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ABSTRACT 
Psychometric networks can be estimated using nodewise regression to estimate edge 
weights when the joint distribution is analytically difficult to derive or the estimation is 
too computationally intensive. The nodewise approach runs generalized linear models 
with each node as the outcome. Two regression coefficients are obtained for each link, 
which need to be aggregated to obtain the edge weight (i.e., the conditional associ
ation). The nodewise approach has been shown to reveal the true graph structure. 
However, for continuous variables, the regression coefficients are scaled differently than 
the partial correlations, and therefore the nodewise approach may lead to different edge 
weights. Here, the aggregation of the two regression coefficients is crucial in obtaining 
the true partial correlation. We show that when the correlations of the two predictors 
with the control variables are different, averaging the regression coefficients leads to an 
asymptotically biased estimator of the partial correlation. This is likely to occur when a 
variable has a high correlation with other nodes in the network (e.g., variables in the 
same domain) and a lower correlation with another node (e.g., variables in a different 
domain). We discuss two different ways of aggregating the regression weights, which can 
obtain the true partial correlation: first, multiplying the weights and taking their square 
root, and second, rescaling the regression weight by the residual variances. The two lat
ter estimators can recover the true network structure and edge weights.
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Psychometric network modeling has been widely used 
in psychological research to conceptualize phenomena as 
systems of interacting variables (Borsboom et al., 2021; 
Isvoranu et al., 2022). A psychometric network consists 
of nodes representing variables that make up the con
struct of interest (e.g., symptoms of a disorder, scores 
on a test, or items of a personality trait). The nodes are 
connected by edges that represent partial associations, 
that is the strength of the relation between two nodes 
after controlling for the influence of all other nodes. 
Edges are estimated with two approaches. The partial 
correlations can be obtained using the inverse of the 
covariance matrix (Epskamp et al., 2018; Waldorp & 
Marsman, 2022). In this case, the network edges are 
obtained using the joint distribution of all variables. This 
distribution cannot be obtained for all types of networks 
(e.g., mixed graphical models; Haslbeck & Waldorp, 
2015) or it may be too computationally expensive to 
compute (Meinshausen & B€uhlmann, 2006; van Borkulo 

et al., 2014;). Alternatively, a simpler method has been 
suggested that uses the conditional distribution of each 
node to approximate the joint distribution. These condi
tional distributions are obtained by regressing each node 
on all other nodes in a generalized linear regression 
model (Besag, 1975; van Borkulo et al., 2014). In this 
approach, called nodewise regression, two estimates are 
obtained for each edge (e.g., for edge X—Y: X is pre
dicted by Y and all other nodes to obtain the regression 
weight bXY:Z; and then Y is predicted by X and all other 
nodes to obtain the regression weight bYX:Z). The two 
regression coefficients bYX:Z and bXY:Z are aggregated to 
obtain an approximation of the partial correlation of the 
X—Y edge. In psychometric networks, the nodewise 
approach is especially used for graphical models of bin
ary and mixed data as well as longitudinal estimation 
(e.g., see Epskamp et al., 2018; Haslbeck & Waldorp, 
2015; van Borkulo et al., 2014). Nodewise regression is a 
useful tool for obtaining network parameters. It can 
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consistently determine edge presence or absence and 
obtain the true network structure (Meinshausen & 
B€uhlmann, 2006; Waldorp & Marsman, 2022).

In this note, we show that the true edge weights—the 
strength of the parameters—are not necessarily obtained 
with the nodewise approach. Rather, the method of 
aggregating the two regression parameters is crucial in 
ensuring an unbiased asymptotic estimator of the partial 
correlation. Bias is used in this paper to denote the dif
ference between the asymptotic values of the partial cor
relation and the aggregated nodewise regression 
estimator. Simply averaging nodewise regression parame
ters leads to an asymptotically biased estimator of the 
non-zero partial correlation of multivariate normal varia
bles. We highlight alternatives for aggregating the two 
regression parameters which allow the nodewise 
approach to accurately obtain the partial correlation: 
multiplying and rescaling the regression weights. The 
paper is organized as follows: First, we provide some 
background on partial correlations and regression coeffi
cients. Second, we discuss averaging the two regression 
weights and show under what conditions the nodewise 
regression approach leads to biased or unbiased non-zero 
partial correlations. Third, we highlight alternative 
approaches to combining the two regression parameters. 
Finally, we extend the derivations to unstandardized and 
binary variables. We demonstrate the utility of the alter
native nodewise approaches with an example of online 
learning readiness.

Background: partial correlation and regression 
coefficient

Partial correlations and regression coefficients are dif
ferent statistics that describe the association between 
two variables of interest. In this section, we will con
sider three variables, X, Y, and Z, which we assume to 
be normally distributed and mean-centered with unit- 
variance. We start with the partial correlation qYX:Z:

The partial correlation is the correlation between two 
variables (e.g., X and Y) after having controlled for 
the influence of a third variable (i.e., Z). The partial 
correlation coefficient is defined as

qYX:Z ¼
qXY − qXZqYZffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − q2

XZÞð1 − q2
YZÞ

p , (1) 

where qXY denotes the marginal correlation between 
variables X and Y. Note that this equation is standar
dized by the total variance of X and Y that is not 
explained by the remaining variable (i.e., Z), that is, 
the terms 1 − q2

XZ and 1 − q2
YZ in the denominator. 

Therefore, the partial correlation is the correlation 
between the residuals of X predicted by Z and the 

residuals of Y predicted by Z. The partial correlation 
is bounded between −1 and 1.

In contrast, the regression coefficient bYX:Z is the 
weight obtained by regressing the dependent variable 
Y on X and Z. It can be obtained by

bYX:Z ¼
qXY − qXZqYZ
ð1 − q2

XZÞ
: (2) 

In this equation, the denominator only controls for 
the unexplained variance of X (i.e., 1 − q2

XZ). The 
regression weights are unbounded and can be inter
preted as the expected change in Y when increasing X 
by one unit and keeping Z fixed.

The numerator of Equations 1 and 2 are equal; it is 
qXY − qYZqXZ: The numerators determines whether a 
parameter is zero, as no value of a non-zero denomin
ator can produce a zero result. Thus, bYX:Z ¼ 0 if and 
only if qYX:Z ¼ 0: The denominator differs. The partial 
correlation coefficient is scaled by the unexplained 
variance of both X and Y, whereas the regression coef
ficient is scaled only by the unexplained variance of 
the predictor X. As a result of this difference in scal
ing, the partial correlation qYX:Z will be high if a large 
portion of the unexplained-by-Z portion of Y is cap
tured by the residuals of X. In contrast, the regression 
coefficient bYX:Z will be high if the unexplained-by-Z 
portion of Y captures a large portion of the total vari
ance of X. For example, if Z is highly correlated with 
both X and Y, the regression coefficient will have a 
relatively lower value as there is a small portion of the 
total variance in Y that remains unexplained by Z and 
can still be captured by X. The partial correlation may 
still be large as it quantifies the strength of the rela
tionship between X and Y after removing the variance 
explained by Z from both variables.

The regression coefficients are zero if and only if the 
partial correlation is zero.1 This allows the nodewise 
approach to consistently detect the true graph structure 
(Meinshausen & B€uhlmann, 2006; Waldorp & Marsman, 
2022). However, as we have also seen, the regression 
coefficient is a differently scaled partial correlation, and as 
such non-zero edges may differ. Here it becomes crucial 
how the two regression weights are aggregated to obtain 
the true edge weight, the partial correlation.

Averaging nodewise parameters is a biased 
estimator of the partial correlation

We first discuss aggregating the regression weights by 
merely averaging them. We make use of Equations 1

1Due to bias in the estimation, for example due to l1 penalized estimation 
(Brusco et al., 2023), the parameter estimates may not necessarily both 
be zero, even if the true population values are equal.
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and 2 to see when the averaged nodewise estimator is 
equal to the partial association.

qYX:Z ¼
bYX:Z þ bXY:Zð Þ

2
qXY − qXZqYZffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − q2

XZÞð1 − q2
YZÞ

p ¼
qXY − qYZqXZ

2ð1 − q2
XZÞ

þ
qXY − qXZqYZ

2ð1 − q2
YZÞ

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − q2

XZÞð1 − q2
YZÞ

p ¼
1

2ð1 − q2
XZÞ
þ

1
2ð1 − q2

YZÞ

1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − q2

XZÞð1 − q2
YZÞ

p

2ð1 − q2
XZÞ

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − q2

XZÞð1 − q2
YZÞ

p

2ð1 − q2
YZÞ

1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − q2

XZÞð1 − q2
YZÞ

p
ð1 − q2

YZÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − q2

XZÞð1 − q2
YZÞ

p
ð1 − q2

XZÞ

2ð1 − q2
YZÞð1 − q2

XZÞ

1 ¼
ð1 − q2

YZÞ þ ð1 − q2
XZÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − q2

YZÞð1 − q2
XZÞ

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − q2

YZÞð1 − q2
XZÞ

p
¼ ð1 − q2

YZÞ þ ð1 − q2
XZÞ

0 ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − q2

YZÞ
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − q2

XZÞ
p

Þ
2

q2
XZ ¼ q2

YZ 

The partial correlation is well approximated by the 
averaged regression coefficients if the variance of X 
explained by Z (i.e., q2

XZ) is equal to the variance of Y 
explained by Z (i.e., q2

YZ), in other words, when both 
X and Y are equally well predicted by Z.

If the variance of X and Y explained by Z is not 
equal, what is the effect on the b’s? If q2

XZ is smaller 
than q2

YZ; then 1 − q2
XZ will be larger than 1 − q2

YZ:

The larger denominator will lead to a smaller regres
sion coefficient and as a result bYX:Z will be smaller 
than bXY:Z: The smaller denominator will lead to a 
larger regression coefficient, which can take values 
outside the range ½−1, 1�: When bYX:Z and bXY:Z are 
averaged, the averaged nodewise edge parameter will 
be asymptotically biased and overestimate the true 
partial correlation. The difference in variances is likely 
to occur in practical applications, for example, when 
assessing exogenous variables, classical test-theoretical 
questionnaires, or a network assessing two domains. 
We review these practical applications in Appendix A.

How large is the bias of the averaged nodewise 
approach?

How does a difference in residual variance affect the 
ability of the averaged regression coefficient to capture 
the partial correlation? We assessed the bias by 
sequencing different combinations of positive correla
tions between the variables, namely: qXY , qXZ, and 
qYZ:

2 In particular, we varied both qXY and qYZ from 
0.1 to 0.7 in steps of 0.2. The remaining correlation 
qXZ was sequenced in steps of 0.001 from the lowest 

to the highest bound of the correlation given by the 
other two correlations.3 For each combination of cor
relation coefficients, we obtained the partial correl
ation qYX:Z and the regression coefficients bXY:Z and 
bYX:Z using Equation 1 and 2. Bias was defined as the 
absolute difference between the averaged regression 
coefficients ðbYX:Z þ bXY:ZÞ 2 and the partial correl
ation qYX:Z:

Figure 1 shows the results of the bias. The averaged 
nodewise regression coefficient overestimates the 
strength of the partial correlation. Often, the bias is 
negligible. However, there are certain situations where 
the bias grows concerningly large; it can be as large 
as 0.6. This is particularly the case when qXY and qYZ 
are small and qXZ moves further away from zero. 
Here, the difference between qXZ and qYZ becomes 
larger and, as expected from the derivations, the bias 
is largest.

Extension to networks with more than three 
variables

In reality, most networks will have more than three 
nodes. In these cases, determining the difference in 
the two parameters becomes more complicated to 
compute because it depends on the correlation struc
ture of a larger set of variables. Nevertheless, the bias 
essentially reduces to the same configuration as above, 
but instead of the marginal correlations, the bias 
depends on the values of the three respective partial 
correlations. Suppose there are three focal variables X, 
Y, and Z in the network, in addition to a set of k con
trol variables (i.e., C ¼ fC1, :::, Ckg). Note that Z is no 
different from and could be any of the k control vari
ables in C: Here, the correlation coefficients in the 
above equations are no longer qXY ; qYZ; and qXZ; but 
rather the partial correlations qXY:C; qYZ:C; and qXZ:C:

If the set of control variables C is independent of 
the set of focal variables, the above derivations remain 
unchanged. However, if C is correlated with the set of 
focal nodes, the bias may differ. Without loss of gen
erality, consider the case where q2

XZ is larger than q2
YZ:

The bias is then smaller if C explains a substantial 
part of the larger marginal correlation coefficient q2

XZ 
without explaining a substantial proportion of the 
smaller coefficient q2

YZ: This situation would result in 
the partial correlation q2

XZ:C being smaller than the 
marginal correlation q2

XZ; while the partial correlation 

2The code to replicate the findings can be found at https://osf.io/gy8px/.

3For three variables, one can derive the bounds of a correlation if the 
two remaining correlations are fixed and known. The formula for the 
upper bound is qXZ � qXYqYZ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − q2

XZÞð1 − q2
YZÞ

p
and for the lower 

bound qXZ � qXYqYZ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − q2

XZÞð1 − q2
YZÞ

p
:
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q2
YZ:C remains the same as its corresponding marginal 

correlation q2
YZ: As such, the difference between the 

two partial correlation coefficients is smaller than the 
difference between the two marginal correlations and 
the bias could decrease to a negligible one. The bias 
becomes larger if C increases the difference in the par
tial associations. For example, this would happen if C 
explained a portion of the smaller coefficient q2

YZ but 
did not affect the larger coefficient q2

XZ: Here, the dif
ference between the partial correlations would be 
larger, q2

XZ:C would be even larger than q2
YZ:C; and so 

would be the bias. Similarly, if instead we considered 
q2

XZ and q2
YZ to be equal, but C explained a large part 

of only one of the two coefficients, say q2
XZ; the partial 

correlation q2
XZ:C would be relatively smaller than 

q2
YZ:C; introducing bias into the estimator.

Unbiased nodewise estimators with multiplied 
or rescaled aggregation of regression 
parameters

Nodewise parameters can also be aggregated in other 
ways, such as by multiplying or rescaling the weights 
(Epskamp et al., 2018; Kr€amer et al., 2009).

Multiplying regression weights

The nodewise estimator can also be aggregated by mul
tiplying the two regression parameters and taking the 

square root of the multiplied coefficients (Kr€amer 
et al., 2009). The multiplied nodewise estimator is cal
culated as

qYX:Z ¼ sgnðbYX:ZÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bYX:ZbXY:Z

p

qXY − qXZqYZffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − q2

XZÞð1 − q2
YZÞ

p ¼ sgnðbYX:ZÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qXY − qYZqXZ
ð1 − q2

XZÞ

qXY − qXZqYZ
ð1 − q2

YZÞ

r

¼ sgnðbYX:ZÞ
qXY − qXZqYZffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − q2

XZÞð1 − q2
YZÞ

p

where sgnð�Þ is the sign function, which is þ1 for posi
tive values and −1 for negative values. The multiplied 
estimator equates to the partial correlation estimator. 
As such, the aggregation leads to an asymptotically 
unbiased estimator of the partial correlation using 
nodewise regression. The sign function ensures the cor
rect sign of the multiplied nodewise parameter.

Rescaling regression parameters

Alternatively, one can also choose to rescale the regres
sion parameter with the residual variances (Epskamp 
et al., 2018). The rescaled parameter is calculated as:

qYX:Z ¼ bYX:Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − q2

XZÞ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − q2

YZÞ
p

qXY − qXZqYZffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − q2

XZÞð1 − q2
YZÞ

p ¼
qXY − qYZqXZ
ð1 − q2

XZÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − q2

XZÞ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − q2

YZÞ
p

¼
qXY − qXZqYZffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − q2

XZÞð1 − q2
YZÞ

p

Figure 1. Absolute bias in ðbYX:Z þ bXY:ZÞ=2 relative to qYX:Z : Note. Each quadrant reflects one setting of the correlation qYZ and 
each line within all the plots reflects a different specification of the correlation qXY :
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where one can equally use the second regression par
ameter bXY:Z instead by also switching the numerator 
and denominator of the fraction of residual variances. 
The rescaled nodewise estimator equates to the partial 
correlation and is also an asymptotically unbiased esti
mator of the partial correlation.

Nodewise aggregation in unstandardized and 
binary variables

Until now, we assumed the variables X, Y, and Z to 
be mean-centered with unit-variance and multivariate 
normally distributed. How does the nodewise 
approach behave for unstandardized or binary varia
bles? For unstandardized variables, the averaged node
wise estimator is asymptotically biased also (see 
Appendix B). Unstandardized variables likely increase 
the chance of asymptotic bias because equality of the 
variance on top of the covariances must be satisfied to 
ensure no asymptotic bias.

For binary variables, a different pattern occurs. The 
network model and type of nodewise regression changes 
to an Ising model (Ising, 1925) and logistic regression 
respectively (Keetelaar et al., 2024; van Borkulo et al., 
2014). Both the Ising model’s partial associations and 
the nodewise approach’s regression weights consist of a 
transformed odds ratio. In fact, the nodewise estimator 
is equal to the Ising parameter, and as such the node
wise approach is asymptotically unbiased for binary vari
ables (see Appendix C). The undesirable properties of 
the averaged nodewise estimator for multivariate nor
mally distributed variables are not exhibited by the 
nodewise approach for binary variables.

Example application of the nodewise 
estimators

We illustrate the performance of the three aggregated 
nodewise estimators in an empirical application with a 
dataset assessing university students’ readiness for 
E-learning (Nguyen et al., 2022). The dataset was ori
ginally published as a network that included six 
domains measured with 33 items, comprising com
puter skills, internet skills, online communication, 
self-learning, self-control, and online motivation.4

Higher scores on the domains indicate that students 
are better prepared to learn online during the 

COVID-19 pandemic. In our example, we re-analysed 

the dataset with the joint approach, as well as the 
averaged, multiplied, and rescaled nodewise estimator. 
The final sample included 1,377 participants. All anal
yses were conducted in R (R-Core-Team, 2024), using 
the packages ppcor for partial correlation estimation 
(Kim, 2015), tidyverse for comprehensive data 
manipulation and analysis (Wickham, 2017), and 
qgraph for the visualization of the networks 
(Epskamp et al., 2012).

Figure 2 depicts the results of the analysis. In the 
network obtained with the joint approach, self-control is 
strongly connected to self-learning (rxy:z ¼ 0:52) and 
online motivation (rxy:z ¼ 0:44). Self-learning and online 
motivation are connected but show a slightly weaker 
link (rxy:z ¼ 0:2). The three domains show weak links 
with the skill domains; here the strongest connection is 
between online motivation and online communication 
(rxy:z ¼ 0:16). The skill domains are strongly connected 
depicting partial correlations up to 0.5.

There was a noticeable difference between the esti
mates of the joint and averaged nodewise approach 
(see Figure 2c). In particular, the edges between self- 
learning and self-control as well as between self- 
control and online motivation were estimated to be 
stronger in the averaged nodewise regression, with 
differences of 0.16 and 0.14 respectively. The edges 
between the skills variables and the personality varia
bles were estimated with a bias of up to 0.02. The 
skills variables showed a slight bias between online 
communication and internet skills (i.e., 0.02) and 
between computer skills and internet skills (i.e., 0.03). 
In contrast, the multiplied and rescaled nodewise esti
mators were able to retrieve the partial correlations of 
the joint approach exactly.

In sum, in this example, the averaged nodewise 
regression led to a non-negligible bias of edge weight 
estimates whereas the multiplied and rescaled node
wise estimators were able to retrieve the partial correl
ation, as expected.

Conclusions

Performing nodewise regression to obtain the network 
model is a powerful alternative to the potentially cum
bersome and computationally intensive alternative of 
joint modeling. It allows one to reliably obtain the 
graph structure (Meinshausen & B€uhlmann, 2006; 
Waldorp & Marsman, 2022). However, the nodewise 
approach does not always detect the true edge weights, 
its goodness depends on the aggregation of the two 
regression parameters. Averaging the two regression 
weights leads to an asymptotically biased estimator of 
the partial correlation when two variables are strongly 

4The data can be downloaded alongside the original publication https:// 
jeehp.org/journal/view.php?doi=10.3352/jeehp.2022.19.22 and relevant 
R-code for the analysis can be found on OSF https://osf.io/gy8px/.
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correlated and weakly correlated with other nodes in 
the network. There are two alternative ways of aggre
gating the regression parameters which are asymptotic
ally unbiased estimators: first, by multiplying the 
coefficients and taking the square root, and second, by 
rescaling one regression parameter with the residual 
variances. The multiplied estimator might have a slight 
advantage, as it can be derived directly from the matrix 
of regression weights. In contrast, the rescaled estima
tor requires only one of the regression weights but it 
also depends on the residual variances.

Our work did not evaluate how the estimators 
perform in finite samples or biased estimation 
approaches. For example, for l1 regression, one can 
expect worse performance of the disjoint estimator 
even when equality holds asymptotically, as is seen 
in the Ising model (Brusco et al., 2023). When 
researchers use ordinary least squares or maximum 
likelihood estimation, asymptotic equality should 
hold in the estimated parameters. However, future 
work should evaluate their properties in a simulation 
study.

Figure 2. Networks obtained through the different estimation approaches. Note. Networks resulting from the joint estimation 
(top), the averaged nodewise approach (middle left), the difference between both (middle right), the multiplied nodewise approach 
(bottom left), and the rescaled nodewise approach (bottom right). Blue edges indicate positive values and red edges indicate nega
tive ones; edge thickness reflects association strength. CS: Computer Skills, IS: Internet Skills, OC: Online Communication, SL: Self- 
Learning, SC: Self-Control, M: Online Motivation.
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In conclusion, the multiplied and rescaled nodewise 
estimators have desirable asymptotic properties. They 
show clear advantages over the averaged nodewise 
estimator.
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Appendix A: When will bias arise in 
applications?

The averaged nodewise coefficient will be biased if the cor
relation of the two variables of interest with a third variable 
is different. We see four applications where one might 
expect a difference in correlations and therefore an 
increased risk of bias.

1. Exogenous variables: Researchers often include exogen
ous variables in the network model, that is, variables 
that are external to the construct being studied. 
Examples of such variables are sociodemographic fac
tors (e.g., age, ethnicity, sex) and treatment allocation. 
We expect the system variables to be highly correlated 
with each other (e.g., depressed mood is highly corre
lated with one’s self-esteem) but less correlated with 
the exogenous variables (e.g., ethnicity is less strongly 
correlated with depressed mood). As such, we would 
expect the edge weights between the exogenous varia
bles and the system variables to be biased.

2. Classic test-theoretical questionnaire: In classical psy
chological scale development, a questionnaire is 
designed to be maximally reliable. To achieve that aim, 
often several items are included that measure the same 
or very close entities. This could be a simple rewording 
or a reverse wording of an item; these two items tend 
to be highly correlated with each other, but less corre
lated with the other items in the questionnaire. If mod
eling the full questionnaire, bias is expected in the 
edges between the almost identical items and all other 
questionnaire items.

3. Network of two domains: Comorbidity research using 
the network approach examines interactions between 
symptoms of two psychopathologies. Symptoms of both 
psychopathologies are included in the same network, 
and interactions between them are examined for 
potential bridge symptoms. If symptoms of the same 
psychopathology are more strongly correlated with each 
other than with symptoms of other psychopathologies, 
the associations between disorders—the associations of 
the bridge symptoms—are at risk for biased estimates.

4. Clustering research: A network cluster is a group of 
nodes that are more strongly connected to nodes 
within the same cluster than to nodes from other clus
ters. By definition, one assumes a difference in correl
ation strength between different nodes, where the 
correlations within clusters are higher than between 
clusters. This pattern of correlations could introduce 
bias in the edges that link the different clusters.

These are just a few examples of applications where differ
ences in correlations, and thus bias, might be expected. Of 
course, bias is not limited to these situations and does not 
necessarily occur in them.

Appendix B: Derivations for unstandardized 
variables

In the main manuscript, we assumed the variables X, Y, and 
Z to be mean-centered with unit-variance and multivariate 

normally distributed. How does the nodewise approach 
behave outside these assumptions, such as for unstandar
dized variables?

For unstandardized variables, the partial correlation is of 
the form

qYX:Z ¼
rXYr2

Z − rXZrYZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

Xr2
Z − r2

XZ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

Yr2
Z − r2

YZ

p

and the regression weight of the form

bYX:Z ¼
rXðrXYr2

Z − rXZrYZÞ

rYðr
2
Xr2

Z − r2
XZÞ

:

Contrary to the standardized form, the numerators dif
fer: the regression coefficient contains an additional 
rX-term. As in the standardized case, the denominator dif
fers: Whereas the partial correlation is scaled by the resid
uals of both X and Y, the regression weight is now scaled 
by the residual of X and the total variance of Y. How does 
this difference in scaling affect the ability of the nodewise 
approach to approximate the partial correlation in unstan
dardized variables?

Averaging nodewise estimator in 
unstandardized variables

For the averaged nodewise estimator, the approximation is 
equal for unstandardized variables if

qYX:Z ¼
bYX:Z þ bXY:Zð Þ

2
rXYr2

Z − rXZrYZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

Xr2
Z − r2

XZ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

Yr2
Z − r2

YZ

p ¼
rXðrXYr2

Z − rXZrYZÞ

2rYðr
2
Xr2

Z − r2
XZÞ

þ
rYðrXYr2

Z − rXZrYZÞ

2rXðr
2
Yr2

Z − r2
YZÞ

or in simpler terms, if rX ¼ rY as well as r2
XZ ¼ r2

YZ: In 
fact, the nodewise regression approximation with unstan
dardized variables reduces to that of the standardized varia
bles if rX ¼ rY : When this equality holds, the nodewise 
approach obtains the true network structure, but again pro
duces biased edge weights unless r2

XZ ¼ r2
YZ:

Multiplied and rescaled nodewise aggregation 
in unstandardized variables

If instead of averaging the nodewise estimates to obtain the 
partial correlation, one aggregates the estimates by multiply
ing the variables, the derivations are as follows

rXYr2
Z − rXZrYZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

Xr2
Z − r2

XZ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

Yr2
Z − r2

YZ

p

¼ sgnðbYX:ZÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rXðrXYr2

Z − rXZrYZÞ

rYðr
2
Xr2

Z − r2
XZÞ

rYðrXYr2
Z − rXZrYZÞ

rXðr
2
Yr2

Z − r2
YZÞ

s

¼ sgnðbYX:ZÞ
rXYr2

Z − rXZrYZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2

Xr2
Z − r2

XZÞ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr2
Yr2

Z − r2
YZÞ

p , 

where sgnð � Þ is the sign function, which is þ1 for 
positive values and −1 for negative values. Respectively, the 
derivations for the rescaled nodewise estimator are as 
follows
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rXYr2
Z − rXZrYZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

Xr2
Z − r2

XZ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

Yr2
Z − r2

YZ

p

¼
rXðrXYr2

Z − rXZrYZÞ

rYðr
2
Xr2

Z − r2
XZÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2

Xr2
Z − r2

XZÞ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2

Yr2
Z − r2

YZÞ
p

¼
rXYr2

Z − rXZrYZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

Xr2
Z − r2

XZ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

Yr2
Z − r2

YZ

p :

As such, both the rescaled and multiplied estimators are 
asymptotically unbiased also for unstandardized variables.

Appendix C: Nodewise approach is 
asymptotically unbiased for binary variables

For simplicity, we assume three variables X, Y, and Z to take 
on a value in the binary set {0, 1}. Z here is merely a con
trol variable and we are trying to estimate the partial associ
ation between X and Y. If X takes on the value 0, we 
denote it x, and if it takes on the value 1 we denote it �x:
This also holds respectively for both Y and Z.

Ising model

First, we derive the edge association parameter for the Ising 
model. The full Ising model is formulated as

pðXÞ ¼
1
N

exp
Xp

i¼1
xili þ 2

Xp−1

i¼1

Xp

j¼iþ1
xixjrij

0

@

1

A, 

where li represents the threshold parameter for variable i, 
rij the pairwise interaction parameter between variables i 
and j, and N the normalizing constant. For the three varia
bles X, Y, and Z, the Ising model is described by

pðX, Y, ZÞ ¼
1
N

exp ðXlX þ YlY þ 2XYrXY þ ZlZ

þ 2XZrXZ þ 2YZrYZÞ

To derive the pairwise interaction parameter, we divide 
the odds of X by the odds of Y.

pðx, y, ZÞ
pð�x, y, ZÞ

pð�x, �y, ZÞ
pðx, �y, ZÞ

The normalizing constant cancels out completely and the 
odds ratio becomes

exp ðlZZÞ
exp lX þ lZZ þ 2ZrXZð Þ

exp lX þ lY þ 2rXY þ lZZ þ 2ZrXZ þ 2ZrYZð Þ

exp lY þ lZZ þ 2ZrYZð Þ

¼ exp ð2rXYÞ

Therefore, the pairwise association is defined by the 
probabilities

exp ð2rXYÞ ¼
pðx, y, ZÞ
pð�x, y, ZÞ

pð�x, �y, ZÞ
pðx, �y, ZÞ

Logistic regression

A logistic regression is of the form

pð�yjX, ZÞ
pðyjX, ZÞ

¼ exp b0 þ bXX þ bZZð Þ:

The regression coefficient bX is the odds of Y with a 
one-unit change of X

exp ðbXÞ ¼
exp b0 þ bXðX þ 1Þ þ bZZð Þ

exp b0 þ bXX þ bZZð Þ

By inserting the odds for the logistic equation the regres
sion parameter is defined as

exp ðbXÞ ¼
pð�yj�x, ZÞ
pðyj�x, ZÞ

�
pð�yjx, ZÞ
pðyjx, ZÞ

¼
pð�yj�x, ZÞpðyjx, ZÞ
pðyj�x, ZÞpð�yjx, ZÞ

Similarly, the regression coefficient bY is the odds of X 
with a one-unit change in Y

pð�xjY, ZÞ
pðxjY , ZÞ

¼ exp b0 þ bY Y þ bZZð Þ

exp ðbYÞ ¼
exp b0 þ bYðY þ 1Þ þ bZZð Þ

exp b0 þ bY Y þ bZZð Þ

exp ðbYÞ ¼
pð�xj�y, ZÞ
pðxj�y, ZÞ

�
pð�xjy, ZÞ
pðxjy, ZÞ

¼
pð�xj�y, ZÞpðxjy, ZÞ
pðxj�y, ZÞpð�xjy, ZÞ

The two regression coefficients look different at first. For 
bX we condition on X, whereas for bY ; we condition on Y. 
However, we can rewrite the regression coefficients in terms 
of the joint probabilities rather than the conditional proba
bilities. Here we use the fact that

pðxjy, ZÞ ¼
pðx, y, ZÞ
pðy, ZÞ

When replacing the conditional probabilities with all the 
respective joint probabilities, we get the following equation 
for bX

exp ðbXÞ ¼
pð�x, ZÞpð�y, �x, ZÞpðx, ZÞpðy, x, ZÞ
pðy, �x, ZÞpð�x, ZÞpð�y, x, ZÞpðx, ZÞ

¼
pð�y, �x, ZÞpðy, x, ZÞ
pðy, �x, ZÞpð�y, x, ZÞ

and respectively for bY

exp ðbYÞ ¼
pð�y, ZÞpð�x, �y, ZÞpðy, ZÞpðx, y, ZÞ
pðx, �y, ZÞpð�y, ZÞpð�x, y, ZÞpðy, ZÞ

¼
pð�x, �y, ZÞpðx, y, ZÞ
pðx, �y, ZÞpð�x, y, ZÞ

Therefore, bX and bY are equal and their average is con
sistent with the Ising association parameter. As such, the 
averaged nodewise approach is an asymptotically unbiased 
estimator of the Ising model edge parameter.
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