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ABSTRACT

There has been an increasing call to model multivariate time series data with measurement
error. The combination of latent factors with a vector autoregressive (VAR) model leads to
the dynamic factor model (DFM), in which dynamic relations are derived within factor series,
among factors and observed time series, or both. However, a few limitations exist in the
current DFM representatives and estimation: (1) the dynamic component contains either
directed or undirected contemporaneous relations, but not both, (2) selecting the optimal
model in exploratory DFM is a challenge, (3) the consequences of structural misspecifica-
tions from model selection is barely studied. Our paper serves to advance DFM with a
hybrid VAR representations and the utilization of LASSO regularization to select dynamic
implied instrumental variable, two-stage least squares (MIIV-2SLS) estimation. Our proposed
method highlights the flexibility in modeling the directions of dynamic relations with a
robust estimation. We aim to offer researchers guidance on model selection and estimation

in person-centered dynamic assessments.

With the development of technology to collect inten-
sive longitudinal or time series data (TSD) in a fast
and economical pace, recent decades have witnessed a
surge of psychological and neurological research at
the individual level (i.e., N=1). Studies focused on
person-specific dynamic assessment, i.e., the so-called
idiographic approaches, emphasize intra-individual
characteristics and development over time. This con-
trasts to the typical nomothetic approach that draws
general inferences from a sample of individuals repre-
senting the population of interest using their interin-
dividual differences (Hamaker, 2012; Molenaar,
2004)". Along with the shift of research interest is the
need for advancing statistical methods to facilitate
person-specific dynamic assessments using TSD.
Within the psychometric field, researchers have
developed modeling frameworks to fit traditional

time series models, such as the Vector Autoregressive
(VAR), deeply rooted in statistics (Hamilton, 1994;
Liitkepohl, 2005).

The psychometric literature on modeling individual
dynamic models on a manifest level has grown (e.g.,
Epskamp et al., 2018; Gates et al, 2020; Ye et al,
2021). These models estimate the dynamic relations
(e.g., temporal and contemporaneous) unpacked in a
multivariate TSD. For instance, two representative
approaches are the unified Structural Equation Model
(uSEM; Gates et al., 2010; Kim et al., 2007), as a time
series extension of the SEM, and the graphical VAR
(gVAR; Epskamp et al.,, 2018) model, as a time series
extension of the general Gaussian Graphical Model
framework. Recently, researchers have discussed the
extended VAR model with hybrid representations that
can handle both the direct causal effects and undirected
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contemporaneous associations (Molenaar & Lo, 2016;
Ye et al.,, 2021). These approaches differ in the variant
of VAR representation and in the estimation frame-
work to select and identify the optimal model. For
instance, uSEM is usually identified by stepwise model
search algorithms (Gates & Molenaar, 2012), while
gVAR (Epskamp et al, 2018) or hybrid uSEM (Ye
et al., 2021) adopt some machine learning methods
(e.g., regularization) to identify and estimate the opti-
mal sparse model.

Typically, these modeling methods incorporate a
small number of manifest variables without account-
ing for measurement error. In practice, it is common
that more than one indicators measure the same
underlying dynamic latent variable. With multiple
indicators, latent time series variables could be formed
to adjust for measurement error and to reduce the
dimensions of observed variables. The combination of
a factor model and a time series model results in what
is called the dynamic factor model (DFM; Browne &
Nesselroade, 2005; Molenaar, 1985). In DFM, dynamic
relations (e.g., lagged and contemporaneous relations)
are allowed either within the factor series or amongst
the factor and the observed time series. In fact, cur-
rent dynamic modeling approaches have been
extended to include a factor model within their
restricted VAR version. For example, the uSEM model
has been intergrated with latent variables (i.e., LV-
uSEM; Gates et al., 2020). In addition, the gVAR
model has been combined with a factor model to
form the latent variable gVAR (or LV-gVAR; Epskamp,
2020).

However, the specification of the more flexible
VAR representation of DFM remains to be developed.
Therefore, the primary purpose of our paper is to
extend the hybrid uSEM with regularization in Ye
et al. (2021) to the regularized hybrid uSEM with
latent variables, so that we can estimate a sparse DFM
that allows for hybrid contemporaneous dynamic rela-
tions between the latent factors themselves. Three
steps address this overarching goal: the first is to
reform the structural model of the latent variable
uSEM (LV-uSEM) to its hybrid version, which the
authors refer to as the latent variable hybrid uSEM
(or LV-huSEM); the second is to perform model
selection using the LASSO regularization in the search
for the optimal sparse LV-huSEM; lastly, post-model
selection estimation will be implemented to obtain
robust parameter estimates of the final optimal sparse
LV-huSEM. To evaluate the proposed method with
existing ones, a simulation study will be conducted to
compare both the model recovery performance

(sensitivity and specificity) of different model build
methods when they are applied under the LV-huSEM
context, as well as the biasedness and robustness of
parameter estimates obtained by several estimation
methods.

Similar to the alternative modeling framework we
investigate, including uSEM, gVAR and their latent
variable extensions, we remind the readers the
assumptions underlying the type of data and process
appropriate for the hybrid uSEM and its latent vari-
able version. First, the current investigation focuses
on individual dynamic modeling analysis in the time
domain, we acknowledge that there are also analytical
methods that are carried out in the frequency domain
(e.g., Macaro & Prado, 2014; Molenaar, 1987). In add-
ition, these methods apply to multivariate TSD that is:
(1) weakly stationary (i.e., constant mean and variance
component); and (2) discrete with equally spaced
measurements (the equal distance assumption is less
important when the interval is extremely short). These
assumptions are necessary for the VAR-based model
specification and for achieving asymptotically consist-
ent estimation and also asymptotically unbiased esti-
mation for some parameters. Although extensions of
DFMs with nonstationary time series (e.g., Chow
et al,, 2011; Molenaar et al., 1992) or unequal meas-
urement intervals (e.g., Driver et al., 2015; Ryan et al.,
2018) have been developed, the current investigation
focuses on the standard case. Later, we discuss the
implications, applications, and extensions of these
assumptions.

Below, we first introduce the basic concepts, speci-
fication, and estimation of DFM, followed by a review
of a SEM-based framework to estimate an individual
DFM as the LV-uSEM. Next, we point out the issues
and limitations of the current approaches, and how
the proposed method addresses these issues. This
leads to a simulation study to evaluate and compare
the proposed method with the existing ones. Finally,
conclusions and discussion are drawn from the results
of the simulation study.

Dynamic factor models

Dynamic Factor Models (DFMs) represent a class of
models that includes lagged relations within the latent
variable approach (Browne & Nesselroade, 2005;
Molenaar, 1985). It can also be seen as a factor ana-
lysis extension to the family of VAR models in the
sense that latent variables (or, factor series) are
defined in a measurement model and that permits
lagged relations either in the measurement model, in



the structural (i.e., latent variable) model, or both
(Molenaar, 1985). Indeed, DFM is a synthesis of factor
analysis and VAR. Such a synthesis is ideal for many
psychological studies that aim to unravel hybrid rela-
tions in unobserved dynamic processes. A substantive
question that can be investigated by a DFM approach
is to what extent an increase in a latent dynamic con-
struct (e.g., anxiety) predicts changes in another latent
dynamic construct (e.g., depression) as well as changes
in the indicators of the other latent construct. As
another example, neuroscientists often aim to study
functional connectivity in human brains. The latent
constructs in this context could be some unknown
“brain networks” formed by a cluster of disparate
brain regions that tend to interact across time when
performing a task (Gates et al., 2020). Integrating a
factor model component in the dynamic model opens
up the possibility to explore dynamics among latent
constructs underlying what we could observe.

A general DFM for a single-subject multivariate
TSD is defined by two components, the measurement
model and the structural or latent variable model
(Molenaar, 1985; Zhang et al., 2008). Recall that trad-
itional DFM typically applies to weakly stationary
time series measured at equidistant intervals. Under
these assumptions, model parameters are constrained
to be time-invariant. Let Y; = [y11, y2r, s yp,]T denote a
vector of a p-variate time series at a given time point
t, with t =1,..,T. Assuming Y, represents a weakly
stationary linear time series (i.e., with a constant
mean, variance and covariance function). To ease the
presentation, it is assumed that all the time series
have zero mean function (i.e., no intercept term):

Yo =) At —u) + e 6 ~ N(0,0). (1)
u=0

ne=Y_ Own(t—u)+{, ~NOY). (2
u=1

In the measurement model, the #(t — u) is a g-vari-
ant set of latent factor series, with the (p, q)-dimen-
sional  time-invariant  factor loading  matrix
A(u),u =0,1,..,1 that denotes the linear relations
between the original p-variant time series Y; and the
g-variant factor series 7, at the lag order of u. The ¢
is a p-variate measurement error process for the p-
variate observed variables in Y, We assume that the
unique factors (“errors”) are independent over time
and no cross-loadings. The structural (latent variable)
equation in the DFM is a dynamic process of
VARMA(m, n), i.e,, a VAR of order n with a MA of
order m. The ®(u),u =1,2,...,n is a sequence of (g,
q)-dimensional matrices of AR and cross-lagged effect
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of the latent factors at the lag order of u. In Model
(2), the parameters are time invariant. In addition, we
assume that the errors € and {, are uncorrelated with
their respective latent variables #(t —u), the errors
are uncorrelated over time, ie., cov({,, ;) = 0.
Here, moving average (MA) coefficient matrices (i.e.,
current latent variable values predicted by errors from
the prediction of previous latent variable values) are
not not considered (m =0). In this way, the structural
(latent variable) equation in the DFM is a dynamic
process of VAR(n), i.e., a VAR of order n. Taken
together with the measurement model, this returns a
DFM (p,q,l,m,n). The general DFM implies that
lagged values of the latent variable can have loadings
on future values of the indicators beyond the indirect
effect via the factor at that concurrent time point.

For model identification and substantive purposes,
however, analysts often impose restrictions to allow
only one type of the lagged relations. For example, a
general DFM is reduced to a simpler, more restrictive
version containing only lag relations among the fac-
tors, i.e., DEM (p,q,0,m,n), called the process factor
analysis or direct autoregressive factor models (PFA
or DAFM; Browne & Nesselroade, 2005); alternatively,
it reduces to what is called the shock factor analysis
or white noise factor model when lagged relations are
only in the measurement model, i.e., DFM (p, 4,1, 0,0)
(Molenaar, 1985).

Estimation framework and approaches for DFM

Substantial research in psychometrics and other fields
has focused on how to estimate variants of DFMs.
Zhang et al. (2008) provided a comprehensive review
of four major estimation methods for DFMs: (1) a
Kalman filter (KF) algorithm based on a state space
model (SSM) representation; (2) the pseudo-ML
method based on the construction of a block-Toeplitz
covariance matrix in the SEM framework; (3) a least
squares (LS) method that also employs the block-
Toeplitz matrix; and 4) a Bayesian framework using
the Markov Chain Monte Carlo (MCMC) Gibbs sam-
pling under the SSM specification. Their simulation
study has shown that all four methods reach appropri-
ate parameter estimates with comparable precision. In
addition, many extensions and alternative variations
of each estimation method have been proposed. For
instance, SSM with KF has been extended to handle
nonlinear and nonstationary DFMs (Chow & Zhang,
2013). LS estimators (Browne & Zhang, 2005) and
asymptotically distribution-free methods (Molenaar &
Nesselroade, 1998) based on the block Toeplitz matrix
have been adopted. Bayesian approaches using Gibbs
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sampling for categorical (Zhang & Nesselroade, 2007)
variables have also been developed. As ML and
pseudo-ML estimations are still the dominant
approaches for single-subject DFM, we highlight some
characteristics of each below.

State space model and Kalman filter. The SSM
framework encompasses the KF and the Kalman
smoothers, which have been common tools in econo-
metrics and engineering to track changes and make
predictions in dynamic systems (Dolan, 2002; Kalman,
1960; Shumway & Stoffer, 2004). KF predicts current
or future states (i.e., factor scores) given information
up to the current time point by minimizing prediction
errors (Zarchan & Musoff, 2000) and provides true
ML estimates for DFM (Chow et al., 2011). In other
words, KF can be regarded as a factor score in
uSEMs, or more broadly, a “latent variable” estimation
procedure. Chow et al. (2010) provides a comprehen-
sive review of the equivalence and difference between
the SSM estimates and those of SEM under various
model specifications. Molenaar (1985) has shown that
any general DFM (p,q,1,m,n) can be rewritten in the
standard SSM form. SSM with time-invariant coeffi-
cients corresponds to the special case of DFM that
lacks the factor loadings, i.e., DFM (p,q,0,m,n), or
PFA or DAFM.

Block Toeplitz matrix under the SEM framework.
Another common method is the pseudo-maximum
likelihood (i.e., pseudo-ML?* Molenaar & Nesselroade,
1998) or least square estimation using the block
Toeplitz matrix under the SEM framework (Molenaar,
1985). The block Toeplitz matrix can be thought of as
a moment estimator with lagged autocovariance of the
observed variables. A downside of the block Toeplitz
matrix is a large number of redundant parameters,
because the diagonals of a block Toeplitz matrix are
the same but they are estimated as unique (i.e., SEM
programs by Zhang & Browne, 2010). Another
method to obtain the pseudo-ML estimator under the
SEM regime is to use time-embedded raw data (see
Equation (4)). Nonetheless, the block Toeplitz remains
a popular method for estimating DFM, because of the
availability of SEM programs which facilitate the spe-
cification of measurement models with contemporan-
eous relations in the structural model.

’The term “pseudo-ML” in the current work specifically refers to the
application of using maximum likelihood estimation for TSD where the
independence assumption is violated due to temporal dependence
between repeated observations, as used in time series literature such as
Molenaar and Nesselroade (1998).

In comparison, the SEM estimators based on block
Toeplitz or the time-embedded data are good practice
for estimating lag-1 and contemporaneous relations,
but they are inefficient for complex dynamics such as
higher-order lags in the observed or in the error term
due to the data structure (very large and sparse
covariance matrix to be computed). In contrast, KF
are more flexible when modeling time-specific coeffi-
cients or higher-order complex dynamic relations.
Therefore, while uSEMs emphasize constant dynamic
relations taking place instantaneously or at consecu-
tive timepoints, SSMs allow for changing dynamic
relations that may also last longer. Another benefit of
KF is that subject-specific longitudinal factor scores
are a by-product, which provides a reasonable
approximation to the true factor scores (Chow et al,
2010). While in the traditional SEM methods, an add-
itional step is needed to compute the factor scores fol-
lowing traditional methods such as Bartlett (Bollen,
1989). This is an issue in some current SEM methods
that we aim to resolve in our proposed method.

Differences are also seen in the statistical properties
of the parameter estimates obtained by the different
approaches. The SSMs with KF produce unbiased ML
and standard error estimates, because the within-per-
son time dependency in the data is accounted for
explicitly. In contrast, pseudo-ML estimates obtained
under the SEM are consistent estimators under the
weakly stationary assumptions, but the unbiasedness
property is more mixed. Studies by Hamaker et al.
(2002), van Buuren (1997), and Zhang et al. (2008)
found a consistent pattern in the investigation of SEM
estimates for TSD with large T: the pseudo-ML esti-
mates were asymptotically unbiased for VAR parame-
ters associated with observable variables; however, the
estimates associated with the MA part of a VARMA
model or a pure MA model were biased. Since our
investigation will focus on only the VAR parameters,
this downside of pseudo-ML estimators from SEM
does not matter to the current case.

In summary, SEMs and SSMs are very general
modeling approaches for DFMs, representing the
dynamic relations of a set of latent and manifest vari-
ables. For the current work, SEM is a convenient
choice to represent simultaneous structural relations
among observed and latent variables and it can be
generalized to define the measurement model struc-
tures. In contrast, SSMs are better suited when the
purpose is to represent more complex intraindividual
dynamics with restricted contemporaneous relations.
Because our intention is to maximize the flexibility in
the directionality of contemporaneous relations, rather



than having complex dynamics with longer lags, we
limit our current extension and investigation to SEM-
based approaches.

Latent variable group iterative multiple model
estimation

Latent Variable Group Iterative Multiple Model
Estimation (LV-GIMME; Gates et al., 2020) is one of
the most flexible model selection and estimation
methods for exploratory DFM that operates under
the SEM framework with pseudo-ML estimation. LV-
GIMME adopts the first-order DAFM model or the
DFM (p,q,0,0,1) with lag-1 relations only between
latent factors in the structural or latent variable
model. The DAFM makes the interpretation and the
implementation of LV-uSEM simpler, because the
dynamic relations are between factors, which can be
separate from the measurement model where factors
are extracted from indicators at the same time. The
dynamic relations between the latent variables in the
LV-uSEM are comparable to those among the observed
variables in the uSEM model, with the exception that
these dynamic relations take account of measurement
errors in the observed variables. Because our aim is to
compare approaches of single-subject dynamic models,
we focus on individual TSD, that is, no group-level
modeling or aggregation of individual models will be
performed. In the remaining part of this paper, we
refer to this model as LV-uSEM to distinguish from
the LV-GIMME that can also apply to multiple subjects
TSD.

In the measurement model, LV-uSEM adopts the
general form of a first-order DAFM, ie., DFM
(p,¢,0,0,1). This part uses a confirmatory factor
approach to obtain latent variables with the same

0 0
0 0

B=1 ¢, biq
bq © Py aq
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qualitative meaning, i.e., A has the same structure but
individual-specific parameter values across individuals.
For each individual TSD:

Y, = A, + €, €& ~ N(0,0). 3)

In the structural or latent variable model, LV-
uSEM inherits a uSEM structure (Gates et al., 2011;
Kim et al., 2007) that “unifies” temporal ordering
dependency and contemporaneous associations among
the latent factors. This part of the model assumes a
sparse structure (although unknown), and the estima-
tion requires an exploratory search for the optimal
sparse pattern. The following model specification and
matrix notations follow a SEM convention that is
used in Gates et al. (2017) and Ye et al. (2021).

n=Bn+{{~N(0,Y). (4)

where n = [n,_;,1,] is a 2q x T matrix. That is, the
factor variables are time-embedded by appending the
data at t—1 to the data at . The data are thus
expanded to two consecutive time points t—1 and ¢,
so time series vector of lagged (exogenous) factor vari-
ables and those of contemporaneous (endogenous)
are appended horizontally. This
requires that the error vector { also be extended, as
well as each of the corresponding matrices. Note that
the estimator from the time-embedded raw data is
also pseudo-ML due to temporal dependency between
observations of TSD, which has essentially the same
asymptotic properties as those obtained by the
block Toeplitz matrix of the lagged auto-covariances
(Molenaar, 1985).

The contemporaneous and lagged regression coeffi-
cients collapse into a single 2q x 2q B regression coef-
ficient matrix:

factor wvariables

2gx2q
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in which the upper left g x g and the upper right
q X q matrix block coefficients are set to zero for
lagged factor variables. That is, no factor variable at
time t directly predicts a factor variable at time #—1,
and factor variables at time t—1 cannot predict each
other. The lower left and right blocks are ® parame-
ters for lag-1 relations and A for contemporaneous
factor variables at time, respectively.

The error matrix ¥ is a diagonal matrix represent-
ing an independent white noises:

l//11
Yo
w_ Vo o W
0 . 0
0 . 0

where the upper left triangle (W) contains freely
estimated variance and covariances among the lagged
factor variables, and the lower right triangle (V) is
the variance and covariance matrix of factor residuals.
Note that the covariances among factor residuals are
set to zero to represent conditional independency.
These matrices provide the foundation from which
the extension to the latent variable hybrid uSEM is
developed.?

A note on the level of heterogeneity across
individuals

It is possible that individuals vary both in the latent
constructs as well as the relations among latent

3We note that the full LV-uSEM in the above specification is an over-
parameterized model. That is, if all the free parameters are nonzero, the
model has negative degree of freedom and is under-identified. An
underlying assumption is that the true DGM is a sparse model where
many parameters in B and ¥ are zero elements. This is why model
selection are implemented in these modeling approaches to identify the
sparse pattern. This is also where the advantage of the stepwise
searching in LV-GIMME (Gates et al., 2020) and the LASSO-regularization
in hybrid uSEM (Ye et al.,, 2021) lies: that is, the model search algorithm
can recover the optimal sparse model when the full model is under-
identified.

factors, a scenario where ergodicity does not hold.
But the interpretation of the dynamic relations is
hard to generalize across people if the latent factors
stand for completely different constructs. For this
reason, usually some sort of partial ergodicity
assumption is imposed. For instance, a typical prac-
tice in the GIMME framework is to have a qualita-
tively homogeneous and quantitatively heterogeneous
measurement models (i.e., same nonzero pattern yet
individual-specific estimates in A) to ensure the

Venea | 50,

same substantive meaning of the latent factor with
some levels of individual variability (Gates et al,
2020). To maximize heterogeneity in the dynamic
patterns, the structural models represent entirely
idiographic dynamic processes (i.e., person-specific
B), suggesting partial ergodicity only in the measure-
ment model. Note that this setting is opposite to the
practice in idiographic filter DFM (Molenaar, 1985;
Nesselroade et al.,, 2007), where the measurement
model structure and factor loading are allowed to
vary across individuals on the condition that the
structural patterns among the latent variables remain
invariant across people, a case of partial ergodicity in
the dynamic (structural) model. This is a critical dis-
tinction since previous literature has pointed to great
variability across individuals both in how constructs
are measured and how they relate to each other
(Epskamp et al., 2018; Gates et al., 2020; Hamaker
et al, 2005). GIMME represents a very flexible
approach that maximizes heterogeneity in dynamic
patterns across individual DFMs. For this reason, our
method stands on the same idiographic ground as
does GIMME.



The pseudo-ML model selection in GIMME

The LV-uSEM operates under the SEM framework for
DFM that uses a pseudo-ML based model building
algorithm and the model-implied instrumental varia-
bles with two-stage least squares (MIIV-2SLS; Fisher
& Bollen, 1996; Fisher et al., 2019) for parameter esti-
mation. Ideally, the specification for the structural
(latent variable) model 3 should be guided by a priori
theory. Unfortunately, very little is known about the
individual dynamic pattern, besides that research has
shown that the patterns vary across people (e.g.,
Nichols et al., 2014; Wright et al., 2015). As we noted
before, model selection for a sparse model is needed
to ensure identification of LV-uSEM. GIMME uses a
data-driven forward selection algorithm where for
every individual, it starts with a null model, and one
path with the highest and significant modification
indices is added iteratively until the model arrives at
an acceptable fit (Gates et al., 2010). This model
building procedure is automatic in the free open-
source R package gimme (Lane et al., 2019).

The recommended estimation approach by LV-
GIMME (Gates et al., 2020) is a sequential, three-step
procedure: in the first stage, the measurement model
is estimated with MIIV-2SLS, pseudo-ML, or PCA,
and latent scores of factor series are derived through a
regression method; the second stage is the general
GIMME approach which involves a pseudo-ML based
stepwise search to identify the sparse individual struc-
tural models (i.e., uSEMs) with individualized patterns
of dynamic relations amongst the latent factor series
obtained from the previous step; finally, parameter
estimates of the measurement and the sparse struc-
tural model are obtained via MIIV-2SLS. The MIIV-
2SLS has been shown to be more robust to model
misspecification than the system wise ML estimations
for traditional SEM (Bollen et al.,, 2007) and particu-
larly for SEM under DFM framework (Fisher et al,
2019).

The MIIV-2SLS estimation

Technical details of the MIIV-2SLS are available in
Fisher and Bollen (1996); Bollen et al. (2021, 2007).
Here we give a brief description of the MIIV-2SLS.
Unlike system-wise full-information estimators such
as maximum likelihood that estimates all parameters
simultaneously, the MIIV-2SLS estimates one equation
at a time. To start, the MIIV-2SLS transforms the
latent variable model into one that contains only the
observed variables (i.e., L20) by substituting each
latent variable with its scaling indicator minus its
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error as specified in the measurement model (Bollen
et al., 2021). One assumption for the OLS estimator is
that the composite error cannot correlate with any
covariates of that equation, which is typically violated
after the L20O transformation. A common way to solve
the correlated error issue is to use instrumental varia-
bles, i.e., variables that are uncorrelated with the com-
posite error but correlate with the covariates that are
associated with these errors. The special advantage of
the MIIV-2SLS is that qualified instruments were
drawn from other equation(s) within the system itself
based on the model structure, hence it is called
model-implied instrumental variables (MIIVs; Bollen
et al., 2021). Finding qualified MIIVs is done auto-
matically using the algorithm from Fisher & Bollen
(1996) and is implemented in the R package MIIVsem
(Fisher et al., 2020). Another advantage of the equa-
tion-by-equation estimation is that, besides the y?
tests of goodness-of-fit for the whole model, equation-
wise overidentification test (e.g., Sargan’s ¥ test;
Sargan, 1958) is available when the equation has more
than the minimum number of MIIVs. A rejection to
the null hypothesis of the overidentification test sug-
gests that at least one of the MIIVs fail to meet the
conditions based on the current model specification,
which is an evidence that some specifications of the
model is in error (Bollen et al., 2021).

To estimate a LV-uSEM using MIIV-2SLS estima-
tor under the GIMME approach, one convenience is
that the latent factor variables are obtained prior to
the estimation of the structural model and are treated
as observed variables in the model selection and esti-
mation for structural relations. In addition, the lagged
latent factor variables are predetermined (exogenous)
variables because no backward predictions from factor
scores at time T to those at the previous time are
allowed (recall the zero elements in the B matrix in
Equation (4)). This setting of the lagged factor varia-
bles guaranteed a minimum set of qualified MIIVs for
the parameter estimates in the structural model.

The use of equation-by-equation estimation in
MIIV-2SLS is particularly advantageous because it
separates the estimation of the measurement model
from the structural (latent variable) model so that the
measurement model parameter estimates remain
unaffected by heterogeneous structures in the latent
variable model (Gates et al., 2020). Enabling individ-
ual variability in the pattern of contemporaneous or
dynamic relations among latent constructs allows for
a better understanding of individual-centered proc-
esses as they unfold over time. However, MIIV-2SLS
is not a model selection tool, hence the MIIV-2SLS
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estimation of the final sparse LV-uSEM is performed
after the stepwise model selection procedure.

The current study
Model specification for hybrid relations

The uSEM framework is used to estimate single-sub-
ject dynamic models with latent factors such as the
DAFM. However, there are several areas that we pro-
pose to extend the single-subject modeling under the
GIMME framework. First, it is imperative to move
from the restrictive VAR representation in the DAFM
from a uSEM to the more flexible hybrid uSEM. That
is, directed regressions and undirected error covarian-
ces among contemporaneous latent factor variables
should be incorporated simultaneously. Because not
only can they co-exist, they can carry different causal
interpretations as well as practical implications.
Therefore, the first goal is to extend the structural
model in LV-uSEM to the hybrid representation, i.e.,
LV-huSEM, by altering the residual covariance matrix
¥ in Equation (4) to ¥* below:

matrix B in Equation (4) is turned to B* with the
same non-zero pattern yet perhaps different estimates,
and the model-implied covariance matrix is now X*

derived by:
¥ =(I-B)'w(1-B)" (5)

Model search using LASSO regularization
under SEM

Second, the forward selection method of model build-
ing is highly dependent on the starting model and the
intermediate steps, and can arrive at an arbitrary final
model. Results from the simulation study in Ye et al.
(2021) also showed that this approach tends to miss
relations with moderate to medium strengths under
the uSEM or hybrid uSEM with observed variables,
even with the correct starting model and a large sam-
ple size. Another critical downside unique to the cur-
rent LV-GIMME is the sequential analysis that
involves calculating factor scores. That is, factor scores
of the latent variable series are obtained from the

Y
'1021
Wy wa ‘pq(q—l)
0 . 0
V(g1
0 . 0 Vg Vg Yeoes ) g

Note that the lower-right matrix block, ‘I’f , is now
a symmetric matrix with contemporaneous variances
Yi,i=q+1..2q of the factor residuals on the diag-
onal (as seen in Wy). By substituting the off-diagonal
0s in ¥; with parameters of contemporaneous
residual covariance i,i,j=q+1.2qi#j ¥ is
turned to W*. Each element in ¥ are now candidates
in the model search procedure. This relaxes the condi-
tional independence assumption on the contemporan-
eous errors of uSEM and allow the errors to be
correlated. Additionally, the regression coefficient

measurement model through the traditional Bartlett
method (Bartlett, 2011) or regression methods
(Thurstone, 1935) in a separate step prior to the
model building and are treated as observed variables
in the estimation of the structural model. For one, it
has been shown analytically and numerically that a
naive use of factor scores as observed variables with-
out correction leads to inconsistent and biased param-
eter estimates in the context of linear regressions
(Skrondal & Laake, 2001) or simultaneous equations
(Croon, 2002). For two, this is essentially a P-



technique model (Cattell et al., 1947) that ignores the
temporal dependency of the TSD, that is, a reduced
DFM model without considering any lagged relations
between the latent factors. Hence, the factor scores are
systematically biased as they are drawn from a model
divergent from the true data-generating model, in
addition to the sampling error of calculating factor
scores. In addition, there is a lack of knowledge about
the impact of the measurement errors and random
errors from the factor scores, regardless of the method
of calculation, on model selection and estimation in
simultaneous equations.

Regularization, in contrast, is a global, continuous
model selection and a simultaneous estimation method.
Regularization introduces sparsity by imposing a pen-
alty term, the level of which is gauged by searching
across a prespecified range of A values until the optimal
/. (hence the sparsity level) is reached such that the
model has the least mean square error or the lowest
BIC (Jacobucci, 2017; Ye et al., 2021). When using the
least absolute shrinkage and selection operator (LASSO,
aka the L1-norm penalty; Tibshirani, 1996), the sum of
the absolute values of the parameters are shrunken
toward zero as A increases, and they can eventually
reach exactly zero. Hence, LASSO is often used in favor
of a sparse model and to perform model selection.
Previous simulations (Ye et al., 2021) demonstrated
success in adopting the LASSO regularization to iden-
tify a sparse huSEM with a high sensitivity (identifying
true paths) regardless of the magnitude as well as a
high specificity (eliminating zero relations). However,
to the authors’ knowledge, LASSO regularization has
not been implemented under the LV-uSEM context.
Therefore, the current method seeks to replace the
pseudo-ML stepwise searching and sequential estima-
tion with the LASSO regularization for a simultaneous
identification and estimation of the extended LV-
huSEM.

To obtain the solution, a ML regularized cost func-
tion is derived by adding the user-defined penalty
function to the unregularized ML cost function:

Freg(0) = Far (0) + AP(0) 6)

in which Fj;(0) is the unregularized cost function
computed from the model implied covariance X in
Equation (5). The set 6 includes all the parameters
estimated in the model, while 0" is the subset contain-
ing user-specified parameters under penalization.

Post model selection estimation using MIIV-2SLS

Lastly, there is a lack of evaluation and comparison of
these methods for the parameter estimation under
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data-driven model building procedures. Previous
researchers have found that pseudo-ML estimates of
individual DFMs obtained by the SEM approach
showed higher biases and a tendency for inaccurate
statistical conclusions compared with true ML esti-
mates obtained from methods such as the SSM
approach with KF estimator (Chow et al., 2010). But
such evaluation was done on the correctly specified
model, without potential biases associated with the
model selection procedure. In addition, as an alterna-
tive model selection and estimation method, the prop-
erty of LASSO regularized estimates in the LV-uSEM
context has not been studied. In theory, regularization
methods have sacrificed some level of unbiasedness
for efficiency, because all the parameters under pen-
alty (including the unknown true ones) are shrunk at
the same time. But this does not mean that the
LASSO estimates are always more biased than unregu-
larized pseudo-ML estimates, because penalization
eliminates unnecessary variables and false relations
that can also bias the estimates of the correct
parameters.

Importantly, both the pseudo-ML and the LASSO
regularization are system-wide estimator that are not
robust to structural misspecifications because errors in
one place can spread out to other parts of the model
including those that are correctly specified (Bollen
et al., 2021). Using a non-robust estimator to select
the structural (latent variable) model would potentially
impact final estimates in both the measurement model
and the structural model. In contrast, the MIIV-2SLS
is a limited-information equation-by-equation estima-
tor that is more robust to structural misspecifications
(Bollen et al., 2007). Indeed, the MIIV-2SLS has been
shown to be more robust than the pseudo-ML for the
estimation of a DFM when estimated under the LV-
uSEM framework (Fisher et al., 2019; Gates et al.,
2020). Further, Bollen et al. (2018) has illustrated the
analytic robustness conditions of the MIIV-2SLS esti-
mator in SEM. Specifically, they found that misspecifi-
cation errors from the structural (latent variable)
model should not contaminate MIIV-2SLS estimates
in the measurement model, whereas the impact of
misspecifications in the measurement model on the
structural model depends on its location (see Table 7,
page 858 in Bollen et al., 2018).

This robustness property makes MIIV-2SLS an
excellent choice for the estimation of sparse LV-
huSEM when the heterogeneous, exploratory individ-
ual structural models are conditioned on a common,
confirmatory measurement model. Because under the
assumption of the correctly specified measurement
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model, the only source of misspecification comes
from the structural model selection, which according
to the robustness condition, will not bias the MIIV-
2SLS estimates of the measurement model. This prop-
erty, however, will not be guaranteed when system-
wide estimators were used. That is, even though the
measurement model is correctly specified, the errors
from the misspecified structural model will likely bias
pseudo-ML and LASSO regularization estimates of
both the structural as well as the measurement model.
Hence, the LV-GIMME research group adopted the
MIIV-2SLS approach for the final parameter estima-
tion post to the pseudo-ML based stepwise model
search.

Therefore, to investigate consistent and robust esti-
mation under possible heterogeneous misspecified
structural models, we included the MIIV-2SLS as a
post model selection estimation approach as well (i.e.,
parameter estimation after the optimal sparse LV-
huSEM model is selected). Besides model recovery
property, we also seek to compare unbiasedness and
robustness behaviors of the pseudo-ML, the LASSO
regularized, and the MIIV-2SLS estimators under the
context of data-driven dynamic modeling. The current
investigation will include the evaluations of these
properties under the LV-huSEM with entirely idio-
graphic structural models conditioning on a unified,
confirmatory measurement model. Having an identical
factor structure in the final LV-huSEM models across
these methods ensures that the comparison of model
recovery and parameter estimation for the dynamic
relations are not contaminated by differences in the
structure of latent factors.

Figure 1. DFM: A time-invariant five-factor DAFM with a
hybrid uSEM structure.

The simulation study

In sum, the primary goal of the current study is to
evaluate the different model building methods (pseudo-
ML vs. regularization) with respect to model recovery
as well as estimation approaches (e.g., pseudo-ML,
regularization, and MIIV-2SLS) for unbiased and
robust parameter estimations for a DAFM with a
hybrid VAR representations (i.e., LV-huSEM). We
designed a Monte Carlo simulation study to evaluate
LASSO regularization and pseudo-ML approach with
respect to model recovery as well as their properties for
parameter estimation compared to those of MIIV-2SLS
under the LV-huSEM context. The goal is to investigate
the extent to which building LV-huSEM models with
LASSO regularization and MIIV-2SLS estimation is
superior to the pseudo-ML approach in terms of (1)
sensitivity of finding the true dynamic relations in the
structural model, (2) the specificity of excluding the
false dynamic relations, and (3) the robustness of par-
ameter estimates to structural misspecifications.

The Data Generating Model (DGM). With our focus
on single-subject DFMs, the DGM is a five-factor
DAFM with lag-1 hybrid VAR, i.e., hybrid types of
contemporaneous relations among the latent factors for
all individual TSD (see Figure 1). Following the prac-
tice in LV-GIMME, we adopt a homogeneous measure-
ment model as specified by Equation (3). Specifically,
each factor has three unique indicators with no cross
loadings or lagged relations. In the factor loading
matrix A, the scaling indicator of each factor equals 1
with the other two loadings set to 0.9 and 0.7, respect-
ively. The error variance ® is a standardized form (ie.,
an identity matrix with variance restricted to 1). In the
structural model, we include paths of different types
and magnitudes to investigate the path recovery for
hybrid dynamic relations in B and W*. That is, the
contemporaneous relations amongst latent factors
include both direct regression path (nonzero elements
in A) as well as covariance between factors (nonzero
elements off the diagonal of W); Besides AR process
within each factor, cross-lag relations are also incorpo-
rated (nonzero elements off the diagonal of ®). We
varied the magnitude of coefficients and covariances to
examine whether these impact the recovery of the true
DGM (the following parameter matrix applies to all
simulation conditions).*

“*The authors do not claim that the TSD generated by the LV-huSEM
model with such combination of these parameter values returns a typical
dynamic process in practice. In fact, we adopt this simplified model
structure with sparse relations for the illustration purposes. In the
Discussion section, we discuss the generalization of our results to more
complicated situations that could be found in empirical data.
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To investigate the influence of sample size on the
performance, data is generated from the same DGM
using time lengths varying from 60, 200, to 1,000, rep-
resenting a range from small to large in practice. This
is to be consistent with the simulation design in a pre-
vious evaluation on regularized huSEM (Ye et al,
2021). That is, the choice of these design factors are
decided such that they represent data structure and
characteristics of time series data in psychological and
psychophysiological research. For example, although
60 might appear small in panel or cross-sectional
data, it would be moderately large in time series such
as daily dairy. Note that only the number of time-
points is crossed design, the other factors are investi-
gated within one model. All the DGMs will be
replicated 1,000 times, resulting in 3,000 datasets. The
weak stationary test on the factor series was per-
formed in the data generating process, i.e., we tested
that all eigenvalues of the AR weight matrix, i.e.,
(I-A)~'®, have modulus less than one (Liitkepohl,
2005). All analyses will be performed in R, codes are
released and made publicly available on the Open
Science FrameworKk site.

Analytic procedure

For the pseudo-ML approach, confirmatory five-factor
measurement models are estimated by pseudo-ML in
lavaan or by MIIV-2SLS in MIIVsem, and factor
scores are obtained by the default regression method
of the ‘lavPredict’ function in lavaan. These factor
score series will enter the subsequent structural model
for model selection using pseudo-ML forward search
in the GIMME package, function indSEM. The differ-
ence from the original setting in LV-GIMME is that
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here the starting structural model is a huSEM (with
the covariance matrix ") instead of the more
restricted uSEM (with ¥). Additionally, we focus on
individual models and no group level model is consid-
ered. For this reason, we refer to this method
“pseudoML-FS-huSEM” to indicate it uses modifica-
tion indexes for the search of sparse huSEM model
using the factor scores.

For the proposed method, the LV-huSEM under
LASSO regularization (i.e., LASSO-LV-huSEM) will be
implemented under the regularized SEM framework.
After the LV-huSEM model structure is specified in
lavvan, regsem can import the lavvan output, i.e., the
unregularized ML cost function Fp(0) derived from
Equation (6), and perform LASSO regularization with
the user-defined list of parameters in the penalty func-
tion AP(0%). Note that in LASSO-LV-huSEM the
model selection and estimation are performed simul-
taneously on both the measurement and the structural
(latent variable) model. To ensure that factor series
represent latent constructs that are consistent with
those of “pseudoML-FS-huSEM”, the same confirma-
tory factor structure is estimated without penalty.
Parameters in the measurement model (e.g., factor
loadings) belong to the freely estimated set in 0 but
not in set 0*. Parameters in the set 0" are regression
coefficients for cross-lagged effects and contemporan-
eous effects (coefficients in the B matrix except the
diagonal elements of the lower left block matrix @ to
free up AR coefficients) as well as the error covariance
among contemporaneous latent factors (i.e., off-diag-
onal elements in the lower right block matrix ¥".
Ideally, the optimal 4 (with the lowest BIC) penalizes
all unnecessary parameter(s) to zero and estimates the
remaining parameter(s), unraveling the true type of
relation between any two latent factors from five pos-
sibilities: two cross-lagged effects, two directed con-
temporaneous regression coefficients, and one
undirected contemporaneous error covariance.

Two additional methods were included in the ana-
lysis to account for the confounding factor from the
use of factor scores in the “pseudoML-FS-huSEM”
method. The first one is to repeat the huSEM model
search and estimation using factor scores obtained
from the DGM (i.e., LV-huSEM) which we call
“pseudoML-DGM-FS”. By wusing the population
parameters from the DGM, it could reduce the biases
because the population parameters remove sampling
error of the parameter estimates that are part of gen-
erating the factor scores. But note that factor score
estimates would still differ from the latent variables -
the problem is the measurement errors that are part
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Table 1. Two framework for LV-huSEM: Model build and estimation approaches.

Modeling framework LASSO regularization pseudo-ML
Method name LASSO-LV-huSEM LASSO-FS-huSEM pseudoML-FS-huSEM pseudoML-DGM-FS
Analysis procedure Simultaneous Sequential Sequential Sequential

Measurement model confirmatory
VAR model build LASSO penalty
Parameter estimate LASSO/MIIV-2SLS n/a

factor scores
LASSO penalty

factor scores factor scores (DGM)
Forward stepwise Forward stepwise
Pseudo-ML/MIIV-2SLS n/a

of the indicators that form the factor scores. In reality,
however, the true model is unknown and so it is
impossible to implement this method without error. It
is included in the simulation to determine if the use
of factor scores improves when population parameters
are part of their calculations. Another confounding
factor lies in the comparison of “pseudoML-FS-
huSEM” (i.e., using pseudo-ML) and “LASSO-LV-
huSEM” in their ability to select and estimate true
relations and eliminate false ones in the structural
model is the fact that the pseudo-ML is subject to
measurement errors and random errors in the factor
scores, while LASSO regularization simultaneously
estimates the measurement and structural (latent vari-
able) models without calculating factor scores. To
account for that difference which confounds the com-
parison between pseudo-ML and LASSO regulariza-
tion, we included an additional analysis to apply
LASSO regularization on a huSEM using the same
factor scores from the five-factor measurement model
as we did in the pseudo-ML approach, i.e., “LASSO-
FS-huSEM”. In that case, “LASSO-FS-huSEM” and
“pseudoML-FS-huSEM” only differ in their model
selection and estimation methods but not how the
measurement model and starting structural model
are constructed. While the difference between “LASSO-
FS-huSEM” and the generic proposed method
“LASSO-LV-huSEM” informs the impact of measure-
ment errors from factor scores instead of latent
variables.

Finally, recall that both pseudo-ML and LASSO
regularization are for both model selection and esti-
mation. But given the potential biases introduced by
the model selection procedure and the robustness
property of the MIIV-2SLS, the latter is also included
as a post model selection estimation. That is, after the
final sparse LV-huSEM is selected, it will be estimated
again using the MIIV-2SLS to obtain the final param-
eter estimates of both the measurement and the struc-
tural (latent variable) models. In terms of the selection
of MIIVs for each equation when the number of
MIIVs exceed the minimum number required for
model identification, previous simulations studies
(e.g., Bollen et al., 2007) found that using one add-
itional MIIV than the minimum number produces the

least biased estimation at small sample size conditions,
but matters less in large samples. We chose to adopt
this approach for the MIIV-2SLS estimation in the
current simulation, given that the examination
includes small to moderate sample sizes. We refer to
this approach MIIV-2SLS-DF1 to indicate the one
degree of freedom in the overidentification Sargan’s
test. With these investigations, we could examine
which combination of model selection and estimation
regime is the overall optimal practice, accounting for
the treatment of the measurement model. The analyt-
ical steps and differences for the four methods are
summarized in Table 1.

Evaluation measures
We use sensitivity and specificity to evaluate the
accuracy of recovering relations with the correct direc-
tion. Sensitivity and specificity are common outcome
measures in network research (e.g., Abegaz & Wit,
2013; Epskamp & Fried, 2016). Sensitivity is calculated
by the ratio of the true positive count discovered in
the search over the sum of all true relations in the
DGM (i.e., true positives and false negatives).
Sensitivity represents the power to detect true rela-
tionships. In this paper, because the starting model is
the more flexible LV-huSEM with all the free parame-
ters in the extended W* and B*, we do not distinguish
path sensitivity from direction sensitivity. That is,
only the relations that are recovered with the correct
direction are recorded. Essentially, the sensitivity con-
cept here is equivalent to the direction sensitivity in
Ye et al. (2021). Specificity, in comparison, is calcu-
lated by the ratio of true negative count over the sum
of negatives in the DGM (i.e., the sum of true nega-
tive count and false positive count). This represents
the percentage of non-existing paths in the DGM that
the search procedure accurately omitted in the final
model. These measures allow for a global evaluation
of a model’s ability to detect true recovery and to
reject false ones. In both sensitivity and specificity
measures, higher values indicate better performance in
the selection of true data-generating relations.
However, from previous observations, sometimes a
relation between two variables will be recovered with
a misspecified direction. For example, at the presence



of a directed relation between two contemporaneous
factors (e.g., Y1 — Y;2), an alternative relation such
as a reversed sign (Y,; <« Y;,) or as lagged
(Y11 — Yy, or Yy, — Y1) or as undirected
covariance (Y;; < Y;,) might be selected by the
model. In some scenarios, it is better to have another
form of relation from the true form than completely
missing the relations, but not always. For example, if
a direct path between two variables is missed, having
a covariance or a lagged path with the correct direc-
tion in the selected model is more informative than
having no relation; however, if the directed path with
the reversed sign is recovered, the information is mis-
leading (i.e., a wrong causal implication). Sometimes,
a relation with one or two wrong directions could be
selected instead when the sample size is too small and
the sampling error is large, but other times one or
more could also be selected in addition to the true
direction when the sample size is large. To investigate
this behavior in relation to model selection methods
and across sample sizes, we calculate relation-specific
“direction false positive”: the percentage of time where
there are at least one misspecified directions in rela-
tion to a given true relation being selected in the final
model. Accordingly, we distinguish the overall model
specificity with the one that eliminate the “direction
false positive” related to true relations, the authors
refer to them as direction specificity (more stringent)
and path specificity (more lenient), respectively.

To examine unbiasedness and robustness, we will
exam the relative bias measure. We calculate the
mean relative bias (RB) for each parameter as the dif-
ference of the actual estimate and the true value div-
ided by the true value, averaged across the cases when
the path is recovered by the model (i.e., nonzero).
Hence, this is a RB rate conditional on the path
recovery. When using MIIV-2SLS, the equation level
over-identification test (i.e., Sargan’s > test) is avail-
able. The Sargan’s y* test informs whether the MIIVs
are uncorrelated with the error term of the corre-
sponding equation. Rejection of the null hypothesis
suggests that one or more of the MIIVs are inappro-
priate. This could occur if the equation is misspecified
or if another part of the model is misspecified and
this leads to one or more incorrect MIIVs for the
equation. A significant Sargan test cannot definitely
tell which of these is true, but it does alert the
researcher to the potential of inconsistent coefficients
estimators. Following previous literature (Fisher et al,,
2019), we are interested in two properites: (1) the stat-
istical power of the Sargan’s y? test when at least one
of the MIIVs for an equation is wrong, and (2) the

MULTIVARIATE BEHAVIORAL RESEARCH 1031

Type 1 error rate of the Sargan’s y*> testwhen all
MIIVs are valid. Consistent with literature, we will
use an o of 0.05 for both circumstances. The aim is to
evaluate the RB and robustness behaviors under dif-
ferent misspecified structural models as recovered by
pseudo-ML, regularization, versus MIIV-2SLS. From a
practical point of view, the convergence behaviors for
each method will be recorded and compared.

Results
Model convergence

Some datasets caused nonconvergence when the
LASSO regularization or the pseudo-ML approach
estimates a LV-huSEM. These datasets were dropped
from the analysis of the outcome measures below. It
was observed that out of the 1000 datasets, there were
10.9%, 7.3%, and 7.1% that did not converge for the
one-step LASSO-LV-huSEM method ° at sample sizes
N=60, 200, 1000, respectively. These rates were
increased to 21.9%, 14.5%, 8.3% (respectively) when
we used the two-step LASSO-FS-huSEM method. The
pseudo-ML method using factor scores from a five-
factor measurement model did not converge for 2%
datasets at N=60. All the other conditions converged.
It is clear that the model using LASSO regularization
using a starting model of a full LV-huSEM (with all
the parameters included) has a higher chance of
model nonconvergence compared to those using the
pseudo-ML method that starts with a null model and
a much small model specification (as the estimation
of the measurement model is separate from that of
the structural model).

Sensitivity and specificity

Let us first turn to the sensitivity for recovering true
relations of the DGM from the starting LV-huSEM
(i.e., confirmatory measurement model and an
exploratory structural model with all the free parame-
ters denoted in B and ¥*). All the methods showed
an excellent sensitivity for lag-1 effects regardless of
the sample size (see Figure 2). Besides lag-1 relations,
the probability to recover another true path by any
method depends largely on the sample size: the recov-
ery rates were low when the sample size was small
(N=60), overall acceptable at a medium sample size

5Running the LASSO-LV-huSEM for a single TSD from the DGM (N = 200)
in R using the regsem package, following the procedure as described in
this paper, takes approximately 10 minutes. This estimate is based on the
following hardware configuration: Apple M1 Pro @ 3.06 GHz 1 Processor
with 8 Cores with 16Gb SSD.
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Figure 2. Sensitivity of path recovery by path type and strength across sample size.
Note: Small.Dir=small directed path, Large.Dir=Ilarge directed path, Small.Cov=small covariance relation, Large.Cov=large

covariance relation, CL = cross-lag effect, Lag-1 = lag-1 effect.

(N=200) and satisfactory given a large sample size
(N=1000). Specifically, between the two generic
methods of our interest, i.e., the pseudo-ML using fac-
tor scores (pseudoML-FS-huSEM) and the proposed
LV-huSEM under LASSO regularization (LASSO-LV-
huSEM), the performance of recovering a small
directed path or a covariance relation were similar;
however, LASSO-LV-huSEM showed an overall higher
sensitivity to strong relations (i.e., directed, covari-
ance, and cross-lagged relations) when given a
medium or large sample size. Surprisingly, pseudoML-
FS-huSEM performed poorly in recovering the strong
directed path even with a large sample size. A closer
examination revealed that the majority of time the
model tended to recover a true strong directed path
as a covariance relation and sometimes as a reversed
sign directed path (hence a high rate of direction false
positive, see Figure 3). This is a scenario of a recovery
that counted as a “path presence recovery” but not as
a “direction recovery” in the simulation of Ye et al.
(2021). Note that the distinction was emphasized there
because the investigation involved more restricted
starting models such that some types of relation were
misspecified one way or another, their presence can
only be recovered by an alternative form between the

two variables. It is not the case here where both meth-
ods used the true starting structural model (ie.,
huSEM) for the search.

Turning to the impact of the type of factor score, it
seemed that when a true DGM model (i.e., LV-
huSEM) was used to obtain the factor scores for the
subsequent pseudo-ML analysis (i.e., pseudoML-
DGM-FS), the overall model recovery performance of
the strong relations was much better than those from
using the factor scores of a confirmatory measurement
model alone. This suggests using estimated parameter
values for the factor scores affect the recovery of the
structural relations amongst the factors. Overall,
LASSO-FS-huSEM had the best sensitivity perform-
ance of all the methods in Figure 2. This suggests that
separating the measurement model from the structural
(latent variable) model using factor scores as observed
actually increased the chance of recovering the struc-
tural relations amongst the latent factors.

Next, we examined the path-specific “direction false
positive rate”, defined as the chance of recovering a
true association yet with a wrong direction (refer to
the Evaluation Measures section for the more detailed
description). Not surprisingly, it was observed that
some relations were recovered with a wrong direction



Small.Dir

Large.Dir

value

Large.Cov cL

Sample.size

MULTIVARIATE BEHAVIORAL RESEARCH 1033

@ = il

Methods
— — LASSO-F5-huSEM

Small.Cov

—— LASSO-LV-huSEM

— — pseudoML-DGM-FS

pseudoML-FS-huSEM

Figure 3. Direction false positive by path type and strength across sample size.
Note: Small.Dir=small directed path, Large.Dir=Ilarge directed path, Small.Cov=small covariance relation, Large.Cov=large

covariance relation, CL = cross-lag effect.

when the sample size was small. However, even when
the sample size was sufficient and in many cases the
true path was recovered, sometimes additional paths
might still be selected when there existed a strong cor-
relation between the two variables. Hence, direction
false positive rates did not necessarily go down with
the increase of sample size (Figure 3). Overall, except
for cross-lagged relations, pseudo-ML methods had
higher direction false positive rates in relation to the
true paths in the DGM than did LASSO methods.
This is partly the reason that pseudoML-FS-huSEM
had very poor sensitivity under some conditions. That
is, some relations were recovered only with a wrong
direction or type of relation. For instance, at sample
size of 200 and 1000, both the LASSO-LV-huSEM
(around 12-17%) and pseudoML-FS-huSEM (around
20-34%) methods had some tendency to recover a
directed path at the presence of a true covariance rela-
tions between two contemporaneous factors. More
problematically, pseudo-ML showed a high chance
(67% at N=200 or 96% at N=1000) of recovering a
reversed signed directed path or a covariance when
there existing a strong directed path. Using the factor
scores from the DGM (i.e., pseudoML-DGM-FS) did
not decrease the chance of false positive directions. In

fact, using LASSO on the factors scores to select the
structural model seemed to also introduce more direc-
tion false positive than the one-step LASSO-LV-
huSEM model. These consistent observations that all
methods using the factor scores showed a higher rate
of direction false positive than their counterparts sug-
gested that the issue of a wrong direction recovery of
true relations is very likely tied to the use of factor
scores in place of the latent variables.

Both generic methods reached a path specificity
above 90% (see Figure 4), suggesting they are reliable
in rejecting false paths that were unrelated with those
pairs of variables that have a true relation of another
form or direction. However, the direction specificity
(i.e., the odds of ruling out any path when it is truly
false) dropped quite a bit for pseudoML-FS-huSEM (to
around 72-77%) or any method that used factor scores.
This is again because there was quite an amount of dir-
ection false positive paths in relation to true paths.

Conditional relative bias

Overall, the post model selection MIIV-2SLS estima-
tion was the least biased for parameter estimates of
contemporaneous relations in the structural model,
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Path. Specificity
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Figure 4. Path and direction specificity in the model by sample size.

even though the estimates of small relations from any
method were highly biased at a sample size of 60. In
comparison, the LASSO penalized LV-huSEM meth-
ods produced the most unbiased estimates for freely
estimated parameters, i.e., lag-1 autoregressive effects
within each latent factor as well as factor loading in
the measurement model, even at a small sample size
as low as 60. Two methods produced similar results
for cross-lagged effect among latent factors.
Particularly, at a sample size of 200 and 1000, the
conditional mean relative biases of lag-1 from LASSO-
LV-huSEM were only 4.6% and 1.6%, respectively.
The mean RBs of factor loading estimates were as low
as under 1.8% at N=200 or under 0.4% at N=1000.
When sample size was large, MIIV-2SLS-DF1 also
produced estimates with small biases on average for
factor loading estimates (under 5%), but the mean
RBs were higher than those from LASSO-LV-huSEM
at a small to moderate sample size (e.g., around 20%
for MIIV-2SLS-DF1 compared to around 10% for
LASSO-LV-huSEM at N=60, or 12% versus 2% at
N =200, respectively). However, for the parameters
under penalty in LASSO-LV-huSEM or LASSO-FS-
huSEM (i.e., contemporaneous effects in the structural
model), estimates were on average more biased (e.g.,
ranged from 20% to 40% at N=1000) than those
from MIIV-2SLS-DF1 (e.g., ranged from 5% to 18% at
N=1000), which was as expected given they were
under penalty in LASSO methods while being freely

estimated by the MIIV-2SLS after the model selection
(Figure 5).

The comparisons between LASSO methods and
pseudo-ML methods were mixed across different types
and strengths of relations. For example, for lag-1 and
cross-lagged estimates, pseudoML-FS-huSEM esti-
mates produced larger biases (e.g., mean RBs was
between 50 to 60% even at N=200 or 1000) than did
LASSO estimates (e.g., mean RBs ranged from 2% to
13% at N=200 or 1000). Evidence that some of the
biases come from errors in factor scores is that
pseudoML-DGM-FS wusing factors scores from the
DGM produced much less biased estimates than did
pseudoML-FS-huSEM  (using factor scores from a
five-factor measurement model). The true DGM is
not known so the pseudoML-DGM-FS is never avail-
able, but we include it here to illustrate the impact of
forming factor scores from estimated rather than true
parameter values. However, this pattern did not apply
to all types of parameters. For instance, the two
pseudoML methods produced similar and slightly less
biased estimates than did the two LASSO for small
directed and large covariance relations at each sample
size level, although all of them were still more biased
than those from MIIV-2SLS. This suggests that errors
in factor scores could introduce additional biases in
some (e.g., lagged relations) but not all types of rela-
tions. However, all the pseudoML and LASSO esti-
mates were largely biased for small covariance
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Relative Bias (%) of Parameter Estimate for Paths by Modeling Methods over Sample Size
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relations even with a large sample size (mean RBs
ranged from 40% to 70%). The RBs of these estimates
were also associated with a large variability across rep-
lications, indicating a substantial amount of influence
from the sampling error. Therefore, MIIV-2SLS-DF1
is particularly useful to obtain less biased estimates for
moderate or small structural relations.

One interesting observation is that mean RBs of
pseudo-ML estimates did not show the same asymp-
totic trend as did LASSO estimates or the MIIV-2SLS
estimates. Increased sample size was associated with a
decrease in the mean RBs in LASSO estimates and the
MIIV-2SLS estimates across all parameters, but the
mean RBs of pseudo-ML estimates were not so con-
sistent. For example, the mean RBs of lag-1 and cross-
lagged even went up as sample size increased. This
suggests that the source of biases in pseudo-ML esti-
mators do not just come from sampling error. This is
more evidence of impact of systematic errors in the
factor scores. As another way to investigate the short-
coming of using the factor scores instead of latent var-
iables, we need to examine results between the two
LASSO methods in which the only difference is that

= lag-1 effect,

one uses factor scores (LASSO-FS-huSEM) while the
other estimates a latent variable model simultaneously
with a measurement model (LASSO-LV-huSEM). It
seemed that the use of factor scores did not necessar-
ily affect biases in the parameter estimates, as the
overall mean RBs were similar between the two
LASSO methods; however, in some cases the variabil-
ity of RBs was larger in LASSO-FS-huSEM than that
from LASSO-LV-huSEM, particularly when sample
size was small. This seems to suggest that sampling
errors and measurement errors in factor scores might
not affect the average accuracy of the parameter esti-
mates of the structural model in a systematic way, but
it affects the consistency of the estimates such that
they are less consistent at an increasing sampling fluc-
tuation than methods using latent variables.

The overidentification test

We evaluated the finite sample properties of Sargan’s
¥* overidentification test of MIIVs. The current exam-
ination involves the specificity (i.e., true negative) as
well as sensitivity to wrong MIIVs (i.e., the statistical
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power of the Sargan’s y? test when at least one of the
MIIVs for an equation is wrong). We investigated the
case where a wrong MIIV was included due to an
omitted true relation in the model. For instance, the
omission of the directed contemporaneous relation
from factor one to factor four will render a wrong
inclusion of the scale indicator of factor one in the
structural equation of factor four. Even though a sig-
nificant Sargan’s Test does not suggest the equation
per se is incorrect, it offers evidence that one or more
MIIVs of that equation are incorrect. This in turn
indicates errors in the model specification that led to
these MIIVs. In contrast, passing the Sargan test is
consistent with a correctly specified equation and
valid MIIVs for that equation. We found that the spe-
cificity was around 95-97%. In other words, as
expected there was less than 5% of rejection rate in
which Sargan’s y* test incorrectly identified a wrong
selection of MIIVs when in reality the model was cor-
rectly specified and all MIIVs were correct. This sug-
gests accurate Type I error across the sample sizes
considered here. For the test sensitivity, i.e., when a
true relation was omitted from the model and hence a
wrong MIIV set would be included in the correspond-
ing equation, the Sargan’s test rejected the problematic
equation at the rates of 59% at N=60, 66% at
N=200, and 92% at N=1000, respectively. This sug-
gests that the test has a moderate power to detect a
wrong MIIV at a small to medium sample size, but
can do so at a very high rate when the sample size is
large.

Discussion

The current study serves to advance and investigate
the model search and estimation for a single-person
DFM with a hybrid VAR representations. Three goals
were achieved in the proposed framework. First, we
extended the structural model of the latent variable
uSEM (LV-uSEM) to its hybrid uSEM version, i.e., the
latent variable hybrid uSEM (or LV-huSEM). In this
way, the extended LV-huSEM estimates a DFM with
hybrid contemporaneous relations in the structural
model. When restrictions on the contemporaneous
relations between the latent factors are relaxed, struc-
tural and covariance relations can be simultaneously
estimated. Second, LASSO regularization in replace of
previous pseudo-ML-based stepwise model search is
used to perform both model selection for the optimal
sparse latent variable hybrid uSEM, and a simultan-
eous estimation for a freely estimated confirmatory
measurement model and an exploratory structural

model (with LASSO penalty on the structural paths
and covariances between the contemporaneous latent
factors). Compared to previous approaches, where
measurement model and structural model are esti-
mated sequentially with a stepwise model search pro-
cedure using factor scores obtained prior to the model
selection (e.g, LV-GIMME?®; Gates et al., 2020), the
current method provides a model search on a con-
tinuum and a simultaneous estimation without calcu-
lating factor scores. Finally, to obtain final parameter
estimates, the selected sparse LV-huSEM is estimated
via a limited-information estimator, the MIIV-2SLS
(Fisher & Bollen, 1996; Fisher et al., 2019). The post
model selection MIIV-2SLS estimation is chosen for
its robustness property under model structural mis-
specification (Bollen et al., 2007), which is particularly
advantageous for the estimation of sparse LV-huSEM
selected in a data-driven manner. The source of biases
in the parameter estimates under the current context
includes (1) model structural misspecifications result
from model selection, (2) the LASSO penalty in the
regularized LV-huSEM, or (3) errors of factor scores
(if under the LV-GIMME framewrork). The goal is to
obtain less biased final parameter estimates of the
selected sparse latent variable hybrid uSEM.

A simulation study was conducted to investigate to
what extent the novel estimation method for the LV-
huSEM models, i.e., a LASSO regularization model
build and post model selection MITV-2SLS estimation,
is superior to the pseudo-ML approach similar to the
single-subject model in the LV-GIMME framework.
For model recovery, the simulation results revealed
that the pseudo-ML and the LASSO regularization
have comparable recovery rates for some relations
such as lagged effects and small contemporaneous
effects among factors, and they both are reliable in
recovering a close-to-true structural model when the
sample size is medium to large. The impact of factor
scores on model selection under the SEM context was
largely unknown. Even though that the LV-GIMME
study (Gates et al., 2020) found that the path recovery
performance does not seem to be related to what
approach was used to derive the factor scores, there is
no comparison with a simultaneous estimation
method without the use of factor scores. In addition,
the evaluation was on a restricted DFM, ie., LV-
uSEM with only directed contemporaneous relations
among factors, which might not apply to the recovery
of the more complicated model, LV-huSEM in which

SSince the current focus is on individual models without using the group
level modeling in the LV-GIMME framework (Gates et al., 2020), the
authors referred to the compared method as pseudo-ML method.



the recovery of a true relation between two variables
involves a selection among five possible parameters.
Indeed, we found that the pseudo-ML methods using
factor scores have a higher chance to commit a direc-
tion false positive on strong directed relations, that is,
a tendency to recover a strong directed as one with a
reversed direction or as an undirected covariance rela-
tion. This low direction specificity seems tied to the
estimation of the factor scores. And it is shown that
the performance is improved when with factor scores
from the DGM, although the use of such factor scores
is still different from the latent variables (due to the
measurement errors from the part of the indicators
that form the factor scores). Further, in the additional
analysis of applying LASSO regularized hybrid uSEM
on factor scores, the likelihood to commit a direction
false positive is also higher than that of the simultan-
eous LASSO regularization hybrid uSEM with latent
variables. The result suggests that the use of factor
scores instead of the latent variable approach is sub-
jected to a higher false positive rate.

This tendency of recovering a relation with a
wrong direction undermines the purpose of adopting
the more flexible VAR representation, i.e., to accur-
ately represent the hybrid forms of contemporaneous
relations that might coexist in practice. Causal impli-
cations represented by a model with only directed
paths or only undirected covariance could be very dif-
ferent. However, if we choose to use a more flexible
model representation, but the chance of selecting false
positive relations with a wrong direction is high by
the model selection method, we still end up with mis-
leading causal interpretations. In this sense, when
there might exist some strong contemporaneous rela-
tions, LASSO regularization seems to have a higher
tendency to eliminate false positive relations and
avoid misleading causal interpretations than does the
pseudo-ML method using factor scores. To our know-
ledge, this is the first evaluation on the impact of
using factor scores for model selection under the
uSEM context.

In terms of parameter estimation, as expected, the
post model selection MIIV-2SLS estimator is the least
biased for parameters in the exploratory structural
model. But slightly surprisingly, the proposed LASSO
regularized hybrid uSEM with latent variable approach
produced the least biased estimates for free parameters
including factor loading coefficients in the confirma-
tory measurement model and the lag-1 autoregressive
effect between factors. This suggests that the biases for
other regularized parameters are mainly from the
LASSO penalty. In practice, if we are using regularized
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SEM method, we should only penalize the uncertain
(i.e., exploratory) part of the model. However, both
the pseudo-ML estimator and the LASSO regularized
estimator introduce quite some biases in the param-
eter estimates of the structural model, especially for
small relations. Hence, post model selection estima-
tion might indeed be a more practical choice to obtain
final estimates.

We also observe at least two major downsides of
using factor scores in parameter estimation, besides its
impact on model selection (i.e., the tendency to select
a directed path with a wrong direction). First, the esti-
mation of the lagged effects seem to be particularly
largely biased, regardless of sample size. This is not
surprising because no matter what estimation method
is used to obtain the factor scores, the sample variance
matrix of estimated factor scores is an inconsistent
and biased estimate of the true variance matrix of fac-
tors (Croon, 2002; Skrondal & Laake, 2001). In add-
ition, the time embedding process of the data to
obtain lagged factor variables introduces more random
error on top of the measurement error within the
contemporaneous factors variables themselves, thus
causing additional biases in the estimates of relations
between the lagged factor variables and the contem-
poraneous factors variables. Second, besides a high
average level of biases in estimates of small contem-
poraneous relations regardless of which factor score
methods are used, methods using factor scores also
tend to produce less consistent estimates that is more
subject to sampling fluctuations. The substantial
amount of variability in the biases across samples
especially with a small to medium sample size is very
likely a consequence of the sampling error in the sam-
ple variance matrix of estimated factor scores.

Limitations and future directions

Limitation in the two approaches under
investigation

The simultaneous analysis using LASSO regularization
under the LV-huSEM is easy to implement and can
avoid biases from the use of factor scores, but it might
be more limited in the size and complexity of the
model (e.g., number of variables, factors, density of
the structural paths, etc.) than is sequential analysis
like the GIMME approach. This is because use of fac-
tor scores reduces the dimension of the parameter
space - the number of parameters is higher in the
simultaneous model as it includes estimates for the
measurement model besides the structural model.
Optimizing the covariance matrix of observed
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variables with a higher dimension is more difficult
than that of the latent factors. Another advantage of a
sequential analysis is that it is at a better chance to
avoid improper solutions or nonconvergence issues
that is not uncommon in simultaneous estimation
methods. Nevertheless, the issue with a high direction
of false positives using factor scores makes it a less
appealing choice for model selection.

Although the use of MIIV-2SLS estimation reduces
biases from model misspecification and model selec-
tion, the naive post model selection statistical inference
is subject to another source of bias due to the duplicate
use of the data, that is, the same dataset is used for
model selection and model estimation. Since statistical
inference is established under the assumption that the
fitted model is known in advance, which is clearly vio-
lated here, the naive inference of a regularized LV-
huSEM after the data driven selection process for varia-
bles and relations is no longer valid. Because both the
randomness introduced by the selection process and
the sample space restriction implied by the chosen
model influence the sampling distribution of the esti-
mator and need to be accounted for (Huang, 2020).
Indeed, it has been found that the naive method after
model selection using regularized SEM tends to obtain
significant results for selected zero parameters, resulting
in numerous false positive findings in psychology
(Huang, 2020). However, post model selection infer-
ence methods are extremely difficult to perform, and
few has been developed for regularized SEM or been
implemented in the regsem package at the time of this
work. This is probably because the primary goal of stat-
istical learning method such as LASSO regularization is
to achieve the least biased prediction, while the aim of
traditional psychology and of the current study is to
identify the optimal model from which to obtain statis-
tical inference for individual parameters. This is one of
the biggest gap yet to be filled in the future develop-
ment of statistical learning under SEM framework. It
would be useful to make these methods available in the
software and packages for regularized SEM, so that
future studies could be conducted to evaluate and valid-
ate their properties under the regularized hybrid uSEM
with latent variables.

One aspect that is out of the scope of the current
study is DFMs for multiple subject time series. The
focus of the study is idiographic, single-subject DFMs
on the ground of unifying factor structure, for which
there is no consideration of between-person effects or
attempt to aggregate individual models. However, the
use of group-level or between-person information
(i.e., similarities and variances across individuals) has

been shown as an effective way to extract true effects
from noise information so that it avoids the risk of
over-fitting individual dynamic models (Asparouhov
et al., 2018; Gates et al., 2020). In fact, one of the
strengths in the LV-GIMME algorithm is to construct
a group-level model with the most shared information
that forms the starting model for each individual
model. Such a strategy might address to some extent
the high direction false positive rates. This should be
a possible extension to the current LASSO regularized
LV-huSEM modeling, for which an additional step for
forming the group-level model needs to be incorpo-
rated. Alternatively, one recent method called “multi-
VAR” is proposed (Fisher et al., 2022) that uses
LASSO penalization on multiple subjects multivariate
TSD for the forecast of dynamic processes at the indi-
vidual level. Although the goal of multi-VAR is to
identify an optimal sparse VAR that achieves the best
prediction, rather than recovering the true model or
statistical inferences of the selected model.

An alternative framework for multi-subject DFM is
to aggregate individual dynamic results using a multi-
level structure. One recent promising method is the
Dynamic Structural Equation Modeling (DSEM;
Asparouhov et al., 2018), where multiple subjects time
series are modeled simultaneously to estimate popula-
tion mean and individual differences (deviations from
the mean) in the parameters governing a dynamic
process. DSEM is very flexible as it decomposes the
observed TS variables into three model components:
individual-specific, time-specific, and the deviation of
each individual at each timepoint, with fixed and ran-
dom effects flexibly incorporated in each component.
DSEM implemented in Mplus Version 8 is estimated
with a Bayesian method using the Gibbs sampler and
the Metropolis—-Hastings sampler, which has many
advantages such as handling missing data, measure-
ment invariance, etc. However, the Bayesian DSEM or
other multilevel modeling options is not flexible in
specifying idiographic structural models, e.g., model
selection for individual contemporaneous structure is
currently unavailable in DSEM. This is because indi-
viduals cannot differ in their model structure but only
in their parameterization under the assumption of
normally distributed parameters. Adopting a multi-
level structure for the LV-huSEM will sacrifice the
flexibility in incorporating individually heterogeneous
structural models.

Limitation in the simulation design
Like all simulations, the simulation factors do not rep-
resent a comprehensive list of empirical situations. To



keep the scope manageable, we did not adopt a cross
design of factors such as path strength, model size
(i.e., number of variables) and sparsity, level of meas-
urement error in the latent factors, etc. The DGM
might also represent an over-simplified, sparse DFM,
with a very standard measurement structure i.e., with-
out cross-loadings or local dependency structures. In
practice, the latent variable relations in a DFEM could
be much denser with many weak to moderate rela-
tions. In addition, the measurement model could also
be extended both in the sense of containing some
error correlations as well as to include lagged effects
between the observed indicators and latent factors,
i.e,, a white noise factor model or a hybrid of WNFM
and DAFM. These added complexities pose a bigger
challenge for the model selection and parameter esti-
mation, because a denser model means that the model
search and optimization for solution are performed at
a larger parameter space with higher dimensions. This
might require a harsher penalty term, which in turn
might lead to larger biases in the estimates of correct
parameters, although the current proposal to use the
post model selection MITV-2SLS estimation could par-
tially compensate for the biases. Future development
in the optimization algorithm for regularized SEM in
general is the key to estimate a LV-huSEM with more
complex structures and higher dimensions.
Nevertheless, our results of the LASSO regularized
hybrid uSEM with latent variables highlights the flexibility
of the LASSO regularized SEM in estimating individual
DFMs. The data-driven LASSO penalty opens up a var-
iety of possibilities in the development and appraisal of
individual dynamic theories. The penalization structure
relies on which part of the model is more supported by
theory, and which part is more uncertain and needs to be
explored by the data. For instance, when the latent factor
structure among the candidate indicators is not fully
determined by the theory, partially exploratory model
selection could be implemented on the measurement
model. Specifically, if some indicators of a factor are con-
firmed by the theory, but the rest of the indicators are
not, we can adopt the “semi-confirmatory” factor model
from Huang (2020) in the way such that the factor load-
ings from the uncertain indicators are included as param-
eters under penalization while the factor loadings of the
confirmed indicators are free parameters. This way, only
the uncertain part of the measurement model is under
the data-driven LASSO selection. This idea could also be
used to explore the hybrid form of WNFM and DAFM
when the theory is not enough to determine which DFM
is more appropriate. That is, in the case where the meas-
urement model may contain either the lagged factor

MULTIVARIATE BEHAVIORAL RESEARCH 1039

loading, or the contemporaneous factor loading, or some
combination thereof. One way is to penalize the lagged
factor loading and the contemporaneous factor loading
simultaneously, as an automatic search between a
WNEFM and a DAFM with respect to the factor loading
structure across time. Alternatively, we can retain the
confirmed structure of the contemporaneous factor load-
ing and only penalize the lagged factor loading if the latter
is optional. Depending on the knowledge of the theory
available to us, we can choose which relations we feel
confident enough to be included as free estimates, and
which we are less so and thus allow the data to decide by
imposing a LASSO penalty on the corresponding parame-
ters. Therefore, the flexibility of regularization with user-
defined estimation and penalization structure lifts the
dichotomous boundary between the exploratory
approach and the confirmatory one and allows for an
expansion and refining of theory on a continuum.

In conclusion, the major contribution of the cur-
rent work is to propose a flexible framework for indi-
vidual dynamic factor models, i.e., the regularized
hybrid unified SEM with latent variables, that offers
an effective model search and estimation framework
with flexible directions of dynamic relations. In terms
of the application to substantive research in psych-
ology, the authors remind researchers to keep in mind
the strengths and shortcomings of the proposed
approach. First and foremost, the adoption of the
hybrid uSEM representation is particularly useful for
cases where there are a handful of variables or latent
constructs and causal implications are of interest,
especially since only some causal assumptions can be
made from the available literature. In other words,
(with some uncertainty) one would expect some rela-
tions to be causal by nature (e.g., mediation, common
cause, etc.), some are pure associations, and the over-
all structure is subject to some levels of exploration.
Second, this type of model requires a certain amount
of sample size. It might be challenging for some stud-
ies such as daily diaries to have a few hundred to
thousands of time points, while in neuroimaging or
biometric studies this might be less of an issue. Third,
because the property we found is conditional on the
weakly stationary assumption in the time series data
and time-invariant parameters are estimated from the
model, it might not be very useful for studies such as
developmental psychology with meaningful nonsta-
tionary trends or time-varying relations. For instance,
if the trend of growth (or decrease) carries crucial
developmental meanings, the removal of the trend
takes away the focus of interest; instead, the stage-spe-
cific time-varying dynamic relations might be more
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informative for developmental studies. In these cases,
DFMs that can handle nonstationary and time-varying
parameters (e.g., Chow et al., 2011; Molenaar et al.,
1992) should be used. Lastly, as the time component
is treated as discrete, the current method is appropri-
ate when an equal time interval is achieved or with
very short measurement windows such that the
unequal distance is negligible. However, when an
unequal time interval is an issue, an option is to use
the continuous time structural equation modeling,
which estimates an underlying continuous process by
using stochastic differential equations to accurately
account for differences in time intervals between
measurements (Driver et al., 2015; Ryan et al., 2018).
In contrast, this limit has minimal impact on func-
tional connectivity studies where both the time inter-
vals and the entire duration of the brain scan are very
short and they do not carry developmental meanings.
In summary, dynamic researchers need to be aware of
their research purposes and the characteristics of the
time series data they have at hand when making the
modeling choice.
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