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ABSTRACT

Psychometric networks can be estimated using nodewise regression to estimate edge
weights when the joint distribution is analytically difficult to derive or the estimation is
too computationally intensive. The nodewise approach runs generalized linear models
with each node as the outcome. Two regression coefficients are obtained for each link,
which need to be aggregated to obtain the edge weight (i.e., the conditional associ-
ation). The nodewise approach has been shown to reveal the true graph structure.
However, for continuous variables, the regression coefficients are scaled differently than
the partial correlations, and therefore the nodewise approach may lead to different edge
weights. Here, the aggregation of the two regression coefficients is crucial in obtaining
the true partial correlation. We show that when the correlations of the two predictors
with the control variables are different, averaging the regression coefficients leads to an
asymptotically biased estimator of the partial correlation. This is likely to occur when a
variable has a high correlation with other nodes in the network (e.g., variables in the
same domain) and a lower correlation with another node (e.g., variables in a different
domain). We discuss two different ways of aggregating the regression weights, which can
obtain the true partial correlation: first, multiplying the weights and taking their square
root, and second, rescaling the regression weight by the residual variances. The two lat-

ter estimators can recover the true network structure and edge weights.

Psychometric network modeling has been widely used
in psychological research to conceptualize phenomena as
systems of interacting variables (Borsboom et al., 2021;
Isvoranu et al., 2022). A psychometric network consists
of nodes representing variables that make up the con-
struct of interest (e.g., symptoms of a disorder, scores
on a test, or items of a personality trait). The nodes are
connected by edges that represent partial associations,
that is the strength of the relation between two nodes
after controlling for the influence of all other nodes.
Edges are estimated with two approaches. The partial
correlations can be obtained using the inverse of the
covariance matrix (Epskamp et al, 2018; Waldorp &
Marsman, 2022). In this case, the network edges are
obtained using the joint distribution of all variables. This
distribution cannot be obtained for all types of networks
(e.g, mixed graphical models; Haslbeck & Woaldorp,
2015) or it may be too computationally expensive to
compute (Meinshausen & Bithlmann, 2006; van Borkulo

et al., 2014;). Alternatively, a simpler method has been
suggested that uses the conditional distribution of each
node to approximate the joint distribution. These condi-
tional distributions are obtained by regressing each node
on all other nodes in a generalized linear regression
model (Besag, 1975; van Borkulo et al, 2014). In this
approach, called nodewise regression, two estimates are
obtained for each edge (e.g., for edge X—Y: X is pre-
dicted by Y and all other nodes to obtain the regression
weight fxy 7, and then Y is predicted by X and all other
nodes to obtain the regression weight fyy ). The two
regression coefficients fyx , and fyy , are aggregated to
obtain an approximation of the partial correlation of the
X—Y edge. In psychometric networks, the nodewise
approach is especially used for graphical models of bin-
ary and mixed data as well as longitudinal estimation
(e.g., see Epskamp et al, 2018; Haslbeck & Waldorp,
2015; van Borkulo et al., 2014). Nodewise regression is a
useful tool for obtaining network parameters. It can
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consistently determine edge presence or absence and
obtain the true network structure (Meinshausen &
Biihlmann, 2006; Waldorp & Marsman, 2022).

In this note, we show that the true edge weights—the
strength of the parameters—are not necessarily obtained
with the nodewise approach. Rather, the method of
aggregating the two regression parameters is crucial in
ensuring an unbiased asymptotic estimator of the partial
correlation. Bias is used in this paper to denote the dif-
ference between the asymptotic values of the partial cor-
relation and the aggregated nodewise regression
estimator. Simply averaging nodewise regression parame-
ters leads to an asymptotically biased estimator of the
non-zero partial correlation of multivariate normal varia-
bles. We highlight alternatives for aggregating the two
regression parameters which allow the nodewise
approach to accurately obtain the partial correlation:
multiplying and rescaling the regression weights. The
paper is organized as follows: First, we provide some
background on partial correlations and regression coeffi-
cients. Second, we discuss averaging the two regression
weights and show under what conditions the nodewise
regression approach leads to biased or unbiased non-zero
partial correlations. Third, we highlight alternative
approaches to combining the two regression parameters.
Finally, we extend the derivations to unstandardized and
binary variables. We demonstrate the utility of the alter-
native nodewise approaches with an example of online
learning readiness.

Background: partial correlation and regression
coefficient

Partial correlations and regression coefficients are dif-
ferent statistics that describe the association between
two variables of interest. In this section, we will con-
sider three variables, X, Y, and Z, which we assume to
be normally distributed and mean-centered with unit-
variance. We start with the partial correlation pyy .
The partial correlation is the correlation between two
variables (e.g., X and Y) after having controlled for
the influence of a third variable (i.e., Z). The partial
correlation coefficient is defined as

Pxy = PxzP
Pyxz = L > Xz YZZ > (1)
\/(1 = pxz)(1 = pyz)

where pyy denotes the marginal correlation between
variables X and Y. Note that this equation is standar-
dized by the total variance of X and Y that is not
explained by the remaining variable (ie., Z), that is,
the terms 1 —p%, and 1—p}, in the denominator.
Therefore, the partial correlation is the correlation
between the residuals of X predicted by Z and the

residuals of Y predicted by Z. The partial correlation
is bounded between —1 and 1.

In contrast, the regression coefficient fiyy, is the
weight obtained by regressing the dependent variable
Y on X and Z. It can be obtained by

Pxy — p);ZpYZ . )

(1-pxz)

In this equation, the denominator only controls for
the unexplained variance of X (ie, 1-—p%,). The
regression weights are unbounded and can be inter-
preted as the expected change in Y when increasing X
by one unit and keeping Z fixed.

The numerator of Equations 1 and 2 are equal; it is
Pxy — PyzPxz- The numerators determines whether a
parameter is zero, as no value of a non-zero denomin-
ator can produce a zero result. Thus, fiyy, = 0 if and
only if pyyx ; = 0. The denominator differs. The partial
correlation coefficient is scaled by the unexplained
variance of both X and Y, whereas the regression coef-
ficient is scaled only by the unexplained variance of
the predictor X. As a result of this difference in scal-
ing, the partial correlation pyyx , will be high if a large
portion of the unexplained-by-Z portion of Y is cap-
tured by the residuals of X. In contrast, the regression
coefficient fyx , will be high if the unexplained-by-Z
portion of Y captures a large portion of the total vari-
ance of X. For example, if Z is highly correlated with
both X and Y, the regression coefficient will have a
relatively lower value as there is a small portion of the
total variance in Y that remains unexplained by Z and
can still be captured by X. The partial correlation may
still be large as it quantifies the strength of the rela-
tionship between X and Y after removing the variance
explained by Z from both variables.

The regression coefficients are zero if and only if the
partial correlation is zero." This allows the nodewise
approach to consistently detect the true graph structure
(Meinshausen & Biithlmann, 2006; Waldorp & Marsman,
2022). However, as we have also seen, the regression
coefficient is a differently scaled partial correlation, and as
such non-zero edges may differ. Here it becomes crucial
how the two regression weights are aggregated to obtain
the true edge weight, the partial correlation.

ﬁ YX.Z =

Averaging nodewise parameters is a biased
estimator of the partial correlation

We first discuss aggregating the regression weights by
merely averaging them. We make use of Equations 1

"Due to bias in the estimation, for example due to /; penalized estimation
(Brusco et al., 2023), the parameter estimates may not necessarily both
be zero, even if the true population values are equal.



and 2 to see when the averaged nodewise estimator is
equal to the partial association.

(Byx.z + Bxy.z)

2
Pxy — PxzPyz _ Pxy = PyzPxz | Pxy ~ PxzPyz
U=pk)(1—p3,)  200=p%)  2(1-p3y)

1 1 1

Pyxz =

(1= p3,)(1 = p3,) N 2(1=p%,) - 2(1-p3%,)
1= V=03 (1= piy) + V(= p3) (1= p1,)
2(1 = piz) 2(1-piy,)

(1-p3) (1= p3) (1 = p3,) + /(1= p3) (1= p3) (1 = p%y)
2(1 _Péz)(l _Pg(z)
_ (1=pip) + (1-p%y)
2y/(1 = p3)(1 = pxz)
2y/(1- P%/z)(l - P?(Z) =(1- P%'z) + (1= P?{z)
0= (/0 =p}) - VI -0%))

2 _ 2
Pxz = Pyz

1=

The partial correlation is well approximated by the
averaged regression coefficients if the variance of X
explained by Z (i.e., p%,) is equal to the variance of Y
explained by Z (ie, p%,z), in other words, when both
X and Y are equally well predicted by Z.

If the variance of X and Y explained by Z is not
equal, what is the effect on the f’s? If p%, is smaller
than p%,, then 1— p%, will be larger than 1— p3,.
The larger denominator will lead to a smaller regres-
sion coefficient and as a result fiyy, will be smaller
than fyy,. The smaller denominator will lead to a
larger regression coefficient, which can take values
outside the range [—1,1]. When fyx, and fyy, are
averaged, the averaged nodewise edge parameter will
be asymptotically biased and overestimate the true
partial correlation. The difference in variances is likely
to occur in practical applications, for example, when
assessing exogenous variables, classical test-theoretical
questionnaires, or a network assessing two domains.
We review these practical applications in Appendix A.

How large is the bias of the averaged nodewise
approach?

How does a difference in residual variance affect the
ability of the averaged regression coefficient to capture
the partial correlation? We assessed the bias by
sequencing different combinations of positive correla-
tions between the variables, namely: pyy,px;, and
pyz.> In particular, we varied both pyy and py, from
0.1 to 0.7 in steps of 0.2. The remaining correlation
Pxz was sequenced in steps of 0.001 from the lowest

?The code to replicate the findings can be found at https://osf.io/gy8px/.
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to the highest bound of the correlation given by the
other two correlations.” For each combination of cor-
relation coefficients, we obtained the partial correl-
ation pyy, and the regression coefficients fxy , and
Pyx 7 using Equation 1 and 2. Bias was defined as the
absolute difference between the averaged regression
coefficients (Byx , + Pxyz) 2 and the partial correl-
ation pyy 7.

Figure 1 shows the results of the bias. The averaged
nodewise regression coefficient overestimates the
strength of the partial correlation. Often, the bias is
negligible. However, there are certain situations where
the bias grows concerningly large; it can be as large
as 0.6. This is particularly the case when pyy and py,
are small and py, moves further away from zero.
Here, the difference between py, and py, becomes
larger and, as expected from the derivations, the bias
is largest.

Extension to networks with more than three
variables

In reality, most networks will have more than three
nodes. In these cases, determining the difference in
the two parameters becomes more complicated to
compute because it depends on the correlation struc-
ture of a larger set of variables. Nevertheless, the bias
essentially reduces to the same configuration as above,
but instead of the marginal correlations, the bias
depends on the values of the three respective partial
correlations. Suppose there are three focal variables X,
Y, and Z in the network, in addition to a set of k con-
trol variables (i.e., C = {Cy, ..., Cx}). Note that Z is no
different from and could be any of the k control vari-
ables in C. Here, the correlation coefficients in the
above equations are no longer pyy, pyz, and py,, but
rather the partial correlations pyy ¢, Pyzc, and pxz c.
If the set of control variables C is independent of
the set of focal variables, the above derivations remain
unchanged. However, if C is correlated with the set of
focal nodes, the bias may differ. Without loss of gen-
erality, consider the case where p%, is larger than p?,.
The bias is then smaller if C explains a substantial
part of the larger marginal correlation coefficient p%,
without explaining a substantial proportion of the
smaller coefficient p%,. This situation would result in
the partial correlation p%,. being smaller than the
marginal correlation p%,, while the partial correlation

3For three variables, one can derive the bounds of a correlation if the
two remaining correlations are fixed and known. The formula for the
upper bound is py, < p, ++/(1—p%,)(1 - pi;) and for the lower
bound py; > purprz — v/ (1= piz) (1 = piz)-
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Figure 1. Absolute bias in (fyy; + Pyyz)/2 relative to pyy . Note. Each quadrant reflects one setting of the correlation py, and
each line within all the plots reflects a different specification of the correlation pyy.

p%, c remains the same as its corresponding marginal
correlation p?,. As such, the difference between the
two partial correlation coefficients is smaller than the
difference between the two marginal correlations and
the bias could decrease to a negligible one. The bias
becomes larger if C increases the difference in the par-
tial associations. For example, this would happen if C
explained a portion of the smaller coefficient p?, but
did not affect the larger coefficient p%,. Here, the dif-
ference between the partial correlations would be
larger, p%, c would be even larger than p?, ., and so
would be the bias. Similarly, if instead we considered
p%, and p3, to be equal, but C explained a large part
of only one of the two coefficients, say p%,, the partial
correlation p%,. would be relatively smaller than
P37 ¢, introducing bias into the estimator.

Unbiased nodewise estimators with multiplied
or rescaled aggregation of regression
parameters

Nodewise parameters can also be aggregated in other
ways, such as by multiplying or rescaling the weights
(Epskamp et al,, 2018; Kramer et al., 2009).

Multiplying regression weights

The nodewise estimator can also be aggregated by mul-
tiplying the two regression parameters and taking the

square root of the multiplied coefficients (Krdmer
et al., 2009). The multiplied nodewise estimator is cal-

culated as
Pyx.z = Sgn(ﬁyx.z)\/ Byx zBxv.z

Pxy — PxzPyz

Pxy — PyzPxz Pxy — PxzPyz
— sgn(Byx V
N (=03, (1-pty)
Pxy — PxzPyz
(1= p3)(1 = p3z)

(1= p3,)(1 = p},)

= sgn(Byxz)

where sgn(-) is the sign function, which is +1 for posi-
tive values and —1 for negative values. The multiplied
estimator equates to the partial correlation estimator.
As such, the aggregation leads to an asymptotically
unbiased estimator of the partial correlation using
nodewise regression. The sign function ensures the cor-
rect sign of the multiplied nodewise parameter.

Rescaling regression parameters

Alternatively, one can also choose to rescale the regres-
sion parameter with the residual variances (Epskamp
et al,, 2018). The rescaled parameter is calculated as:

(1- P%(z)
Pyxz = Byxz-Fr—==
(1- P%fz)

Pxy — PxzPyz _ Pxy — PyzPxz V(1 — pXz)

VA=-p2)0=p3,)  (=p%) J1-pt)
Pxy — PxzPyz

VI =p3)(1=pY,)




where one can equally use the second regression par-
ameter fyy , instead by also switching the numerator
and denominator of the fraction of residual variances.
The rescaled nodewise estimator equates to the partial
correlation and is also an asymptotically unbiased esti-
mator of the partial correlation.

Nodewise aggregation in unstandardized and
binary variables

Until now, we assumed the variables X, Y, and Z to
be mean-centered with unit-variance and multivariate
normally distributed. How does the nodewise
approach behave for unstandardized or binary varia-
bles? For unstandardized variables, the averaged node-
wise estimator is asymptotically biased also (see
Appendix B). Unstandardized variables likely increase
the chance of asymptotic bias because equality of the
variance on top of the covariances must be satisfied to
ensure no asymptotic bias.

For binary variables, a different pattern occurs. The
network model and type of nodewise regression changes
to an Ising model (Ising, 1925) and logistic regression
respectively (Keetelaar et al., 2024; van Borkulo et al,
2014). Both the Ising model’s partial associations and
the nodewise approach’s regression weights consist of a
transformed odds ratio. In fact, the nodewise estimator
is equal to the Ising parameter, and as such the node-
wise approach is asymptotically unbiased for binary vari-
ables (see Appendix C). The undesirable properties of
the averaged nodewise estimator for multivariate nor-
mally distributed variables are not exhibited by the
nodewise approach for binary variables.

Example application of the nodewise
estimators

We illustrate the performance of the three aggregated
nodewise estimators in an empirical application with a
dataset assessing university students’ readiness for
E-learning (Nguyen et al., 2022). The dataset was ori-
ginally published as a network that included six
domains measured with 33 items, comprising com-
puter skills, internet skills, online communication,
self-learning, self-control, and online motivation.*
Higher scores on the domains indicate that students
are better prepared to learn online during the

COVID-19 pandemic. In our example, we re-analysed

“The data can be downloaded alongside the original publication https://
jeehp.org/journal/view.php?doi=10.3352/jeehp.2022.19.22 and relevant
R-code for the analysis can be found on OSF https://osf.io/gy8px/.
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the dataset with the joint approach, as well as the
averaged, multiplied, and rescaled nodewise estimator.
The final sample included 1,377 participants. All anal-
yses were conducted in R (R-Core-Team, 2024), using
the packages ppcor for partial correlation estimation
(Kim, 2015), tidyverse for comprehensive data
manipulation and analysis (Wickham, 2017), and
qgraph for the visualization of the networks
(Epskamp et al., 2012).

Figure 2 depicts the results of the analysis. In the
network obtained with the joint approach, self-control is
strongly connected to self-learning (ry,, = 0.52) and
online motivation (r, ; = 0.44). Self-learning and online
motivation are connected but show a slightly weaker
link (ry,. = 0.2). The three domains show weak links
with the skill domains; here the strongest connection is
between online motivation and online communication
(ryy.z = 0.16). The skill domains are strongly connected
depicting partial correlations up to 0.5.

There was a noticeable difference between the esti-
mates of the joint and averaged nodewise approach
(see Figure 2¢). In particular, the edges between self-
learning and self-control as well as between self-
control and online motivation were estimated to be
stronger in the averaged nodewise regression, with
differences of 0.16 and 0.14 respectively. The edges
between the skills variables and the personality varia-
bles were estimated with a bias of up to 0.02. The
skills variables showed a slight bias between online
communication and internet skills (i.e., 0.02) and
between computer skills and internet skills (i.e., 0.03).
In contrast, the multiplied and rescaled nodewise esti-
mators were able to retrieve the partial correlations of
the joint approach exactly.

In sum, in this example, the averaged nodewise
regression led to a non-negligible bias of edge weight
estimates whereas the multiplied and rescaled node-
wise estimators were able to retrieve the partial correl-
ation, as expected.

Conclusions

Performing nodewise regression to obtain the network
model is a powerful alternative to the potentially cum-
bersome and computationally intensive alternative of
joint modeling. It allows one to reliably obtain the
graph structure (Meinshausen & Bithlmann, 2006;
Waldorp & Marsman, 2022). However, the nodewise
approach does not always detect the true edge weights,
its goodness depends on the aggregation of the two
regression parameters. Averaging the two regression
weights leads to an asymptotically biased estimator of
the partial correlation when two variables are strongly
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Figure 2. Networks obtained through the different estimation approaches. Note. Networks resulting from the joint estimation
(top), the averaged nodewise approach (middle left), the difference between both (middle right), the multiplied nodewise approach
(bottom left), and the rescaled nodewise approach (bottom right). Blue edges indicate positive values and red edges indicate nega-
tive ones; edge thickness reflects association strength. CS: Computer Skills, IS: Internet Skills, OC: Online Communication, SL: Self-

Learning, SC: Self-Control, M: Online Motivation.

correlated and weakly correlated with other nodes in
the network. There are two alternative ways of aggre-
gating the regression parameters which are asymptotic-
ally unbiased estimators: first, by multiplying the
coefficients and taking the square root, and second, by
rescaling one regression parameter with the residual
variances. The multiplied estimator might have a slight
advantage, as it can be derived directly from the matrix
of regression weights. In contrast, the rescaled estima-
tor requires only one of the regression weights but it
also depends on the residual variances.

Our work did not evaluate how the estimators
perform in finite samples or biased estimation
approaches. For example, for [; regression, one can
expect worse performance of the disjoint estimator
even when equality holds asymptotically, as is seen
in the Ising model (Brusco et al, 2023). When
researchers use ordinary least squares or maximum
likelihood estimation, asymptotic equality should
hold in the estimated parameters. However, future
work should evaluate their properties in a simulation
study.



In conclusion, the multiplied and rescaled nodewise
estimators have desirable asymptotic properties. They
show clear advantages over the averaged nodewise
estimator.
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Appendix A: When will bias arise in
applications?

The averaged nodewise coefficient will be biased if the cor-
relation of the two variables of interest with a third variable
is different. We see four applications where one might
expect a difference in correlations and therefore an
increased risk of bias.

1.  Exogenous variables: Researchers often include exogen-
ous variables in the network model, that is, variables
that are external to the construct being studied.
Examples of such variables are sociodemographic fac-
tors (e.g., age, ethnicity, sex) and treatment allocation.
We expect the system variables to be highly correlated
with each other (e.g., depressed mood is highly corre-
lated with one’s self-esteem) but less correlated with
the exogenous variables (e.g., ethnicity is less strongly
correlated with depressed mood). As such, we would
expect the edge weights between the exogenous varia-
bles and the system variables to be biased.

2. Classic test-theoretical questionnaire: In classical psy-
chological scale development, a questionnaire is
designed to be maximally reliable. To achieve that aim,
often several items are included that measure the same
or very close entities. This could be a simple rewording
or a reverse wording of an item; these two items tend
to be highly correlated with each other, but less corre-
lated with the other items in the questionnaire. If mod-
eling the full questionnaire, bias is expected in the
edges between the almost identical items and all other
questionnaire items.

3. Network of two domains: Comorbidity research using
the network approach examines interactions between
symptoms of two psychopathologies. Symptoms of both
psychopathologies are included in the same network,
and interactions between them are examined for
potential bridge symptoms. If symptoms of the same
psychopathology are more strongly correlated with each
other than with symptoms of other psychopathologies,
the associations between disorders—the associations of
the bridge symptoms—are at risk for biased estimates.

4.  Clustering research: A network cluster is a group of
nodes that are more strongly connected to nodes
within the same cluster than to nodes from other clus-
ters. By definition, one assumes a difference in correl-
ation strength between different nodes, where the
correlations within clusters are higher than between
clusters. This pattern of correlations could introduce
bias in the edges that link the different clusters.

These are just a few examples of applications where differ-
ences in correlations, and thus bias, might be expected. Of
course, bias is not limited to these situations and does not
necessarily occur in them.

Appendix B: Derivations for unstandardized
variables

In the main manuscript, we assumed the variables X, Y, and
Z to be mean-centered with unit-variance and multivariate

normally distributed. How does the nodewise approach
behave outside these assumptions, such as for unstandar-
dized variables?

For unstandardized variables, the partial correlation is of
the form

2
Oxy0y; — O0x7z0yvz
2.2 2 2.2 2
\/”X‘TZ ”XZ\/"Y”Z Oyyz

and the regression weight of the form

Pyx.z =

UX(UXYU% - GXZGYZ)
oy(0%0% — 0%z)

B YX.Z =

Contrary to the standardized form, the numerators dif-
fer: the regression coefficient contains an additional
ox-term. As in the standardized case, the denominator dif-
fers: Whereas the partial correlation is scaled by the resid-
uals of both X and Y, the regression weight is now scaled
by the residual of X and the total variance of Y. How does
this difference in scaling affect the ability of the nodewise
approach to approximate the partial correlation in unstan-
dardized variables?

Averaging nodewise estimator in
unstandardized variables

For the averaged nodewise estimator, the approximation is
equal for unstandardized variables if

(Byx.z + Bxy.z)

Pyx.z =
o O-X(O'XYU% - O’XZO'YZ)
ZUY(Ugf‘T% - Ug(z)

2
O0xyO0y; — 0x70Y7
) 2 2 2 2
\/Gxo'z - UXZZ\/JYGZ —Oyz
GY(GXYUZ - O'XZUYZ)
2 2 2
20x(0%07 — 0%y)

or in simpler terms, if ox = oy as well as 0%, = 0%,. In
fact, the nodewise regression approximation with unstan-
dardized variables reduces to that of the standardized varia-
bles if ox = oy. When this equality holds, the nodewise
approach obtains the true network structure, but again pro-
duces biased edge weights unless 6%, = d2,,.

Multiplied and rescaled nodewise aggregation
in unstandardized variables

If instead of averaging the nodewise estimates to obtain the
partial correlation, one aggregates the estimates by multiply-
ing the variables, the derivations are as follows
UXYO'% — 0x70vz
7 7 _ 2 7 2 _ 2
V%0, = 032\ 030, = 0%,

O'X(O'XYU% - O'XZGYZ) UY(UXYU§ - GXZO'YZ)

=8B\~ 2T 0h)  ox(ehol — o)
2
OxyO0y — 0xz0yz
= sgn(f
NG T SN ek

where sgn(-) is the sign function, which is +1 for
positive values and —1 for negative values. Respectively, the
derivations for the rescaled nodewise estimator are as
follows
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2 2.2 _ 2
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= 2.2 _ 2
ay(0%0% = 0%z) (6%6% —a%,)
2
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22 2 2 2 2
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As such, both the rescaled and multiplied estimators are
asymptotically unbiased also for unstandardized variables.

Appendix C: Nodewise approach is
asymptotically unbiased for binary variables
For simplicity, we assume three variables X, Y, and Z to take
on a value in the binary set {0, 1}. Z here is merely a con-
trol variable and we are trying to estimate the partial associ-
ation between X and Y. If X takes on the value 0, we
denote it x, and if it takes on the value 1 we denote it X.
This also holds respectively for both Y and Z.

Ising model

First, we derive the edge association parameter for the Ising
model. The full Ising model is formulated as

pX) = —exp (Z Xip; + 2 Z Z x,x,og)

i=1 j=i+l1

where pu; represents the threshold parameter for variable 7,
o;; the pairwise interaction parameter between variables i
and j, and N the normalizing constant. For the three varia-
bles X, Y, and Z, the Ising model is described by

1
pX,Y,Z) = NP (Xuy + Yuy + 2XYoxy + Zuy,

+2XZoxz + ZYZO'yz)

To derive the pairwise interaction parameter, we divide
the odds of X by the odds of Y.

p(x.2) p(%,y,2)
p(x. 3. Z) p(x,y,Z)

The normalizing constant cancels out completely and the
odds ratio becomes

exp (1zZ)
exp (Ux + uyZ + 2Zoxz)
exp (ux + y + 20xy + uyZ + 2Zoxz + 2Zoyy)
exp (Uy + tzZ + 2Z0yz)

= €xp (20’ Xy)
Therefore, the pairwise association is defined by the
probabilities
p(63.2) p(%,,2)
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Logistic regression

A logistic regression is of the form

% = exp (By + BxX + B,Z).

The regression coefficient fiy is the odds of Y with a
one-unit change of X

exp (BX) _ €xXp (BO + ﬁX(X + 1) + ﬁZZ)

exp (By + BxX + B,Z)

By inserting the odds for the logistic equation the regres-
sion parameter is defined as

pG1%.2) [p0lnZ) _ pOl 2)p(ylx. 2)
piy|x.2) »Z) % 2)p(y|x Z)

Similarly, the regression coefficient ffy is the odds of X
with a one-unit change in Y

exp (Bx) =

% = exp (By + PyY + B12)
. _exp(Bo+ Py(Y+ 1)+ B,2)
exp () = exp (By + ByY + BZ)
\y) p Iy, Iy, 2)p(x[y,2)
“x (6v) X7, 2plaln2)

The two regression coefﬁc1ents look dlfferent at first. For
fBx we condition on X, whereas for ffy, we condition on Y.
However, we can rewrite the regression coefficients in terms
of the joint probabilities rather than the conditional proba-
bilities. Here we use the fact that

_p(xy.2)
p(xy,Z) - p()/)Z)

When replacing the conditional probabilities with all the
respective joint probabilities, we get the following equation

for fx

exp (5y) = PEDR0:% p( 2)p(0,.2)
T 0% 2)p(5 2)p(5 2)pl 2)

_ P0G % 2)p(y, %, Z)
(% 2)p(, % 2)

and respectively for fy

exp () = L DP%5. )0 Z)pl . Z)
(.3, 2)p(y, Z)p(%. y, Z)p (y 2)

_p(x%3.2)p(xy,Z)

p(x.y,Z)p(x.y,Z)

Therefore, iy and fy are equal and their average is con-
sistent with the Ising association parameter. As such, the
averaged nodewise approach is an asymptotically unbiased
estimator of the Ising model edge parameter.
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