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ABSTRACT

Psychologists leverage longitudinal designs to examine the causal effects of a focal predictor
(i.e., treatment or exposure) over time. But causal inference of naturally observed time-varying
treatments is complicated by treatment-dependent confounding in which earlier treatments
affect confounders of later treatments. In this tutorial article, we introduce psychologists to an
established solution to this problem from the causal inference literature: the parametric g-
computation formula. We explain why the g-formula is effective at handling treatment-
dependent confounding. We demonstrate that the parametric g-formula is conceptually intui-
tive, easy to implement, and well-suited for psychological research. We first clarify that the
parametric g-formula essentially utilizes a series of statistical models to estimate the joint dis-
tribution of all post-treatment variables. These statistical models can be readily specified as
standard multiple linear regression functions. We leverage this insight to implement the para-
metric g-formula using lavaan, a widely adopted R package for structural equation modeling.
Moreover, we describe how the parametric g-formula may be used to estimate a marginal
structural model whose causal parameters parsimoniously encode time-varying treatment
effects. We hope this accessible introduction to the parametric g-formula will equip psycholo-
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gists with an analytic tool to address their causal inquiries using longitudinal data.

Psychological researchers often seek to examine how
the causal impact of a focal predictor (i.e., treatment or
exposure) unfolds over time. For example, researchers
might be interested in examining how maternal
employment affects children’s cognitive development
(Kihhirt & Klein, 2018), or how bullying at work
affects sickness absences (Mathisen et al., 2022), or
how poverty affects depression (Thomson et al., 2022),
or how loneliness affects depressive symptoms
(VanderWeele et al,, 2011). In these examples, naturally
observed treatments cannot merely be assumed to be
one-off occurrences, but are rather continuous or suc-
Importantly,
Treatments fluctuate, accumulate, or evolve over time.
Drawing valid causal conclusions about time-varying
treatments from observational studies is a well-recog-
nized challenge; see, eg., Bray et al. (2006) and
VanderWeele et al. (2016). As discussed extensively in

cessive. treatments are time-varying:

the biostatistics and epidemiology literatures, causal
inferences about time-varying treatments are exceedingly
problematic because of the existence of time-varying con-
founders that are inevitably affected by earlier treatments
(Daniel et al, 2013). Such treatment-dependent con-
founding variables result in causal feedback between the
treatments and confounders over time (Daniel, 2018;
Hernan & Robins, 2020). Under such settings, standard
analytic methods for confounding adjustment fail, lead-
ing to incorrect causal conclusions (Keogh et al, 2017;
Moodie & Stephens, 2010; Rosenbaum, 1984).

An approach to resolve treatment-dependent con-
founding is the parametric g-computation formula,
colloquially termed the g-formula (Robins, 1986). The
g-formula belongs to the established family of causal
methods for generalized treatments (so-called
“g-methods”) developed in pioneering work by James
Robins and address

colleagues to time-varying
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Table 1. Glossary of key terms used in this paper.

Term

Description

Confounder

Collider

Treatment-dependent confounder

Propensity score

G-computation formula, or g-formula

Marginal structural model (MSM)

Doubly robust estimator

A variable that induces a “spurious” (or noncausal) association between a
treatment and an outcome when unadjusted for.

A variable on a noncausal path with two arrows pointing at it. We
emphasize that a collider is not a variable-specific role but a path-
specific role. That is, a variable that is a collider on one path can be a
noncollider on a different path, with both paths having the same
endpoints.

A variable that simultaneously is a confounder of a later treatment on the
outcome and is itself affected by an earlier or past treatment. It is also
variously termed a time-varying, time-dependent, treatment-induced, or
post-treatment confounder.

The conditional probability that an individual would have selected
treatment given their pretreatment covariates.

Links a marginal potential outcome (i.e., target causal quantity) to the
average observed outcome conditional on all causally preceding
variables, weighted by the probability distribution of the time-varying
covariates under hypothetically fixed treatment levels.

A model for the distribution (often expectation) of a single potential
outcome in terms of parameters encoding causal effects of treatment.
It is marginal because it does not model the joint distribution of
different potential outcomes (such as their correlations), and it is
structural because it is a potential outcomes model whose coefficients
are endowed with a causal interpretation.

An estimator that combines: (i) a propensity score model for the
treatment conditional on pretreatment covariates, and (i) an outcome
model conditional on the treatment and the pretreatment covariates. A
doubly robust estimator is protected from biases due to incorrectly
specifying one of these models if the other model is correctly specified.

confounding when testing the effects of a time-varying
treatment. The effectiveness of the g-computation for-
mula is established in the causal inference methodo-
logical literature outside of psychology, notably in
epidemiology and (bio)statistics; see, e.g., Naimi et al.
(2016) and Hernan and Robins (2020). The g-formula
has been widely implemented by applied researchers
pursuing answers to causal questions in public health
and the medical sciences. A few selected examples
include Danaei et al. (2013), Edwards et al. (2014),
Keil et al. (2014), Taubman et al. (2009) and
Westreich et al. (2012), among many others.

In this article, we introduce the parametric g-com-
putation formula, or simply g-formula, to the psycho-
logical literature. We have organized the remainder of
the article following a “causal roadmap” (Ahern, 2018;
Hernan, 2018) over four sections. First, we will
explain the salient causal assumptions encoded in the
underlying data-generating mechanism. Second, we
will define the time-varying causal effects of interest;
i.e., causal estimands. Third, we will introduce the g-
formula for estimating the treatment effects over time.
As we will explain below, the core of the parametric
g-formula lies in a series of statistical models to esti-
mate the joint distribution of all post-treatment varia-
bles (except treatment itself) that may be caused by at
least one treatment instance. Hence, these statistical
models can be readily specified as standard multiple
linear regression functions, which are familiar to psy-
chological researchers. Fourth, we will present the

estimation procedure. To make the parametric g-for-
mula accessible to a broad audience of psychological
researchers, we implement the parametric g-formula
using lavaan (Rosseel, 2012), a widely adopted struc-
tural equation modeling package in R (R Core Team,
2021)." Table 1 provides a glossary of key causal infer-
ential terms used in this article. Throughout this art-
icle, we use a real-world study in psychological
science as a running example. To ease the exposition
and to provide intuitive explanations for applied
researchers, we include a series of boxes to “annotate”
each step of the g-formula. All R scripts implementing
the procedure are freely available online (https://
github.com/wwloh/gformula-lavaan).

Causal assumptions

To situate the discussion of causal assumptions, we
will use a running example from psychological
research. The example is based on a real-world study:
the Flint Adolescent Study. This longitudinal study,
beginning in 1994, followed ninth graders from four
public high schools in Flint, Michigan (Zimmerman,
2014). For the purpose of illustration, we will use data
from three study waves (hereafter timepoints t=1, 2,

Other structural equation modeling software, such as Amos (Arbuckle,
2019), PROC CALIS (Hatcher, 1996), Mplus (Muthén & Muthén,
1998-2017), and OpenMx (Boker et al, 2011), can also be used, but
lavaan offers seamless integration with the R functions we provide to
implement the parametric g-formula.
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Figure 1. Causal diagram for the running example across three timepoints with a treatment-dependent confounder (family sup-
port; L) and a repeatedly-measured outcome (friendship quality; Y). Notes: A circular node, such as U, denotes a (set of) unmeas-
ured variable(s). For visual clarity, arrows emanating from unmeasured nodes are drawn in grey, whereas the causal paths
corresponding to the treatment effects are drawn as dashed arrows. Descriptions of the treatment effects are provided in the main
text. As is common in most longitudinal designs, at the last timepoint (e.g., t =3) only the outcome is utilized in the analysis to
allow time for the causal effect of treatment on the outcome to transpire (Gollob & Reichardt, 1987). For visual simplicity, edges
emanating from the baseline time-invariant covariate(s) C to all observed time-varying variables are reduced and truncated in the

causal diagram.

3) to investigate whether loneliness can undermine
friendship quality over time. Both variables were
repeatedly recorded in each timepoint. Further study
details are provided in Appendix A. For ease of pres-
entation, we will ignore the hierarchical structure of
the data (students are nested in classrooms and
schools) in our presentation, but will briefly consider
clustering in Appendix A. Below, we focus on two key
causal assumptions for g-formula using the example:
the causal structure inducing treatment-dependent
confounding, and the sequential ignorability
assumption.

Causal structure inducing treatment-dependent
confounding

Investigating the effect of a nonrandomized treatment
(e.g., loneliness) requires thinking carefully about con-
founders. When assessing time-varying causal effects,
in addition to stable baseline covariates (whose values
remain constant throughout the study), we need to
consider confounders that can vary over time during
the course of the study. In our running example, one
such confounder could be students’ family support
(L). Family support can protect against loneliness and
is likely correlated with friendship quality due to hid-
den common causes. Crucially, family support can
change over time and is likely affected by earlier feel-
ings of loneliness, making it a treatment-dependent
confounder whose levels need to be recorded at each
measurement timepoint. Although there are likely
multiple time-varying confounders, to ease the expos-
ition we will consider family support as the only
confounder.

The assumed causal structure of our data-generating
mechanism can be readily visualized in Figure 1 as a
causal diagram (Greenland et al, 1999; Pearl, 2009;
Spirtes et al, 2001).> As the causal diagram shows,
three variables were repeatedly measured at each time-
point: loneliness (binary treatment or exposure X), the
student’s friendship quality (continuous outcome Y),
and their family support (continuous treatment-
dependent confounder L). Throughout this paper, we
assume that all post-treatment variables, such as the
time-varying confounder L and outcome Y, are con-
tinuous. Subscripts index the timepoint ¢ that a variable
is recorded. Hence, we let X, L;, and Y; denote the
treatment, treatment-dependent confounder, and out-
come at each timepoint ¢, respectively. To simplify dis-
cussions of causal diagrams in this paper, we will
consider different measurements of the same variable,
such as L; and L,, as distinct variables shown as differ-
ent nodes (Hernan & Robins, 2020; Pearl, 2009). Note
that within each survey at timepoint ¢, L, and Y, are
assumed to influence X; causally. Of importance, L, is
likely to be affected by the earlier treatment X;_;. In
Figure 1, this causal feedback between treatment and
confounder is depicted by the arrows from L, to X5,
and from X, to L,, respectively. Because L, is also asso-
ciated with Y, it is thus a confounder of the X, — Y3
relation, while simultaneously being affected by the ear-
lier treatment X; (hence the term “treatment-depend-
ent confounder”). For the same reasons, the
intermediate outcome Y, also plays the role of a

?In this paper, we assume that researchers can justifiably postulate a
causal diagram based on established knowledge and temporal-logical
constraints. Readers are referred to Digitale et al. (2022), Elwert (2013),
Grosz et al. (2020), and Rohrer (2018), among others, for accessible
introductions to the causal diagram framework.



998 W. W. LOH ET AL.

treatment-dependent confounder of the X, — Y3 rela-
tion. Because both L; and Y; are measured contempor-
aneously at the same survey timepoint f, we follow
Daniel et al. (2013) and leave their causal relationship
unspecified and merely allow for correlated errors
induced by the unmeasured common cause(s) U, spe-
cific to each timepoint . The node U represents a (set
of) hidden or unmeasured time-invariant common
cause(s) of U, that induces correlations among L and
Y. Finally, for simplicity, we denote time-invariant
covariates measured at baseline (age, gender, race, and
family socioeconomic status in our running example)
collectively by C. More complete descriptions of the
variables and a snapshot of the observed data are pro-
vided in Appendix A.

Sequential ignorability assumption

Throughout this paper, we will maintain the sequen-
tial ignorability assumption (also termed no unmeas-
ured confounding) that, when there is no causal
effect, the treatment and outcome are conditionally
independent given a set of pretreatment covariates
(Hernan & Robins, 2020; Imbens & Rubin, 2015;
Morgan & Winship, 2015; Pearl, 2009). In our run-
ning example depicted in Figure 1, an adjustment set
of measured covariates that is sufficient to block all
noncausal paths between X; and either Y, or Y; is
C1 = (C,Ly,Yy). That is, among individuals with the
same values of the variables C,L;, and Y;, loneliness
at time 1 (X;) will be independent of friendship qual-
ity at both times 2 (Y,) and 3 (Y3) in the absence of a
causal effect of X;. Similarly, the causal effect of X, on
Y; is unconfounded given the sufficient adjustment
set C, = (C,Ly, Y1, X1, Ly, Y2). Note that the pretreat-
ment covariates in each adjustment set temporally
(and causally) precede the treatment at each focal
timepoint separately. We will wuse the term
“pretreatment” to refer to the observed history preced-
ing treatment at a specific time, and the term
“baseline” to refer to stable variables whose values
remain constant throughout the study (ie., time-
invariant). For example, the adjustment set C,
contains the baseline covariate(s) C, time-varying
covariate L, and outcome Y,. Note that L, and Y,
occur after the first treatment instance X;. We empha-
size that under the causal diagram in Figure 1, it is
unnecessary to include (unmeasured) U and U, in the
adjustment sets for sequential ignorability to hold
because the other measured covariates in C; and C,
suffice to block all noncausal paths from the treat-
ments X; and X,, respectively, to the outcomes.

However, this condition relies on U and U; being
unassociated with the time-varying treatments X,. We
elaborate on this assumption in the context of unob-
served stable traits in the Discussion section.

Causal estimands describing time-varying
treatment effects

In this section, we define the time-varying causal
effects of interest. We also explain why treatment-
dependent confounding precludes consistent estima-
tion of these effects jointly using standard regression
methods.

We define causal effects in terms of population-
level average or expected potential outcomes. A poten-
tial outcome is the outcome that would have been
observed, potentially counter to fact, had treatment
been hypothetically manipulated and fixed at specific
levels. To define the potential outcomes, we first
explain what such a hypothetical treatment sequence
entails. As a probative example, consider a hypothet-
ical scenario where everyone receives treatment in the
first timepoint (X; = 1) but not in the second time-
point (X, = 0). In other words, we will suppose that
researchers could hypothetically manipulate each indi-
vidual’s loneliness to be fixed, possibly contrary to
actual conditions, at the levels X; =1 (lonely) and
X, =0 (not lonely). Following the notation in Daniel
(2018), we express such a hypothetical manipulation
as “(X1,X;) < (1,0),” where the arrow emphasizes
that X; and X, are uniformly fixed at specific levels of
treatment, here 1 and 0, respectively. These hypothet-
ical manipulations can be interpreted in terms of
Pearl’s (2009) “do-operator;” Gische et al. (2021) pro-
vide a detailed illustration of interventions arising
from the do-operator in which the level of X is fixed
at specific values.

We can then define the expected potential outcome
under this counterfactual scenario. For example, the
expected potential outcome for Y, at t=2 is expressed
as:

E(x,,x,)—(1,0)(Y2); (1)

where E() is the expectation operator. The expected
potential outcome for Y; at t=3 is similarly expressed
as:

Ex, %) (1,0 (Y3) (2)

Causal effects, henceforth termed causal estimands,
can then be defined by the differences between aver-
age potential outcomes following different sequences
of hypothetical treatments. For example, interest may
be in comparing the difference in average potential



outcomes under two distinct hypothetical manipula-
tions: one in which everyone is treated only at time-
point 1 or (X;,X5) < (1,0), and the other in which
no one is treated at both timepoints or (X;,X;) <
(0,0). The causal effect of X; on Y, corresponding to
this difference in average potential outcomes for Y,
can then be defined as:

Ex,x)—(1,0(Y2) = Ex,, x,)—(0,0) (Y2)- (3)

Similarly, the lag-2 causal effect of X; on Y3, with
treatment at the second (intermediate) timepoint fixed
at zero (i.e., X; = 0), is:

Ex,x)—(1,0(Y3) = E(x,,x,)—(0,0)(Y3)- (4)

The causal effect of X, on Y5, with X; =1 in the
earlier timepoint, would entail the difference:

Ex, x)—1,1)(Y3) = Ex,, x)—(1,0) (Y3). (5)

Using standard path tracing rules (Pearl, 2009;
Wright, 1934) in the causal diagram in Figure 1, the
causal effect of X, on Y; is the path-specific effect
along the X, — Y3 causal path, whereas the causal
effect of X; on Y3 is the combination of path-specific
effects of X; on Y3 along the causal paths that do not
intersect X5; i.e., X; — L, — Y3, X7 — Y, — Y3, and
X; — Y;. Dashed arrows indicate the causal paths
corresponding to these treatment effects in Figure 1.
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How the g-formula resolves the challenge of
treatment-dependent confounding

In this section, we briefly explain why treatment-
dependent confounding rules out consistently estimating
the causal effects of X; and X, on Y; using standard
regression methods. Intuitively, one may consider esti-
mating these causal effects jointly simply by regressing
Y; on both X; and X, while adjusting for confounders.
But should we adjust for the time-varying variables L,
and Y,? To answer this question, we inspect the causal
diagram in Figure 1, focusing on L,. We can see that L,
is simultaneously: (i) a collider on the noncausal path
X, — L, U, «—U— Us — Y3; (i) an intervening
(i.e., intermediate) variable on the causal path X; —
L, — Y3; and (iii) a confounder of X, and Y; on the
noncausal path X, < L, — Y3. Hence, in a regression
of Y; on both X; and X,, adjusting for L, would elimin-
ate confounding bias in the effect of X,, but introduce
so-called  “collider(-stratification) bias” (Elwert &
Winship, 2014; Griffith et al, 2020) and “over-adjust-
ment bias” (Schisterman et al., 2009) in the effect of Xj.
A description of how collider bias along a noncausal
path can be generated is provided in the glossary in
Table 1. A detailed causal diagrammatic examination of
how collider and over-adjustment biases can arise simul-
taneously (and possibly be mitigated) in common longi-
tudinal designs is provided in Loh and Ren (2023c).
The same argument applies when adjusting for the
intermediate outcome Y,. In other words, valid infer-
ence of the effects of X; and X, on Y; jointly using

Box 1. Causal effects for the running example.

Does loneliness affect relationship quality over time? To answer this question, we analyzed data from the Flint Adolescent Study. As a probative
example, we will examine whether individuals’ friendship quality at the end of the study (t=3) was affected by loneliness at the earlier timepoints
(t=1 and t=2). This causal inquiry can be answered using the following causal effects:

(@) the effect of loneliness at t=1 on end-of-study friendship quality (t=3); and
(b) the effect of loneliness at t =2 on end-of-study friendship quality (t=3).

How do we define these causal effects using average potential outcomes? We will start with the more straightforward effect: the lag-1 effect in (b).
This effect in (b) can be defined as the difference between the following average potential outcomes:

(b0) the average potential friendship quality at t=3 if individuals, possibly counter to fact, did not feel lonely at t=2; and
(b1) the average potential friendship quality at t=3 if individuals, possibly counter to fact, felt lonely at t=2.

In other words, the causal effect in (b) is obtained by calculating the distinct average potential outcomes (b0) and (b1) separately and then taking
their difference. This causal effect, or causal estimand, is mathematically expressed in the main text as Equation (5).

We now turn to the effect in (a). This effect is similarly defined as the difference between two average potential outcomes. However, because this is
a lag-2 effect, it necessitates considering what the loneliness level at the intermediate timepoint (t =2) should be. For simplicity, suppose our interest
is in the effect of loneliness initially at t=1 without feeling lonely at t=2. Then, the causal effect in (a) can be defined as the difference between
the following average potential outcomes:

(a0) the average potential friendship quality at t =3 if individuals, possibly counter to fact, did not feel lonely at both t=1 and t=2; and
(a1) the average potential friendship quality at t =3 if individuals, possibly counter to fact, felt lonely at t=1 but not at t=2.

In other words, the causal effect in (a) is obtained by calculating the distinct average potential outcomes (a0) and (a1) separately, and then taking
their difference. This causal estimand is mathematically expressed in the main text as Equation (4).
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standard regression methods is impossible because it
necessitates simultaneously adjusting for and not adjust-
ing for L, and Y,

In contrast, the g-formula resolves this problem by
decoupling adjusting, and not adjusting, for treat-
ment-dependent confounders such as L, and Y,. As
we will explain in the next section, the g-formula sim-
ultaneously avoids confounding bias in the effect of
X, and Y; (by first adjusting for L, and Y,), and
avoids collider and over-adjustment biases in the
effect of X; and Y3 (by subsequently marginalizing or
averaging over the counterfactual distribution of L,
and Y, so that they are not adjusted for). Therefore,
under the sequential ignorability assumption, causal
estimands obtained using the g-formula can be
bestowed with a causal interpretation.

Introducing the g-formula

The g-formula starts with the joint probability distri-
bution of the observed variables (C,L;,Yy,X;,
L,,Y2,X5,Y3) in the naturally occurring longitudinal
data. In particular, the joint probability can be factor-
ized into a product of conditional probabilities based
on the data-generating process depicted in a causal
diagram (Pearl, 2009; Shpitser & Pearl, 2006; Spirtes
et al, 2001). Longitudinal designs have the strength
that they imply certain temporal-logical constraints, so
that each variable can be conditioned on all variables
temporally and causally preceding it. Therefore, we
can use the causal structure in Figure 1 to guide how
we factorize the joint distribution. For notational
brevity, we denote the conditional probability of A
given B by p(a|b) = p(A = a|B = b), where uppercase
letters denote random variables, and lowercase letters
denote specific values.

Following the causal diagram in Figure 1, the joint
probability can be factorized as:

p(C=c¢Li=h,Y 1=y, Xi=x,L =LY, =y,
Xy =%, Y3 = y3) = plc, i, y1)p(xa |l y1,€)

P(lz,y2|x1, 11,)/1, C)p(x2|lz,y2, X1> ll))/ls C)
Xp(ys1x2, by y2, %1, 1, y15 €). (6)

3The unmeasured variables U and U, allow for residual correlations among
the outcome errors, e.g., due to hidden common causes or latent
processes, when the outcome is repeatedly measured; see, e.g., Loh and
Ren (2023c) for a probative example with two time points. When it can
be theoretically justified that U and U, are completely observed so that
any unmeasured confounding of the repeatedly measured outcomes can
be ruled out, the problems induced by treatment-dependent confounding
disappear, and standard regression methods can yield valid inferences
(Daniel et al., 2013; Moodie & Stephens, 2010; Robins et al., 2000). In this
case, the g-formula approach is unnecessary.

Each element in Equation (6) describes the condi-
tional probability of a variable given the variables
causally preceding it. For example, p(ys|x2,5h, 2,
x1, 11, y1,¢) describes the conditional probability of
the outcome Y; at the final timepoint ¢ =3, given all
variables in the earlier timepoints. Similarly,
p(l, ya|x1, 11, y1,¢)  describes the conditional joint
probability of the time-varying covariate L, and out-
come Y, at timepoint t=2, given the variables
X1,L1,Y;, and C in the earlier timepoint. The joint
probability of the pretreatment variables C,L;, and Y;
preceding the first treatment instance X, is denoted
by p(c, 1 1)

For the observed outcome at t=2, its expectation
can be computed using the joint probability in
Equation (6) as:

E(Y2) =3, »p02)
=2, yz{Zc,zl,yl,xl p(c, ll,yl,xbyz)}

=D by 2y Y2PO2 %0 s 1, €)p(e Iy )p(xa |l yis €)
=2 e i,y (V2|21 1y )p(e l yr)p(xa [l yns ).
(7)

The first and fourth equalities follow the definition
of an expectation operator,* and the second and third
equalities follow the law of total probability using the
factorization in Equation (6) (Pearl et al., 2016, chap-
ter 1). Similarly, the expected observed outcome at
t=3is:

E(Y3) = Zﬁln)’bxnlb}’z)?‘z E(Y3|X2, lz’yz’xl’ ll’yl’ C)
X p(e I, y1)p(xa [l y1s €)p(ls ya|x1, Ly €)
p(x2|ls y2, x1, L y1s €). (8)

However, the joint probability distribution in
Equation (6) and expected outcomes in Equations (7)
and (8) pertain only to the naturally observed data.
The fundamental goal of a causal inquiry is to ascer-
tain what would have happened to the joint probabil-
ity (and the expected implied potential outcome) if

“*Following Daniel et al. (2011, p. 486), we use p(alb) interchangeably in
referring to either (i) the probability density function if A is continuous or
(i) the probability mass function if A is discrete. Following McGrath et al.
(2020, Supplemental Online Materials Section A.3), we use for notational
simplicity a summation symbol when calculating an expectation; when
there are continuous random variables (such as L and Y in this paper),
the sums may be replaced with integrals. This convention of using the
summation notation when expressing the parametric g-formula has
previously been adopted in the causal inference literature (see selected
examples listed in the introduction). We acknowledge that the validity of
the parametric g-formula when there are continuous variables is subject
to certain continuity assumptions being met to permit the use of
conditional probability density functions (Gill & Robins, 2001). Readers
interested in the theoretical mathematical details of generalizing the g-
formula from the discrete-only setting to the continuous case are referred
to Gill and Robins (2001).



treatment at each time was hypothetically fixed to a
specific value, possibly counter to actuality. We ini-
tially focus on the counterfactual scenario (Xi,X) <
(1,0); ie., everyone received treatment in the first
timepoint (X; = 1) but not in the second timepoint
(X, =0). To formulate this counterfactual scenario,
we can imagine altering Equation (6) by replacing the
stochastic conditional probabilities of the observed
treatment at each timepoint, p(x|l,y1,¢) and
p(x2|b, y2, x1, I, y1,¢),  with  indicator  functions,
1(X; =1) and 1(X; =0), respectively, where 1(A)
equals one if event A is true, and zero otherwise.” The
counterfactual joint probability distribution under this
alteration (i.e., hypothetical manipulation) would then
be:

P(x,,%,)—(1,0) (C) Zl)yl) X15 lz,yz, xz,y3)

= p(C, ll))/1> P(12>)/2|X1, ll’}’bc) H(Xz = 0)
PO’3|3C2>12,)/2,361>11>)’1, C)- (9)

We make a few remarks about the counterfactual
distribution represented by Equation (9). First, the
boxes emphasize the hypothetical manipulation of
each individual’s treatments to be fixed, possibly
counter to actuality, at the constant levels X; =1 and
X, = 0. Second, the hypothetical manipulations of X;
and X, do not reorient the other arrows depicted in
the causal diagram in Figure 1. The other stochastic
conditional probabilities for the post-treatment varia-
bles (L,, Y,, and Y3) remain the same as in the natur-
ally occurring distribution in Equation (6); i.e.,
modularity, where the post-treatment causal relation-
ships do not change as a function of the treatment
levels (Gische et al., 2021). Third, we indicate the
hypothetical manipulation (X;,X;) < (1,0) in the
subscript to emphasize its counterfactual nature and
to distinguish this counterfactual distribution in
Equation (9) from the naturally observed distribution
in Equation (6).

We can now use the counterfactual distribution in
Equation (9) to obtain the average potential outcomes
and causal estimands defined in the preceding section.
The derivations for the expected potential outcomes
are analogous to how we used the naturally occurring
distribution in Equation (6) to calculate the expected
observed outcomes in Equations (7) and (8). The aver-
age potential outcome for Y, at t=2 as defined in
Equation (1) is thus:

>These deterministic indicator functions represent (degenerate) probability
functions that place probability one on the atomic or elementary events
X1 =1 and X, = 0 (and probability zero on all other values of X; and X5).
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Ex, %) ,0)(Y2) = 22, ¥2P(x0, %) —(1,0)(02)
= 2e i E(Y2x1 = LI, y1,0)p(e, [ ).

We emphasize that Equation (10) is a causal quan-
tity, whereas Equation (7) is an observed quantity.
Their difference can be seen in how X; is dealt with.
The causal quantity in Equation (10) is defined for a
single fixed value of X; =1 (i.e., with zero probability
for all other values of X;), corresponding to fixing X;
to 1 under the hypothetical do-operator manipulation
(Gische et al., 2021; Pearl, 2009). In contrast, the
observed quantity in Equation (7) averages over the
distribution of observed X; (as indicated by the sum-
mation over x;) using the naturally occurring treat-
ment probability p(x;|l,y1,¢) in the observed data.
The average potential outcome for Y; at t=3 as
defined in Equation (2) can be similarly obtained as:

(10)

Ex,x,)—(1,0)(Y3)

= ZC’ZI)J/I,IZ)}/Z E(Y3\x2 =0, lZ’yZaxl = 1,11,)/1,C)

P(ZZ;Y2|x1 = 1»ll>)/1,C)P<C>ll,)’1)- (11)

The g-formula is concisely stated in Equations (10)
and (11). Each average potential outcome mathematic-
ally expresses the marginal summary (i.e., average) of
the potential outcomes under a hypothetical sequence
of treatments. Continuing our running example, the
g-formula explicates how the conditional average
observed friendship quality (e.g., Y3) must be weighted
by the counterfactual distributions of the post-treatment
variables, such as family support (e.g., L,) and inter-
mediate friendship quality (e.g., Y3), under the hypo-
thetical treatment sequence. Note that the expectation
of the potential outcomes on the left of Equation (11)
must be construed as the complete summed expression
on the right of Equation (11). The separate elements
within this sum, on their own, are not given causal
interpretations (Robins et al., 1999). In sum, the
g-formula exploits the fundamental idea of replacing
relevant components of the joint probability of the nat-
urally observed data with unit probabilities correspond-
ing to the hypothetical manipulations in which the
treatment is set to specific (possibly varying) values at
each measurement timepoint.

The g-formula can be used to answer causal ques-
tions about the average causal effects of X; and X,.
For example, using the g-formula in Equation (10),
the causal effect of X; on Y, in Equation (3)
would be:

Ex,x)—1,0(Y2) = E(x,, x0)—(0,0) (Y2)
= Zc,h,yl {E(YZ‘xl = L,y ¢) —E(Yalx; =0, ll,)’l,C)}

p(eliy). (12)
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Similarly, using the g-formula in Equation (11), the
lag-2 causal effect of X; on Y3 in Equation (4) is:

Ex,,x)—1,0(Y3) = Ex,, x,)—(0,0)(Y3)
= ZCglb}’l’lz,}’z {E(Y3|X2 = O) lz,)’z; X1 = 1;11,)’1, C)

p(b, yalxr = L1, y1,¢) — E(Ys]xa = 0,1, 32,

x1 = 0,11, y1,6)p(l, ya|x1 = 0,11, y1,¢) }p(e, ho )
(13)

and the causal effect of X, on Y3 in Equation (5) is:

Ex,x)—1,1)(Y3) = Ex, x0)—(1,0)(Y3)
= ZC,lb}’l,lz,yz {E(Y3|X2 = 1,12>)’2,x1 = lxllayb C)

—E(Y3|X2 = 0) lZ)yZ)xl = l)ll)yl) C)}P(lz,y2|x1 = l)lly
yio)pleli, ). (14)

Note that X, is fixed to 1 in Equation (14).

Parsimonious summary of causal estimands using
a marginal structural model

In principle, one can target average potential outcomes
under several predefined treatment sequences, such as
(X1,X5) < (1,0) and (X3, X;) < (0,0), then repeat the
parametric g-formula to estimate each target causal
quantity for a fixed treatment sequence in turn, before
calculating various contrasts to estimate the causal
effects. But when there are multiple timepoints, it can
become unwieldy to keep track of the large number of
pairwise contrasts, such as Equations (13) and (14), for
all possible treatment sequences, and unfeasible to
understand the nuanced effects of more complex treat-
ment sequences over time. Continuing our running
example with just two treatment times, when we evaluate
the effect of X; on Y3, deciding whether to set X, to zero
or one leads to different estimands. And what if there
are more intermediate treatment occasions between X
and the end-of-study outcome? For example, for a binary
treatment, when there are three treatment timepoints for
a single end-of-study outcome, there are 2° = 8 distinct

8
treatment sequences (x;, X2, x3), and a total of < 2) =

28 possible unique causal effects.

In this section, we describe a separate method that
complements the parametric g-formula to circumvent
these difficulties. Note that this method does not replace
the parametric g-formula; rather, it merely simplifies

summarizing the large number of differences in average
potential outcomes targeted by the parametric g-for-
mula. The method is termed a marginal structural model
(MSM; Robins et al., 2000), and is used for straightfor-
ward modeling of the treatment effects over time. An
MSM is defined as expressing the marginal distribution
of a potential outcome, such as its expectation on the
left-hand side of Equation (11), in terms of hypothetical
treatment levels (Breskin et al., 2018; Robins et al., 2000).
Therefore, the average causal effects of treatment over
time can be parsimoniously encoded as causal (hence,
“structural”) parameters that index an MSM.

For ease of exposition, we focus on the simple
MSM for the effects of (X;, X;) on Y; in our running
example:

E(Xl,Xz)H(X1>X2)<Y3) = l//0 + l/jl'xl + lp2xz' (15)

The MSM expresses the average potential outcome
E(x,,x,)(x1,5)(Y3) on the left as a function of the treat-
ments x; and x, on the right. Under this MSM, s, repre-
sents the average causal effect of treatment X, at time 2
on Y;, and y; represents the average causal effect of
treatment X; at time 1 on Y3 that does not intersect X.
Conceptually, ; is the marginal causal effect of X; on
Y3 because it marginalizes or averages over all pretreat-
ment covariates (such as C,L;, and Y;) as well as inter-
mediate time-varying variables (such as L, and Y5). Note
that an MSM, by definition, is a model describing the
posited causal relationships between the potential out-
comes and hypothetical treatment levels (Thoemmes &
Ong, 2015); it does not generally include covariates
because it is not a regression model for observed condi-
tional associations (Robins et al., 2000).

Using an MSM to represent the time-varying treat-
ment effects presents two important practical benefits.
First, it parametrizes the causal effects parsimoniously to
simplify the representation of combined effects under
specific treatment sequences, such as prolonged, recur-
rent, or intermittent treatments. Second, it simplifies
simultaneous estimation and inference of multiple time-
varying treatment effects using a single MSM. This
avoids repeatedly applying the parametric g-formula for
different hypothetical treatment sequences one at a time.
In the next section, we describe how to estimate the
g-formula and the causal parameters in an MSM.

Box 2. An MSM for the running example.

The causal parameters in a marginal structural model (MSM; Robins et al., 2000) elegantly encode the time-varying treatment effects of interest.
Under the MSM in Equation (15), ; is the causal effect of feeling lonely at timepoint 1 (X;) on friendship quality at timepoint 3 (Y3), and v, is the
causal effect of feeling lonely at timepoint 2 (X;) on friendship quality at timepoint 3 (Y3).




Estimation procedure

Estimating time-varying causal effects proceeds in two
parts. First, we estimate the stochastic components on
the right-hand side of the g-formula using statistical
regression functions; then we substitute these estima-
tors for their analytic expressions. In our running
example, these components on the right-hand side of
the g-formula in Equation (11) are E(Y3|x),1,s,
x1, 1,15 €), p(l, y2|x1, I, v, €), and p(c Iy, y1). Second,
we estimate the causal parameters in the MSM. We
do this by simulating or imputing counterfactual val-
ues of the post-treatment variables (e.g., L,, Y,, and
Y;) under different hypothetical treatment levels, then
using Monte Carlo integration to marginalize (i.e.,
average) over the distributions of all the time-invari-
ant and time-varying covariates in the causal diagram.

Estimating the stochastic components in a
parametric g-formula

The estimation procedure for the stochastic compo-
nents in a g-formula is as follows. We use the prefix
“A” to designate each step of the parametric g-for-
mula procedure.

Al. Fit a linear regression mean model for the out-
come, conditional on all treatments and covariates,
to the observed data. Continuing our running
example, consider a model with first-order effects for
the predictors and interaction terms between the
most recent treatment and time-varying variables,

E(Y3|x2, b, y2, x1, I, y1, €)
= Bys.0 + Byaxaxe + Bys il + Bys o2 + Bys ool
+By3,20%2)2 + By X1 + Byanlt + Bys iy + Bys cc
(16)

We included interaction terms between the most
recent treatment, X,, and the treatment-dependent
confounders, L, and Y, respectively, to allow for the
effect of loneliness to be moderated by both prior
family school support (L,) and friendship quality
(Y,).° More generally, this model for the outcome Y;
can be expressed as a user-specified function of its
inputs, e.g., h(x2, b,y x1, 1, y1,¢) = E(Y|x2, b, y2, %1,
I, y},c). We denote the estimated function
by h(xZ,lz,)/z,xl,ll,)/l,C).

6Mean—centering the continuous variables at each time point (e.g., L, and
Y;) facilitates meaningful interpretations of first-order effects used in
models containing categorical by continuous variable interactions (West
et al., 1996). However, we emphasize that these model coefficients do
not encode the causal effects parameterized in the MSM, and inferences
and interpretations of the treatment effects should not be based on this
model alone.
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A2. For the post-treatment variables L, and Y, in each
timepoint ¢, fit a model for their joint distribution,
conditional on the treatments and covariates in the
previous timepoint(s), to the observed data. Unlike
the outcome in the previous step, where only a
mean model is required, the full conditional joint
distribution must be specified. And because L, and
Y, are concurrently measured, they are typically
specified as correlated within the same timepoint t.
For example, to estimate the joint distribution
p(Ls y2|x1, 11, y1,¢), we may assume a bivariate nor-
mal distribution for L, and Y>:

L, ‘uLZ‘XI b
> Y1,C .
~ Nz > ZLLYZ‘xl:Zl;,Vl)C ’
Y> By, 1, p1c
Ryl yne = Pro + BoaXt + Bonh + By
+ﬁ12,x1:ll'xlll + ﬁlz,xlzylxlyl + ﬁlZ,cC’

:uYz\xl,ll,yl,c = ﬁyZ,O + :ByZ,xl'xl + :By2, llll + :B}/Z,ylyl
+ﬁy2,xl:llxlll + ﬁyZ,xl:ylxlyl + ﬁyZ,cC’

ZLZ»YZ‘XLZIJ’I,C = |:

2
012 ap, 2

Ony O
(17)

Let us describe the model in Equation (17). The first two
equations are the conditional expected values of L, and
Y,, given the treatment (X;), covariate (L;), and outcome
(Y1), at the previous timepoint, as well as the baseline
covariates C. For our illustration, we assumed a model
where L, and Y, have the same functional form for the
predictors, although this could be relaxed in practice.
The last line of Equation (17) represents the covariance
matrix of the residual errors for L, and Y, given the pre-
dictors in the mean models. We emphasize that the
covariance term oy, ,, is typically freely estimated. This
specification allows for L, and Y, to be contemporan-
eously correlated due to unknown causal effects or hid-
den common causes between them. We denote the
estimated  distribution by F L, v, (L y2|%1, 115 15 €),
obtained by plugging in estimates of the regression coef-
ficients and error (co)variances.

Both models (16) and (17) can be readily fitted using
standard structural equation modeling (SEM) software.
We can then plug in maximum likelihood estimators
(MLEs) of all the model parameters to estimate the so-
called “parametric” g-formula’ in Equation (11).

"The parametric label arises from the use of parametric non-saturated
(regression) models for the conditional mean or distribution of the post-
treatment variables, such as Equations (16) and (17), when there are
multiple continuous predictors in each model. In contrast, a non-
parametric g-formula is feasible only in simple settings where the
predictors are discrete so that a saturated model for each conditional
mean or probability function can be fitted (thereby avoiding parametric
modeling assumptions) while ensuring that the positivity assumption is
met; see, e.g., Daniel et al. (2013) and Naimi et al. (2016).
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Box 3. Sample analysis code to estimate the parametric g-formula.

Here, we provide sample analysis code for fitting the models in Equations (16) and (17) in steps A1 and A2. The sample code uses an SEM approach
with the lavaan package (Rosseel, 2012) in R (R Core Team, 2021). For illustration, we included only a single baseline covariate (C) and two covariate-
treatment interactions. In practice, researchers may consider including a richer set of meaningful nonlinear and interaction terms when appropriate.

# model for outcome at wave 3
# interaction terms X2_x_L2 and X2_x_Y2 were manually created in the data
model_ Y3 <- '

Y3 ~ X2 + L2 + Y2 + X2_x 12 + X2_x Y2 + X1 + L1 + Y1 + C

# model for time-varying variables at wave 2
# interaction terms X1_x_Ll1 and X1_x_Y1 were manually created in the data
model_Y2L2 <- '

# conditional means

L2 ~ X1 + L1 + Y1l + X1_x L1 + X1_x Y1 + C

Y2 ~ X1 + L1 + Y1l + X1_x L1 + X1_x Y1 + C

# conditional covariance to be freely estimated

L2 ~=~ Y2

FITmodel <- c(model_Y3,model_Y2L2)
fit_joint <- lavaan::sem(FITmodel,data=Data,
meanstructure=TRUE, fixed.x=TRUE, se="none")

The parameter estimates can then be plugged in to construct an estimator of the parametric g-formula in Equation (11). To help researchers imple-
ment this in practice, we have developed an R function FITTED_MODEL.lavaan requiring only two arguments: the post-treatment variables’ names
and the parameter estimates from the fitted lavaan model.

# extract parameter estimates from lavaan fitted models

est_joint <- lavaan::parameterEstimates (fit_joint)

# plug in parameter estimates from steps Al and A2 to construct g-formula
GFmodel <- FITTED_MODEL.lavaan (dep.var=post_treatment_variables,

est.lavaan=est_joint)

In Appendix B, we apply the code above to the running example, present examples of the resulting model estimates using the observed data, and
describe the inputs to the FITTED_MODEL . lavaan function.

Remarks variables that may be affected by at least one treatment
We make three remarks about estimating the paramet- instance, such as Y; in Equation (16), and L, and Y, in
ric g-formula as described above. First, we need only = Equation (17). This is because the stochastic compo-
specify regression models for the post-treatment nents in the g-formula entail only the (time-varying)
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Table 2. Expanded data for a single individual used to estimate an MSM parametrizing the time-varying effects of

treatment at two timepoints.

Step B1 Step B2 Step B3
C L-| Y1 X1 Xy Zz(X]) )72()(1) Y3(X1,X2)
C Ly Y 0 0 L(x; =0) Y2(x =0) h(x, = 0,1, = [5(0),y2 = Y5(0),x; = 0,L,Y1,C)
C Ly Yi 0 L L =0) Y200 =0) h(x, =1,k = L15(0),y2 = Y5(0),x, = 0,L1,¥1,C)
C Ly Yi 1 0 Ly =1) Yo =1) b, =0,k =L,(1),y, = V2(1),x = 0,L1,Y1,C)
C Ly Yy 1 1 Ly =1) Yol =1) h(x, =1, =L(1),y2 = Y2(1),x, = 0,L1,¥1,C)

Notes. There are four rows corresponding to all possible combinations of a binary treatment occurring at two timepoints. For each row,
the contents are filled in column-wise from left to right, possibly conditional on values in the columns to the left, with each step indi-
cated in the heading and described in the main text. For example, in step B2, the counterfactual covariate and outcome, Ly(x;) and
)72()(1), respectively, denote Monte Carlo random draws from their counterfactual joint distribution conditional on the observed pre-
treatment variables (C,L;,Y;) and fixed treatment level X; = x;. The imputed potential outcome under hypothetical treatment levels x;
and x, are denoted by Y3(xy,x2), and are used to calculate the average potential outcome E(y, x,)—(x,x,)(¥3) in the MSM.

covariates and outcomes. Propensity score models
(Rosenbaum & Rubin, 1983) for the treatments are not
used because the treatments are uniformly fixed at spe-
cific levels (i.e., degenerate probability functions) in the
g-formula. Second, there is no need to specify a model
for the joint distribution of variables preceding the first
treatment, i.e., p(c, 1, y1). This is because it can be esti-
mated nonparametrically using its empirical distribu-
tion. We demonstrate this in the next section.

Third, in step A2, as stated in Robins et al. (1999,
p. 698), at each timepoint ¢, only the joint distribution
of concurrent time-varying covariates (such as L, and
Y, at t=2), conditional on all their causally preceding
variables is necessary. As an alternative to utilizing
their joint distribution, we can further factorize the
joint probability, such as p(h,y|x1,h,y1,¢), into a
product of iterative conditional probabilities according
to an arbitrary (noncausal) ordering, such as p(L|y»,
x1, Iy, € )p(2lxn, b yis €) or p(hlxn, Iy, €)p(2]l, x1,
Ii,y1,¢). Daniel et al. (2011), McGrath et al. (2020)
and Taubman et al. (2009) offer detailed examples of
developing such factorizations in the parametric g-for-
mula. However, this can quickly become complicated
when multiple concurrently measured time-varying
variables exist in each timepoint. A specific complica-
tion that can sometimes arise is specifying different
parametric models—possibly conditional on other
time-varying variables within the same timepoint—
that are compatible (or “congenial”; Meng, 1994) with
one another. In contrast, an assumed model for their
joint distribution, such as Equation (17), will often be
simpler to specify using SEM, an approach familiar to
psychologists and established in the field.

Estimating the parameters in an MSM

With the estimators of the parametric g-formula in
hand, we now turn to estimating the MSM in
Equation (15). We will use the regression models

estimated in steps Al and A2 to simulate the longitu-
dinal counterfactual data forward in time. The proced-
ure is as follows. We use the prefix “B” to designate
each step of the MSM procedure.

Bl. Construct an expanded data set for each
individual containing all possible combinations of the
treatment levels. Hence, each row corresponds to a
different treatment sequence under the hypothetical
manipulation of fixed levels (X1,X;) « (x1,%),
mutually exclusive from the other rows. For a binary
treatment where x;,x; € {0,1}, there would therefore
be 2x2 = 4 rows. Across all rows, retain the same
observed values of the pretreatment variables
(G, L,,Y;) causally preceding the first treatment, but
set the post-treatment variables (L,, Y>, Y3) as missing.
An example of the expanded data set for a single
individual is shown in Table 2.

B2. For each row with a given treatment sequence
(x1, x2) in turn, randomly sample a value of the
counterfactual time-varying variables L,(x;) and
Y,(x;) from their estimated joint distribution
Fr,v,(Lyyalx1, i = Li,yy = Yi,¢ = C) from Equation
(17). For the values of the predictors, set the first
treatment at timepoint 1 to the hypothetical fixed
level X; = x;, and retain the observed values of the
remaining pretreatment variables (C,L;,Y;). More
generally, the counterfactual variables at time ¢ are
simulated based on the fixed treatment levels only
through time t - 1. We use a tilde (~) overhead
symbol to emphasize these are stochastically drawn
counterfactual values.

B3. For each row with a given treatment sequence
(x1, %) in turn, impute the potential outcome,
denoted by Y3(x1,x2), as a prediction from the fitted
outcome model h(xy, L, = Ly(x1), v, = Y, (x1),x1, 11 =
Li,yy=Y,c=C) from Equation (16). The
prediction is based on: (i) fixed treatment levels X, =
x; and X, = x,, (ii) randomly drawn values of the
counterfactual time-varying variables L,(x;) and
Y,(x;) from the previous step, and (iii) observed
values of the covariate L;, outcome Y;, and baseline
covariates C preceding the first treatment.

B4. Repeat steps B1 to B3 100 times to generate 100
pseudo-copies of the expanded data sets. (As discussed
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below, more pseudo-copies will produce more precise
results.) For each individual, the observed values of the
variables preceding the first treatment (C,L;,Y;) are
the same; only the random draws of the counterfactual
time-varying variables I:z(xl) and ?z(xl), and
predicted potential outcome Y3(xj,x,), may differ
across pseudo-copies. Then, concatenate all 100
pseudo-copies to yield a single enlarged data set (with
100 X 4 X N rows).

B5. Fit the MSM in Equation (15) to the single
enlarged data set using ordinary least squares. In
doing so, we average over the (counterfactual)
distribution of the time-varying variables (L,, Y;), and
the empirical distribution of the variables preceding
the first treatment (C,L;,Y;), using Monte Carlo
integration.

Remarks
Nonparametric percentile bootstrap confidence inter-
vals (Efron & Tibshirani, 1994) may be constructed by
randomly resampling observations with replacement
and repeating all the above steps (Al and A2, and Bl
to B5) for each bootstrap sample. We emphasize that
the model-based standard errors and confidence inter-
vals from fitting the MSM to the single enlarged data
set in step B5 cannot be used for statistical inference
because they do not accurately reflect the sampling
variability and will lead to biased statistical inferences.
Finally, we briefly discuss step B4, generating the
pseudo-copies. We emphasize that the same observed
values of the variables preceding the first treatment
(C,L;,Y;) are retained across pseudo-copies.
Therefore, averaging over these pseudo-copies pro-
vides a Monte Carlo approximation of the average

over their empirical distribution p(c,1,1); see Robert
and Casella (2010, Chapter 3) for a general introduc-
tion to Monte Carlo integration. For our illustration,
we used 100 pseudo-copies as an example of Monte
Carlo integration. In practice, researchers should strive
to use as many pseudo-copies as computationally feas-
ible to minimize Monte Carlo simulation error and
increase precision. Hence, increasing the number of
pseudo-copies incurs the cost of increasing computa-
tion time, especially with the use of the nonparametric
bootstrap for statistical inference. If computation time
becomes unacceptably long, an alternative to utilizing
multiple pseudo-copies of every individual is to use a
random subset of the original data set to construct a
single enlarged data set, as carried out in existing
implementations of the parametric g-formula (Daniel
et al., 2011; McGrath et al., 2020).

Discussion

The g-formula is an elegant and effective method for
testing time-varying treatment effects in the presence
of measured treatment-dependent confounding. In
this paper, we presented the parametric g-formula
using standard multiple linear regression functions,
which are familiar to psychological researchers. We
leveraged this crucial correspondence to describe how
to implement the parametric g-formula using lavaan,
a popular structural equation modeling package.

In doing so, we utilized various features imple-
mented in lavaan to calculate quantities needed in the
g-formula. The counterfactual

parametric joint

(“FitMSM”) that carries out all the above steps B1 to B5.

res <- FitMSM(Data,
trt.name="X",

trt.T=2,

regfit=GFmodel,

n.MC=100)

Box 4. Sample analysis code to estimate an MSM using the parametric g-formula.
How do we estimate an MSM using the parametric g-formula? To help researchers implement the procedure, we have developed a single R function

baseline.names=c ("C","L1","Y1l"),

post_treatment_variables=post_treatment_variables,

In Appendix C, we describe the inputs to the function and apply it to the observed data from our running example.
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Box 5. Interpreting the results from the parametric g-formula.

The estimated effect of loneliness at timepoint 1 on friendship quality was v, = —0.22; 95%Cl = (—0.36, — 0.07), and the estimated effect of loneli-
ness at timepoint 2 was 1/, = —0.18; 95%Cl = (—0.32, — 0.04). Confidence intervals (Cls) were calculated using 1000 nonparametric bootstrap sam-
ples with replacement. These results showed that loneliness undermined friendship quality over time. Specifically, earlier loneliness (at timepoint 1)
reduced friendship quality (at timepoint 3) by 0.22 on a five-point scale, while more recent loneliness (at timepoint 2) reduced friendship quality (at
timepoint 3) by 0.18 on a five-point scale. These results provide support to the theoretical perspective that loneliness is not only a consequence but
also a cause of poor social relationships (Stavrova & Ren, 2023). These results also highlight the importance of examining the causal effects of longer

lags because a treatment’s impact can take time to unfold. The steps to implement the parametric g-formula are summarized in Figure 2.

Step 1

Step 2

Step 3

Step 4

Step 5

Figure 2. Implementing the parametric g-formula in five steps.

distribution of multiple concurrent time-varying con-
founders within each timepoint, conditional on all
causally preceding variables, can be parsimoniously
modeled using lavaan. A benefit of using lavaan is the
ease with which parameter constraints can be intro-
duced in the lavaan model syntax. For example, the
lag 1 effects of X; on Y;;; can be readily constrained
to be constant over time; similarly, the autoregressive
effects of Y; on Y;,1 can also be constrained to be sta-
ble over time. Another advantage of utilizing lavaan is
the ability to employ missing data methods to account
for intermittently missing data—often encountered
when using longitudinal designs in practice—after
establishing that missingness is at random (MAR;
Leyrat et al, 2021; Potthoff et al., 2006). “Full
information” maximum likelihood estimation (Enders,
2022; Lee & Shi, 2021) can be readily incorporated
when fitting the models to the original observed data
in steps Al and A2 (e.g., by including the argument
missing = “ML” when using lavaan).

Define potential outcomes and causal effects (or causal estimands) (Box 1)

Specify an MSM for the causal effects (Box 2)

Estimate the parametric g-formula (Box 3)

Estimate the MSM using the parametric g-formula (Box 4)

Interpret the results (Box 5)

Limitations and related work

Like all approaches to causal inference, the validity of
effects estimated using the g-formula rests on meeting
the assumptions of the approach. The key assumption
of the g-formula is sequential ignorability: the avail-
able covariates must suffice for confounding adjust-
ment. Within the causal diagram in Figure 1, the
sequential ignorability assumption is represented by
the (i) omission of arrows between either U or U, and
treatment (X, or X5); and (ii) absence of hidden com-
mon causes of treatment (X; or X,), and the outcomes
(Y,, Yy, or Y3). Therefore, researchers should strive to
measure a rich set of putative time-invariant and
time-varying covariates (Daniel et al., 2013). Steiner
et al. (2010) provide practical recommendations for
selecting confounders. In addition to the sequential
ignorability assumption, two other assumptions com-
mon to all causal inferential methods must be met.
The first is positivity (Petersen et al., 2012), whereby
each individual must have nonzero probabilities of
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being assigned to each possible treatment level, given
their pretreatment covariates. This ensures that
p(x2, b, y2, %1, 11, y1,¢) > 0 for all values of the varia-
bles, thus avoiding conditioning on events with zero
probability of occurring and yielding ill-defined effects
in nonexistent covariate strata (Rudolph et al., 2022).
The second is causal, or counterfactual, consistency
(Pearl, 2010), which states that when a hypothetical
treatment sequence equals the observed treatment lev-
els, the potential outcomes and the actually observed
outcomes must be identical.

There are also other scenarios where sequential
ignorability may be violated, such as when unobserved
stable traits (e.g., U in Figure 1) affect both treatment
and outcome. To address this, a different approach in
psychological research is to statistically control for such
latent traits; see, e.g., Andersen (2022); Usami et al.
(2019) for discussions of methods under this approach
in a different context. These statistical models incorpor-
ate stable traits as latent variables or random intercepts
and focus on within-person effects adjusted for these
traits when analyzing longitudinal panel data. Liidtke
and Robitzsch (2022) compare and contrast these dif-
ferent approaches when focusing on lag-1 causal effects.
We recommend researchers measure both time-invari-
ant baseline characteristics and time-varying covariates
toward bolstering the sequential ignorability assump-
tion (VanderWeele et al., 2016, 2020) when aiming for
valid causal inferences of time-varying treatment effects
using the parametric g-formula.

For ease of exposition, we have limited our presenta-
tion to a marginal structural model (MSM) with only
main effects whose parameters represent average causal
effects for the entire study or source population
(Robins et al., 2000). However, an MSM with covari-
ate-treatment interactions can also be posited to test
effect heterogeneity due to putative baseline time-
invariant covariates (Breskin et al., 2018; VanderWeele,
2009). For MSMs involving interactions between a bin-
ary treatment and continuous covariates, we recom-
mend that the treatments be effect-coded and the
covariates mean-centered to facilitate meaningful inter-
pretations of the causal effects parameterized in the
MSM (West et al., 1996). Extensions of MSMs to inves-
tigate effect heterogeneity are deferred to future work.

The imputation-based estimation procedure we pre-
sented follows the procedures proposed by Snowden
et al. (2011), Taubman et al. (2009), Westreich et al.
(2012), and shares their strengths and challenges
(Vansteelandt & Keiding, 2011). In particular, consist-
ent estimation of the causal parameters in the MSM
(15) relies on correctly specifying both regression

models (16) and (17). To reduce the risks of biases due
to incorrectly specifying regression models (16) and
(17), saturated or richly parameterized models with
various prespecified interactions and higher-order
terms, or flexible nonlinear functional forms (e.g.,
splines; Suk et al., 2019), for the predictors can be fitted
instead. However, in practice, it may be difficult or
even impossible to fit such models due to the curse of
dimensionality. Alternatively, in Appendix D, we pro-
pose a heuristic doubly robust variant that can help
protect against biases from incorrectly specified mean
models for the post-treatment variables using a cor-
rectly specified propensity score model.

The parameters of an MSM can be consistently esti-
mated using the g-formula, as presented in this paper.
An alternative approach is to use inverse probability of
treatment weighting (IPW) (Robins et al., 2000). IPW
utilizes only a series of propensity score models for the
treatment at each timepoint, conditional on the meas-
ured pretreatment covariate history; see, e.g., Kennedy
et al. (2022), Thoemmes and Ong (2015), and
Vandecandelaere et al. (2016) for applications in the
psychological literature. In contrast, the parametric
g-formula models the (counterfactual) distributions of
all post-treatment variables, such as L,, Y5, and Y3, that
are conditional on the preceding treatments and meas-
ured pretreatment covariate history. The parametric
g-formula has two advantages over IPW. First, the
parametric g-formula utilizes regression models for the
time-varying variables which are already familiar to
psychologists. Second, under correctly specified para-
metric models, parametric g-formula estimates may
have smaller standard errors and smaller finite sample
biases than IPW estimates; see, e.g., Daniel et al. (2013)
for a comparison of these two methods. Finally,
although the names may be confusingly similar, we
emphasize that the g-formula is different from another
established g-method called g-estimation (Robins, 1997).
G-estimation is used to estimate the causal parameters
encoded in a structural nested mean model describing
the potential outcomes’ functional dependence on treat-
ments. G-estimation has only recently been introduced
to the psychology literature (Loh, 2024; Loh & Ren,
2023b); see Loh and Ren (2023a) for a nontechnical
introduction with an implementation using lavaan.

For ease of presentation, we limited our develop-
ment to continuous post-treatment variables, such as
L, and Y3, so that linear regression functions for these
variables could be reasonably assumed. It is important
to note that the parametric g-formula applies to con-
tinuous and noncontinuous time-varying variables,
with any plausible (parametric) model for their



conditional distribution or mean. For example, if L, is
an ordered categorical variable, an ordinal logistic
regression model for its conditional distribution may
be assumed. Or if Y; is a time-to-event outcome sub-
ject to right-censoring (where the events may not
occur during the duration of the study), survival mod-
els for the discretized time-varying event indicator
may be specified (Keil et al, 2014; McGrath et al.,
2020; Westreich et al., 2012).

In this paper, we considered only so-called “static”
treatment sequences, in which the treatment at each
timepoint was deterministically fixed to a prespecified
value. In our running example, a static treatment
sequence (X; = 1,X, = 0) corresponds to hypothetic-
ally manipulating all participants to feel lonely at time-
point 1 (X; = 1) but to feel not lonely at timepoint 2
(X, = 0). Developments in adaptive trial designs have
utilized so-called “dynamic” treatment regimes that
assign treatment at each timepoint depending on his-
torical values of preceding variables (Petersen et al.,
2014; Robins, 1986; Young et al., 2011; Zhang et al,,
2018). This history may include observed or counterfac-
tual values of the time-varying variables. Continuing
our running example, researchers may be interested in
understanding the average friendship quality at time-
point 3 under a dynamic treatment regime where stu-
dents “do not feel lonely in timepoint 1 (X; = 0) but
feel lonely later in timepoint 2 (X, = 1) only if inter-
mediate friendship quality falls below a fixed threshold
d (Y2(x; =0) < d).” Studies enforcing strict rules on
participants’ treatments can be conceptually and prac-
tically challenging. The parametric g-formula permits
estimation of the effects of such dynamic treatment
regimes using properly analyzed observational studies
(Young et al., 2011; Zhang et al., 2018).

Conclusion

In longitudinal studies where treatments vary over time,
treatment-dependent or time-varying confounding
presents a pernicious challenge to valid causal inferences.
The parametric g-computation formula, or simply g-for-
mula, provides an established and practical solution for
effectively handling measured treatment-dependent con-
founding. In this article, we described how to implement
the parametric g-formula using familiar parametric
regression functions. We utilized the accessible and
popular lavaan package in R to implement the paramet-
ric g-formula. Moreover, we described how to use the
estimators from the parametric g-formula to fit a mar-
ginal structural model that delivers parsimonious infer-
ences about the causal effects of a time-varying
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treatment. The parametric g-formula is effective, intui-
tive, and easy to implement. We encourage psychological
researchers pursuing causal inferences in longitudinal
studies to employ the parametric g-formula when testing
the causal effects of a time-varying treatment.
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Appendices
Appendix A. Details of data used in the
running example

We briefly describe the data from the Flint Adolescent
Study (Zimmerman, 2014) used in our running example.
We utilized three waves of the survey: 1995 (t =
1),1996 (¢t =2), and 1997 (¢t = 3). The treatment X, (lone-
liness) was the binary (yes or no) response to whether the
student felt uncomfortable from feeling lonely during the
past week (including the day of the interview). About half
the students felt lonely at =1, but only half of those stu-
dents subsequently felt lonely at t=2. For the remaining
half who did not feel lonely at t=1, about 58% subse-
quently felt lonely at t=2. The time-varying covariate L,
(family school support) was measured using the mean score
of seven items on how the students’ parent(s) would sup-
port them if their academic performance were to decline,
such as helping with homework, talking to teachers, and
getting a tutor. Responses were on a four-point Likert scale
(1=Not at all likely; 4=Very likely). The outcome Y,
(friendship quality) was measured using the mean score for
five items on how the student supported and relied on sup-
port from their friends, such as whether they rely on their
friends for emotional support, whether their friends come
to them for emotional support, and whether their friends
give them the moral support they need. Responses were on
a five-point Likert scale (1 =Not true; 5= Very true). The
baseline covariates C were the following self-reported
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variables: age cohort (1 if their birth year was 1980, 0 if ear-
lier than 1980), gender (1 for female, 0 for male), race (1
for Black or African American, 0 otherwise), and family
socioeconomic status (1 if their family received income sup-
port, 0 otherwise). We considered the 749 students with
complete data on these variables. For expository purposes
of simplifying our introduction of the parametric g-formula
in this paper, we ignored the clustered data structure (stu-
dents within classrooms within schools). In practice, class-
room- and school-level heterogeneity should be adjusted for
(e.g., by modeling classroom and school identifiers as fixed
or random effects) to achieve valid statistical inferences; see
Hong and Raudenbush (2006), Kim and Steiner (2020), and
Thoemmes and West (2011) for discussions on handling
clustered data for treatment at a single timepoint. A snap-
shot of the data for seven students is presented in Table Al.

Table A1. Observed data for seven students in the running
example.

ID Gender Race Age Income X; X; Ly Ly Vi Y, Y3

100 1 1 1 1 1 1 035 031 162 -0.55 —0.68
205 1 1 0 1 0 0 064 060 1.02 045 —048
307 1 1 1 1 1 1 -093 -0.12 062 105 032
408 1 0 1 1 0 1 -0.08 031 082 —-035 1.12
512 0 1 1 1 0 0 021 074 162 125 172
617 1 1 1 1 0 0 -036 045 0.02 -0.15 0.12
719 1 1 1 1 0 1 -022 031022 065 —-0.28

Notes. “Income” = family socioeconomic status; X; = whether they felt
lonely or not lonely at time t; L; = family support with school at time t;
Y; = friendship quality (support given to and from friends) at time t.
The continuous variables L; and Y; were mean-centered. The values for
each variable are defined in the text of Appendix A.

Appendix B. Example of steps A1 and A2
using lavaan for the running example

In this section, we will use lavaan (Rosseel, 2012) to illus-
trate how to carry out steps Al and A2 of the estimation
procedure, by applying it to the data from the running
example. We define the labels of the variables in our data-
set as:

LONELY__1 =X,
LONELY__ 2 =X,
FAMILY_1 =1,
FAMILY_ 2 =1,
FRIEND_1=Y;
FRIEND_ 2 =Y,
FRIEND__3 =Y;

The treatment-covariate interactions, calculated as the prod-
ucts of the respective variables, are labeled as:

LONELY_ 1 _x FAMILY 1 =X, x L,
LONELY__1 x FRIEND__1=2X;xY;
LONELY_ 2 _x_FAMILY 2 =X, x L,
LONELY_ 2 _x _FRIEND_ 2 =X, x Y,

First, we specify the outcome regression model in Equation
(16) using lavaan model syntax as:
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# model for outcome at wave 3
model_Y3 <- '
FRIEND__3~LONELY__2+LONELY__2_x_ FRIEND__2+LONELY__2_x_ FAMILY__2+LONELY__ 1+

FRIEND__2+FRIEND__1+FAMILY_ 2+FAMILY__1+GENDER+RACE+AGE+INCOME’

Next, we specify the model for the time-varying variables
in Equation (17) as:

# model for time-varying variables at wave 2
model_Y2L2 <- ’
# conditional means
FAMILY_ 2~LONELY_ 1+LONELY_ 1_x_FRIEND_ 1+LONELY_ 1 x FAMILY__1+FRIEND_ 1+
FAMILY___1+GENDER+RACE+AGE+INCOME
FRIEND_ 2~LONELY_ 1+LONELY_ 1_x_FRIEND__ 1+LONELY_ 1 x FAMILY__1+FRIEND_ 1+
FAMILY__1+GENDER+RACE+AGE+INCOME
# conditional covariance

FAMILY_ 2~~FRIEND_ 2’

Both models (16) and (17) can be fitted simultaneously
to the observed data using the sem function as follows:

FITmodel <-c(model Y3,model Y2L2)
fit_joint <- lavaan::sem(FITmodel,data=Data,

meanstructure=TRUE, fixed.x=TRUE, se="none")

MLEs of the model parameters can then be extracted to
estimate the parametric g-formula. The full set of parameter
estimates are available online as part of the Supplemental
Online Materials. As an example, the estimated error
covariance between L, and Y, parametrized by o1, in
Equation (17) is:

est_joint <- lavaan::parameterEstimates (fit_joint)

subset (est_joint, subset=lhs=="FAMILY_ 2" & rhs=="FRIEND__2")
# lhs op rhs  est
# 31 FAMILY_ 2 ~~ FRIEND_ 2 0.112

The estimated coefficient of X;, B, in Equation
(16) is:

# lhs op rhs est

# 4 FRIEND_ 3 ~ LONELY_ 1 -0.214

However, we emphasize that even when Equation (16) is
correctly specified, this coefficient is not generally a consist-
ent estimator of the causal effect of X; on Y; due to treat-
ment-dependent confounding.

To help researchers implement the parametric g-formula
using lavaan in practice, we have developed a user-friendly R
function FITTED_MODEL. lavaan requiring only two argu-
ments: the names of the post-treatment variables dep.var,
and the parameter estimates from the fitted lavaan model
est.lavaan. The first argument is a list with vectors of

post-treatment variables at each timepoint; ie., the dependent
variables in the models (16) and (17), which are L,, Y5, and
Y;. Continuing our running example, carrying out the follow-
ing steps returns an object GFmodel that can be used as an
estimator of the parametric g-formula (11).

# create a list with vectors of names of post-treatment variables
post_treatment_variables <- list(
c("FAMILY_ 2", "FRIEND_ 2"), # wave 2
"FRIEND__ 3") # wave 3
# plug in parameter estimates to construct g-formula
GFmodel <- FITTED_MODEL.lavaan (dep.var=post_treatment_variables,

est.lavaan=est_joint)

Appendix C. R function to carry out steps B1
through B5 for the running example

To help researchers estimate the MSM using parametric g-
formula in practice, we have developed a single R function
FitMSM that carries out all the steps Bl to B5 described in
the main text. In this section, we briefly describe the argu-
ments of the function.

e trt.name: Prefix of the treatment variable names.
Using our running example, if the treatment names in
the dataset are LONELY_ 1 and LONELY__ 2, then
trt.name="LONELY__".

e trt.T: Number of treatment timepoints. Using our
running example, if there are two treatment timepoints,
then trt.T=2.

e baseline.names: Names of the covariates preceding
the first treatment instance. These appear in the leftmost
columns of the expanded data in Table 2 (under the col-
umn heading “Step B1”), and have identical values
across all pseudo-copies. Using our running example,
these would be the stable baseline covariates C (gender,
race, age, and family SES (*INCOME”)), and pretreat-
ment measurements of the time-varying variables L;
(“FAMILY__1"),and Y; ("FRIEND__1").

e post_treatment_variables: Names of the post-
treatment variables modeled in the parametric g-formula,
with the outcome of interest in the last entry. This is the
same as the dep.var argument in the FITTED_
MODEL. lavaan function above.

e regfit: Estimates of the regression models for the
post-treatment variables from carrying out steps Al and
A2 above. Using our running example, regfit =
GFmodel, where GFmodel was the object returned
from the FITTED_MODEL. lavaan function.

e n.MC: Number of Monte Carlo pseudo-copies to be cre-
ated. More pseudo-copies will yield more precise esti-
mates. In our running example, n.MC = 100.

Applying this function to the observed data in our running
example returns the point estimates of the causal parame-
ters Y and y, in the MSM.



res <- FitMsM(Data,
trt.name="LONELY_ ",
trt.T=2,

baseline.names=c ("GENDER", "RACE", "AGE", "INCOME", "FAMILY__1","

FRIEND__1"),
post_treatment_variables=post_treatment_variables,
regfit=GFmodel,
n.MC=100)

round (res, 2)
# LONELY__1 LONELY__2

# -0.22 -0.18

Appendix D. Doubly robust variant

In this section, we describe how to include propensity score
models in the estimation procedure above. Our proposal
heuristically extends the doubly robust standardization
method in Vansteelandt and Keiding (2011) for treatment
at a single timepoint to the current setting of a time-varying
treatment. Specifically, we will utilize inverse probability of
treatment weights (IPW; Lunceford & Davidian, 2004),
when fitting the regression models for the post-treatment
variables in models (16) and (17).

Before introducing this extension, we briefly explain the
motivation for supplementing the estimator of the para-
metric g-formula with IPW. IPW eliminates measured
confounding by weighting the observed sample to be rep-
resentative of a pseudo-population in which the covariate
distributions are (approximately) similar, or “balanced,”
across the treated and untreated groups (Thoemmes &
Ong, 2015; Vandecandelaere et al., 2016; West et al., 2014).
Vandecandelaere et al. (2016) describe a simple hypothet-
ical example of how each observed individual contributes
to the pseudopopulation. Therefore, when the sequential
ignorability assumption holds, and the propensity score
model is correctly specified, this pseudo-population has no
confounder-treatment associations and is thus not subject
to measured confounding (Vansteelandt & Keiding, 2011).
The risks of biases due to model misspecification are
reduced because valid causal effect estimates can be
obtained if either the propensity score models, such as
(D1) and (D2) below, or the regression models for the
post-treatment variables, such as Equations (16) and (17)
in the main text, are correctly specified; see, e.g., Funk
et al. (2011), Robins et al. (2007), Schafer and Kang
(2008), and Vansteelandt and Keiding (2011) for more
detailed and technical discussions about the double robust-
ness property.® In Appendix E, we empirically demonstrate
the biases induced by an incorrectly specified outcome
regression function, and the reduction in biases achieved

8A correctly specified propensity score model can offer protection from
biases due to certain forms of misspecification in the regression model(s)
when estimating the treatment effects. However, the parametric g-
formula relies on correctly specifying models for the distribution, not just
the mean, of all post-treatment covariates (other than the final outcome).
It may be possible that the full distribution remains vulnerable to certain
model misspecification biases, even after weighting by the inverse
probabilities of treatment; e.g., when distributional assumptions (such as
normality and constant variance) in Equation (17) are violated. Closer
examination and more formal theoretical demonstrations of the double
robustness property are deferred to future work.
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by supplementing it with correctly specified propensity
score models, in a simulation study.

Supplementing a regression model for the outcome or
time-varying covariate with the (inverse) propensity scores
has the added advantage of reducing the repercussions of
relying solely on regression models, such as extrapolation
bias and incoherence with the MSM, while reaping the ben-
efits of regression-based adjustment, namely increased stat-
istical efficiency (Vansteelandt et al., 2012; Vansteelandt &
Keiding, 2011). We note that for treatment at a single time-
point, the doubly robust parametric g-formula approach
described herein is identical to Vansteelandt and Keiding
(2011), and follows the methodology for constructing the
weighted regression estimator in Morgan and Winship
(2015, Section 7.1). Similar approaches combining outcome
regression functions and propensity score models for time-
varying treatments have previously been applied in the epi-
demiological literature (Sudan et al, 2013; Thomson et al,,
2022).

We now describe how to include propensity score mod-
els when estimating the parametric g-formula. We use the
prefix “C” to designate each step of the doubly-robust
procedure.

Cl. For each treatment X;t= 1,2, in turn, fit a
model for the propensity score, which is the
conditional probability that an individual would have
selected treatment at that time ¢ given the
pretreatment covariates (Rosenbaum & Rubin, 1983),
to the observed data. In this paper, we use a logistic
regression model given the covariates preceding X, in
the adjustment set C;, which include the treatment
history (at times before ), current and past time-
varying variables (at times t or earlier), and baseline
covariates (at t=1). For example, for t=1, a model
with main effects for (C, Ly, Y1) is:

10git{E(X1|L1, Y], C)} = 061,0 =+ OCI,ILI =+ 0{1)2Y1 + 061,3(:.
(D1)

Similarly, for t=2, a model with main effects for
(C, Ly, Y1, Ly, Yy) is:
logit{E(X;|Ls, Y2, X1, L1, Y1, C) }
=0p,0 4+ 0a,1L2 + 02,2Y2 + 02,3X1 + 0p,4L1 + 05,577 + 03,6C.
(D2)

Calculate the MLEs of the coefficients.

C2. Calculate the predicted propensity scores specific
to time t for each individual, denoted by P, by
plugging in the MLEs for the coefficients in (D1)
and (D2).

C3. Construct the time-specific inverse propensity
score weights for each individual as:

X[ 1_Xt

W, =— ,
P, 1-P,

t=1,2.

The individual weight W, is the inverse or reciprocal
of the predicted probability of an individual’s
observed treatment at time f, conditional on the
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measured covariates in the adjustment set C,. We
emphasize that each individual possesses a separate
weight W, for each distinct treatment timepoint .

C4. In place of step Al, fit the regression model for
the outcome (Equation (16)), but use the product of
weights above W;W, for each observation in the
fitting procedure. For example, when using lavaan to
fit the model, the weights can be readily incorporated
using the “sampling.weights” argument. Following
Fewell et al. (2004), Thoemmes and Ong (2015), and
Vandecandelaere et al. (2016), the cumulative product
of the weights is used because we are estimating the
effects of both treatments X; and X, concurrently.

C5.Similarly, in place of step A2, fit the model (17)
for the time-varying variables L, and Y, in step A2,
but using the calculated weights W; for each
observation. Because X; is the only treatment instance
preceding L,, only the weights W, corresponding to
X, are used.

In other words, in the doubly-robust procedure, steps C1
to C5 are used instead of steps Al and A2. The resulting
fitted regression models can then be used to carry out steps
Bl to B5 as described above to estimate the MSM. As in
the previous procedure, nonparametric percentile bootstrap
confidence intervals may be constructed by randomly
resampling observations with replacement and repeating all
the steps (C1 to C5, and Bl to B5) for each bootstrap
sample.

Applying this doubly robust variant to the running
example, the estimated effect of loneliness at timepoint 1 on
friendship quality was , = —0.25;95%CI = (—0.39, —
0.09), and of loneliness at timepoint 2 was 1, =
—0.20; 95%CI = (—0.34, — 0.06). The effect estimates either
without using any weights (as in the main text), or with the
inverse probability weights (as with the doubly robust vari-
ance) were very similar. In practice, we encourage research-
ers to conduct sensitivity analyses to gauge the robustness
of the MSM estimates to other plausible statistical models.
This can be carried out by fitting different regression mod-
els, such as Equations (16) and (17), and propensity score
models, such as (D1) and (D2), then assessing whether the
resulting causal effect estimates differ substantively.

Appendix E. Simulation study

We conducted a small Monte Carlo simulation study to
empirically illustrate that, in the presence of treatment-
dependent confounding, estimates of time-varying treatments
are biased using standard regression, but unbiased using the
parametric g-formula. The study was conducted under the
setting shown in Figure 1, but with only a single end-of-study
outcome Y in the final timepoint (i.e., without the earlier out-
comes Y; or Y,). There was a nonrandomized binary treat-
ment measured at the first two timepoints (X; and X;), an
outcome measured at the end of the study (Y), a treatment-
dependent confounder measured at both treatment time-
points (L; and L,), and a single time-invariant confounder C.
In the first setting, we generated each simulated dataset such
that the outcome (Y) was based on a linear model with only

main effects for the predictors. The same (hence correctly
specified) model was then fitted to each simulated dataset.
We used this setting to demonstrate the biases which can
arise from using standard regression methods to estimate the
effect of X; on Y while adjusting (or statistically controlling)
for the intervening time-varying covariate L,. In the second
setting, we generated Y based on a model with complicated
nonlinear functions of the predictors. We then fitted to each
simulated dataset the same linear regression model as in the
previous setting so that the outcome model was incorrectly
specified; however, the propensity score model was correctly
specified. We used the second setting to demonstrate the pro-
posed double robust estimator.

Data-generating processes

For each setting, each simulated dataset was generated as follows.
U~ N(0,1)
C ~ Exponential(A = 2); E(C) =0.5
Ly =2U +ep; en ~N(0,1)

1L .1
X, ~ Bernoulli exp (0.1, +0.1C)
1+ exp (0.1L; +0.1C)

The variable U was a time-invariant common cause of
the covariates L;,t = 1,2, and outcome Y; U was hidden
from the observed data to induce unmeasured confounding
among these variables. The initial treatment X, affected the
time-varying covariate L,, which subsequently affected the
later treatment X.

Ly =L +C+ (X; —0.5) +2U +€p; e ~N(0,1)
exp (0.3L, 4+ 0.1C)
1+ exp(0.3L, + O.IC)}
Y =by(L1,CU) + ¥, X5 +0.2X; + (=0.1)L; +4U + ¢
& ~N(0,1).

X, ~ Bernoulli{

The outcome was affected directly by both treatments
(X; and X5) and indirectly by the first treatment X; via the
intervening time-varying covariate L,. In other words, the
direct effect of X; on Y which did not intersect L, was 0.2,
whereas the indirect effect via L, was (—0.1) x 1 (i.e., the
product of the coefficients of L, on Y, and X; on L,
respectively). Hence, the average causal effects of X; and X,
on Y were, respectively, ¥, =0.24(-0.1)=0.1,
and ¢, = 0.2.

In the first setting, we set the functions of the baseline
covariates in the data-generating model for Y as
b,(L1,C,U) =L; +C, so it depended only on the main
effects of the predictors. In the second setting, these func-
tions were:

by(L1,C,U) = |L1|log (C) + 1(U < 0)(C - 0.5)*
+1(U > 0)1(L; <0).

The outcomes Y in the second setting were thus gener-
ated using nonlinear and complex functions of the predic-
tors so that a fitted model with only main effects for the
predictors would be incorrectly specified.

Estimators under comparison

We considered three different estimators of 1, and y, for
each simulated dataset. We assumed only main effects for
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Table E1. Empirical biases of different estimators of the causal effects v, and .

Mean Bias ESE RMSE
DG models Estimation method /8 V2% /8 /2% W Vs U /2%
Linear Single regression —0.25 0.20 —0.35 0.00 0.08 0.09 0.36 0.09
Linear Parametric g-formula 0.10 0.20 —0.00 0.00 0.08 0.09 0.08 0.09
Linear Parametric g-formula (DR) 0.10 0.20 —0.00 0.00 0.10 0.10 0.10 0.10
Nonlinear Single regression -0.27 0.23 -0.37 0.03 0.21 0.20 0.43 0.20
Nonlinear Parametric g-formula 0.09 0.23 —0.01 0.03 0.20 0.20 0.20 0.20
Nonlinear Parametric g-formula (DR) 0.10 0.19 0.00 —0.01 0.32 033 0.32 0.33

Notes. “DG Models” = Data-generating Models; “DR” = doubly robust; i/, = average causal effect of X; on Y, with a true value of 0.1; , = average
causal effect of X; on Y, with a true value of 0.2. In addition to the mean empirical estimates and the empirical biases, standard errors (“ESE”) and root
mean squared errors (“RMSE”) were also calculated. All results were rounded to two decimal places.

the predictors in the propensity score models and the
regression models for the outcome and time-varying
covariate.

1. A single regression model for the outcome Y, given all
causally and temporally preceding variables.

model <- '

Y ~ X2 + L2 + X1 + L1 +C

We used the coefficients of X, and X; in the above
model as estimators of \,, and V, respectively. We
will refer to this estimator as “Single regression.” Such
an approach is routinely adopted for simultaneously
estimating different lagged effects of treatment on the
same outcome. Because this regression model was iden-
tical to the outcome model in the following parametric
g-formula estimator, the estimator of i, using both
these methods would be identical. But the estimators of
Y1 would differ due to how the time-varying covariate
L, is handled.’

2. The parametric g-formula was applied using only
regression models for the time-varying covariate and
outcome. No propensity scores were used. This estima-
tor was used to: (i) evaluate its statistical efficiency
under a correctly specified outcome model (in the first
setting) relative to the doubly robust variant; and (ii) to
illustrate how when the outcome model is incorrectly
specified - it was not weighted by the inverse propen-
sity scores — the approach can lead to biased estimators
(in the second setting). We fitted the following models
simultaneously as:

model <- '
L2 ~ X1 + L1 + C

Y ~ X2 + L2 + X1 + L1 +C

°In principle, under the linear and additive regression models assumed
here, one could use standard product-of-coefficient estimators for the
combined path-specific effects that make up each causal effect. But this is
realistic only with regression models having only main effects. When
interactions or higher-order terms are specified, as in the running
example, deriving closed-form expressions of the effect estimators can be
complicated in practice. Furthermore, the number of possible paths grows
exponentially with the number of time points and time-varying
covariates. In general, for k treatment-dependent confounders at T time
points between treatment and outcome, there are (k-+1)" possible
paths; e.g., if k=2 and T=3, there are 27 different paths. We, therefore,
do not recommend such an approach.

We then fitted the MSM in Equation (15) by carrying
out steps B1 to B5 as described above.

3. The parametric g-formula was then estimated using the
doubly robust (“DR”) variant. We first fitted the propen-
sity score models stated in (D1) and (D2) of Appendix D,
then calculated the IPWs W; and W,. We then separately
fitted the regression models for L, and Y using these
weights. First, the model for the time-varying covariate
L,, which included treatment only at time 1 and was thus
weighted by the inverse propensity score W1, can be fitted
as follows:

model_ L2 <- '

L2 ~ X1 + L1 + C

fit_L2 <- lavaan::sem(model_I2,data, sampling.weights=W1)

Next, the model for the outcome Y, which included both
treatments at times 1 and 2 and thus weighted by the
inverse of the product of propensity scores W; W, was:

model_Y <- '

Y ~ X2 + L2 + X1 + L1 +C

fit_Y <- lavaan::sem(model_Y,data,sampling.weights=W1W2)

Finally, we fitted the MSM in Equation (15) by carrying
out steps B1 to B5 as described above.

Results

The results for 5000 simulated datasets, each with a
sample size of 1000, under each setting, are shown in
Table E1.'° In both settings, standard regression failed to
produce unbiased estimates of i, (the treatment effect of

"We used a sample size of 1000 merely to illustrate that the biases due
to: (i) inappropriate adjustment for time-varying confounding using a
routine regression method; and (i) an incorrectly-specified outcome
regression function using the parametric g-formula without the doubly-
robust variant, persist with a relatively large sample size. Because using
smaller sample sizes introduces finite sample variability across all the
estimators, thus complicating disentangling the systematic and finite
sample biases, we defer more comprehensive examinations of the various
estimators’ operating characteristics under different sample sizes to future
work.
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X, on Y) due to inappropriate adjustment for the time-
varying covariate L, within the same regression model."!
Using the parametric g-formula with only regression mod-
els for post-treatment variables L, and Y yielded unbiased
estimates of both {; and y/, when the fitted models were
correctly specified, as in the first setting. Furthermore, in
this setting, this estimator was more precise (with a lower

"It could be argued that the coefficient of X; in the outcome model for
Y is not a consistent estimator of the total effect because the regression
coefficient encodes only the direct effect of X; on Y that is not
transmitted via the intervening time-varying covariate L,; see, e.g.,
Schisterman et al. (2009). But the estimator of the coefficient of X; will
be biased due to the collider L, along the path X; — L, < U — Y3; see
the main text for a more detailed explanation.

RMSE) than the doubly robust variant. In the second set-
ting, the estimates of i, and i, were (slightly) biased
when the fitted regression models were incorrectly speci-
fied. In contrast, the doubly robust variant of the paramet-
ric g-formula was unbiased for the time-varying treatment
effects in both settings, notwithstanding the misspecified
outcome model in the second setting.
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