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ABSTRACT 
There has been an increasing call to model multivariate time series data with measurement 
error. The combination of latent factors with a vector autoregressive (VAR) model leads to 
the dynamic factor model (DFM), in which dynamic relations are derived within factor series, 
among factors and observed time series, or both. However, a few limitations exist in the 
current DFM representatives and estimation: (1) the dynamic component contains either 
directed or undirected contemporaneous relations, but not both, (2) selecting the optimal 
model in exploratory DFM is a challenge, (3) the consequences of structural misspecifica
tions from model selection is barely studied. Our paper serves to advance DFM with a 
hybrid VAR representations and the utilization of LASSO regularization to select dynamic 
implied instrumental variable, two-stage least squares (MIIV-2SLS) estimation. Our proposed 
method highlights the flexibility in modeling the directions of dynamic relations with a 
robust estimation. We aim to offer researchers guidance on model selection and estimation 
in person-centered dynamic assessments.
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With the development of technology to collect inten
sive longitudinal or time series data (TSD) in a fast 
and economical pace, recent decades have witnessed a 
surge of psychological and neurological research at 
the individual level (i.e., N¼ 1). Studies focused on 
person-specific dynamic assessment, i.e., the so-called 
idiographic approaches, emphasize intra-individual 
characteristics and development over time. This con
trasts to the typical nomothetic approach that draws 
general inferences from a sample of individuals repre
senting the population of interest using their interin
dividual differences (Hamaker, 2012; Molenaar, 
2004)1. Along with the shift of research interest is the 
need for advancing statistical methods to facilitate 
person-specific dynamic assessments using TSD. 
Within the psychometric field, researchers have 
developed modeling frameworks to fit traditional 

time series models, such as the Vector Autoregressive 
(VAR), deeply rooted in statistics (Hamilton, 1994; 
L€utkepohl, 2005).

The psychometric literature on modeling individual 
dynamic models on a manifest level has grown (e.g., 
Epskamp et al., 2018; Gates et al., 2020; Ye et al., 
2021). These models estimate the dynamic relations 
(e.g., temporal and contemporaneous) unpacked in a 
multivariate TSD. For instance, two representative 
approaches are the unified Structural Equation Model 
(uSEM; Gates et al., 2010; Kim et al., 2007), as a time 
series extension of the SEM, and the graphical VAR 
(gVAR; Epskamp et al., 2018) model, as a time series 
extension of the general Gaussian Graphical Model 
framework. Recently, researchers have discussed the 
extended VAR model with hybrid representations that 
can handle both the direct causal effects and undirected 
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contemporaneous associations (Molenaar & Lo, 2016; 
Ye et al., 2021). These approaches differ in the variant 
of VAR representation and in the estimation frame
work to select and identify the optimal model. For 
instance, uSEM is usually identified by stepwise model 
search algorithms (Gates & Molenaar, 2012), while 
gVAR (Epskamp et al., 2018) or hybrid uSEM (Ye 
et al., 2021) adopt some machine learning methods 
(e.g., regularization) to identify and estimate the opti
mal sparse model.

Typically, these modeling methods incorporate a 
small number of manifest variables without account
ing for measurement error. In practice, it is common 
that more than one indicators measure the same 
underlying dynamic latent variable. With multiple 
indicators, latent time series variables could be formed 
to adjust for measurement error and to reduce the 
dimensions of observed variables. The combination of 
a factor model and a time series model results in what 
is called the dynamic factor model (DFM; Browne & 
Nesselroade, 2005; Molenaar, 1985). In DFM, dynamic 
relations (e.g., lagged and contemporaneous relations) 
are allowed either within the factor series or amongst 
the factor and the observed time series. In fact, cur
rent dynamic modeling approaches have been 
extended to include a factor model within their 
restricted VAR version. For example, the uSEM model 
has been intergrated with latent variables (i.e., LV- 
uSEM; Gates et al., 2020). In addition, the gVAR 
model has been combined with a factor model to 
form the latent variable gVAR (or LV-gVAR; Epskamp, 
2020).

However, the specification of the more flexible 
VAR representation of DFM remains to be developed. 
Therefore, the primary purpose of our paper is to 
extend the hybrid uSEM with regularization in Ye 
et al. (2021) to the regularized hybrid uSEM with 
latent variables, so that we can estimate a sparse DFM 
that allows for hybrid contemporaneous dynamic rela
tions between the latent factors themselves. Three 
steps address this overarching goal: the first is to 
reform the structural model of the latent variable 
uSEM (LV-uSEM) to its hybrid version, which the 
authors refer to as the latent variable hybrid uSEM 
(or LV-huSEM); the second is to perform model 
selection using the LASSO regularization in the search 
for the optimal sparse LV-huSEM; lastly, post-model 
selection estimation will be implemented to obtain 
robust parameter estimates of the final optimal sparse 
LV-huSEM. To evaluate the proposed method with 
existing ones, a simulation study will be conducted to 
compare both the model recovery performance 

(sensitivity and specificity) of different model build 
methods when they are applied under the LV-huSEM 
context, as well as the biasedness and robustness of 
parameter estimates obtained by several estimation 
methods.

Similar to the alternative modeling framework we 
investigate, including uSEM, gVAR and their latent 
variable extensions, we remind the readers the 
assumptions underlying the type of data and process 
appropriate for the hybrid uSEM and its latent vari
able version. First, the current investigation focuses 
on individual dynamic modeling analysis in the time 
domain, we acknowledge that there are also analytical 
methods that are carried out in the frequency domain 
(e.g., Macaro & Prado, 2014; Molenaar, 1987). In add
ition, these methods apply to multivariate TSD that is: 
(1) weakly stationary (i.e., constant mean and variance 
component); and (2) discrete with equally spaced 
measurements (the equal distance assumption is less 
important when the interval is extremely short). These 
assumptions are necessary for the VAR-based model 
specification and for achieving asymptotically consist
ent estimation and also asymptotically unbiased esti
mation for some parameters. Although extensions of 
DFMs with nonstationary time series (e.g., Chow 
et al., 2011; Molenaar et al., 1992) or unequal meas
urement intervals (e.g., Driver et al., 2015; Ryan et al., 
2018) have been developed, the current investigation 
focuses on the standard case. Later, we discuss the 
implications, applications, and extensions of these 
assumptions.

Below, we first introduce the basic concepts, speci
fication, and estimation of DFM, followed by a review 
of a SEM-based framework to estimate an individual 
DFM as the LV-uSEM. Next, we point out the issues 
and limitations of the current approaches, and how 
the proposed method addresses these issues. This 
leads to a simulation study to evaluate and compare 
the proposed method with the existing ones. Finally, 
conclusions and discussion are drawn from the results 
of the simulation study.

Dynamic factor models

Dynamic Factor Models (DFMs) represent a class of 
models that includes lagged relations within the latent 
variable approach (Browne & Nesselroade, 2005; 
Molenaar, 1985). It can also be seen as a factor ana
lysis extension to the family of VAR models in the 
sense that latent variables (or, factor series) are 
defined in a measurement model and that permits 
lagged relations either in the measurement model, in 
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the structural (i.e., latent variable) model, or both 
(Molenaar, 1985). Indeed, DFM is a synthesis of factor 
analysis and VAR. Such a synthesis is ideal for many 
psychological studies that aim to unravel hybrid rela
tions in unobserved dynamic processes. A substantive 
question that can be investigated by a DFM approach 
is to what extent an increase in a latent dynamic con
struct (e.g., anxiety) predicts changes in another latent 
dynamic construct (e.g., depression) as well as changes 
in the indicators of the other latent construct. As 
another example, neuroscientists often aim to study 
functional connectivity in human brains. The latent 
constructs in this context could be some unknown 
“brain networks” formed by a cluster of disparate 
brain regions that tend to interact across time when 
performing a task (Gates et al., 2020). Integrating a 
factor model component in the dynamic model opens 
up the possibility to explore dynamics among latent 
constructs underlying what we could observe.

A general DFM for a single-subject multivariate 
TSD is defined by two components, the measurement 
model and the structural or latent variable model 
(Molenaar, 1985; Zhang et al., 2008). Recall that trad
itional DFM typically applies to weakly stationary 
time series measured at equidistant intervals. Under 
these assumptions, model parameters are constrained 
to be time-invariant. Let Yt ¼ ½y1t , y2t , :::, ypt�

T denote a 
vector of a p-variate time series at a given time point 
t, with t ¼ 1, :::, T: Assuming Yt represents a weakly 
stationary linear time series (i.e., with a constant 
mean, variance and covariance function). To ease the 
presentation, it is assumed that all the time series 
have zero mean function (i.e., no intercept term):

Yt ¼
X

u¼0
KðuÞgðt − uÞ þ �t , �t � Nð0, HÞ: (1) 

gt ¼
X

u¼1
UðuÞgðt − uÞ þ ft , ft � Nð0, WÞ: (2) 

In the measurement model, the gðt − uÞ is a q-vari
ant set of latent factor series, with the (p, q)-dimen
sional time-invariant factor loading matrix 
KðuÞ, u ¼ 0, 1, :::, l that denotes the linear relations 
between the original p-variant time series Yt and the 
q-variant factor series gt at the lag order of u. The �t 

is a p-variate measurement error process for the p- 
variate observed variables in Yt. We assume that the 
unique factors (“errors”) are independent over time 
and no cross-loadings. The structural (latent variable) 
equation in the DFM is a dynamic process of 
VARMA(m, n), i.e., a VAR of order n with a MA of 
order m. The UðuÞ, u ¼ 1, 2, :::, n is a sequence of (q, 
q)-dimensional matrices of AR and cross-lagged effect 

of the latent factors at the lag order of u. In Model 
(2), the parameters are time invariant. In addition, we 
assume that the errors et and ft are uncorrelated with 
their respective latent variables gðt − uÞ, the errors 
are uncorrelated over time, i.e., covðft , ft−1Þ ¼ 0:
Here, moving average (MA) coefficient matrices (i.e., 
current latent variable values predicted by errors from 
the prediction of previous latent variable values) are 
not not considered (m¼ 0). In this way, the structural 
(latent variable) equation in the DFM is a dynamic 
process of VAR(n), i.e., a VAR of order n. Taken 
together with the measurement model, this returns a 
DFM ðp, q, l, m, nÞ: The general DFM implies that 
lagged values of the latent variable can have loadings 
on future values of the indicators beyond the indirect 
effect via the factor at that concurrent time point.

For model identification and substantive purposes, 
however, analysts often impose restrictions to allow 
only one type of the lagged relations. For example, a 
general DFM is reduced to a simpler, more restrictive 
version containing only lag relations among the fac
tors, i.e., DFM ðp, q, 0, m, nÞ, called the process factor 
analysis or direct autoregressive factor models (PFA 
or DAFM; Browne & Nesselroade, 2005); alternatively, 
it reduces to what is called the shock factor analysis 
or white noise factor model when lagged relations are 
only in the measurement model, i.e., DFM ðp, q, l, 0, 0Þ
(Molenaar, 1985).

Estimation framework and approaches for DFM
Substantial research in psychometrics and other fields 
has focused on how to estimate variants of DFMs. 
Zhang et al. (2008) provided a comprehensive review 
of four major estimation methods for DFMs: (1) a 
Kalman filter (KF) algorithm based on a state space 
model (SSM) representation; (2) the pseudo-ML 
method based on the construction of a block-Toeplitz 
covariance matrix in the SEM framework; (3) a least 
squares (LS) method that also employs the block- 
Toeplitz matrix; and 4) a Bayesian framework using 
the Markov Chain Monte Carlo (MCMC) Gibbs sam
pling under the SSM specification. Their simulation 
study has shown that all four methods reach appropri
ate parameter estimates with comparable precision. In 
addition, many extensions and alternative variations 
of each estimation method have been proposed. For 
instance, SSM with KF has been extended to handle 
nonlinear and nonstationary DFMs (Chow & Zhang, 
2013). LS estimators (Browne & Zhang, 2005) and 
asymptotically distribution-free methods (Molenaar & 
Nesselroade, 1998) based on the block Toeplitz matrix 
have been adopted. Bayesian approaches using Gibbs 
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sampling for categorical (Zhang & Nesselroade, 2007) 
variables have also been developed. As ML and 
pseudo-ML estimations are still the dominant 
approaches for single-subject DFM, we highlight some 
characteristics of each below.

State space model and Kalman filter. The SSM 
framework encompasses the KF and the Kalman 
smoothers, which have been common tools in econo
metrics and engineering to track changes and make 
predictions in dynamic systems (Dolan, 2002; Kalman, 
1960; Shumway & Stoffer, 2004). KF predicts current 
or future states (i.e., factor scores) given information 
up to the current time point by minimizing prediction 
errors (Zarchan & Musoff, 2000) and provides true 
ML estimates for DFM (Chow et al., 2011). In other 
words, KF can be regarded as a factor score in 
uSEMs, or more broadly, a “latent variable” estimation 
procedure. Chow et al. (2010) provides a comprehen
sive review of the equivalence and difference between 
the SSM estimates and those of SEM under various 
model specifications. Molenaar (1985) has shown that 
any general DFM ðp, q, l, m, nÞ can be rewritten in the 
standard SSM form. SSM with time-invariant coeffi
cients corresponds to the special case of DFM that 
lacks the factor loadings, i.e., DFM ðp, q, 0, m, nÞ, or 
PFA or DAFM.

Block Toeplitz matrix under the SEM framework. 
Another common method is the pseudo-maximum 
likelihood (i.e., pseudo-ML2; Molenaar & Nesselroade, 
1998) or least square estimation using the block 
Toeplitz matrix under the SEM framework (Molenaar, 
1985). The block Toeplitz matrix can be thought of as 
a moment estimator with lagged autocovariance of the 
observed variables. A downside of the block Toeplitz 
matrix is a large number of redundant parameters, 
because the diagonals of a block Toeplitz matrix are 
the same but they are estimated as unique (i.e., SEM 
programs by Zhang & Browne, 2010). Another 
method to obtain the pseudo-ML estimator under the 
SEM regime is to use time-embedded raw data (see 
Equation (4)). Nonetheless, the block Toeplitz remains 
a popular method for estimating DFM, because of the 
availability of SEM programs which facilitate the spe
cification of measurement models with contemporan
eous relations in the structural model.

In comparison, the SEM estimators based on block 
Toeplitz or the time-embedded data are good practice 
for estimating lag-1 and contemporaneous relations, 
but they are inefficient for complex dynamics such as 
higher-order lags in the observed or in the error term 
due to the data structure (very large and sparse 
covariance matrix to be computed). In contrast, KF 
are more flexible when modeling time-specific coeffi
cients or higher-order complex dynamic relations. 
Therefore, while uSEMs emphasize constant dynamic 
relations taking place instantaneously or at consecu
tive timepoints, SSMs allow for changing dynamic 
relations that may also last longer. Another benefit of 
KF is that subject-specific longitudinal factor scores 
are a by-product, which provides a reasonable 
approximation to the true factor scores (Chow et al., 
2010). While in the traditional SEM methods, an add
itional step is needed to compute the factor scores fol
lowing traditional methods such as Bartlett (Bollen, 
1989). This is an issue in some current SEM methods 
that we aim to resolve in our proposed method.

Differences are also seen in the statistical properties 
of the parameter estimates obtained by the different 
approaches. The SSMs with KF produce unbiased ML 
and standard error estimates, because the within-per
son time dependency in the data is accounted for 
explicitly. In contrast, pseudo-ML estimates obtained 
under the SEM are consistent estimators under the 
weakly stationary assumptions, but the unbiasedness 
property is more mixed. Studies by Hamaker et al. 
(2002), van Buuren (1997), and Zhang et al. (2008) 
found a consistent pattern in the investigation of SEM 
estimates for TSD with large T: the pseudo-ML esti
mates were asymptotically unbiased for VAR parame
ters associated with observable variables; however, the 
estimates associated with the MA part of a VARMA 
model or a pure MA model were biased. Since our 
investigation will focus on only the VAR parameters, 
this downside of pseudo-ML estimators from SEM 
does not matter to the current case.

In summary, SEMs and SSMs are very general 
modeling approaches for DFMs, representing the 
dynamic relations of a set of latent and manifest vari
ables. For the current work, SEM is a convenient 
choice to represent simultaneous structural relations 
among observed and latent variables and it can be 
generalized to define the measurement model struc
tures. In contrast, SSMs are better suited when the 
purpose is to represent more complex intraindividual 
dynamics with restricted contemporaneous relations. 
Because our intention is to maximize the flexibility in 
the directionality of contemporaneous relations, rather 

2The term “pseudo-ML” in the current work specifically refers to the 
application of using maximum likelihood estimation for TSD where the 
independence assumption is violated due to temporal dependence 
between repeated observations, as used in time series literature such as 
Molenaar and Nesselroade (1998).
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than having complex dynamics with longer lags, we 
limit our current extension and investigation to SEM- 
based approaches.

Latent variable group iterative multiple model 
estimation

Latent Variable Group Iterative Multiple Model 
Estimation (LV-GIMME; Gates et al., 2020) is one of 
the most flexible model selection and estimation 
methods for exploratory DFM that operates under 
the SEM framework with pseudo-ML estimation. LV- 
GIMME adopts the first-order DAFM model or the 
DFM ðp, q, 0, 0, 1Þ with lag-1 relations only between 
latent factors in the structural or latent variable 
model. The DAFM makes the interpretation and the 
implementation of LV-uSEM simpler, because the 
dynamic relations are between factors, which can be 
separate from the measurement model where factors 
are extracted from indicators at the same time. The 
dynamic relations between the latent variables in the 
LV-uSEM are comparable to those among the observed 
variables in the uSEM model, with the exception that 
these dynamic relations take account of measurement 
errors in the observed variables. Because our aim is to 
compare approaches of single-subject dynamic models, 
we focus on individual TSD, that is, no group-level 
modeling or aggregation of individual models will be 
performed. In the remaining part of this paper, we 
refer to this model as LV-uSEM to distinguish from 
the LV-GIMME that can also apply to multiple subjects 
TSD.

In the measurement model, LV-uSEM adopts the 
general form of a first-order DAFM, i.e., DFM 
ðp, q, 0, 0, 1Þ: This part uses a confirmatory factor 
approach to obtain latent variables with the same 

qualitative meaning, i.e., K has the same structure but 
individual-specific parameter values across individuals. 
For each individual TSD:

Yt ¼ Kgt þ et , et � Nð0, HÞ: (3) 

In the structural or latent variable model, LV- 
uSEM inherits a uSEM structure (Gates et al., 2011; 
Kim et al., 2007) that “unifies” temporal ordering 
dependency and contemporaneous associations among 
the latent factors. This part of the model assumes a 
sparse structure (although unknown), and the estima
tion requires an exploratory search for the optimal 
sparse pattern. The following model specification and 
matrix notations follow a SEM convention that is 
used in Gates et al. (2017) and Ye et al. (2021).

g ¼ Bgþ f, f � Nð0, WÞ: (4) 

where g ¼ ½gt−1, gt� is a 2q� T matrix. That is, the 
factor variables are time-embedded by appending the 
data at t − 1 to the data at t. The data are thus 
expanded to two consecutive time points t − 1 and t, 
so time series vector of lagged (exogenous) factor vari
ables and those of contemporaneous (endogenous) 
factor variables are appended horizontally. This 
requires that the error vector f also be extended, as 
well as each of the corresponding matrices. Note that 
the estimator from the time-embedded raw data is 
also pseudo-ML due to temporal dependency between 
observations of TSD, which has essentially the same 
asymptotic properties as those obtained by the 
block Toeplitz matrix of the lagged auto-covariances 
(Molenaar, 1985).

The contemporaneous and lagged regression coeffi
cients collapse into a single 2q� 2q B regression coef
ficient matrix:

B ¼

0 � � � � � � � � � 0 0 � � � � � � � � � 0
..
. . .

. ..
. ..

. . .
. ..

.

..

. . .
. ..

. ..
. . .

. ..
.

..

. . .
. ..

. ..
. . .

. ..
.

0 � � � � � � � � � 0 0 � � � � � � � � � 0
/11 � � � � � � � � � /1q 0 a12 � � � � � � a1q

..

. . .
. ..

.
a21

. .
. . .

. ..
.

..

. . .
. ..

. ..
. . .

. . .
. . .

. ..
.

..

. . .
. ..

. ..
. . .

. . .
.

aðq−1Þq
/q1 � � � � � � � � � /qq aq1 � � � � � � aqðq−1Þ 0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
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C
C
C
C
C
C
C
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A
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in which the upper left q� q and the upper right 
q� q matrix block coefficients are set to zero for 
lagged factor variables. That is, no factor variable at 
time t directly predicts a factor variable at time t − 1, 
and factor variables at time t − 1 cannot predict each 
other. The lower left and right blocks are U parame
ters for lag-1 relations and A for contemporaneous 
factor variables at time, respectively.

The error matrix W is a diagonal matrix represent
ing an independent white noises:

where the upper left triangle (Wt−1) contains freely 
estimated variance and covariances among the lagged 
factor variables, and the lower right triangle (Wt) is 
the variance and covariance matrix of factor residuals. 
Note that the covariances among factor residuals are 
set to zero to represent conditional independency. 
These matrices provide the foundation from which 
the extension to the latent variable hybrid uSEM is 
developed.3

A note on the level of heterogeneity across 
individuals
It is possible that individuals vary both in the latent 
constructs as well as the relations among latent 

factors, a scenario where ergodicity does not hold. 
But the interpretation of the dynamic relations is 
hard to generalize across people if the latent factors 
stand for completely different constructs. For this 
reason, usually some sort of partial ergodicity 
assumption is imposed. For instance, a typical prac
tice in the GIMME framework is to have a qualita
tively homogeneous and quantitatively heterogeneous 
measurement models (i.e., same nonzero pattern yet 
individual-specific estimates in K) to ensure the 

same substantive meaning of the latent factor with 
some levels of individual variability (Gates et al., 
2020). To maximize heterogeneity in the dynamic 
patterns, the structural models represent entirely 
idiographic dynamic processes (i.e., person-specific 
B), suggesting partial ergodicity only in the measure
ment model. Note that this setting is opposite to the 
practice in idiographic filter DFM (Molenaar, 1985; 
Nesselroade et al., 2007), where the measurement 
model structure and factor loading are allowed to 
vary across individuals on the condition that the 
structural patterns among the latent variables remain 
invariant across people, a case of partial ergodicity in 
the dynamic (structural) model. This is a critical dis
tinction since previous literature has pointed to great 
variability across individuals both in how constructs 
are measured and how they relate to each other 
(Epskamp et al., 2018; Gates et al., 2020; Hamaker 
et al., 2005). GIMME represents a very flexible 
approach that maximizes heterogeneity in dynamic 
patterns across individual DFMs. For this reason, our 
method stands on the same idiographic ground as 
does GIMME.

W ¼

w11

w21
. .

.

..

. . .
. . .

.

..

. . .
. . .

.

wq1 � � � � � � wqðq−1Þ
. .

.

0 � � � � � � � � � 0 . .
.

..

. . .
. ..

.
0 . .

.

..

. . .
. ..

. ..
. . .

. . .
.

..

. . .
. ..

. ..
. . .

. . .
.

0 � � � � � � � � � 0 0 � � � � � � 0 wð2qÞð2qÞ

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
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C
C
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C
A

2q�2q 

3We note that the full LV-uSEM in the above specification is an over- 
parameterized model. That is, if all the free parameters are nonzero, the 
model has negative degree of freedom and is under-identified. An 
underlying assumption is that the true DGM is a sparse model where 
many parameters in B and W are zero elements. This is why model 
selection are implemented in these modeling approaches to identify the 
sparse pattern. This is also where the advantage of the stepwise 
searching in LV-GIMME (Gates et al., 2020) and the LASSO-regularization 
in hybrid uSEM (Ye et al., 2021) lies: that is, the model search algorithm 
can recover the optimal sparse model when the full model is under- 
identified.
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The pseudo-ML model selection in GIMME
The LV-uSEM operates under the SEM framework for 
DFM that uses a pseudo-ML based model building 
algorithm and the model-implied instrumental varia
bles with two-stage least squares (MIIV-2SLS; Fisher 
& Bollen, 1996; Fisher et al., 2019) for parameter esti
mation. Ideally, the specification for the structural 
(latent variable) model 3 should be guided by a priori 
theory. Unfortunately, very little is known about the 
individual dynamic pattern, besides that research has 
shown that the patterns vary across people (e.g., 
Nichols et al., 2014; Wright et al., 2015). As we noted 
before, model selection for a sparse model is needed 
to ensure identification of LV-uSEM. GIMME uses a 
data-driven forward selection algorithm where for 
every individual, it starts with a null model, and one 
path with the highest and significant modification 
indices is added iteratively until the model arrives at 
an acceptable fit (Gates et al., 2010). This model 
building procedure is automatic in the free open- 
source R package gimme (Lane et al., 2019).

The recommended estimation approach by LV- 
GIMME (Gates et al., 2020) is a sequential, three-step 
procedure: in the first stage, the measurement model 
is estimated with MIIV-2SLS, pseudo-ML, or PCA, 
and latent scores of factor series are derived through a 
regression method; the second stage is the general 
GIMME approach which involves a pseudo-ML based 
stepwise search to identify the sparse individual struc
tural models (i.e., uSEMs) with individualized patterns 
of dynamic relations amongst the latent factor series 
obtained from the previous step; finally, parameter 
estimates of the measurement and the sparse struc
tural model are obtained via MIIV-2SLS. The MIIV- 
2SLS has been shown to be more robust to model 
misspecification than the system wise ML estimations 
for traditional SEM (Bollen et al., 2007) and particu
larly for SEM under DFM framework (Fisher et al., 
2019).

The MIIV-2SLS estimation

Technical details of the MIIV-2SLS are available in 
Fisher and Bollen (1996); Bollen et al. (2021, 2007). 
Here we give a brief description of the MIIV-2SLS. 
Unlike system-wise full-information estimators such 
as maximum likelihood that estimates all parameters 
simultaneously, the MIIV-2SLS estimates one equation 
at a time. To start, the MIIV-2SLS transforms the 
latent variable model into one that contains only the 
observed variables (i.e., L2O) by substituting each 
latent variable with its scaling indicator minus its 

error as specified in the measurement model (Bollen 
et al., 2021). One assumption for the OLS estimator is 
that the composite error cannot correlate with any 
covariates of that equation, which is typically violated 
after the L2O transformation. A common way to solve 
the correlated error issue is to use instrumental varia
bles, i.e., variables that are uncorrelated with the com
posite error but correlate with the covariates that are 
associated with these errors. The special advantage of 
the MIIV-2SLS is that qualified instruments were 
drawn from other equation(s) within the system itself 
based on the model structure, hence it is called 
model-implied instrumental variables (MIIVs; Bollen 
et al., 2021). Finding qualified MIIVs is done auto
matically using the algorithm from Fisher & Bollen 
(1996) and is implemented in the R package MIIVsem 
(Fisher et al., 2020). Another advantage of the equa
tion-by-equation estimation is that, besides the v2 

tests of goodness-of-fit for the whole model, equation- 
wise overidentification test (e.g., Sargan’s v2 test; 
Sargan, 1958) is available when the equation has more 
than the minimum number of MIIVs. A rejection to 
the null hypothesis of the overidentification test sug
gests that at least one of the MIIVs fail to meet the 
conditions based on the current model specification, 
which is an evidence that some specifications of the 
model is in error (Bollen et al., 2021).

To estimate a LV-uSEM using MIIV-2SLS estima
tor under the GIMME approach, one convenience is 
that the latent factor variables are obtained prior to 
the estimation of the structural model and are treated 
as observed variables in the model selection and esti
mation for structural relations. In addition, the lagged 
latent factor variables are predetermined (exogenous) 
variables because no backward predictions from factor 
scores at time T to those at the previous time are 
allowed (recall the zero elements in the B matrix in 
Equation (4)). This setting of the lagged factor varia
bles guaranteed a minimum set of qualified MIIVs for 
the parameter estimates in the structural model.

The use of equation-by-equation estimation in 
MIIV-2SLS is particularly advantageous because it 
separates the estimation of the measurement model 
from the structural (latent variable) model so that the 
measurement model parameter estimates remain 
unaffected by heterogeneous structures in the latent 
variable model (Gates et al., 2020). Enabling individ
ual variability in the pattern of contemporaneous or 
dynamic relations among latent constructs allows for 
a better understanding of individual-centered proc
esses as they unfold over time. However, MIIV-2SLS 
is not a model selection tool, hence the MIIV-2SLS 
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estimation of the final sparse LV-uSEM is performed 
after the stepwise model selection procedure.

The current study

Model specification for hybrid relations

The uSEM framework is used to estimate single-sub
ject dynamic models with latent factors such as the 
DAFM. However, there are several areas that we pro
pose to extend the single-subject modeling under the 
GIMME framework. First, it is imperative to move 
from the restrictive VAR representation in the DAFM 
from a uSEM to the more flexible hybrid uSEM. That 
is, directed regressions and undirected error covarian
ces among contemporaneous latent factor variables 
should be incorporated simultaneously. Because not 
only can they co-exist, they can carry different causal 
interpretations as well as practical implications. 
Therefore, the first goal is to extend the structural 
model in LV-uSEM to the hybrid representation, i.e., 
LV-huSEM, by altering the residual covariance matrix 
W in Equation (4) to W� below:

Note that the lower-right matrix block, W�t , is now 
a symmetric matrix with contemporaneous variances 
w�i , i ¼ qþ 1:::2q of the factor residuals on the diag
onal (as seen in Wt). By substituting the off-diagonal 
0’s in Wt with parameters of contemporaneous 
residual covariance w�ij, i, j ¼ qþ 1:::2q, i 6¼ j, W is 
turned to W�: Each element in W�t are now candidates 
in the model search procedure. This relaxes the condi
tional independence assumption on the contemporan
eous errors of uSEM and allow the errors to be 
correlated. Additionally, the regression coefficient 

matrix B in Equation (4) is turned to B� with the 
same non-zero pattern yet perhaps different estimates, 
and the model-implied covariance matrix is now R�

derived by:

R� ¼ ðI − B�Þ−1
W�ðI − B�Þ−10 (5) 

Model search using LASSO regularization 
under SEM

Second, the forward selection method of model build
ing is highly dependent on the starting model and the 
intermediate steps, and can arrive at an arbitrary final 
model. Results from the simulation study in Ye et al. 
(2021) also showed that this approach tends to miss 
relations with moderate to medium strengths under 
the uSEM or hybrid uSEM with observed variables, 
even with the correct starting model and a large sam
ple size. Another critical downside unique to the cur
rent LV-GIMME is the sequential analysis that 
involves calculating factor scores. That is, factor scores 
of the latent variable series are obtained from the 

measurement model through the traditional Bartlett 
method (Bartlett, 2011) or regression methods 
(Thurstone, 1935) in a separate step prior to the 
model building and are treated as observed variables 
in the estimation of the structural model. For one, it 
has been shown analytically and numerically that a 
naïve use of factor scores as observed variables with
out correction leads to inconsistent and biased param
eter estimates in the context of linear regressions 
(Skrondal & Laake, 2001) or simultaneous equations 
(Croon, 2002). For two, this is essentially a P- 
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technique model (Cattell et al., 1947) that ignores the 
temporal dependency of the TSD, that is, a reduced 
DFM model without considering any lagged relations 
between the latent factors. Hence, the factor scores are 
systematically biased as they are drawn from a model 
divergent from the true data-generating model, in 
addition to the sampling error of calculating factor 
scores. In addition, there is a lack of knowledge about 
the impact of the measurement errors and random 
errors from the factor scores, regardless of the method 
of calculation, on model selection and estimation in 
simultaneous equations.

Regularization, in contrast, is a global, continuous 
model selection and a simultaneous estimation method. 
Regularization introduces sparsity by imposing a pen
alty term, the level of which is gauged by searching 
across a prespecified range of k values until the optimal 
k (hence the sparsity level) is reached such that the 
model has the least mean square error or the lowest 
BIC (Jacobucci, 2017; Ye et al., 2021). When using the 
least absolute shrinkage and selection operator (LASSO, 
aka the L1-norm penalty; Tibshirani, 1996), the sum of 
the absolute values of the parameters are shrunken 
toward zero as k increases, and they can eventually 
reach exactly zero. Hence, LASSO is often used in favor 
of a sparse model and to perform model selection. 
Previous simulations (Ye et al., 2021) demonstrated 
success in adopting the LASSO regularization to iden
tify a sparse huSEM with a high sensitivity (identifying 
true paths) regardless of the magnitude as well as a 
high specificity (eliminating zero relations). However, 
to the authors’ knowledge, LASSO regularization has 
not been implemented under the LV-uSEM context. 
Therefore, the current method seeks to replace the 
pseudo-ML stepwise searching and sequential estima
tion with the LASSO regularization for a simultaneous 
identification and estimation of the extended LV- 
huSEM.

To obtain the solution, a ML regularized cost func
tion is derived by adding the user-defined penalty 
function to the unregularized ML cost function:

FRegðhÞ ¼ FMLðhÞ þ kPðh�Þ (6) 

in which FMLðhÞ is the unregularized cost function 
computed from the model implied covariance R� in 
Equation (5). The set h includes all the parameters 
estimated in the model, while h� is the subset contain
ing user-specified parameters under penalization.

Post model selection estimation using MIIV-2SLS

Lastly, there is a lack of evaluation and comparison of 
these methods for the parameter estimation under 

data-driven model building procedures. Previous 
researchers have found that pseudo-ML estimates of 
individual DFMs obtained by the SEM approach 
showed higher biases and a tendency for inaccurate 
statistical conclusions compared with true ML esti
mates obtained from methods such as the SSM 
approach with KF estimator (Chow et al., 2010). But 
such evaluation was done on the correctly specified 
model, without potential biases associated with the 
model selection procedure. In addition, as an alterna
tive model selection and estimation method, the prop
erty of LASSO regularized estimates in the LV-uSEM 
context has not been studied. In theory, regularization 
methods have sacrificed some level of unbiasedness 
for efficiency, because all the parameters under pen
alty (including the unknown true ones) are shrunk at 
the same time. But this does not mean that the 
LASSO estimates are always more biased than unregu
larized pseudo-ML estimates, because penalization 
eliminates unnecessary variables and false relations 
that can also bias the estimates of the correct 
parameters.

Importantly, both the pseudo-ML and the LASSO 
regularization are system-wide estimator that are not 
robust to structural misspecifications because errors in 
one place can spread out to other parts of the model 
including those that are correctly specified (Bollen 
et al., 2021). Using a non-robust estimator to select 
the structural (latent variable) model would potentially 
impact final estimates in both the measurement model 
and the structural model. In contrast, the MIIV-2SLS 
is a limited-information equation-by-equation estima
tor that is more robust to structural misspecifications 
(Bollen et al., 2007). Indeed, the MIIV-2SLS has been 
shown to be more robust than the pseudo-ML for the 
estimation of a DFM when estimated under the LV- 
uSEM framework (Fisher et al., 2019; Gates et al., 
2020). Further, Bollen et al. (2018) has illustrated the 
analytic robustness conditions of the MIIV-2SLS esti
mator in SEM. Specifically, they found that misspecifi
cation errors from the structural (latent variable) 
model should not contaminate MIIV-2SLS estimates 
in the measurement model, whereas the impact of 
misspecifications in the measurement model on the 
structural model depends on its location (see Table 7, 
page 858 in Bollen et al., 2018).

This robustness property makes MIIV-2SLS an 
excellent choice for the estimation of sparse LV- 
huSEM when the heterogeneous, exploratory individ
ual structural models are conditioned on a common, 
confirmatory measurement model. Because under the 
assumption of the correctly specified measurement 
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model, the only source of misspecification comes 
from the structural model selection, which according 
to the robustness condition, will not bias the MIIV- 
2SLS estimates of the measurement model. This prop
erty, however, will not be guaranteed when system- 
wide estimators were used. That is, even though the 
measurement model is correctly specified, the errors 
from the misspecified structural model will likely bias 
pseudo-ML and LASSO regularization estimates of 
both the structural as well as the measurement model. 
Hence, the LV-GIMME research group adopted the 
MIIV-2SLS approach for the final parameter estima
tion post to the pseudo-ML based stepwise model 
search.

Therefore, to investigate consistent and robust esti
mation under possible heterogeneous misspecified 
structural models, we included the MIIV-2SLS as a 
post model selection estimation approach as well (i.e., 
parameter estimation after the optimal sparse LV- 
huSEM model is selected). Besides model recovery 
property, we also seek to compare unbiasedness and 
robustness behaviors of the pseudo-ML, the LASSO 
regularized, and the MIIV-2SLS estimators under the 
context of data-driven dynamic modeling. The current 
investigation will include the evaluations of these 
properties under the LV-huSEM with entirely idio
graphic structural models conditioning on a unified, 
confirmatory measurement model. Having an identical 
factor structure in the final LV-huSEM models across 
these methods ensures that the comparison of model 
recovery and parameter estimation for the dynamic 
relations are not contaminated by differences in the 
structure of latent factors.

The simulation study

In sum, the primary goal of the current study is to 
evaluate the different model building methods (pseudo- 
ML vs. regularization) with respect to model recovery 
as well as estimation approaches (e.g., pseudo-ML, 
regularization, and MIIV-2SLS) for unbiased and 
robust parameter estimations for a DAFM with a 
hybrid VAR representations (i.e., LV-huSEM). We 
designed a Monte Carlo simulation study to evaluate 
LASSO regularization and pseudo-ML approach with 
respect to model recovery as well as their properties for 
parameter estimation compared to those of MIIV-2SLS 
under the LV-huSEM context. The goal is to investigate 
the extent to which building LV-huSEM models with 
LASSO regularization and MIIV-2SLS estimation is 
superior to the pseudo-ML approach in terms of (1) 
sensitivity of finding the true dynamic relations in the 
structural model, (2) the specificity of excluding the 
false dynamic relations, and (3) the robustness of par
ameter estimates to structural misspecifications.

The Data Generating Model (DGM). With our focus 
on single-subject DFMs, the DGM is a five-factor 
DAFM with lag-1 hybrid VAR, i.e., hybrid types of 
contemporaneous relations among the latent factors for 
all individual TSD (see Figure 1). Following the prac
tice in LV-GIMME, we adopt a homogeneous measure
ment model as specified by Equation (3). Specifically, 
each factor has three unique indicators with no cross 
loadings or lagged relations. In the factor loading 
matrix K, the scaling indicator of each factor equals 1 
with the other two loadings set to 0.9 and 0.7, respect
ively. The error variance H is a standardized form (i.e., 
an identity matrix with variance restricted to 1). In the 
structural model, we include paths of different types 
and magnitudes to investigate the path recovery for 
hybrid dynamic relations in B and W�: That is, the 
contemporaneous relations amongst latent factors 
include both direct regression path (nonzero elements 
in A) as well as covariance between factors (nonzero 
elements off the diagonal of Wt); Besides AR process 
within each factor, cross-lag relations are also incorpo
rated (nonzero elements off the diagonal of U). We 
varied the magnitude of coefficients and covariances to 
examine whether these impact the recovery of the true 
DGM (the following parameter matrix applies to all 
simulation conditions).4

Figure 1. DFM: A time-invariant five-factor DAFM with a 
hybrid uSEM structure.

4The authors do not claim that the TSD generated by the LV-huSEM 
model with such combination of these parameter values returns a typical 
dynamic process in practice. In fact, we adopt this simplified model 
structure with sparse relations for the illustration purposes. In the 
Discussion section, we discuss the generalization of our results to more 
complicated situations that could be found in empirical data.
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To investigate the influence of sample size on the 
performance, data is generated from the same DGM 
using time lengths varying from 60, 200, to 1,000, rep
resenting a range from small to large in practice. This 
is to be consistent with the simulation design in a pre
vious evaluation on regularized huSEM (Ye et al., 
2021). That is, the choice of these design factors are 
decided such that they represent data structure and 
characteristics of time series data in psychological and 
psychophysiological research. For example, although 
60 might appear small in panel or cross-sectional 
data, it would be moderately large in time series such 
as daily dairy. Note that only the number of time
points is crossed design, the other factors are investi
gated within one model. All the DGMs will be 
replicated 1,000 times, resulting in 3,000 datasets. The 
weak stationary test on the factor series was per
formed in the data generating process, i.e., we tested 
that all eigenvalues of the AR weight matrix, i.e., 
ðI − AÞ−1

U, have modulus less than one (L€utkepohl, 
2005). All analyses will be performed in R, codes are 
released and made publicly available on the Open 
Science Framework site.

Analytic procedure
For the pseudo-ML approach, confirmatory five-factor 
measurement models are estimated by pseudo-ML in 
lavaan or by MIIV-2SLS in MIIVsem, and factor 
scores are obtained by the default regression method 
of the ‘lavPredict’ function in lavaan. These factor 
score series will enter the subsequent structural model 
for model selection using pseudo-ML forward search 
in the GIMME package, function indSEM. The differ
ence from the original setting in LV-GIMME is that 

here the starting structural model is a huSEM (with 
the covariance matrix w�) instead of the more 
restricted uSEM (with w). Additionally, we focus on 
individual models and no group level model is consid
ered. For this reason, we refer to this method 
“pseudoML-FS-huSEM” to indicate it uses modifica
tion indexes for the search of sparse huSEM model 
using the factor scores.

For the proposed method, the LV-huSEM under 
LASSO regularization (i.e., LASSO-LV-huSEM) will be 
implemented under the regularized SEM framework. 
After the LV-huSEM model structure is specified in 
lavvan, regsem can import the lavvan output, i.e., the 
unregularized ML cost function FMLðhÞ derived from 
Equation (6), and perform LASSO regularization with 
the user-defined list of parameters in the penalty func
tion kPðh�Þ: Note that in LASSO-LV-huSEM the 
model selection and estimation are performed simul
taneously on both the measurement and the structural 
(latent variable) model. To ensure that factor series 
represent latent constructs that are consistent with 
those of “pseudoML-FS-huSEM”, the same confirma
tory factor structure is estimated without penalty. 
Parameters in the measurement model (e.g., factor 
loadings) belong to the freely estimated set in h but 
not in set h�: Parameters in the set h� are regression 
coefficients for cross-lagged effects and contemporan
eous effects (coefficients in the B matrix except the 
diagonal elements of the lower left block matrix U to 
free up AR coefficients) as well as the error covariance 
among contemporaneous latent factors (i.e., off-diag
onal elements in the lower right block matrix W�:

Ideally, the optimal k (with the lowest BIC) penalizes 
all unnecessary parameter(s) to zero and estimates the 
remaining parameter(s), unraveling the true type of 
relation between any two latent factors from five pos
sibilities: two cross-lagged effects, two directed con
temporaneous regression coefficients, and one 
undirected contemporaneous error covariance.

Two additional methods were included in the ana
lysis to account for the confounding factor from the 
use of factor scores in the “pseudoML-FS-huSEM” 
method. The first one is to repeat the huSEM model 
search and estimation using factor scores obtained 
from the DGM (i.e., LV-huSEM) which we call 
“pseudoML-DGM-FS”. By using the population 
parameters from the DGM, it could reduce the biases 
because the population parameters remove sampling 
error of the parameter estimates that are part of gen
erating the factor scores. But note that factor score 
estimates would still differ from the latent variables – 
the problem is the measurement errors that are part 
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of the indicators that form the factor scores. In reality, 
however, the true model is unknown and so it is 
impossible to implement this method without error. It 
is included in the simulation to determine if the use 
of factor scores improves when population parameters 
are part of their calculations. Another confounding 
factor lies in the comparison of “pseudoML-FS- 
huSEM” (i.e., using pseudo-ML) and “LASSO-LV- 
huSEM” in their ability to select and estimate true 
relations and eliminate false ones in the structural 
model is the fact that the pseudo-ML is subject to 
measurement errors and random errors in the factor 
scores, while LASSO regularization simultaneously 
estimates the measurement and structural (latent vari
able) models without calculating factor scores. To 
account for that difference which confounds the com
parison between pseudo-ML and LASSO regulariza
tion, we included an additional analysis to apply 
LASSO regularization on a huSEM using the same 
factor scores from the five-factor measurement model 
as we did in the pseudo-ML approach, i.e., “LASSO- 
FS-huSEM”. In that case, “LASSO-FS-huSEM” and 
“pseudoML-FS-huSEM” only differ in their model 
selection and estimation methods but not how the 
measurement model and starting structural model 
are constructed. While the difference between “LASSO- 
FS-huSEM” and the generic proposed method 
“LASSO-LV-huSEM” informs the impact of measure
ment errors from factor scores instead of latent 
variables.

Finally, recall that both pseudo-ML and LASSO 
regularization are for both model selection and esti
mation. But given the potential biases introduced by 
the model selection procedure and the robustness 
property of the MIIV-2SLS, the latter is also included 
as a post model selection estimation. That is, after the 
final sparse LV-huSEM is selected, it will be estimated 
again using the MIIV-2SLS to obtain the final param
eter estimates of both the measurement and the struc
tural (latent variable) models. In terms of the selection 
of MIIVs for each equation when the number of 
MIIVs exceed the minimum number required for 
model identification, previous simulations studies 
(e.g., Bollen et al., 2007) found that using one add
itional MIIV than the minimum number produces the 

least biased estimation at small sample size conditions, 
but matters less in large samples. We chose to adopt 
this approach for the MIIV-2SLS estimation in the 
current simulation, given that the examination 
includes small to moderate sample sizes. We refer to 
this approach MIIV-2SLS-DF1 to indicate the one 
degree of freedom in the overidentification Sargan’s 
test. With these investigations, we could examine 
which combination of model selection and estimation 
regime is the overall optimal practice, accounting for 
the treatment of the measurement model. The analyt
ical steps and differences for the four methods are 
summarized in Table 1.

Evaluation measures
We use sensitivity and specificity to evaluate the 
accuracy of recovering relations with the correct direc
tion. Sensitivity and specificity are common outcome 
measures in network research (e.g., Abegaz & Wit, 
2013; Epskamp & Fried, 2016). Sensitivity is calculated 
by the ratio of the true positive count discovered in 
the search over the sum of all true relations in the 
DGM (i.e., true positives and false negatives). 
Sensitivity represents the power to detect true rela
tionships. In this paper, because the starting model is 
the more flexible LV-huSEM with all the free parame
ters in the extended W� and B�, we do not distinguish 
path sensitivity from direction sensitivity. That is, 
only the relations that are recovered with the correct 
direction are recorded. Essentially, the sensitivity con
cept here is equivalent to the direction sensitivity in 
Ye et al. (2021). Specificity, in comparison, is calcu
lated by the ratio of true negative count over the sum 
of negatives in the DGM (i.e., the sum of true nega
tive count and false positive count). This represents 
the percentage of non-existing paths in the DGM that 
the search procedure accurately omitted in the final 
model. These measures allow for a global evaluation 
of a model’s ability to detect true recovery and to 
reject false ones. In both sensitivity and specificity 
measures, higher values indicate better performance in 
the selection of true data-generating relations.

However, from previous observations, sometimes a 
relation between two variables will be recovered with 
a misspecified direction. For example, at the presence 

Table 1. Two framework for LV-huSEM: Model build and estimation approaches.
Modeling framework LASSO regularization pseudo-ML

Method name LASSO-LV-huSEM LASSO-FS-huSEM pseudoML-FS-huSEM pseudoML-DGM-FS
Analysis procedure Simultaneous Sequential Sequential Sequential
Measurement model confirmatory factor scores factor scores factor scores (DGM)
VAR model build LASSO penalty LASSO penalty Forward stepwise Forward stepwise
Parameter estimate LASSO/MIIV-2SLS n/a Pseudo-ML/MIIV-2SLS n/a
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of a directed relation between two contemporaneous 
factors (e.g., Yt, 1 ! Yt, 2), an alternative relation such 
as a reversed sign (Yt, 1  Yt, 2) or as lagged 
(Yt−1, 1 ! Yt, 2 or Yt−1, 2 ! Yt, 1) or as undirected 
covariance (Yt, 1 $ Yt, 2) might be selected by the 
model. In some scenarios, it is better to have another 
form of relation from the true form than completely 
missing the relations, but not always. For example, if 
a direct path between two variables is missed, having 
a covariance or a lagged path with the correct direc
tion in the selected model is more informative than 
having no relation; however, if the directed path with 
the reversed sign is recovered, the information is mis
leading (i.e., a wrong causal implication). Sometimes, 
a relation with one or two wrong directions could be 
selected instead when the sample size is too small and 
the sampling error is large, but other times one or 
more could also be selected in addition to the true 
direction when the sample size is large. To investigate 
this behavior in relation to model selection methods 
and across sample sizes, we calculate relation-specific 
“direction false positive”: the percentage of time where 
there are at least one misspecified directions in rela
tion to a given true relation being selected in the final 
model. Accordingly, we distinguish the overall model 
specificity with the one that eliminate the “direction 
false positive” related to true relations, the authors 
refer to them as direction specificity (more stringent) 
and path specificity (more lenient), respectively.

To examine unbiasedness and robustness, we will 
exam the relative bias measure. We calculate the 
mean relative bias (RB) for each parameter as the dif
ference of the actual estimate and the true value div
ided by the true value, averaged across the cases when 
the path is recovered by the model (i.e., nonzero). 
Hence, this is a RB rate conditional on the path 
recovery. When using MIIV-2SLS, the equation level 
over-identification test (i.e., Sargan’s v2 test) is avail
able. The Sargan’s v2 test informs whether the MIIVs 
are uncorrelated with the error term of the corre
sponding equation. Rejection of the null hypothesis 
suggests that one or more of the MIIVs are inappro
priate. This could occur if the equation is misspecified 
or if another part of the model is misspecified and 
this leads to one or more incorrect MIIVs for the 
equation. A significant Sargan test cannot definitely 
tell which of these is true, but it does alert the 
researcher to the potential of inconsistent coefficients 
estimators. Following previous literature (Fisher et al., 
2019), we are interested in two properites: (1) the stat
istical power of the Sargan’s v2 test when at least one 
of the MIIVs for an equation is wrong, and (2) the 

Type I error rate of the Sargan’s v2 testwhen all 
MIIVs are valid. Consistent with literature, we will 
use an a of 0.05 for both circumstances. The aim is to 
evaluate the RB and robustness behaviors under dif
ferent misspecified structural models as recovered by 
pseudo-ML, regularization, versus MIIV-2SLS. From a 
practical point of view, the convergence behaviors for 
each method will be recorded and compared.

Results

Model convergence

Some datasets caused nonconvergence when the 
LASSO regularization or the pseudo-ML approach 
estimates a LV-huSEM. These datasets were dropped 
from the analysis of the outcome measures below. It 
was observed that out of the 1000 datasets, there were 
10.9%, 7.3%, and 7.1% that did not converge for the 
one-step LASSO-LV-huSEM method 5 at sample sizes 
N¼ 60, 200, 1000, respectively. These rates were 
increased to 21.9%, 14.5%, 8.3% (respectively) when 
we used the two-step LASSO-FS-huSEM method. The 
pseudo-ML method using factor scores from a five- 
factor measurement model did not converge for 2% 
datasets at N¼ 60. All the other conditions converged. 
It is clear that the model using LASSO regularization 
using a starting model of a full LV-huSEM (with all 
the parameters included) has a higher chance of 
model nonconvergence compared to those using the 
pseudo-ML method that starts with a null model and 
a much small model specification (as the estimation 
of the measurement model is separate from that of 
the structural model).

Sensitivity and specificity

Let us first turn to the sensitivity for recovering true 
relations of the DGM from the starting LV-huSEM 
(i.e., confirmatory measurement model and an 
exploratory structural model with all the free parame
ters denoted in B and w�). All the methods showed 
an excellent sensitivity for lag-1 effects regardless of 
the sample size (see Figure 2). Besides lag-1 relations, 
the probability to recover another true path by any 
method depends largely on the sample size: the recov
ery rates were low when the sample size was small 
(N¼ 60), overall acceptable at a medium sample size 

5Running the LASSO-LV-huSEM for a single TSD from the DGM (N ¼ 200) 
in R using the regsem package, following the procedure as described in 
this paper, takes approximately 10 minutes. This estimate is based on the 
following hardware configuration: Apple M1 Pro @ 3.06 GHz 1 Processor 
with 8 Cores with 16Gb SSD.
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(N¼ 200) and satisfactory given a large sample size 
(N¼ 1000). Specifically, between the two generic 
methods of our interest, i.e., the pseudo-ML using fac
tor scores (pseudoML-FS-huSEM) and the proposed 
LV-huSEM under LASSO regularization (LASSO-LV- 
huSEM), the performance of recovering a small 
directed path or a covariance relation were similar; 
however, LASSO-LV-huSEM showed an overall higher 
sensitivity to strong relations (i.e., directed, covari
ance, and cross-lagged relations) when given a 
medium or large sample size. Surprisingly, pseudoML- 
FS-huSEM performed poorly in recovering the strong 
directed path even with a large sample size. A closer 
examination revealed that the majority of time the 
model tended to recover a true strong directed path 
as a covariance relation and sometimes as a reversed 
sign directed path (hence a high rate of direction false 
positive, see Figure 3). This is a scenario of a recovery 
that counted as a “path presence recovery” but not as 
a “direction recovery” in the simulation of Ye et al. 
(2021). Note that the distinction was emphasized there 
because the investigation involved more restricted 
starting models such that some types of relation were 
misspecified one way or another, their presence can 
only be recovered by an alternative form between the 

two variables. It is not the case here where both meth
ods used the true starting structural model (i.e., 
huSEM) for the search.

Turning to the impact of the type of factor score, it 
seemed that when a true DGM model (i.e., LV- 
huSEM) was used to obtain the factor scores for the 
subsequent pseudo-ML analysis (i.e., pseudoML- 
DGM-FS), the overall model recovery performance of 
the strong relations was much better than those from 
using the factor scores of a confirmatory measurement 
model alone. This suggests using estimated parameter 
values for the factor scores affect the recovery of the 
structural relations amongst the factors. Overall, 
LASSO-FS-huSEM had the best sensitivity perform
ance of all the methods in Figure 2. This suggests that 
separating the measurement model from the structural 
(latent variable) model using factor scores as observed 
actually increased the chance of recovering the struc
tural relations amongst the latent factors.

Next, we examined the path-specific “direction false 
positive rate”, defined as the chance of recovering a 
true association yet with a wrong direction (refer to 
the Evaluation Measures section for the more detailed 
description). Not surprisingly, it was observed that 
some relations were recovered with a wrong direction 

Figure 2. Sensitivity of path recovery by path type and strength across sample size. 
Note: Small.Dir¼ small directed path, Large.Dir¼ large directed path, Small.Cov¼ small covariance relation, Large.Cov¼ large 
covariance relation, CL¼ cross-lag effect, Lag-1 ¼ lag-1 effect.
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when the sample size was small. However, even when 
the sample size was sufficient and in many cases the 
true path was recovered, sometimes additional paths 
might still be selected when there existed a strong cor
relation between the two variables. Hence, direction 
false positive rates did not necessarily go down with 
the increase of sample size (Figure 3). Overall, except 
for cross-lagged relations, pseudo-ML methods had 
higher direction false positive rates in relation to the 
true paths in the DGM than did LASSO methods. 
This is partly the reason that pseudoML-FS-huSEM 
had very poor sensitivity under some conditions. That 
is, some relations were recovered only with a wrong 
direction or type of relation. For instance, at sample 
size of 200 and 1000, both the LASSO-LV-huSEM 
(around 12–17%) and pseudoML-FS-huSEM (around 
20–34%) methods had some tendency to recover a 
directed path at the presence of a true covariance rela
tions between two contemporaneous factors. More 
problematically, pseudo-ML showed a high chance 
(67% at N¼ 200 or 96% at N¼ 1000) of recovering a 
reversed signed directed path or a covariance when 
there existing a strong directed path. Using the factor 
scores from the DGM (i.e., pseudoML-DGM-FS) did 
not decrease the chance of false positive directions. In 

fact, using LASSO on the factors scores to select the 
structural model seemed to also introduce more direc
tion false positive than the one-step LASSO-LV- 
huSEM model. These consistent observations that all 
methods using the factor scores showed a higher rate 
of direction false positive than their counterparts sug
gested that the issue of a wrong direction recovery of 
true relations is very likely tied to the use of factor 
scores in place of the latent variables.

Both generic methods reached a path specificity 
above 90% (see Figure 4), suggesting they are reliable 
in rejecting false paths that were unrelated with those 
pairs of variables that have a true relation of another 
form or direction. However, the direction specificity 
(i.e., the odds of ruling out any path when it is truly 
false) dropped quite a bit for pseudoML-FS-huSEM (to 
around 72–77%) or any method that used factor scores. 
This is again because there was quite an amount of dir
ection false positive paths in relation to true paths.

Conditional relative bias

Overall, the post model selection MIIV-2SLS estima
tion was the least biased for parameter estimates of 
contemporaneous relations in the structural model, 

Figure 3. Direction false positive by path type and strength across sample size. 
Note: Small.Dir¼ small directed path, Large.Dir¼ large directed path, Small.Cov¼ small covariance relation, Large.Cov¼ large 
covariance relation, CL¼ cross-lag effect.
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even though the estimates of small relations from any 
method were highly biased at a sample size of 60. In 
comparison, the LASSO penalized LV-huSEM meth
ods produced the most unbiased estimates for freely 
estimated parameters, i.e., lag-1 autoregressive effects 
within each latent factor as well as factor loading in 
the measurement model, even at a small sample size 
as low as 60. Two methods produced similar results 
for cross-lagged effect among latent factors. 
Particularly, at a sample size of 200 and 1000, the 
conditional mean relative biases of lag-1 from LASSO- 
LV-huSEM were only 4.6% and 1.6%, respectively. 
The mean RBs of factor loading estimates were as low 
as under 1.8% at N¼ 200 or under 0.4% at N¼ 1000. 
When sample size was large, MIIV-2SLS-DF1 also 
produced estimates with small biases on average for 
factor loading estimates (under 5%), but the mean 
RBs were higher than those from LASSO-LV-huSEM 
at a small to moderate sample size (e.g., around 20% 
for MIIV-2SLS-DF1 compared to around 10% for 
LASSO-LV-huSEM at N¼ 60, or 12% versus 2% at 
N¼ 200, respectively). However, for the parameters 
under penalty in LASSO-LV-huSEM or LASSO-FS- 
huSEM (i.e., contemporaneous effects in the structural 
model), estimates were on average more biased (e.g., 
ranged from 20% to 40% at N¼ 1000) than those 
from MIIV-2SLS-DF1 (e.g., ranged from 5% to 18% at 
N¼ 1000), which was as expected given they were 
under penalty in LASSO methods while being freely 

estimated by the MIIV-2SLS after the model selection 
(Figure 5).

The comparisons between LASSO methods and 
pseudo-ML methods were mixed across different types 
and strengths of relations. For example, for lag-1 and 
cross-lagged estimates, pseudoML-FS-huSEM esti
mates produced larger biases (e.g., mean RBs was 
between 50 to 60% even at N¼ 200 or 1000) than did 
LASSO estimates (e.g., mean RBs ranged from 2% to 
13% at N¼ 200 or 1000). Evidence that some of the 
biases come from errors in factor scores is that 
pseudoML-DGM-FS using factors scores from the 
DGM produced much less biased estimates than did 
pseudoML-FS-huSEM (using factor scores from a 
five-factor measurement model). The true DGM is 
not known so the pseudoML-DGM-FS is never avail
able, but we include it here to illustrate the impact of 
forming factor scores from estimated rather than true 
parameter values. However, this pattern did not apply 
to all types of parameters. For instance, the two 
pseudoML methods produced similar and slightly less 
biased estimates than did the two LASSO for small 
directed and large covariance relations at each sample 
size level, although all of them were still more biased 
than those from MIIV-2SLS. This suggests that errors 
in factor scores could introduce additional biases in 
some (e.g., lagged relations) but not all types of rela
tions. However, all the pseudoML and LASSO esti
mates were largely biased for small covariance 

Figure 4. Path and direction specificity in the model by sample size.
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relations even with a large sample size (mean RBs 
ranged from 40% to 70%). The RBs of these estimates 
were also associated with a large variability across rep
lications, indicating a substantial amount of influence 
from the sampling error. Therefore, MIIV-2SLS-DF1 
is particularly useful to obtain less biased estimates for 
moderate or small structural relations.

One interesting observation is that mean RBs of 
pseudo-ML estimates did not show the same asymp
totic trend as did LASSO estimates or the MIIV-2SLS 
estimates. Increased sample size was associated with a 
decrease in the mean RBs in LASSO estimates and the 
MIIV-2SLS estimates across all parameters, but the 
mean RBs of pseudo-ML estimates were not so con
sistent. For example, the mean RBs of lag-1 and cross- 
lagged even went up as sample size increased. This 
suggests that the source of biases in pseudo-ML esti
mators do not just come from sampling error. This is 
more evidence of impact of systematic errors in the 
factor scores. As another way to investigate the short
coming of using the factor scores instead of latent var
iables, we need to examine results between the two 
LASSO methods in which the only difference is that 

one uses factor scores (LASSO-FS-huSEM) while the 
other estimates a latent variable model simultaneously 
with a measurement model (LASSO-LV-huSEM). It 
seemed that the use of factor scores did not necessar
ily affect biases in the parameter estimates, as the 
overall mean RBs were similar between the two 
LASSO methods; however, in some cases the variabil
ity of RBs was larger in LASSO-FS-huSEM than that 
from LASSO-LV-huSEM, particularly when sample 
size was small. This seems to suggest that sampling 
errors and measurement errors in factor scores might 
not affect the average accuracy of the parameter esti
mates of the structural model in a systematic way, but 
it affects the consistency of the estimates such that 
they are less consistent at an increasing sampling fluc
tuation than methods using latent variables.

The overidentification test

We evaluated the finite sample properties of Sargan’s 
v2 overidentification test of MIIVs. The current exam
ination involves the specificity (i.e., true negative) as 
well as sensitivity to wrong MIIVs (i.e., the statistical 

Figure 5. Conditional relative bias (100%) by path type and strength across sample size. 
Note: Y-Axis “value” refers to “Conditional Relative Bias (100%)”. Small.Dir¼ small directed path, Large.Dir¼ large directed path, 
Small.Cov¼ small covariance relation, Large.Cov¼ large covariance relation, CL¼ cross-lag effect, Lag-1 ¼ lag-1 effect, 
Large.FL¼ factor loadings of .9, Med.FL¼ factor loadings of .7.
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power of the Sargan’s v2 test when at least one of the 
MIIVs for an equation is wrong). We investigated the 
case where a wrong MIIV was included due to an 
omitted true relation in the model. For instance, the 
omission of the directed contemporaneous relation 
from factor one to factor four will render a wrong 
inclusion of the scale indicator of factor one in the 
structural equation of factor four. Even though a sig
nificant Sargan’s Test does not suggest the equation 
per se is incorrect, it offers evidence that one or more 
MIIVs of that equation are incorrect. This in turn 
indicates errors in the model specification that led to 
these MIIVs. In contrast, passing the Sargan test is 
consistent with a correctly specified equation and 
valid MIIVs for that equation. We found that the spe
cificity was around 95–97%. In other words, as 
expected there was less than 5% of rejection rate in 
which Sargan’s v2 test incorrectly identified a wrong 
selection of MIIVs when in reality the model was cor
rectly specified and all MIIVs were correct. This sug
gests accurate Type I error across the sample sizes 
considered here. For the test sensitivity, i.e., when a 
true relation was omitted from the model and hence a 
wrong MIIV set would be included in the correspond
ing equation, the Sargan’s test rejected the problematic 
equation at the rates of 59% at N¼ 60, 66% at 
N¼ 200, and 92% at N¼ 1000, respectively. This sug
gests that the test has a moderate power to detect a 
wrong MIIV at a small to medium sample size, but 
can do so at a very high rate when the sample size is 
large.

Discussion

The current study serves to advance and investigate 
the model search and estimation for a single-person 
DFM with a hybrid VAR representations. Three goals 
were achieved in the proposed framework. First, we 
extended the structural model of the latent variable 
uSEM (LV-uSEM) to its hybrid uSEM version, i.e., the 
latent variable hybrid uSEM (or LV-huSEM). In this 
way, the extended LV-huSEM estimates a DFM with 
hybrid contemporaneous relations in the structural 
model. When restrictions on the contemporaneous 
relations between the latent factors are relaxed, struc
tural and covariance relations can be simultaneously 
estimated. Second, LASSO regularization in replace of 
previous pseudo-ML-based stepwise model search is 
used to perform both model selection for the optimal 
sparse latent variable hybrid uSEM, and a simultan
eous estimation for a freely estimated confirmatory 
measurement model and an exploratory structural 

model (with LASSO penalty on the structural paths 
and covariances between the contemporaneous latent 
factors). Compared to previous approaches, where 
measurement model and structural model are esti
mated sequentially with a stepwise model search pro
cedure using factor scores obtained prior to the model 
selection (e.g., LV-GIMME6; Gates et al., 2020), the 
current method provides a model search on a con
tinuum and a simultaneous estimation without calcu
lating factor scores. Finally, to obtain final parameter 
estimates, the selected sparse LV-huSEM is estimated 
via a limited-information estimator, the MIIV-2SLS 
(Fisher & Bollen, 1996; Fisher et al., 2019). The post 
model selection MIIV-2SLS estimation is chosen for 
its robustness property under model structural mis
specification (Bollen et al., 2007), which is particularly 
advantageous for the estimation of sparse LV-huSEM 
selected in a data-driven manner. The source of biases 
in the parameter estimates under the current context 
includes (1) model structural misspecifications result 
from model selection, (2) the LASSO penalty in the 
regularized LV-huSEM, or (3) errors of factor scores 
(if under the LV-GIMME framewrork). The goal is to 
obtain less biased final parameter estimates of the 
selected sparse latent variable hybrid uSEM.

A simulation study was conducted to investigate to 
what extent the novel estimation method for the LV- 
huSEM models, i.e., a LASSO regularization model 
build and post model selection MIIV-2SLS estimation, 
is superior to the pseudo-ML approach similar to the 
single-subject model in the LV-GIMME framework. 
For model recovery, the simulation results revealed 
that the pseudo-ML and the LASSO regularization 
have comparable recovery rates for some relations 
such as lagged effects and small contemporaneous 
effects among factors, and they both are reliable in 
recovering a close-to-true structural model when the 
sample size is medium to large. The impact of factor 
scores on model selection under the SEM context was 
largely unknown. Even though that the LV-GIMME 
study (Gates et al., 2020) found that the path recovery 
performance does not seem to be related to what 
approach was used to derive the factor scores, there is 
no comparison with a simultaneous estimation 
method without the use of factor scores. In addition, 
the evaluation was on a restricted DFM, i.e., LV- 
uSEM with only directed contemporaneous relations 
among factors, which might not apply to the recovery 
of the more complicated model, LV-huSEM in which 

6Since the current focus is on individual models without using the group 
level modeling in the LV-GIMME framework (Gates et al., 2020), the 
authors referred to the compared method as pseudo-ML method.
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the recovery of a true relation between two variables 
involves a selection among five possible parameters. 
Indeed, we found that the pseudo-ML methods using 
factor scores have a higher chance to commit a direc
tion false positive on strong directed relations, that is, 
a tendency to recover a strong directed as one with a 
reversed direction or as an undirected covariance rela
tion. This low direction specificity seems tied to the 
estimation of the factor scores. And it is shown that 
the performance is improved when with factor scores 
from the DGM, although the use of such factor scores 
is still different from the latent variables (due to the 
measurement errors from the part of the indicators 
that form the factor scores). Further, in the additional 
analysis of applying LASSO regularized hybrid uSEM 
on factor scores, the likelihood to commit a direction 
false positive is also higher than that of the simultan
eous LASSO regularization hybrid uSEM with latent 
variables. The result suggests that the use of factor 
scores instead of the latent variable approach is sub
jected to a higher false positive rate.

This tendency of recovering a relation with a 
wrong direction undermines the purpose of adopting 
the more flexible VAR representation, i.e., to accur
ately represent the hybrid forms of contemporaneous 
relations that might coexist in practice. Causal impli
cations represented by a model with only directed 
paths or only undirected covariance could be very dif
ferent. However, if we choose to use a more flexible 
model representation, but the chance of selecting false 
positive relations with a wrong direction is high by 
the model selection method, we still end up with mis
leading causal interpretations. In this sense, when 
there might exist some strong contemporaneous rela
tions, LASSO regularization seems to have a higher 
tendency to eliminate false positive relations and 
avoid misleading causal interpretations than does the 
pseudo-ML method using factor scores. To our know
ledge, this is the first evaluation on the impact of 
using factor scores for model selection under the 
uSEM context.

In terms of parameter estimation, as expected, the 
post model selection MIIV-2SLS estimator is the least 
biased for parameters in the exploratory structural 
model. But slightly surprisingly, the proposed LASSO 
regularized hybrid uSEM with latent variable approach 
produced the least biased estimates for free parameters 
including factor loading coefficients in the confirma
tory measurement model and the lag-1 autoregressive 
effect between factors. This suggests that the biases for 
other regularized parameters are mainly from the 
LASSO penalty. In practice, if we are using regularized 

SEM method, we should only penalize the uncertain 
(i.e., exploratory) part of the model. However, both 
the pseudo-ML estimator and the LASSO regularized 
estimator introduce quite some biases in the param
eter estimates of the structural model, especially for 
small relations. Hence, post model selection estima
tion might indeed be a more practical choice to obtain 
final estimates.

We also observe at least two major downsides of 
using factor scores in parameter estimation, besides its 
impact on model selection (i.e., the tendency to select 
a directed path with a wrong direction). First, the esti
mation of the lagged effects seem to be particularly 
largely biased, regardless of sample size. This is not 
surprising because no matter what estimation method 
is used to obtain the factor scores, the sample variance 
matrix of estimated factor scores is an inconsistent 
and biased estimate of the true variance matrix of fac
tors (Croon, 2002; Skrondal & Laake, 2001). In add
ition, the time embedding process of the data to 
obtain lagged factor variables introduces more random 
error on top of the measurement error within the 
contemporaneous factors variables themselves, thus 
causing additional biases in the estimates of relations 
between the lagged factor variables and the contem
poraneous factors variables. Second, besides a high 
average level of biases in estimates of small contem
poraneous relations regardless of which factor score 
methods are used, methods using factor scores also 
tend to produce less consistent estimates that is more 
subject to sampling fluctuations. The substantial 
amount of variability in the biases across samples 
especially with a small to medium sample size is very 
likely a consequence of the sampling error in the sam
ple variance matrix of estimated factor scores.

Limitations and future directions

Limitation in the two approaches under 
investigation
The simultaneous analysis using LASSO regularization 
under the LV-huSEM is easy to implement and can 
avoid biases from the use of factor scores, but it might 
be more limited in the size and complexity of the 
model (e.g., number of variables, factors, density of 
the structural paths, etc.) than is sequential analysis 
like the GIMME approach. This is because use of fac
tor scores reduces the dimension of the parameter 
space - the number of parameters is higher in the 
simultaneous model as it includes estimates for the 
measurement model besides the structural model. 
Optimizing the covariance matrix of observed 
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variables with a higher dimension is more difficult 
than that of the latent factors. Another advantage of a 
sequential analysis is that it is at a better chance to 
avoid improper solutions or nonconvergence issues 
that is not uncommon in simultaneous estimation 
methods. Nevertheless, the issue with a high direction 
of false positives using factor scores makes it a less 
appealing choice for model selection.

Although the use of MIIV-2SLS estimation reduces 
biases from model misspecification and model selec
tion, the naïve post model selection statistical inference 
is subject to another source of bias due to the duplicate 
use of the data, that is, the same dataset is used for 
model selection and model estimation. Since statistical 
inference is established under the assumption that the 
fitted model is known in advance, which is clearly vio
lated here, the naïve inference of a regularized LV- 
huSEM after the data driven selection process for varia
bles and relations is no longer valid. Because both the 
randomness introduced by the selection process and 
the sample space restriction implied by the chosen 
model influence the sampling distribution of the esti
mator and need to be accounted for (Huang, 2020). 
Indeed, it has been found that the naïve method after 
model selection using regularized SEM tends to obtain 
significant results for selected zero parameters, resulting 
in numerous false positive findings in psychology 
(Huang, 2020). However, post model selection infer
ence methods are extremely difficult to perform, and 
few has been developed for regularized SEM or been 
implemented in the regsem package at the time of this 
work. This is probably because the primary goal of stat
istical learning method such as LASSO regularization is 
to achieve the least biased prediction, while the aim of 
traditional psychology and of the current study is to 
identify the optimal model from which to obtain statis
tical inference for individual parameters. This is one of 
the biggest gap yet to be filled in the future develop
ment of statistical learning under SEM framework. It 
would be useful to make these methods available in the 
software and packages for regularized SEM, so that 
future studies could be conducted to evaluate and valid
ate their properties under the regularized hybrid uSEM 
with latent variables.

One aspect that is out of the scope of the current 
study is DFMs for multiple subject time series. The 
focus of the study is idiographic, single-subject DFMs 
on the ground of unifying factor structure, for which 
there is no consideration of between-person effects or 
attempt to aggregate individual models. However, the 
use of group-level or between-person information 
(i.e., similarities and variances across individuals) has 

been shown as an effective way to extract true effects 
from noise information so that it avoids the risk of 
over-fitting individual dynamic models (Asparouhov 
et al., 2018; Gates et al., 2020). In fact, one of the 
strengths in the LV-GIMME algorithm is to construct 
a group-level model with the most shared information 
that forms the starting model for each individual 
model. Such a strategy might address to some extent 
the high direction false positive rates. This should be 
a possible extension to the current LASSO regularized 
LV-huSEM modeling, for which an additional step for 
forming the group-level model needs to be incorpo
rated. Alternatively, one recent method called “multi- 
VAR” is proposed (Fisher et al., 2022) that uses 
LASSO penalization on multiple subjects multivariate 
TSD for the forecast of dynamic processes at the indi
vidual level. Although the goal of multi-VAR is to 
identify an optimal sparse VAR that achieves the best 
prediction, rather than recovering the true model or 
statistical inferences of the selected model.

An alternative framework for multi-subject DFM is 
to aggregate individual dynamic results using a multi
level structure. One recent promising method is the 
Dynamic Structural Equation Modeling (DSEM; 
Asparouhov et al., 2018), where multiple subjects time 
series are modeled simultaneously to estimate popula
tion mean and individual differences (deviations from 
the mean) in the parameters governing a dynamic 
process. DSEM is very flexible as it decomposes the 
observed TS variables into three model components: 
individual-specific, time-specific, and the deviation of 
each individual at each timepoint, with fixed and ran
dom effects flexibly incorporated in each component. 
DSEM implemented in Mplus Version 8 is estimated 
with a Bayesian method using the Gibbs sampler and 
the Metropolis–Hastings sampler, which has many 
advantages such as handling missing data, measure
ment invariance, etc. However, the Bayesian DSEM or 
other multilevel modeling options is not flexible in 
specifying idiographic structural models, e.g., model 
selection for individual contemporaneous structure is 
currently unavailable in DSEM. This is because indi
viduals cannot differ in their model structure but only 
in their parameterization under the assumption of 
normally distributed parameters. Adopting a multi
level structure for the LV-huSEM will sacrifice the 
flexibility in incorporating individually heterogeneous 
structural models.

Limitation in the simulation design
Like all simulations, the simulation factors do not rep
resent a comprehensive list of empirical situations. To 
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keep the scope manageable, we did not adopt a cross 
design of factors such as path strength, model size 
(i.e., number of variables) and sparsity, level of meas
urement error in the latent factors, etc. The DGM 
might also represent an over-simplified, sparse DFM, 
with a very standard measurement structure i.e., with
out cross-loadings or local dependency structures. In 
practice, the latent variable relations in a DFM could 
be much denser with many weak to moderate rela
tions. In addition, the measurement model could also 
be extended both in the sense of containing some 
error correlations as well as to include lagged effects 
between the observed indicators and latent factors, 
i.e., a white noise factor model or a hybrid of WNFM 
and DAFM. These added complexities pose a bigger 
challenge for the model selection and parameter esti
mation, because a denser model means that the model 
search and optimization for solution are performed at 
a larger parameter space with higher dimensions. This 
might require a harsher penalty term, which in turn 
might lead to larger biases in the estimates of correct 
parameters, although the current proposal to use the 
post model selection MIIV-2SLS estimation could par
tially compensate for the biases. Future development 
in the optimization algorithm for regularized SEM in 
general is the key to estimate a LV-huSEM with more 
complex structures and higher dimensions.

Nevertheless, our results of the LASSO regularized 
hybrid uSEM with latent variables highlights the flexibility 
of the LASSO regularized SEM in estimating individual 
DFMs. The data-driven LASSO penalty opens up a var
iety of possibilities in the development and appraisal of 
individual dynamic theories. The penalization structure 
relies on which part of the model is more supported by 
theory, and which part is more uncertain and needs to be 
explored by the data. For instance, when the latent factor 
structure among the candidate indicators is not fully 
determined by the theory, partially exploratory model 
selection could be implemented on the measurement 
model. Specifically, if some indicators of a factor are con
firmed by the theory, but the rest of the indicators are 
not, we can adopt the “semi-confirmatory” factor model 
from Huang (2020) in the way such that the factor load
ings from the uncertain indicators are included as param
eters under penalization while the factor loadings of the 
confirmed indicators are free parameters. This way, only 
the uncertain part of the measurement model is under 
the data-driven LASSO selection. This idea could also be 
used to explore the hybrid form of WNFM and DAFM 
when the theory is not enough to determine which DFM 
is more appropriate. That is, in the case where the meas
urement model may contain either the lagged factor 

loading, or the contemporaneous factor loading, or some 
combination thereof. One way is to penalize the lagged 
factor loading and the contemporaneous factor loading 
simultaneously, as an automatic search between a 
WNFM and a DAFM with respect to the factor loading 
structure across time. Alternatively, we can retain the 
confirmed structure of the contemporaneous factor load
ing and only penalize the lagged factor loading if the latter 
is optional. Depending on the knowledge of the theory 
available to us, we can choose which relations we feel 
confident enough to be included as free estimates, and 
which we are less so and thus allow the data to decide by 
imposing a LASSO penalty on the corresponding parame
ters. Therefore, the flexibility of regularization with user- 
defined estimation and penalization structure lifts the 
dichotomous boundary between the exploratory 
approach and the confirmatory one and allows for an 
expansion and refining of theory on a continuum.

In conclusion, the major contribution of the cur
rent work is to propose a flexible framework for indi
vidual dynamic factor models, i.e., the regularized 
hybrid unified SEM with latent variables, that offers 
an effective model search and estimation framework 
with flexible directions of dynamic relations. In terms 
of the application to substantive research in psych
ology, the authors remind researchers to keep in mind 
the strengths and shortcomings of the proposed 
approach. First and foremost, the adoption of the 
hybrid uSEM representation is particularly useful for 
cases where there are a handful of variables or latent 
constructs and causal implications are of interest, 
especially since only some causal assumptions can be 
made from the available literature. In other words, 
(with some uncertainty) one would expect some rela
tions to be causal by nature (e.g., mediation, common 
cause, etc.), some are pure associations, and the over
all structure is subject to some levels of exploration. 
Second, this type of model requires a certain amount 
of sample size. It might be challenging for some stud
ies such as daily diaries to have a few hundred to 
thousands of time points, while in neuroimaging or 
biometric studies this might be less of an issue. Third, 
because the property we found is conditional on the 
weakly stationary assumption in the time series data 
and time-invariant parameters are estimated from the 
model, it might not be very useful for studies such as 
developmental psychology with meaningful nonsta
tionary trends or time-varying relations. For instance, 
if the trend of growth (or decrease) carries crucial 
developmental meanings, the removal of the trend 
takes away the focus of interest; instead, the stage-spe
cific time-varying dynamic relations might be more 
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informative for developmental studies. In these cases, 
DFMs that can handle nonstationary and time-varying 
parameters (e.g., Chow et al., 2011; Molenaar et al., 
1992) should be used. Lastly, as the time component 
is treated as discrete, the current method is appropri
ate when an equal time interval is achieved or with 
very short measurement windows such that the 
unequal distance is negligible. However, when an 
unequal time interval is an issue, an option is to use 
the continuous time structural equation modeling, 
which estimates an underlying continuous process by 
using stochastic differential equations to accurately 
account for differences in time intervals between 
measurements (Driver et al., 2015; Ryan et al., 2018). 
In contrast, this limit has minimal impact on func
tional connectivity studies where both the time inter
vals and the entire duration of the brain scan are very 
short and they do not carry developmental meanings. 
In summary, dynamic researchers need to be aware of 
their research purposes and the characteristics of the 
time series data they have at hand when making the 
modeling choice.
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