, MI-ES, MI-MV, and PMI-MV.
The implementation of MI-FS followed the four steps
described before. We first obtained factor scores by
fitting the PFA model in Equations (6) and (7) with
Then we multiply imputed both
dependent variables and covariates using an imput-
ation model consisting of (1) six dependent variables
(y1,i,:—e,i.¢) and two covariates (x;,;; and x;;¢); (2)
two factor scores (smoothed estimates of #, ;, and
N3.i.1); (3) lags of variables in (1) and (2); (4) eight
indicators for missingness in dependent variables and
covariates; and (5) two auxiliary variables associated
with missingness mechanisms (z;,;; and z ;). Here,
the default imputation models in the MICE package
were used to impute different types of variables.
Specifically, the PMM method (introduced before)
was used for continuous variables (e.g., ¥1,i+—Ve,it>
and x,;,), and logistic regression was used for cat-
egorical variables (e.g., x1,; ;). Lastly, we fitted the PFA
model defined in Equations (6) and (7) to each
imputed data set and pooled estimation results. The
implementation of other three approaches can be
found in the previous section.

For all MI-based approaches, 5 imputations were
implemented with 30 iterations in the MCMC proced-
ure in each imputation. Although more imputations
may be needed for more complex models, we found

no covariates.
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that 5 imputations might be sufficient given the good
estimation results (see simulation results). In addition,
the number of iterations was determined based on the
trace plots generated by the MICE package, which dis-
played the mean and standard deviation of the
imputed values against the iteration number for each
of the 5 imputations. When the number of iterations
was set to 30, the trace lines showed good mixing for
all variables without any systematic trends. In add-
ition, based on the R values (a summary statistic to
assess the convergence across multiple MCMC chains
by comparing the within-chain variance to the vari-
ance of the pooled draws across multiple chains;
Gelman et al., 2013) output by the dynr.mi() utility
function in dynr, satisfactory convergence (i.e.,
R<1.1) was achieved for all variables under 30
iterations.

Among these four approaches, we hypothesized that
LD would generally yield the worst performance on
estimation accuracy because the deletion of rows of
data would alter the time dependencies between
observations and reduce the sample size available for
estimation purposes. Among the three MI-based
approaches, given the nature of the hypothesized
model (i.e., based on dynamics of factors) and the
missingness mechanism (i.e., factor-dependent miss-
ingness), we hypothesized that MI-FS would outper-
form MI-MV under conditions with factor-dependent
missingness because the inclusion of factor scores and
their lagged values would facilitate recovery of the
true temporal relationships among latent variables,
provided that the factor score estimates were reason-
able approximations to the true factor scores. The
relative performance of the MI-FS and PMI-MV was
unknown and a focus of the simulation study. The
PMI-MV uses FIML to handle missingness in depend-
ent variables, which generally works well when the
model is correctly specified, even under some NMAR
scenarios. For instance, Ji et al. (2018) examined the
performance of PMI-MV and MI-MV in the context
of VAR models under the low-autocorrelation condi-
tion, and the simulation results showed that regardless
of the missingness mechanism (i.e., MCAR, MAR,
and NMAR), the PMI-MV approach generally outper-
formed the MI-MV approach in terms of parameter
estimation (Ji et al., 2018). However, they only com-
pared these approaches under the low-autocorrelation
condition. The increase in the level of autocorrelations
may pose additional challenges to imputation and par-
ameter estimation given that time series with a high
level of autocorrelation tends to be close to
the unstable range. Hence, an investigation of the

performance of these MI strategies with highly auto-
correlated data was warranted.

In this simulation study, we compared the perform-
ance of these methods with data generated using the
PFA model in Equations (6) and (7) across four scen-
arios (two missing data models X two autocorrelation
conditions), with the goal of investigating under what
circumstances one method outperforms the other in
terms of estimation accuracy and uncertainty.

Performance measures

For each condition and method, we ran 500 Monte
Carlo replications, based on which we calculated sum-
mary statistics such as biases, relative biases, standard
errors (SEs), Monte Carlo standard errors (MCSEs),
and root-mean-square errors (RMSEs), as defined
below.

Suppose that 0 was the true value of a particular
parameter, and the point and standard error estimates
of 0 in the hth (h =1, ..., H) replication were éh and
SE;,, respectively. Let the average of point estimates
across H replications be 0, then the bias, relative bias,
SE, MCSE and RMSE were defined as follows:

1 <. .

bias = — > (6, — 0), (12)
Hi=
° o
relative bias = 1 On 6, (13)
H e 0

(14)
(15)
(16)

Here, the SE represents the average estimated
standard error for parameter 0, which was compared
to the MCSE, the Monte Carlo or empirical standard
error, obtained from the standard deviation of point
estimates for 0 over H replications. It was expected
that the SE and MCSE measures would be close to
each other in the simulation study. In addition, to
compare the quality of the SE estimates to the
“benchmark” SE estimates obtained from the complete
data set, we calculated “dSEfulls,” defined as the dif-
ference between SEs obtained using any of the four
missing data handling methods and SEs obtained



based on complete data without missingness. Despite
the fact that missing data would typically lead to
larger SE estimates compared to complete data, this
specific measure allowed us to evaluate the relative
performance of the four missing data handing meth-
ods in terms of the deviation from the SEs based on
complete data. That is, the SEs based on complete
data were used as “benchmark” estimates. We also
calculated power, defined as the proportion of replica-
tions whose confidence intervals did not contain 0,
and coverage rates, defined as the percentages of repli-
cations whose confidence intervals contained the true
values. Simulation results with higher power and
coverage rates close to the nominal rate of 95% would
be considered ideal. Note that the power reported in
this simulation study was based on the current specifi-
cations of effect sizes and sample sizes.

Simulation results

Due to space limits, we focus in this section on three
summary statistics—RMSEs, dSEfulls, and coverage
rates. Other summary statistics (e.g., biases, SEs,
MCSEs, and power) can be found in the full simula-
tion results, as summarized in Tables S1-S26 in the
Supplementary Material. Across all simulation condi-
tions, we verified that the SE and MCSE measures
were relatively close to each other. Since parameters
in the dynamic model were of key interest, we pre-
sented results for most parameters in the dynamic
model but aggregated other parameters by parameter
type and then calculated the average of each summary
statistic for parameters within the same group (see
details about parameter groups in Figures 3-9).

In the following discussion of simulation results,
we first described results under the low-autocorrel-
ation condition because this autocorrelation level mir-
rored the range of autocorrelations reported in most
published studies, and then focused on comparisons
between different simulation conditions to provide a
more thorough comparison. We then discussed the
role of missing data indicators, the effects of misspeci-
fication of the factor analytic structure, and other
findings. Finally, we provided our recommendations
for the selection of missing data handling methods in
different scenarios.

Effects of incorporating factor scores into Mi
(focusing on the low-autocorrelation condition)

This subsection focused on results under the low-
autocorrelation condition. First, comparisons of
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RMSEs across the four methods (see Figures 3-5)
showed that MI-based methods (i.e., MI-FS, MI-MV
and PMI-MV) substantially outperformed LD on most
parameters except for factor loadings, variance param-
eters (e.g., process noise variances, measurement error
variances), and one covariate-related coefficient in the
dynamic model (see “d1” in Figure 4). The worse per-
formance of LD on most parameters in the dynamic
model was expected since the deletion of rows of data
altered the time dependencies between observations.

Focusing next on the three MI-based methods, the
simulation results highlighted the advantage of the
MI-ES over MI-MV in recovering AR parameters (see
“al” and “a2” in Figure 3), suggesting that the inclu-
sion of factor scores in imputation models did help
capture the time-lagged relationship among latent fac-
tors and the missingness mechanism. Compared with
PMI-MV, MI-ES yielded smaller RMSEs for a, and
comparable RMSEs for a; under the low-autocorrel-
ation condition. The difference in the relative per-
formance on a; and a, might be due to different
variability levels of #, ;, and #, ; ;. In fact, in this low-
autocorrelation condition, although the autocorrel-
ation level was set to be the same (ie., 0.5) for #, ;,
and 1, ;4> 1,,;; was characterized by higher variability
due to its larger process noise variances. Typically, it
would be harder to recover a, than g, in this scenario.
These results suggested that under the low-autocorrel-
ation condition, MI-FS might be more robust to high-
variability time series.

In term of CR parameters, the three MI-based
methods yielded almost identical results on RMSEs
(see “b1” and “b2” in Figure 3). By contrast, compari-
sons on the coefficients of time-varying covariates (see
Figure 4) differed between low- and high-autocorrel-
ation conditions and will be discussed in detail in the
following subsection. Note that the larger RMSEs (i.e.,
close to 0.1) for coefficients of the binary time-varying
covariate (i.e., “c1” and “c2”) indicated more difficulty
in recovering this type of parameters than other
dynamic model parameters.

Despite the promising use of MI-FS in recovering
dynamics of latent factors, we found that the MI-FS
yielded worse performance than MI-MV and PMI-
MV on variance parameters, including both process
noise variances and measurement error variances (see
Figure 5). The RMSE:s for these parameters under MI-
FS were twice as high as under MI-MV or PMI-MV.
Further inspection revealed that the MI-FS tended to
underestimate process noise variances, which might
be due to some losses in data variability at the item
level when factor scores were included to generate



74 Y. Ll ET AL.

(a) RMSE (item—-dependent; low autocorrelation)

0.201
0.154
L
2
o 0 10 T
005{ " >
P M
W
0.001
al a2 b1 b2
LD P PMI-MV M MI-MV MI-FS

(c) RMSE (factor-dependent; low autocorrelation)

0.201
0.151
T}
=
& 0.101
0.051 & :
M M
' i
0.00 1
al a2 b1 b2

LD P PM-MV M  MI-MV MI-FS

(b) RMSE (item—-dependent; high autocorrelation)

0.201
0.151
Ll
S
= 0.101
0.051 -
M A W
1> IV\{‘ p
0001 |
al a2 b1 b2
Lb P PMI-MV M MI-MV MI-FS

(d) RMSE (factor-dependent; high autocorrelation)

0.201
0.151
L
2
& 0.101
0.051 - M
P NF
I M
0.001 ’
al a2 b1 b2

LD P PM-MV M M-MV MI-FS

Figure 3. Comparisons of RMSEs across conditions based on 500 Monte Carlo replications (part 1). This plot shows results for AR
(a;, a;) and CR (by, by) parameters in the dynamic model (see Equation (6)). RMSE: root mean square error; LD: listwise deletion;
PMI-MV: partial MI with manifest variables; MI-MV: MI with manifest variables; MI-FS: MI with factor scores.

imputed values. Also note that a model without cova-
riates was used to obtain factor scores, which might
also lead to biased process noise variance estimates.
By contrast, there were no systematic under/overesti-
mates of measurement error variances under the
MI-FS.

Comparisons of dSEfulls are displayed in Figure 6.
Similar to comparisons of RMSEs, MI-based methods
substantially outperformed LD on dynamic model
parameters because the deletion of records with miss-
ing covariates reduced the sample size and led to
larger SE estimates. Across all methods, the MI-FS led

to the least biased SE estimates for most parameters,
using the complete data set as a “benchmark.” The
only exceptions resided in the intercept and error
variance parameters in the measurement model, which
was reasonable given the biased estimates of these
parameters, which were usually associated with more
estimation uncertainty. Note that for process noise
variance and covariance parameters, the MI-FS tended
to underestimate their SEs, compared with SE esti-
mates obtained based on the complete data (see nega-
tive dSEfull values in Figure 6). As mentioned before,
the MI-FS tended to underestimate these parameters,
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(b) RMSE (item—-dependent; high autocorrelation)
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Figure 4. Comparisons of RMSEs across conditions based on 500 Monte Carlo replications (part 2). This plot shows results for coef-
ficients of covariates (i.e., ¢, ¢y, d;, d,) in the dynamic model (see Equation (6)). RMSE: root mean square error; LD: listwise dele-
tion; PMI-MV: partial MI with manifest variables; MI-MV: Ml with manifest variables; MI-FS: MI with factor scores.

probably due to the reduced data variability—specific-
ally, measurement noises—carried by the factor scores
used for MI purposes, and such underestimation
might in turn lead to underestimated SEs associated
with these parameters.

Figures 7-9 provide some clarifications on the
extent to which the coverage rates met the nominal
levels of coverage probability (e.g., 95%). Under the
low-autocorrelation condition, the MI-FS yielded the
highest coverage rates on AR parameters but relatively
low coverage rates (below 50%) on factor loadings
and variance and covariance parameters. The worse

performance on process noise variances and covari-
ance was due to smaller SE estimates, more biased
point estimates (discussed before), or both, while the
worse performance on factor loadings and error vari-
ance parameters in the measurement model was
mainly resulted from more biased point estimates. By
contrast, MI-MV and PMI-MV were generally charac-
terized by comparable or higher coverage rates than
the MI-FS on all but the AR parameters, partially due
to larger SE estimates and thus larger confidence
intervals generated by these MI with manifest variable
approaches.
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Figure 5. Comparisons of RMSEs across conditions based on 500 Monte Carlo replications (part 3) This pIots shows results for the

remaining parameters in the model. Speaflcally, “d_var” and “d_cov": process noise variances (

nou

the dynamic model (see Equation (6)); “m_int”,

) and covariance (am) in

m_var” and “m_load”: intercepts (u; — i), measurement error variances (c? p

L, 62), and factor loadings (1; — A4) in the measurement model (see Equation (7)). RMSE: root mean square error; LD: listwise dele-
tion; PMI-MV: partial MI with manifest variables; MI-MV: Ml with manifest variables; MI-FS: MI with factor scores.

In sum, under the low-autocorrelation condition,
compared to other MI methods, the MI-ES yielded
less to comparable biases for AR and CR parameters
but more biases in variance parameters. The compari-
son of coverage rates showed lower coverage rates
under MI-FS for most parameters except for AR
parameters, which was partially due to the smaller SE
estimates compared to other MI methods. It should
be noted that all these simulation results were dis-
cussed based on the PFA model in Equations (6) and
(7). Also note that the performance of the MI-FS

method relies heavily on the specification of the factor
analytic model. The effects of misspecification will be
discussed later.

Effects of autocorrelation levels

Different strengths of the AR parameters could alter
the levels of stability of a system’s dynamics as well as
its  signal-to-noise thus  affecting the
consequences of including factor scores in the MI
process. By comparing RMSEs between low- and

ratio,
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(b) dSEfull (item-dependent; high autocorrelation)
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Figure 6. Comparisons of dSEfulls across conditions based on 500 Monte Carlo replications. The dSEfull measure was defined as
the difference between SEs obtained using any of the four missing data handling methods and SEs obtained based on complete
data without missingness. “d_ar” and “d_cr”: AR (a;, a;) and CR (b, b,) parameters in the dynamic model (see Equation (6)); “d_
x1” and “d_x2": coefficients of covariates (i.e., ¢;, ¢3, dy, d>) in Equation (6); “d_var” and “d_cov": process noise variances (aé, )
and covariance (a;,,) in Equation (6); “m_int,” “m_var” and “m_load": intercepts (111 — u6), measurement error variances (a2 — o7

12
and factor loadings (4; — 44) in the measurement model (see Equation (7)). LD: listwise deletion; PMI-MV: partial MI with manifest

variables; MI-MV: Ml with manifest variables; MI-FS: Ml with factor scores.

high-autocorrelation conditions, we found MI-based
methods were more robust to the change of levels of
autocorrelation in the data set, whereas LD generally
yielded relatively worse estimation results under the
high-autocorrelation condition. In addition, the inter-
cepts of dependent variables (see “m_int” in Figure 5)
were harder to recover under the high-autocorrelation
condition regardless of the method used (e.g., RMSEs
were close to 1 under MI-based approaches and above
2 under the LD approach), which was expected
because there were more instances of time series close
to the unstable range under this situation.

In terms of comparisons across MI-based methods,
the low- and high-autocorrelation conditions led to
similar results in terms of the relative performance of
these MI approaches, except for comparisons between

MI-ES and PMI-MV. First, compared with PMI-MV,
the MI-FS yielded smaller RMSEs and higher coverage
rates on AR parameters, especially a,, under the low-
autocorrelation condition but comparable RMSEs
and coverage rates under the high-autocorrelation
condition. That is, the MI-FS lost its advantage over
PMI-MV in recovering AR parameters in the high-
autocorrelation scenario. Second, the MI-FS overall
outperformed the PMI-MV on the coefficients of the
second time-varying covariate (i.e., x;;,) under the
low-autocorrelation condition, but the reverse was
observed under the high-autocorrelation condition
(see “d1” and “d2” in Figures 4 and 8). These might
be due to the increased difficulty in imputation and
thus more uncertainty around imputed values in this
high-autocorrelation scenario. Since MI-FS and PMI-
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Figure 7. Comparisons of coverage rates across conditions based on 500 Monte Carlo replications. The red dash line represents
95%. This plot shows results for AR (a;, a,) and CR (b,, b,) parameters in the dynamic model (see Equation (6)). CR: cross-regres-
sion; LD: listwise deletion; PMI-MV: partial Ml with manifest variables; MI-MV: MI with manifest variables; MI-FS: MI with factor

scores.

MV handle missingness in dependent variables differ-
ently, with MI-FS using MI while PMI-MV using
FIML, a possible reason for the reduced performance
of the MI-FS would be that under the high-autocorrel-
ation condition, the MI approach might generate some
imputed values that rendered the corresponding time
series unstable. More specifically, the default imput-
ation model in the MICE package (e.g., see the PMM
method introduced before) was used to perform MI
without regard to what the true data generation model
was, so imputations were basically performed without
any stability constraints. In contrast, the PMI-MV
approach, through use of the FIML, propagated for-
ward in time model-implied values based on the cor-
rectly specified dynamic model (i.e., PFA) at the values
of the parameter estimates for each iteration. Thus,
when the parameter values are in the stability range
(which can be accomplished through constraints on the
time series parameters during the optimization

process), this approach would yield stable (in contrast
to unstable, with increasing variability) model-implied
latent variable values, unlike alternatives such as MI-FS
and MI-MV which impute with much less constraints
and more extraneous (sometimes noisy) information.

Effects of missingness mechanisms

In addition to autocorrelation levels, missingness
mechanisms may also affect the (relative) performance
of different missing data handling approaches. First,
across all methods, we observed substantial increases
in coverage rates on a set of parameters from item-
dependent missingness to factor-dependent missing-
ness, under the low-autocorrelation condition (see,
e.g., “d_cov,” “m_int,” and “m_load” in Figure 9(a)
and (c)). Such increase in coverage rates was mainly
related to the larger SE estimates (i.e., larger confi-
dence intervals) of these parameters.
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Figure 8. Comparisons of coverage rates across conditions based on 500 Monte Carlo replications. The red dash line represents
95%. This plot shows results for coefficients of covariates (i.e,, ¢;, ¢;, dy, d,) in the dynamic model (see Equation (6)). CR: cross-
regression; LD: listwise deletion; PMI-MV: partial Ml with manifest variables; MI-MV: MI with manifest variables; MI-FS: MI with fac-

tor scores.

Second, comparisons across methods did not
change substantially under two different missing data
mechanisms, except for more notable differences
between MI-FS and MI-MV. Specifically, in terms of
RMSEs on AR parameters and the process noise
covariance, the discrepancy between MI-FS and MI-
MV was more notable when the missingness was asso-
ciated with latent factors and the autocorrelation level
was high (see Figure 3(d) and Figure 5(d)). Such not-
able improvement highlighted the power of using fac-
tor scores in the imputation, especially when the
missing data mechanism was related to latent factors
and the autocorrelation level was high.

The role of missing data indicators

To verify the role of missing data indicators in MI,
we replicated the simulation without including miss-
ingness indicators in the implementation of MI-MV,

PMI-MV, and MI-FS. As a result, the performance of
PMI-MV and MI-FS remained similar, but the per-
formance of MI-MV changed dramatically. That is,
MI-MV could only yield comparable performance to
other MI-based methods when missingness indicators
were included in the imputation model. Otherwise, it
would produce much larger biases in most parame-
ters, some of which were even close to biases under
LD. The results suggested that if MIs were to be used,
missingness indicators should be selected as critical
auxiliary variables under NMAR missingness, unless
other variables closely related to the missingness have
already been included in the imputation model, such
as the inclusion of factor scores when missingness was
associated with latent factors. However, it should be
noted that adding too many missing data indicators as
auxiliary variables may cause convergence problems,
so it is highly recommended to examine the conver-
gence of the MI algorithm. As mentioned before, both
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Figure 9. Comparisons of coverage rates across conditions based on 500 Monte Carlo replications. The red dash line represents
95%. This plots shows results for the remaining parameters in the model. Specifically, “d_var” and “d_cov": process noise variances
(O’%], ‘ng) and covariance (o¢,,) in the dynamic model (see Equation (6)); “m_int,” “m_var” and “m_load”: intercepts (u; — pe),
measurement error variances (62 - ¢2), and factor loadings (4; — Z4) in the measurement model (see Equation (7)). CR: cross-

regression; LD: listwise deletion; PMI-MV: partial Ml with manifest variables; MI-MV: MI with manifest variables; MI-FS: MI with fac-
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tor scores.

the trace plots generated by MICE and the diagnostic
R plots generated by the dynr.mi() function can be
leveraged to examine the convergence issue. The
MICE package also provides logged events warnings
which may arise from a variety of issues such as
collinearity.

Effects of misspecification of the factor
analytic structure

In our main simulation study, the estimated factor
scores obtained by fitting a model without covariates
were highly correlated with the true latent factors
(e.g., correlations higher than 0.9), indicating a rela-
tively good recovery of the latent factors. We also
conducted a small simulation study to examine the
performance of MI-FS under more misspecified factor

analytic models, where we focused on one of the four
conditions (i.e., factor-dependent missingness and low
autocorrelation). The data were generated based on a
tri-VAR model where the missingness in three mani-
fest/observed variables was dependent on a common
factor, the values of which were generated as the com-
posite scores of the three manifest variables. Then we
fitted a single factor CFA model, a more misspecified
factor analytic model compared to the PFA scenario,
to obtain the factor scores. Results showed that PMI-
MV performed the best in recovering parameters, fol-
lowed by MI-FS and MI-MV, which yielded similar
results. The comparison between MI-FS and MI-MV
indicated that even when the dynamics of the under-
lying processes unfold at the item as opposed to factor
level, the inclusion of factor scores in the MI process
did not help improve, but also did not induce notably



greater biases in the estimation process. In contrast,
including factor scores in the MI process greatly
improved model estimation properties when the
underlying dynamics were driven by latent factors, as
in the PFA model. However, given the better perform-
ance of PMI-MV, the use of MI-FS may not be neces-
sary in this specific scenario. Therefore, inclusion of
factor scores in the MI process helps more in some
scenarios than others, and we recommend that the
usefulness of incorporating factor scores into MI be
examined via sensitivity analysis by comparing estima-
tion results with alternative approaches not using fac-
tor scores.

Other remarks

First, the simulation results showed that the MI-FS
would generally outperform MI-MV in recovering the
temporal relationships between latent variables (pro-
vided that the factor scores were reasonable estimates
of the true latent factor scores), suggesting that
although the observed indicators contained informa-
tion about the latent factors, just including observed
indicators might not be sufficient to provide critical
information in the MI process. In fact, this point can
also be understood analytically. Specifically, under the
hypothesized model in Equations (4) and (5), the con-
ditional distribution of the observed indicators is
Vi, ~ N(t+ An;, + Ax; , Xc). Thus, information
on latent factors, #;,, (e.g., factor scores) should be
included in the imputation process to facilitate imput-
ation of the observed indicators, y;,. Under factor-
dependent missingness (as generated e.g., with
Equations (10) and (11)), good estimates of latent fac-
tors could further help recover the true missingness
mechanism.

On the contrary, if manifest variables were not
included in MI—that is, when imputing a specific
manifest variable (y;), other manifest variables (y_j)
would not be included in the imputation model, then
the variables used in the imputation model would
contain no information about the measurement errors
and thus parameters such as measurement error var-
iances are expected to be more biased. To validate our
analytically driven conjectures, we tested the perform-
ance of this approach under one simulation condition
(i.e., high-autocorrelation and factor-dependent miss-
ingness) by running a small simulation (100 replica-
tions). Detailed simulation results can be found in
Table S17 in the Supplementary Material. We found
that although estimates of the dynamic model (see

Equation (6)) were satisfactory, estimates of
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parameters in the measurement model (e.g., factor
loadings and measurement error
Equation (7)) were more biased with this approach
compared with either MI-FS or MI-MV. In sum, the
comparisons between these three approaches (i.e., MI-
FS, MI-MV, and MI with only factor scores) indicated
that both manifest variables (or observed indicators)
and factor scores played critical roles in the MI
process.

Second, to make sure that the simultaneous vs.
scattered missing data patterns did not confound the
comparisons across missing data handling approaches,
we conducted a small simulation study (under the
low-autocorrelation condition) by considering an
alternative missingness generation scenario in which
we defined a fully observed location indicator variable,
which took the value of either 0 or 1, with 1 marking
data locations for scattered/simultaneous missingness.
For instance, under the simultaneous missingness
scenario, we had an indicator for simultaneous miss-
ingness in y;, y,, and y;, denoted as R, . If R, =1
for a specific case, then we would set the correspond-
ing cases of y;, ¥,, and y; to missing values (similar
relationships between R,, and ys4 ys, and ys). In con-
trast, in the scattered missingness scenario, we used
distinct missing location indicators for y;, y,, and ys,
denoted as R,, R,,, and R,,. If R, =1, we would
set the corresponding case of y; but not that of the
remaining ys to be missing. These missing data loca-
tions were determined randomly, and we included R,
and R,, as auxiliary variables under simultaneous
missingness, and R,, R,,, and R,, as auxiliary varia-
bles under scattered missingness. This led to two new
alternative MAR scenarios that helped to clarify
potential confounds due to simultaneous vs. scattered
missingness. The simulation results can be found in
Tables S18-S23 in the Supplemental Material. We
found comparable estimation results between these
two scenarios regardless of which missing data hand-
ling approach we used. That is, differences in missing
data patterns were not a contributor of the different
estimation results evidenced across missing data hand-
ling approaches.

Finally, the simulation studies thus far did not
evaluate the effects of the different missing data hand-
ling approaches on type I error rates, namely, the
probability of falsely rejecting the null hypothesis (typ-
ically a statement of null effects). To examine whether
there was a type I error inflation issue in our study,
we chose one condition (i.e., the low-autocorrelation
and factor-dependent missingness condition since low
autocorrelation has been found in many previous

variances in



82 Y. Ll ET AL.

empirical studies (e.g., Li et al., 2022; You et al., 2020)
and factor-dependent missingness is of particular
interest in this study) and conducted a small simula-
tion study with a model with several null effects by
setting the true values of cross-regression parameters
and coefficients of covariates to 0. Results can be
found in Tables S24-S26 in the Supplementary
Material. We found that the type I error rates gener-
ally fell into a reasonable range (e.g., below 0.08) for
most parameters, except for certain covariate-related
coefficients under PMI-MV and MI-FS, for which the
type I error rate were elevated (around 0.14). Further
inspection showed that the MI-MV consistently
yielded higher coverage rates than PMI-MV and MI-
FS for covariate-related parameters across the four
simulation conditions (see, e.g., cl, ¢2, dl, d2 in
Figure 8). Our speculation was that that these infla-
tions in type I errors might stem from distinct sources
of misspecification of the imputation models utilized
under these approaches. That is, in the true missing
data generation model, the missingness in the covari-
ates depended on the covariate values, but not latent
factors or the manifest dependent variables (see
Equation (8)). As mentioned before, in the imputation
model for the PMI-MV, missing values in both
dependent variables and covariates were iteratively
imputed via chained equations, while the imputed val-
ues of dependent variables were discarded. Thus,
some of the variability contained in imputed depend-
ent variables was lost. In the MI-FS, the latent factor
scores used in the imputation model were estimates
based on a model with no covariates. Whereas these
factor scores were still helpful in improving the
dynamic parameter estimates (e.g., cross-regression
parameters, b; and b,) without notable inflation in
type I error rates, the inclusion of both dependent
variables and factor scores for imputation purposes in
the current MI-FS approach might have induced add-
itional spurious associations shared by the dependent
variables and covariates. Overall, this suggested that
these approaches would benefit from having improved
imputation models and variables for generating miss-
ing covariate values.

Recommendations for the selection of missing
data handling methods

To summarize, no one method could be declared as
the best method universally, but we could select more
appropriate methods depending on our needs. Based
on our simulation results across 2 x 2 conditions, we
can offer the following recommendations. First, the

LD approach would not be recommended under any
circumstances when handling longitudinal missing
data. Second, if missingness was triggered by or at
least associated with latent factors and the dynamics
of latent factors (e.g., AR and CR parameters) were of
more interest to researchers, then MI-FS and PMI-
MYV would be recommended given their better overall
performances on these dynamic parameters. Third,
the PMI-MV approach may be preferred under the
high-autocorrelation condition, due to its comparable
to better performance compared to MI-FS (e.g., com-
parable to smaller RMSEs, as well as higher coverage
rates), and it is relatively easier to implement. Fourth,
it is recommended to include missingness indicators
as auxiliary variables in the imputation model, espe-
cially under NMAR missingness to inform the miss-
ingness mechanism. However, convergence needs to
be guaranteed while implementing the MI algorithm.
Finally, it is always recommended that users try all
three MI-based methods to see if there are notable
discrepancies. If different directions of effect were
found under different approaches, it is suggested that
users do not trust those specific results and implement
further inspections to see if there are any mistakes
made in the imputation and/or model fitting process.

Empirical illustration
Data descriptions

Data analyzed below were collected as part of the
ADID study, in which 217 participants aged from 18
to 86years old were asked to rate their momentary
emotions five times a day over a month. Participants’
self-reported negative affect (NA) was measured using
items from the Positive Affect and Negative Affect
Schedule (PANAS; Watson et al.,, 1988) and other
items posited in the circumplex model of affect
(Larsen & Diener, 1992; Russell, 1980). For each item,
participants were asked to rate on a four-point scale
(1 =never; 4=very often) the extent to which the
affect has been experienced. Through item parceling
(Kishton & Widaman, 1994), we created three item
parcels' as indicators of the latent variable, NA.
Participants’ levels of PSS were measured via a five-
item short-form of the Perceived Stress Scale (Cohen
et al., 1983). For each item, participants were asked to
rate on a five-point scale (1 =never; 5=very often)
how often they felt or thought in a certain way (e.g.,

"ltems included in the three parcels were: (1) parcel 1: angry, sad,
distressed, jittery, guilty and afraid; (2) parcel 2: upset, hostile, irritable,
tense and ashamed, and (3) parcel 3: depressed, agitated, nervous,
anxious and scared.



how often they have felt nervous and stressed). We
then computed the composite score on these items
and used it as the indicator of PSS. Finally, partici-
pants’ personality states, including extraversion, emo-
tional stability (reversely coded neuroticism),
agreeableness, openness, and conscientiousness, were
measured via selected questions from the revised NEO
personality inventory (NEO-PI-R) where participants
were asked to rate on a four-point scale (1 =never;
4=very often) the extent to which they have felt
about a word describing emotions since the last
assessment.”

Because the proposed model hypothesized that the
data were equally spaced, we followed the data pre-
processing procedures adopted in previous studies
(Chow & Zhang, 2013; You et al, 2020), and aggre-
gated the data to two equally spaced data blocks per
day, yielding a total of 26 to 74 measurement occa-
sions per participant, with an average missing data
proportion of 0.18. To remove the linear trends in
NA and PSS, we first regressed the indicators of NA
and PSS on measurement occasions, respectively. We
then extracted the corresponding residuals, and added
the person-specific means back to obtain the final
scores for indicators of NA and PSS to be used in
modeling fitting.

After all these data preprocessing, we fitted the
model presented in the Motivating Example Section to
the data, where missingness were handled by the four
missing data handling approaches (i.e., LD, MI-MV,
PMI-MV, MI-ES) to compare the results. The steps
for implementing the MI-FS approach are provided
below. MI-MV and PMI-MV approaches basically fol-
lowed the same steps except for the differences illus-
trated in the previous section. Specifically, we first
obtained factor scores by fitting a PFA model without
including the four time-varying covariates in Equation
(1). Then we multiply imputed both dependent varia-
bles and covariates using an imputation model con-
sisting of (1) four dependent variables (three
indicators of NA and one indicator of PSS) and four
time-varying covariates (extraversion, emotional sta-
bility, agreeableness, and negative events); (2) two fac-
tor scores (smoothed estimates of latent factors, NA
and PSS); (3) lags of variables in (1) and (2); (4) eight
indicators for missingness in dependent variables and
covariates; and (5) two auxiliary variables (openness
and conscientiousness). Lastly, we fitted the PFA
model defined in Equations (1)-(3) to each imputed
data set and pooled estimation results.

2For instance, words used to measure extraversion included Passive vs.
Active; Unenergetic vs. Energetic; and Dominant vs. Submissive.
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Empirical results

The empirical results are summarized in Table 2. We
will first discuss similar results found across all four
methods, followed by major differences on certain
parameters across different methods.

First, with all methods, we found moderate inertia
(see a; and a, in Table 2) in the dynamics of NA and
PSS, indicating that levels of NA (PSS) were positively
associated with previous levels of NA (PSS). Second,
consistent with previous studies (Park et al., 2020), we
found positive and moderate associations between
concurrent NA and PSS, as indicated by the process
noise covariance estimate (i.e., o¢,). Third, in terms
of relationships between personality states, NA, and
PSS, previous studies have reported that extraversion
and agreeableness were negatively associated with NA
and PSS, while neuroticism was positively associated
with NA and PSS (Ching et al., 2014; Ebstrup et al,
2011; Leger et al., 2016). With the exception of MI-FS
on d;, most missingness handling approaches sug-
gested that participants tended to report lower levels
of NA and PSS when they had higher concurrent lev-
els of emotional stability (see d; and d,) and agree-
ableness (see e; and e;). Participants’ levels of
extraversion were found to be negatively associated
with PSS (see ¢;) but not NA (see ¢;). Fourth, from
the inter-individual perspective, our study found indi-
vidual differences in participants’ baseline levels of
NA and PSS. Specifically, we found lower average lev-
els of PSS among older people (see y,,), which might
be due to less exposure to daily stressors reported in
old age (Stawski et al., 2008), and lower emotional
and physical reactivity to interpersonal stressors
(Neupert et al., 2007). Lower average levels of NA and
PSS were also found associated with higher average
levels of emotional stability (see y;4 and y,4), which
was consistent with previous findings about positive
associations between neuroticism and NA (Leger
et al., 2016; Zhang & Zheng, 2019) as well as between
neuroticism and PSS (Ebstrup et al., 2011). In particu-
lar, Duggan et al. (1995) found that individuals high
in neuroticism responded more negatively to daily
stressors and reported more daily stressful events and
higher levels of daily stress (Duggan et al., 1995).
Lastly, gender and other personality traits including
extraversion and agreeableness were not found to be
associated with individual differences in baseline levels
of NA and PSS. This was in line with some previous
studies showing that different from neuroticism, extra-
version was not associated with between-person differ-
ences in the average levels of daily negative emotion
(Zhang & Zheng, 2019).
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Table 2. Comparison of empirical results.

LD MI-MV PMI-MV MI-FS
Parameter Est SE Est SE Est SE Est SE
Level 1 dynamic model parameters (see Equation (1))
AR and CR parameters
ay, NA; -1 — NA; ¢ 0.308* 0.028 0.198* 0.079 0.399* 0.028 0.448* 0.031
ay, PSSj—1 — PSS+ 0.404* 0.032 0.419* 0.073 0.444%* 0.032 0.461* 0.027
by, PSSit—1 — NA;¢ —0.026 0.023 0.003 0.077 —0.080* 0.023 —0.049* 0.018
by, NA; -1 — PSS; ¢ —0.106* 0.028 —-0.171 0.087 —0.140%* 0.029 —0.083* 0.025
Covariate-related coefficients
c 1, Extrav — NA —0.006 0.008 0.040 0.062 -0.010 0.008 -0.025 0.014
C,, Extrav — PSS —0.032* 0.009 —-0.027 0.042 —0.030* 0.009 —0.043* 0.015
d;, EmoStab — NA —0.123* 0.009 —0.167* 0.050 -0.115% 0.009 —0.035 0.024
d,, EmoStab — PSS —0.139* 0.010 —0.108* 0.041 —0.134* 0.010 —0.057* 0.017
ey, Agree — NA —0.183* 0.009 —0.214* 0.037 -0.181%* 0.009 -0.117% 0.028
e, Agree — PSS -0.177* 0.010 —0.186* 0.029 -0.177* 0.010 —0.113* 0.025
f;, NegEvents — NA 0.043* 0.008 0.028 0.021 0.042* 0.008 0.051* 0.012
f,, NegEvents — PSS 0.045%* 0.009 0.048 0.030 0.045% 0.009 0.053* 0.016
Process noise (co)variances
oé 0.478* 0.030 0.688* 0.182 0.415* 0.021 0.356* 0.019
aén 0.365* 0.009 0.481* 0.038 0.364* 0.009 0.302* 0.010
ogz 0.516* 0.028 0.578* 0.067 0.499* 0.025 0.460%* 0.025
Level 2 dynamic model parameters (see Equation (2))
Fixed effects
Y10, Intercept, NA 1.424* 0.084 1.563* 0.127 1.457* 0.085 1.384* 0.085
720, Intercept, PSS 1.917* 0.112 1.927* 0.113 1.916* 0.110 1.850* 0.108
711, Gender — NA —0.043 0.048 -0.067 0.053 —0.058 0.048 —0.045 0.046
721, Gender — PSS -0.017 0.063 —0.018 0.057 -0.015 0.062 0.000 0.059
712, Age — NA —0.022 0.023 —0.047 0.027 —0.021 0.023 -0.010 0.022
722, Age — PSS —0.098* 0.030 —0.094* 0.032 —0.092* 0.030 —0.086* 0.030
713, ExtravMean — NA -0.033 0.024 —-0.025 0.023 -0.024 0.024 —0.021 0.023
723, ExtravMean — PSS —0.043 0.032 —0.043 0.028 —0.042 0.031 —0.040 0.030
714, EmoStabMean — NA —0.109* 0.028 —0.091* 0.027 —0.100* 0.028 —0.107* 0.027
724, EmoStabMean — PSS —0.138* 0.037 —0.130* 0.033 —0.129* 0.036 —0.134* 0.035
715, AgreeMean — NA —0.035 0.029 —0.050 0.028 —-0.043 0.029 —0.042 0.028
v25, AgreeMean — PSS —0.046 0.039 —0.061 0.035 —0.060 0.037 —0.062 0.036
716. NegEventsMean — NA 0.083* 0.024 0.074* 0.024 0.075%* 0.024 0.077* 0.023
726, NegEventsMean — PSS 0.108* 0.032 0.102* 0.029 0.104* 0.031 0.105%* 0.030
Random effects
0; 0.076* 0.010 0.069* 0.013 0.080* 0.010 0.071* 0.009
(2 0.068* 0.011 0.056* 0.010 0.071%* 0.011 0.064* 0.010
‘751 0.142* 0.017 0.111%* 0.013 0.142%* 0.017 0.133* 0.015
Measurement model parameters (see Equation (3))
a 1.028* 0.015 1.057* 0.070 1.031* 0.015 1.032* 0.022
A 0.999* 0.015 0.999* 0.037 1.003* 0.015 1.026* 0.022
af1 0.360%* 0.028 0.476* 0.097 0.420* 0.019 0.384* 0.024
JZZ 0.320* 0.028 0.365%* 0.111 0.379* 0.020 0.353* 0.019
0'23 0.361* 0.027 0.427* 0.107 0.417* 0.019 0.365* 0.016
0'24 0.290* 0.025 0.389* 0.056 0.307* 0.022 0.222* 0.020
Oey 0.015 0.027 0.049 0.104 0.070* 0.018 0.041 0.023
Ocyy 0.025 0.026 0.076 0.103 0.078* 0.018 0.034* 0.017
ey 0.017 0.027 0.045 0.108 0.078* 0.018 0.037 0.022

Notes: Est: point estimates; SE: standard error estimates; *p < 0.05. Results were obtained based on 217 participants and 26 to 74 measurement occasions

per participant.

In addition to the abovementioned consistent find-

ings, the four missing data handling methods yielded
different estimation results and/or levels of estimation
uncertainty on several parameters. First, although AR
parameters were found significant across all methods,
their magnitudes differed—that is, lower levels of
autocorrelation were found under LD and MI-MV.
The smaller AR parameter estimates under LD were
expected since removing cases with missing covariates
altered the time dependency between observations,
thus yielding less autocorrelation in the time series.
The notable deviations in AR parameter estimates
(especially a;) under MI-MV might be due to the

relatively worse imputation of indicators of NA which
did not incorporate factor scores in the imputation
model, thus highlighting the necessity of including
factor scores in MI-MV.

Second, in terms of CR parameters, for the cross-
lagged effect of PSS on NA (ie., b;), the estimates
under LD and MI-MV were close to 0 and not signifi-
cant, while under PMI-MV and MI-FS, the magni-
tudes of cross-lagged effect were a bit larger and the
estimates were significant; for the cross-lagged effect
of NA on PSS (i.e., by), all methods yielded significant
results with different magnitudes of point estimates.
Previous studies utilizing VAR models have found



individuals who experienced higher levels of PSS
tended to have higher levels of NA at the subsequent
timepoint. In contrast, our results suggested negative
associations between current levels of PSS and subse-
quent levels of NA and vice versa. This might be
related to our data preprocessing where we aggregated
data into four equally-spaced blocks per day. One
speculation was that the length of time window in
each block (i.e., 6h) might lead to diminished influ-
ence of PSS on itself as well as on NA in the next
time block. We note that cross-lagged relationships
appeared highly sensitive to choices of the missing
data handling techniques and would thus caution the
reader to interpreting CR
parameters.

Third, in terms of the effects of a set of time-vary-
ing covariates (e.g., personality states and negative
events) on participants’ levels of NA and PSS, LD and
PMI-MV yielded similar results. In contrast, MI-MV
and MI-FS, produced slightly different results.
Specifically, due to considerably larger standard error
estimates under MI-MV, even if the point estimates
were comparable to those under other approaches,
some of them were not significant (e.g., ¢, f1, and f).
In addition, MI-FS yielded much smaller point esti-
mates on d; than other methods. The reasons why the
effect of emotional stability on levels of NA (i.e., d;)
was smaller under the MI-FS method might be that
such effect was mostly captured by the higher AR par-
ameter (i.e., a;) which can be conceptually understood
as higher inertia in NA dynamics and thus higher
emotional stability (Kuppens et al., 2010).

Fourth, the MI-FS led to the smallest estimates of
process noise (co)variance parameters, which was con-
sistent with our findings in the simulation study that
the MI-FS tended to underestimate process noise var-
iances probably due to some losses in data variability
at the item level when factor scores were included to
the imputation model.

Fifth, another major difference between these meth-
ods lied in the estimates of covariances between meas-
urement errors of three indicators of NA, which were
significant and positive under PMI-MV. This might
indicate that other methods failed to discover the
existence of some common factors influencing these
indicator variables. For instance, there might be sys-
tematic response patterns among indicator variables
that were unrelated to the latent factor.

Finally, in terms of estimation efficiency, the MI-FS
yielded more efficient estimates on AR and CR
parameters than other methods, as indicated by
smaller SE estimates, which were consistent with our

exercise caution in
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findings in the simulation study. However, both MI-
FS and MI-MV yielded larger SE estimates for the
effects of time-varying covariates (see c;—f,) than LD
and PMI-MV. Since the only difference between MI-
MV and PMI-MV was whether MI was applied to
dependent variables, the reason for such discrepancy
in SE estimates might be that the MI approach gener-
ated some imputed values for dependent variables that
rendered the corresponding time series unstable,
which in turn affected the estimates of the relation-
ships between dependent variables and time-varying
covariates.

Overall, the four missing data handling approaches
yielded consistent findings in terms of (1) moderate
inertia in NA and PSS dynamics; (2) negative associa-
tions between concurrent NA/PSS and extraversion,
emotional stability, and agreeableness; and (3) individ-
ual differences in the baseline levels of NA and PSS.
Specifically, we found lower average levels of PSS
among older people as well as lower average levels of
NA and PSS among people with higher levels of emo-
tional stability. Among the four approaches, MI-FS
and PMI-MV vyielded similar point estimates of AR
and CR parameters, whereas MI-MV and LD tended
to yield estimates of these parameters.
Consistent with findings from the simulation study,
the MI-FS vyielded overall smaller SE estimates on
dynamic model parameters compared with other
approaches, indicating a reduction in estimation
uncertainty by including factor scores in MI.

lower

Discussion

In this article, we proposed a novel multiple imput-
ation strategy for longitudinal data, called MI-FS, to
address possible types of nonignorable missingness
across all items linked to the same common factor(s).
The proposed method was designed with features tail-
ored to the analysis of changes in latent factors over
time, including factor scores, lag/lead variables, and
missingness indicators into the imputation model to
respectively account for missingness associated with
latent factors, time dependencies between observations
in longitudinal data, and missingness mechanisms.
The proposed method was evaluated and compared
to LD and two MI methods without factor scores—
MI-MV and PMI-MV, via both simulation and empir-
ical studies. Simulation results showed that compared
with MI without factor scores, MI-FS could yield
overall less biased or similar estimates of AR and CR
parameters. The advantage of MI-FS over MI-MV was
more prominent when missingness was associated
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with latent factors. However, MI-FS tended to result
in more biases in the variance parameters, which
might be due to some losses in data variability at the
item level when factor scores were included to gener-
ate imputed values. In addition, PMI-MV could yield
comparable performance to MI-FS in recovering AR
parameters under the high-autocorrelation condition,
thus highlighting the capability of the FIML approach
in handling missing data when combined with MI of
missing covariates. In fact, the PMI-MV approach
may offer advantages in terms of ease of implementa-
tion compared to MI-FS, particularly given its com-
parable performance to MI-FS in high-autocorrelation
scenarios. Finally, compared to the LD method, which
showed notable decrements in performance under
high autocorrelations, the MI-based methods were
relatively robust to variations in autocorrelations in
the data set.

Our empirical illustration investigated the recipro-
cal linkages between NA and PSS over time as well as
individual differences in their baseline levels. Despite
the slight differences in the magnitudes of point esti-
mates, the four missing data handling approaches led
to overall similar results in terms of how NA and PSS
were associated with each other and certain personal-
ity states over time, as well as the effects of personality
traits on baseline levels of NA/PSS. Compared with
other approaches, MI-FS yielded higher efficiency in
AR and CR parameters, as indicated by their smaller
SE estimates.

There were several unresolved issues in our studies.
First of all, since our empirical study consisted of
items characterized by theoretically informed factor
structures, we adopted CFA models where indicators
were item parcels used in previous studies (You et al,
2020). However, when the underlying factor structures
are unknown or of interest, EFA needs to be con-
ducted first to determine the number of latent con-
structs and the factor structure of a set of items/
variables (Gilbert & Meijer, 2005). Second, in addition
to the latent variables considered in the model (i.e.,
NA and PSS), the missingness in indicators may also
be triggered by other common factors, which were
not taken into account in this study. Third, as men-
tioned before, the time intervals between measure-
ment points varied within and/or between individuals
over time, and thus the raw data were aggregated to
be equally spaced so that a discrete-time model could
be fitted. However, modeling continuously changed
processes simply as changing in discrete-time can be
problematic. For instance, classical concerns include
sign flipping and counter-intuitive effect directions in

VAR models (Driver, 2022). Future research may con-
sider applying continuous-time models such as con-
tinuous-time structural equation models (Voelkle
et al,, 2012) to accommodate unequally spaced EMA
assessments.

Some possible future directions can be considered.
First, our simulation study utilized relatively simple
missing data generation models where the missingness
in manifest variables was associated with either them-
selves or their corresponding latent variables. Under
this simulation design, PMI-MV could yield compar-
able or even better results than MI-EFS for most
parameters. Future simulation studies may increase
the complexity of the missing data generation model
(e.g., missingness associated with both unobserved
manifest variables and latent variables) and test the
performance of PMI-MV under this more challenging
situation. Also, future work may consider integrating
features of MI-FS into joint modeling of the change
processes of interest and their corresponding missing-
ness mechanisms, such as through selection modeling
or shared parameter approach (Creemers et al., 2010).
Second, the model specified for the simulation study
did not allow for any person-specific parameters.
Since our focus was on the comparison between dif-
ferent missing data handling approaches, the model
setup was sufficient for illustration purposes.
However, in real data analysis, some modifications
can be made to capture meaningful aspects of individ-
ual differences. For instance, in our empirical illustra-
tion, we included random effects for intercept
parameters given the notable individual differences in
baseline levels. Future work may consider also includ-
ing random effects for AR parameters and investigate
how predictors affect AR parameters—for instance,
whether and how emotional stability is associated
with the AR parameters. In addition to the multilevel
modeling framework adopted in the present study,
some alternative approaches also allow for higher-
dimensional random effects, such as mixed effects
models (Henderson, 1982) and fitting relevant models
in the Bayesian framework to aid computational effi-
ciency (Li et al., 2022). Note that missing data hand-
ling in the presence of these complex models may
involve complex imputation models such as models
with random slopes or nonlinear terms, in which
scenario the incompatibility issue may arise in the MI
procedure and Bartlett’s model-compatible specifica-
tion may be utilized to address this issue (Bartlett &
Morris, 2015). Finally, though illustrated in the con-
text of the PFA models, the propose method can
potentially be used with any dynamic models



capturing changes of latent variables such as nonlinear
dynamic factor models (Chow & Zhang, 2013; Tang
et al., 2017), various types of latent variable models
(Muthén & Curran, 1997; Roy & Lin, 2000), and con-
structural equation models (Voelkle
et al., 2012). Future work may consider investigating
the performance of MI-FS in the context of these dif-
ferent types of models.

Overall, we proposed an MI strategy suited for lon-
gitudinal analysis of psychological constructs. The idea
of including factor scores in MI was guided by the
general rule of choosing appropriate and relevant vari-
ables as predictors in the imputation model by taking
missing data mechanisms into consideration. Through
comparisons with other existing methods under vari-
ous conditions in the simulation study, we provided
our suggestions on the selection of missing data hand-
ling methods in different scenarios. Our proposed
method is highly recommended for handling missing
data in multiple-item scales as well as data analysis
involving factor-analytic models.

tinuous-time
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