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ABSTRACT
In their recent paper, Forbes et al. (2019; FWMK) evaluate the replicability of network models
in two studies. They identify considerable replicability issues, concluding that “current ‘state-
of-the-art’ methods in the psychopathology network literature [… ] are not well-suited to
analyzing the structure of the relationships between individual symptoms”. Such strong
claims require strong evidence, which the authors do not provide. FWMK identify low replic-
ability by analyzing point estimates of networks; contrast low replicability with results of two
statistical tests that indicate higher replicability, and conclude that these tests are problem-
atic. We make four points. First, statistical tests are superior to the visual inspection of point
estimates, because tests take into account sampling variability. Second, FWMK misinterpret
the statistical tests in several important ways. Third, FWMK did not follow established recom-
mendations when estimating networks in their first study, underestimating replicability.
Fourth, FWMK draw conclusions about methodology, which does not follow from investiga-
tions of data, and requires investigations of methodology. Overall, we show that the “poor
replicability “observed by FWMK occurs due to sampling variability and use of suboptimal
methods. We conclude by discussing important recent simulation work that guides research-
ers to use models appropriate for their data, such as nonregularized estimation routines.
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In their paper entitled “Quantifying the reliability and
replicability of psychopathology network character-
istics”, Forbes et al. (2019)—from here on FWMK—
conducted two studies. First, they estimated Gaussian
Graphical Models (GGMs) of 16 depression and anx-
iety symptoms in two waves of data from an observa-
tional study (n¼ 403) one week apart. Second, they
re-analyzed GGMs of 16 posttraumatic stress disorder
symptoms across 4 datasets reported by Fried
et al. (2018).

In both studies, FWMK highlight replicability
issues of network models, and conclude that the “low
reliability of partial correlations and high rates of false
negatives related to LASSO regularization in such data
suggest that the current ‘state-of-the-art’ methods in
the psychopathology network literature [… ] are not
well-suited to analyzing the structure of the relation-
ships between individual symptoms of mental illness”
(p. 14).

To assess replicability, FWMK compare point esti-
mates of network parameters, and contrast their
results of low replicability with the results of two stat-
istical tests that indicate higher replicability. The two
tests are part of two R packages, which were devel-
oped with the express purpose so that researchers
stop overinterpreting point estimates when conducting
comparisons. The first package is bootnet (Epskamp
et al., 2018), which performs nonparametric and sub-
sampling bootstraps to assess the stability and accur-
acy of estimated networks. The second package is the
Network Comparison Test (NCT; van Borkulo et al.,
2017), which uses permutations to test if two samples
feature different underlying network structures.

We agree with FWMK that there are numerous
challenges in this emerging field, both of substantive
and statistical nature. However, we disagree with
some of the conclusions the authors draw, and focus
on four issues below.
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Sampling variability

Statistical tests aim to avoid overinterpretation of
point estimates. Suppose we want to compare standar-
dized neuroticism levels across two small samples of
30 participants each, with means .24 (SD ¼ 1.1) and
.28 (SD ¼ 1.2). Point estimates clearly differ from
each other, but a t-test indicates that this difference is
not significant; t(57.9)¼1.6, p¼ 0.12 (Figure 1, left).

Or suppose that point estimates of the factor load-
ings of an item x1 differ slightly across two factor
models estimated in two samples, but measurement
invariance tests indicate that the null hypothesis that
the models are the same cannot be rejected (Meredith,
1993). Researchers would rely on the results of the
statistical tests—not the point estimates—to draw
inferences. This also applies to network models: point
estimates of two specific edges might be different
(Figure 1, right), but whether this difference is mean-
ingful can only be determined in the light of sampling
variability, which requires statistical tests to find out if
a difference in two parameter estimates is more
extreme than one would expect under the null
hypothesis. Bootnet and NCT were developed with the
purpose to conduct such tests—bootnet for comparing
edge weights within one network, NCT for comparing
edge weights across different networks.

In their paper, FWMK analyze and visualize differ-
ences in point estimates in detail, and show that stat-
istical tests provided by bootnet and NCT arrive at
different conclusions than the authors’ inferences of
point estimates. For example, they state: “all NCT
results indicated that the depression and anxiety
symptom networks had no significant differences
when in fact they had a multitude of differences” (p.
15, our highlight). This inference is no different than
concluding that the t-test for neuroticism in Figure 1
reaches a non-significant result when in fact point

estimates of neuroticism differ across samples
(Figure 1)—it ignores sampling variability. Of note,
FWMK only apply this logic to parameters derived
from network models, not to other statistical parame-
ters. For instance, they state that polychoric correl-
ation matrices of the longitudinal data “could be
constrained to equality without affecting model fit
([… ] p¼ 0.666)”. In other words, while the point
estimates of the correlations were not exactly identical
across samples, a statistical test provided evidence that
this is likely the result of sampling variability, similar
to the neuroticism example in Figure 1. This inter-
pretation of point estimates contrasts with the
authors’ interpretation of point estimates of network
models in the remainder of the paper. While we focus
this commentary on the two waves of depression and
anxiety data, the problem of overinterpreting point
estimates also applies to the analysis of the
PTSD datasets.

Misinterpretation of bootnet and NCT

Three conclusions of FWMK regarding bootnet and
NCT do not follow from their investigation. First, a
central claim of FWMK is that “existing suite of
methods tended to suggest that the networks were
accurately estimated” (p. 12), and that “the interpret-
ation guidelines for bootnet results err toward indicat-
ing stability and interpretability in networks” (p. 15).
This is not true: bootnet results clearly indicate lack of
stable estimates for study 1. The CS coefficient—a
metric bootnet provides researchers an idea about the
stability of the order of centrality estimates—was 0.13
for the depression and anxiety networks, implying
that the centrality order is unstable and should thus
not be interpreted (Epskamp et al., 2018). FWMK
write: “the CS-coefficient was below the minimum
recommended cutoff [for accurate estimation] at both

Figure 1. Sampling variability. Left: Neuroticism levels across two samples. Right: Bootstrapped edge weights across two networks
(PHQ1—PHQ2 in Figure 2).
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waves (CS(0.7) ¼ .13), which notably represents the
only clear guideline available for interpreting bootnet
output” (p. 9). In other words, FWMK 1) identified
only one clear benchmark for accurate estimation in
bootnet, the CS-coefficient; 2) demonstrate that this
one benchmark is below the recommended threshold
for accurate estimation; and 3) conclude nonetheless
that bootnet guidelines suggest networks were esti-
mated accurately. Thus, their conclusion that bootnet
errs toward indicating stability and interpretability
does not follow from the evidence FWMK present.

Second, FWMK correctly state in the manuscript
that “the authors of the [bootnet] package emphasize
that the CIs do not represent significance tests” (p.
3). However, the authors then continue to interpret
bootnet results in precisely this way. They consider
an edge to be “bootnet-accurate”—a novel concept
invented by FWMK that has not been used before in
the literature—if its bootstrapped CI does not con-
tain zero, irrespective of how large the bootstrapped
CI is. This definition is inconsistent with common
definitions of parameter accuracy: a parameter esti-
mate is accurate when it has small confidence
regions, regardless of whether these confidence
regions contain zero. For example, a standardized
parameter that is reliably estimated to be non-zero
but fluctuates between 0.1 and 0.8 in bootstrap sam-
ples indicates the estimate is not accurate, but falls
under the definition of accurate according to
FWWK. A related concern is that regularization
already pulls parameters to zero. Bootstrapping to
test the null-hypothesis that an edge weight is differ-
ent from zero after using regularization leads to a
considerable drop in statistical power to detect if an
edge weight is nonzero, and the probability increases
that an estimated edge weight is exactly zero, which
in turn leads to a loss of statistical power to detect
an edge to be nonzero using such a confidence
region (i.e. increased type 2 error rate). It is not sur-
prising that when comparing many such low pow-
ered tests, many edges will not be considered
different from zero in both datasets—this is expected
by chance alone. FWMK seem aware of both

problems, as is evident from the quote above and
footnote 5, but used “bootnet-accurate” to inform
their most important conclusions nonetheless.

Third, with regard to the NCT, FWMK state that
“The simulations in van Borkulo et al. (under review)
indicated that the NCT omnibus test should be
adequately powered to compare these networks” (p.
15). This is not correct: the simulation study investi-
gated continuous, independent data, not ordinal,
dependent (i.e., longitudinal) data as used by the
authors. It is therefore unclear how much power
FWMK have to detect differences. In this case, the
authors obtain a non-significant p-value, and argue
that there is something wrong with the method
because it arrives at different conclusions than the
comparison of parameter point estimates. We refer
back to our discussion above on sampling variation
for the logic of this argument, or to measurement
invariance in structural equation models (Meredith,
1993). Comparing factor models across two samples is
not done by visualizing differences in point estimates
of factor loadings, but by using statistical tests to see
if parameters differ more than would be expected
under sampling variability.

Problems of polychoric correlations in skewed
ordinal data

The results of study 1, including the switching of
signs in edges, are partly due to the specific estima-
tion algorithm used: regularized GGM estimation
based on polychoric correlations. As described in the
tutorial paper cited by FMWK (Epskamp & Fried,
2018), polychoric correlations can lead to biased esti-
mates in case of skewed ordinal data, especially in
smaller samples: “When the sample size is relatively
low, some cells in the item by item frequency table
can be low or even zero [… ]. The estimation of pol-
ychoric correlations is [… ] biased whenever an
expected frequency is too small (i.e., below 10;
Olsson, 1979). Low frequencies can thus lead to
biased polychoric correlations, which can compound
to large biases in the estimated partial correlations.

Table 1. Replication of depression and anxiety networks based on polychoric and Spearman correlations.
Replication metric proposed by FWMK GGMs based on polychoric correlations GGMs based on Spearman correlations

Edges of N1 replicated with same sign in N2 55 (70.5%) 65 (81.3%)
Edges of N1 that switch sign in N2 4 (5.1%) 0 (0%)
Absent edges of N1 replicated in N2 23 (54.8%) 28 (70%)
Bridging edges of N1 replicated with same sign in N2 23 (56.1%) 23 (67.6%)
Bridging edges of N1 switched sign in N2 3 (7.3%) 0 (0%)
Absent bridging edges of N1 replicated in N2 14 (63.6%) 22 (75.9%)

Note: Higher replicability marked bold. GGM: Gaussian Graphical Model; N1: network estimated on first time point in depression and anxiety data; N2: net-
work estimated on second time point. Total number of edges per network: N1 (Spearman) ¼ 80, N1 (polychoric) ¼ 78, N2 (Spearman) ¼ 78, N2 (poly-
choric) ¼ 42.
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Another situation in which one might obtain low fre-
quencies is when the scores are highly skewed
(Rigdon & Ferguson, 1991), which unfortunately
often is the case in psychopathology data. Again, the
network based on polychoric correlations should be
compared with a network based on Spearman
correlations” (p. 14).

Such estimation problems can be expected in the
data of the FMWK: for timepoint 1, all 16 items are
skewed (mean skewness ¼ 1, range 0.44 to 2.59; mean
kurtosis ¼ 0.54, range �0.82 to 6.33), with an average
item mean of 0.86 (range 0.29 to 1.31) on a scale

from 0 to 4. As expected, such data shows floor
effects, with a correlation of 0.86 between item means
and standard deviations. Timepoint 2 shows even
more pronounced skew and floor effects. Following
the recommendation of using Spearman correlations
to obtain more stable estimates (Epskamp & Fried,
2018), replicability is consistently higher, on 6 out of
6 metrics calculated by FWMK (Table 1). This high-
lights that the results from FMWK appear to be spe-
cific to the estimation method used rather than
generalize to network estimation methods in general
(Figure 2).

Figure 2. Networks estimated on timepoints 1 and 2 from the depression and anxiety data used by FMWK. Top row: GGMs esti-
mated by FWMK, based on polychoric correlations. Bottom row: GGMs based on Spearman correlations.
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Replicability is a substantive, not a
statistical phenomenon

Finally, we want to highlight that conclusions about
methodology cannot follow from investigations of
data—they require investigations of methodology,
which can be done via simulation studies or mathem-
atical proofs (Borsboom et al., 2017, 2018). This
means that replications or non-replications of substan-
tive findings cannot be informative about the quality
of statistical models. One can fairly criticize research-
ers for using t-tests incorrectly, but one would not
criticize t-tests as a statistical tool because large-scale
collaborative projects in psychology that primarily
relied on t-tests have shown limited replicability
(Camerer et al., 2018; Open Science Collaboration,
2015). This is the conclusion FWMK draw about net-
work models: “Poor replicability underpins our con-
cern surrounding the use of these methods” (p. 1).

Conclusion

We show that the “limited reliability of the detailed
characteristics of networks” (p. 1) observed by FWMK
occurs in part due to sampling variability, and in part
because polychoric correlations can be unstable in
skewed ordinal data, especially in small samples.

Network models are high-dimensional, multivariate
models with many parameters. Exploratory search in
this parameter space will come with sampling variabil-
ity and differences in the performance across specific
algorithms. Prior work has discussed these aspects in
some detail, and put forward ways to address sam-
pling variability using statistical tests (Epskamp et al.,
2018; Epskamp et al., 2016; Fried & Cramer, 2017;
Williams & Rast, 2018; Williams et al., 2019). Recent
methodological studies have led to an increased
understanding of the performance of specific network
estimation methods under different conditions. For
instance, the regularization algorithm commonly used
was specifically designed for sparse underlying net-
work structures. Under dense structures, regulariza-
tion leads to a higher false positive rate than was
previously known (Williams & Rast, 2018; Williams
et al., 2019). We welcome such simulation studies that
are important methodological contributions to the lit-
erature, as they strengthen the knowledge about meth-
odology. Network psychometrics is no different in this
regard than psychometrics in general.

Overall, such methodological insights encourage
researchers to use models appropriate for their data.
For network models, researchers may, under specific
circumstances, consider alternative estimation routines

that do not rely on regularization, such as non-regu-
larized estimation procedures (e.g., Isvoranu et al.,
2019). But rather than to conclude this is a problem
for network psychometrics, we conclude that research-
ers should be aware of the assumptions inherent in
the methods such as regularization, and choose esti-
mation methods that are most appropriate for their
data and research question.

Finally, it is unclear if e.g. 75% replicated edges
imply comparably good or bad model performance,
as we are not aware of simulation studies on the
expected number of replicated present and absent
edges given conditions such as sample size, skewness
of data, and number of variables. That is, even if
data for two samples come from the same true
model, it is unclear how many edges can be
expected to replicate—the same way one would not
expect for all factor loadings to replicate across two
samples in all possible conditions, even if the data
generating mechanism is the same factor model
across both. We have implemented the function
replicationSimulator in the bootnet package
to facilitate research on the topic, which allows
researchers to conduct such simulation studies across
a range of network estimation methods and compare
their performance. Results may differ substantially
per estimation method, and the optimal method may
depend on the particular needs of the researcher.
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